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Abstract

In biology, cell counting provides a fundamental metric for live-cell experiments.
Unfortunately, most researchers are constrained to using tedious and invasive
methods for counting cells. Automatic identification of cells in microscopy im-
ages would therefore be a valuable tool for such researchers. In recent years, deep
learning-based image segmentation methods such as the U-Net have been explored
for this task. However, deep learning models often require large amounts of labeled
data for training. For identifying cells in microscopy images, this type of labeled
data is commonly generated through manual pixel-wise annotations of hundreds
of cells. To address this problem, we explore an approach for automatically gen-
erating large numbers of labeled examples by imaging cells that were stained with
a fluorescent dye. By using fluorescence microscopy alongside non-invasive mi-
croscopy, we obtain visualizations of the positions of nuclei in each cell image.
We transform the fluorescence images into binary masks with a pipeline based on
classical segmentation techniques: histogram equalization through CLAHE and
thresholding using Otsu’s method. We then use these masks as labels for the cell
images, so that each image is accompanied by pixel-wise annotations of the nu-
clei. We generate datasets for three different cell types, and use them to train
U-Net models for automatic cell identification. The trained models show excel-
lent performance (∼ 2% false positives, <1% false negatives), on par with expert
annotation. This method therefore shows great promise as a tool for biologists
to perform automatic cell identification and counting. The trained U-Nets can
potentially also be used for tracking cells in time-lapse imaging. These new data
extraction methods could assist researchers in deepening their understanding of
the phenomena that they are studying.
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Popular Science Summary

Starving cancer cells of the amino acid methionine has proven to be a way of
stopping them from growing and dividing. While details behind this phenomenon
are blurry, researchers are investigating this so that it might one day be exploited
to fight cancer. This is known as the methionine dependency problem.

A problem that many researchers in biomedicine face is that even though they
can conduct cell experiments by giving cells some treatment (in this case, by re-
moving their access to methionine), they do not have access to many methods for
extracting experimental data. Researchers are usually interested in measuring cell
counts in order to see how the number of cells changes over time when subject to
their chosen treatment. Unfortunately, in order to count cells they often have to
remove the cells from their nutrient solution and pass them through a measure-
ment tool. This does not only take a lot of time (counting cells at a single time
point can require hours of manual work) but can also have unexpected effects on
the experiment. In addition, by exclusively focusing on cell counts, valuable in-
formation such as cell movements, divisions and deaths are lost. This information
can be found by imaging cells through microscopy, but manually reviewing mi-
croscopy images is difficult and time-consuming. Furthermore, single experiments
may yield tens of thousands of images and analyzing this copious amount of data
manually is simply not feasible.

Recent development in artificial intelligence (AI) and machine learning has
opened the doors to new ways of tackling this issue. AI techniques have been used
to detect specific objects of interest in images for years, but some problems are
more difficult than others. For example, while AI-based software in smartphones
easily detects faces when using their cameras, identifying cells in microscopy images
has proven to be a difficult task.

If we could train AI to detect cells in microscopy images, we could automati-
cally analyze these tens of thousands of images in no time at all. If all cells were
found, we could of course count them with ease. We could also track events such as
movement, division and death, which would be very valuable for the researchers.
There is only one problem with training AI: you need training data. Usually, lots
of it.

For this kind of task, training data would need to consist of two things: cell
microscopy images and pixel-wise locations of the cells in said images. These pixel-
wise annotations are called labels. Because microscopy images of cells tend to be
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hard to analyze even for humans, accurate labels are not easy to obtain. In addi-
tion, the images that specific research groups obtain might have unique properties
because of experimental setups and chosen cell types. So, even if someone trained
AI for this, it might not be easy to share it.

When working with small amounts of data, experts can generate labels by
manually pointing out the locations of each cell. This process is difficult, time-
consuming and becomes an enormous project for larger datasets. However, if there
was an automatic way to do this, researchers could easily use their own data to
train their own AI for cell counting and tracking purposes.

To solve this labeling problem, we set out to explore automatic labeling meth-
ods. We tried a new approach that involved a form of microscopy that separates
cells from their background much more clearly. This technique is toxic to the cells
and cannot be used for actual cell experiments, but it could be used together with
non-toxic microscopy techniques to generate pairs of images. These pairs would
consist of one normal, non-toxic cell microscopy image and one image of cells that
were clearly separated from the background. When put together, one is a normal
microscopy image of cells and one clearly shows the pixel-wise locations of the cells
in said image. This is the kind of labeled data that you could use to train AI!

To start, we built a pipeline that automatically transformed the raw cell mi-
croscopy data into training data that could be used to train AI for cell identifi-
cation. Then, with state-of-the-art deep learning techniques and our own auto-
matically labeled data, we trained AI to identify cells. We applied our method
to several "different-looking" cell types and obtained excellent results. Experts
evaluated the work of the AI and found that the accuracy of the AI was at least
on par with expert annotation. We then explored ways to couple the AI with
existing cell tracking algorithms that have been proven to perform well as long as
cell locations were provided. We ensured that the entire process would be fully
automatic, so that researchers could make use of this software without having any
experience in AI development.

With our method, it is our hope that we may assist all kinds of biologists in
extracting valuable data from their cell experiments, and take us one step closer
to solving the methionine dependency problem once and for all.
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Chapter 1
Introduction

1.1 Background

Methionine dependency is a metabolic phenomenon that has been found in cancer
cells, where the cells cannot proliferate (grow and divide) without access to the
amino acid methionine [2, 3]. Roland Nilsson’s research group at Karolinska Insti-
tutet (KI) is studying this phenomenon, striving to understand the metabolic basis
of it, so that it in the long term might be exploited to suppress cancer growth.

A common way to study this kind of phenomenon is through experiments on
cultured cells. This refers to laboratory methods where cells are left to grow, move,
divide and die under controlled circumstances in a nutrient solution. The cells that
are analyzed in these experiments are usually from cell lines, which are cells that
grow and divide without limit as long as nutrients are available. In order to see
how the cells are affected by their experiments, researchers often try to track how
the number of cells changes over time by counting them at specific time points.
Unfortunately, counting cells is a difficult task and commonly available solutions
are often inadequate. These methods are usually very time-consuming (potentially
taking hours to count at each chosen time-point) and can impact the experiment
in unexpected ways due to interference (e.g. temporarily removing the cells from
the culture conditions in order to count them).

One approach for cell research is to analyze cells through imaging. One im-
portant data type for this approach is time-lapse microscopy images of cultured
cells. This refers to sequences of images that are taken over time in order to mon-
itor the cells. Time-lapse microscopy can reveal data such as cell counts, but also
cell migration (movement), proliferation and how the cell-activity changes over
time. However, these images can be hard to analyze even for humans, meaning
that successfully extracting data from time-lapse microscopy images is a difficult
and time-consuming task. To help analyze this data, a system using computer
vision techniques could be used in order to identify individual cells in microscopy
images, count them and track their actions. This would be helpful when studying
cell activity over long periods of time. Such a system would not only automate
the data extraction, but also potentially yield more accurate results by increasing
the number of analyzed time points and removing human error as well as any
unexpected effects that would come from interfering with the experiment to count
cells.

1



2 Introduction

In recent years, machine learning techniques (specifically deep learning tech-
niques) have been growing increasingly popular for biomedical image analysis and
several algorithms have been proposed for cell identification [4]. One such algo-
rithm is the U-Net, a deep learning architecture that was built for image seg-
mentation (separating parts of an image into objects of interest) in biomedical
contexts [1]. A problem with using these techniques is that they often require
large amounts of labeled data. In this context, labeled data would consist of cell
images and pixel-wise annotations for each image, so that the pixels that are parts
of cells are separated from the pixels that belong to the background. These an-
notations are called labels and are often made manually, which for cell images is
very tedious, time consuming work and subject to human error [5]. In addition,
if data is to be labeled manually, this labeling process needs to be repeated each
time new data is introduced.

A microscopy technique called fluorescence microscopy can be used to make
analyzing cell images significantly easier by amplifying the light intensity in spe-
cific parts of the cells, making them very easy to distinguish in a microscope [6].
Unfortunately, the process is toxic for the cells [7], which makes it undesirable
for time-lapse experiments. It could, however, be used in conjunction with non-
invasive microscopy techniques, such as phase-contrast [8], to generate image pairs:
one microscopy image similar to what you would expect from a time-lapse exper-
iment (here, phase-contrast) and one image where parts of cells (e.g. nuclei) are
clearly displayed (fluorescence). These pairs could be compiled into training data,
using phase-contrast images as input and processed fluorescence images as labels.

By programming algorithms for processing fluorescence microscopy images,
one could build a pipeline for automatically generating training data suitable for
training deep learning models (such as the U-Net), to identify cells in images that
had been generated by non-invasive microscopy techniques used in time-lapse mi-
croscopy of cultured cells. Then, once the cells have been identified and segmented,
one could apply established cell tracking algorithms [9] to the time-lapse images
and extract "high-content" experiment data. This method could make it easy
for research groups to train their own classifiers, using their own data, and use
them to get more insight into how their experimental conditions affect cell migra-
tion and proliferation. Such insight would be helpful when studying methionine
dependency as well as other cell phenomena.

1.2 Task

Our goal is to build an automatic pipeline that can be used to turn images from
in-house microscopy into labeled training data and train U-Net models for cell
identification in non-invasive microscopy images with this labeled training data.
We then want to use the trained U-Net models to identify cells in time-lapse
microscopy images so that existing cell tracking algorithms can be applied to the
predictions. The high-level illustration of this is shown in Figure 1.1. To test the
flexibility of our pipeline, we want to apply it to images of different cell lines (i.e
different human cell types that have different appearances and properties).
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Figure 1.1: A high-level overview of the general idea of this project.

1.3 Purpose

The primary purpose for this project is to enable tools that can be used to as-
sist in researching the methionine dependency phenomenon. However, these tools
could be used for other research that feature cell experiments using time-lapse mi-
croscopy. With automatic cell identification from non-invasive microscopy images,
researchers will not only get more accurate (and higher detail) results from their
experiments, but also save a lot of time.

1.4 Limitations

Because of time constraints, we limit ourselves to the standard U-Net, since it has
proven to be very reliable, even though newer variations of it have been proposed
[10]. Likewise, we opt to using established settings (hyperparameters) for the
U-Net.

For datasets, we limit ourselves to microscopy images from experiments fea-
turing a small number of cell lines.

The thesis will focus on cell identification and not provide complete solutions
for applications of it (e.g. cell-tracking). However, since it is of great interest, it
will be briefly explored and some findings and ideas will be discussed in future
work.

1.5 Thesis disposition

This thesis consists of eight chapters. Its general disposition is the following.

1. Introduction. This introductory chapter aims to outline the background
of the project and state our goal as well as our limitations.

2. Deep Learning Background. As the first of two chapters about theo-
retical background, this chapter explains deep learning concepts that are
relevant for understanding our methodology.
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3. Data Background: Microscopy and Image Analysis. The second
chapter about theoretical background gives some insight in the field of mi-
croscopy and states some relevant methods for processing microscopy image
data.

4. Software and External Resources. As a prelude to the methodology,
this chapter introduces the software and external resources that were used
in our implementations.

5. Methodology. This chapter gives a detailed explanation of our chosen
methodology, including our workflow, experimental specifics and evaluation
methods.

6. Results. With a focus on evaluation, this chapter shows the results of the
experiments that were introduced in the previous chapter.

7. Discussion and Conclusion. The penultimate chapter of the thesis aims
to discuss our chosen methods and results. Some related projects are intro-
duced and compared to ours.

8. Future Work. The final chapter of the thesis discusses some future work
that can build upon what we achieved in this project.

I have not fetched any external images for the figures in this thesis except
for a few logos from the external resources we have used. Cell images are taken
from our own experiments and the figures have been made with platforms such as
Lucidchart [11], the Python package Matplotlib [12] and Microsoft Excel.



Chapter 2
Deep Learning Background

In this chapter, I will explain background information behind the machine learning,
and more specifically, deep learning that was used in this project. To begin with,
I will discuss some background to the subject itself. Then, I will introduce the
concepts and algorithms that were used in this project.

2.1 Machine Learning

Machine learning (ML) is a concept that is commonly associated with Artificial
Intelligence (AI), and the terms are sometimes used interchangeably [13]. In re-
ality, ML is simply a part of AI, and the concept of AI encompasses much more
than just ML implementations [13].

ML revolves around building mathematical models that automatically adjust
themselves by analysing data, in order to solve a given task. In other words,
ML models "learn" to solve a problem by processing data. This can be done
in various ways and can be applied to many different problems, but all revolve
around programming a model and a training algorithm [14]. Commonly, ML is
divided into three main branches: supervised learning, unsupervised learning and
reinforcement learning [15]. This thesis will focus on supervised learning.

2.1.1 Supervised Learning

Imagine a task where you have some input data x that relates to some output
data y. We don’t know what this relation is and it might even be too complex to
be stated explicitly. We do however have some data entries, where we know the
outputs y from some given inputs x. The idea of supervised learning is to build
a mathematical model and "train" this model with this known data [14]. This is
done by continuously telling the model what its output yi should be for a given
input xi, and letting the model adapt to fit this criteria. The data that is used for
this process is called training data and consists of pairs (xi, yi), where yi is called
a label or ground truth and is the desired output of a given input xi, usually called
a feature vector (often called feature map when its a 2-D matrix). The goal here
is to train a model so that it can then predict what the label should be from any
given input x, including values of x that the model has never seen before. This
prediction is the output of the model and is often denoted ŷ [14].

5



6 Deep Learning Background

What really defines supervised learning is the use of labels, meaning that each
input xi is accompanied by a label yi and that we "teach" the model to associate
data with our labels [14]. The term "supervised" comes from this: that we, during
the training, tell the model what its output yi to a given input xi should be, rather
than letting the model group data on its own [14].

2.1.2 Training Data

The training data is often split into three parts of difference sizes: a training set,
a validation set and a test set [16]. These subsets are all composed of random
samples from the original dataset, but are mutually exclusive (no entry is present
in more than one subset) [16].

The training set is usually the largest subset and is commonly comprised of
60-80% of the total dataset. This is the data that is used for the training itself,
i.e. the inputs x0,x1, ...,xn that are fed to the model during training and the
corresponding labels y0, y1, ..., yn [16].

The validation set consists of data that the ML model can be tested on dur-
ing training and serves as a means for evaluating the model on new data inside
the training process [16]. In some cases, the validation set is used to tune the
pre-defined settings of the model by exploring different model configurations and
checking how well the different models perform on new data.

The test set is made of data that is not shown to the ML model during the
training at all. This can be used to see how the final ML model performs on new
data. Thus, its primary use is evaluation [16]. Note that good performance on a
test set does not guarantee good performance on other new data. The test set is
not used during training, but since people often retrain their models using different
configurations in order to find models that perform better on the test set, models
will eventually be somewhat biased towards the used test set. To avoid this bias,
a test set should ideally only be used once.

2.1.3 Output Space: Numerical or Categorical

Depending on the task you are trying to solve, models trained through supervised
learning might have very different output spaces [14]. A model trained to predict
humidity based on some weather features might have a numerical output space
consisting of an infinite number of potential labels (e.g. {y ∈ R : 0 < y <
100)}, whereas a model trained to recognize a certain set of fruit might have a
categorical output space consisting of a finite number of potential labels (e.g. y ∈
{Apple, Banana}). One could also simply have a binary problem, such detecting
fraud based on certain features, where the output space would simply consist of
the binary labels y ∈ {True, False} or simply y ∈ {0, 1}. The output space
defines what kind of problem the ML model is trained to solve: if the output
space is numerical, the problem is a regression problem, but if the output space is
categorical, the problem is a classification problem. If the ML model is trained to
solve a classification problem, it is called a classifier [14].
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2.1.4 Classifiers

The classifier is a common concept in ML where a trained model groups different
inputs into specific classes [14]. When built using the supervised learning approach,
the classes will consist of the predefined labels from the training data. Briefly, a
classifier that is trained using supervised learning is built to classify inputs xi into
classes yi, where xi is a feature vector and yi is the corresponding label. This
concept is displayed in Figure 2.1 [14].

Figure 2.1: A classifier, trained using supervised learning to classify
images into the classes "Cell" or "Not Cell". The figure displays
the workflow of training a model and using it to predict the class
of new, unlabeled data.

2.1.5 Image Segmentation using Machine Learning

One task that can be performed using a ML based classifier is image segmentation,
a technique for identifying specific objects or areas of interest within an image
[17]. This can be done by classifying the pixels in an image Xi, giving each pixel
Xij,k a label Yij,k , where Xi is the i :th image in the dataset and (j, k) are pixel
coordinates, thereby grouping the pixels into classes. This can be used with a large
output space in order to find and classify objects of different classes in a single
image, or if the goal is to find objects of a single class, the task can be reduced
to a binary problem. Then, each pixel Xij,k can simply be classified as "object of
interest" or "not object of interest" (often just referred to as background). This
means that the values in Y will be Yij,k ∈ {0, 1}∀(i, j, k) and the label matrix Yi

for a given input image Xi will be represented as a binary image. This binary
image is an image that exclusively consists of two possible pixel-values (usually 0
and 1, black and white), where each pixel-value represents one of the two classes
[17].

The process of classifying all pixels in an image that belong to the same type
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of object to the same class is called semantic segmentation [18]. An example of
a binary classification problem in a semantic segmentation context is displayed in
Figure 2.2.

Base image Segmented Binary Image

Figure 2.2: A binary segmentation example. Here, the task is to
identify nuclei (the lighter, slightly oval objects) and separate
them from the background. To the left is the input image and to
the right is a segmented output in the shape of a binary image
where white represents nuclei and black represents background.

