
REINFORCEMENT LEARNING

FOR THE OPTIMIZATION OF

EXPLICIT RUNGE-KUTTA

METHOD PARAMETERS

MÉLANIE FOURNIER

Bachelor’s thesis
2023:K20

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract
Reinforcement learning is one of the three main paradigms in machine learning, which is increasingly used
as a method to approach scientific problems. In this thesis, we introduce and use reinforcement learning to
find the optimal parameters of a numerical solver.

We first motivate that solving the linear systems can be done by solving initial value problems. These initial
values problems can then be solved with an explicit, two stages Runge-Kutta solver, for which we need to
find the optimal parameters for the solver, depending on the parameters of the problem.

Using reinforcement learning, and in particular policy gradient methods, we find that with some care,
reinforcement learning can be used to learn the solver parameters as a function of the problem parameters.
These results are however tempered by some limitations, as the solver can diverge in certain cases, and
convergence speed remains low in general.

Popular abstract
As animals, we learn about the world and how to interact with the world by trial and errors, and are
”rewarded” when it goes well. This idea, applied to computer program is called reinforcement learning, and
it does not take long nowadays to find applications of it, be it when interacting with a chat bot or when
activating the adaptative cruise control of a car.

In this thesis, we study differential equations, which are equations that, when solved, help us understand
physical phenomena, for example the trajectory of a ball when it is kicked, or how the temperature in the
room changes when we turn on the AC. While solving these equations on a computer is possible, some
parameters need to be chosen judiciously, as the wrong solution can be found otherwise. To mitigate this
issue, we use reinforcement learning in this thesis to train a program that find these parameters automatically
for some specific equations.

1

Acknowledgements
I would like to express my deepest thanks to my supervisor Philipp Birken at the university of Lund for the
regular discussion sessions, and without which I could not have written this thesis.

I would also like to thank my partner Sarah (who also fixed an issue I struggled with for weeks in a matter
of minutes), for being an amazing partner who is always there to help and encourage me in all aspects of my
life. My gratitude also goes to our cat Alyx for her emotional support and the deep talks we have.

Finally, I would like to thank Paulina Ibek, who worked on a similar thesis at the same time, for the
discussions which led to exchanging ideas.

2

Table of contents

Introduction 5

1 Motivation : Pseudo time iterations 7

2 A Test Problem, the Convection Diffusion Equation 10

3 Explicit Runge-Kutta Method 13
3.1 A small introduction to explicit Runge-Kutta methods . 13
3.2 Application to the test problem . 14

3.2.1 A note on stability . 15
3.2.2 Residual ratios . 15

3.3 A small experiment . 16

4 Basics of Reinforcement Learning (RL) 18
4.1 A non mathematical, yet delicious example! . 18
4.2 Another example: Leonardo the rabbit . 19

4.2.1 States . 19
4.2.2 Actions . 19
4.2.3 State transitions . 20
4.2.4 Policy . 20
4.2.5 Rewards . 21
4.2.6 State transitions and rewards probabilities . 21

4.3 Finite Markov decision process . 21
4.4 State Value and Bellman Equation . 22
4.5 Action Value . 26
4.6 Optimal policy and value iteration . 27

5 Policy Gradient Method 28
5.1 Modelling the problem as a reinforcement learning problem 29

Modelling the states . 29
Modelling the actions and the policy . 29
Modelling the rewards . 29
State transitions . 29
Other challenges . 29

5.2 Dealing with a large state-action space. 30
5.3 Model-based, model-free . 30
5.4 Policy gradient methods . 30

5.4.1 Objective function . 30
5.4.2 Policy gradient theorem . 31

3

5.4.3 REINFORCE algorithm . 33

6 Implementation 36
6.1 A linear approximation of the policy . 36
6.2 Implementation of the REINFORCE algorithm . 37

6.2.1 Algorithm code . 37
6.2.2 A first experiment . 38

6.3 Scaling the parameters . 39
6.3.1 A motivating example of gradient descent . 40
6.3.2 Changing the variable . 41

6.4 Impact of initial conditions . 41
6.5 Further results . 43

7 Summary and Discussion 45

References 46

4

Introduction

Machine learning is everywhere. It has applications in computer vision [1], robotic [2], finance [3], rec-
ommender systems [4], playing games at a high level [5] or even discovering new matrix multiplication
algorithms [6]. The use of machine learning in scientific problems which has been aptly called scientific
machine learning is also growing, with the most important example being combining neural network and
physic laws to either discover or solve partial differential equations [7].

In this thesis, we focus on studying reinforcement learning, which is one of the three main machine learning
paradigm. The three main paradigm are as follow[8, Ch. 1.1]:

• Supervised learning, where we learn using data containing an input, and a desired output. Regression
models are an example of a supervised learning.

• Unsupervised learning, where the data only has an input but no desired output. Examples include
clustering algorithms.

• Reinforcement learning, in which we have an intelligent agent who learns to do something by interacting
with its environment, receiving feedback in the form of rewards which the agent wants to maximize.

What sets apart reinforcement learning from its cousins unsupervised and supervised learning is the
introduction of the concept of reward. The agent learns by trial and error, and wants to maximize the
rewards it gets over time. This is, in essence, quite similar to how we animals learn to do things, and it is no
surprise that reinforcement learning traces its roots from the field of animal learning [9]. Another important
root of reinforcement learning comes from the field of optimal control, where the agent and environment of
reinforcement learning are respectively the controller and controlled system in control theory [8, Ch. 1.7].

To study reinforcement learning, we need a playground. That playground could be an already established
playground (such as the Gymnasium API), but in this thesis we use our own playground, which we find in
the realm of numerical differential equation solvers.

Numerical methods for differential equations are amongst the most important methods in numerical analysis.
All of these methods have specific strengths and weaknesses. They all have, however, some parameters that
need to be chosen, if only for the step size. These parameters have to be chosen to maximize performance,
and depend on the problem. In some cases they are taken using some heuristics, but they can also be
searched for computationally, which is an issue, as any computation means more time to get to the solution.
It would therefore be a great time saver if a computer could learn these heuristics, for example using
reinforcement learning! This is the playground we use in this thesis, albeit with a reduced scope.

We start by motivating the use of numerical ODE solvers to solve linear systems. As a case study, we have a
specific type of linear systems, which appears when discretizing the steady state, one dimensional convection
diffusion equation 𝑢𝑥 = 𝑏𝑢𝑥𝑥 + 1. Doing so, we end up with two problem parameters; 𝑏, which is a physical
constant, and 𝑛, stemming from the discretization. The studied numerical solver is an explicit Runge-Kutta
method, and has two parameters, a (pseudo-) time step Δ𝑡 and another parameter 𝛼, which need to be
chosen. How to choose these solver parameters, as a function of the problem parameters is then left to the
realm of reinforcement learning.

5

We then introduce through intuitive examples (and a very cute bunny) the main concepts of reinforcement
learning, such as states, actions, state transitions and rewards which are then formalized as a Markov
decision process. We then introduce policy gradient methods, and in particular we introduce the classical
REINFORCE [10] algorithm, which we use to optimize the solver parameters for the studied linear systems.

The results, while positive, are hampered somewhat by the fact that the method used in this thesis is not a
natural fit to what makes reinforcement learning so powerful. A discussion on how to redefine the problem
to make better use of the strengths of reinforcement learning will follow.

6

Chapter 1

Motivation : Pseudo time iterations

Let 𝐴 be a non singular square matrix of dimension 𝑛 ≥ 1 and let 𝑏 ∈ ℝ𝑛. We consider the linear system
𝐴𝑦 = 𝑏, where 𝑏 ∈ ℝ𝑛. The system has the unique solution 𝑦∗ = 𝐴−1𝑏. As directly inverting the matrix is a
terrible idea, a fundamental problem in numerical analysis is to find numerical methods to solve this. This
can be done with the use of direct methods or iterative methods. In this thesis, we consider an iterative
method. Consider now the initial value problem(IVP),

𝑦′(𝑡) = 𝐴𝑦(𝑡) − 𝑏, 𝑦(0) = 𝑦0,

where 𝒚0 ∈ ℝ𝑛 and 𝑡 ∈ ℝ. We adapt the result below from [11, Ch. 9.5].

Multiplying the equation by 𝑒−𝐴𝑡, where 𝑒−𝐴𝑡 is the usual matrix exponential, and rearranging the terms
yields

𝑒−𝐴𝑡𝑦′(𝑡) − 𝐴𝑒−𝐴𝑡𝑦(𝑡) = −𝑒−𝐴𝑡𝑏.

We recognize on the left hand side the derivative of the product 𝑒−𝐴𝑡𝑦(𝑡), and thus, by the fundamental
theorem of calculus,

[𝑒−𝐴𝑢𝑦(𝑢)]𝑡
0

= ∫
𝑡

0
−𝑒−𝐴𝑢𝑏 𝑑𝑢.

Multiplying by 𝐼 = 𝐴−1𝐴 inside the integral above, we get

𝑒−𝐴𝑡𝑦(𝑡) − 𝑦(0) = 𝐴−1 ∫
𝑡

0
−𝐴𝑒−𝐴𝑢𝑏 𝑑𝑢,

which can be integrated to get

𝑒−𝐴𝑡𝑦(𝑡) − 𝑦0 = 𝐴−1 [𝑒−𝐴𝑡 − 𝑏] .

Multiplying each side by 𝑒𝐴𝑡 on the left, and rearranging the terms we get an expression for 𝑦(𝑡):

𝑦(𝑡) = 𝑒𝐴𝑡(𝑦0 − 𝐴−1𝑏) + 𝐴−1𝑏. (1.1)

7

Here, we also used the fact that 𝑒𝐴𝑡𝐴−1 = 𝐴−1𝑒𝐴𝑡. This gives an expression for the solution of the IVP.
Since each of those steps can be taken backward , the solution we get is unique. We have thus proved:

Theorem 1.1. Let 𝐴 be a non singular, square matrix of dimension 𝑛 ≥ 1, 𝑏 ∈ ℝ𝑛 a vector, and consider
the initial value problem

𝑦′(𝑡) = 𝐴𝑦(𝑡) − 𝑏, 𝑦(0) = 𝑦0, (1.2)

where 𝑡 → 𝑦(𝑡) is a function from ℝ to ℝ𝑛. Then the problem has a unique solution in the form of

𝑦(𝑡) = 𝑒𝐴𝑡(𝑦0 − 𝑦∗) + 𝑦∗,

where 𝑦∗ = 𝐴−1𝑏, and 𝑒𝐴𝑡 is defined using the usual matrix exponential.

Let 𝜆1, 𝜆2, … , 𝜆𝑛 be the (not necessarily distinct) eigenvalues of 𝐴. We write 𝜆𝑖 = 𝑎𝑖 + 𝑖𝑏𝑖, where 𝑎𝑖, 𝑏𝑖 ∈ ℝ
and are respectively the real part and the imaginary parts of the 𝑖𝑡ℎ eigenvalue. Then, the following results
holds[12, Ch. 1]:

Theorem 1.2. 𝑦(𝑡) → 𝑦∗ as 𝑡 → +∞ for any initial value 𝑦0 if and only if, for all 𝑖 = 1, … , 𝑛, 𝑎𝑖 < 0, that
is, all the eigenvalues of 𝐴 have a strictly negative real part.

We call such matrices stable in the rest of this thesis.

Proof. We restrict ourselves to the diagonalizable case. Assume that 𝐴 ∈ ℝ𝑛×𝑛 is diagonalizable and let
𝜆1, … , 𝜆𝑛 be the eigenvalues of 𝐴. Then we can write 𝐴 = 𝑃𝐷𝑃 −1 where 𝐷 is the diagonal matrix with the
eigenvalues of 𝐴, and 𝑃 is the associated eigenvectors matrix:

𝐷 =
⎛⎜⎜⎜
⎝

𝜆1
𝜆2

⋱
𝜆𝑛

⎞⎟⎟⎟
⎠

.

Then 𝑒𝐴𝑡 = ∑∞
𝑖=0

(𝑃𝐷𝑃 −1𝑡)𝑖

𝑖! = ∑∞
𝑖=0 𝑃 (𝐷𝑡)𝑖

𝑖! 𝑃 −1. The 𝑃 can be moved outside of the sum to get

𝑒𝐴𝑡 = 𝑃𝑒𝐷𝑡𝑃 −1.

Since the matrix exponential of a diagonal matrix is simply the matrix of the exponentiated elements, we
have

𝑒𝐷𝑡 =
⎛⎜⎜⎜
⎝

𝑒𝜆1𝑡

𝑒𝜆2𝑡

⋱
𝑒𝜆𝑛𝑡

⎞⎟⎟⎟
⎠

.

Let 𝑧(𝑡) = 𝑃 −1(𝑦(𝑡) − 𝑦∗), where 𝑦(𝑡) is the unique solution to Equation 1.2 for some arbitrary initial value
𝑦0.

Since 𝑃 is non singular, we can use a continuity argument to state that 𝑦(𝑡) → 𝑦∗ if and only if 𝑧(𝑡) → 0.
We have

8

𝑧(𝑡) = 𝑃 −1𝑒𝐴𝑡(𝑦0 − 𝑦∗).

We note that 𝑃 −1𝑒𝐴𝑡 = 𝑒Δ𝑡𝑃 −1, thus

𝑧(𝑡) = 𝑒𝐷𝑡𝑃 −1(𝑦0 − 𝑦∗).

