
MASTER’S THESIS 2023

Using Transformers To Improve
Search Functions
Alice Berggren, Linnea Palmblad

ISSN 1650-2884
LU-CS-EX: 2023-26

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-26

Using Transformers To Improve Search
Functions

Evaluering av sökalgoritmer för en
chattapplikation med hjälp av Transformers

Alice Berggren, Linnea Palmblad

Using Transformers To Improve Search
Functions

(An Application for a Smart Messaging System)

Alice Berggren
al5028be-s@student.lu.se

Linnea Palmblad
li3776pa-s@student.lu.se

June 29, 2023

Master’s thesis work carried out at Telavox.

Supervisors: Jesper Gunnarsson, jesper.gunnarsson@telavox.com
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:al5028be-s@student.lu.se
mailto:li3776pa-s@student.lu.se
mailto:jesper.gunnarsson@telavox.com
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

Following the explosion of information available on the internet and in digital
databases, search functions have become essential for efficient information re-
trieval (IR). Transformers have become increasingly popular in recent years for
creating search functions due to their ability to handle natural language process-
ing tasks with remarkable accuracy. Yet, many applications and companies still
do not utilize this technology and instead use keyword search methods. This
can lead to irrelevant or incomplete search results that force organizations to
spend time manually searching for relevant results. To this end, we investigated
the performance of transformer-based models on the sentence-pair tasks from
the GLUE benchmark, representing different linguistic properties. Addition-
ally, we evaluated the best-performing models on the IR benchmark CISI and
on a dataset containing chat messages and queries taken from a messaging ap-
plication. In this thesis, we show that the SBERT encoder model outperformed
the other models based on the established benchmarks in our experiment. Fur-
thermore, we developed a web application to measure the performance when
using the SBERT model in combination with a cross-encoder and we found that
the combination of a pre-trained cross-encoder and a retrieval model further
increases the IR performance.

Keywords: NLP, Search Function, SBERT, Transformers, Cross-Encoder

2

Acknowledgements

We would like to thank Elias Vernersson and Niklas Bruce for their invaluable assistance
during the course of our Master’s Thesis at Telavox. They provided valuable support in con-
ducting our experiments, and their dedication and time was greatly appreciated.

Additionally, for his input and expertise throughout the entire process of our thesis work,
we also extend our appreciation to our supervisor at Telavox, Jesper Gunnarsson.

This work has been supported by the company Telavox which provided their office space,
hardware, and support of their team members at the office. This has also been instrumental
in the accomplishment of our research.

Lastly, we would like to express our deepest gratitude to our supervisor at LTH, Pierre
Nugues, for reading drafts of this paper and whose expertise has been indispensable to our
work. Without his guidance and knowledge, our research would not have been possible.

3

4

Contents

1 Introduction 9
1.1 Problem definition . 9
1.2 Contribution Specifications . 10
1.3 Related works . 11

2 Datasets 15
2.1 Choosing the collections . 15
2.2 Format of the benchmark datasets . 16
2.3 Format of the Telavox chat data . 18
2.4 Evaluating the datasets . 19

2.4.1 Metrics for the GLUE datasets . 20
2.4.2 Metrics for the IR datasets . 22
2.4.3 Benchmark datasets . 23
2.4.4 Telavox data . 24

3 Transformer Architectures 27
3.1 Metrics . 28

3.1.1 Cosine similarity . 28
3.1.2 Dot product . 28

3.2 Models using Transformers . 28
3.2.1 BERT . 29
3.2.2 SBERT . 30
3.2.3 DPR . 30
3.2.4 Cross-Encoder . 31

4 Selection of Models 33
4.1 Encoder model . 34

4.1.1 Tf-idf . 34
4.1.2 BM25 . 34
4.1.3 SBERT . 35

5

CONTENTS

4.1.4 InferSent . 37
4.1.5 DPR . 37

4.2 Classifier . 38
4.3 Comparison of chosen models . 39

4.3.1 Results . 39
4.4 Finetuning the chosen model . 40

4.4.1 Losses . 40
4.4.2 Method . 40
4.4.3 Result . 41

5 Models as Information Retrieval systems 43
5.1 Telavox Dataset . 44

5.1.1 Evaluation of the Telavox Dataset 44
5.1.2 The annotators . 45

5.2 CISI . 45
5.3 Result . 46

5.3.1 Telavox dataset . 46
5.3.2 CISI . 47
5.3.3 Chosen model . 47

6 Re-ranking 49
6.1 Method . 50

6.1.1 Non-finetuned BERT model . 50
6.1.2 MSMARCO finetuned model . 50

6.2 Implementation . 50
6.3 Evaluation . 51

6.3.1 Chosen cross-encoder . 51
6.3.2 Result . 51

7 Discussion 53
7.1 Benchmark datasets . 53

7.1.1 Evaluation of the encoder model 53
7.1.2 Implications of using the benchmarks 54

7.2 Telavox dataset . 54
7.2.1 Creating the queries . 55
7.2.2 The annotation of the data . 55
7.2.3 Best performing model for the Telavox dataset 56

7.3 Re-ranking . 56
7.4 Usage in a company domain . 57
7.5 Future work . 57

8 Conclusions 59

References 61

Appendix A Google Form for Annotating Telavox Dataset. 67

6

CONTENTS

Appendix B Screenshot of Application 69

7

CONTENTS

8

Chapter 1

Introduction

In today’s digital age, the availability of vast amounts of data has created a phenomenon
known as information overflow. In the realm of communication applications, particularly
in the context of instant messaging systems, the phenomenon of information overflow be-
comes even more pronounced. As companies increasingly rely on online communication
platforms to facilitate internal collaboration and engage with customers, the sheer volume
of messages exchanged on these platforms can quickly become overwhelming. This abun-
dance of data poses significant challenges in effectively managing, organizing and extracting
valuable insights from chat conversations. The unstructured nature of chat messages further
aggravates the problem, as relevant information can be scattered across numerous threads
and lost amidst the noise.

Therefore, addressing the issue of information overflow in chat applications is of utmost
importance to enable efficient navigation, retrieval, and analysis of crucial data. In natural
language processing (NLP), this process of obtaining relevant information from extensive
data collection based on user queries is called information retrieval (IR). Developing an IR
system tailored for chat environments can help company employees and customers find the
information they want securely and efficiently, even as the company grows.

Many of these IR systems struggle to understand the nuances of human language and
context since they are mainly based on keyword or vector-based search models. These models
are good at finding similar words but often fail to understand the purpose and intent behind
language, leading to inaccurate results. Transformers is an alternative architecture that has
proven suitable for understanding the complexity of human language and is considered state-
of-the-art.

1.1 Problem definition
Many companies rely on search functions based on keyword search or vector space tech-
niques such as tf-idf and BM25. These approaches gained popularity due to their simplicity,

9

1. Introduction

efficiency, and ability to handle large volumes of text data. Treating documents as a collec-
tion of words or vectors allows companies to quickly retrieve relevant information based on
specific keywords or similarity measures.

However, one of the significant limitations of keyword-based and vector space search
functions is their inability to handle context effectively as described by Qaiser and Ali (2018).
These approaches treat documents and search queries as unordered collections of individual
terms without considering the relationships between words or the text’s overall structure. As
a result, they often fail to capture the nuances and semantics embedded in the context of the
text, leading to sub-optimal search results.

More advanced search methods have emerged to address this limitation, leveraging NLP
techniques and machine-learning algorithms. These approaches aim to capture the contex-
tual information, semantic relationships, and the text’s overall meaning. Neural network-
based models, such as transformers, have demonstrated significant advancements in under-
standing the context of text by considering word relationships and capturing the overall
meaning of the text. Because of this, researchers have achieved remarkable advancements
in accuracy on many NLP tasks, including text classification (Yang et al., 2019), language
understanding (Wang et al., 2019), machine translation (Lample and Conneau, 2019), and
text summarization (Lewis et al., 2019). By leveraging the attention mechanisms and learn-
ing representations in transformers that capture contextual information, the application of
transformer-based models also holds great potential for enhancing search functions. This
surpasses the limitations of the widespread keyword-based and vector space techniques.

In this thesis, we investigated how to use transformer-based models to improve a search
function in a chat application for the Swedish telecommunications company, Telavox. Telavox
currently have a database containing over 300,000,000 chat messages that there is no way of
efficiently search through except from manually. So here, an efficient search algorithm is
crucial to ease the navigation of content. We used the models to transform the sentences
into sentence embeddings that capture the context and relevancy of the chat messages based
on semantic similarity. We explore five different encoder models: tf-idf, BM25, InferSent,
SBERT, and DPR. See Chapter 4. Additionally, we evaluate the addition of a cross-encoder
to re-rank the fetched relevant documents for a more accurate search function. See Chapter
6.

1.2 Contribution Specifications
In summary, our contributions encompass three key aspects.

• In Chapter 2, we present a newly curated IR dataset featuring meticulously annotated
data. This dataset serves as a valuable resource for evaluating the capabilities of IR sys-
tems, capturing the intricate complexities and nuances associated with contemporary
IR tasks specifically within chat applications.

• In Chapter 4, we demonstrate the efficiency of utilizing the Transformer-based model
SBERT for IR. Through extensive evaluation, SBERT surpasses other models signifi-
cantly, generating superior natural language embeddings for semantic similarity search.

• Lastly, in Chapter 6, we evaluate an approach that combines a cross-encoder with a
bi-encoder, effectively optimizing accuracy outcomes while ensuring computational

10

1.3 Related works

efficiency. This innovative framework enhances the overall performance of the IR sys-
tem on the Telavox chat dataset.

Additionally, we hope our research findings provide valuable insights and contributions
that can benefit fellow researchers and practitioners involved in developing domain-specific
search engines. By sharing our theoretical framework and implementation methodology, we
aim to inspire and guide others interested in conducting further research in this field or
leveraging these techniques within their respective company domains. We believe that the
knowledge and approaches presented in this study have the potential to serve as a founda-
tion for future advancements and innovations in the realm of search engine development,
facilitating enhanced IR and discovery in specific domains.

1.3 Related works
In this section, we explain the dimensions fundamental to our work: What kind of search
function architectures there are as well as their advantages and disadvantages. We highlight
works in areas relevant to ours.

Keyword search
In IR and search systems, keyword search has been a widely adopted approach for many
years. While keyword search is simple to implement, it has several limitations. One major
limitation is the keyword search’s inability to handle the semantic meaning of words. Hussan
(2020) explain that since keyword search relies solely on matching exact terms, it often fails
to capture the subtleties and semantic nuances present in a user’s query.

Additionally, keyword-based systems may suffer when there are multiple meanings of a
word and when there are different words with similar meanings, leading to imprecise and
incomplete search results.

For instance, consider a search query for ‘Apple‘, as illustrated in Figure 1.1. In a keyword-
based search, the system would retrieve documents containing the term ‘Apple‘ without dif-
ferentiating between the fruit or the technology company and not considering incorrectly
spelled versions of the term. This lack of context awareness can lead to nonrelevant search
results, limiting the effectiveness of these search functions. These limitations have motivated

Figure 1.1: Example of the retrieved results in a keyword-based
search.

11

1. Introduction

researchers to explore more advanced techniques in order to overcome the challenges posed
by keyword search and improve the accuracy of search results.

Vector space search

Vector space search was introduced by Salton and Lesk (1965) and is a widely employed
technique in IR systems, aiming to address the limitations of keyword-based approaches.
In vector space search, documents and queries are represented as high-dimensional vectors
in a vector space. The vectors capture the statistical properties of the words or terms in
the documents and queries, typically using methods like tf-idf or BM25. The vector space
model allows for more flexible and nuanced matching based on similarity rather than strict
keyword matching. By measuring the degree of similarity between vectors, the system can
retrieve documents that are similar to the query, even if they do not share all the exact same
terms. This approach enables more flexible matching based on similarity instead of strict
keyword matching.

While vector space search has shown promise in improving search accuracy, it still faces
challenges. This is because the approach is based on the bag-of-words concept, where each
document is represented as a collection of individual words, disregarding the order and con-
text in which they appear. Therefore, it struggles with capturing long-range dependencies
and understanding complex relationships within documents.

Similarly to keyword search, vector space techniques retrieve documents based on the
similarity of individual word vectors without considering the broader meaning or intended
context of the query. Therefore, it can not handle negation very well. For example, as illus-
trated in Figure 1.2, the search query ‘Pie recipe without apple‘ will have a very high similarity
score with a document that contains the sentence ‘Apple pie recipe‘. While the documents
may have high similarity scores, they would be considered bad matches because it fails to
capture the intended meaning and context of the query.

This highlights one of the limitations of vector space search approaches, as they primarily
rely on term frequencies without understanding the semantic relationships or contextual in-
formation, leading to potential mismatches in search results. Furthermore, it may encounter
difficulties when faced with out-of-vocabulary terms or rare words.

Figure 1.2: Example of the retrieved results in a vector space based
search.