2.1.6 Deep Learning

Image segmentation has recently been improved upon by the use of deep learning :
a group of ML methods that use ML models called artificial neural networks.
Deep learning models are flexible and highly customizable and can be applied to
solve a range of tasks, such as language translation, identifying diseases, object
recognition [19] and of course, image segmentation [18]. Semantic segmentation
through deep learning is one of the main focal points of this report.

2.2 Deep Learning and Artificial Neural Networks (ANN)

2.2.1 What is an Artificial Neural Network?

Artificial neural networks (ANN) are mathematical models that are inspired by
biological neural networks such as those composing the human brain [20]. They
can be seen as AI methods that aim to reproduce human intelligence by imitating
the way we think [21].

The ANN concept is not new. In fact, similar models were being conceived in
the 1940s [22]. Unfortunately, the first models significantly predated the modern
computers and research in the field eventually came to a standstill after an ANN-
criticizing book was published, claiming that ANNs would probably not develop
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into anything useful [21].
Later, when computers became more available, progress in the field of ANNs

started again. In the early stages however, scientists were still held back by the
low computing power of early-stage computers. Simple ANNs saw much use in
the early 1990s and in the last 15 years, tremendous progress has been made now
that the available computing power is on a whole different scale [21] [23].

Today, ANN based models are widely used [23], but even with today’s tech-
nology, some very complex models can require hundreds or even thousands of
high-end GPUs to be trained within a feasible time frame, which might still take
several weeks or even months [24]. ANNs, just like other ML models, need to be
trained and learn from data [19].

2.2.2 The Perceptron

The perceptron is the simplest ANN and serves as a good starting point for un-
derstanding how these models work. It is displayed in Figure 2.3. It consists of
a neuron, also sometimes referred to as a node or a unit, which takes some input
feature vector x (x0, x1, ..., xn) and gives some output ŷ. Each input xi is multi-
plied by a weight wi. In addition to this input, a bias b is added. If the number
of input features is n, the information that the perceptron obtains can be written
as [16]:

h(x) =

n∑
i=0

xiwi + b (2.1)

The result is passed through an activation function. The output from this
activation function becomes the output of the perceptron: ŷ. This activation
function could, for example, be the unit step function:

f(x) =

{
1, if x > 0

0, otherwise
(2.2)

Combining the input with activation function, we can see the function that
the perceptron embodies:

ŷ =

{
1, if

∑n
i=0 xiwi + b > 0

0, otherwise
(2.3)

In this case, the perceptron outputs either 1 or 0 depending on the output.
This can be seen as a binary classifier, classifying different inputs into the "1"
class or the "0" class. How it will do this depends on the weights and bias. The
input is generally unknown, but by tuning the weights and bias, you would change
the behaviour of this classifier. However, the perceptron is very simple and cannot
perform advanced classification tasks. Specifically, it can only complete this task
if the two different classes are linearly separable [16].
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Figure 2.3: The perceptron, showing inputs, weights, the neu-
ron/node itself and the output.

2.2.3 The Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) takes the perceptron concept to the next level
and essentially builds more complex ANNs by building layers of perceptrons [16].
In the MLP, the input vector is fed into each node in the first layer, each feature
getting multiplied with a weight. The inputs get summed individually in each
perceptron and passed through their activation functions. The outputs from the
first layer of perceptrons then become the inputs to the nodes in the second layer
of perceptrons, and so on, until the final layer (called the output layer) is reached.
Because of this behaviour, it is called a feed-forward network. The layers between
the input layer and the output layer are called hidden layers, since we don’t explic-
itly know the inputs and outputs to the nodes in those layers. The MLP concept
is displayed in Figure 2.4 [16].

For binary classification, the MLP’s output layer consists of a single output
node. Rather than having a binary output space, the output is usually a probabil-
ity p. The probability p is the predicted probability that the input xi belongs to
the class y = 1, and it follows that (1− p) is the probability that the same input
belongs to the class y = 0. When reading this output as a classification result,
the class with the higher probability is read as the predicted class. The actual
classification then becomes [16]:

ŷ =

{
1, if p > 0.5

0, otherwise
(2.4)

Thus the output not only gives us a prediction, but also a metric of the MLP’s
confidence. If, for example ŷi = yi = 1 and p = 0.99, we know that xi was classified
correctly and that the MLP was very certain in this classification, which is what
we strive for. On the other hand, if ŷi = 1, yi = 0 and p = 0.99, we find that xi

was incorrectly classified and that the model did so with great certainty, which is
a problem. Finally, if p is close to 0.5, we see that the MLP is not sure how to
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classify xi.
The activation functions play a fundamental part in what makes the MLP

a viable model. By applying functions that apply non-linearity to the network,
the MLP can adapt to recognize complex patterns. More thorough information
regarding activation functions as well as explanations regarding the functions that
were used in this project will be explained in Section 2.4.4.

An understanding of MLPs makes understanding other deep learning models
a lot easier. In the following sections, I will explain how MLPs are built and used,
so that I can then explain how deep learning was used in this project.

Figure 2.4: An MLP with some number of input nodes, two hidden
layers and one output node.

2.2.4 Training

In order for the MLP (or any ML model for that matter) to work, it needs to be
trained on data. The training process needs to be programmed, but the training
itself is fully automatic. MLPs are trained using supervised learning and a common
training process may look like this [14]:

1. Feed the MLP the data in the training set

2. Find how much the MLP’s output differs from the ground truth (the known
labels, the desired output)

3. Change the value of the weights to some combination that would yield an
output that is closer to the ground truth (for this input)
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4. Test the MLP on the validation set

5. Record the MLP’s performance on the training set as well as the validation
set

6. Repeat the entire process until some maximum number of iterations have
been run or until the MLP stops improving

This amounts to an optimization problem of finding the optimal combination
of weights for maximum performance.

2.2.5 Weights and Biases: Trainable Parameters

The weights and biases, along with the architecture of the network, define the
MLP’s behaviour [16]. Regardless of how well a specific architecture suits a task,
these parameters need to be tuned for the MLP to be able to successfully solve
classification tasks. It is entirely possible that a certain combination of parameters
can solve a task within a certain dataset quite well, but performs worse on another
dataset within the same task [16].

2.2.6 The Loss Function

The loss function, also known as the cost function, gives a value based on two
factors: how often the model correctly classifies inputs and how "confident" it is
[16]. Correct classifications with high confidence lead to a low loss, while incorrect
and "insecure" (p not close to 0 or 1) classifications increase the loss.

The loss function L is a function of the ground truth y and the prediction
h(x) ≈ ŷ, where h(x) is the function that the model embodies. The prediction ŷ
is thus a function of the inputs as well as all weights and biases of the MLP. This
function may, however, be very complex.

The goal of training an MLP is usually to tune the parameters to minimize the
loss function on the validation data, and by doing so, maximizing the performance
on new data [14]. The loss functions that were relevant to this project will be
discussed in Section 2.6.

The process of feeding data to the MLP and evaluating its output based on
loss is called forward propagation. The process of computing how to tune the
parameters based on the results of the forward propagation is done through an
algorithm called backpropagation [14].

2.2.7 Backpropagation

Backpropagation is an algorithm that seeks to compute the gradient of the loss
function ∇L for some input xi and its corresponding label yi [16]. The following
is a rough overview of the algorithm. For a more detailed explanation, see [14].

When computing the gradient ∇L(h(xi), yi), we quickly find that it depends
on the output from the output node of the network as well as the provided label.
Thus, to compute the gradient ∇L(h(xi), yi), we need to compute the partial
derivatives ∂L

∂wl,j,k
and ∂L

∂bl
for some input xi, where wj,k,l the weight between node

k in layer l−1 and node j in layer l (here, the output layer) and bl is the bias input
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to layer l. These partial derivatives in turn depend on the weights and biases of
the previous layer, which in turn depend on the weights and biases in the layer
before that and so on until we reach the input nodes [16].

In order to compute ∇L(h(xi), yi) for some input xi we therefore need to
recursively compute the partial derivatives ∂L

∂wl,j,k
and ∂L

∂bl
for all weights and biases

in the network which is done using the chain rule. The gradient ∇L(h(xi), yi) is
then used for minimizing the loss function with an optimization algorithm called
gradient descent [16].

2.2.8 Gradient Descent

Since MLPs often consist of millions of parameters [16], the loss function becomes
a function that depends on millions of variables. Minimizing it becomes a diffi-
cult optimization problem and computing the global minimum cannot be solved
in closed form [14]. However, if one could compute the direction in the multi-
dimensional space of the loss function, in which the function’s value decreases, one
could take a step in that direction. By repeating this, one would eventually arrive
at some local minimum. This is the idea behind gradient descent [16].

The direction of the gradient ∇f of a function f at a point Pn is the direction
in which f has its greatest increase from the point Pn. It follows that the direction
opposite of the direction of ∇f is where f has its greatest decrease from the point
Pn. This direction is simply the direction of the negative gradient −∇f .

When −∇f is known, one can "take a step" of size η in its direction. Then,
one arrives at a new point Pn+1 where −∇f needs to be computed again for this
new point Pn+1. This becomes an iterative stepping algorithm where the steps
can be written as:

Pn+1 = Pn − η∇f(Pn) (2.5)

Given that the steps are sufficiently small, one will eventually converge at a
local minimum. If the steps are too large, it is possible to diverge instead, since
you may follow a certain direction for far longer than you should. The algorithm
is usually set to terminate when the steps become very small (when Pn+1−Pn < ϵ
where ϵ is some tolerance) or when some chosen maximum number of iterations
have transpired, depending on implementations [16].

In a large MLP, you have many weights (in the scale of thousands or millions)
and you therefore have a loss function L existing in a space consisting of many
dimensions. It is therefore hard to fathom or illustrate what this algorithm would
look like in an MLP context, but in a three-dimensional space, one could imagine
following some slope down into a valley, like illustrated in Figure 2.5.
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Figure 2.5: Gradient descent, roughly illustrated in three-
dimensional space. After starting at some point, one contin-
uously takes steps down the steepest slope, until some local
minimum is reached.

2.2.9 Backpropagation with Gradient Descent

When feeding the MLP some input data, the network is in a state θn where the
weights and biases have some values. After forward propagation, the loss function
gives us some value L(h(xi), yi), where yi is the known label attached to the input
xi. Gradient descent is applied here by computing the negative gradient −∇L (the
direction in which the loss function decreases the fastest) through backpropagation
and taking a step in that direction. After taking a step, one arrives at a new point
θn+1, which is a new network state with some new combination of weights and
biases. To get there, the weights and biases of the network needs to change. This
update rule, with respect to the loss function L and the set of weights and biases
θn, becomes:

θn+1 = θn − η∇L (2.6)

By following this gradient descent algorithm and minimizing the loss function
for different data, one may improve the performance of the MLP. Gradient descent
based algorithms are by far the most common approaches to optimizing ANNs. In
deep learning, there are three common approaches to gradient descent [25]:

• Stochastic gradient descent (SGD): Compute the gradient based on a ran-
domly chosen pair (xi, yi) in the training set. Then, update the weights.
Since this updates the weights based on a single pair (xi, yi), it makes each
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step faster but might lead to noisy steps, especially if the training set has
great variation.
An alternate approach to SGD is to select these pairs (xi, yi) by iterating
through the training set instead of randomly selecting one pair (xi, yi) at
a time. In either case, with ∇θ being the gradient based on the current
parameters θ, the update rule is [25]:

θn+1 = θn − η∇θL(h(xi), yi) (2.7)

• Batch gradient descent: process the entire training set, compute the gradient
and update the weights. This approach takes "smoother" steps than SGD
since the final gradient is based on the entire training set, but takes longer
and converges slower, especially for large training sets. Also, rare patterns
in the training data might be overlooked by mostly basing the final gradient
on common patterns. If N is the size of the training set, this update rule
becomes [25, 26]:

θn+1 = θn − η
1

N
∇θ

N∑
i=1

L(h(xi), yi) (2.8)

• Mini-batch gradient descent: same as batch gradient descent but process
small parts called mini-batches instead of the entire training set before up-
dating the weights [25, 26]. The size of these mini-batches is called the
batch-size m. This serves a middle ground between SGD and batch gradient
descent, compromising between speed and precision. If m = 1, this is the
same as the second version of SGD [25, 26].

θn+1 = θn − η
1

m
∇θ

m∑
i=1

L(h(xi), yi) (2.9)

Since gradient descent gets stuck in critical points (points where ∇θL = 0),
local minima and saddle points both serve as obstacles in the search of the global
minimum. That said, studies have shown that getting stuck in saddle points is not
a common phenomenon [27]. Saddle points can, however, slow the algorithm down
significantly [28]. Still, a fundamental problem with gradient descent is that even
if it can pass by saddle points, it still only converges to a local minimum. Several
optimization algorithms have been proposed in attempts to tackle this problem (as
well as the performance issues from saddle points), some of which are described in
a Section 2.5.5.

2.2.10 Batch Normalization

When using some version of mini-batch gradient descent, it has been proven useful
to apply an algorithm called batch normalization to the inputs to hidden layers
[29]. The goal of this algorithm is to speed up and stabilize training by mitigat-
ing the effects of a phenomenon referred to as the internal covariate shift. This
phenomenon is described as the constantly changing distributions of each layer’s
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inputs during training which stem from the parameter changes in previous layers.
This makes training slower and more complicated, requiring low learning rates (η)
and careful parameter initialization [29].

To account for the internal covariate shift, batch normalization is done by re-
scaling the input mini-batch B = {x1,x2, ...,xm} of size m to each layer based on
the mean µB and variance σ2

B in B [29]:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)
2

(2.10)

Since the elements in B are vectors of length n, the variables {xi1 , xi2 , ..., xin} ∈
xi are normalized separately. A small value ϵ is added to the denominator to avoid
division by 0 [29]:

x̂ij =
xij − µBj√
σ2
Bj

+ ϵ
(2.11)

To avoid changing what the layer itself may represent, two trainable parameter
vectors γ and β are introduced, so that the result of the batch normalization
transform becomes [29]:

BNγj ,βj (xij ) = γj x̂ij + βj (2.12)

When using batch normalization, the output of the BN transform will be the
input to the following hidden layer. This algorithm has also proven to act as a
form of regularization [29], which is the topic of the following section.

2.2.11 Overtraining and Regularization

When training an MLP on some training data, it is possible to achieve fantastic
results on that specific dataset, to the extent of even catching weird outliers with
100% accuracy [16]. If this happens, there is a chance that the network is overfit
(also known as overtrained) on this dataset. What this means is that the network
has been tailored to achieve good results on the specific samples of data, and will
therefore probably not be able to achieve good results on new data.

Overfitting is tightly linked to the model capacity, i.e. the complexity of the
model. If the model is too complex for the data its being trained on, it might be
able to "memorize" the patterns in the data and adapt fully to it. Then, overfitting
occurs.

To counter overfitting by restricting the model capacity, regularization tech-
niques are used. Regularization is the process of making a function simpler. Regu-
larization may lead to worse performance on the samples in the training data, but
will ensure that the network can handle new data within the same task to some
extent [16]. The concept of overfitting and regularization is shown in Figure 2.6.
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Figure 2.6: A typical classification problem: tune a function that
can separate one class (blue dots) from the other (red dots).
One function (black line) is a simpler, regularized function that
does not separate perfectly for this data, but if other distri-
butions are similar, it will still do quite well on new data. The
other function (green line) fits everything perfectly on this data,
including outliers. This function is very complex and evidently
tailored to succeed on this particular data and is likely to get
worse results on new data. This function is overfit on this data.

Overfitting can be detected in ANNs. Typically, the performance on the train-
ing set will increase, while the performance on the validation set decreases [14].
What this means is that the network is getting better at classifying the data in
the training set while simultaneously getting worse at classifying new data. If this
occurs continuously, one usually wants to stop training early. This technique is
called early stopping [14].

Another common regularization technique is called dropout and acts by directly
lowering the model capacity during training by randomly ignoring parts of the
network. This technique will be explained in greater detail in Section 2.4.3.

Although a training that is based on validation loss can avoid overfitting on the
training set, the problem of overfitting extends further. By optimizing the model
to find the lowest validation loss you will build a model that performs well on that
particular data. This can even be extended to the test set: if you keep re-training
a model, using different configurations, in attempts to improve performance on
the test set, the model may end up overfit on this data too.

It can be difficult to know the extents of overfitting and although several
regularization techniques exist, it is an important concept to keep in mind while
training and testing any ML model. The effects of overfitting and regularization
are studied extensively and exact details of how model capacity can relate to
overfitting is not perfectly clear [30].
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2.3 ANN Architecture and Hyperparameters

MLPs (and ANNs in general) are defined by their architectures and training algo-
rithms [14]. The architecture refers to how the model is built, such as the number
of hidden layers that are used, the number of nodes in each layer and which ac-
tivation functions they use. The training algorithm has several variables, such
as choice of optimization algorithm, the chosen loss function and the number of
passes through the training data. The variables that define the architecture as
well as the training algorithm are called hyperparameters and can be split into two
catagories: model hyperparameters (architecture) and algorithm hyperparameters
(training algorithm) [14].

An important distinction is that "parameters" usually refer to the trainable
weights and biases of a network, while "hyperparameters" are specifics that are
set by the programmer in advance [14].

2.4 ANN Model Hyperparameters

2.4.1 Hidden Layers and Nodes

The number of hidden layers as well as the number of nodes in each layer affects the
behavior of the network [16]. With more hidden layers and an increased number of
nodes in said layers, the network becomes more complex and may be more capable
of learning complex patterns. A more complex network, however, also takes longer
to train and is slower to use. It may also be more prone to overfitting [16].