Looking at the 𝑖th element 𝑧(𝑡)𝑖, we have

|𝑧(𝑡)𝑖| = |𝑒𝜆𝑖𝑡| [𝑃 −1(𝑦0 − 𝑦∗)]
𝑖
.

The only time dependent term is |𝑒𝜆𝑖𝑡| = 𝑒𝑎𝑖𝑡, with 𝑎𝑖 being the real part of 𝜆𝑖, and 𝑧(𝑡)𝑖 → 0 as 𝑡 → +∞ if
and only if 𝑎𝑖 < 0.

If this holds for any 𝑖 = 1, … , 𝑛, then 𝑧(𝑡) → 0 as 𝑡 → +∞. This proves the sufficient condition.

This is also a necessary condition. Indeed, since 𝑦0 is arbitrary, we can chose it so that 𝑃 −1(𝑦0 − 𝑦∗) =
(1, … , 1)𝑇. Then 𝑧(𝑡) = (𝑒𝜆1𝑡, 𝑒𝜆2𝑡, … , 𝑒𝜆𝑛𝑡)𝑇 which converges to 0 only if all the eigenvalues have a strictly
negative real part.

We now go back to the original problem of solving the linear system 𝐴𝑦 = 𝑏. If all the eigenvalues of 𝐴 have
a strictly negative real part, then, any numerical solver for the initial value problem 𝑦′(𝑡) = 𝐴𝑦(𝑡) − 𝑏 with
𝑦(0) = 𝑦0, where 𝑡 is a pseudo-time variable also becomes an iterative solver for the linear system 𝐴𝑦 = 𝑏, as
𝑦(𝑡) → 𝑦∗.

Remark. The eigenvalues of 𝐴 are 𝜆1, … , 𝜆𝑛. If all these eigenvalues have a strictly positive real part, then
the eigenvalues of −𝐴, which are −𝜆1, … , −𝜆𝑛, have a strictly negative real part. Therefore, −𝐴 is stable
and to solve the linear problem 𝐴𝑦 = 𝑏, we can simply consider the IVP 𝑦′ = (−𝐴)𝑦 − (−𝑏) = −𝐴𝑦 + 𝑏
instead, with our best guess of 𝑦∗ as the initial value.

9

Chapter 2

A Test Problem, the Convection
Diffusion Equation

As a test case, we consider the one dimensional, steady state convection-diffusion equation with fixed
boundary conditions

𝑢𝑥 = 𝑏𝑢𝑥𝑥 + 1, 𝑢(0) = 𝑢(1) = 0. (2.1)

Here 𝑏 is some physical parameter. Moreover, 𝑢(𝑥) is defined on the interval [0, 1]. This equation has a
solution that is given by

𝑢(𝑥) = 𝑥 − 𝑒−(1−𝑥)/𝑏 − 𝑒−1/𝑏

1 − 𝑒−1/𝑏 . (2.2)

We are however interested in solving this numerically, with a finite difference approach. We partition the
interval [0, 1] using 𝑛 + 2 equidistant points 𝑥𝑖, 𝑖 = 0, … 𝑛 + 1. We denote the distance between each points
as Δ𝑥 = 1

𝑛+1 . The approximated value of 𝑢 at the point 𝑥𝑖 is denoted by 𝑢𝑖 and we have 𝑢0 = 𝑢(0) = 0 and
𝑢𝑛+1 = 𝑢(1) = 0. We approximate, for 𝑖 ≥ 1, the derivative as

𝑢𝑖
𝑥 = 𝑢𝑖 − 𝑢𝑖−1

Δ𝑥
,

and the second order derivative is approximated by

𝑢𝑖
𝑥𝑥 = 𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

Δ𝑥2 .

Note that the first derivative is approximated backward in space, which aligns with the convection being in
the right direction. For 𝑖 = 1, … , 𝑛, we thus have the approximation

𝑢𝑖 − 𝑢𝑖−1

Δ𝑥
= 𝑏𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

Δ𝑥2 + 1.

10

This can be given in a matrix-vector format, by letting 𝒖 = (𝑢1, … , 𝑢𝑛)⊺,

𝑨𝒖 = 𝑩𝒖 + 𝒅,

where 𝒅 = (1, 1, … , 1)⊺,

𝑨 = 1
Δ𝑥

⎛⎜⎜⎜⎜⎜⎜
⎝

1
−1 1

−1 1
⋱ ⋱

−1 1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

and

𝑩 = 𝑏
Δ𝑥2

⎛⎜⎜⎜⎜⎜⎜
⎝

−2 1
1 ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ 1

1 −2

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Note that from now on, matrices and vector are denoted in bold italic. With 𝑵 = 𝑨 − 𝑩, the approximate
solution of Equation 2.1 is then the solution of the linear system

𝑵𝒖 = 𝒅, (2.3)

where 𝑵 is a square matrix of dimension 𝑛 × 𝑛 and 𝒅 is the vector of ones of dimension 𝑛.

Remark. 𝑵 is diagonally dominant. Since all elements of the diagonal are positive, we can use Gershgorin
circle theorem to prove that all the eigenvalues of 𝑵 have a positive real part. We thus only need to assume
𝑵 is non singular to prove that −𝑵 is stable.

We plot two examples of what the exact solution (Equation 2.2) and the discretized solution (Equation 2.3)
look like for different values of 𝑏 in Figure 2.1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u(
x)

exact solution
discretized solution

(a) 𝑏 = 0.05, 𝑛 = 50.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

u(
x)

exact solution
discretized solution

(b) 𝑏 = 0.5, 𝑛 = 50.

Figure 2.1: Exact and discretized solution of the convection diffusion equation, for different parameters.

11

To solve this linear system, we use the method highlighted before. To make it easier for later, we choose
to scale 𝑁 so that its diagonal elements are 1. This allows us to have all eigenvalues in the circle centered
around 1 with radius 1 independently of the parametrization. Setting 𝜂 = 1

Δ𝑥 + 2𝑏
Δ𝑥2 , solving Equation 2.3 is

equivalent to solving the system

𝑴𝒖 = 𝒆, (2.4)

where with 𝑴 = 𝑵
𝜂 , 𝒆 = 𝒅

𝜂 . The eigenvalues of 𝑵 are also scaled by 1
𝜂 , and therefore −𝑴 is stable, assuming

it is non singular. We are now ready to solve the system iteratively using an ODE solver. To do that, we
introduce a (pseudo) time variable 𝑡 and we consider the ODE

𝒖′(𝒕) = 𝒆 − 𝑴𝒖(𝒕). (2.5)

where 𝑴 and 𝒆 depends on both 𝑛 and 𝑏. From now on, we call 𝑏 and 𝑛 the problem parameters. We can
use Theorem 1.2 with the non singularity assumption to guarantee that 𝒖(𝒕) converges to a steady state
independently of its chosen initial value. In the next chapter, we introduce a numerical method to solve this
differential equation, which we will use in this thesis.

Remark. The convection diffusion equation is derived in [13] , chap. 3 from the continuity equation for a
scalar quantity 𝑢 and is

𝜕𝑢
𝜕𝑡

+ Δ.(⃗𝑣𝑢 − ∇(𝐷𝑢)) = 𝑅.

We will assume that the quantity 𝑢, is the temperature in Kelvin, and has the S.I unit 𝐾. The physical
quantities are:

• ⃗𝑣, which is the velocity of the medium the quantity is in, in ms−1. (the advection/convection).
• 𝐷 is the diffusion coefficient, in m2s−1.
• 𝑅 is governing whether the quantity is created when 𝑅 > 0, or destructed when 𝑅 < 0. The unit is

𝐾s−1.

We can now simplify the equation by considering it in a single dimension 𝑥

𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

.(𝑣𝑢 − 𝜕
𝜕𝑥

(𝐷𝑢)) = 𝑅.

This further simplifies to 𝑢𝑡 + 𝑣𝑢𝑥 − 𝐷𝑢𝑥𝑥 = 𝑅.

Then, in the steady state, 𝑢𝑡 = 0 so we get

𝑢𝑥 = 𝐷
𝑣

𝑢𝑥𝑥 + 𝑅
𝑣

,

and we recognize Equation 2.1, with 𝑏 = 𝐷
𝑣 , and 1 = 𝑅

𝑣 . This also means that we “lose” two parameters in
the studied test problem for simplification purposes. Nevertheless, this can be used to give some degree of
intuition behind Figure 2.1. When the diffusion is high compared to the convection, the quantity is more
centered, but on the other hand, when the convection speed is high compared to the diffusion, the quantity
𝑢 is “flushed” to the right (assuming 𝑣 > 0).

12

Chapter 3

Explicit Runge-Kutta Method

3.1 A small introduction to explicit Runge-Kutta methods
This section aims to introduce explicit Runge-Kutta methods, [14, Ch. 3], which we use in this paper. We
consider solving a generic initial value problem of the form

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(0) = 𝑦0.

If we know, for an instant 𝑡𝑛, the value for 𝑦(𝑡𝑛), we can compute the value of 𝑦 at instant 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡
by integrating

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + ∫
𝑡𝑛+1

𝑡𝑛

𝑓(𝑢, 𝑦(𝑢)) 𝑑𝑢,

and with the change of variable 𝑢 = 𝑡𝑛 + Δ𝑡𝜏, we have

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + Δ𝑡 ∫
1

0
𝑓(𝑡𝑛 + Δ𝑡𝜏, 𝑦(𝑡𝑛 + Δ𝑡𝜏)) 𝑑𝜏.

The problem is finding a suitable way to compute the integral above. An elementary approach is to use the
current value of 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) and to treat 𝑓 as constant, thus defining the sequence

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝑓(𝑡𝑛, 𝑦𝑛),

where 𝑦𝑛 ≈ 𝑦(𝑡𝑛), 𝑦0 = 𝑦(0). This is the explicit Euler’s method. We now want to exploit quadrature
formulas for numerical integration. Let 𝑐𝑗 ∈ [0, 1], 𝑗 = 1, 2, … , 𝜈, where 𝜈 is an integer, be the nodes in the
quadrature formula, with their associated weight 𝑏𝑗, 𝑗 = 1, 2, … , 𝜈. A quadrature formula for the integral is
then of the form

∫
1

0
𝑓(𝑡𝑛 + Δ𝑡𝜏, 𝑦(𝑡𝑛 + Δ𝑡𝜏)) 𝑑𝜏 ≈

𝜈
∑
𝑗=1

𝑏𝑗𝑓(𝑡𝑛 + Δ𝑡𝑐𝑗, 𝑦(𝑡𝑛 + Δ𝑡𝑐𝑗)).

This is all well and good, except that we have to know the values 𝑦(𝑡𝑛 + Δ𝑐𝑗), which we do not possess.
We can however, play pretend and compute an approximation of these values 𝜉𝑗 ≈ 𝑦(𝑡𝑛 + Δ𝑡𝑐𝑗), 𝑗 = 1, … , 𝜈.

13

The 𝜉𝑗 are called stage values. [15]. The main idea to use the 𝜉𝑖’s to compute 𝜉𝑗, using a linear combination
of the terms 𝑓(𝑡𝑛 + Δ𝑡𝑐𝑗, 𝜉𝑖). That is

𝜉𝑖 = 𝑦𝑛 + Δ𝑡
𝜈

∑
𝑗=1

𝑎𝑖𝑗𝑓(𝑡𝑛 + Δ𝑡𝑐𝑗, 𝜉𝑗),

for 𝑖 = 1, … , 𝜈, where the 𝑎𝑖𝑗 are some well chosen values, which is not in scope of this thesis. To simplify
notation, we note 𝐴 as the square array containing the 𝑎𝑖𝑗 parameters, that is 𝐴𝑖𝑗 = 𝑎𝑖𝑗, 𝑐 = (𝑐1, … , 𝑐𝜈)⊺

the vector of nodes, and 𝑏 = (𝑏1, … , 𝑏𝜈)⊺ the vector of weights. An RK method is then written in the form
of the following array, also called a Butcher tableau:

𝑐 𝐴
𝑏⊺ .

We remark that if, for any 𝑗 ≥ 𝑖, 𝑎𝑖𝑗 ≠ 0, then we will need to know 𝜉𝑗 to compute 𝜉𝑖, which involves solving
an equation, making the method implicit. We consider here explicit methods, where we can compute 𝜉𝑖+1 if
we know 𝜉𝑗, 𝑗 = 1, … , 𝑖 − 1. Since we know 𝑓(𝑡𝑛, 𝑦𝑛), we choose 𝑎11 = 0 and 𝑐1 = 0. An explicit RK method
is then of the form

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝜈

∑
𝑗=1

𝑏𝑗𝑓(𝑡𝑛 + Δ𝑡𝑐𝑗, 𝜉𝑗),

where the stage values 𝜉𝑗 are computed sequentially as follow

𝜉1 = 𝑦𝑛,
𝜉2 = 𝑦𝑛 + Δ𝑡𝑎2,1𝑓(𝑡𝑛, 𝜉1),
𝜉3 = 𝑦𝑛 + Δ𝑡𝑎3,1𝑓(𝑡𝑛, 𝜉1) + Δ𝑡𝑎3,2𝑓(𝑡𝑛 + Δ𝑡𝑐2, 𝜉2),

⋮

𝜉𝜈 = 𝑦𝑛 + Δ𝑡
𝜈−1
∑
𝑗=1

𝑎𝜈,𝑗𝑓(𝑡𝑛 + Δ𝑡𝑐𝑗, 𝜉𝑗).