12

1.3 Related works

Transformers in search applications
Transformers have emerged as a powerful architecture in various NLP tasks, including search
applications. The architecture was introduced by Vaswani et al. (2017) for the purpose of
translation tasks. Since then, the use of transformers in search functions has gained sig-
nificant attention due to their ability to capture contextual dependencies and model long-
range relationships effectively. Ghojogh and Ghodsi (2020) thoroughly explain how the self-
attention mechanism that transformers employ allows them to attend to all input tokens
simultaneously. This mechanism helps transformers understand the context of a sentence
based on its surrounding words. This capability is particularly beneficial in search applica-
tions where the retrieval of relevant information relies on understanding the semantics and
relationships between words or phrases.

Figure 1.3 illustrates an example of a search using transformers. In context based search,
the search query ‘How do you make a dessert? ‘ will have a very high similarity score with a
document that contains recipes and instructions relevant for making desserts, even though
the sentences do not share a single word. Using keyword search the two sentences would not
be a match, and using vector space search the resulting similarity score would at best be very
low, but utilizing Transformers, the context and meaning of the sentences will be included
in the similarity score, resulting in a high similarity score.

Transformers can be useful for a number of NLP tasks for enhancing search functions.
Several studies have demonstrated the effectiveness of using transformers in tasks such as
document retrieval (Zhang et al., 2021), question-answering (Lukovnikov et al., 2019), and
semantic search (Muennighoff, 2022). Additionally, in studies by Yamoun et al. (2022) and
Karpukhin et al. (2020) it has been shown that finetuning pre-trained Transformer models on
specific search domains or using specialized architectures like Dense Passage Retrieval (DPR)
and Sentence-BERT (SBERT) can significantly improve search accuracy and efficiency. The
ability of Transformers to capture complex patterns, handle semantic nuances, and exploit
large-scale pre-training has positioned them as a promising approach for enhancing search ap-
plications and addressing the limitations of traditional keyword-based or vector space search
methods. We will describe some of the different Transformer architectures in more detail in
Chapter 3.

Figure 1.3: Example of the retrieved results in a context based search.

13

1. Introduction

14

Chapter 2

Datasets

To conduct a comprehensive evaluation of our IR system, it was crucial to consider three
key components and corresponding measures. Firstly, we needed a way to assess the accuracy
and completeness of the retrieval results by measuring how effectively the IR system retrieves
relevant documents in response to queries. To achieve this, it was necessary to have a method
for evaluating the quality of the retrieved documents.

Thus, secondly, annotated collections were required. These collections contained docu-
ments that were pre-annotated based on relevance and served as a reference for evaluating
the performance of the IR system.

Lastly, to gain insights on the IR system, it was necessary to test the system on task spe-
cific datasets and compare its performance with existing baseline systems or state-of-the-art
approaches.

Subsequently, to facilitate a comprehensive evaluation of our IR system, we selected two
distinct benchmark datasets and constructed a domain-specific dataset utilizing data sourced
from Telavox, encompassing all three key components.

The sections of this chapter are structured as follows: Section 2.1 offers an overview of
the chosen benchmark datasets, providing a detailed analysis of their inherent characteristics.
Furthermore, it gives an overview of the company dataset, outlining the methodology em-
ployed for its creation and the subsequent annotation process. Finally, Section 2.4 presents
the evaluation methodology used, including selecting appropriate performance metrics tai-
lored to each dataset.

2.1 Choosing the collections
To gain insights into the relative strengths and weaknesses of the different IR systems, it was
necessary to test the system on task specific datasets to see how well they could understand
language. To do this we will evaluate the systems on the widely-used sentence pair datasets
in the General Language Understanding Evaluation (GLUE) benchmark that capture various

15

2. Datasets

linguistic properties (Wang et al., 2019). The GLUE datasets encompass a diverse range of
NLP tasks, each designed to address specific challenges in language understanding (Wang
et al., 2019). Taking inspiration from Tien et al. (2019) researching semantic textual similar-
ity, we used a similar setup for evaluating our models. We used this approach in order to see
how well the systems understand language and to be able to compare our results not only
against our own findings, but also against available baselines and state-of-the-art models.

To evaluate the models based on this task, we carefully selected five datasets from the
GLUE benchmark that aligned with our research objectives since they related to tasks sim-
ilar to semantic similarity. The tasks included semantic textual similarity and equivalence,
question-answering, and predicting textual entailment.

For assessing semantic textual similarity, we aimed to determine if the systems could com-
prehend that different texts can convey similar meanings, even when using different words.
For example, the sentence ‘A man is tying his shoe‘ is semantically similar to ‘A man ties his
sneaker‘. Additionally, we examined how well the systems could identify answers to ques-
tions within texts, testing their question-answering capabilities. Lastly, we evaluated the
systems’ understanding of textual entailment, assessing their capacity to recognize logical re-
lationships between given sentences. For instance, from the sentence ‘Google files for its long
awaited IPO‘, the conclusion ‘Google goes public‘ can be made.

As part of evaluating the models’ performance as IR systems, we selected the Centre for
Inventions and Scientific Information (CISI) dataset, created by the University of Glasgow
(2023) that suited the intended use of the search function. The datset focuses on improving
the effectiveness of IR systems and is comprised of a substantial collection of documents and
queries with annotated relevance judgments by domain experts. Nevertheless, it is worth
noting that the CISI dataset may not fully represent all types of IR and NLP tasks, and is
not a perfect representation of the search function’s intended use. Furthermore, there are no
known existing baseline systems that we can directly compare our results to.

To specifically evaluate the IR system within the context of a chat application in a com-
pany domain, we incorporated a dataset comprising chat messages from Telavox’s chat ap-
plication. As the goal is to find a model for this exact data, it was important to see how the
models performed with real data imitating the search function’s intended use. However, due
to the absence of assessments and labels for this dataset, as well as the limitations of this
thesis, conducting a comprehensive evaluation solely based on this dataset was not feasible.
Therefore, we combined the Telavox dataset with the GLUE and CISI datasets to ensure a
robust and rigorous assessment of our system’s performance in both language understanding
and document retrieval tasks.

2.2 Format of the benchmark datasets
The GLUE datasets consist of entries organized into four columns, representing either sentence-
to-sentence, question-to-question, or question-to-answer pairs. Furthermore, depending on
the dataset, these datasets contain a class label indicating the relationship between the pairs,
such as entailment/non-entailment or equivalence/non-equivalence. Alongside the GLUE
datasets, we also chose to evaluate our models on the CISI dataset. The CISI dataset is com-
prised of a collection of documents, queries, and mappings that associate query IDs with
document IDs, facilitating the linking of queries to relevant documents.

16

2.2 Format of the benchmark datasets

Following is detailed information about each of the chosen datasets, elucidating their
characteristics and relevance to our evaluation:

• STS-B The Semantic Textual Similarity Benchmark (STS-B) is a collection from GLUE
that consists of sentence pairs drawn from news headlines, video and image captions,
and natural language inference data (Wang et al., 2019). Each pair has been annotated
with a similarity score from 0 to 5, determining the semantic textual similarity (AL-
Smadi et al., 2017). This task was chosen as the user sometimes does not have a specific
document in mind when searching a query, but instead, a topic or certain keywords,
and the search function should still retrieve relevant documents with similar meaning
as the query.

• MRPC The Microsoft Research Paraphrase Corpus (MRPC) is a corpus from GLUE
that consists of sentence pairs extracted from online news sources, with human anno-
tations for whether the sentences in the pair are semantically equivalent or not (Wang
et al., 2019). It tests whether the sentences are paraphrases of each other, and not
only similar meaning as the semantic textual similarity task will determine (AL-Smadi
et al., 2017). This was important to evaluate as the user should not need to know the
exact words of any document to make a query in the search function that will retrieve
relevant documents.

• QQP The Quora Question Pairs dataset (QQP) is a collection from GLUE that consists
of question pairs from the community question-answering website Quora (Wang et al.,
2019). The dataset is annotated on whether the questions in the pair are semantically
equivalent with the same intent or not. We used this dataset in addition to the MRPC
dataset to test the search function on queries and documents formulated as questions.

• RTE The Recognizing Textual Entailment (RTE) dataset is a GLUE dataset that is con-
structed based on news and Wikipedia texts (Wang et al., 2019). This task tests textual
entailment by comparing two texts and recognizes if the truth of one text fragment fol-
lows from another, by predicting a directional relation between them (Korman et al.,
2018). We chose to evaluate this as the user should be able to query a summary or main
points of a document and the search function should retrieve relevant documents that
could support that query.

• QNLI The Stanford Question Answering Dataset (QNLI) is a question-answering test
collection from GLUE, consisting of question-paragraph pairs, where one of the sen-
tences in the paragraph contains the answer to the corresponding question written
by an annotator (Wang et al., 2019). We used it to test whether the search system is
able to locate an answer to a question. This was important to evaluate in a question-
answering system as the user should be able to form the query as a question and the
search function should recognize and retrieve the documents answering that question.
To evaluate this dataset we looked to see if the question and corresponding answer
would be labeled as a match by the classifier or not.

• CISI The Centre for Inventions and Scientific Information (CISI) dataset is an IR
dataset that consists of text data about documents and associated queries (University
of Glasgow, 2023). We used it to evaluate relevancy based on a query given all the
relevant documents in a corpus (Clough and Sanderson, 2013).

17

2. Datasets

Each of the datasets were divided into training and validation sets. The metrics for the train-
ing set are shown in Table 2.1, and the validation set is shown in Table 2.2.

Table 2.1: The metrics for the used training datasets in the thesis.
The table contains the number of rows, the minimum phrase length,
the maximum phrase length, the median phrase length, and the av-
erage phrase length for each dataset. Length refers to the amount of
words.

Dataset Rows Min. len Max. len Median len Avg. len
MRPC 3668 7 42 14 21.9
RTE 2490 3 239 7 26.2
STS-B 5749 2 56 10 9.9
QNLI 104743 1 40 7 9.9
QQP 363846 1 237 13 11.1
CISI docs 1460 15 566 124 133.0
CISI queries 77 4 226 46 56.3
Telavox docs 10040 1 1441 13 13.8
Telavox queries 100 1 10 4 4.1

Table 2.2: The metrics for the used validation datasets in the thesis.
The table contains the number of rows, the minimum phrase length,
the maximum phrase length, the median phrase length, and the av-
erage phrase length for each dataset. Length refers to the amount of
words.

Dataset Rows Min. len Max. len Median len Avg. len
MRPC 408 9 35 15 22.0
RTE 277 3 164 7 25.4
STS-B 1500 3 29 13 11.4
QNLI 5463 1 153 31 18.8
QQP 40430 1 134 8 11.1
CISI docs 1460 15 566 124 133.0
CISI queries 35 55 345 111 126.8
Telavox docs 10040 1 1441 13 13.8
Telavox queries 100 1 10 5 4.9

2.3 Format of the Telavox chat data
The dataset we created from the Telavox database contained chat messages from their com-
munication platform. The languages used at Telavox are mainly English and Swedish. How-
ever, Telavox also has offices in Spain and Denmark, among other places, so there are some
messages that also exist in other languages. We decided not to take them into consideration
in our research since they only take up a small share of the messages we retrieved.

18

2.4 Evaluating the datasets

The data we received from the company was stored in a MySQL database. A message was
represented by a number of attributes a few of which are listed below:

1. chatmessageid: Identifies a sent chat message. It is the primary key of the table.

2. fromuserid: Identifies the user that sent the message.

3. message: Contains the chat message content, stored as a text type.

4. sent: Represents the time the message was sent. It is stored as a Datetime type.

5. chatsessionid: Identifies the chat the message was sent in.

6. alsoasms: A true or false value holding the information if the chat message was also
sent as a text message outside of the messaging application.

7. attachmentid: Identifies possible attached files sent in the chat message.

8. title: Representing the possible title of the chat message.

We chose to create a dataset containing 200 rows of search queries that could possibly be
used by the engineering team at Telavox. Then we split it into a validation and training set
of 100 queries each. Looking at the metrics in Tables 2.1 and 2.2, there was a wide range in
phrase length of the documents. Based on the median for the document length which was 13
words, the queries were chosen to range in length from 1 to 10.

As the scope of this thesis is a search function in a company domain, we focused on
technical terms in both English and Swedish when creating the search queries. Telavox is a
tech and engineering company so we believed that this type of language for the queries would
be able to retrieve relevant results.

The validation query set was used to evaluate the models. We simulated users using the
search function by letting the different search queries run through three chosen models. The
models matched the queries with a collection of 10.040 chat messages. The models retrieved
the ten most relevant matches. These matches were later annotated by us and the Telavox
employees as relevant or not. The format of the resulting labeled Telavox dataset was, there-
fore, 3000 rows of data annotated by experts at Telavox, and 3000 rows of data annotated by
us authors to use to finetune the models. Finally, each row in the dataset consists of a query,
a chat message, and a label. The label represented if the message was relevant to the query or
not.

For privacy and integrity reasons we decided together with Telavox to only collect chat
messages from group sessions i.e. not private conversations on the messaging application.