There can theoretically be any number of hidden layers and any number of
nodes in a hidden layer.

2.4.2 Weight Initialization

By initializing the weights with some values, one may affect how the gradient
descent algorithm converges [31]. It is common to initialize weights with some
uniform or normal distribution, but it is also possible to initialize the weights with
some combination that is known to do well on a certain task [31].

For modern image segmentation models (that will be introduced in Section
2.9), authors recommend an initialization technique that takes the initial weights

from a zero-mean Gaussian distribution with a standard deviation σ =
√

2
N , where

N is the number of inputs to the node [1]. This technique was proposed in a paper
by He et al. [32] and is therefore often referred to as He normal initialization.

2.4.3 Dropout

Dropout is a regularization technique that randomly disables some nodes (meaning
that their inputs and outputs are temporarily ignored) in the network during
training [33]. This makes it so that the network cannot get too dependent on
some specific nodes or weights, resulting in a more generalized network. This is
usually implemented by setting some probability for each node to disable itself
[33].
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Since the value of the dropout hyperparameter p is a probability, the value
range is 0 ≤ p < 1, where 0 means that dropout is disabled and 1 would imply full
dropout, i.e. no nodes are active and the network does nothing.

In MLPs it is common to apply a fairly high dropout probability, often around
0.5. In other architectures, such as the convolutional neural network that will be
brought up in a later section (Section 2.7), it has been shown that a much lower
dropout probability can be beneficial in some layers [34].

2.4.4 Activation Functions

Each node has an activation function assigned to it that is used to process its
input [16]. The output from this function is then the output of the node. Various
functions may be used and the chosen functions have a significant impact on the
behaviour of the network. Commonly, the function that is assigned to the output
nodes is not the same as the function assigned to the nodes in the hidden layers.
Additionally, different nodes within the hidden layers may use different activation
functions [16].

To keep this list short, it is limited to the activation functions used in this
project. Note that there are many more that can be used, depending on the task
and the desired structure of the network.

One common activation function for nodes in hidden layers is the rectified
linear unit (ReLU) [14]:

f(x) = x+ = max(x, 0) =

{
x, if x > 0

0, otherwise
(2.13)

As shown in equation 2.13, this function simply passes its input x on, as
long as x is a positive number. If it is negative, the function yields 0. This
behaviour is illustrated in Figure 2.7. ReLU’s primary purpose is to introduce
non-linearity to the network. This is important if the network needs to solve non-
linear problems. Also, without non-linearity between the layers, all layers in a
network could be replaced by a single layer, which removes the point of having
multiple layers completely [14].

A large benefit with ReLU is that it does not contribute to changing the
magnitude of the gradient during backpropagation, since its derivative is always 1
or 0. For other functions, with derivatives f ′(x) < 1, gradients may slowly shrink
away during the chained multiplications of derivatives in the algorithm.
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Figure 2.7: The rectified linear unit.

One interesting detail with ReLU is that it is not differentiable in x = 0. This
could make it unusable for backpropagation, so in implementations, the derivative
f ′(0) is arbitrarily set to f ′(0) = 0 or f ′(0) = 1.

For binary classification tasks (where only a single output node is needed), the
output node commonly employs a Logistic function. In ML contexts, this is often
just referred to as a sigmoid function [14]:

f(x) =
1

1 + e−x
(2.14)

This function has a range of 0 ≤ f(x) ≤ 1 and takes on the value 1
2 when

x = 0, forming the characteristic "S-shape" centered on x = 0, as displayed in
Figure 2.8. The limitations given by the output range of the as logistic function
and the fact that its differentiable makes it an ideal function for the output node,
as it can can be read as a predicted probability which can be decoded to a predicted
classification. In addition, unlike ReLU, its gradient is never zero. Zero-gradients
are problematic since they do not give any information about how to improve the
parameters [26].
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Figure 2.8: The logistic function.

2.5 ANN Algorithm Hyperparameters

2.5.1 Learning Rate

The learning rate is the size of the steps in the gradient descent η. A high learning
rate means that the algorithm will converge faster, but risks oscillation and diver-
gence. A low learning rate ensures convergence at the cost of a higher run-time,
given that it doesn’t terminate early [14].

Newer optimization algorithms may use changing learning rates. If such an
algorithm is used, the hyperparameter simply denotes the starting point of the
learning rate [25].

2.5.2 Number of Epochs

The number of epochs is the number of times the model processes the training set
during the training. One epoch can be seen as one pass through the training set.
In other words, after one epoch, the model has processed N data points (xi, yi)
where N is the size of the training set. Typically, the model is tested on the
validation set after each epoch.

It is important to note that the network may be updated multiple times during
one epoch, i.e. one epoch does not mean one update. For example, if one trains
a network using mini-batch gradient descent, one will have to do many updates
before the entire training set has been processed.

The number of epochs can take on any value N ∈ N. With a low value,
the model might not become well trained, but a high value comes with the risk
of overtraining. A high value can however be combined with early stopping to
prevent this [16].
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2.5.3 Patience

When using early stopping, one approach is to set a patience value. If, during the
training, the validation loss does not decrease for a number of consecutive epochs
equal to the patience value, the training will terminate [16]. After early stopping,
one can revert back to the model with the lowest validation loss.

2.5.4 Batch Size

If using mini-batch gradient descent, the size of the batches needs to be specified.
It is common for this hyperparameter to take some value 2n where n ∈ Z+ [26].
The batch size might have upper limitations due to hardware specifications, such
as memory.

2.5.5 Optimizers

As stated before, gradient descent comes with some issues, such as only converging
to local minima and converging slowly. To improve on these flaws, several opti-
mization algorithms have been proposed by different research teams [25]. These
optimizers simply change the update rule of gradient descent into something else.
The choice of optimizer is considered a hyperparameter [25].

Adaptive Gradients (AdaGrad)

When setting the learning rate η, it is hard to know if the chosen value is too low
or too high without running the actual training. In addition, it might be beneficial
to have different learning rates for different weights during the training [25]. With
potentially millions of weights, it is not feasible to manually assign and test this.
AdaGrad is designed to solve this problem [25].

AdaGrad is based on SGD but scales learning rates for each weight. This is
done by keeping track of the past gradients and dividing the learning rate by the
square root of the squared sum of past gradients. A small number ϵ is added to
the squared sum of past gradients to avoid division by 0 [25]. The scaling makes
it so that parameters with small partial derivatives receive a minor decrease to
their learning rates while parameters with large partial derivatives get rapidly
diminishing learning rates. AdaGrad’s update rule is [25]:

θn+1 = θn − η√
sn + ϵ

∇θL

where sn = sn−1 +∇θL
2

(2.15)

One flaw with AdaGrad is that the sn is continuously increasing, meaning that
the learning rate is continuously decreasing. After a while, the learning rates will
be so small that all future steps are insignificant regardless if the algorithm has
converged or not [25].
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Momentum

Similarily to AdaGrad, the momentum algorithm uses information from past gra-
dients in its update rule. The goal of momentum is not to adapt the learning rate
to specific weights, but instead to avoid getting stuck in local minima by adding
a moving average of previous gradients to each step. This moving average is com-
puted by continuously adding the gradient to a sum of gradients that is multiplied
with some decay 0 < β < 1, making it so that the more recent gradients weigh
more than older ones. The momentum update rule is [25]:

θn+1 = θn − sn

where sn = η∇θL+ βsn−1

(2.16)

The decay parameter β is called the momentum term and is a new hyper-
parameter introduced with this algorithm [25]. Momentum helps with speeding
up convergence and escaping local minima. In addition, it has been shown that
momentum-based algorithms escape saddle points swiftly [35]. However, momen-
tum still has oscillation issues: when approaching a minimum, the momentum
algorithm will step back and forth which might still result in slow convergence
[25].

Root Mean Square Propagation (RMSProp)

RMSProp is an extension of AdaGrad that uses a squared sum of past gradients
sn, but uses a moving average (like in momentum) instead of simply summing
all previous squared gradients. This is to work around AdaGrad’s problem with
vanishing learning rates, while keeping its functionality of scaling the learning
rate for different weights based on previous gradients. A decay parameter β is
introduced, but is used slightly differently compared to momentum. Here, β is
used to scale down sn and (1−β) is used to scale down the squared gradient. The
RMSProp update rule is [25]:

θn+1 = θn − η√
sn + ϵ

where sn = βsn−1 + (1− β)∇θL
2

(2.17)

Adaptive Moment Estimation (Adam)

Adam combines the benefits of momentum and RMSProp to get the best of both
convergence rate and avoiding local minima. The name refers to using the first
and second moments of the gradient. The algorithm uses moving averages that
are estimations of the mean m (the first moment), and the uncentered variance v
(the second moment) of the gradient. These are computed as [36]:

mn = β1mn−1 + (1− β1)∇θL

vn = β2vn−1 + (1− β2)∇θL
2

(2.18)

We recognize these as the moving sum of gradients and the squared moving
sum of gradients from previous algorithms. Because β1 and β2 are often chosen to
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be close to 1, the moments will be close to 0. This is referred to as being biased
towards 0. To counteract this, the moments are "bias-corrected" [36]:

m̂n =
mn

1− β1

v̂n =
vn

1− β2

(2.19)

The bias-corrected moments are then used in Adam’s update rule, using the
form of RMSProp where the learning rate is divided by the square root of the
squared moving sum of gradients (with a small value ϵ added to avoid division by
0) and respect to the moving sum of gradients from momentum [36]:

θn+1 = θn − η
m̂√
v̂ + ϵ

(2.20)

Although there is no real consensus on which algorithm should be chosen [26],
Adam is one of the most widely used optimizers and works well for most deep
learning models [25].

2.6 Loss Functions

The loss function is at the core of the training process and the choice of loss
function is an important hyperparameter. There are several popular ones and
typically they work well for different tasks. In this project, we have explored
binary cross-entropy and its extension binary focal loss. Note that these are only
suitable for binary classification tasks, hence the names.

2.6.1 Binary Cross-Entropy

Binary cross-entropy, also known as log-loss due to its logarithmic nature, is a
common loss function for binary classification tasks. This function compares the
predicted probabilities of the output node to the known binary labels [14]:

L = − 1

N

N∑
i=1

(yi · log2(p) + (1− yi) · log2(1− p)) (2.21)

Here, yi is the known label (ground truth) and p is the predicted probability
(e.g. the result of the logistic function in an MLP output node for some input) of
an input sample belonging to class y = 1. It follows that (1 − p) is the predicted
probability of an input sample belonging to class y = 0.

By analysing this function, we can find that when yi = 1, the inner function
is:

−(1 · log2(p) + (1− 1) · log2(1− p)) = −log2(p) (2.22)

Similarly, when yi = 0, the inner function is:

−(0 · log2(p) + (1− 0) · log2(1− p)) = −log2(1− p) (2.23)
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So, for each sample, the loss is simply the binary logarithm of the predicted
probability. The closer this is to the ground truth (1 for "class" or 0 for "not
class"), the closer this will be to 0. Then, the value of the loss function is simply
the average logarithmic prediction error in terms of probability. Thus we can see
that minimizing this loss function will minimize the prediction errors, and so, the
performance of the model will increase.

A potential issue with binary cross entropy is that each entry is treated the
same. If there is a class imbalance in the training data, meaning that a certain
class appears much more often than the other, one could get a pretty good value
from the loss function by simply classifying everything as the common class. An-
other issue appears when the training set is large with many easy classifications
(where the classification is correct and p is very close to 0 or 1). Then, these easy
classifications may dominate the loss, making it so that the difficult classifications
are not penalized enough and therefore never learned.

These are two very prominent problems in image segmentation, where back-
ground pixels may be very dominant in number and for the most part very easy
to classify. If there are enough background pixels, the model may obtain a very
low average loss by simply classifying everything as background. It will also not
necessarily have to learn to solve the harder classifications. This has given rise to
another loss function: binary focal cross-entropy.

2.6.2 Binary Focal Cross-Entropy

Binary focal cross entropy, also known as binary focal loss, is very similar to binary
cross-entropy but puts a higher weight on difficult classifications and lowers the
impact that the more common class has on the overall loss. The weighting of
difficult classifications is done by introducing the modular hyperparameter γ [37]:

L = − 1

N

N∑
i=1

((1− p)γyilog2(p) + pγ(1− yi)log2(1− p)) (2.24)

When γ > 1, the logarithmic factor gets downscaled tremendously when p is
close to yi. This is when classifications are easy, and the downscaling makes it so
that they contribute little to the overall loss. In addition, this makes it so that
there is very little to gain by increasing the confidence of easy classifications (e.g.
being 99% certain instead of 95% certain), since the loss in these classifications
will already be close to 0. Therefore, this behavior will not be striven for. This
is to push the model into learning to solve harder classification tasks rather than
perfecting easy classification tasks that it can already solve with great confidence
[37].

Class weighting is done by introducing the α hyperparameter. It is simply a
weight that can be set to a number α ∈ [0, 1] that reflects the class imbalance.
Then, the entries of the common class will have less impact on the loss than the
entries of the rarer class, making it so that accurate predictions on both classes
are essential for a low loss. By including α for class weighting, we obtain the full
binary focal cross-entropy function [37]:
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L = − 1

N

N∑
i=1

(α(1− p)γyilog2(p) + (1− α)pγ(1− yi)log2(1− p)) (2.25)

When using binary focal cross-entropy, the values α and γ are new hyper-
parameters to be set before training. While α should be set depending on class
representation in your dataset, the authors recommend the values α = 0.25 and
γ = 2 [37].

2.7 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are ANNs that are primarily used in image
classification tasks [14]. These are defined by the use of convolutional layers and
employ a different architecture compared to the fully connected networks (MLPs).
A major problem with MLPs when it comes to image analysis is that the number
of weights gets extremely high when the input is an image of high resolution. For
example, an image of dimensions 1500x1000x1 results in a feature vector of size
1,500,000. In the case of an RGB image, this is then multiplied by 3 since each
pixel has 3 color features, giving us a feature vector of size 4,500,000. In an MLP,
each input has a connecting weight to each hidden node in the following hidden
layer, meaning that for each node in the next hidden layer alone, there would be
4,500,000 weights. Because the number of weights in a layer is Nl · Nl−1, where
N is the number of nodes in layer l, the computational requirements become very
high and the MLP architecture is typically not feasible for this kind of task [14].

Another problem for MLPs in image analysis is that their fully connected
architecture fails to recognize patterns based on neighbouring pixels. We know that
neighbouring pixels usually have more in common than two who are further apart,
and this is information that we can use. If all pixels are handled independently,
this information is lost [14]. Both of these issues are solved in CNNs by using their
convolutional layers.

2.7.1 Image Channels

To understand convolutional layers, we first need to understand the concept of
image channels. Channels can be seen as the third dimension of an image, meaning
that in multi-channel images, each pixel is represented by a vector instead of a
scalar [14]. The classic example is the 3-channeled RGB image, where each channel
contains information regarding light intensities of a single color. In convolutional
layers, the number of channels goes higher [14].

2.7.2 Convolutional Layer

A convolutional layer takes some input from a previous layer, performs some oper-
ation and then feeds some output to the following layer, just like hidden layers in
MLPs. Instead of consisting of neurons, the convolutional layer consists of some
number of kernels, sometimes referred to as filters [14].
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The kernels are 3-dimensional tensors of some dimensions n x m x C (most
commonly, n = m) where C is the incoming number of channels. Consider a
simplified case where C = 1 and the kernels are reduced to 2-D matrices. These
matrices "slide" over the input data, performing convolutions with n x m sized
parts of the input, one at a time. The convolution is simply the sum of the
element-wise multiplication between the input matrix Il and the kernel Kp where
Il is a subset of the full image:

Il ∗Kp =

m∑
j=1

n∑
k=1

Ilj,kKpj,k
(2.26)

The layer takes each value in the input data, transforms it into a weighted
sum of itself and its surrounding values through the sliding window convolution,
adds a bias and passes it on [14]. In an image, this means that the information
of each pixel is treated based on the pixel itself and its surrounding pixels, which
adds context to each operation. An illustration of a step in a convolutional layer
with a single-channel input is shown in Figure 2.9 [14].

Figure 2.9: One step in a convolutional layer. Here, a part of the
input surrounding a select pixel is convoluted with a 3x3 kernel,
resulting in a single value output. This process is repeated until
the kernel has processed the entire input data.

If the input consists of multiple channels, the kernels must be 3-dimensional
with a depth equal to the number of incoming channels C so that the element-wise
multiplication in the convolution can be performed. The output Oj,k for a single
step in the layer is then:

Oj,k = Il ∗Kp + bp =

C∑
i=1

m∑
j=1

n∑
k=1

Ilj,k,i
Kpj,k,i

+ bp (2.27)

The convolutional layer consists of a number of kernels N . Each kernel pro-
cesses the input independently and is accompanied by a bias, so that there is one
bias for each kernel [14]. Each kernel yields its own output matrix based on the
convolutions between itself and the input data as well as the added bias. This
results in an N -channel output tensor. The result is processed by some activation
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function, just like in the MLP. ReLU is often used, for the reasons explained in
Section 2.4.4 [14].

The trainable weights of the convolutional layers are the values in the kernels
and the biases [14]. This means that regardless of how large the input data is, the
number of weights is constant (given that the input data doesn’t increase in number
of channels, which of course increases the depth of kernels and thereby the number
of weights). In addition, the number of weights is usually very low compared to
what an MLP would need. For example, if the kernels in a convolutional layer
are of size 3x3 and 8 kernels are used, the total number of weights (excluding bias
weights) is only 3 ·3 ·8 = 72 per input channel. The low weight requirement and its
way of adding context to all input pixels are the key strengths of the convolutional
layer [14].