3.2 Application to the test problem
We now have to solve the ODE 𝑢′(𝑡) = 𝑒 − 𝑀𝑢(𝑡) where 𝑀 depends on the problem parameters 𝑏 and
Δ𝑥 = 1/(𝑛 + 1), and 𝑛 is the chosen number of subdivisions of [0, 1]. We consider in this thesis the following
RK method with two stages [15];

0
𝛼 𝛼

0 1
.

Remark. This RK method can be extended to more stages. We only need the last stage value to compute
the time step update, and we only need to compute the stage values sequentially using only the last stage
value calculated. This makes it possible, when programming the method, to simply to do the update of the
variable 𝜉 in place inside the computer memory. Such methods are thus memory efficient.

14

This solver has two parameters, namely the (pseudo) time step Δ𝑡 and 𝛼, where 𝛼 ∈ [0, 1].

The goal is for the solver to converge to a steady state solution in as few iterations as possible.

3.2.1 A note on stability
Using the same notation as before for the stage values and the studied RK method, for the equation
𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), we have 𝜉1 = 𝑢𝑛,

𝜉2 = 𝑢𝑛 + Δ𝑡𝛼𝑓(𝑡𝑛, 𝜉1) = 𝑢𝑛 + Δ𝑡𝛼𝑓(𝑡𝑛, 𝑢𝑛).

The update is thus;

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝜉2).

In the test problem case, 𝑓(𝑡𝑛, 𝒖𝑛) = 𝒆 − 𝑴𝒖𝑛, and we get the update

𝒖𝑛+1 = 𝒖𝑛 + Δ𝑡 [𝒆 − 𝑴(𝒖𝑛 + 𝛼Δ𝑡(𝒆 − 𝑴𝒖𝒏))] .

After a few lines of computation, we get the following iteration,

𝒖𝑛+1 = [𝑰 − Δ𝑡(𝑰 − 𝛼Δ𝑡𝑴)𝑴] 𝒖𝑛 + [Δ𝑡(𝑰 − 𝛼Δ𝑡𝑴)] 𝒆. (3.1)

This iteration is of the form 𝒖𝑛+1 = 𝑲𝒖𝑛 + 𝑳𝒆, where

𝑳 = Δ𝑡 [𝑰 − 𝛼Δ𝑡𝑴] (3.2)

and
𝑲 = 𝑰 − 𝑳𝑴 = [𝑰 − Δ𝑡(𝑰 − 𝛼Δ𝑡𝑴)𝑴] . (3.3)

We recognize this iteration as a linear stationary iteration, which converges to a unique fixed point for any
starting value 𝒖0 if and only if 𝜌(𝐾) < 1, [16, Ch. 2.2], where 𝜌(𝑲) is the spectral radius of 𝑲. Furthermore,
this iteration satisfies the consistency requirement 𝑲 = 𝑰 − 𝑳𝑴, so the fixed point, when it exists, is
𝒖∗ = 𝑴−1𝒆.

Remark. One may remark that 𝑲 = 𝑝(Δ𝑡𝑴) with 𝑝(𝑧) = 1 − 𝑧 + 𝛼𝑧2 a polynomial. This polynomial is
also the stability polynomial of the RK method [15].

3.2.2 Residual ratios
We have shown in the last section the sufficient and necessary condition for the solver to converge to the
desired solution 𝒖∗ = 𝑴−1𝒆. This condition is that 𝜌(𝑲) < 1. The spectral radius can be computed
with power iterations [17, Pt. V], but this is an expensive task that we may not be able to do in practice.
Furthermore, the derivation of 𝑲 is specific to this method, and may not be as accessible with other methods.
We instead turn our attention to another method.

We set 𝒖0 = 𝒆 as an initial value. We define the relative residual after 𝑘 steps as

𝑟𝑘 = ||𝑴𝒖𝑘 − 𝒆||
||𝒆||

, (3.4)

15

where ||.|| is the 2-norm.

If the solver we chose is stable, then ||𝑟𝑘|| → 0 as 𝑘 → ∞. We define now the residual ratio at step 𝑘 to be
the ratio of the residuals at step 𝑘 and 𝑘 − 1. That is

𝜌𝑘 = 𝑟𝑘
𝑟𝑘−1

= ||𝑴𝒖𝑘 − 𝒆||
||𝑴𝒖𝑘−1 − 𝒆||

. (3.5)

Note that the residual ratio depends on both the problem parameters and the solver parameters. It will be
useful in future sections to make that relation evident by using the notation 𝜌𝑘,𝑏,𝑛(𝛼, Δ𝑡). Figure 3.1 shows
the evolution of the relative residual, as well as the residual ratio for specific parameters. After a certain
number of iterations, the residual ratio stabilizes. This can be however be after a large amount of iterations,
so the rate of convergence can be costly to compute.

0 200 400 600 800 1000
Iteration

10 4

10 2

100

Re
la

tiv
e

Re
sid

ua
l r

n

0 200 400 600 800 1000
Iteration

0.985

0.990

0.995

Re
sid

ua
l r

at
io

Figure 3.1: Evolution of the residual norm over iteration, with problem parameters 𝑛 = 50 and 𝑏 = 0.05,
and RK parameters Δ𝑡 = 1 and 𝛼 = 0.2.

3.3 A small experiment
We are interested in finding the best parameters (Δ𝑡, 𝛼) to use for some specific problem parameters (𝑏, 𝑛).
Ideally, we should minimize the asymptotic residual ratio 𝜌∞, but this is computationally intensive, so we
restrict ourselves to minimizing the residual ratio 𝜌𝑘 after a fixed amount of iterations.

As we’ve seen in Figure 3.1, 𝜌𝑘 can vary quite a bit depending on 𝑘, so we decide to investigate the residual
ratio after 10 iterations and 100 iterations. We set the problem parameters 𝑏 = 0.05, and 𝑛 = 100, and we
plot 𝜌𝑘,0.05,100(Δ𝑡, 𝛼) for different values of 𝑘. This is achieved by making a linear grid for parameters Δ𝑡
and 𝛼 of size 100 × 100, where 𝛼 varies between 0 and 1, and Δ𝑡 varies between 0 and 5, then computing
the residual ratios on that grid.

We wish to find the optimal parameters for this specific problem, that is, the ones that minimize 𝜌𝑘, for
different values of 𝑘. We are also interested in seeing how much the optimal parameters depend on 𝑘.

16

After 100 iterations, we see that we need to choose the parameters in more narrow region than after 10
iterations to get 𝜌100 < 1, suggesting that convergence of the solver may not hold even if it seems to hold
for the first few iterations. However, this doesn’t seem to be the case when we consider higher values of 𝑘.
Nevertheless, we can see how the solver parameters interact with the residual ratio.

By doing this experiment, we motivate the following method: using a grid search, look for the solver
parameters that minimize 𝜌𝑘, where 𝑘 has to be chosen as low as possible to minimize computing time, but
also high enough to ensure that the solver won’t diverge after more iterations. This method however need
to be repeated for each individual problem parameters. We therefore explore a possible solution to this
problem by using a reinforcement learning algorithm to “learn” the optimal solver parameters 𝛼 and Δ𝑡, as
a function of the problem parameters 𝑏 and 𝑛.

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

0.996

0.997

0.998

0.999

1.000

10

(a) 𝜌10

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

0.996

0.997

0.998

0.999

1.000

10
0

(b) 𝜌100

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

0.992

0.994

0.996

0.998

1.000

20
0

(c) 𝜌200

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

50
0

(d) 𝜌500

Figure 3.2: Contour plot of some residual ratios 𝜌𝑘, for different 𝑘 after different number of iterations, for
the specific problem parameters 𝑛 = 100 and 𝑏 = 0.05. Note that the area in white is where 𝜌𝑘 > 1.

17

Chapter 4

Basics of Reinforcement Learning
(RL)

In this section, we outline the main ideas behind reinforcement learning and how they can be applied in the
context of this thesis. The reader familiar with the material may skip this section.

4.1 A non mathematical, yet delicious example!
In Reinforcement Learning tasks, we are training an agent that interacts with its environment by taking
decisions. In this example, we are the agent, and the environment is the kitchen. Suppose we want to cook
a delicious meal. At any point in time, we are making decisions such as;

• Which ingredients we use. Do we use tofu or seitan? Do we add spice or more chili pepper? When do
we incorporate the sauce?

• Which cookware we use? Cast iron, or non-stick pan?
• Whether to put the oven to 200∘𝐶 or 220∘𝐶.
• Or simply do nothing!

All of these decisions, which we will call actions from now on, are taken based on the current state of the
environment, that is the cooking process. How we decide which action to take given a current state will be
called the policy from now on.

After each action, the cooking process gets to a new state and we taste the meal. By tasting it, we get a
reward that depend on how well we did. Maybe the food started to burn in which case we get a negative
reward, or maybe we made the food tastier, in which case we get a positive reward. In this example, there is
a starting state, where we decide to cook something, and a terminal state, in which we finished cooking and
get to enjoy the meal.

But how do we learn how to cook, how do we know what action to take at a specific state? That is, how
do we learn the policy? We learn it by getting feedback, which is defined by the reward we get after each
action. Some of those rewards are immediate, for example, if we add some spices to our food and it tastes
better. We want to have a policy that maximizes the total rewards we get over a entire cooking session. This
also mean that we have to balance how we prefer the immediate rewards against the future rewards. For
example, adding a spice may make the meal taste better in the short term, for which we get a reward, but it
may clash later when we add other ingredients, leading to a worse meal and worse rewards down the line.

18

Each time we cook, we learn what works and what doesn’t, and remember that for any future time we cook.
But, if we want to get better at cooking, we must not just repeat the actions that worked! We also have to
take some risks, and explore the potential actions we can take at each state! On the other hand, we still
need to rely and exploit what we know. There is a balance to find between exploitation and exploration so
as to learn as fast as possible.

4.2 Another example: Leonardo the rabbit
The last example is an intuitive way of thinking of reinforcement learning as similar to the way we animals
learn about the world and its processes. The ideas behind reinforcement learning borrow a lot from the
fields of psychology and neuroscience[18], and modelling how we learn is a gargantuan task that is, for this
very reason, outside of the scope of this thesis!

We turn our attention to a more modest example that is much easier to model, and is an example that
one can find in a lot of reinforcement learning books[8], [19]. We consider the case of Leonardo the rabbit.
Leonardo, the agent, is situated in the outside world, which is represented as a 3 × 3 grid (the environment).
He wants to get to the carrot at the bottom right as fast as possible. To help Leonardo get to his meal, we
will use reinforcement learning.

4.2.1 States
The first thing we do is give a number to each box in the grid, from 1 to 9. We call the set of all boxes
number as the state set, which we denote by 𝒮. In this example, 𝒮 = {1, 2, … , 9} (see Figure 4.1). A state is
defined as any element in the state set, which we denote by 𝑠 ∈ 𝒮. The state is the box Leonardo is in.

1

4 5 6

7 8 9

2 3

Figure 4.1: Can you help special agent Leonardo get to his carrot? The grid environment, where our fluffy
friend is situated in. His state is 𝑠 = 1.

4.2.2 Actions
Leonardo, in this grid, can move in any 4 directions, that is left, right, up or down. We call this the action
set 𝒜, and in this example 𝒜 = {left,right,up,down}. An action is defined as any element in the action set,
which we denote by 𝑎 ∈ 𝒜.

19

4.2.3 State transitions
At this point, we can introduce a time variable 𝑡. The initial time is set to 𝑡 = 0, and, after Leonardo
takes an action 𝑡 moves forward by 1, and he finds himself in a new state. This is what we call a state
transition(see Figure 4.2).

We want to keep track of Leonardo positions and actions over time, which is why we denote the state
Leonardo is in at time 𝑡 by 𝑆𝑡, and the action he takes by 𝐴𝑡. In this example, there is the initial state
𝑆0 = 1.

Remark. 𝑆𝑡 and 𝐴𝑡 are random variables, which is we note in uppercase. Specific observations of 𝑆𝑡 and 𝐴𝑡
will be in lowercase, that is respectively 𝑠𝑡 and 𝑎𝑡.

Current state, time t Next state, time t+1

1

4 5 6

7 8 9

2 3 1

4 5 6

7 8 9

2 3

Figure 4.2: An example of state transition. Leonardo, being at the state 𝑠𝑡 = 4, takes the action 𝑎𝑡 = right.
After this action, he is at the state 𝑠𝑡+1 = 5. Leonardo gets the reward 𝑟𝑡+1 = −5.

4.2.4 Policy
Leonardo, as the agent, only has access to his current state 𝑆𝑡. He has to take an action 𝐴𝑡, but how does
he know which action to take? To do that, he uses a policy, which we denote by a function 𝜋. More formally,
𝜋 is a function that defines the probability of taking the action 𝐴𝑡 = 𝑎 if the state is 𝑆𝑡 = 𝑠. We denote this
by 𝜋(𝑎|𝑠).

Suppose for example that 𝑆𝑡 = 3. Leonardo has no idea of where the carrot is, but he knows that he can
not go up nor to the right, so his policy is to go down, or right at random. Then:

• The probability to go right is 𝜋(right, 3) = 0.5.
• The probability to go down is 𝜋(down, 3) = 0.5.

More specifically, for any state 𝑠, we define the conditional probability mass function 𝜋(𝑎|𝑠) = Pr(𝐴𝑡 =
𝑎|𝑆𝑡 = 𝑠), where Pr denote a probability. Hence, for any fixed state 𝑠, ∑𝑎∈𝒜 𝜋(𝑎|𝑠) = 1.