2.4 Evaluating the datasets
In this section, we present the evaluation metrics used to assess the performance of various
models, compare their effectiveness, and identify potential areas for improvement. By utiliz-
ing standardized evaluation metrics and well-defined datasets, we can ensure that our results
are comparable with previous studies and provide a solid foundation for future research and
advancements. Additionally, we aim to shed light on the strengths and weaknesses of the dif-
ferent approaches, highlight challenges and limitations, and provide recommendations for
further advancements.

19

2. Datasets

2.4.1 Metrics for the GLUE datasets
Models can be evaluated using various metrics to assess their performance. The following
chosen metrics provided insights into different aspects of the model’s performance, allowing
for a comprehensive evaluation of its effectiveness in language understanding.

Binary classification terms

Figure 2.1: Visualization of the concepts true positives, false posi-
tives, false negatives, and true negatives.

In the context of binary classification, true positives (TP) are the instances of correctly
classified data where the label was 1. These are the cases where the model’s prediction aligns
with the predicted positive labels. True negatives (TN) represent the amount of correctly
classified data instances labeled 0, accurately identifying the absence of the positive class. On
the other hand, false positives (FP) refer to the amount of data instances where the label was
0 but predicted 1 by the model. Finally, false negatives (FN) arise when the model incorrectly
predicts a 0 for instances that are actually labeled 1. These concepts are visualized in Figure
2.1. These terms will be used in Eqs. 2.1, 2.2 and 2.3.

Accuracy
The accuracy of a model represents the number of correctly classified data instances over the
total number of data instances. It is calculated using the number of true positives and true
negatives predicted by the model, and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.1)

F1 Score
The precision of the model measures the positive predictive value in classifying the data
instances and is defined as:

Precision =
TP

TP + FP
. (2.2)

20

2.4 Evaluating the datasets

The recall of the model measures the sensitivity or true positive rate and is defined as the
following:

Recall =
FP

FP + FN
. (2.3)

F1-score is a metric that gives a harmonic mean value depending on the FP and FN values,
which is done using both recall and precision (Indurkhya and Damerau, 2010). It is defined
as:

F1 − Score = 2 ·
Precision · Recall
Precision + Recall

. (2.4)

There are different categories of F1 scores that can be used for different measurements, these
are macro and micro (Kundu, 2022). The macro F1 score counts the average of all F1 scores
and is defined as follows:

MacroF1Score =
∑n

i=1 F1scorei

n
. (2.5)

The micro F1 score when used with a binary dataset is the same thing as the accuracy defined
in Eq. 2.1.

Correlation Coefficients
• Pearson correlation coefficient The Pearson correlation coefficient describes the lin-

ear correlation between two sets of data. It is calculated using the ratio between the
covariance of two variables and the product of their standard deviations. The result
ranges between −1 and 1 where 1 is a perfect positive correlation, −1 is a perfect neg-
ative correlation, and 0 no correlation. The correlation is defined in Eq. 2.6.

ρX,Y =
cov(X,Y)
σXσY

. (2.6)

In Eq. 2.6 and Eq. 2.7, cov is the covariance, andσX andσY are the standard deviations
of X and Y .

• Spearman correlation coefficient Spearman’s correlation instead assesses monotonic
relationships and is defined as the Pearson correlation coefficient between the rank
variables. If there are no repeated data values, a perfect Spearman positive correlation
of 1 or negative of−1 occurs when each of the variables is a perfect monotone function
of the other. The correlation is defined in Eq. 2.7.

rs = ρR(X),R(Y) =
cov(R(X),R(Y))
σR(X)σR(Y)

. (2.7)

Where R(X) and R(Y) are the rank variables in Eq. 2.7.

21

2. Datasets

2.4.2 Metrics for the IR datasets
When evaluating the models on the IR datasets, we used different metrics than when eval-
uating the language understanding datasets. In this section, we present two different accu-
racy functions and a measurement of how highly ranked relevant documents are. We also
measured how the annotators’ labeling compared to each other, using measurements on the
inter-annotator agreement.

Precision and Recall @ n
In an IR system that retrieves a ranked list, the top-n documents are the n documents with
the highest similarity scores together with the query. Precision at n is the proportion of the
top-n documents that are labeled as relevant. The precision scores were calculated using the
following formula:

P@n =
r
n
, (2.8)

where r represents the number of relevant documents in a retrieved list and n is the number
of returned documents (Craswell, 2009).

We also looked at the recall scores. This metric shows how many actual relevant results
were shown out of all actual relevant results for the query. In a dataset where all the relevant
documents are known„ the recall is calculated using the formula:

R@n =
r
R
, (2.9)

where r is defined as the number of relevant documents, and R is the total number of relevant
documents in the dataset.

Mean reciprocal rank
The reciprocal rank gives a value of how high up the most relevant item is, in an ordered
result list. For example, if the most relevant item is the first item in the result, the reciprocal
rank is 1, and otherwise less than one. It is calculated using the following formula:

Reciprocal rank =
1

Rank
. (2.10)

The mean reciprocal rank looks at the mean rank across all queries, using the formula:

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

. (2.11)

Inter-annotator agreement
Cohen’s kappa is a measure used for evaluating the agreement between two annotators. A
high kappa value shows high reliability meaning that the annotators are likely to come to
the same conclusion. However, the measure does not say anything about the validity of the
results themselves. It is defined as:

22

2.4 Evaluating the datasets

κc =
p0 − pe

1 − pe
, (2.12)

where p0 and pe are defined in Eqs. 2.13 and 2.14. p refers to the probability in this equation.
The nominator gives the value of what agreement is actually obtained and the denominator
in the function gives a value of what agreement can possibly be obtained.

p0 =
#Agreed samples
#Total samples

, (2.13)

pe = pBoth would say a statement is true + pBoth would say a statement is false. (2.14)

Fleiss’ kappa is used instead of Cohen’s kappa if there are more than two annotators, and is
defined as:

κ f =
P̄ − P̄e

1 − P̄e
. (2.15)

2.4.3 Benchmark datasets
We utilized diverse evaluation methods for the CISI and GLUE datasets. This was due to
variations in the dataset structures, as discussed in the previous section.

Labeling the benchmark datasets
In order to compare the documents in the GLUE and CISI datasets, we adopted a systematic
approach. We focused on the document/document and query/document pairs along with
their corresponding labels. For each pairing, we computed a similarity score, which served as
an indication of the degree of similarity between the elements being compared. To facilitate
comparison with the labels, we transformed the similarity score into the same format as the
label, leveraging the assistance of a classifier. This enabled us to generate predictions of the
labels, which could then be compared to the actual labels to assess the performance of the
models on the respective tasks defined by the datasets.

The evaluation of the models on the IR datasets followed a different methodology. Here,
our objective was to examine the retrieved results when conducting a search query, taking
into account the relevance of the retrieved documents. Instead of comparing the results to a
predefined label, we sought to determine the number of relevant matches obtained and the
placement of the relevant results within the retrieved list.

To achieve this, we calculated similarity scores between all the queries and all the docu-
ments within the CISI and Telavox datasets. This process involved systematically measuring
the similarity between each query and every document in order to identify the documents
with the highest similarity scores for each query. By generating a list of the most relevant
documents based on their similarity scores, we were able to evaluate the effectiveness of the
models in retrieving relevant information for a given query.

Evaluating the benchmark datasets
We calculated the performance of each of the models for each of the GLUE tasks using the
chosen evaluation methods from the Hugging Face website, shown in Table 2.3. Using the

23

2. Datasets

formula presented in Eq. 2.1, we calculated the accuracy score for MRPC, QQP, QNLI, and
RTE. For computing the F1-score for MRPC and QQP, we used the formula shown in Eq.
2.4, and lastly we determined the correlation coefficients for STS-B by applying the formulas
in Eqs. 2.6 and 2.7, as outlined in Table 2.3. Using the pre-established evaluation methods
allowed us to compare all our results to other existing models and the current state-of-the-art
models using the published leaderboard on the Hugging Face website.

For CISI, there was no established evaluation method, so we chose the most common
metric accuracy score together with the F1 score as the data is not balanced. The label rep-
resented as a binary number gives information regarding whether a document is relevant to
the query. 1 defining relevance and 0 non-relevance. The precision and recall at 10, 3, and 1
were also used as measurements for the IR system.

Table 2.3: Table of the evaluation methods used on the data collec-
tions.

Data collection Evaluation method
MRPC F1 score/Accuracy
STS-B Pearson/Spearman correlation
QQP F1 score/Accuracy
QNLI Accuracy
RTE Accuracy
CISI F1 score/Accuracy

2.4.4 Telavox data
When creating a dataset, annotators are needed, as well as an evaluation method. Below we
describe how we annotated and evaluated the models on the Telavox dataset.

Labeling the Telavox data
Three employees from Telavox annotated our dataset. The data annotation was conducted
using custom Google Forms designed by us for this purpose. Initially, we selected 100 queries
to generate the top ten results with the highest similarity scores from the different models
under consideration. Subsequently, these Google Forms were distributed to the annotators,
featuring two questions for each query. The first question asked the annotators to indicate
the relevant items based on the given query, allowing them to select multiple relevant results.
The second question required the annotators to identify the most relevant item among the
search results for the given query or specify that ‘None of these results are relevant‘. An
example from one page of the Google Form is depicted in Appendix A.1.

The employees took two weeks to answer the questionnaire, and it took approximately
60 minutes to complete the form. After receiving the data, we calculated the inter-annotator
agreement and kappa values, and created a union of the results to get a collection of labeled
data.

24

2.4 Evaluating the datasets

Evaluating the Telavox data
Due to time constraints, labeling all available test data from Telavox was not feasible. In
this case where not all relevant documents have been identified, it is not straightforward to
estimate recall, F1 or accuracy scores, which depends on knowledge of all the data in the
data collection (Craswell, 2009). Instead, the evaluation is based on the number of relevant
messages retrieved within the first n results, employing precision at rank n (P@n), and the
mean reciprocal rank as the evaluation metrics (Clough and Sanderson, 2013). As in the case
of CISI we can evaluate it using both precision and recall at rank n.

The search engine provided by Google typically displays the top 10 relevant documents
on the first page of search results. Research indicates that a mere 0.44% of searchers proceed
to the second page of results, exploring documents beyond the tenth position (Dean, 2020).
Hence, we focused on the P@10 score, recognizing that most users do not venture beyond the
initial set of results. Moreover, the same study revealed that merely 9% of Google searchers
reach the bottom of the first page of search results, underscoring the importance of having
the most relevant documents positioned at the outset of the search results. Therefore, we
also assessed the P@3 and P@1 scores to gauge the placement of the most relevant documents
within the retrieved results.

25

2. Datasets

26

Chapter 3

Transformer Architectures

Transformers obtain the best results in most NLP tasks, so we predominantly evaluated mod-
els based on the transformer architecture in this thesis. The transformer model functions as
a neural network that replaces traditional recurrent neural networks (RNNs) for sequence
processing. With the help of a self-attention mechanism, the transformer model can attend to
all input tokens in parallel rather than sequentially, allowing for the context of a sentence to
be understood based on surrounding words. While RNNs process input sequentially, trans-
formers allow for direct connections between any two positions in the input sequence.

Figure 3.1: The transformer architecture after Vaswani et al. (2017)
.

27

3. Transformer Architectures

This means that information can flow more easily across the entire sequence, capturing re-
lationships between words or phrases that are distant from each other in the input. The
architecture includes encoder and decoder layers with multi-head self-attention mechanisms
and feed-forward neural network layers, as shown in Figure 3.1.

This architecture allows the transformer model to process input sequences of variable
length without requiring complex recurrence or convolution operations, making it a popular
choice for NLP tasks such as machine translation, language modeling, and text classification.
The effectiveness of Transformers in capturing long-range dependencies in the input has
further contributed to its widespread use in the field of NLP. It is currently used in many
state-of-the-art search functions, particularly for tasks such as question-answering and IR.

3.1 Metrics
The models use different comparison methods when calculating the similarity between sen-
tences and their embeddings. In this section, we present the two different similarity functions
that the models use.

3.1.1 Cosine similarity
The cosine similarity is a valuable metric in developing search algorithms. It enables the
assessment of the degree of similarity between query and document vectors. The cosine sim-
ilarity is computed using the following formula:

cos(u, v) =
u · v
||u||||v||

. (3.1)

3.1.2 Dot product
The dot product is the sum of the products of the corresponding entries of the two vectors.
As cosine similarity, this metric can tell us how similar two vectors are, but the dot product
also considers magnitude. The dot product is defined as:

u · v =
n∑

i=1

uivi. (3.2)

3.2 Models using Transformers
Transformers can be finetuned for specific NLP tasks. This is one of the main benefits of
using pre-existing Transformer-based models like BERT, SBERT, and DPR. These models are
pre-trained on large amounts of text data, meaning before usage, the model is fed with large
quantities of data before being finetuned further on more specific data. This is done since
pre-training can be time-consuming and require significant memory usage. The models can
be finetuned on smaller datasets for a particular NLP task, such as sentiment analysis, text
classification, or question-answering. Through finetuning, the model adapts its parameters

28

3.2 Models using Transformers

to the specific task and improves its performance on that task. This approach of pre-training
and finetuning has shown to be very effective and has led to state-of-the-art results on many
NLP benchmarks.