The way convolutional layers use a small set of weights to process small parts
of the input data separately (as opposed to having a fully connected layer) is of-
ten referred to as weight sharing. The weight sharing in CNNs has some benefits
(aside from the already established reduction of number of weights), a significant
one being translation invariance, which is particularly useful when processing im-
ages. Since parts of the image are processed independently by the same kernels,
it does not matter where certain patterns appear in the image. In addition, the
low number of weights that come with the weight sharing may act as additional
regularization.

2.7.3 Pooling Layer

When the input data has been processed in the convolutional layer, the output
of the layer becomes a new matrix. The following layer (the one that takes the
output from the convolutional layer as its input) is usually a pooling layer. The
main purpose for this is to reduce the amount of computations needed in later
layers of the CNN [14]. There are two common techniques for this: max-pooling
and average-pooling.

Max-Pooling

Max-pooling is a simple algorithm that processes input by looking at some values
at a time and passes on the highest number. This is done in a "sliding window"-
manner, similar to the convolutional layer, but usually with a stride equal to the
height or width of the window [14]. The larger this window (and thereby stride)
is, the larger the down-scaling is. Max-pooling is shown in Figure 2.10.



Deep Learning Background 29

Figure 2.10: Max-pooling using a 2x2-sized window and stride = 2.

This emphasizes dominant and relevant features. Because of this, max-pooling
is often the pooling operation of choice for high performance [38].

Average-Pooling

Average-pooling uses the same "sliding window"-manner as max-pooling, but it
takes some average of the values in its window rather than just taking the maxi-
mum value, as the name suggests [14]. This can be done by computing the mean
or the median.

2.7.4 CNN Architecture

Commonly, a CNN is built using a chain of convolutional blocks (a convolutional
layer followed by a pooling layer) that eventually connects to a fully connected layer
(also known as dense layer) which is then connected to a another fully connected
layer or the output node(s). The feature map that connects to the fully connected
layer usually needs to be flattened (reshaped form matrix to vector) first. Since
the last part of the CNN is essentially an MLP, the output is the same.

As you go deeper into the network, the number of kernels in the convolutional
layers usually increase exponentially, resulting in a rapidly increasing number of
channels in the image data. This is why pooling is very important: without
pooling, it would be very computationally expensive to use a CNN when a very
high number of kernels would need to process a very large input. With pooling, the
amount of processable data decreases exponentially, while the number of kernels
increases exponentially, keeping the computational requirements in balance.

Conceptually, it is still quite similar to the MLP and most stated hyperpa-
rameters still apply. The main difference between the MLP and the CNN is that
most hidden layers are convolutional layers instead of fully connected layers [14].
A rough illustration of a CNN is shown in Figure 2.11.
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Figure 2.11: A CNN. The image data progressively shrinks in width
and height, showing the down-sampling effect of the pooling.
It simultaneously expands in depth, which is a visualization for
the increasing number of channels.

2.7.5 The Kernels

To reiterate, the kernels consist of trainable parameters. Thus, the goal of training
a CNN is to set the values in the kernels and the biases to some combination that
minimizes the loss function when tested on the validation set. The training process
here is the same as that of the MLP.

A trained CNN usually detects low-level features in the early layers such as
edges and lines and higher level features in the later layers, such as entire objects
[14]. This is a result of the parameters in the kernels, since the kernels control
what the output of each layer will be.

2.7.6 Additional Hyperparameters in a CNN

In addition to the hyperparameters that are used in the MLP, some new hyper-
parameters need to be set in order to structure the new layers introduced in a
CNN.

Kernel size

Kernel size, like the name suggests, controls the dimensionality of the kernels. It
is most common to use odd, squared kernels (n x m, n = m, n ∈ {1, 3, 5, 7...}) but
this is not a requirement [39]. These kernels have a useful property: being able
to look at a center pixel and take some pixels surrounding it into account. The
kernels may vary in size between layers. Using smaller kernel sizes makes for a
lower number of trainable weights per kernel, which in turn might make a deeper,
more complex network computationally feasible for some task, which might yield
a higher performance than a simpler network with larger kernels [39].

Number of Kernels

Adding more kernels adds more weights to the CNN. This may increase the per-
formance of the network at the cost of slower training and predictions.
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Stride

The stride controls how many points the kernel will move with each step when
processing input data [14]. With stride = 1, most pixels will be processed, only
potentially missing some in the edges of the input. With a higher stride, the
kernels will skip some pixels and the convolutional layer will serve as a down-
sampling layer. The stride affects the kernels movement in all dimensions. This is
displayed in Figure 2.12.

Padding

Padding can be used to prevent the edge pixels from being skipped, avoiding the
small downsampling of the convolutional layer in the process. Padding is usually
done by surrounding the input data with additional points of 0s, so that the kernel
can "fit in" and process the input’s edge pixels as center pixels in the kernel [14].
This too is displayed in Figure 2.12.

Figure 2.12: Input data being processed by a kernel with kernel
size = 3x3, stride = 2 and padding = 1. Padding makes it so
that the edges are processed and stride makes it so that many
points are skipped, resulting in a down-sampled output. The
numbers "1" and "2" in the input refer to the order that pixels
are processed in (i.e. not the actual values). In the output, "1"
refers to the result of the first convolution and "2" refers to the
result of the second convolution.
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Pooling Specifications

The choice of pooling technique in the pooling layers and the size of the pooling
windows are hyperparameters that need to be set. A larger pooling window leads
to more aggressive down-sampling. This can speed up the network but may lead
to lower performance due to the loss of information in each layer.

2.8 Fully Convolutional Networks (FCN)

The fully convolutional network (FCN) is an architecture that obtained great
results in semantic segmentation tasks [40].

2.8.1 FCN Architecture

The FCN is very similar to the CNN but does not end with fully connected layers
[40]. Instead, the chain of convolutional blocks is followed by an up-sampling block
(which is also built from convolutional layers) that returns the data to the shape
of the original input. The output of the FCN is therefore very different from the
CNN, though both are classifiers. Where the CNN outputs a predicted label for
what the input image represents, the FCN instead outputs an image where each
pixel is given a label, giving an image that outlines objects of interest instead of
the original color [40].

The name of the FCN refers to the fact that it consists exclusively of convo-
lutional layers (and their companions, the pooling layers). For more information
regarding the FCN’s background and properties, see the original paper [40]. An
example of an FCN is shown in Figure 2.13.

Figure 2.13: A rough illustration of an arbitrary FCN, using trans-
pose convolution for up-sampling.

2.8.2 Up-Sampling with Transpose Convolution

There are several techniques for performing the up-sampling step [41]. One way is
to apply a transpose convolution. This is an operation that is very similar to the
convolution applied in convolutional layers. It takes an input and slides a kernel of
some size, using some stride, applying the transpose convolution. Instead of taking
the sum of the element-wise multiplications for the matrices, transpose convolution
instead takes one value from the input, multiplies it with all values in the kernel
and passes on all products to the output. Given a kernel that is larger than 1 x 1,
the output matrix will be larger than the input, meaning that the input has been
up-sampled. If a low stride is used, the matrix co-ordinates of some transpose



Deep Learning Background 33

convolutions will overlap. These are simply added to each other, so that some
parts of the output matrix is the sum of several transpose convolutions. With a
higher stride, the output matrix becomes larger, resulting in a more aggressive
up-sampling.

Transpose convolutional layers are built the same way as standard convolu-
tional layers but apply this operation instead of the usual convolution. The kernels
in these layers consist of trainable parameters, too. An example of a transpose
convolutional layer is shown in Figure 2.14.

Figure 2.14: A transpose convolutional layer with an input feature
map of size 2x2, using a 2x2 kernel. With stride = 1, the
resulting output is of size 3x3.

2.9 The U-Net

The U-Net is an extension of the FCN that was proposed for image segmentation
in biomedical contexts in 2015 [1]. Years later, it is still a very prominent archi-
tecture, being widely used in this field [42]. Reasons for this include generally
good performance [42] as well as an ability to learn complex segmentation tasks
from relatively small datasets [1]. Since labeled data is often hard to come by in
biomedical contexts, this ability has proven to be especially useful. The U-Net
served as the primary deep learning tool used in this project.

2.9.1 U-Net Architecture

The U-Net gets its name from its symmetrical U-shaped architecture. It is essen-
tially an FCN using transpose convolution for up-sampling but with some special
properties [1].

First, the down-sampling part consists of blocks of paired convolutional layers
followed by a max-pooling layer [1]. The max-pooling is with a 2x2 kernel using
stride = 2, making it so that the shape of the output of the convolutional block is
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halved in both height and width. After each down-sampling step, the number of
kernels in the following convolutional block is twice the number of kernels in the
previous convolutional block [1].

At the end of the down-sampling, the up-sampling begins [1]. The up-sampling
part also consists of convolutional blocks, but instead of being two chained convo-
lutional layers followed by a max-pooling layer, these up-sampling blocks consist
of a transpose convolutional layer for up-sampling, followed by two chained convo-
lutional layers. In the up-sampling step, the number of kernels is halved, keeping
the ratio between the feature maps and number of kernels consistent [1].

The number of up-sampling blocks is equal to the number of down-sampling
blocks [1]. This symmetry yields an opportunity that is utilized in the U-Net. The
feature maps from each down-sampling block (i.e the output of the second convo-
lutional layer in the block) is saved before it is down-sampled through max-pooling
and passed onto the next block. They are then concatenated to the transpose con-
volution in the corresponding up-sampling block (i.e. the transpose convolutional
layer where the network up-samples the data to the resolution that is equal to
the resolution that this convolutional block outputs) to give more context to the
up-sampling and assist in reconstructing the image. In other words, the output
of the first down-sampling block is added to the input of the last up-sampling
block, the output of the second down-sampling block is added to the input of the
second-to-last up-sampling block, and so on [1]. This architecture is shown in
Figure 2.15.

Figure 2.15: The U-Net, showing its U-shaped architecture that
gave rise to the name. The grey arrows mark the concatenation
links, where a down-sampling block’s output is concatenated to
its corresponding up-sampling block’s input. This figure has
been heavily inspired by the illustration in the original U-Net
paper [1].
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2.10 Evaluation

2.10.1 Evaluating a Deep Learning Model

Evaluation is usually done by testing the model on the test set, which consists of
labeled data that the model has not seen at all during the training [14]. The output
from each input in the test set is recorded and compared to the known labels. Then,
by finding the numbers of true positives, true negatives, false positives and false
negatives, values for some evaluation metrics (sometimes referred to as scores) can
be computed [14].

2.10.2 Evaluation Metrics

These common evaluation metrics are used for many ML applications [14]. In the
case of binary classification where the classes are y ∈ 0, 1, the classification results
behave like this, as displayed in the confusion matrix in Figure 2.16:

• True Positive (TP): The model predicted ŷ = 1 where the ground truth was
y = 1.

• True Negative (TN): The model predicted ŷ = 0 where the ground truth
was y = 0.

• False Positive (FP): The model predicted ŷ = 1 where the ground truth was
y = 0.

• False Negative (FN): The model predicted ŷ = 0 where the ground truth
was y = 1.

For image segmentation tasks, this is commonly done on a pixel level (i.e. does
a pixel belong to an object of interest or not). When these are found for all data
in the test set, they can be compiled into some metrics. In the equations, the
abbreviations (TP, TN, FP, FN) will refer to total numbers that were found after
evaluating the models on the test set (e.g. TP will refer to the number of TPs
found).

Precision

Precision =
TP

TP + FP
(2.28)

Precision is in the range of [0, 1] and penalizes false positives [14]. If there are
no false positives, any amount of true positives will yield the ideal value of 1. If
no true positives are found, the precision will be 0. The precision metric does not
take any negatives into account. An overly careful classification that only classifies
very few points as positives (resulting in large amounts of false negatives) may still
find a very high or even perfect precision.
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Figure 2.16: A confusion matrix for binary classification, showing
the relationship between predictions and ground truth in terms
of TP, TN, FP and FN.

Recall

Recall =
TP

TP + FN
(2.29)

Recall is a complement to precision, is also in the range of [0, 1] and penal-
izes false negatives [14]. A similar issue exists with recall: if you simply classify
everything as positive, the recall will have the ideal value of 1. therefore, while
precision and recall can be valuable metrics, they are not useful on their own.

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(2.30)

Accuracy is simply a metric that gives the fraction of correct classifications in
the range [0, 1] [14]. If 80% of the classifications were correct, the accuracy will be
0.8. This is a helpful metric since it looks at everything, but does not account for
the class frequency. For example, if the "negative" class is much more common
than the "positive", one can get a very high accuracy by classifying everything as
negative.

F1 and Dice

F1 = 2
Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(2.31)
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The F1-score is the harmonic mean of the precision and the recall, acting as
a metric that combines the two [14]. In binary contexts, this the same as that of
the Dice Coefficient and is a very common metric for evaluating biomedical image
segmentation results [43].

Jaccard Coefficient/Intersection over Union (IoU)

IoU =
TP

TP + FN + FP
(2.32)

The Jaccard coefficient, also referred to as intersection over union (IoU) is a
metric that is mostly used for evaluating object detection and image segmentation
solutions [43]. The metric compares the similarity of two sets A and B by comput-
ing A∩B

A∪B . Here, the metric is the division of the intersection between the predicted
positives and the ground truth positives by the union of the predicted positives
and the ground truth positives. This is illustrated in Figure 2.17. This metric
can be helpful in making sure that the predicted shape of an object of interest is
similar to the ground truth. IoU, like the Dice Coefficient, is commonly used in
biomedical image segmentation contexts [43].
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Figure 2.17: An illustration of the Jaccard coefficient (IoU) in an
object detection context: the intersection (TP, the yellow area
in the numerator) of the ground truth object area and the pre-
dicted object area, divided by the union (TP + FN + FP, the
yellow area in the denominator) of the ground truth object area
and the predicted object area.



Chapter 3
Data Background: Microscopy and Image

Analysis

This Chapter will explain what kind of data was used in this project and give some
insight in how said data can be processed.

3.1 Data Generation

The data used in this project derives from human cells cultured in laboratory
conditions and imaged using two different microscopy techniques: phase contrast
microscopy and fluorescence microscopy.

3.1.1 Cell culture

Cell lines

Cells used in this project are from so-called cell lines, meaning cells that grow and
divide without limit as long as nutrients are available, and therefore can easily be
kept in culture in the laboratory. Cell lines can be derived from a number of body
cell types, such as cells from skin, connective tissue, and various organs, and are
commonly used as experimental models. Cell lines can differ a lot in shape and
appearance, which motivates testing our methods on multiple cell lines.

Nuclei

The nucleus is a part of the cell that stores the vast majority of the DNA [6]. Since
each cell has one nucleus, segmenting the nuclei can be done instead of segmenting
entire cells for the purpose of cell counting and tracking.

3.1.2 Phase-Contrast Microscopy

Phase-contrast microscopy is an old technique from the early 1930s that records
phase-shifts in light that passes through some medium and translates it to bright-
ness variations in an image. When the light travels through the cells, there is a
slight phase-shift, resulting in some brightness shift in the image [8]. An example
of an image generated through phase-contrast microscopy is shown in Figure 3.1.

39
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Note that the raw image is accompanied by an enhanced version of itself that has
been manually processed for displaying purposes.

(a)

(b)

Figure 3.1: A randomly selected phase-contrast image from our
data. In this image, cells from the BJ-TERT cell line are shown.
(a): The raw image. (b): The same as in (a), but manually
enhanced for display purposes.
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Phase-contrast images can be difficult to analyze and segmenting individual
cells in this kind of images has proven to be a very difficult task [44].

3.1.3 Fluorescence Microscopy

Fluorescence microscopy is a microscopy technique that utilizes fluorescent stains
to make some cellular features more visible [6]. These are compounds that, when
subject to light of some wavelength, will emit light in a different wavelength. The
microscope can filter out the light of different wavelengths, focusing on the light
that is emitted by the compound, and produce an image that consists of the
intensities of the emitted light alone. Some of these compounds are molecules that
bind to DNA. Since DNA is for the most part concentrated to the nuclei of cells,
these compounds can be used to display nuclei in microscopy images much more
clearly than what phase-contrast microscopy does. These compounds are often
referred to as nuclear dyes or nuclear stains because of this [6].

To show the power of this, Figure 3.2 displays the same cells as Figure 3.1
(images taken at the same place, at the same time-point) when using fluorescence
microscopy instead of phase contrast.

Figure 3.2: An image generated using fluorescence microscopy. The
image has been manually enhanced for visibility. The small,
bright "blobs" mark the nuclei of the cells.

While fluorescence microscopy solves a lot of problems for processing and seg-
mentation purposes, fluorescence microscopy comes with a huge flaw. The high
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intensity light exposure and the nuclear stains themselves are toxic to the cells,
causing cells to behave differently and possibly die [7]. Because of this, fluores-
cence microscopy is not viable for live-cell imaging when performing experiments
on cells for long time lapses.

3.2 Data Processing

Before analyzing images, it is common to do some pre-processing to make the image
data easier to analyze. This can be done for several purposes, such as removing
noise, enhancing contrasts or transforming the image data to some desired format.

Images from fluorescence microscopy can be very dark, and might therefore
need some sort of processing before any meaningful information can be extracted
from them.