Remark. We will assume that Leonardo only cares about what his current state is to take an action, and
not for how long he has been in the grid. This makes the policy independent of the time 𝑡.

20

4.2.5 Rewards
While Leonardo only takes actions by looking at his current state, he still wants to get to the carrot as fast
as possible. He knows his current state 𝑠𝑡 and takes the action 𝑎𝑡. Doing so, he ends up in the state 𝑠𝑡+1
and he gets a reward.

• The red colored box are difficult to get in, so if he ends up on one of the red colored box, he gets a
reward of −5. This is for example the case in Figure 4.2.

• If he ends up on the carrot, he gets a reward of +5.
• If he ends up in any other state, he gets a reward of −1, as he does not want to lose time.

More formally, we denote the reward Leonardo gets after taking the action 𝐴𝑡 from the state 𝑆𝑡 by 𝑅𝑡+1.
The set of all possible rewards is denoted by ℛ. Here ℛ = {−1, 5, −5}. 𝑅𝑡 is again a random variable and
we denote an observation of the reward at time 𝑡 by 𝑟𝑡.

4.2.6 State transitions and rewards probabilities
Suppose now that there is a teleporter in the 4th box. This teleporter is however unreliable. Half the time,
it teleports whoever steps in the box to the 9𝑡ℎ box, meaning Leonardo could potentially get directly to his
prize! The other half of the time, however, it teleports the user to the 7𝑡ℎ box.

Suppose now that Leonardo is at state 𝑠𝑡 = 1, he takes the action 𝑎𝑡 = down to the teleporter(see Figure 4.3).
Then:

• The next state is 𝑠𝑡+1 = 9 with probability 0.5.
• The next state is 𝑠𝑡+1 = 7 with probability 0.5.

But now, the reward he gets is random too!

• If he end up in the 9𝑡ℎ box, 𝑟𝑡+1 = 5.
• If the teleporter does not work and he ends up in the 7𝑡ℎ box, 𝑟𝑡+1 = −1.

More specifically, this means that state transitions and rewards need to be modelled by a probability, more
specifically, the probability of getting a reward 𝑟 ∈ ℛ, and that the next state is 𝑠′ ∈ 𝒮 given that the agent
takes the action 𝑎 ∈ 𝒜 at the state 𝑠 ∈ 𝒮. We formalize a state transition probability as the conditional
probability defined in the sample space 𝒮 × ℛ

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).

4.3 Finite Markov decision process
We formalize the above example by defining a Markov decision process (MDP). This definition and the ones
up until the end of this chapter are adapted from [19].

Definition 4.1. (Markov decision process). A finite Markov decision process (MDP) is defined as a
discrete time process, where we have:

• A finite set of all states 𝒮.
• A finite set of all possible actions 𝒜.
• A reward set ℛ(𝑠, 𝑎), which contains the potential rewards received after taking any action 𝑎 ∈ 𝒜

from any state 𝑠 ∈ 𝒮.

21

1

4 5 6

7 8 9

2 3

Figure 4.3: Will it be worth the risk? Leonardo has taken the action 𝑎 = down at the state 𝑠 = 1.
There is a 50% chance he ends up right on his prize! The state transition and reward probability is
𝑝(𝑠′ = 9, 𝑟 = 5|𝑠 = 1, 𝑎 = 𝑑𝑜𝑤𝑛) = 0.5. Similarly, 𝑝(𝑠′ = 7, 𝑟 = −1|𝑠 = 1, 𝑎 = 𝑑𝑜𝑤𝑛) = 0.5.

We use the notation 𝑆𝑡, 𝐴𝑡 as the state and action of the process at time 𝑡. The reward 𝑅𝑡 is the reward
received at time t. 𝑆𝑡, 𝐴𝑡 and 𝑅𝑡 are random variables.

A Markov decision process also has a model, which consists of the state and reward transition probabilities:

• The probability, given that the current state is 𝑠, and that the action taken is 𝑎, that the next state is
𝑠′ and the next reward is 𝑟. That is 𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).

Furthermore, a Markov decision process has a policy that governs, for any state 𝑠 ∈ 𝒮, the probability of
taking action 𝑎 ∈ 𝒜, that probability is 𝜋(𝑎|𝑠) = Pr(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠). We assume that the policy is not
dependent on time.

Finally, a Markov decision process has the Markov property, or lack of memory. The state transition and
rewards probabilities are only dependent on the current state 𝑆𝑡 and action 𝐴𝑡, and not the states and
actions that preceeded. Mathematically, Pr(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡, 𝐴𝑡, 𝑆𝑡−1, 𝐴𝑡−1, … , 𝑆0, 𝐴0) = Pr(𝑆𝑡+1 =
𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡, 𝐴𝑡).

An example of Markov decision process with two states can be seen in Figure 4.4.

Remark. The state space 𝒮 and the action space 𝒜 can be finite or not. We only consider the case of finite
Markov decision process to make matters easier.

Remark. The model in a Markov decision process is often impossible to define in advance. This problem is
remedied by using model free algorithms.

4.4 State Value and Bellman Equation
We have a Markov decision process, which serves as a nice mathematical formalization of an agent and
its environment [8]. Now we want to train the agent to make the best possible decisions? Answering this
question is the goal of the next sections.

We first define a trajectory. We denote by 𝑆𝑡 the state of an agent at instant 𝑡. Then, according to the
policy, this agent takes the action 𝐴𝑡. After taking this action, the agent is now at the state 𝑆𝑡+1, and it
gets the rewards 𝑅𝑡+1. Then the agent takes action 𝐴𝑡+1, and gets to a new state 𝑆𝑡+2 with reward 𝑅𝑡+2.

22

s1

s2
a1

0.40.6

0.1 0.9

a0

a0 a1

0.3

1

1

0.7 0.2

0.8

5

-2

5

-4

5

-2

Figure 4.4: An example of a Markov decision process with two states 𝑠1 and 𝑠2 and two possible actions 𝑎0
and 𝑎1 for each states. The dashed lines represent the model transitions. After each action, the process get
to a new state and a reward is given, here in dark red.

This continues indefinitely. We define the trajectory of an agent with starting state 𝑆𝑡 = 𝑠𝑡 as the chain of
states, actions and rewards from time 𝑡 onward:

𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 → 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1 → 𝑅𝑡+2, 𝑆𝑡+2, 𝐴𝑡+2 → ⋯ ,

Note that, due to the Markov property and the fact that we assume the policy is time independent, the
starting value of 𝑡 is not important.

Remark. In some environments, it is natural for the agent to have a task that has a starting state and a finishing
states (for example, beginning a cooking session and finishing it, or starting a game and winning/losing at
it.) We call these tasks episodic tasks and in these cases, a finite trajectory 𝑆0, 𝐴0 → … → 𝑆𝑇 is also called
an episode. In the cases where the task is such that no such state can be defined, a trajectory is not finite
and we call these tasks continuing tasks, which will be the case in this thesis.

In reinforcement learning setting, we assume that we have no control of the environment model (for example,
one can not change the rules of a game), but that we have control over the agent decisions (i.e the policy)
and how we reward that agent. The goal of any reinforcement learning algorithm is thus to define the
rewards properly and then to find a policy that maximizes the rewards the agent gets. We now define the
discounted return along a trajectory,

Definition 4.2. Let 𝑡 = 0, 1, …. The (discounted) return along the trajectory 𝑆𝑡, 𝐴𝑡 → 𝑆𝑡+1, 𝐴𝑡+1, 𝑅𝑡+1 →
𝑆𝑡+2, 𝐴𝑡+2, 𝑅𝑡+2 → … is the random variable given by

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ =
+∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+1+𝑘,

where 𝛾 ∈ [0, 1) is called the discount rate.

23

Remark. By setting a discount rate that is less than 1 in continuing tasks, we make sure that the discounted
return is well defined in the case of bounded rewards. Indeed, if, for any 𝑡, |𝑅𝑡| ≤ 𝑀, then ∑+∞

𝑘=0 |𝛾𝑘𝑅𝑡+1+𝑘| ≤
∑+∞

𝑘=0 𝛾𝑘𝑀 = 𝑀
1−𝛾 , so the series is absolutely convergent.

The discounted return is thus the sum of rewards along a trajectory, with a penalty for rewards far in the
future, controlled by the discount rate. The discount rate is chosen depending on whether we want the agent
to favor short term rewards, in which case a discount rate closer to 0 can be chosen, or long term rewards,
with a discount rate closer to 1.

Since the discounted return is a random variable, we can look at its expectation, in particular, we are
interested in its conditional expectation, given a starting state 𝑆𝑡 = 𝑠. This expectation is called the state
value [8].

Definition 4.3. State value The state value of a state 𝑠 is the function, defined for any 𝑠 ∈ 𝒮 as the
conditional expectation of the discounted return, given 𝑆𝑡 = 𝑠,

𝑣𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … |𝑆𝑡 = 𝑠],

where 𝜋 is a given policy.

Remark. Once again, the Markov property and the time independence of the policy mean that the state
value does not depend on time.

We remark that

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + …
= 𝑅𝑡+1 + 𝛾 (𝑅𝑡+2 + 𝛾𝑅𝑡+3 + …)
= 𝑅𝑡+1 + 𝛾𝐺𝑡+1. (4.1)

This expression of the return can be used in conjunction with the definition of the state value above to get

𝑣𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠] + 𝛾𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠]. (4.2)

The first term is the expectation of immediate reward, following a certain policy 𝜋, the second is the
expectation of future rewards. Let us expand on that formula a bit more. We now make use of the “law of
total expectation”:

Theorem 4.1. Let 𝑋 and 𝑌 be random variables, and suppose 𝐸[|𝑌 |] < ∞. Then

𝐸[𝑌] = 𝐸 [𝐸[𝑌 |𝑋]]

Using this, the expectation of immediate reward is

𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠] = 𝐸[𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡]] = ∑
𝑎∈𝒜

𝜋(𝑎|𝑠) ∑
𝑟∈ℛ

∑
𝑠′∈𝒮

𝑟𝑝(𝑠′, 𝑟|𝑠, 𝑎).

We now develop the second part in the RHS of Equation 4.2, and use the law of total expectation again to
get

24

𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠] = 𝐸[𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝑆𝑡+1]] = ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠)𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′],

where 𝑝(𝑠′|𝑠) = ∑𝑎∈𝒜 ∑𝑟∈ℛ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝜋(𝑎|𝑠) is the probability of the next state being 𝑠′ if the current
state is 𝑠. Because of the Markov property of the MDP, we can remove the conditioning 𝑆𝑡 = 𝑠 and thus,
𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′] = 𝐸[𝐺𝑡+1|𝑆𝑡+1 = 𝑠] = 𝑣𝜋(𝑠′). Then

𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑠′∈𝒮

∑
𝑎∈𝒜

∑
𝑟∈ℛ

𝑣𝜋(𝑠′)𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠, 𝑎). (4.3)

Putting Equation 4.2 and Equation 4.3 together, we get Bellman’s equation:

𝑣𝜋(𝑠) = ∑
𝑎∈𝒜

∑
𝑟∈ℛ

∑
𝑠′∈𝒮

𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)] . (4.4)

Remark. The Bellman equation depends on the given policy and gives a recursive relation for the state
values. Solving this equation is called policy evaluation which involves fixed point iterations (see example
below).

Example 4.1. We can directly derive the state values in the MDP in Figure 4.4. We remark that in
this example, given a specific state transition, the reward we get is deterministic, which simplifies the
computations.

In particular, for the state 𝑠2, There are two possible actions 𝑎0 and 𝑎1 we can take. The policy is to take
action 𝑎0 with a probability 0.6, and action 𝑎1 with a probability 0.4. When we take for example action 𝑎0,
the probability of the next state being 𝑠1 is 0.3, in which case the reward is 5. Proceeding similarly for all
the possible actions and rewards, we get

𝑣𝜋(𝑠2) =
1

∑
𝑎=0

∑
𝑟∈ℛ

2
∑
𝑠′=1

𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠2, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)]

= 0.6 ∑
𝑟∈ℛ

2
∑
𝑠′=1

𝑝(𝑠′, 𝑟|𝑠2, 𝑎 = 0) [𝑟 + 𝛾𝑣𝜋(𝑠′)] + 0.4 ∑
𝑟∈ℛ

2
∑
𝑠′=1

𝑝(𝑠′, 𝑟|𝑠2, 𝑎 = 1) [𝑟 + 𝛾𝑣𝜋(𝑠′)]

= 0.6 [0.3(5 + 𝛾𝑣𝜋(𝑠1)) + 0.7(−2 + 𝛾𝑣𝜋(𝑠2))] + 0.4 [0.2(−2 + 𝛾𝑣𝜋(𝑠2)) + 0.8(5 + 𝛾𝑣𝜋(𝑠1)] .

After some computations, we end up with

𝑣𝜋(𝑠2) = 1.5 + 𝛾(0.5, 0.5) (𝑣𝜋(𝑠1)
𝑣𝜋(𝑠2)) .

Similarly 𝑣𝜋(𝑠1) = 4.1 + 𝛾(0.9, 0.1)(𝑣𝜋(𝑠1), 𝑣𝜋(𝑠2))⊺. This leads to the system:

(𝑣𝜋(𝑠1)
𝑣𝜋(𝑠2)) = (4.1

1.5) + 𝛾 (0.9 0.1
0.5 0.5) (𝑣𝜋(𝑠1)

𝑣𝜋(𝑠2)) .