3.2.1 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained language
model proposed by Devlin et al. (2019). The main innovation of BERT is its bidirectional
training approach, which enables it to capture context from both the left and right directions
of the input sequence. The pre-training phase involves using a masked language model and
a next-word prediction objective (Tunstall et al., 2022). The model learns to predict missing
and possible following words in sentences by randomly masking some of the input tokens
and then using the surrounding context to make predictions. The aim is to develop a deeper
understanding of contextual relationships between words. A significant advantage of this
training is that it uses unlabeled data, making it possible to train on massive amounts of
data.

By pre-training on a diverse range of text data, BERT thoroughly learns general lan-
guage representations, which then can be finetuned on task-specific labeled data for vari-
ous downstream NLP tasks. Because of the large amounts of data needed to pre-train the
model, the pre-training process is the most time-consuming, computationally heavy, and
data-demanding stage. Therefore, using pre-existing, pre-trained models and incorporating
task-specific finetuning to adapt the model to a specific downstream task is a huge advantage.

Finetuning allows the model to adapt to the specific task’s nuances and requirements,
improving its performance on the target task. BERT has achieved state-of-the-art results on
various NLP tasks, including question-answering, sentiment analysis, language inference, and
classification. Figure 3.2 shows the architecture of using a pre-trained BERT model finetuned
on single-sentence classification tasks. The output of this model is a class label, but it can be
configured to complete other tasks.

Figure 3.2: BERT architecture of a BERT model finetuned on single
sentence classification, inspired by Devlin et al. (2019).

29

3. Transformer Architectures

3.2.2 SBERT
Sentence Bidirectional Encoder Representations from Transformers (SBERT) is a language
model proposed by Reimers and Gurevych (2019). SBERT is a type of bi-encoder architecture
based on the pre-trained BERT model, which is trained using a Siamese network approach
to generate fixed-length sentence embeddings. The SBERT model consists of two identical
BERT models, as shown in Figure 3.3. The model takes a sentence pair A and B as input and
learns to map them into a common embedding space in a way that semantically similar sen-
tences are close together in the space, while dissimilar sentences are far apart. Thus, cosine
similarity on the u and v embedding vectors yields a high similarity score if the sentences
are semantically similar. The key innovation of SBERT is its ability to generate semantically
meaningful sentence embeddings that can be used for various NLP tasks, including text clas-
sification, semantic search, and clustering. One important aspect of the architecture is the
effectiveness of the Siamese network approach for learning semantically meaningful sentence
representations. Other important aspects are the ability to finetune the pre-trained BERT
model for specific downstream tasks and, most importantly, the usefulness of fixed-length
sentence embeddings for entire documents.

This feature makes SBERT faster than BERT in comparing many sentences and finding
matches in a corpus, as it allows SBERT to quickly compute the similarity between two sen-
tences by comparing their embeddings directly, without the need for expensive token-level
computations. As a result, SBERT can perform semantic similarity comparisons between
many sentences much faster than BERT, making it suitable for applications such as semantic
search, where large numbers of comparisons need to be made in real time.

Figure 3.3: The high-level architecture of an SBERT model.

3.2.3 DPR
Karpukhin et al. (2020) introduced Dense Passage Retrieval (DPR), which is a novel neural
network architecture. The objective of DPR is to improve the efficiency and effectiveness
of open-domain question-answering, where the task is to find the most relevant answer to a

30

3.2 Models using Transformers

natural language question from a vast corpus of documents. The primary innovation of DPR
is the use of dense embeddings to separately represent the queries and passages in the corpus.
These dense embeddings are generated using two BERT models, as illustrated in Figure 3.4.
One BERT model is trained and utilized for encoding contexts, while the other is trained to
encode only questions. The embeddings are then used to compute the dot product between
each query embedding and all the document embeddings in the corpus, allowing the system
to quickly retrieve the most relevant passages for a given query. The key takeaways from the
architecture include its ability to efficiently retrieve relevant passages from extensive corpora,
its use of dense embeddings to capture the semantic meaning of queries and documents dis-
tinctly, and its effectiveness in enhancing the accuracy of open-domain question-answering
systems.

Figure 3.4: The high-level architecture of a DPR model.

3.2.4 Cross-Encoder
The cross-encoder is a neural network-based model that encodes both the query and docu-
ment simultaneously. Unlike other encoder models, such as the BERT model in Figure 3.2,
which are designed to encode individual sentences or passages, a cross-encoder is specifically
designed to encode pairs of input texts. The purpose is to capture the relationship and in-
teraction between two texts, such as a question and an answer or a query and a document.
It takes both texts as input and processes them together to generate a joint representation
that encompasses the contextual information and semantic relationship between the texts.
The current state-of-the-art cross-encoders are finetuned BERT-based models. For example,
Muennighoff (2022) utilized BERT as a cross-encoder by separating the query and document
using a ‘[SEP]‘ token and passing them through the finetuned model together. Figure 3.5
shows the architecture of using a pre-trained BERT model finetuned on sentence-pair clas-
sification tasks, that can be used as a cross-encoder. The output of this model is a class label
which could represent either a classification or similarity score.

However, for each new query, given a corpus of k documents, k forward passes are re-
quired. So, despite achieving higher accuracy than SBERT models when trained on a repre-

31

3. Transformer Architectures

Figure 3.5: Architecture of a BERT model finetuned on sentence-
pair classification tasks, inspired by Devlin et al. (2019).

sentative training set, the inefficiency of the cross-encoder architecture makes it not scalable
for real-life semantic search applications (Reimers and Gurevych, 2019).

Reimers and Gurevych (2019) gave an example of this, stating that given a clustering task
of a dataset with 10,000 sentences, using a BERT cross-encoder would require computing
similarity scores for approximately 50 million sentence pairs, taking around 65 hours. Con-
versely, using a bi-encoder such as SBERT, enabled them to generate embeddings for each
sentence individually, taking only 5 seconds.

Jesus-German et al. (2022) overcame the limitations of the cross-encoder architecture by
using a bi-encoder combined with a cross-encoder in one single architecture. This combi-
nation is known as a cross-encoder with a bi-encoder structure and has proven to be highly
effective for tasks such as semantic search and IR where the goal is to find the most similar
sentences or documents given a query. The main advantage of this architecture is its ability
to generate highly effective sentence embeddings while being computationally efficient.

The architecture works by using the bi-encoder network to generate embeddings based
on the context of each sentence independently, capturing local information and retrieving
a subset of the corpora that are labeled relevant. In contrast, the cross-encoder network
captures global information by considering the entire context of both input sentences when
generating the final similarity score, but only on the relevant subset of the corpora. The com-
bination of these two architectures allows for the capture of both local and global contextual
information when generating embeddings, making it a promising approach for real-world
applications.

32

Chapter 4

Selection of Models

The first part of creating a search function was to develop an IR system that could rank all
the documents depending on relevance to a search query. To do this, it was essential to have
a good architecture that computes a high semantic similarity score to relevant documents.
There are many different models and methods to do this, and limited time for evaluating
them on the Telavox data set. Therefore, we experimented with different setups and com-
pared their performance when classifying only the GLUE datasets. This was done so that we
could evaluate the system on its natural language understanding and choose the most suitable
encoder model to finetune and evaluate on the retrieval part.

We used the experimental set-up shown in Figure 4.1 to get the correct evaluation format
to evaluate the datasets. The input is two sentences A and B, which are then converted to
the embeddings u and v, from which a similarity score is calculated and used as input for
the classifier that transforms them into the specified evaluation format. In this chapter, we
explored the different options for the encoder model.

Figure 4.1: The architecture of the system for evaluating the encoder
models on the GLUE datasets.

33

4. Selection of Models

4.1 Encoder model
The first step is converting the collections of raw chat messages to embeddings with an en-
coder, as shown in pink in Figure 4.1. We created the embeddings in different ways by using
tf-idf and BM25 to create word embeddings and pre-trained SBERT, DPR, and InferSent
models to derive semantically meaningful sentence embeddings. Below we describe the im-
plementation process in more detail for all the models.

4.1.1 Tf-idf
In order to find an appropriate evaluation method we started with creating a baseline using
a tf-idf model. Tf-idf stands for term frequency-inverse document frequency and is a mea-
surement of how important a word is within a document and corpora. This can prove useful
for a search algorithm since the larger the corpus, the harder it is to find what data is rel-
evant (Indurkhya and Damerau, 2010). The difference between these measurements is that
the inverse term frequency looks at the occurrence of a word in an entire corpus while the
term frequency looks at the frequency of a word in a document. Calculating just the term
frequency will not give context on what words are special for a certain corpus. The inverse
term frequency is thus needed to get a value of what is a more significant word in a certain
context. To calculate the term frequency, the following formula is used:

tf(t, d) =
ft,d∑

t′∈d ft′,d
. (4.1)

Where t in Eq. 4.1 is the frequency of a specific term within a document d, ft,d is the number
of times that term t occurs in document d, and the denominator is the sum of all terms in
document d. To calculate the inverse document frequency the following formula is used:

idf(t, D) = log(
N

|d ∈ D : t ∈ d|
). (4.2)

Where t in Eq. 4.2 is the frequency of a specific term in a collection of documents D, N is the
number of documents, and the denominator is the number of documents where the term t
exists. The Tf and Idf scores are then multiplied in the following equation to get the tf-idf
score for a term in a document, given a corpus of documents:

tf-idf(t, D) = tf(t, d) · idf(t, D). (4.3)

We created a tf-idf model using the existing Python framework sklearn (scikit learn, 2023).
For the GLUE datasets, we fit the model on all the words in the training datasets and then
created the embeddings for both the training and validation set.

4.1.2 BM25
BM25 is a model that stems from tf-idf but uses something called Okapi weighting (Briggs,
2023). This type of weighting takes into consideration the number of times a term is men-
tioned. In tf-idf the score increases linearly if a term is mentioned multiple times, in BM25

34

4.1 Encoder model

the result is normalized based on how long the document is. To calculate the BM25 term
frequency the following formula was used:

tf(t, d) =
fqi ,d · (k1 + 1)

fqi ,d + k1 · (1 − b + b · |d|
avg(d))

. (4.4)

In Eq. 4.4 BM25 introduces two new variables k1 and b. Normally k1 is around 1.25 and b is
around 0.25, otherwise, the equation is similar to Eq. 4.1.

The idf Eq. 4.5 takes the total number of documents N into consideration in order to
normalize the scoring so that the score does not increase linearly with the number of times
the term is mentioned. The formula is defined as:

idf(t, D) = log(
N − |d ∈ D : t ∈ d| + 0.5
|d ∈ D : t ∈ d| + 0.5

+ 1). (4.5)

We created a BM25 model using the existing Python framework gensim. The resulting
setup was very similar to the implementation of the tf-idf model.

4.1.3 SBERT
SBERT is a transformer-based model specifically designed to generate high-quality embed-
dings for sentences, enabling more accurate semantic similarity comparisons and natural
language understanding tasks. Therefore, we chose this model next to test on the GLUE
datasets.

Implementation
For the pre-trained models, we used the Python SentenceTransformers framework which is one
of the frameworks for state-of-the-art sentence and text embeddings.

Selection of pre-trained model
There are several models suitable for this task that have been extensively evaluated for their
quality of embedded sentences and to embed search queries and paragraphs. For this thesis,
there are several aspects and advantages of each of the models that we took into considera-
tion. One of the aspects is overall performance and quality. Another aspect is the handling
of different languages. Telavox is a multi-national company where the chat application is
used in many different languages so the search function should preferably work with several
languages. For this reason, we are also looking at the lower-performing multi-lingual models
that generate aligned vector spaces, so that similar inputs in different languages are mapped
close in vector space. The following selection describes the models from Huggingface (2023)
that fit the requirements of our program:

all-mpnet-base-v2 The all-mpnet-base-v2 model currently provides the best quality on sen-
tence embeddings and semantic search for a general purpose. The model is trained
on several English datasets of over 1 billion training pairs and maps sentences to a
384-dimensional dense vector space.

35

4. Selection of Models

all-distilroberta-v1 The all-distilroberta-v1 model currently produces some of the best-performing
sentence embeddings. The model is also trained on several English datasets of over 1
billion training pairs and maps sentences to a 768-dimensional dense vector space.

all-MiniLM-L6-v2 The all-MiniLM-L6-v2 is one of the fastest, best-performing models with
5 times faster performance than the best-performing all-mpnet-base-v2 model. Simi-
larly to the all-mpnet-base-v2 model it is trained on several English datasets of over 1
billion training pairs and maps sentences to a 384-dimensional dense vector space.

distiluse-base-multilingual-cased-v2 The distiluse-base-multilingual-cased-v2 model is a ver-
sion of the multilingual Universal Sentence Encoder that supports over 50 languages
including Swedish and English. It maps sentences to a 512-dimensional dense vector
space.

paraphrase-multilingual-MiniLM-L12-v2 The paraphrase-multilingual-MiniLM-L12-v2 is the
multilingual version of the paraphrase-MiniLM-L12-v2 model, trained on parallel data
for over 50 languages including Swedish and English. The model maps sentences to a
384-dimensional dense vector space.

paraphrase-multilingual-mpnet-base-v2 The paraphrase-multilingual-mpnet-base-v2 is the
multilingual version of the paraphrase-mpnet-base-v2 model, trained on parallel data
for over 50 languages including Swedish and English. The model maps sentences to a
768-dimensional dense vector space.