3.2.1 Image Histograms

An image histogram plots the distribution of light intensities in an image. In other
words, it shows how many pixels belong to each possible light intensity, limited
by the bit-depth of the image. In microscopy images, these histograms are often
very concentrated around a certain point, as shown in Figure 3.3. Contrast can be
enhanced by normalizing the pixel values. An issue with histogram equalization is
that if the image has some areas that are significantly darker or lighter than most
other areas, they may not be enhanced in a desirable way. To deal with this, local
contrast enhance algorithms have been proposed.

Phase-Contrast Fluorescence

Figure 3.3: Phase-contrast (left) and fluorescence (right) mi-
croscopy images along with their corresponding image his-
tograms.
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3.2.2 Adaptive Histogram Equalization (AHE)

AHE is an algorithm that attempts to enhance contrasts in the image by looking
at different sections of the image and computing histograms for each section. The
histograms are then equalized independently, enhancing contrasts in areas of the
image independent of each other [45]. This limits the effect that high-intensity
outliers have on the overall histogram equalization but may also amplify noise
significantly in parts where the regional histogram is very concentrated (i.e. ho-
mogeneous parts where most pixels have the same value).

3.2.3 Contrast-Limited Adaptive Histogram Equalization (CLAHE)

Like the name suggests, CLAHE is a version of AHE that limits the contrast ampli-
fication [46]. This is done to counter the noise enhancement that AHE sometimes
provides. CLAHE has been proven to produce good results on medical images and
has therefore been used for contrant enhancement in bioinformatics [46].

3.2.4 Thresholding

Thresholding is a very simple segmentation technique that makes an image binary
[47]. This is typically done by setting some threshold T , where every pixel whose
light intensity is above T gets assigned the value 1 (or 255 in the case of an
8-bit image) and every pixel whose light intensity is below T get assigned the
value 0, thus making the image consist solely of two different values. This can be
useful when segmenting an image, but global thresholding techniques may yield
insufficient results due to intensity variations in the image. Setting T too high will
include noise in the segmentation, setting T too low might exclude noise but also
some of your objects of interest [47].

Local thresholding, similar to adaptive histogram equalization, attempts to
solve issues that arise when processing entire images at once by splitting it into
smaller regions and processing them independently.

3.2.5 Otsu’s Method

This is an overview of Otsu’s method, for more details, see the original paper [47].
Otsu’s method is a thresholding algorithm that can be used on a global or local
scale. It looks for an optimal threshold T by minimizing the intra-class variance
σ2
w(T ). This variance is defined as a weighted sum of the intra-class variances in

each class. For a given threshold T, if N0(T ) is the amount of pixels in the 0-class,
N1(T ) is the amount of pixels in the 1-class and Ntot is the total amount of pixels,
the weights ω0 and ω1 are defined as [47]:

ω0(T ) =
N0(T )

Ntot

ω1(T ) =
N1(T )

Ntot

(3.1)

Then, the intra-class variance σ2
w(T ) is defined as [47]:
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σ2
w(T ) = ω0(T )σ

2
0(T ) + ω1(T )σ

2
1(T ) (3.2)

Where σ2
0 and σ2

1 are the intra-class variances for the 0-class and the 1-class
respectively.

The algorithm tests all different thresholds T = 1, 2, ..., Tmax. Since the
amount of pixels belonging to each class and the mean intensity of each class
changes with each value for T , the weights and means will need to be computed
for each value for T [47]:

µ0(T ) =

∑T−1
k=0 kp(k)

ω0(T )

µ1(T ) =

∑L−1
k=T kp(k)

ω1(T )

(3.3)

Where p(k) is the amount of pixels with intensity k divided by the total amount
of pixels Ntot. Using these values for each T , inter-class variance σ2

b (T ) can be
computed for each T [47]:

σ2
b (T ) = ω0(T )ω1(T )(µ0 − µ1)

2 (3.4)

Maximizing the inter-class variance σ2
b (T ) is equivalent to minimizing σ2

w(T )
[47]. Therefore, the algorithm computes σ2

w(T ) for all values of T and finds the
T that yields the highest value for σ2

b (T ). This value for T is then used for the
thresholding.

A cell image, processed using Otsu thresolding, is displayed in Figure 3.4.

Base image Global Otsu Local Otsu

Figure 3.4: A cell image from fluorescence microscopy, processed
using global and local Otsu segmentation.

3.3 Data Processing for Machine Learning

In this section, some concepts are brought up that are explained in Chapter 2.

3.3.1 Binary Image Masks

A thresholded, binary image can be used as an image mask. A binary image mask
refers to something that defines a region of interest in an image. Images like these
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can be very useful when training a machine learning model for image segmentation
tasks (more in Chapter 2), as they can serve as labels for raw image data.

3.3.2 Data Augmentation and Synthetic Data

Data augmentation is the process of creating synthetic data from real data. For
images, this can be achieved by modifying the images in some way. In this project
we have resorted to using simple augmentation techniques, such as the following
transformations:

Height and Width Shifts

Shifts can be applied to an image matrix A of dimensions m x n by applying a
transformation through a shift matrix S. Shift matrices are modified diagonal
matrices, consisting of ones on some diagonal (not the main diagonal) and zeroes
elsewhere, such as the subdiagonal matrix Sl of dimension m x n:

Sl =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

 (3.5)

A vertically shifted matrix Avs can be obtained by using the transformation
SlA:

SlA =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0




a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n

...
...

. . .
...

...
am−1,0 am−1,2 . . . am−1,n−1 am−1,n

am,0 am,2 . . . am,n−1 am,n



Avs = SlA =


0 0 . . . 0 0

a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n

...
...

. . .
...

...
am−1,0 am−1,2 . . . am−1,n−1 am−1,n



(3.6)

Likewise, a horizontally shifted matrix Ahs can be obtained by using the trans-
form ASl:
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ASl =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0




a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n

...
...

. . .
...

...
am−1,0 am−1,2 . . . am−1,n−1 am−1,n

am,0 am,2 . . . am,n−1 am,n



Ahs = ASl =


a1,2 . . . a1,n−1 a1,n 0
a2,2 . . . a2,n−1 a2,n 0

...
...

. . .
...

...
am−1,2 . . . am−1,n−1 am−1,n 0
am,2 . . . am,n−1 am,n 0



(3.7)

The extent of the shifts can be adjusted by changing which diagonal is filled
with ones in S. By transforming with the transpose S⊤ instead, the shift will be
done in the opposite direction. The shift transformation leaves the resulting matrix
with blank space (zeroes). This can be handled in different ways and one such
way will be described in this section. Vertical and horizontal shifts are displayed
in Figure 3.5.

Base image Vertical Shift Horizontal Shift

Figure 3.5: A binary image mask, accompanied by vertically and
horizontally shifted versions of itself.

Vertical and Horizontal Flips

Flipping an image matrix A is done by reversing the order of rows (vertical flip) or
columns (horizontal flip). This can be achieved by using a linear transformation,
multiplying A with a row-reversed identity matrix Ir:

Ir =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 (3.8)

The vertically flipped image matrix AV is found using the transformation IrA:
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IrA =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0




a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n

...
...

. . .
...

...
am−1,0 am−1,2 . . . am−1,n−1 am−1,n

am,0 am,2 . . . am,n−1 am,n



AV = IrA =


am,0 am,2 . . . am,n−1 am,n

am−1,0 am−1,2 . . . am−1,n−1 am−1,n

...
...

. . .
...

...
a2,1 a2,2 . . . a2,n−1 a2,n
a1,1 a1,2 . . . a1,n−1 a1,n



(3.9)

Similarly, the horizontally flipped image matrix AH is found using the trans-
formation AIr:

AIr =


a1,1 a1,2 . . . a1,n−1 a1,n
a2,1 a2,2 . . . a2,n−1 a2,n

...
...

. . .
...

...
am−1,0 am−1,2 . . . am−1,n−1 am−1,n

am,0 am,2 . . . am,n−1 am,n




0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0



AH = AIr =


a1,n a1,n−1 . . . a1,2 a1,1
a2,n a2,n−1 . . . a2,2 a2,1

...
...

. . .
...

...
am−1,n am−1,n−1 . . . am−1,2 am−1,1

am,n am,n−1 . . . am,2 am,1



(3.10)

A binary image, along with its vertically and horizontally flipped versions, are
displayed in Figure 3.6.

Base image Vertical Flip Horizontal Flip

Figure 3.6: A binary image mask, accompanied by vertically and
horizontally flipped versions of itself.
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Rotation

Rotation can be done by multiplying each point p in the image matrix with a
rotation matrix R. If the center of the image is viewed as the origin, the image
can be rotated θ degrees counterclockwise in-place using this transform:

[
a′

b′

]
= Rp =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
a
b

]
(3.11)

This makes (a′, b′) the new coordinates for the pixel at (a, b). Just like shifts,
this operation can leave blank spaces in the resulting image matrix. A rotation
example is shown in Figure 3.7.

Base image Rotated Rotated

Figure 3.7: A binary image mask, accompanied by rotated versions
of itself.

Shearing

Shearing can be done, like rotation, by multiplying each point p in an image

matrix with a matrix. Shear matrices are commonly in the form of S =

[
1 k
0 1

]
for horizontal shears or S =

[
1 0
k 1

]
for vertical shears. So, the new coordinates

(a′, b′) for a pixel at coordinates (a, b) after a shear becomes (for a horizontal
shear):

[
a′

b′

]
= Sp =

[
1 k
0 1

] [
a
b

]
(3.12)

This also leaves blank spaces. Examples of vertical and horizontal shears are
displayed in Figure 3.8.



Data Background: Microscopy and Image Analysis 49

Base image Shear Shear

Figure 3.8: A binary image mask, accompanied by two randomly
sheared images.

Dealing with Blank Spaces: Reflection

One way to deal with the blank spaces that can be left behind by augmentations
is by using reflection, i.e. letting the blank space be filled with a reflection of the
part of the image that leads to the edge. This can be useful when having images
that contain multiple small objects of interest since they will rarely get distorted.
When augmenting images such as photographs, reflection might not be desired
since objects near the edges will appear in ways they will never appear in real
data. Reflection is shown in Figure 3.9.

Base image Shift and Reflect Rotate and Reflect

Figure 3.9: A binary image mask, accompanied by a shifted and
a rotated image where the blank spaces have been filled using
reflection.

3.3.3 Applying Data Augmentation in Training

With data augmentation, one can expand their dataset which may improve training
results. This may also serve as a sort of regularization [48]. Data augmentation
can be applied to a dataset before training or during training. When used before
training, a fixed amount of randomly generated augmentations are usually applied
to the training set, expanding it. When used during training, a random mix of
augmentations can be applied every time an entry is being processed. Examples
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of augmented images (with a random combination of augmentations) are shown
in Figure 3.10.

Base Image Augmented Image Augmented Image

Figure 3.10: Augmented training data samples. The leftmost col-
umn shows a phase-contrast image with its corresponding binary
image label without any augmentation applied. The following
columns show two image pairs where two different, randomly se-
lected combinations of augmentations (here: shift, shear, flips,
rotation and filling leftover space with reflections) have been
applied to the base images. Note that the both images in each
pair has the same combination of augmentations to them. The
phase-contrast images have been manually enhanced for visibil-
ity.



Chapter 4
Software and External Resources

In this chapter, I will explain background and details about the technical imple-
mentation tools that were used in the project.

4.1 Python

Most of the code that was written for this project, including all deep learning
algorithms, was done so in Python (version 3.10.6). Python has become the most
widely used programming language for ML and Data Science [49] due to its power-
ful yet accessible nature. Because of its popularity, several frameworks have been
developed to make programming complex ML models a much more accessible task.

4.1.1 Tensorflow and Keras

For the deep learning implementation, I used Tensorflow (version 2.10.0) and Keras
(version 2.10.0). Tensorflow is an open source ML library developed by Google
[50] and Keras is an open source framework that was built upon Tensorflow for
deep learning implementations [51]. To utilize Nvidia GPUs for training, I used
CUDA (version 11.2), Nvidia’s toolkit for building GPU-accelerated applications
[52].

4.1.2 Anaconda

For package management, I used Anaconda (version 22.9.0), the most widely used
Python distribution [53]. Packages were installed using conda-forge, a community-
driven collection of repositories for Anaconda [54].

4.2 Fiji and ImageJ

Some image processing was done using Fiji (version 2.9.0): a distribution of the
open-source image processing software ImageJ, focused on biological image anal-
ysis [55]. ImageJ is developed at the National Institution of Health (NIH). The
software has been a foundation for image analysis in biological imaging for many
years and continues to develop through community collaborations. It is scriptable
and can be used for programming automatic image processing pipelines [56].
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4.3 CellProfiler

Other image processing was done using CellProfiler [57]. CellProfiler is an open-
source cell image analysis software that was developed at the Broad Institute of
MIT and Harvard. It supports building custom pipelines for processing cell images
and extracting data.

4.4 C3SE Alvis (NAISS)

The computation cluster Alvis was used to train the deep learning models in this
project. The hardware (primarily GPUs) used to train the models in this project
was all part of the Alvis cluster and accessed remotely. Alvis is dedicated to AI
and ML research and is a part of Chalmers Center for Computational Science and
Engineering (C3SE), a centre for scientific and technical computing at Chalmers
University of Technology. Alvis is also a part of the National Academic Infrastruc-
ture for Supercomputing in Sweden (NAISS). [58].



Chapter 5
Methodology

This chapter will describe the methods that we used, from generating data to
applying trained deep learning models to identify nuclei. The general method as
well as experimental specifics will be included here. Specific cell lines will be in-
troduced and a deep understanding of what they are might be outside the scope of
this thesis. As a reader, it is only important to understand that cells from different
cell lines are morphologically different and may have some unique traits. The code
that we wrote for training, evaluating and using our deep learning models can be
accessed at https://github.com/Nilsson-Lab-KI/cell_identification.

5.1 The Pipeline

To achieve automatic cell identification and apply it for high content experimental
data, the general pipeline was this:

1. Obtain raw data from phase-contrast and fluorescence microscopy (Section
3.1.1).

2. Process the fluorescence images and convert them into binary images.

3. Build datasets, using raw phase contrast images as X and the binary images
as the labels Y .

4. Train a U-Net (Section 2.9) for nucleus identification using these datasets.

5. Use the trained U-Net to predict nucleus locations in phase-contrast time-
lapses.

6. Application: count the nuclei in the predictions for cell counting, apply cell
tracking algorithms for cell tracking.

An overview of this is shown in Figure 5.1. The following sections will go into
detail for how the first five steps were done in this project. Since the last step is
more of an application of our project it will not be discussed here. However, since
it was very interesting for us, we explored possibilities for cell tracking. What we
found regarding cell-tracking can be found in the future work Section 8.1.
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Figure 5.1: Method overview, from acquiring the data to extracting
data from U-Net-predicted nuclei with a phase-contrast time-
lapse as input. Python, CellProfiler, Fiji and Alvis logos are
taken from their respective websites.

5.2 Making Training Datasets

The datasets that were used in this project were made in-house using live-cell
imaging microscopy techniques. All datasets consisted of entries of labeled phase-
contrast microscopy images, which were made of phase-contrast images (X) that
were accompanied labels in the shape of binary image masks (Y ) that marked
the positions of the nuclei. An example is shown in Figure 5.2. This section will
explain how these were made.

Phase-Contrast Label

Figure 5.2: A phase-contrast image (left) and its assigned label
(right), the kind of labeled data that our datasets consisted of.
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5.2.1 In-House Microscopy

Experiments were performed by monitoring live, cultured cells. For the sake of
generating training data, a nuclear dye was used, enabling the use of fluorescence
microscopy. At certain time points, images were saved using both phase-contrast
(Section 3.1.2) and fluorescence (Section 3.1.3), giving two versions of each cell
image. Since a nuclear dye was used in the fluorescence microscopy, these images
mainly showed nuclei. Specific information regarding these cell experiments is
explained in Section 5.6.

In the cell experiments, cultured cells were left to grow in separate containers
called wells. Each well was part of a n x n grid that split the wells into n2 tiles as
shown in Figure 5.3. Cells could not exit their wells but could freely move between
tiles. The microscope imaged each tile separately, resulting in one image per tile,
per well, per time-point.

Figure 5.3: A rough illustration of a cell experiment structure for
microscopy, consisting of cells in 3 wells where each well is split
into 25 separate tiles.

5.2.2 Data Specifications

The images from phase-contrast microscopy were saved as 1408x1040-sized 8-
bit grey-scale .tiff files. The images from fluorescence microscopy were saved
as 1408x1040-sized 32-bit .tiff files. These images were cropped into 4 different
512x512 images. To ensure that we still had image-pairs that were suitable as
training data, the crops were always taken at the same locations in the phase-
contrast images as the fluorescence images.

5.2.3 Data Processing Pipeline

The fluorescence images were processed in two steps: preparation and segmenta-
tion. The steps of this process are illustrated in Figure 5.4.

Fluorescence Image Preparation

The preparation step was made by applying CLAHE (Section 3.2.3) to the cropped
images using a script that we made for the ImageJ software. CLAHE was ap-
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plied using a block size of 127, 256 histogram bins and a maximum slope of 3.0.
This simple approach was chosen after trying various, more complex pipelines and
finding that they did not adapt well to the light-intensity variation found in the
fluorescence images. Since we wanted a script that could process all of our data,
an approach that yielded great results on some of the data but bad results on the
rest could not be used. Thus we opted to just using CLAHE.