We stop here to remark that this equation is of the form 𝑣𝜋 = 𝑟𝜋 + 𝛾𝑷𝜋𝑣𝜋. 𝑷𝜋 can be related to a state
transition matrix in a markov chain and is row stochastic. Furthermore, since 𝛾 < 1, we motivate solving
the equation by using fixed point iterations. This is the main idea behind dynamic programming [20]. In
this case, we can simply solve the system directly. For example, with 𝛾 = 0.5, we get the state values
𝑣𝜋(𝑠1) = 7.875, 𝑣𝜋(𝑠2) = 4.625.

25

4.5 Action Value
The state value gives information about a specific state, however, we are also often interested in knowing
how much we stand to gain by taking a particular action at a particular state. This lead to the definition of
the action value.

Definition 4.4. Action value The action value is defined as the expectation of discounted return 𝐺𝑡,
given a specific action 𝑎, taken at the current state 𝑠:

𝑞𝜋(𝑎|𝑠) = 𝐸 [𝐺𝑡|𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠] = 𝐸 [∑
|

𝐴𝑡 = 𝑎, 𝑆𝑡 = 𝑠] ,

where 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ….

We also have, from Definition 4.3, and the law of total expectation,

𝑣𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸 [𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]] .

Then,
𝑣𝜋(𝑠) = ∑

𝑎∈𝒜
𝜋(𝑎|𝑠)𝐸 [𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ,

and we can get the relation between state value and action value:

𝑣𝜋(𝑠) = ∑
𝑎∈𝒜

𝜋(𝑎|𝑠)𝑞𝜋(𝑎|𝑠). (4.5)

We remark that by viewing 𝜋(𝑎|𝑠) as a probability mass function, we can express the state values as another
expectation:

𝑣𝜋(𝑠) = 𝐸[𝑞𝜋(𝑎|𝑠)],

where 𝐴 is random variable with p.m.f 𝜋(𝑎|𝑠). Actions values are important in the sense that they tell us of
the “value of taking an action over another”, and they appear naturally in almost all reinforcement learning
algorithms. One important thing to note is that, by “comparing” Equation 4.5 and Equation 4.4, we get an
equivalent definitions of the action values as

𝑞𝜋(𝑎|𝑠) = ∑
𝑟∈ℛ

∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋(𝑠′)] . (4.6)

Equation 4.6 means that if we have access to the state values, we can compute the action values, while
Equation 4.5 works in the opposite way, deriving state values from the action values.

Remark. A more rigorous approach to derive Equation 4.6 would be similar to how we derive Bellman’s
equation.

26

4.6 Optimal policy and value iteration
Now that we have defined the state values, we want to find a policy that maximizes them, that is, find a
policy which we denote by 𝜋∗(𝑎, 𝑠) such that, for any state 𝑠 and for any policy 𝜋(𝑎|𝑠), 𝑣𝜋∗(𝑠) ≥ 𝑣𝜋(𝑠). It
turns out that not only this optimal policy exist, but that we can find it by repeating the following steps,
starting from any policy 𝜋0:

• Test the current policy, that is evaluate the state values.
• From these state values, compute the action values.
• Using these action values, set a new and better policy that aim to choose the best actions.

More specifically, we present the pseudo code for the value iteration algorithm.

Value iteration pseudocode
INPUT:
- An initial policy 𝜋0.
- Discount rate 𝛾.
- A stopping criterion.
OUTPUT: An approximation of the optimal policy 𝜋∗, at an arbitrary precision;

i <- 0;
DO:

Compute the state values 𝑣𝜋𝑖
(𝑠), using fixed point iterations;

FOR all state 𝑠:
Compute, for all 𝑎 ∈ 𝒜,the action values 𝑞𝜋𝑖

(𝑎, 𝑠) using Equation 4.6 and the computed state
values;

Denote by 𝑎∗ the action with the best action value 𝑞𝜋𝑖
(𝑎∗, 𝑠);

Set the new policy 𝜋𝑖+1(𝑎∗, 𝑠) = 1, and set for all the other actions 𝜋𝑖+1(𝑎, 𝑠) = 0;
END FOR
i <- i + 1

UNTIL Stopping criterion is met.

This algorithm is important in the sense that we can prove that it converges to an optimal policy, that
maximizes all state values! Unfortunately, this algorithm scales poorly. In Example 4.1, we found that
computing the state values is equivalent to solving a 2 × 2 linear system. In the general case, this system as
the same dimensions as the number of states. Depending on the problem, solving this linear system can
become prohibitively expensive (for example, there are several orders of magnitude more legal board states
in a game of go than atoms in the observable universe [21]), and yet we can design a program that can
beat the best human players handily [5]! Nevertheless, the main idea of starting with an initial policy, then
getting a better and better policy over time is a fundamental idea in reinforcement learning.

27

Chapter 5

Policy Gradient Method

Now that we have access to the main definitions used in RL, we can study the problem we had at the end of
chapter 3 through the lens of RL.

The last chapter has been quite long as we introduced reinforcement learning, so as a reminder, we summarize
the work we’ve done so far. We have a test problem, the convection diffusion equation Equation 2.1, which
we discretize, and with the following problem parameters:

• A parameter 𝑏 ∈ [0, 1] in the steady-state convection diffusion equation , and

• a discretization parameter 𝑛 ∈ ℕ defining the number of interior points in the linear grid used to
discretize this equation.

We end up with a linear system of the form 𝑴𝒖 = 𝒆 (Equation 2.4). To solve this system, we solve the ODE
𝒖′(𝑡) = 𝒆 − 𝑴𝒖(𝑡) using an explicit Runge-Kutta method with two solver parameters (see Section 3.2):

• Δ𝑡, the (pseudo) time step, and
• 𝛼, a parameter specific to the Runge Kutta method used.

We relate this solver to a stationary iterative method of the form 𝒖𝑛+1 = 𝑲𝒖𝑛 + 𝑳𝒆, where 𝑲 = 𝑰 − 𝑳𝑴.
This method is convergent if and only if the spectral radius of 𝑲 is strictly less than one. We could
compute this spectral radius, but this is an computationally intensive task, so we use an approximation.
This approximation is the residual ratio after 10 iterations of the Runge-Kutta solver, starting with 𝒖0 = 𝒆.

We define this ratio as 𝜌10,𝑏,𝑛(Δ𝑡, 𝛼), a function parametrized by 𝑏 and 𝑛, with arguments Δ𝑡 and 𝛼. We
are faced with the following optimization problem:

For any problem parameters 𝑏, 𝑛, find the optimal solver parameters

(Δ𝑡∗, 𝛼∗) = arg min
Δ𝑡,𝛼

𝜌10,𝑏,𝑛(Δ𝑡, 𝛼). (5.1)

Remark. We’ve already seen in Section 3.3 that the optimal parameters can lead to divergence of the solver
once more iterations are computed, which is problematic, so we are perfectly happy to find “good enough,
but not optimal” solver parameters where this issue will not happen, hopefully. This issue can be mitigated
by computing the residual ratio after more iterations, at the cost of it being more computationally expensive.

28

5.1 Modelling the problem as a reinforcement learning problem
We are interested in using reinforcement learning to solve the above problem. The last chapter provided an
overview of the elements of reinforcement learning, and we can now translate our problem in a RL setting.

Modelling the states
We start by modelling the states. The most natural way of defining the states is to use the problem
parameters 𝑏 and 𝑛. We thus define a specific state as a pair of problem parameters 𝑠 = (𝑏, 𝑛) ∈ [0, 1] × ℕ∗.

Modelling the actions and the policy
Once we know a specific state, that is the problem parameters, we need to choose the two solver parameters
Δ𝑡 and 𝛼. A specific action is then a pair 𝑎 = (Δ𝑡, 𝛼) ∈ ℝ+ × [0, 1]. The policy is then denoted by
𝜋(𝑎 = (Δ𝑡, 𝛼)|𝑠 = (𝑏, 𝑛)). We will discuss the policy more in depth in the next chapter.

Modelling the rewards
Once a state-action pair is chosen, the residual ratio 𝜌10,𝑏,𝑛(Δ𝑡, 𝛼) is computed. The reward can then be
defined as a function of the computed residual ratio,

𝑟 = 1 − 𝜌10,𝑏,𝑛(Δ𝑡, 𝛼).

This reward is positive when the residual ratio is less than one, and negative otherwise. This mean that a
reinforcement learning agent, which seek to maximize the reward it gets, will aim to minimize the residual
ratio.

State transitions
In the definition of a Markov decision process (Definition 4.1), we also have a probabilistic model of the
state and rewards transition 𝑝(𝑠′, 𝑟|𝑠, 𝑎). Right away, we can see that this model is difficult to define, as we
can not now, for a specific state and action, what reward we will get.

On the other hand, we can still control the state transitions. In this regard, we choose a new state, at
random, after an action and reward is computed. More precisely, we choose a new parameter 𝑏, uniformly
between 0 and 1, and a new parameter 𝑛, between 5 and 200, following a discrete uniform distribution as
well. These values for 𝑛 are arbitrary, with a maximum of 200 to spare us of long computational time when
computing the rewards. We also cap the minimum value of 𝑛 to an arbitrary minimum of 5 as those values
are simply too low to get a acceptable discretization error, and we do not want to train an agent to solve for
these states.

Other challenges
There are still several challenges that need to be addressed:

• In our problem, the State-Action space is continuous. We previously assumed finite spaces.
• In the definition of a MDP, we have a model: if we know a specific state and action, we have a

probabilistic model of the reward the agent get and the next state of the environment. In our case, we
know the model the state transitions, but we have no way of knowing the rewards.

29

5.2 Dealing with a large state-action space.
In the last chapter, we made the assumption that every space, be it state, action, or reward is finite. This
assumption, while practical to derive theoretical results from, is in practice not always followed, as some
states may be continuously defined for example.

We take our problem as formulated before. The state is defined as the problem parameters, that is 𝑏 ∈ [0, 1]
and 𝑛 = 1, 2, …. Without any adjustment, the state space is of the form [0, 1] × ℕ, and is not finite.

Similarly, the policy is defined by choosing the values (𝛼, Δ𝑡) ∈ [0, 1] × ℝ+, depending on the state. Once
again, the action space is continuous.

One approach would be to discretize the entire state × action space, and then to apply classical dynamic
programming algorithms to get some results. Then, after an optimal policy is found, do some form of
interpolation for problem parameters outside of the discretized space. This approach has its own merit, as
there are 3 dimensions that need to be discretized, and 𝑛 can be chosen within a finite range.

Another approach is to use an approximation function. One way to do that is to approximate the value
function 𝑣(𝑠) by some parametrization 𝑣(𝑠) ≈ ̂𝑣(𝑠, 𝜔) where 𝜔 ∈ ℝ𝑑 are 𝑑 parameters. Such methods are
called value based. The method we use in this thesis, on the other hand, use an approximation of the policy
function defined as 𝜋(𝑎|𝑠, 𝜽), where 𝜽 ∈ ℝ𝑑 is a parameter vector. Such methods are called policy based. The
reason to chose from this class of algorithm is two-fold.

• When thinking about the test problem, a straightforward approach is to choose the solver parameters
as a linear function of the problem parameters. A policy based approach allow us to do exactly this.

• By doing so, we automatically take care of the need to interpolate between discrete states and action,
which would be another headache we would have to deal with.

Remark. Approximation is usually done using neural networks. In the case of this thesis, a linear approxi-
mation is used.

5.3 Model-based, model-free
One problem we are faced with is the issue of the model of the state and rewards transition, that is

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = Pr(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑎|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).

Thankfully, we are dealing with random variables, and with random variables, Monte-Carlo methods follow.

In particular, we often only need to compute the expectations of functions of random variables. This can
be done is the following way. Let 𝑋 be a random variable and 𝑥1, 𝑥2, … , 𝑥𝑛 be independent samples of 𝑋.
Then, we can estimate 𝐸[𝑋] as the empirical mean of our samples, that is:

�̂�𝑛 = 𝑥1 + ⋯ + 𝑥𝑛
𝑛

.

5.4 Policy gradient methods
5.4.1 Objective function
Let 𝜽 ∈ ℝ𝑑 be a parameter vector and 𝜋(𝑎|𝑠, 𝜽) = 𝑝(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠, 𝜽) an approximate policy that is derivable
w.r.t 𝜃. We want to define an objective function 𝐽(𝜽) that we want to maximize in order to find the best
value of 𝜽.

30

To this end, we make the following assumption, the first one being for simplicity, and the second one being
specific to the problem we modelled in the former sections in this chapter.

• The states and action set are finite.
• The states are uniformly distributed, and so are the state transitions. That is, for any 𝑠, 𝑠′ ∈ 𝒮, Pr(𝑆𝑡 =

𝑠) = 1/|𝒮| = Pr(𝑆𝑡 = 𝑠|𝑆𝑡−1 = 𝑠′), where |𝒮| is the number of element of 𝑆. This correspond to the
idea of taking a new state at random in our problem.

We define the objective function

𝐽(𝜽) = 𝑣𝜋(𝑆) = 1
|𝒮|

∑
𝑠∈𝑆

𝑣𝜋(𝑠). (5.2)

That is, 𝐽(𝜽) is the average, (non weighted, as per assumption) state value.