To find the pre-trained model with the best performance for our program, we evaluated
each of the model embeddings on the chosen GLUE tasks. The models and their performance
scores can be seen in Table 4.1. The all-mpnet-base-v2 model had the highest performance
on the majority of the five GLUE tasks, the advantages of using a multilingual model are
considered far more important than the small margins of difference in the performance scores

Table 4.1: Table of the performance of the SBERT models on the
GLUE datasets. The datasets were evaluated using the methods de-
scribed in Table 2.3. All values are scaled by 100.

Models trained on data in English
Model MRPC STS-B QQP QNLI RTE
all-mpnet-base-v2 83.7/75.7 88.1/88.1 74.7/80.8 72.0 65.0
all-distilroberta-v1 82.5/73.5 88.3/88.3 73.0/79.6 71.7 66.8
all-MiniLM-L6-v2 82.8/74.3 87.0/86.7 71.3/78.4 71.1 62.8

Models trained on data in several different languages
Model MRPC STS-B QQP QNLI RTE
paraphrase-multilingual-
mpnet-base-v2

83.4/75.2 88.2/89.1 71.8/79.3 68.9 62.4

paraphrase-multilingual-
MiniLM-L12-v2

84.0/75.7 87.0/87.54 71.2/78.3 68.5 60.6

distiluse-base-multilingual-
cased-v2

81.5/72.3 81.9/81.9 67.4/75.7 70.0 54.9

36

4.1 Encoder model

in Table 4.1. Therefore, the chosen SBERT model for comparison was the multilingual model
paraphrase-multilingual-mpnet-base-v2.

4.1.4 InferSent
InferSent by Conneau et al. (2017), developed by Facebook AI Research, is a sentence em-
bedding model trained on natural language inference data that provides semantic sentence
representations. The InferSent model utilizes a bi-directional LSTM architecture to encode
the sentences. It is trained on a large corpus of labeled task-specific data. The model focuses
on capturing the meaning and context of the sentences and has been widely used for various
tasks, including sentence classification, semantic similarity, and textual entailment. Com-
pared to the transformer models, it offers a simpler and more straightforward architecture
that performs well on general semantic tasks.

Figure 4.2 shows the architecture of the InferSent model. As seen in the aforementioned
figure, the vector input consists of three parts; a concatenation of the two representations
(u, v), element-wise product u ∗ v, and the absolute element-wise difference |u − v|. The
resulting vector, which captures information from both sentences, is fed into a regression
model which determines the similarity score.

The implementation of InferSent was done with the help of the GitHub repository pro-
vided by Conneau et al. (2017) available at https://github.com/facebookresearch/
InferSent. The repository was downloaded and then the code used for the previous imple-
mentations was reused.

Figure 4.2: The architecture of the InferSent model.

4.1.5 DPR
As mentioned previously, DPR is a model where contexts and questions are represented as
dense vectors whose representation is obtained by using two separate BERT models. One of
the BERT models is trained and used for encoding contexts and the other is used to encode
only questions. This makes DPR competitive in question-answering tasks. Therefore, we

37

https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent

4. Selection of Models

chose to test this model next to test to see how it compared to the other encoder models in
areas other than question-answering.

Implementation
For the pre-trained BERT-based DPR model, we used the Python Hugging Face library,
which creates both document and query embeddings using the pre-trained BERT model bert-
base-cased. For comparison, we also use the pre-existing DPR Facebook models proposed by
(Karpukhin et al., 2020). The models proposed were the facebook/dpr-ctx_encoder-single-nq-base
document encoder, and the facebook/dpr-question_encoder-single-nq-base query encoder.

Selection of pre-trained models
Similarly to SBERT, there are many pre-trained models available. In order to find the pre-
trained model with the best performance for our program, we evaluated two of the model
embeddings on the chosen GLUE tasks. Table 4.2 shows the models’ performance scores on
the datasets. The Facebook DPR model outperformed the more simple BERT-based DPR
model in four out of five tasks. The BERT-based DPR model only outperformed the Face-
book one with very small margins on the MRPC task. Therefore, the chosen DPR model for
semantic-similarity comparison was the Facebook DPR model.

Table 4.2: Table of the performance of the DPR models on the GLUE
datasets. The datasets were evaluated using the methods described
in Table 2.3. All values are scaled by 100.

Query encoder Context encoder MRPC STS-B QQP QNLI RTE
bert-base-cased 1 bert-base-cased 2 81.2/68.4 2.7/3.0 21.3/64.0 49.5 53.1
facebook/dpr-
question_encoder-
single-nq-base

facebook/dpr-
ctx_encoder-
single-nq-base

81.0/68.1 63.6/64.0 33.5/66.0 65.7 54.9

4.2 Classifier
As shown in Figure 4.1, the next step after the encoding is classifying the data. The similarity
score needs to be binary, i.e. 0 or 1 to represent entailment or equivalence. To this, we use
the logistic regression classifier model from the sklearn library (scikit learn, 2023). For the
STS-B task, we used a linear regression model from the same library instead as we wanted
a float value between 0 and 5 as the predicted format. An important note is that when we
used the model as a message retriever, the classifier was not used. We only added the model
to the architecture to be able to evaluate the GLUE datasets. The model was given the cosine
similarity scores of the training set and their existing label and then predicted the label for
the validation set using only their similarity scores from the model.

38

4.3 Comparison of chosen models

4.3 Comparison of chosen models
By utilizing the most optimal model for each encoder approach, a comprehensive comparison
was conducted to determine the superior method among the different techniques on the
GLUE datasets. The outcome of this evaluation is outlined below.

4.3.1 Results
Table 4.3 shows the results of the evaluation of the chosen models on the benchmark datasets.

Table 4.3: Table of the performance of the chosen models on the
GLUE datasets. The datasets were evaluated using the methods de-
scribed in Table 2.3. All values are scaled by 100.

GLUE Baselines
Rank Name Model MRPC STS-B QQP QNLI RTE
GLUE Base-
line Highest

BiLSTM
+ELMo
+Attn

84.4/78.0 74.2/72.3 63.1/84.3 79.8 58.9

GLUE Base-
line Lowest

CBOW 81.5/73.4 61.2/58.7 51.4/79.1 72.1 54.1

Our findings
Rank Name Model MRPC STS-B QQP QNLI RTE
Baseline tf-idf 81.0/71.1 72.0/72.0 47.6/65.5 71.5 57.8

BM25 77.5/67.6 62.8/71.2 22.7/63.3 72.3 51.3
InferSent Facebook

model
80.6/69.1 61.8/62.4 51.6/67.6 59.7 50.2

DPR Facebook
model

80.5/67.6 63.6/64.0 33.5/66.0 65.7 54.9

SBERT paraphrase-
multilingual-
mpnet-
base-v2

83.4/75.2 88.2/89.1 71.8/79.3 68.9 62.4

The tf-idf model achieved above-average results in all of the GLUE tasks. Comparing the
findings with the GLUE baselines, it was just slightly under the GLUE baseline, which is usu-
ally used to rank state-of-the-art models. The best performance of tf-idf was on the MRPC,
STS-B, QNLI, RTE datasets. We suspect this could be because the sentence pairs in those
datasets use many of the same words, for example, this sentence in STS-B: ‘A girl is styling
her hair‘ and ‘A girl is brushing her hair.‘.

The result for BM25 was worse than the baseline on all GLUE tasks apart from QNLI
where it performed better than the lowest GLUE baseline. The bad performance in the other
tasks might be the chosen implementation and values of k1 and b, or that these data sets
worked better without weighting. InferSent performed worse than the baseline in all tasks
except QQP. The chosen DPR model performed similarly to InferSent, except in QQP where
it performed the second worst. The chosen SBERT model performed best out of all the tested

39

4. Selection of Models

models in four out of the five GLUE tasks. We suspect the performance is because many of
the SBERT models are pre-trained on similar tasks, so in this context, they work very well.

4.4 Finetuning the chosen model
In the next step, we finetuned the chosen model paraphrase-multilingual-mpnet-base-v2 on the
available datasets to improve the model further. As we had deemed the five GLUE and CISI
datasets as appropriate for evaluation, we also decided to use that data for finetuning.

4.4.1 Losses
The loss function plays a critical role when finetuning the models on training data. For the
SBERT models, we used the module sentence-transformers.losses to calculate the losses. For all
the datasets with binary labels, we used ContrastiveLoss, and the CosineSimilarityLoss as the
loss function for the datasets with float range labels.

ContrastiveLoss
The Contrastive loss function in this module expects two texts and a binary label as input.
If the label is 1, then the distance between the two embeddings is reduced, and if the label
is 0, then the distance between the embeddings is increased. The loss is calculated using the
following equation:

1
2

yd2 + (1 − y) max(α − d, 0), (4.6)

where y is the input label, d is the distance between the document vector embeddings, and α
is the margin. If the two documents are similar, their distance should be less than the margin.

CosineSimilarityLoss
Cosine similarity loss expects two texts and a float label as input. By default, it minimizes
the following loss:

||y − cos(u, v)||2, (4.7)

where y is the input label, and u and v the two document embedding vectors.

4.4.2 Method
As shown in Table 2.1 the GLUE training datasets greatly differ in size. For instance, the
MRPC dataset is 100 times smaller than the QQP dataset. Therefore, we used a subset of
maximum 10,000 rows of each of the GLUE datasets for finetuning the models on. This was
done to not over-train the data on the bigger datasets and for the finetuning to not be too
time-consuming. The resulting model trained on this subset is named GLUE.

To see how this affected the results, we created an additional GLUE training set using
larger subsets of the larger datasets, i.e. QQP and QNLI. The resulting model trained on this
subset is named GLUE + extra QQP & QNLI.

40

4.4 Finetuning the chosen model

For the CISI and Telavox dataset we used all available labeled data. We chose to separate
the different finetuned models to see the impact the finetuning of each benchmark had on
the model.

For each model, we used a batch size of 16 for a total of 3 epochs, this format suited the
environment best, as we uploaded and executed the finetuning in Google Colab using a GPU
hardware accelerator as the chosen runtime.

4.4.3 Result
Table 4.4 shows the results of the different finetuned variants of the SBERT model. In the top
row ´Turing ULR v6´ is shown as it was the highest-scoring model on the GLUE leaderboard.
However, this model is not implemented as there are no public libraries of pre-trained models
or public repositories to use. Therefore, it is used for comparison only.

In Table 4.4, we can see that the result for the models does not vary that much for the
different finetuned models. What we could see is that the addition of more QQP and QNLI
data only slightly increased the performance on the QQP dataset while performing worse on
all the others, so we used the balanced GLUE training data for all the other models.

The best-performing model is different for all the different datasets, and there is no ob-
vious best-performing model. However, the best result for the average performance score of
all data sets is the model finetuned with all the datasets. Therefore, we will also evaluate the
model finetuned on all the datasets on the IR systems.

Table 4.4: Table of the performance of finetuned variants of the
SBERT model ’paraphrase-multilingual-mpnet-base-v2’ on the CISI
and GLUE datasets. The datasets were evaluated using the evalua-
tion methods described in Table 2.3. All values are scaled by 100.

Current state-of-the-art model
Model MRPC STS-B QQP QNLI RTE CISI Avg.
Turing ULR
v6

94.2/92.3 93.5/93.1 76.4/90.9 96.7 93.6 – 91.34

Our findings
Finetune data MRPC STS-B QQP QNLI RTE CISI Avg.
No data 83.4/75.2 88.2/89.1 71.8/79.3 68.9 62.4 22.2/97.5 72.28
TELAVOX 84.0/77.0 88.2/89.1 72.7/79.3 50.5 52.3 20.3/97.0 67.77
CISI 84.4/76.2 86.4/88.1 70.8/78.1 68.4 61.0 20.6/97.7 71.76
GLUE 86.8/80.9 89.3/89.3 77.2/82.6 61.5 62.8 14.7/97.5 72.24
GLUE + extra
QQP & QNLI

84.0/76.2 69.0/72.1 79.0/83.9 59.1 60.0 6.1/92.8 66.77

CISI +
TELAVOX

84.1/75.7 85.8/87.7 70.8/78.2 68.3 63.2 20.3/97.4 71.92

GLUE +
TELAVOX

87.1/81.4 88.9/89.2 77.8/83.1 49.7 61.7 14.5/97.5 70.19

GLUE + CISI 85.2/77.9 87.8/88.5 75.2/81.0 66.4 63.2 17.5/95.6 72.32
GLUE + CISI +
TELAVOX

85.9/78.9 87.2/88.2 75.9/82.8 66.4 61.7 17.8/95.1 72.33

41

4. Selection of Models

42

Chapter 5

Models as Information Retrieval systems

In this Chapter, we evaluate three models on the IR datasets. As seen in the last chapter, the
model performing best on the semantic similarity datasets was the SBERT model paraphrase-
multilingual-mpnet-base-v2. From this pre-trained model, we created eight different finetuned
versions. The model finetuned on the GLUE, CISI, and Telavox data was chosen as the second
model. In this chapter, these two models are compared to the tf-idf baseline model.