Fluorescence Image Segmentation

In the segmentation step, we wanted to convert the prepared fluorescence images
into binary images that we could use as labels for the training data. Starting
off, we attempted to build a macro in ImageJ to do this using a mix of filters
and thresholding techniques. After getting unsatisfactory results, we instead built
a custom pipeline in the CellProfiler software which thresholded the images and
captured the nuclei using the IdentifyPrimaryObjects module. We customized
this module with the following parameters (if a parameter is not listed, default
values were used):

• Typical diameter (pixels): 5-30

• Discard objects outside the diameter range: Yes

• Thresholding strategy/method: Adaptive (Local) Otsu (Section 3.2.5)

– Bounds on threshold: 0.05-1.0
– Size of adaptive window (pixels): 20x20

Just like in the preparation step, we wanted to create a robust, flexible pipeline
that could yield good results for all our data, rather than perfect on some and
terrible on the rest.

Raw Cropped
Fluorescence Image Processed (CLAHE) Segmented

(CellProfiler)

Figure 5.4: Illustration of the steps that were taken (from left to
right) for converting raw fluorescence images into binary image
masks that could be used as labels. First, a crop from a raw
fluorescence image which is very dark. Then, after applying
CLAHE, many nuclei are clearly visible, but some noise is am-
plified too. Finally, after segmenting the processed image with
CellProfiler, the image is converted into a binary image.
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5.2.4 From Processed Data to Training Data

Some fluorescence image had strange properties (stemming from e.g. noise, the
microscope being out of focus, artifacts from humidity or nuclei that did not
respond to the dye) which could lead to extreme cases where the fluorescence image
processing pipeline could have unexpected output. Some of the resulting labels
could consist of a large amount of segmented noise and some could be completely
devoid of segmented nuclei. To deal with this, we applied an automatic filtering
approach to the processed data. This filtering process removed a fixed part of
the dataset that consisted of labels that had a low amount of nuclei as well as
labels that had an unreasonably high amount of nuclei. The cutoff points were
computed for each dataset, but a reasonable starting point (initially found by
manually reviewing the datasets) seemed to be to remove the images in the lowest
25% in terms of nucleus-pixels and any images that had a number of nucleus-pixels
that was higher than the number of background pixels, since this was almost always
an effect of segmented noise. This was done to avoid including images that had
not been processed well by our data processing pipeline, as well as images of cells
that had not responded well to the nuclear dye, since such images could have a
negative impact on the training. Some examples of labels in entries that would be
filtered out automatically thanks to this are shown in Figure 5.5.

(a)

(b)

Figure 5.5: Extreme cases of unexpected behaviour by our image
processing pipeline and the reason why we applied automatic
filtering. (a): Processed fluorescence images. (b): Poorly seg-
mented labels, generated by applying our CellProfiler pipeline
to the images in (a).

To see the effects of this automatic filtering approach, we ran experiments
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with automatically filtered data as well as manually filtered data. The manually
filtered data was made by manually comparing each binary label in a dataset to its
fluorescence image source and discarding the image pair if the binary label had any
visible errors. When comparing the results of the two approaches, we did not find
any significant differences. Thus we opted to moving forward with automatically
filtered data.

5.3 Building the Deep Learning Models

We opted to using the U-Net (Section 2.9) as our deep learning model because of
its proven success in biomedical image segmentation tasks [42].

5.3.1 U-Net Implementation Specifics

For information regarding hyperparameters, see Section 2.3 and Section 2.7.6.
Most of the structural hyperparameters (kernel size, amount of kernels, activation
functions, weight initialization, padding, stride) were taken from the original U-
Net paper [1]. A low dropout of 0.05 was chosen across the network since the U-Net
exclusively consists of convolutional layers and may benefit from a low dropout
[34]. Binary focal cross-entropy (Section 2.6.2) was chosen as loss function due to
its proven performance in object detection [37]. Adam (Section 2.5.5) was chosen
as optimization algorithm due to its flexibility and robustness. A low batch size
was used because of technical limitations. Batch normalization (Section 2.2.10)
was applied for all convolutional layers

We tested different values for α but opted to using α = 1
2 (no explicit class

weighting) since the γ hyperparameter already applies class balancing in the sense
that it lowers the impact of easy background classifications on the loss function
[37]. A sample of this will be shown in the discussion Section 7.2.2.

Because we had access to a computational cluster, we used a very high epoch
ceiling (far higher than any of the models would need) and a very high patience,
reducing the risk of having the training terminate earlier than needed.

Because of time limitations and since original parameters worked well, we did
not explore hyperparameter setups to the fullest. The final hyperparameter setup
we used was:

• Convolutional layer specifics

– Kernel Size: 3x3 (for all hidden convolutional layers, the output con-
volutional layer used 1x1)

– Amount of kernels: 64 (starts at 64, doubles after each downsampling
step and halves again in each upsampling step)

– Activation function (hidden layers): ReLU
– Padding: 1
– Stride: 1
– Dropout: 0.05 (for all hidden convolutional layers)
– Weight initialization: He Normal
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• Pooling: 2x2 Max Pooling

• Activation function (output layer): Logistic (sigmoid)

• Loss function: Binary Focal Cross Entropy

– γ = 2

– α = 1
2

• Optimizer: Adam

– Learning rate: 2 · 10−4

– Rest default values.

• Batch size: 4

• Maximum amount of epochs: 3000

• Patience: 250 (reverting back to the best model)

5.3.2 Training Process

During the training, each data sample was augmented (Section 3.3.2) using a
random combination of rotation, width shifts, height shifts, shear, horizontal flips
and vertical flips. Blank space that was left behind by the augmentation was filled
with reflection of nearby pixels.

All U-Net models were trained on the Alvis cluster using a single Nvidia A100
GPU. Most models found their minimum validation loss within 400 epochs. With
the 250 epochs that were added by the patience, the training usually took between
5-15 hours depending on the dataset. Once trained, predictions took about 30ms
each on the same hardware.

5.4 Evaluating the U-Net Models

Evaluating the models became challenging since our automatic labeling pipeline
did not guarantee a ground truth. Simply comparing the U-Net’s output to the
labels was not sufficient to evaluate how well our models were doing. Furthermore,
since our main interest was identifying nuclei and we were less interested in their
exact shapes, a pixel-level evaluation would not be ideal. We therefore combined
three different evaluation approaches: standard pixel-level comparisons with the
labels, object-level comparisons with the labels to see which nuclei were captured
and a manual evaluation by experts where they compared the predicted nuclei
with the corresponding input phase-contrast images.

5.4.1 Evaluating on a Test Set: Pixel-Level

Here, we processed the test sets and compared the outputs to the labels, counting
each predicted pixel as a true positive, true negative, false positive or a false
negative. We then computed the average precision, recall, accuracy, Dice-score
and IoU.
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5.4.2 Evaluating on a Test Set: Object-Level

To compare the image masks y and ŷ on an object level, we implemented an
algorithm that followed these steps, shown in Figure 5.6. Here, ⊙ refers to the
Hadamard product (element-wise product).

1. Compute the overlap TP = y ⊙ ŷ to find the true positive pixels.

2. Find the connected components in y and ŷ and give each component a
unique number marker (i.e one component in each image consists of 1s, one
consists of 2s etc). Call these marked images yl and ŷl

3. Compute the matrix multiplications O1 = TP ⊙ yl and O2 = TP ⊙ ŷl. This
will give two nearly identical marked images of true positive components,
where the marking convention corresponds to those in yl and ŷl respectively.

4. Loop through the marks (the assigned numbers) in yl and ŷl. Count the
number of marks li that satisfy li ∈ yl ∧ li ̸∈ O1 and li ∈ ŷl ∧ li ̸∈ O2. Those
will be the number of false negative and false positive objects respectively.

y ŷ y ⊙ ŷ

(a)

FP FN Overlay

(b)

Figure 5.6: (a): From left to right: a binary label, a prediction
and their overlap y ⊙ ŷ (pixel-level true positives). (b) The
caught object-level false positives and false negatives, using the
algorithm stated above. The rightmost image is a color-coded
overlay of y and ŷ, where green represents true positive, black
represents true negative, red represents false positive and blue
represents false negative pixels, which can be used to verify the
left and center images. This overlay image can be used to verify
the FP and FN images.
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Note that because this algorithm compares objects, it does not compute any
amount of true negatives. Because of this, accuracy cannot be computed. These
values can however give an object-level approximation of precision, recall, Dice-
score and IoU.

5.4.3 Manual Expert Evaluation with Mask Overlays

Manual evaluation was done by overlaying predictions upon the corresponding
phase-contrast input images, as displayed in Figure 5.7. By comparing this image
with the original phase-contrast image, experts could identify false positives and
false negatives by manually analysing the image. To help with this, the origi-
nal fluorescence image was also included as a reference. Because this was a very
tedious, time-consuming process, we randomly selected small subsets of the test
sets consisting of 30 images for this. Figure 5.8 shows a phase-contrast image,
a phase-contrast image with a prediction overlaid upon it and a fluorescence im-
age together, which was the kind of data that the experts used to perform their
evaluation.

Figure 5.7: A prediction overlaid upon a phase-contrast image, like
those used for manual evaluation. Green pixels represent pre-
dicted nuclei. In other words, green pixels are pixels that are
white in the predicted binary segmentation image. For display
purposes, the underlying phase-contrast image has been en-
hanced manually.
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Phase-Contrast Overlay Fluorescence

Figure 5.8: From left to right: a phase-contrast image, a phase-
contrast image with predictions overlaid upon it and the corre-
sponding fluorescence image. As usual, the microscopy images
have been manually enhanced for display purposes.

5.5 Experiments

5.5.1 U-Net Models

Because of time limitations, we decided to focus on three datasets, each consisting
of microscopy images of cultured cells from a specific cell line. These cell lines were
BJ-RAS, BJ-TERT and BJ-SV40. The datasets consisted of around 1000 labeled
images each. For specific, biological information about the cell-lines themselves,
see Section 5.6, though this is outside the scope of this thesis. A few phase-contrast
images from the datasets are shown in Figure 5.9.

First, we trained models on each dataset independently, resulting in three
different classifiers that were trained to identify nuclei from a single cell line.
Then, we merged the three datasets into one, and trained an additional U-Net
model using data from all three cell lines. The performance of each of these
models were evaluated on their corresponding test sets and the "merged dataset
model" was evaluated on all three test sets.
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BJ-RAS BJ-TERT BJ-SV40

Figure 5.9: Phase-contrast images of BJ-RAS, BJ-TERT and BJ-
SV40 cultured cells, taken from our datasets. All images have
been processed manually for visibility.

5.6 Cell Experiment Specifics

This section contains specifics regarding the experiments that generated the data
for our datasets as well as information regarding the cell lines used in this project,
which may be outside the scope for this thesis. This is aimed at someone who is in-
terested in how the cell experiments were performed and requires higher knowledge
in the field of biological cell research than is expected of the reader.

5.6.1 Cell Lines

Three human fibroblast transformed cell lines (BJ) were used for live cell imag-
ing. BJs were transformed into a tumorigenic state by targeting three genes:
telomerase catalytic subunit (hTERT), SV40 large-T antigen (SV40), and H-Ras
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oncoprotein (RAS). The hTERT gene allows primary human cells to multiply in-
definitely. SV40 and RAS encode proteins responsible for the regulation of growth,
differentiation, and survival, making the BJ-SV40 and -RAS cell lines capable of
forming tumors when injected in mice [59].

5.6.2 Experiments

BJ-TERT, -SV40, and -RAS cell lines were grown in RPMI-1640 medium (31870074,
ThermoFisher) supplemented with 5% fetal bovine serum (16140071, ThermoFisher)
dialyzed using SnakeSkin Dialysis Tubing 3.5K MWCO (88244, ThermoFisher)
and penicillin/streptomycin (15140122, ThermoFisher). Cells were seeded into 6-
or 12-well cell culture plates (83.3920, SARSTEDT) and incubated for 24h to al-
low the cells to attach before acquiring live cell images. BioTracker™ 488 Green
Nuclear Dye (SCT120, MERCK) was used to stain the nuclei for ground truth
images. The BioTracker Dye (1000X) was diluted to a final concentration of 1X
in cell culture medium with or without verapamil and incubated for 15 mins at
37C. Images were acquired using an IncuCyte S3 Live-Cell Analysis Instrument
(SARTORIUS AG). In the methionine dropout time-lapse experiment, methionine
in the culture medium was replaced with homocysteine.
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Results

In this chapter, I will present results from the fluorescence processing pipeline and
trained U-Nets. Because our U-Net models were difficult to evaluate automatically
due to the lack of ground truth, the automatic evaluation results are not to be
taken as pure performance metrics. They are displayed to show how they correlate
to the results that were provided by manual evaluation, so that each evaluation
method can give us valuable information about the performance of our models.

6.1 Data Processing and Label Generation

6.1.1 Label Generation

A sample of fluorescence images from BJ-RAS, BJ-TERT and BJ-SV40 along with
their resulting binary image labels are displayed in Figure 6.1. Raw fluorescence
images are excluded since they are usually very dark and would just display as black
images. In 6.1.a, we can see that the fluorescence images can be hard to analyze
with the human eye, even after CLAHE has been applied. In the BJ-SV40 example,
the nuclei are barely visible. To actually see how well the fluorescence images were
transformed into the binary images that we used as labels, we often had to process
the images manually (by using image specific settings for manual image histogram
equalization, for example), resulting in images such as those in 6.1.b. The actual
segmentation that was found by applying our CellProfiler pipeline to the CLAHE-
treated fluorescence images in 6.1.a is shown in 6.1.c. These results are not perfect,
but since we had to resort to quite generalized methods that could be able to deal
with the variation that is found in the fluorescence images, errors were bound to
occur.

While many labels seemed to be accurate representations of the nucleus po-
sitions marked by the fluorescence images (such as those shown in Figure 6.1),
the images were sometimes poorly segmented by our image processing pipeline.
Though our automatic filtering dealt with many such cases, some less extreme
cases that still had significant defects remained in the datasets. Some such exam-
ples are shown in Figure 6.2.

In 6.2.a, the CLAHE-treated fluorescence images are shown. We can already
see some strange effects, such as the "wave-shapes" in the BJ-RAS example. This
is something that could occur when CLAHE was applied and is likely a result of the
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BJ-RAS BJ-TERT BJ-SV40

(a)

(b)

(c)

Figure 6.1: Fluorescence image samples of the three different cell
lines and the resulting binary image labels (from left to right):
RAS, TERT and SV40. (a): CLAHE processed fluorescence
images. (b): Manually enhanced images in (a), exclusively for
visibility in this thesis. (c): Binary image labels (output from
CellProfiler after processing the images in (a)).
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non-constant nature of the background, which could include varying intensities of
light from fluorescence or other random noise. Interestingly, by comparing it with
the generated labels in 6.2.b, these artifacts seemed to have little impact on the
segmentation provided by our CellProfiler pipeline. The clump at the bottom of
the BJ-RAS image has a lot of "leaking fluorescence" which could be difficult for a
thresholding algorithm such as Otsu’s method to deal with, but it seems to include
most nuclei without including much noise. The issues in the image are at the top,
where nothing immediately visible is happening. By looking closely, however, a
semi-circle-like shape of slightly increased brightness is present. A similar shape
is present in the label, showing that our CellProfiler pipeline is sensitive to some
kinds of background noise.

The BJ-TERT case is similar to the BJ-RAS case, but the BJ-SV40 case
shows no large amount of segmented noise, but is missing some nuclei. A quick
observation is that many nuclei are very similar to the background in terms of
light intensity here, which of course will make segmentation based on thresholding
difficult.

BJ-RAS BJ-TERT BJ-SV40

(a)

(b)

Figure 6.2: Examples of labels that have been poorly segmented
from fluorescence images. (a): Images from fluorescence mi-
croscopy. (b): Poorly segmented binary image masks from
our image processing pipeline, each showcasing major issues:
segmented fluorescence "leaks", segmented noise and large
amounts of missing nuclei.
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6.2 Trained U-Net Performance

In this section, performance results of trained U-Net models will be presented.
Sample images from each dataset are displayed in Figure 6.3. For consistency, the
same images as those shown in 6.1 are used. Figure 6.3 is a sort of brief summary
of our results, giving a quick glance of what the labels could look like and how the
classifiers could perform on the different cell lines.

Figure 6.3.a shows one phase-contrast test case from each cell line that we
trained models for and 6.3.b shows their assigned labels, made from their corre-
sponding fluorescence images. 6.3.c displays predictions that were made by ap-
plying our trained models to the phase-contrast test cases in 6.3.a. The colorful
images in 6.3.d are pixel-level comparisons between the labels in 6.3.b and the
predictions in 6.3.c, like done automatic evaluation. The color-coding is green for
true positive, red for false positive, black for true negative and blue for false nega-
tive. There is a lot of green present in the images, which shows a lot of promise for
our method. Some chunks of false positive/negative pixels are present (especially
in the BJ-SV40 example) and the exact shapes of the nuclei (across all examples)
were rarely perfectly identical (which is to be expected). In the subfigures in 6.3.e
we can see the predicted nuclei overlaid upon the input phase-contrast images (like
in the manual evaluation method described in Section 5.4.3) which adds context to
the predictions. The green pixels in these overlay images are the predicted nucleus
pixels (i.e. the white pixels in the predictions in 6.3.c). Although the phase-
contrast image is manually enhanced for visibility, it is still difficult to verify exact
nucleus positions in the phase-contrast images, especially in the BJ-TERT and
BJ-SV40 cells. For more visual representations of predictions, see appendix A,
where more test cases like those in 6.3.e are shown.

For each dataset, two classifiers were evaluated: one that was trained exclu-
sively on the corresponding dataset (referred to as pure) and one that was trained
on a mix of all three datasets (referred to as mixed). In the following tables, each
row contains values that were found through evaluation on a specific test set. For
example, the row of "Pure Classifiers: BJ-TERT" contains the evaluation results
that were obtained when testing the BJ-TERT-trained classifier on the BJ-TERT
test set. Similarly, the row of "Mixed Classifier: BJ-RAS" contains the evaluation
results that were obtained when testing the "mixed-cell-line"-trained classifier on
the BJ-RAS test set.