We want to maximize this objective function by changing the policy parameter 𝜃. To this end, we use a
gradient ascent algorithm of the form

𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝐽(𝜽), (5.3)

where ∇𝜽 represents the gradient operator, w.r.t 𝜽. This gradient is

∇𝜽𝐽(𝜽) = 1
|𝒮|

∑
𝑠∈𝑆

∇𝜽𝑣𝜋(𝑠). (5.4)

We are faced with the immediate issue that the algorithm requires knowing this gradient.

5.4.2 Policy gradient theorem
We prove, using the aforementioned assumptions a specific case of the policy gradient theorem. This proof
is adapted from [8],chap 13.2. We also remind the reader that both the state values and the action values
depend on the policy 𝜋 and thus depend on 𝜽.

From the last chapter, we have the expression of the state values

𝑣𝜋(𝑠) = ∑
𝑎∈𝒜

𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠).

We take the gradient of 𝑣𝜋(𝑠) w.r.t 𝜃 to get

∇𝜽𝑣𝜋(𝑠) = ∑
𝑎∈𝒜

∇𝜽𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠) + 𝜋(𝑎|𝑠, 𝜽)∇𝜽𝑞𝜋(𝑎, 𝑠). (5.5)

We now turn our attention to the ∇𝑞𝜋(𝑎, 𝑠) term above. We use the expression of the actions value in
Equation 4.6,

∇𝜽𝑞𝜋(𝑎, 𝑠) = ∇𝜽 [∑
𝑟

∑
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋(𝑠′))] .

Both 𝑝(𝑠′, 𝑟|𝑠, 𝑎) and the reward 𝑟 do not depend on the policy, and therefore not on 𝜽. The gradient is thus

31

∇𝜽𝑞𝜋(𝑎, 𝑠) = 𝛾 ∑
𝑠′

[∑
𝑟

𝑝(𝑠′, 𝑟|𝑎, 𝑠)] ∇𝜽𝑣𝜋(𝑠′).

By the assumption of the state transition probabilities and the law of total probabilities ∑𝑟 𝑝(𝑠′, 𝑟|𝑎, 𝑠) =
1/|𝒮|, and thus

∇𝑞𝜋(𝑎, 𝑠) = 𝛾 ∑
𝑠′

1
|𝒮|

∇𝑣𝜋(𝑠′).

We recognize the expression of the objective function’s gradient ∇𝜽𝐽(𝜽) to get ∇𝜽𝑞𝜋(𝑎, 𝑠) = 𝛾∇𝜽𝐽(𝜽). We
insert this in Equation 5.5 and we get

∇𝜽𝑣𝜋(𝑠) = ∑
𝑎∈𝒜

∇𝜽𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠) + 𝛾𝜋(𝑎|𝑠, 𝜽)∇𝜽𝐽(𝜽).

Since the policy 𝜋(𝑎|𝑠) is a probability over the action space, it sums to 1 and we can get the second part of
the RHS out of the sum

∇𝜽𝑣𝜋(𝑠) = 𝛾𝐽(𝜽) + ∑
𝑎∈𝒜

∇𝜽𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠).

Using ∇𝐽(𝜽) = 1
|𝒮| ∑𝑠∈𝒮 ∇𝜽𝑣𝜋(𝑠), we get

∇𝜽𝐽(𝜽) = 1
|𝒮|

∑
𝑠∈𝒮

[𝛾𝐽(𝜽) + ∑
𝑎∈𝒜

∇𝜽𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠)] , (5.6)

= 𝛾∇𝜽𝐽(𝜽) + ∑
𝑠∈𝒮

1
|𝒮|

∑
𝑎∈𝒜

∇𝜽𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠). (5.7)

And after a small rearrangement of the terms,

∇𝜽𝐽(𝜽) = 1
1 − 𝛾

∑
𝑠∈𝒮

1
|𝒮|

∑
𝑎∈𝒜

∇𝜋(𝑎|𝑠, 𝜽)𝑞𝜋(𝑎, 𝑠, 𝜽).

This is a special case of the policy gradient theorem. The reason to put the fraction 1/|𝒮| inside the first
sum is to get a parallel with the more general expression, where in general, we have a weighted sum with
different weight depending on the state. Depending on the objective function used, this can be for example
the stationary distribution of the states for a given policy.

We state the policy gradient theorem in a more general form.

Theorem 5.1. Policy gradient theorem (For continuing cases, with discount factor 𝛾 < 1.)

Let 𝜋(𝑎|𝑠, 𝜽) be a stochastic policy that is derivable w.r.t 𝜽.

Let 𝜇(𝑠) be the probability mass function of the stationary distribution of the states, following the policy 𝜋.

Define the objective function 𝐽(𝜽) = 𝑣𝜋(𝑆) = ∑𝑠∈𝒮 𝜇(𝑠)𝑣𝜋(𝑠). The gradient of 𝐽 w.r.t 𝜽 is then proportional
to the weighted sum

32

∇𝜽𝐽(𝜽) ∝ ∑
𝑠

𝜇(𝑠) ∑
𝑎

𝑞𝜋(𝑎, 𝑠, 𝜽)∇𝜋(𝑎|𝑠, 𝜽).

Remark. With our assumptions 𝜇(𝑠) = 1
|𝑆| . A proper treatment of the problem would involve properly

defining Markov chains and stationary distributions, which is out of the scope of this thesis. We’ve seen in
example Example 4.1 that the state transition matrix 𝑃𝜋 appears. This relation between Markov chains and
MDP is explored in [19], as well as the policy gradient theorem. For more information on Markov chains,
see [22].

The policy gradient theorem is powerful in the sense that we can derive the gradient of the objective function,
something that is tied to the environment, to establishing the gradient of the parametrized policy function,
which we have more control over.

5.4.3 REINFORCE algorithm
Here, we introduce reinforce the classic REINFORCE algorithm [10]. Even with the policy gradient theorem,
we are still faced with the problem of estimating the action values 𝑞𝜋. We remark that the formula in the
policy gradient is an expectation,

∇𝜽𝐽(𝜽) ∝ 𝐸 [∑
𝑎

𝑞𝜋(𝑎, 𝑆)∇𝜋(𝑎|𝑆, 𝜽)] ,

where 𝑆 is the random variable given by the probability mass function 𝜇(𝑠). By using the identity ∇𝑓
𝑓 = ∇ ln 𝑓,

we can also rewrite the inner term as

∑
𝑎

𝑞𝜋(𝑎, 𝑆)∇𝜽𝜋(𝑎|𝑆, 𝜽) = ∑
𝑎

𝜋(𝑎|𝑆)𝑞𝜋(𝑎, 𝑆)∇𝜽 ln 𝜋(𝑎|𝑆, 𝜽),

which is also an expectation, and thus

∇𝐽(𝜃) ∝ 𝐸 [𝑞𝜋(𝐴, 𝑆)∇𝜽 ln 𝜋(𝐴|𝑆, 𝜽)] .

We also know from before that the action value is also the conditional expectation of the return 𝑞𝜋(𝑠, 𝑎) =
𝐸[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. Thus,

∇𝜽𝐽(𝜽) ∝ 𝐸 [𝐺𝑡∇ ln 𝜋(𝐴𝑡|𝑆𝑡, 𝜽)] . (5.8)

Note that the variable 𝑡 has been introduced Since this is an expectation, we can estimate it by using
samples. Retracing our steps, the 𝑘’th sample, which we note as 𝑒𝑘 have to be chosen as follow.

• Chose a state 𝑆0 = 𝑠 at random, following its stationary distribution.
• Chose an action 𝐴0 = 𝑎 according to the policy 𝜋(𝐴0 = 𝑎|𝑆0 = 𝑠, 𝜽).
• Compute the log policy gradient. Then, get the return 𝐺0 = 𝑔 for the state-action pair (𝑠, 𝑎). The

sample is then 𝑒𝑘 = 𝑔∇𝜽 ln 𝜋(𝑎|𝑠, 𝜽).

Then, the estimator for the RHS in Equation 5.8 is given by

̂𝐸𝑛 = 1
𝑛

𝑛
∑
𝑘=1

𝑒𝑘,

33

where 𝑛 is the number of samples we have. Using a gradient ascent algorithm, we can update the parameters
𝜽,

𝜽𝑡+1 = 𝜽𝑡 + 𝛼 1
𝑛

𝑛
∑
𝑘=1

𝑒𝑘.

This method has three problems:

• The states need to be chosen according to the stationary distribution 𝜇(𝑠), which is not trivial.
Thankfully, with our assumption of random state transitions, 𝜇(𝑠) = 1

|𝒮| .
• To get each sample 𝑒𝑘, we need to compute a return. Doing so, we end up visiting a lot of different

states and gathering a lot of information that we end up discarding. This issue is an issue of low sample
efficiency and is usually best handled via temporal difference based methods, where one estimate the
returns after a finite number of steps. These methods are out of scope of the thesis.

• For continuing cases(where the are no final states), the return is an infinite sum of random variable,
which we can not sample. We will have to stop after 𝜏 transitions and use the estimate 𝐺𝑡 ≈
∑𝜏

𝑡=0 𝛾𝑡𝑅𝑡+1. This introduces some bias, in particular when 𝛾 ≈ 1 and 𝜏 is small. Once again, this
can be resolved by temporal difference based methods.

Let us forget about the truncations issues for now. When we sample the expectation in Equation 5.8, we get
a trajectory

𝑠0, 𝑎0 → 𝑠1, 𝑎1 → 𝑠2, 𝑎2 … .

Then, we can estimate, via Monte Carlo estimation, the return 𝐺0. Doing this, we also have access to the
trajectory

𝑠1, 𝑎1 → 𝑠2, 𝑎2 … ,

and thus we can also estimate the return 𝐺1! Therefore, we can use a single episode to estimate multiple
samples! Using this idea, we can generate an episode of length 𝜏 + 1:

𝑠0, 𝑎0 → 𝑠1, 𝑎1, 𝑟1 → 𝑠2, 𝑎2, 𝑟2 → … → 𝑠𝜏+1, 𝑟𝜏+1.

For any 𝑡 = 0, … , 𝑇, the estimated return is then defined as

̂𝐺𝑡 =
𝜏

∑
𝑘=𝑡

𝛾𝑡−𝑘𝑟𝑘+1.

Remark. Because the initial state is chosen following a stationary distribution, we also ensure that the
subsequent states are chosen following this same distribution.

We can now state the REINFORCE algorithm [10], also called policy gradient Monte-Carlo in pseudo code
format:

REINFORCE algorithm pseudocode
INPUT:
- A parameter vector 𝜽 ∈ ℝ𝑑, and a parametrized policy 𝜋(𝑎|𝑠, 𝜽) with computable gradient ∇𝜽𝜋(𝑎|𝑠, 𝜽);
- Learning rate 𝛼;

34

- Discount rate 𝛾;
- Episode length 𝜏 + 1;
- Number of episode to iterate for 𝑛;
OUTPUT: The updated parameter 𝜽;

FOR 𝑛 episodes:
Generate an episode, following 𝜋(𝑎|𝑠, 𝜽), of length T+2 the form 𝑠0, 𝑎0 → 𝑠1, 𝑎1, 𝑟1 → 𝑠2, 𝑎2, 𝑟2 → … →

𝑠𝜏+1, 𝑟𝜏+1;
FOR t=0 … �:

Compute the estimated return ̂𝐺𝑡 = ∑𝜏
𝑘=𝑡 𝛾𝑡−𝑘𝑟𝑘+1;

Compute the log gradient ∇ ln 𝜋(𝑎𝑡|𝑠𝑡, 𝜃);
Update 𝜃 ← 𝜃 + 𝛼 ̂𝐺𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡, 𝜽);

Remark. Because of the finite episode length, the REINFORCE algorithm is more suited for episodic tasks,
but it is also usable for continuing tasks, if we accept some bias. Another alternative to reduce bias would
be to discard the last few estimated returns ̂𝐺𝜏, ̂𝐺𝜏−1, … as they are the most biased.

The REINFORCE update can be interpreted as updating the parameters to make it more likely to take an
action if the estimated sample return is good, and the opposite otherwise. Furthermore, by looking at the
term ∇ ln 𝜋 = ∇𝜋

𝜋 , we can see that if the probability of taking the action is low, then the gradient becomes
bigger! That way, this gradient act as a balance between exploration and exploitation. Otherwise we would
update the parameters as much for a rare action than a common one, and the common action is taken more
often which lead to the common action having much more sway in the process.

35

Chapter 6

Implementation

6.1 A linear approximation of the policy
We have now defined policy gradient methods as a way to address two issues that happened when we
translated the problem as defined in the beginning of the last chapter. These issues being the need for a
model free method, and dealing with large, and even infinite state and action set.

We need to define a policy of the form 𝜋(𝑎|𝑠, 𝜽), where 𝑎 = (Δ𝑡, 𝛼) is the action of choosing the solver
parameters, given a pair of problem parameters, that is some state, 𝑠 = (𝑏, 𝑛). We choose to have a policy of
the form (Δ𝑡, 𝛼) ≈ 𝐴(𝑏, 𝑛)⊺ + 𝑐, where 𝐴 is a two by two matrix and 𝑐 a 2-vector. Furthermore, this policy
need to be stochastic for the REINFORCE algorithm to work.

We remark that the action space is, in our case, continuous, so the policy has to be over a continuous action
space. In the discrete case, the policy is 𝜋(𝑎|𝑠, 𝜽) is a probability mass function, so that ∑𝑎 𝜋(𝑎|𝑠, 𝜽) = 1.
We extend it to continuous action space by considering 𝜋 as a probability density function instead, and
replacing the sum by an integral, that is ∫

𝑎∈𝒜
𝜋(𝑎|𝑠, 𝜽) = 1[23].