In previous chapters, the models have been evaluated on the GLUE benchmark. The
GLUE benchmark is used for analyzing natural language understanding systems. However,
the GLUE benchmark is not made for analyzing IR systems that have a similar structure as
the Telavox dataset with search queries and a document collection that we want to rank on
relevancy. Figure 5.1 show the architecture of an IR system. The CISI and Telavox datasets
simulates the real-world use as an IR system more accurately. Therefore, it was also important
to evaluate the model on the Telavox and CISI datasets.

Figure 5.1: The architecture of the system for evaluating the encoder
models on the IR datasets.

43

5. Models as Information Retrieval systems

5.1 Telavox Dataset
Evaluation of the models involved evaluating the characteristics of the IR system itself and
also assessing the satisfaction with the system by the employees of Telavox. The three anno-
tators from Telavox are referred to as Annotator 1, Annotator 2, and Annotator 3. To ensure
that we had explained the annotation process correctly, we also annotated the data for tf-idf
ourselves to see if we got similar results. These results are referred to as Author 1 and Author
2.

5.1.1 Evaluation of the Telavox Dataset
We evaluate the models on the precision and mean reciprical rank at 1, 3, and 10 to see how
many documents and where the most relevant documents are located in the results, using Eq.
2.8 and Eq. 2.11. The results for the calculated precision can be found in Table 5.1. In the
table, the average percentage of irrelevant results and MRR of the 10 retrieved messages is
also shown. As we do not know the total number of relevant documents in the collection of
10,040 documents, we do not use the recall at n method instead and used the position of the
most relevant document in the retrieved result to calculate the MRR.

Table 5.1: Table of the calculated Precision at n, the average percent-
age of irrelevant results, and mean reciprocal rank for the different
annotators and models on the Telavox dataset.

Model Annotator P@1 P@3 P@10 Irrelevant MRR
tf-idf Author 1 35% 27% 22% 34% 0.40
tf-idf Author 2 23% 17% 16% 28% 0.36
tf-idf Annotator 1 21% 17% 14% 41% 0.38
tf-idf Annotator 2 18% 12% 9% 65% 0.54
tf-idf Annotator 3 50% 42% 34% 14% 0.39
SBERT Annotator 1 21% 17% 15% 36% 0.32
SBERT Annotator 2 8% 8% 8% 69% 0.38
SBERT Annotator 3 30% 29% 27% 26% 0.31
SBERT finetuned Annotator 1 7% 7% 7% 72% 0.28
SBERT finetuned Annotator 2 13% 9% 9% 64% 0.37
SBERT finetuned Annotator 3 8% 8% 7% 62% 0.28

The average performance of each model are presented in Table 5.2. This analysis aimed to
determine the model that demonstrated the highest overall performance based on the data
provided in Table 5.1. By aggregating the individual assessments of the annotators, we were
able to obtain a comprehensive evaluation of each model’s effectiveness. The average scores
provided valuable insights into the relative performance of the models and allowed for a
comparison of their respective strengths and weaknesses. These findings played a crucial
role in identifying the top-performing model among the ones evaluated, providing valuable
guidance for further refinement and optimization.

44

5.2 CISI

Table 5.2: Table of the average Precision at n, percentage of irrele-
vant results, and mean reciprocal rank for the different models on
the Telavox dataset.

Model P@1 P@3 P@10 Irrelevant MRR
tf-idf 29.7% 23.7% 19.0% 40.0% 0.44
SBERT 19.7% 18.0% 16.7% 43.7% 0.34
SBERT finetuned 9.3% 8.0% 7.7% 66.0% 0.31

5.1.2 The annotators
After we received the data, we calculated the inter-annotator agreement to see the validity of
the results. Table 5.3 shows the inter-annotator agreement between the different annotators
using Cohen’s kappa values. To get an overview of the overall agreement, Table 5.4 shows
the inter-annotator agreement between all three annotators using Fleiss’ kappa values. The
kappa values range from 0 to 1, where 1 would mean a perfect agreement and 0 no agreement.
The highest Cohen’s kappa value for each of the models and the overall highest Fleiss’ kappa
value is marked in bold.

Table 5.3: Inter-annotator agreement between the different Telavox
annotators.

Model Metric Annotator Result
tf-idf Cohen’s kappa Annotator 1 and Annotator 2 0.34
tf-idf Cohen’s kappa Annotator 1 and Annotator 3 0.32
tf-idf Cohen’s kappa Annotator 2 and Annotator 3 0.25
SBERT Cohen’s kappa Annotator 1 and Annotator 2 0.30
SBERT Cohen’s kappa Annotator 1 and Annotator 3 0.26
SBERT Cohen’s kappa Annotator 2 and Annotator 3 0.37
SBERT finetuned Cohen’s kappa Annotator 1 and Annotator 2 0.20
SBERT finetuned Cohen’s kappa Annotator 1 and Annotator 3 0.19
SBERT finetuned Cohen’s kappa Annotator 2 and Annotator 3 0.39

Table 5.4: Inter-annotator agreement between all the Telavox anno-
tators.

Model Metric Result
tf-idf Fleiss’ kappa 0.27
SBERT Fleiss’ kappa 0.30
SBERT finetuned Fleiss’ kappa 0.26

5.2 CISI
We also evaluated the models on CISI. Identically to the Telavox dataset, we evaluated the
models on precision at 1, 3, and 10. The precision is calculated using the method shown in

45

5. Models as Information Retrieval systems

Eq. 2.8. Table 5.5 shows the results for the precision at 1, 3, and 10 for the CISI dataset.

Table 5.5: Table of the calculated precision at n for the different
models on the CISI dataset.

Model P@1 P@3 P@10
tf-idf 52.9% 39.2% 21.2%
SBERT 58.8% 49.0% 27.6%
SBERT finetuned 17.6% 25.5% 21.8%

As opposed to the Telavox dataset, for CISI we do know the total number of relevant docu-
ments in the collection, so we are able to calculate the recall at 1, 3, and 10 to see where the
relevant results were located in the retrieved documents. The recall is calculated using the
method described in Eq. 2.9. Table 5.6 shows the results for the calculated recall.

Table 5.6: Table of the calculated recall at n for the different models
on the CISI dataset.

Model R@1 R@3 R@10
tf-idf 9.5% 14.5% 18.7%
SBERT 3.8% 10.6% 17.3%
SBERT finetuned 1.7% 7.0% 18.9%

5.3 Result
We examined performance of a tf-idf, SBERT and finetuned SBERT model conducted on two
different datasets: the Telavox dataset and the CISI dataset. The evaluation encompassed
various metrics, providing insights into the models’ performance in terms of relevance and
retrieval accuracy. Additionally, the inter-annotator agreement was assessed to gauge the
consensus among evaluators. These findings shed light on the strengths, weaknesses, and
overall effectiveness of the models, serving as a foundation for choosing the best model to
test further improvements on.

5.3.1 Telavox dataset
Based on the findings presented in Tables 5.2 and 5.1, several conclusions can be drawn re-
garding the performance of the evaluated models on the Telavox dataset. The tf-idf model
demonstrated the highest precision across all depths, while SBERT followed with slightly
lower precision scores. The finetuned version of SBERT exhibited the lowest precision scores.

Additionally, the percentage of irrelevant results provides insights into the models’ abil-
ity to filter out irrelevant documents. The tf-idf model achieved the lowest percentage of
irrelevant results, with 40.0%. SBERT had a slightly higher percentage of irrelevant results,
at 43.7%. The finetuned SBERT model had the highest percentage of irrelevant results, with
66.0%.

46

5.3 Result

Furthermore, the MRR provides an overall measure of the models’ ranking performance.
The tf-idf model achieved the highest MRR score of 0.44, indicating that, on average, the
relevant documents were ranked higher compared to the other models. SBERT had a lower
MRR of 0.34, while the finetuned SBERT model had the lowest MRR of 0.31.

Overall, these findings suggest that the tf-idf model demonstrated the highest perfor-
mance in terms of precision, relevance filtering, and ranking accuracy on the Telavox dataset.
SBERT showed competitive performance but had slightly lower precision and a higher per-
centage of irrelevant results. The finetuned SBERT model exhibited the lowest performance
across all metrics, indicating the potential limitations of the finetuning approach.

The findings regarding the inter-annotator agreement indicate a low level of agreement
among the annotators in evaluating the performance of the models. The calculated median
Fleiss’ kappa of 0.27 and Cohen’s kappa of 0.30 suggest that there is limited consensus among
the annotators in their assessments. These values will be discussed in more detail in Chapter 7,
where the potential factors contributing to the low agreement will be explored and analyzed.

5.3.2 CISI
On the CISI dataset we observed variations among the models. In terms of precision, SBERT
outperformed tf-idf at all ranks. Notably, the finetuned version of SBERT yielded lower
precision scores across all ranks.

Moving on to recall, we examined the recall at different retrieval depths. Here, SBERT
yielded a lower recall than tf-idf. Surprisingly, the finetuned SBERT model exhibited the
lowest recall scores at R@1 and R@3, but interestingly, a higher recall at R@10.

While SBERT generally outperformed tf-idf in terms of precision, it showed lower recall
scores. Additionally, the finetuned version of SBERT had lower precision overall, but it
achieved a higher recall at R@10.

5.3.3 Chosen model
Based on the comprehensive evaluation of the models on the CISI and Telavox datasets, it
is evident that SBERT slightly outperformed tf-idf. These findings support the selection
of SBERT as the preferred model for the subsequent chapter. The higher precision values
achieved by SBERT at various ranks on the CISI dataset, along with the low annotator agree-
ment on the Telavox dataset, and its superior performance in the last chapter, highlight its
suitability for the intended purposes. As a result, SBERT will be the model of choice moving
forward, based on its performance in all evaluations.

47

5. Models as Information Retrieval systems

48

Chapter 6

Re-ranking

The next step after deciding the best encoder model for our use case was to look at the
possibility of re-ranking the fetched search results based on sentence comparison. The re-
ranking can be done in different ways. The goal of re-ranking is to optimize search results so
that the highest documents in the list are the most relevant for a query. We decided to use a
bi-encoder together with a cross-encoder for this. Cross-encoders have high performance, as
they perform attention across the query and the document (Reimers, 2022). The reason this
is not exclusively used for the re-ranking is that scoring large amounts of query and document
pairs would be expensive in terms of time and computing power. Hence, we used the faster
bi-encoder model based on the result in Chapter 4, to retrieve a set of 10 possible candidate
documents. The 10 documents were then re-ranked by the cross-encoder in order to get the
most relevant documents ranked highest. Figure 6.1 depicts an overview of the architecture.

Figure 6.1: The architecture of a re-ranking system.

49

6. Re-ranking

6.1 Method
The cross-encoder model used was a transformer network that takes a query and a document
as input and outputs a similarity score between 0 and 1. The similarity score is then multiplied
by the similarity score from the retriever model in order to create a new rank order (Reimers,
2022).

Several cross-encoder models are available online. These models are suitable for search
applications with general natural language data and have already been extensively evaluated
for their quality to re-rank. Hugging Face has published a selection of cross-encoders fine-
tuned on MS MARCO, an IR corpus that was created based on real user search queries using
the Bing search engine (Reimers, 2022). However, the MS MARCO dataset is a question-
answering dataset, so it is not the optimal fit for our training objective. Therefore, we de-
cided to compare this pre-trained model to a non-finetuned BERT model. We evaluated these
to see which model performed best on the Telavox dataset.

6.1.1 Non-finetuned BERT model
For the non-finetuned BERT model, we used a model pre-trained on the English language.
We implemented the first model using ’bert-base-cased’ and used the auto-tokenizer that was
provided by Hugging Face (Devlin et al., 2019).

6.1.2 MSMARCO finetuned model
The other model used was the pre-trained ’ms-marco-MiniLM-L-12-v2’ model which was
already finetuned for re-ranking. The model was provided by Hugging Face Huggingface
(2022).

6.2 Implementation
A simple app was developed using React.js for the purpose of labeling the re-rank results.
The interface of the app which is shown in Appendix B.1 was designed to mimic a simple
search engine and showed the previous and following message to the relevant search result.
The top three search results were shown and then the user had to select which one of the
messages was the most relevant. The decision could be based on the query, the context of the
message, and the date of the conversation. There was also a possibility to select ‘None of the
results were relevant‘.

The back-end of the application is written in Python and for each query/document pair
the application stores the MRR score, and a label representing if the document is relevant to
the query or not. This data was stored in a .txt file, which is updated instantly when the value
was entered via the app, using an API request to the back end. The purpose of the application
is to create a conceptual app that shows how Telavox could implement the search function.
Because of the file output, the application also acts as a way to quickly create training data
for the cross-encoder, as for each iteration it outputs the data in the format of training input
data.

50

6.3 Evaluation

6.3 Evaluation
The first step in the evaluation was to decide which retrieval model to use together with the
cross-encoder, and which model to use as the cross-encoder itself. Because of time constraints,
it was not possible for the Telavox annotators to annotate the results from all of the models
and model combinations. Instead, we did this ourselves.