6.2.1 Automatic Evaluation: Pixel-Level

Results from the automatic, pixel-level evaluation are presented in Table 6.1.
These metrics were computed by comparing predictions to labels on a pixel-level.
When looking at the examples in Figure 6.3, these values seem lower than ex-
pected. The accuracy is generally high, but this is likely because of the high
representation of easily classified background pixels, boosting the accuracy value
with a large number of true negatives. Precision, dice and IoU are often much
lower than what would be expected when looking at the predictions. Recall is
consistently higher than prediction. An easy conclusion to make from this is that
false positives occur very frequently and while false negatives regularly appear,
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BJ-RAS BJ-TERT BJ-SV40

(a)

(b)

(c)

(d)

(e)

Figure 6.3: Cell images from the test sets of the three different
cell lines (from left to right): BJ-RAS, BJ-TERT and BJ-SV40.
(a): Manually enhanced phase-contrast images. (b): Binary
image labels for the phase-contrast images (output from Cell-
Profiler). (c): Predicted nuclei from the phase contrast images
(U-Net output). (d): Labels (b) overlapped with predictions
(c). Green pixels are true positives, blue pixels are false nega-
tives, red pixels are false positives. (e): Predictions (c) overlaid
upon the corresponding phase contrast images (a).
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they are not nearly as common.

Table 6.1: Evaluation results from automatic, pixel-level evaluation.
The three pure classifiers were tested on their respective test
sets and the mixed classifier was tested on all three.

Automatic Evaluation
Pixel-Level Precision Recall Accuracy Dice IoU

Pure Classifiers
BJ-RAS 0.685 0.915 0.972 0.780 0.641
BJ-TERT 0.729 0.875 0.980 0.794 0.660
BJ-SV40 0.638 0.889 0.973 0.738 0.587
Mixed Classifier
BJ-RAS 0.727 0.894 0.976 0.798 0.666
BJ-TERT 0.736 0.874 0.980 0.798 0.666
BJ-SV40 0.683 0.990 0.973 0.744 0.594

6.2.2 Automatic Evaluation: Object-Level

Results from the automatic, object-level evaluation is presented in Table 6.2. These
metrics were computed by comparing predictions to labels on an object-level (fo-
cusing on object positions rather than shapes), using the algorithm described in
Section 5.6. As stated previously, this method gave us no measure of true nega-
tives. Therefore, the accuracy metric is excluded.

The object-level scores in Table 6.2 tell an entirely different story compared
to the pixel-level ones in Table 6.1. They have much higher values and we find
significant increases in precision, dice and IoU. The recall is consistently over 0.98,
meaning that false negative objects are rare. Since object-level is generally more
interesting than pixel-level for our purposes (using predictions for cell counting
and tracking), this is a reassuring find. However, since both of these evaluation
methods are based on comparisons between predictions and labels, one may wonder
why the values are so different. This will be discussed in Section 7.2.1.
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Table 6.2: Evaluation results from automatic, object-level evalua-
tion, using the algorithm described in Section 5.6. The three
pure classifiers were tested on their respective test sets and the
mixed classifier was tested on all three.

Automatic Evaluation
Object-Level Precision Recall Dice IoU

Pure Classifiers
BJ-RAS 0.944 0.986 0.964 0.930
BJ-TERT 0.920 0.982 0.950 0.904
BJ-SV40 0.770 0.990 0.869 0.768
Mixed Classifier
BJ-RAS 0.949 0.983 0.966 0.934
BJ-TERT 0.927 0.980 0.953 0.910
BJ-SV40 0.775 0.992 0.870 0.770

6.2.3 Manual Evaluation

Results from the manual object-level evaluation by the two experts, using the
method explained in Section 5.4.3, are shown in Table 6.3 and Table 6.4. The test
sets for these evaluations were smaller, randomly selected subsets of the original
test sets, consisting of 30 images per dataset. Since both the pure and mixed
classifiers were evaluated, a total of 180 overlay images, some containing over 100
cells, were examined.

In the tables, the true positive (TP) counts are marked with an asterisk. This
is because the TP count is merely an approximation of the true TP count and
there are some things to keep in mind:

• We do not have a ground truth since we do not have a reliable way to count
the exact number of cells in an image.

• An object (connected component) in a prediction mask can be considered a
true positive unless it is marked as a false positive.

• A number of clumped cells that were connected in the prediction will be
considered a single object and therefore a single true positive, given that
the prediction is correct.

• Failed predictions (false positives/negatives) in clumps that were identified
were still counted as false positives/negatives.

• Clumped predictions may differ when comparing the predictions of the pure
and mixed classifiers. For example, a clump might be a single connected
component in one prediction but split into three connected components in
another. This can be a matter of a few pixels.

We based the TP count on the number of objects in the prediction mask
subtracted by the number of identified false positives (TP = object_count−FP ).
Because of clumping, the number of objects can differ between two prediction
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masks even if the number of false positives (FPs) and false negatives (FNs) is the
same. Thus the number of potential TPs (i.e. the number of cells in the "ground
truth") is not the same for the pure and mixed classifiers and the registered TP
count is an approximation. This is yet another unfortunate effect of the lack of
ground truth. On the bright side, this does not mean that our scores are inflated.
Because clumps of TPs were counted as single TPs, the true number of TPs is
likely higher than our approximation (TPtrue ≥ object_count− FP )

The scores in Table 6.3 and Table 6.4 appear quite extraordinary. With many
metrics showing values over 0.99, it is clear that the experts agreed with the
classifiers at most points. A remarkably low number of false negatives were found,
and a higher (but still very low) number of false positives were found. Granted,
this evaluation task is exceedingly difficult to do manually and will have some
errors, so these results cannot be stated as explicit performance metrics either.
Together with the values from the other evaluation methods, we can get an idea of
how well our trained models perform, where they excel and where they fall short.

The manual evaluation results show no major differences between the cell lines.
The differences that do exist might seem significant relative to each other, but in
the grand scheme of things they are probably still within the margin of error
considering how the opinions of the experts differed.

Table 6.3: Evaluation results from expert 1’s manual evaluation,
using the method described in Section 5.4.3.

Manual Evaluation:
Expert 1

TP*
count

FP
count

FN
count

Prec-
ision Recall Dice IoU

Pure Classifiers
BJ-RAS 2062 28 2 0.987 0.999 0.993 0.986
BJ-TERT 2143 35 7 0.984 0.997 0.990 0.981
BJ-SV40 2257 57 10 0.975 0.996 0.985 0.971
Mixed Classifier
BJ-RAS 2099 24 4 0.989 0.998 0.993 0.987
BJ-TERT 2175 31 18 0.986 0.992 0.989 0.978
BJ-SV40 2245 48 6 0.979 0.997 0.988 0.977
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Table 6.4: Evaluation results from expert 2’s manual evaluation,
using the method described in Section 5.4.3.

Manual Evaluation:
Expert 2

TP*
count

FP
count

FN
count

Prec-
ision Recall Dice IoU

Pure Classifiers
BJ-RAS 2071 19 0 0.991 1.000 0.995 0.991
BJ-TERT 2151 27 8 0.988 0.996 0.992 0.984
BJ-SV40 2284 30 27 0.987 0.988 0.988 0.976
Mixed Classifier
BJ-RAS 2103 20 4 0.991 0.998 0.994 0.989
BJ-TERT 2194 12 18 0.995 0.992 0.993 0.987
BJ-SV40 2270 23 22 0.990 0.990 0.990 0.981

6.2.4 Expert Correlation

Since the values from the manual evaluation are based on opinions of two experts,
we found it important to also present a representation of how much the two experts
agreed with each other. Table 6.5 and Table 6.6 feature four matrices, similar
to confusion matrices, that show the correlation between the evaluations. For
example: the "Pure: False Positives" matrix represents what the experts found
when evaluating the pure classifiers in terms of false positives. [1, 1] shows the
number of times both experts found 1 false positive and has the value 13. [3, 4]
shows the number of times expert 1 found 3 false positives, but expert 2 found 4
and has the value 0 (it never happened). The matrices have the 5x5 dimensions
since there was no registered case of FP > 4 or FN > 4 in a single image.

Looking at the correlation Table 6.5 and Table 6.6, we can note that the
experts mostly agreed when it came to false negatives and agreed often when it
came to false positives. When they did disagree, it was usually by a single cell and
cases where they disagreed by larger numbers were rare.

Table 6.5: Correlation tables for the manual evaluation on the pure
classifiers, showing how similar the opinions of the two experts
were.

Pure:
FP Expert 2

0 1 2 3 4

E
xp

er
t
1

0 13 5 1 0 0
1 17 13 6 1 0
2 4 14 4 0 1
3 0 5 2 0 0
4 1 0 3 0 0

Pure:
FN Expert 2

0 1 2 3 4

E
xp

er
t
1

0 57 14 3 0 0
1 6 6 2 0 0
2 0 1 0 0 0
3 0 0 0 0 1
4 0 0 0 0 0
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Table 6.6: Correlation tables for the manual evaluation on the mixed
classifier, showing how similar the opinions of the two experts
were.

Mixed:
FP Expert 2

0 1 2 3 4

E
xp

er
t
1

0 20 3 0 0 0
1 21 17 4 0 0
2 3 10 2 1 0
3 3 2 1 0 1
4 1 0 1 0 0

Mixed:
FN Expert 2

0 1 2 3 4

E
xp

er
t
1

0 48 16 3 0 0
1 6 9 4 0 0
2 1 0 1 1 0
3 0 1 0 0 1
4 1 0 1 0 0

6.2.5 Overall Evaluation Results

First and foremost, the manual evaluation shows a very strong performance across
all cell lines. The automatic object-level evaluation gave mostly solid scores but
were not very convincing in some cases (such as the BJ-SV40 precision). The
automatic pixel-level evaluation are not giving very exciting scores. The following
section and the discussion will go into greater detail regarding this, but one key
factor is important to keep in mind from the beginning: the scores from automatic
evaluation are based on treating our labels as the ground truth, and we know that
this is not fully applicable in our case.

An interesting thing when comparing the manual evaluation results with the
automatic evaluation results (both object- and pixel-level) is the number of false
positives. While much more common than false negatives, even in manual eval-
uations, the magnitude of which the number of false positives differs from the
number of false negatives is completely different in manual evaluation, compared
to automatic evaluation. Precision is mostly lower than recall in all our results,
but in the manual evaluation results, they are quite similar and we commonly
find that Recall − Precision < 0.02. In the automatic evaluation, this difference
is often in [0.2, 0.3] for pixel-level scores and in [0.05, 0.2] for object-level scores.
This is very likely an effect that stems from the missing nuclei in the labels. This
phenomenon will be expanded on in Section 7.3.

6.2.6 Differences in Cell Lines

Some interesting phenomena could be found in specific cell lines. While comments
that have been relevant for all cell lines have been made in the prior sections, a
few interesting traits can be found in specific ones.

BJ-RAS

The BJ-RAS nuclei seemed to be the easiest to segment. With very high metric
values from both manual evaluation and object-level evaluation, it is likely that
both the label-generation pipeline and the final U-Nets worked quite well for this
data.
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BJ-TERT

The BJ-TERT results were very similar to the BJ-RAS results. The BJ-TERT
fluorescence images had the lowest light intensity variation, making the nuclei
fairly easy to segment. However, the images often included noise, which sometimes
extended to the binary image labels. Since this noise is unlikely to be predicted,
this is likely why the BJ-TERT values are consistently on the lower end of the
three cell-lines in terms of recall in automatic evaluation.

BJ-SV40

The BJ-SV40 is unique in the way that the classifiers showed significantly worse
precision on this data compared to the other cell lines. In manual evaluation
though, it is not much worse than the others. A likely explanation for this is
found in the fluorescence images. They were generally difficult to segment, and
many labels in the BJ-SV40 datasets were missing nuclei. If the classifier still turns
out good, it will predict nuclei in the test images regardless if they are missing
in the labels or not, which will lead to a considerable amount of false positives in
automatic evaluation.

6.2.7 Training on Mixed or Pure Cell Data

Judging by the results, there is no clear winner in terms of performance when
comparing pure and mixed classifiers. This means that training classifiers on
multiple cell lines is a fully viable option, which can make deployment of classifiers
a lot easier. In addition, since it is possible that the mixed classifier is more
regularized and has been subject to more morphologies, it is possible that it could
perform well on other cell lines as well. This is something that would have to be
explored and evaluated.

6.2.8 Predictions on Entries with Poor Labels

With these results in mind, it is interesting to see what predictions looked like
for entries with poorly segmented labels. Since automatic evaluation was based
on comparisons with the labels, a good prediction would yield poor values for
our evaluation metrics if the label was a poor representation of the ground truth.
In Figure 6.4, predictions (using the mixed classifier) for the entries with poorly
segmented labels from Figure 6.2 are shown. 6.4.a shows the CLAHE-treated
fluorescence images, 6.4.b shows the labels that were made from them, 6.4.c shows
the predictions that were made by running predictions on the corresponding phase-
contrast images. Finally, said phase-contrast images are displayed in 6.4.d.

Figure 6.4 shows that the predictions here are far better representations of
the ground truth than the labels. Cases like these likely play a key part in the
lower automatic evaluation scores we see in Table 6.1 and Table 6.2. This is
further supported by the fact that the pixel-level scores are so much worse than
the object-level scores: artifacts like the ones we see in the faulty BJ-TERT label
(6.4.b) cover many pixels but are just a few connected components. Thus they
provide a lot of misinformation on pixel-level, but much less on an object-level.
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BJ-RAS BJ-TERT BJ-SV40

(a)

(b)

(c)

(d)

Figure 6.4: An expansion of Figure 6.2, adding the input images as
well as predictions on them. (a): Fluorescence images. (b): La-
bels, made from the fluorescence images in (a). (c): Predicted
nucleus positions. (d): The input phase-contrast images.

To investigate this further, the automatic evaluation scores for the "bad label"
images in 6.4 are presented in Table 6.7. The large amounts of segmented noise
in the BJ-RAS and BJ-TERT examples had a massive impact on the pixel-level
recall due to the large amount of supposed false negatives, which then extended to
very low pixel-level dice and IoU scores. As suspected, the object-level scores took
a hit too, but to a much smaller extent. Precision seemed somewhat consistent
with what we were used to. Nevertheless, it is clear that cases like these had an
impact on the overall scores.

BJ-SV40 sticks out here, because unlike BJ-RAS and BJ-TERT, the scores
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are actually somewhat similar to the average scores. After reviewing the datasets,
we found that the BJ-SV40 labels commonly lacked some nuclei, and this finding
further supports this. Since the trained classifiers were predicting BJ-SV40 nuclei
quite well according to manual evaluation (Table 6.3 and Table 6.4), this further
explains the poor precision, dice and IoU scores that we found through automatic
pixel-level and object-level evaluation.

In all cases, the pixel-level accuracy remained high, even though most other
scores were significantly lower than average. This further shows how the accuracy
metric is influenced by the very high number of correctly classified background
pixels.

Table 6.7: Automatic evaluation scores for the test cases with very
noisy labels that were presented in Figure 6.4.

Automatic
Evaluation:
Very Noisy
Labels

Precision Recall Accuracy Dice IoU

Pixel-Level
BJ-RAS 0.775 0.320 0.959 0.453 0.293
BJ-TERT 0.778 0.296 0.916 0.428 0.273
BJ-SV40 0.609 0.822 0.979 0.700 0.538
Object-Level
BJ-RAS 0.880 0.710 - 0.786 0.647
BJ-TERT 0.967 0.656 - 0.781 0.641
BJ-SV40 0.698 0.978 - 0.815 0.688
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Chapter 7
Discussion and Conclusion

In this chapter, I will discuss our methodology, our results and compare our project
with some related work.

7.1 Automatic Label Generation

One of the most interesting and important parts of this project is the automatic
generation of labels through fluorescence microscopy, image analysis and tradi-
tional segmentation approaches.

7.1.1 Robustness

Our results show that some of the fluorescence images were processed really well,
while some had missing nuclei or even noise segmented as nuclei. The same pipeline
could be used for several cell lines but fell short when attempting to process images
of cells that were partly rejecting the nuclear dye. But even when the fluorescence
images were segmented perfectly, there was still no guarantee that the resulting
binary label was a perfect representation of the nuclei, since it was always entirely
possible that some cells did not pick up or respond to the nuclear dye. Due to
this, there was always some uncertainty and the automatically generated labels
were often imperfect.

An important observation to be made here is that our labels are not a ground
truth, which has interesting implications since most supervised learning approaches
use these terms synonymously.

7.1.2 Impact of Imperfect Labels

Despite these imperfect labels, our method shows promising results. While it is
hard to know the exact implications of our imperfect labels, we can find that
background and cytoplasm is rarely classified as nuclei, even though they are
sometimes labeled as nuclei in training data. The keyword for this behaviour
might be randomness.

When looking for patterns in our training data, most nuclei are segmented
as nuclei and background is segmented as background. The deviations from these
patterns derive from amplified background noise and individual cells that have not

79



80 Discussion and Conclusion

reacted to nuclear dye. Both of these deviations occur seemingly randomly : there
are no clear patterns in the phase-contrast images that lead to these deviations.
This randomness may lead to these deviations having minimal effects on the train-
ing. The clear patterns will consistently push the training in right direction, while
the deviations will attempt to nudge the training into some random direction that
likely won’t be supported by other deviations. Thus the clear patterns will be
the "overwhelming force". It is possible that this random noise could even act as
a form of regularization since it pushes the training "against the current" which
could reduce overfitting. This, however, would need to be further investigated.