Let 𝑠 be a given state, 𝑠 = (𝑏, 𝑛). We first define the values 𝜇𝛼 and 𝜇Δ𝑡,

(𝜇𝛼
𝜇Δ𝑡

) = (𝜃0 𝜃1
𝜃2 𝜃3

) (𝑏
𝑛) + (𝜃4

𝜃5
) . (6.1)

where 𝜽 = (𝜃0, 𝜃1, … , 𝜃5)⊺ ∈ ℝ6. 𝜇𝛼 and 𝜇Δ𝑡
can be regarded as “the deterministic policy”. Around this

deterministic policy, we add some noise, specifically Gaussian noise to get the stochastic policy

𝛼 ∼ 𝒩(𝜇𝛼, 𝜎2),

and independently,
Δ𝑡 ∼ 𝒩(𝜇Δ𝑡, 𝜎2).

Here 𝒩(𝜇, 𝜎2) is the normal distribution, with mean 𝜇 and standard deviation 𝜎, and we choose 𝜎 fixed in
this thesis. We thus have a policy of the Since 𝛼 and Δ𝑡 are chosen independently, the joint probability
density of both parameters is the product of both marginal probability density function, that is

𝜋(𝑎 = (Δ𝑡, 𝛼)|𝑠, 𝜽) = 𝑓1(𝛼) ⋅ 𝑓2(Δ𝑡),

36

where
𝑓1(𝛼) = 1√

2𝜋𝜎
exp (−(𝛼 − 𝜃0𝑏 − 𝜃1𝑛 − 𝜃4)2

2𝜎2) ,

and similarly,

𝑓2(Δ𝑡) = 1√
2𝜋𝜎

exp (−(Δ𝑡 − 𝜃2𝑏 − 𝜃3𝑛 − 𝜃5)2

2𝜎2) .

Taking the logarithm, we get ln(𝑓(𝛼, Δ𝑡)) = ln(𝑓1(𝛼)) + ln(𝑓2(Δ𝑡)). Thus,

ln(𝑓1(𝛼)) = ln(1√
2𝜋𝜎

) − (𝛼 − 𝜃0𝑏 − 𝜃1𝑛 − 𝜃4)2

2𝜎2 .

We now take the gradient w.r.t 𝜽 to get

∇𝜽 ln(𝑓1(𝛼)) = 𝜉𝛼(𝑏𝜃0, 𝑛𝜃1, 0, 0, 𝜃4, 0)⊺, (6.2)

where 𝜉𝛼 = (𝛼−𝜃0𝑏−𝜃1𝑛−𝜃4)
𝜎2 .

Doing a similar thing with Δ𝑡, we get the gradient,

∇𝜽 ln(𝑓2(Δ𝑡)) = 𝜉Δ𝑡(0, 0, 𝑏𝜃2, 𝑛𝜃3, 0, 𝜃5)⊺, (6.3)

where 𝜉Δ𝑡 = (Δ𝑡−𝜃2𝑏−𝜃3𝑛−𝜃5)
𝜎2 . We now add both gradients together to get the gradient of the policy, for a

specific action 𝑎 = (𝛼, Δ𝑡) and state 𝑠 = (𝑏, 𝑛):

∇𝜽 ln 𝜋(𝑎|𝑠, 𝜽) = 𝜉𝛼(𝑏𝜃0, 𝑛𝜃1, 0, 0, 𝜃4, 0)𝑇 + 𝜉Δ𝑡(0, 0, 𝑏𝜃2, 𝑛𝜃3, 0, 𝜃5)⊺. (6.4)

6.2 Implementation of the REINFORCE algorithm
Now that everything has been defined, the REINFORCE algorithm can be applied to find an optimal policy.

6.2.1 Algorithm code
We present in this section the full training in a pseudo code format. The full code is written in a more
modular way, and is available on the appendix, as well as on GitHub.

##Doesn't run, as it needs other functions
##but is a good bridge between pseudocode and the
##full code
learning_rate = 1e-8
gamma = 0 #Discount factor
initial_theta = [0,0,0,0,0.3,2] #Good enough theta
sigma = 0.1 #Standard dev for the policy
number_of_episodes = 1000
episode_length = 20

37

https://github.com/MelanieInky/ThesisBook

for i in range(number_of_episodes):
#Generate an episode
#Choose an initial starting state, at random(uniformly)
b , n = state_transition()
#Create an episode object, which will have
#The history of the trajectory
episode = Episode(length = episode_length)
for j in range(episode_length):

#Get the action, according to the policy we defined before
delta_t, alpha = get_action(b,n,sigma,theta) #pi(a|s,theta)
#Then compute the residual ratio, after n_iter of the RK2 solver.
res_ratio = compute_res_ratio(b,n,delta_t,alpha,n_iter = 10)
reward = 1 - res_ratio #The lower the res ratio, the better the reward
#Save the state action and rewards inside the episode object
#so that we can access it later
episode.save(b,n,alpha,delta_t,reward, position = j)
#Then get to a new state, at random
b , n = state_transition()

#Now that we have an episode, we can apply REINFORCE
#and update our policy accordingly
for k in range(episode_length):

#Get access to s_k, a_k, r_{k+1}
b , n , delta_t, alpha , reward = episode.get(k)
#Get the log likelihood of the action a_k, as in Eq 6.4
log_lik_gradient = get_log_lik_gradient(b,n,alpha,delta_t,sigma)
#Estimage the return Eq 5.9
estimated_return = 0
for l in range(k, episode_length):

#episode.reward_hist[l] is R_{l+1}
estimated_return += episode.reward_hist[l] * (gamma**(l-t))

##Update the policy
theta = theta + learning_rate * log_lik_gradient * estimated_return

#We end up with an updated theta, that is a better policy.

6.2.2 A first experiment
We implement the REINFORCE algorithm to the test problem. There are a few hyperparameters to set.

• The learning rate is set to 𝛼 = 1 × 10−8.
• The discount rate is set to 𝛾 = 0, as the state transitions have no relationship with the actions taken,

there is no reason to prefer long term rewards.
• Because the discount rate is so low, there is no bias added by estimating the returns at the end of the

episodes. The episodes length is set to 20 as we want to use the updated policy as often as possible.
• The standard deviation of the policy parameters is set to 𝜎 = 0.1.

This leaves the choice of the initial value for 𝜽. While it is possible for the parameters to be random, or all
set to 0, we use the experiment done in chapter 4 to use. In Figure 3.2a, it seems that a policy of 𝛼 = 0.3
and Δ𝑡 = 2 is a reasonable choice. Since this was done only for a single set of problem parameters, we have
no idea of the relationship between problem parameters and optimal solver parameters. Therefore, we only
set the parameter 𝜃4 = 0.3, and 𝜃5 = 2, the other parameters are set to 0.

38

The algorithm is run for 50000 episodes, and we observe the evolution of the parameters theta(Figure 6.1).

Since the discount rate is set to 0, in any state, the return is the instant reward received by the agent over
a single episode. So, for an episode of length 𝑙, we have the rewards 𝑟1, 𝑟2, … , 𝑟𝑙. Then, we can plot the
average reward 𝑟𝑎𝑣 = 𝑟1+𝑟2+⋯+𝑟𝑙

𝑙 over each episode. Because the variance of 𝑟𝑎𝑣 is still high, we use the
rolling average of 𝑟𝑎𝑣 over the last 𝑘 = 50 episodes as a smoother.

The average reward is the no scaling reward in Figure 6.2 and is trending upward with successive episodes,
which is the intended behavior of the algorithm. However, there are certain problems that have been made
apparent by the two plots:

• Despite running the algorithm for a long time, some of the elements of 𝜽 have barely changed, and it
is clear that we are far from any convergence of the reward function.

• Even with smoothing, it is apparent that the method has a high variance.
• It seems that 𝜃1 and 𝜃3 vary quite a bit over time whereas the other parameters have a steady rate of

change.

0.0020
0.0015
0.0010
0.0005

0

Th
et

a

theta_0

0.0025
0.0020
0.0015
0.0010
0.0005

theta_1

0.0009
0.0006
0.0003

0
theta_2

0 10 20 30 40 50
0.012
0.009
0.006
0.003

0
theta_3

0 10 20 30 40 50
0.296
0.297
0.298
0.299
0.300

theta_4

0 10 20 30 40 50
Episode no. / 1000

1.9980
1.9985
1.9990
1.9995

2
theta_5

Figure 6.1: Evolution of the 𝜃 parameters in a first experiment.

The slow apparent convergence rate can not be mitigated by a higher learning rate, as this empirically leads
to divergence issues.

The high variance is typical of reinforcement learning tasks, and in particular Monte Carlo based methods,
which REINFORCE is a part of. That being said, there exists much better methods that can reduce this
variance, at the expense of introducing some bias, such as for example actor-critics methods [8, Ch. 13.5], or
proximal policy optimization (PPO) [24]. Both of these methods are not explored in this thesis.

6.3 Scaling the parameters
To address the slow convergence problem, we start with a motivating example.

39

0 10000 20000 30000 40000 50000
Episode number

0.4

0.3

0.2

0.1

0

ro
llin

g
re

wa
rd

No scaling
Scaling for n

Figure 6.2: Evolution of the rolling average (k=50) of the average episode reward, with or without scaling.

6.3.1 A motivating example of gradient descent
Consider the loss function 𝑓(𝑥, 𝑦) = 𝑥2 + 9𝑦2. The function admits a global minimum at 𝑥 = 𝑦 = 0, and its
gradient given by

∇𝑓(𝑥, 𝑦) = (2𝑥, 18𝑦)⊺.

Therefore, the gradient descent iteration, with learning rate 𝛼 > 0, is the iteration

(𝑥𝑡+1
𝑦𝑡+1

) = (𝑥𝑡
𝑦𝑡

) − 𝛼 (2𝑥𝑡
18𝑦𝑡

) .

That is 𝑥𝑡+1 = (1 − 2𝛼)𝑥𝑡 and 𝑦𝑡+1 = (1 − 18𝛼)𝑦𝑡. The iterates converge to 𝑥 = 𝑦 = 0 if and only if 𝛼 < 1/9.
If however, 1

9 < 𝛼 < 1, we will have convergence for 𝑥, but not for 𝑦.

The reason for this is that the gradient is steeper in the 𝑦 direction than the 𝑥 direction, which leads to
comparatively bigger change in 𝑦 than 𝑥 in the gradient descent iterations.

To remedy this, we can use a change of variable 𝑧 = 3𝑦. Then 𝑓(𝑥, 𝑧) = 𝑥2 + 𝑧2. The gradient descent
iteration is then given by

(𝑥𝑡+1
𝑦𝑡+1

) = (𝑥𝑡
𝑦𝑡

) − 𝛼 (2𝑥𝑡
2𝑦𝑡

) .

40

That is, 𝑥𝑡+1 = (1 − 2𝛼𝑥)𝑥𝑡 and 𝑧𝑡+1 = (1 − 2𝛼𝑦)𝑦𝑡. This converges to 0 if and only if 0 < 𝛼 < 1
2 , which

means we can afford a much bigger learning rate. With 𝛼 = 1
2 , the gradient descent algorithm can now

converge to 0 in a single iteration!

6.3.2 Changing the variable
This section is born from an intuitive idea and is for this reason less formal than the rest. Looking at the
equation for the gradient of the log policy (Equation 6.4), we notice that the gradient has a similar expression
in each direction. More particularly, the gradient in the direction 𝑖 is given by the partial derivative

𝜕 ln 𝜋(𝑎|𝑠, 𝜽)
𝜕𝜃𝑖

= 𝜉𝛼,Δ𝑡(_)𝜃𝑖

where 𝜉𝛼,Δ𝑡 is either 𝜉𝛼 (Equation 6.2) or 𝜉Δ𝑡 (Equation 6.3), and (_) is either:

• 𝑏 in the directions 𝜃0 and 𝜃2.
• 𝑛 in the directions 𝜃1 and 𝜃3.
• 1 in the directions 𝜃4 and 𝜃5.

Using the motivating example above, we’ve seen that it can be a good idea to rescale some variables so that
the gradient is as “steep” in all directions. However, in this case, 𝑛 can vary between 5 and 200, while 𝑏 only
varies between 0 and 1. This motivate the idea that, in order to make a gradient “as steep” in all directions.

Instead of using 𝑛 directly, we now use the scaled variable

𝑛′ = 𝑛 − 5
200

.

Since 𝑛 can vary between 5 and 200, 𝑛′ can have values between 0 and 1, just like the values of 𝑏. Everything
then follows by simply replacing 𝑛 by 𝑛′ in Section 6.1. The new deterministic policy is

(𝜇𝛼
𝜇Δ𝑡

) = (𝜃0 𝜃1
𝜃2 𝜃3

) (𝑏
𝑛′) + (𝜃4

𝜃5
) , (6.5)

and the equation of the gradient is unchanged, with the exception of replacing 𝑛 by 𝑛′ everywhere.

With this change implemented, we rerun the first experiment. All the parameters are the same, except that
the learning rate can is now set to 𝛼 = 2 × 10−4 without divergence. Compared to the first experiment, the
average episode reward is much better, as seen in Figure 6.2.