We use the non-finetuned SBERT model as the retrieval model for the re-ranking. The
reason is that the non-finetuned SBERT model performed best in Chapter 4, but had a
sub-optimal performance compared to the other models in Chapter 5 on the actual Telavox
dataset. This model is used for retrieving the 10 candidates for the cross-encoder to re-rank.

6.3.1 Chosen cross-encoder
For the cross-encoder, we labeled and evaluated three different model setups. Together with
the SBERT retriever model, we evaluated the use of no cross-encoder at all, a non-finetuned
BERT model, and an MSMARCO finetuned model. The results from this are shown in Table
6.1.

Table 6.1: Table of the MRR of the different re-ranking models.

Model-type Model-name MRR
No cross-encoder - 0.46
Non-finetuned cross-encoder ’bert-base-cased’ 0.43
Finetuned cross-encoder ’ms-marco-MiniLM-L-12-v2’ 0.55

The results show that the finetuned cross-encoder model received the highest MRR of 0.55.
Only using the SBERT model without re-ranking received a score of 0.46. Finally, the non-
finetuned cross-encoder model had the lowest score of 0.43. Therefore, we chose to continue
to evaluate the ’ms-marco-MiniLM-L-12-v2’ as the cross-encoder model.

6.3.2 Result
We evaluated the re-ranking results by measuring the MRR with and without the chosen
’ms-marco-MiniLM-L-12-v2’ cross-encoder in the system architecture. The resulting MRR
scores from the Telavox annotators are shown in Table 6.2. The MRR for the cross-encoder
improved but the rank was still low considering that the best document on average was the
third and last. However, this could be due to several factors including that no relevant results
exist in the database. We further discuss this in Chapter 7.

Table 6.2: The MRR scores for the original and re-ranked data.

Annotator MRR No re-ranking MRR Cross-Encoder
Annotator 1 0.31 0.34
Annotator 2 0.08 0.19
Annotator 3 0.31 0.36

51

6. Re-ranking

52

Chapter 7

Discussion

In this chapter, we reflect on our research findings and discuss the potential implications and
limitations of using different encoding models and cross-encoders for search applications. We
also identify areas for future research and discuss the broader implications of our findings
for the field of NLP and search function development.

7.1 Benchmark datasets
In this section, we will dive deeper into the implications of the findings in Chapters 4 and 5,
explore possible explanations for observed outcomes, and discuss the broader significance of
the results.

7.1.1 Evaluation of the encoder model
From Table 4.3, we can see that our tf-idf baseline performed decently compared to the other
models. The baseline did not receive the highest nor lowest score on any of the GLUE datasets
but instead placed somewhere in the middle. The DPR model did not perform well in any of
the tasks except the question-answering dataset QNLI, which is reasonable as it is the type
of data it is trained to perform well on. The best-performing model was SBERT in all tasks
except QNLI. The vector-based model, BM25, was slightly better for QNLI than SBERT.
Perhaps due to the fact that many answers contain many similar words corresponding to a
question and thus vector-space models can be effective at finding these similarities as they
look at statistical properties of words. A possible reason why SBERT may not perform well on
that dataset is that QNLI requires reasoning and inference abilities to answer the questions.
In contrast, SBERT is primarily designed for semantic similarity tasks.

The results in Table 4.4 indicate that finetuning the models on the Telavox dataset did
not improve the scores for any of the datasets besides the accuracy score for STS-B. The scores
had remained mostly the same after the finetuning indicating that the small amount of data

53

7. Discussion

did not impact the models very much. It is also interesting that the most finetuned model
barely improved its accuracy scores in many of the tasks compared to the pre-trained one.
This might be because the model is already trained with the chosen tasks and our additional
dataset was too small for the finetuning to show a significant result in all tasks.

7.1.2 Implications of using the benchmarks
We used a selection of the existing GLUE benchmark representing different linguistic prop-
erties for semantic similarity for sentence pairs for the initial evaluation of the embedding
models. One of the primary advantages of using GLUE to test embedding models is that
it provides a standardized framework for comparison. This allows us to evaluate the rela-
tive strengths and weaknesses of the different models on a range of NLP tasks. Additionally,
GLUE provides for a comprehensive evaluation of the models’ overall performance rather
than just its performance on a single task. However, one of the potential disadvantages of
testing embedding models on GLUE is that it may not accurately reflect real-world per-
formance. The tasks included in the benchmark are designed to be relatively simple and
straightforward, whereas real-world language understanding tasks are often more complex
and nuanced. Furthermore, the benchmark may not capture the full range of variation and
diversity in natural language. This could limit its usefulness as a tool for evaluating the gen-
eralizability of different embedding models.

We also tested the models on the CISI benchmark, in order to evaluate the performance
of the system as an IR system. IR was not covered by GLUE and thus we needed an addi-
tional dataset to test this. One of the primary advantages of using the CISI dataset to test
embedding models is that this provides a realistic and challenging evaluation of how well a
model can retrieve relevant documents given a query, making it more similar to the desired
performance of our search function. Also, in comparison to the Telavox dataset, the CISI
dataset contains over 100,000 query-document pairs. Thus it is also much more substantial
than the Telavox dataset which was an advantage. However, one of the potential disadvan-
tages of using the CISI dataset is that it may not be representative for all types of IR tasks. It
was also challenging to find information on the dataset and how it was developed and should
be evaluated.

As seen in the performances on the GLUE benchmark in Tables 4.3 and 4.4, and results
for the IR retrieval on the CISI dataset in Tables 5.5 and 5.6 compared to the retrieval on the
Telavox results in Tables 5.1, there are some discrepancies. Telavox showed the best results
for Tf-idf while SBERT performed better on CISI. While the Telavox dataset was annotated
by real users at Telavox, the small amount of data was not representative and was hard to use
to justify the results based on only that dataset. The low agreement for the Telavox dataset
makes us doubtful if these results can be justification for using tf-idf since we could see how
well SBERT performed on CISI so it was good to have CISI as a benchmark to compare the
Telavox results.

7.2 Telavox dataset
In Chapter 5, we received results from the annotation, which we did with the help of the
Telavox employees. The result we retrieved was different from what we were expecting. We

54

7.2 Telavox dataset

expected the best performance from the finetuned SBERT model, then the non-finetuned
SBERT model, and lastly the tf-idf model. However, the tf-idf model outperformed the
SBERT models both in terms of R@N, MRR, P@N, and Irrelevant results. Here below we
discuss what we believed led to this outcome in our results.

7.2.1 Creating the queries
We knew that the queries we chose to train the data with affected our results greatly. Due
to this, we tried to make the queries broad but technical, and with the help of the Telavox
employees, we tried to make sure they were relevant to the employees. In hindsight, we
would have changed the queries a bit due to the fact that we created the document dataset
from only chat messages from one specific group chat. Due to the messages in our dataset
being only from a group chat of engineers, some of the queries were not as relevant since they
would more likely appear in a private chat session. This would explain the large number of
irrelevant fetched documents presented in Table 5.1. Therefore, a more suitable approach
to creating the queries for the dataset would be making them more relevant for the group
chats. Another approach would be collecting queries from the Telavox employees instead of
generating them ourselves.

7.2.2 The annotation of the data
We found that finding a good and efficient method for annotating the data was one of the
hardest things when conducting these experiments. We had the goal to get as much annotated
data as possible, but since it is a time-consuming task we could not ask the employees at
Telavox to annotate thousands of sentence pairs. Instead, we used Google Forms to allow for
the annotation of 100 queries with ten results per query as we deemed this was an acceptable
amount of data to annotate per person for the Telavox employees.

An issue we discovered with the form shown in Figure A.1 was the variation of the def-
inition of the term ‘relevant‘. One of the annotators reached out during the first iteration
and wanted this definition clarified. However, we decided to let every annotator have their
own interpretations to mimic that they were writing the search query and performing the
search themselves. Perhaps we could have clarified this or done a pilot study to make sure
the annotators were more aligned with the task. However, this occurred after the tf-idf form
was sent out and thus we decided to stick with our initial plan.

The Cohen’s and Fleiss’ kappa values were very similar between the different form itera-
tions, with values ranging somewhere between 0.2-0.4. That the annotator agreement did not
have a considerable variation between the forms possibly indicates that none of the models
had an overwhelmingly clear result in regard to relevance, neither positively nor negatively.
The level of agreement falls within the slight to fair range, indicating that there was room for
improvement in terms of consistency and alignment among the annotators. Therefore, while
the results of the Telavox dataset can be an indication of what model performs best, the low
Cohen’s kappa can indicate that these findings might be affected by the random choice of an
annotator rather than a well-founded decision.

If we would have had a higher Cohen’s kappa value between the annotators it would show
that the annotators were more likely to come to the same conclusion regarding if the same

55

7. Discussion

messages are relevant or non-relevant for a specific query, however, it still does not tell us if
the annotators found the results to be relevant or not in general.

7.2.3 Best performing model for the Telavox dataset
In Table 5.1, the tf-idf model performs better than SBERT in terms of precision for all anno-
tators. The average percentage of irrelevant results is high across all models and annotators,
indicating that there is still room for improvement in the IR system. As previously men-
tioned, the high amount of irrelevant results could be due to the fact that the queries used
did not have a corresponding match in the database.

Looking at Table 5.1, it is evident that the number of results considered irrelevant by
the annotators significantly increased across the different forms. This discrepancy could po-
tentially be attributed to the passage of approximately one month between the completion
of the initial form and subsequent forms. It is plausible that the annotators’ perception of
relevance evolved over time, leading to a more stringent evaluation criteria as they encoun-
tered a diverse range of results. Another plausible explanation is that the performance of
the SBERT and finetuned SBERT models were comparatively inferior to that of the tf-idf
model for the Telavox dataset. Consequently, if Telavox were to develop a search engine
based on this thesis, utilizing the tf-idf approach might be more advantageous if keyword
and sentence matching is prioritized over context matching. This aligns with the priorities
of a keyword and vector space-focused search engine, as opposed to context matching offered
by the transformer-based models.

Overall, for all three models, the calculated MRR of the most relevant document is gen-
erally low across all models and annotators, indicating that the relevant documents are often
ranked lower than they should be. This suggests that there is still room for improvement in
the IR system, especially in terms of reducing the number of irrelevant results and improving
the ranking of the most relevant documents.

If we would conduct the study again, we would have liked to explore alternative ap-
proaches for annotating the data. The chosen method possessed certain advantages, notably
its simplicity and efficiency in labeling the data. However, it did not permit the annotation
of data in the same volume as that achieved by well-established datasets such as the GLUE
benchmark.

7.3 Re-ranking
Table 6.1 shows the evaluation of the re-ranking performance with and without a cross-
encoder, using the web application. The results indicate that the re-ranking system with
a cross-encoder outperforms the system without a cross-encoder for all annotators. Anno-
tator 2 experienced a significant improvement, with the MRR score increasing from 0.08 to
0.19. Annotator 1 and Annotator 3 also experienced an improvement with increasing MRR
scores for the cross-encoder from 0.31 to 0.34 and 0.31 to 0.36, respectively. These results
suggest that using a cross-encoder in the system architecture can significantly improve the
performance of the system, which can lead to more accurate and relevant results for the users.

The reason for the improvement being smaller in some cases could be the very small
amount of training data, in relation to what other models usually are trained on. Only 100

56

7.4 Usage in a company domain

queries with 10 messages on three models were annotated by the authors – resulting in 3000
annotated message/query combinations. Our suggestion to improve the result would be to get
more annotated data to train the re-ranking model on, preferably annotated by the employees
at the company.

7.4 Usage in a company domain
While SBERT can be more powerful than tf-idf in certain applications, it may not be suitable
for all scenarios. For example, if the dataset is small or noisy, it can be difficult to train a good
SBERT model. In that case, tf-idf may be a more robust and reliable option. Additionally,
tf-idf is more interpretable and easier to explain to non-experts, which can be important in
many practical applications. Overall, while SBERT has its advantages, tf-idf can be a simple
and effective choice for many IR tasks. In order to still utilize the language understanding
properties of the transformer architecture, a solution would be to combine a bag-of-words-
based model together with a transformer-based cross-encoder. The system would retrieve
documents based on textual similarity and re-rank the results based on semantic similarity.

7.5 Future work
There were further steps that we would have liked to take if we had had more time.

Firstly, finetuning the SBERT model on more data. For this, we would both want to use
more datasets in general, not only data from the company, and to use more annotators to
achieve more accurate results. Another possibility would be to use different queries and or
use data from private chats or other group chats in order to increase the amount of data
available.

One area for future research is to test the performance of different encoding models and
cross-encoders on larger and more diverse datasets, potentially including data from multiple
sources and chats. Other types of queries could also possibly be used, covering more subject
areas. Additionally, more labeled data could be collected to improve the accuracy of the
evaluation.

Another potential avenue for further exploration is to investigate the performance of
other types of models and architectures for search applications, such as graph-based models
or models that incorporate external knowledge sources.