7.1.3 Comparison with Alternatives to Our Label Generation

Manually Annotated Data

While manual labeling by experts is often viewed as the most accurate, it is also
very time consuming and is not feasible when working with large amounts of data,
especially with data like microscopy images where labeling a single image can take
a long time. Simultaneously, there is no real guarantee that manually labeled data
is correctly labeled since it is entirely based on some person’s work. Especially
when the labeling is difficult even for humans and experts may disagree with each
other (like in our manual evaluation).

Purely Synthetic Data

A way to completely circumvent these issues, guaranteeing that all data is correctly
labeled without manual annotation is to use purely synthetic data, i.e data that is
completely synthesized by your own code. If the objects in an image are generated
by your own program, you always know the positions of objects and labeling
becomes trivial. The obvious issue with synthetic data is that it may be a poor
approximation to real data and it may be hard to know how a model that has
been trained on synthetic data will perform on real data. If the synthetic data is
based on good simulations this data may be quite accurate, but if it looks nothing
like the real data that you want to process there is little point in doing this.

7.2 U-Net Performance

Our evaluation methods gave us three types of evaluation results: automatic pixel-
level comparisons with labels, automatic object-level comparisons with labels and
manual object-level comparisons with the phase-contrast images. By reviewing
our results, our primary goal was, of course, to document the performance of the
trained models and a secondary goal was to see what kind of information the
different evaluation methods could give us.

7.2.1 Differences in Evaluation Results

A large point of interest is the disconnect that we find between the scores from the
different evaluation methods. The manual object-level evaluation showed excellent



Discussion and Conclusion 81

results, but the automatic pixel-level evaluation left much to be desired. The
automatic object-level evaluation gave us much higher scores than the automatic
pixel-level evaluation did in many cases, even though both methods were based on
comparisons between predictions and labels. It is understandable that the manual
and automatic evaluation methods can give different results, but if the prediction is
very similar to the label on an object level it might feel strange that the pixel-level
scores are so low.

Something that can be seen in many test cases (such as the ones presented in
Figure 6.3), is that even though true positives are common and the predictions
seem accurate, the shapes of the nuclei are essentially never identical to the ones
in the labels. In fact, by magnifying an area in one of the images, we will find a
number of false positives and false negatives, as shown in Figure 7.1.

Figure 7.1: A magnification of a prediction-label overlap from Figure
6.3.d. Green pixels represent true positives, red pixels represent
false positives and blue pixels represent false negatives.

These small errors add up quickly and have a significant impact on the pixel-
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level evaluation while simultaneously having no impact on the object-level evalua-
tion. If we consider that the nuclei in fluorescence images act as position markers
rather than exact shapes of the objects we are trying to find, we can be quite
happy if we get good results from the object-level evaluation even if the values
from the pixel-level evaluation are lacking.

7.2.2 The α Hyperparameter

All that the α hyperparameter in the binary focal cross entropy function really
does is penalize miss-classifications of one class harder than the other. Since the
γ hyperparameter already ensures that harder classifications are weighted much
more heavily than easier classifications, the α hyperparameter applies a feature of
varying usefulness: if the classifier is uncertain, it will prefer to predict the class
that is down-weighted by α. This is because the added loss from miss-classifying
the down-weighted class is much lower than the added loss from miss-classifying
the up-weighted class.

To show this, we trained three models on the mixed dataset with the author’s
suggested values for α (α = 0.25 and its counterpart α = 0.75) [37]. When α =
0.25, false positives contribute much more to the overall loss than false negatives,
and so, the classifier will opt to predicting negatives when unsure. α = 0.75 gives
the opposite, so that false negatives contribute much more to the overall loss than
false positives. Sample predictions are shown in Figure 7.2.

No α α = 0.25 α = 0.75

Figure 7.2: As before: green = true positive, black = true negative,
red = false positive and blue = false negative. Note that the
predicted nuclei in α = 0.75 are significantly larger than in
the other images and are often surrounded by false positive
pixels. Also, some false positive objects appear. Conversely,
the predicted nuclei in α = 0.25 are smaller and surrounded by
false negatives. Also, the nucleus in the bottom right is miss-
classified as negative.

Using α for weighting can be useful but from our limited evaluation we found
no major impact on performance that would warrant doing so by default on our
data. As explained before, the γ term already adds class weighting indirectly by
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lowering the impact of easy classifications on the loss function, which encompasses
the vast majority of background pixels.

7.3 Credibility of Evaluation

7.3.1 Automatic Evaluation

Traditional evaluation by comparing predictions with known labels gives some
information, but knowing that our labels are not a ground truth, we cannot use
this method for absolute performance metrics. This is especially evident in cases
where our models yield predictions that are more accurate than the provided label.
Such a case is visualized in Figure 7.3 and the images are from the BJ-SV40 sample
in Figure 6.1 and Figure 6.3.

Fluorescence Binary Label Prediction

Figure 7.3: An example of a prediction that contains nuclei that
were not segmented correctly in the label.

In this sample, we can see how two nuclei in the top right were incorrectly
segmented when comparing the fluorescence image with its resulting binary label.
The U-Net model, however, finds the nuclei and includes them in the prediction.
This is obviously a good thing, but when we compute scores that are based on
differences between the label and the prediction, this behaviour will lower the
score.

In addition, we find a predicted nucleus in the bottom center that is barely
visible in the fluorescence image. As stated before, some nuclei don’t even show
clearly in the fluorescence images, so in order to truly know whether this is a false
positive or not, we have to compare the prediction to the input phase-contrast
image.

That being said, the automatic evaluation metrics can give some overview of
the performance, showing that the model is at least moving in the right direction
and not just guessing randomly. However, since "false positives" that are in fact
not false (but are named as such due to false negatives in the label) are not that
rare, metrics that have a large focus on false positives (such as precision) cannot
be trusted.
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7.3.2 Manual Evaluation

While manual evaluation theoretically gives very good information, it not only
requires a very experienced evaluator but also takes a lot of time. Because of this,
we are forced to work with subsets of the test data, which means that we base our
evaluation on less samples than what we would do with the automatic evaluation.
Although, while this is a downside, the fact that the information that is provided
by manual evaluation is much more representative of the actual performance, it
is likely that manual evaluation is much more reliable than automatic evaluation
here.

7.4 Related Work

Before concluding the chapter, I will present some related work and compare our
project with theirs.

7.4.1 In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Im-
ages - Christiansen et al.

In this project, the authors trained deep learning models for predicting fluorescent
labels in transmitted-light microscopy images (e.g. phase-contrast) [60]. In other
words, they trained models that would input a transmitted-light microscopy image
and output a synthetic fluorescence microscopy image. This, by extension, could
then be used to detect various features in those images, such as cell locations, cell
types, cell health and types of subcellular structures. They used data that was
provided by several laboratories, consisting of transmitted-light microscopy images
and fluorescence microscopy images [60].

While their models could perform cell identification (and much more for that
matter), they tackled a problem at a grander scale, using more detailed data and
a more complex network. This, of course, comes at a cost: the authors report that
their training process took roughly 2 weeks and predictions on 1024x1024 images
took about 256 seconds [60]. In comparison, our models (while of course being
trained to solve a simpler task) took 5-15 hours to train and would take about
0.12 seconds to predict nuclei in a 1024x1024 image. While the training period
might be a very minor issue if training new networks is of limited interest, this
difference in prediction times is very important when running predictions on large
time-lapse datasets that can consist of over 20,000 images. For 1024x1024 images,
such a time-lapse would take approximately 5,120,000 seconds (about 2 months) to
predict using their model and approximately 2,400 seconds (about 40 minutes) to
predict using our model. For a group that runs microscopy experiments frequently,
this run-time will add up and be of great importance.

7.4.2 Label-free prediction of three-dimensional fluorescence images from
transmitted-light microscopy - Ounkomol et al.

Similar to the project by Christiansen et al., the authors behind this paper trained
deep learning models to predict fluorescence from transmitted-light microscopy
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[61]. The models were trained using transmitted-light images with corresponding
fluorescence images as labels [61].

7.4.3 Practical segmentation of nuclei in brightfield cell images with
neural networks trained on fluorescently labelled samples - Fishman
et al.

This project is very similar to ours. The authors focused on using U-Net models (as
well as some others) to segment nuclei in brightfield (transmitted-light microscopy,
similar to phase-contrast) cell images [62]. Their data was handed to them, so they
did not conduct their own cell experiments for training data. They generated labels
semi-automatically by processing fluorescence images using a software that ran
some segmentation algorithm. They evaluated and adjusted the resulting binary
image manually before including them as training data. They trained models for
different cell lines, using "pure" datasets consisting of cell images from a single
cell line, as well as "mixed" datasets consisting of cell images from multiple cell
lines [62].

All in all, while this project had a large focus on evaluating different models,
the work was conceptually very similar to ours. The purposes for the projects
were quite different however, since ours was more focused on building a functional
pipeline for building and using deep learning models for data extraction in cell
experiments. In addition, we made having a fully automatic process that works
on in-house generated data a priority.

7.5 Conclusion

While work still remains, our method shows great promise for automatic cell iden-
tification. Using this method, it is possible to train and use U-Net models for
cell identification using in-house generated, automatically labeled data and obtain
accurate results. Despite having an automatic pixel-level evaluation that showed
mediocre results, automatic object-level dice scores of over 0.95 show great promise
and manual object-level dice scores of around 0.99 support that the predictions are
on par with expert annotation. It is even possible to train classifiers on multiple
cell lines, making practical use even easier. Knowing that the implementation can
likely be improved by using more recently developed models as well as a more
versatile segmentation pipeline for the fluorescence images, the cell identification
can likely improve. While automatic cell identification is valuable on its own, solv-
ing local issues with cell-tracking algorithms would provide researchers with more
high-content data from their experiments. Our hope is that this, along with simi-
lar projects, can be a helping hand in solving the methionine dependency problem
as well as problems that are studied with microscopy time-lapses.
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Chapter 8
Future Work

Here, in the final chapter of the thesis, I will point out some interesting points of
future work that could expand upon what we found in this project.

8.1 Cell Tracking

First and foremost, successfully linking our cell identification models to cell track-
ing algorithms would provide researchers with very useful data from their exper-
iments. This was originally a goal for this project, but after finding a number
of issues (many which originated from technical specifications in the microscope)
when attempting to apply the tracking algorithms, we had to cut it due to time
restrictions. Unfortunately, working around these turned out to be more work
than anticipated.

Our plan was to apply our U-Nets to a microscopy time-lapse to get solid
cell segmentation and then use the resulting segmented time-lapse with the cell-
tracking methods in Baxter Algorithms (BA). BA was chosen since it was not
only amongst the top performing cell tracking methods available [9], but was also
developed under Joakim Jaldén’s supervision, who assisted us in this project.
Unfortunately, when attempting to use BA, we quickly found some issues that
needed resolving. The severity of these issues were unclear and would need to be
evaluated in future work. Three seemingly harmful problems were found:

Camera Shifts

A technical issue that arose with the microscope that we used was camera shifts.
In our microscope, the wells are divided into smaller parts called tiles and the
microscope moves around the well, imaging one tile at a time. When imaging
tiles at different time points, the images were not always taken from the exact
same point. This would result in a shift, where all cells would move slightly to
another direction. Some cells would exit the image and some cells would appear
from seemingly nowhere. Then, if the image shifted back, the lost cells would
reappear and the newly introduced cells would be gone. This was troublesome for
the tracking algorithms. This could potentially be solved by post-processing the
predictions, or by using some stabilizing point in the wells. Of course, it is not a
problem if you do not use a moving microscope.
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Cells Entering and Exiting a Tile

Since we used a tiled well, cells would sometimes enter or exit the tile. This was also
be troublesome for the tracking, since cells randomly appear and disappear from
the time-lapse. Furthermore, individual cells that disappear and then reappear
later would count as new cells, even though its "lifespan" had already started at
an earlier time-point.

Colliding Nuclei

While this issue is not nearly as prominent as it could be, thanks to us segmenting
nuclei rather than entire cells, it was still an evident problem. When nuclei collide,
the segmentation shows them as a single cell. When they separate later on, it is
hard to know which nucleus is which and whether a division has occurred or not.
While there are methods for separating colliding objects (such as a watershed
transform), such methods might do harm as well as good and would need to be
evaluated.

Given more time, we would like to explore workarounds for these issues further as
well as evaluate how harmful their effects really are, so that we could successfully
apply BA for cell-tracking and take this project to the next level.

8.2 Improving the Automatic Label Generation

While a simple approach seemed good for this, it is very likely that this step could
be improved. Having a more robust algorithm for this would increase the quality of
the labels and reduce the need for filtering, allowing larger datasets to be extracted
from cell experiments.

It is possible that different approaches would be suitable for different cell lines.
While taking this into account could increase the amount of work that would be
required for preparing training data, it would be interesting to see if some collection
of algorithms could be applied to reoccurring data.

It is also possible that a different staining method could yield images that are
more easily segmented. In our project, we were limited by our microscope. In
another experiment, it would be interesting to view the effects of other nuclear
stains, such as DAPI [63].

8.3 Utilizing other Deep Learning Models

Since the U-Net’s conception in 2015, several new versions of it, as well as different
architectures all together, have been proposed [10]. While the original U-Net has
proven sturdy for this kind of task, exploring how different architectures would
adapt to this setting would be very interesting.
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Hyperparameter tuning for the standard U-Net would also be interesting to
look at. Though with the current situation featuring noisy labels, it is unclear if
a hyperparameter sweep (such as WandB [64]) would be useful.

8.4 Exploring other Learning Techniques

While we used a fully supervised learning approach, it is possible that semi-
supervised learning would be a better fit for our task. By using a lower number of
labeled images for the learning, we could ensure that we only include high-quality
labels in our learning while still providing large datasets. There have been nu-
merous cases where a semi-supervised learning based U-Net has been explored for
image segmentation in the biomedical field, and a recurring reason why is this lack
of labeled data [65, 66]. While there is no guarantee that this would improve the
results, it would be interesting to combine our exploration of generating data with
an exploration of training methods.

8.5 Review and Improve Data Augmentation

In this project, simple methods were applied for data augmentation. The effects of
these could be reviewed in order to find what type of augmentations are especially
useful and emphasize those. In addition, there are some very interesting augmen-
tation methods out there today [67] which would certainly be worth exploring.
This could be especially useful when training classifiers on multiple cell lines or
trying to train classifiers for new cell experiments, as the regularizing powers of
data augmentation may improve flexibility for identifying foreign cell morphologies
that were not present in the training data.

8.6 Explore Cell Counting Methods

Automatic cell counting is one of the main applications for our method. During
the project we resorted to counting cells by counting connected components in the
predicted masks. This method comes with some major drawbacks though, since
clumped cells count as single objects and if some small part of the background
was misclassified as a nucleus, it could count as a connected component even if it
was just a few pixels. We considered an alternative, area based counting method,
where we would base our cell count on the total area of segmented nuclei in the
prediction. Since the sizes of nuclei are fairly consistent, we could divide the total
segmented area by the known area of an average nucleus to find an approximation
for the number of cells in the image. This would solve the clumping issue to a
large extent, and connected components that only consist of a few pixels would
not have a large impact on the cell count.
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8.7 Explore More Cell Lines

It would be interesting to deploy the current classifiers on other cell lines and see
how they do. It would also be interesting to accumulate data from many other cell
lines and see if it would be possible to train a very general nucleus segmentation
classifier. If so, that model could easily be deployed to research groups, removing
the need for training entirely.

8.8 Combining Classifiers

While our models could do quite well for cell identification, there may be specific
things that could be interesting to detect, such as impending division and death.
By training classifiers to detect these things specifically, we could combine them
with general cell identification classifiers to obtain a lot of information without
even applying tracking algorithms. This is a project on its own though, since it
would require labeled data for said events.

8.9 Transfer Learning

We trained our U-Net models using a He Normal weight initialization strategy,
as suggested by the authors of the original U-Net paper [1]. We could, however,
explore using weight initialization based on prior trained models, as seen in some
papers featuring the U-Net for biomedical image segmentation [68, 69]. As an
extension of this, it would also be interesting to see how feasible it would be to
re-train an existing model of ours to predict nuclei in another cell line. If this form
of transfer learning is a simple task, it would benefit researchers greatly, knowing
that they could perform smaller re-training sessions to obtain new models, instead
of doing full-scale training from scratch.

8.10 Deployment

It is important that our software is easy to use if we want researchers to make use
of it. This is especially important since the main target audience are biologists that
may not be overly familiar with code structures. To do this, we want to package
the code in a way that it can be installed and run without any hassle. For this to
work, we would ideally get rid of the ImageJ/CellProfiler steps in our pipeline and
"translate" those parts into python code (which could probably largely be done
through available computer vision packages such as OpenCV). In addition, some
work is required for making the package and scripts as user-friendly as possible.
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Appendix A
Prediction Overlays

Figure A.1: A random sample of BJ-RAS phase-contrast images
with prediction overlays.
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Figure A.2: A random sample of BJ-RAS phase-contrast images
with prediction overlays.
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Figure A.3: A random sample of BJ-TERT phase-contrast images
with prediction overlays.
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Figure A.4: A random sample of BJ-TERT phase-contrast images
with prediction overlays.
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Figure A.5: A random sample of BJ-SV40 phase-contrast images
with prediction overlays.
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Figure A.6: A random sample of BJ-SV40 phase-contrast images
with prediction overlays.