6.4 Impact of initial conditions
Gradient based iterations use the local information about an objective (or loss) function 𝐽(𝜃) to compute
the update 𝜽 → 𝜽 ± 𝛼∇𝐽(𝜽). This local behavior also means that any convergence of gradient descent is to
a local minimum, and we can’t be certain that this mimimum is a global minimum.

Let us test whether the algorithm converges to the same values regardless of initial conditions. The third
experiment is then to run the algorithm with the same parameters, but with varied initial conditions, and to
visualize the results, both in the average rewards and the evolution of 𝜽 over 200000 episodes.

The evolution of 𝜽 is in Figure 6.3, and the rolling average of the average episode reward is plotted in
Figure 6.4 for different initial value for 𝜽. It turns out that while convergence in reward is to the same
values, the parameter 𝜃3 does not seem to converge to the same value. Furthermore, even with such a large
amount of episodes, it is not clear if the other parameters converged.

41

0
0.1
0.2
0.3
0.4
0.5

Th
et

a
theta_0

Initial theta
[0,0,0,0,0,0] [0,0,0,0,0.3,2] [0.5,0.5,0.5,0.5,0.5,0.5]

0
0.1
0.2
0.3
0.4

theta_1

0.2

0

0.2

0.4

theta_2

0 50 100 150 200

0.2
0

0.2
0.4

theta_3

0 50 100 150 200
0

0.1
0.2
0.3
0.4

theta_4

0 50 100 150 200
Episode no. / 1000

0

0.5

1

1.5

2
theta_5

Figure 6.3: Evolution of the theta parameters with different initial parameters.

0 50000 100000 150000 200000
Episode number

0

0.0025

0.0050

0.0075

0.0100

Ro
llin

g
av

g Initial theta
[0,0,0,0,0,0]
[0,0,0,0,0.3,2]
[0.5,0.5,0.5,0.5,0.5,0.5]

Figure 6.4: Evolution of the rolling average(𝑘 = 500) of the average episode reward for different initial
parameters.

42

6.5 Further results
The average reward of the episode is a nice way to report on the performance of the method. However, it is
difficult to interpret how the model performs once we have found some optimal parameters 𝜽∗. In particular,
by using the REINFORCE algorithm, the policy function has to be stochastic during training. The actual
policy we choose can, however, be deterministic. So, at the risk of adding some bias, we remove the noise 𝜎
in the policy and choose to use the “deterministic policy” 𝛼 = 𝜇𝛼, Δ𝑡 = 𝜇Δ𝑡, as in Equation 6.1, and we
denote this policy by 𝜋𝑑(𝑎|𝑠, 𝜽∗). For the value of 𝜽∗, we use its last value in the second experiment, which
is (with some rounding off)

𝜽∗ = (−3.606 × 10−3, 4.476 × 10−3, −3.598 × 10−4, −0.3542, 0.2435, 1.1305)⊺.

Then, we compute the value of 𝜌10,𝑏,𝑛 using this policy and for different values of 𝑛 and 𝑏, the results are as
below in Figure 6.5. While we have convergence at any point, the convergence is slow, and the maximum
value for 𝜌10 is 0.99917. Referring back to the grid search experiment(see Figure 3.2), this slow convergence
is also partly an issue with the solver itself.

Since we trained the policy on 𝜌10, it may be a good idea to check if the solver still converges when we
compute more iterations. The result are in Figure 6.5. There are some points where the solver diverges,
which is a problem in particular because the point where it diverges are for small values of 𝑏, which is often
the case physically.

This divergence indicates that it may be a good idea to further train the learned policy by computing 𝜌100,
and having a reward of 1 − 𝜌100 instead of 1 − 𝜌10. This of course means that the training time will have to
be longer. In that case, we can set 𝜽∗ as a starting parameter for the policy.

43

0 0.25 0.50 0.75 1
b

0

50

100

150

200

n

Residual ratio.
<0.99
[0.99,0.992)
[0.992,0.994)
[0.994,0.996)
[0.996,0.998)
[0.998,1)

(a) 𝜌10. Maximum residual ratio: 0.99922.

0 0.25 0.50 0.75 1
b

0

50

100

150

200

n

Residual ratio.
<0.99
[0.99,0.992)
[0.992,0.994)
[0.994,0.996)
[0.996,0.998)
[0.998,1)
>1

(b) 𝜌100. Note the divergence in black, for low values of 𝑏.

Figure 6.5: Evolution of the residual ratio 𝜌10 and 𝜌100, with the learned policy, depending on the problem
parameters 𝑛 and 𝑏.

44

Chapter 7

Summary and Discussion

In this thesis, we started with the idea of using numerical differential equations solver as an iterative solver
for a linear system. More specifically, we turned our attention to a specific RK method, which has two
parameters to chose from, which we called the solver parameters. We also chose a specific type of linear
equation which arises from the discretization of the steady state, one dimensional convection-diffusion
equation. This linear equation depends on two parameters, which we called the problem parameters. The
goal was then to see if we could optimize for the solver parameters, as a function of the problem parameters,
to maximize the convergence rate of the method. To do that, we used reinforcement learning. In particular,
we applied the classical REINFORCE algorithm to our problem. Using the implementation in this thesis, we
observed that the implemented solution works, with limited results. In particular, if we use the parameter
that we learn, it is possible for the solver to diverge for some problem parameters. There are some avenues
to improve these results, in particular:

• On the technical front, the implemented algorithm is very elementary, and suffers from the issue of high
sample variance, being a Monte Carlo method. This issue can be addressed by more better algorithms.

• The policy used was a linear function of the problem parameters. We may want to explore if choosing a
policy taking into account interactions between the problem parameters, or applying some transforms
to them before fitting a linear policy. It is also possible to fit a neural network to the policy.

• Possible incremental improvements can also be made. This involves for example experimenting with
the reward function design, or setting a decaying learning rate to improve convergence of the RL
algorithm.

At last, we need not restrict ourselves to just one type of solver. We could potentially train an intelligent
agent to chose which numerical solver to use, depending on the problem.

There is on the other hand one glaring issue with the way that reinforcement learning was applied to
this problem. A core philosophy of reinforcement learning is that the states, actions and rewards are all
interdependent. This interdependence was absent in this thesis, with the state transition being random, no
matter the action taken. While it was possible to adapt this philosophy as presented in this thesis, this
somewhat hampers the utility of using reinforcement learning over other methods. In particular, one may
wonder if the implementation presented here is essentially “gradient descent, with extra steps”.

It is therefore preferable to change how the problem is approached. One approach could be train an agent
to dynamically change the solver parameters over successive iterations for some specific set of parameters.
In that case, the agent would need information about the evolution of the residual, which complicates the
modeling problem. Another approach would be to make use of meta learning [25], where instead of directly
finding the optimal solver parameters, we learn how to find them efficiently.

45

References

[1] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis
with latent diffusion models.” 2022. Available: https://arxiv.org/abs/2112.10752

[2] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International
Journal of Robotics Research, vol. 32, pp. 1238–1274, Sep. 2013, doi: 10.1177/0278364913495721.

[3] B. Hambly, R. Xu, and H. Yang, “Recent advances in reinforcement learning in finance,” Mathematical
Finance, vol. n/a, no. n/a, doi: https://doi.org/10.1111/mafi.12382.

[4] X. Chen, L. Yao, J. McAuley, G. Zhou, and X. Wang, “A survey of deep reinforcement learning
in recommender systems: A systematic review and future directions.” 2021. Available: https:
//arxiv.org/abs/2109.03540

[5] D. Silver et al., “Mastering the game of go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, Jan. 2016, doi: 10.1038/nature16961.

[6] A. Fawzi et al., “Discovering faster matrix multiplication algorithms with reinforcement learning,”
Nature, vol. 610, no. 7930, pp. 47–53, Oct. 2022, doi: 10.1038/s41586-022-05172-4.

[7] S. Cuomo, V. S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine
learning through physics-informed neural networks: Where we are and what’s next.” 2022. Available:
https://arxiv.org/abs/2201.05624

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, Second. The MIT Press,
2018. Available: http://incompleteideas.net/book/the-book-2nd.html

[9] C. Mahoney, “Reinforcement learning: A review of the historic, modern, and future applications
of this special form of machine learning.” https://towardsdatascience.com/reinforcement-learning-
fda8ff535bb6, 2021.

[10] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement
learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992, doi: 10.1007/BF00992696.

[11] W. A. Adkins, M. G. Davidson, and S. (Online service), Ordinary differential equations. in
Undergraduate texts in mathematics,. New York, NY : Springer New York :, 2012. Available:
http://dx.doi.org/10.1007/978-1-4614-3618-8

[12] Bellman Richard Ernest, Stability theory of differential equations /. New York : McGraw-Hill, 1953.

[13] A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology.
Academic Press, 2018. Available: https://ludwig.lub.lu.se/login?url=https://www.sciencedirect.com/
science/book/9780128096703

[14] A. Iserles, A first course in the numerical analysis of differential equations /, 2. ed. in Cambridge
texts in applied mathematics. Cambridge ; Cambridge University Press, 2009.

[15] P. Birken, “Numerical methods for stiff problems.” Lecture Notes, 2022.

46

https://arxiv.org/abs/2112.10752
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1111/mafi.12382
https://arxiv.org/abs/2109.03540
https://arxiv.org/abs/2109.03540
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/s41586-022-05172-4
https://arxiv.org/abs/2201.05624
http://incompleteideas.net/book/the-book-2nd.html
https://towardsdatascience.com/reinforcement-learning-fda8ff535bb6
https://towardsdatascience.com/reinforcement-learning-fda8ff535bb6
https://doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/978-1-4614-3618-8
https://ludwig.lub.lu.se/login?url=https://www.sciencedirect.com/science/book/9780128096703
https://ludwig.lub.lu.se/login?url=https://www.sciencedirect.com/science/book/9780128096703

[16] Wolfgang. Hackbusch and S. (Online service), Iterative solution of large sparse systems of equations /,
2nd ed. 2016. in Applied mathematical sciences,. Cham : Springer International Publishing :, 2016.
Available: http://dx.doi.org/10.1007/978-3-319-28483-5

[17] L. N. Trefethen and D. Bau, Numerical linear algebra /. Philadelphia : SIAM, Society for Industrial;
Applied Mathematics, cop. 1997.

[18] E. Ludvig, M. Bellemare, and K. Pearson, “A primer on reinforcement learning in the brain:
Psychological, computational, and neural perspectives,” in Computational Neuroscience for Advancing
Artificial Intelligence: Models, Methods and Applications, 2011, pp. 111–144. doi: 10.4018/978-1-
60960-021-1.ch006.

[19] S. Zhao, “Mathematical foundations of reinforcement learning.” 2023. https://github.com/
MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning (accessed Mar. 30,
2023).

[20] R. Bellman, R. E. Bellman, and R. Corporation, Dynamic programming. in Rand corporation
research study. Princeton University Press, 1957. Available: https://books.google.se/books?id=
rZW4ugAACAAJ

[21] J. Tromp, “Counting legal positions in go — tromp.github.io.” https://tromp.github.io/go/legal.html.

[22] S. M. Ross and E. A. Peköz, A second course in probability. ProbabilityBookstore.com, 2007. Available:
https://books.google.se/books?id=g5j6DwAAQBAJ

[23] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning.” 2019. Available:
https://arxiv.org/abs/1509.02971

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” CoRR, vol. abs/1707.06347, 2017, Available: http://arxiv.org/abs/1707.06347

[25] M. Andrychowicz et al., “Learning to learn by gradient descent by gradient descent,” CoRR, vol.
abs/1606.04474, 2016, Available: http://arxiv.org/abs/1606.04474

47

http://dx.doi.org/10.1007/978-3-319-28483-5
https://doi.org/10.4018/978-1-60960-021-1.ch006
https://doi.org/10.4018/978-1-60960-021-1.ch006
https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning
https://github.com/MathFoundationRL/Book-Mathmatical-Foundation-of-Reinforcement-Learning
https://books.google.se/books?id=rZW4ugAACAAJ
https://books.google.se/books?id=rZW4ugAACAAJ
https://tromp.github.io/go/legal.html
https://books.google.se/books?id=g5j6DwAAQBAJ
https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1606.04474

Bachelor’s Theses in Mathematical Sciences 2023:K20
ISSN 1654-6229

LUNFNA-4048-2023

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Introduction
	Motivation : Pseudo time iterations
	A Test Problem, the Convection Diffusion Equation
	Explicit Runge-Kutta Method
	A small introduction to explicit Runge-Kutta methods
	Application to the test problem
	A note on stability
	Residual ratios

	A small experiment

	Basics of Reinforcement Learning (RL)
	A non mathematical, yet delicious example!
	Another example: Leonardo the rabbit
	States
	Actions
	State transitions
	Policy
	Rewards
	State transitions and rewards probabilities

	Finite Markov decision process
	State Value and Bellman Equation
	Action Value
	Optimal policy and value iteration

	Policy Gradient Method
	Modelling the problem as a reinforcement learning problem
	Modelling the states
	Modelling the actions and the policy
	Modelling the rewards
	State transitions
	Other challenges

	Dealing with a large state-action space.
	Model-based, model-free
	Policy gradient methods
	Objective function
	Policy gradient theorem
	REINFORCE algorithm

	Implementation
	A linear approximation of the policy
	Implementation of the REINFORCE algorithm
	Algorithm code
	A first experiment

	Scaling the parameters
	A motivating example of gradient descent
	Changing the variable

	Impact of initial conditions
	Further results

	Summary and Discussion
	References