Furthermore, it would be interesting to explore different evaluation metrics that capture
other aspects of search performance, such as click-through rate and user satisfaction, which
could provide a more comprehensive picture of the strengths and limitations of different
search approaches.

57

7. Discussion

58

Chapter 8

Conclusions

In this thesis, we conducted a comprehensive evaluation of transformer-based models in the
context of search applications within a company domain. Our evaluation encompassed mul-
tiple aspects of performance assessment, allowing us to gain a holistic understanding of the
models’ effectiveness.

Initially, we assessed the models’ capabilities using the established GLUE benchmark,
which encompasses a wide range of NLP tasks testing semantic similarity. Among the mod-
els considered, the SBERT encoder model exhibited superior performance in four out of
five GLUE datasets, surpassing the performance of both alternative transformer-based mod-
els and traditional bag-of-word approaches. The findings of our study provided compelling
evidence supporting the utilization of transformer-based models as encoder models, result-
ing in enhanced search performance compared to vector-based models on the chosen GLUE
datasets.

Subsequently, we finetuned the best-performing SBERT model and evaluated its effec-
tiveness in IR tasks, using both the CISI benchmark and a newly created dataset specific to
the company domain. We then compared it to the non-finetuned model and tf-idf baseline.
These evaluations allowed us to measure the models’ retrieval performance in real-world sce-
narios and assess their ability to handle complex search tasks within the company context.
Notably, we observed that the finetuning the SBERT model did not improve performance on
the GLUE datasets significantly. Additionaly, both SBERT models performed sub-optimally
on the company dataset while the SBERT model was the best on the CISI benchmark. For
the company, the tf-idf model demonstrated the best performance in IR but the annotation
agreement showed a bad correlation between annotators and thus we can not confidently
justify the findings on this dataset.

Lastly, we investigated the potential improvements in performance achieved by imple-
menting a cross-encoder in conjunction with a bi-encoder architecture. By incorporating
a cross-encoder model, we aimed to optimize the overall performance while maintaining
computational efficiency. Our results indicate that cross-encoders generally outperform sen-
tence transformers in IR tasks, and can be beneficial to use for improving the performance

59

8. Conclusions

on domain-specific datasets.
Nevertheless, it is crucial to acknowledge the limitations inherent in our research. Firstly,

our dataset was relatively small and confined to chat messages from a single group chat, po-
tentially limiting its representativeness for all types of user conversations. Secondly, the ab-
sence of a robust inter-annotator agreement presents challenges in generalizing our findings
for the domain-specific dataset.

In conclusion, our findings highlight the continued need for exploration and advance-
ments in NLP-based search applications. Through our study we have shown how transform-
ers can be implemented to solve a number of tasks and using it in search functions can help
users navigate through large amounts of data. By addressing the identified limitations and
engaging in further research and development, substantial enhancements in the usability and
effectiveness of search functions across diverse contexts can be achieved.

60

References

AL-Smadi, M., Jaradat, Z., AL-Ayyoub, M., and Jararweh, Y. (2017). Paraphrase identification
and semantic text similarity analysis in arabic news tweets using lexical, syntactic, and
semantic features. Information Processing & Management, 53(3):640–652.

Briggs, J. (Collected 2023). Semantic search: Measuring meaning from jaccard to bert.
https://www.pinecone.io/learn/semantic-search/.

Clough, P. and Sanderson, M. (2013). Evaluating the performance of information retrieval
systems using test collections. Information Research, 18(2):1 – 10.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised learn-
ing of universal sentence representations from natural language inference data. CoRR,
abs/1705.02364.

Craswell, N. (2009). Encyclopedia of Database Systems, chapter Precision-Oriented Effective-
ness Measures, pages 2128–2129. Springer US, Boston, MA.

Dean, B. (2020). How people use google search (new user behavior study). https:
//backlinko.com/google-user-behavior.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ghojogh, B. and Ghodsi, A. (2020). Attention Mechanism, Transformers, BERT, and GPT:
Tutorial and Survey. OSF Preprints.

Huggingface (2022). Cross-encoder for ms marco. https://huggingface.co/
cross-encoder/ms-marco-TinyBERT-L-2.

Huggingface (2023). Sentence transformers. https://huggingface.co/
sentence-transformers.

61

https://www.pinecone.io/learn/semantic-search/
https://backlinko.com/google-user-behavior
https://backlinko.com/google-user-behavior
https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2
https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2
https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers

REFERENCES

Hussan, B. K. (2020). Comparative Study of Semantic and Keyword Based Search Engines.
Advances in Science, Technology and Engineering Systems Journal, 5(1):106–111.

Indurkhya, N. and Damerau, F. (2010). Handbook of Natural Language Processing, Second Edition.
Taylor & Francis.

Jesus-German, O.-B., Gemma, B.-E., and Helena, G.-A. (2022). Sentence-crobi: A simple
cross-bi-encoder-based neural network architecture for paraphrase identification. Mathe-
matics, 10(3578):3578.

Karpukhin, V., Oguz, B., Min, S., Wu, L., Edunov, S., Chen, D., and Yih, W. (2020). Dense
passage retrieval for open-domain question answering. CoRR, abs/2004.04906.

Korman, D. Z., Mack, E., Jett, J., and Renear, A. H. (2018). Defining textual entailment.
Journal of the Association for Information Science and Technology, 6(6).

Kundu, R. (2022). F1 score in machine learning: Intro & calculation. V7. https://www.
v7labs.com/blog/f1-score-guide.

Lample, G. and Conneau, A. (2019). Cross-lingual language model pretraining. CoRR,
abs/1901.07291.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. (2019). BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. CoRR, abs/1910.13461.

Lukovnikov, D., Fischer, A., and Lehmann, J. (2019). Pretrained transformers for simple
question answering over knowledge graphs. In Ghidini, C., Hartig, O., Maleshkova, M.,
Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., and Gandon, F., editors, The
Semantic Web – ISWC 2019, pages 470–486, Cham. Springer International Publishing.

Muennighoff, N. (2022). SGPT: GPT Sentence Embeddings for Semantic Search. arXiv e-
prints, page arXiv:2202.08904.

Qaiser, S. and Ali, R. (2018). Text mining: Use of tf-idf to examine the relevance of words to
documents. International Journal of Computer Applications, 181.

Reimers, N. (2022). Retrieve & re-rank. https://www.sbert.net/examples/
applications/cross-encoder/README.html,.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. CoRR, abs/1908.10084.

Salton, G. and Lesk, M. E. (1965). The smart automatic document retrieval systems—an
illustration. Commun. ACM, 8(6):391–398.

scikit learn (2023). Machine learning in python. https://scikit-learn.org/stable/
index.html.

Tien, N. H., Le, N. M., Tomohiro, Y., and Tatsuya, I. (2019). Sentence modeling via multiple
word embeddings and multi-level comparison for semantic textual similarity. Information
Processing & Management, 56(6):102090.

62

https://www.v7labs.com/blog/f1-score-guide
https://www.v7labs.com/blog/f1-score-guide
https://www.sbert.net/examples/applications/cross-encoder/README.html
https://www.sbert.net/examples/applications/cross-encoder/README.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

REFERENCES

Tunstall, L., von Werra, L., and Wolf, T. (2022). Natural Language Processing with Transformers:
Building Language Applications with Hugging Face. O’Reilly Media, Incorporated.

University of Glasgow (Collected 2023). School of computing science. https:
//www.gla.ac.uk/schools/computing/research/researchsections/
ida-section/informationretrieval/#popularresources.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In GLUE:
A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In the
Proceedings of ICLR.

Yamoun, L., Guessoum, Z., and Girard, C. (2022). Transformer RoBERTa vs. TF-IDF for
websites content-based classification. In Deep Learning meets Ontologies and Natural Language
Processing, International Workshop in conjunction with ESWC, Hersonissos, Greece.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. CoRR,
abs/1906.08237.

Zhang, X., Yates, A., and Lin, J. (2021). Comparing score aggregation approaches for doc-
ument retrieval with pretrained transformers. In Advances in Information Retrieval: 43rd
European Conference on IR Research, ECIR 2021, Virtual Event, March 28 – April 1, 2021, Pro-
ceedings, Part II, page 150–163, Berlin, Heidelberg. Springer-Verlag.

63

https://www.gla.ac.uk/schools/computing/research/researchsections/ida-section/informationretrieval/#popularresources
https://www.gla.ac.uk/schools/computing/research/researchsections/ida-section/informationretrieval/#popularresources
https://www.gla.ac.uk/schools/computing/research/researchsections/ida-section/informationretrieval/#popularresources

REFERENCES

64

Appendices

65

Appendix A

Google Form for Annotating Telavox Dataset.

67

A. Google Form for Annotating Telavox Dataset.

Figure A.1: Image of the Google Form that was used for annotating
data. Queries and search results are not shown for data privacy rea-
sons.

68

Appendix B

Screenshot of Application

Figure B.1: A screenshot of the re-ranking application searching for
the query ’who is the newest employee’ using an example dataset.

69

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-02

EXAMENSARBETE Using Transformers to improve Search functions
A study on a smart messaging system
STUDENTER Alice Berggren, Linnea Palmblad
HANDLEDARE Pierre Nugues - (LTH)
EXAMINATOR Jacek Malec - (LTH)

Tekniken att jämföra äpplen och äpplen

POPULÄRVETENSKAPLIG SAMMANFATTNING Alice Berggren, Linnea Palmblad

Sökfunktioner spelar en avgörande roll i dagens digitala landskap genom att erbjuda
användarna effektiva sätt att hitta önskad information bland en omfattande mängd
data. Examensarbetet undersöker transformersarkitekturen och ser hur den jämför sig
med mer traditionella metoder.
Språkteknologi utgör en gren inom maskininlärn-
ing som ägnar sig åt att utveckla metoder och
modeller för att möjliggöra maskiners förmåga
att förstå och tolka mänskligt språk. Med tanke
på den ökande kommunikationen via internet har
språkteknologin fått en betydligt större inverkan
än någonsin tidigare. Inom ramen för information-
ssökning kan språkteknologin spela en avgörande
roll för att säkerställa att rätt innehåll når rätt
människor. Transformers är en state-of-the-art
modell inom maskininlärning och har visat sig
vara revolutionerande inom förståelse av kontext
inom språk, vilket är väldigt användbart inom sök-
motorer.

I en nyckelordsbaserad sökning där en mening
innehåller ordet ‘Apple‘ skulle systemet inte
kunna urskilja mellan frukten eller teknikföre-
taget. En transformer modell hade kollat på
meningen och kontexten orden befinner sig i, för
att förstå innebörden, vilket gör den så banbry-
tande. Trots att denna teknik är välkänd, är det
inte alla företag som besitter den nödvändiga kom-
petensen som krävs för att implementera dessa
modeller.

I detta examensarbete har vi undersökt olika
transformers modeller och jämfört dessa med mer
konventionella metoder. Först testade vi fem olika
modeller på hur väl dom kan avgöra om två olika
meningar är relaterade. Sedan testades mod-

ellerna på hur väl de kan ranka dokument i en
samling baserat på en sök-term. Detta gjordes
på ett etablerat dataset och på ett företags egna
dataset som vi fick skapa från grunden genom
deras databas. Sedan tillämpades metoden re-

ranking för att förbättra sökresultaten genom att
lägga till en ytterligare modell för att placera de
mest relevanta sökresultaten högst upp. Den mest
framstående modellen identifierades och valdes.

Resultaten visar att transformers är överlägsna
traditionella modeller, då användningen av en
transformer-baserad modell både var mest effek-
tiv på att bedöma relationen mellan två olika
meningar, och i kombination med en annan
transformer-baserad modell på att placera de mest
relevanta sökresultaten högst upp.

	Introduction
	Problem definition
	Contribution Specifications
	Related works

	Datasets
	Choosing the collections
	Format of the benchmark datasets
	Format of the Telavox chat data
	Evaluating the datasets
	Metrics for the GLUE datasets
	Metrics for the IR datasets
	Benchmark datasets
	Telavox data

	Transformer Architectures
	Metrics
	Cosine similarity
	Dot product

	Models using Transformers
	BERT
	SBERT
	DPR
	Cross-Encoder

	Selection of Models
	Encoder model
	Tf-idf
	BM25
	SBERT
	InferSent
	DPR

	Classifier
	Comparison of chosen models
	Results

	Finetuning the chosen model
	Losses
	Method
	Result

	Models as Information Retrieval systems
	Telavox Dataset
	Evaluation of the Telavox Dataset
	The annotators

	CISI
	Result
	Telavox dataset
	CISI
	Chosen model

	Re-ranking
	Method
	Non-finetuned BERT model
	MSMARCO finetuned model

	Implementation
	Evaluation
	Chosen cross-encoder
	Result

	Discussion
	Benchmark datasets
	Evaluation of the encoder model
	Implications of using the benchmarks

	Telavox dataset
	Creating the queries
	The annotation of the data
	Best performing model for the Telavox dataset

	Re-ranking
	Usage in a company domain
	Future work

	Conclusions
	References
	Appendix Google Form for Annotating Telavox Dataset.
	Appendix Screenshot of Application

