
MASTER’S THESIS 2023

Multi-Label Toxic Comment
Classification Using Machine
Learning: An In-Depth Study
Matilda Froste, Mosa Hosseini

ISSN 1650-2884
LU-CS-EX: 2023-27

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-27

Multi-Label Toxic Comment Classification
Using Machine Learning: An In-Depth

Study

Multi-Label klassificering av hatiska
kommentarer: en omfattande studie

Matilda Froste, Mosa Hosseini

Multi-Label Toxic Comment Classification
Using Machine Learning: An In-Depth

Study

(Toxic comment detection to combat hate speech online)

Matilda Froste
ma7874fr-s@student.lth.se

Mosa Hosseini
mo0708ho-s@student.lth.se

July 3, 2023

Master’s thesis work carried out at

Prevas, Malmö

Supervisors: Björn Granvik, bjorn.granvik@prevas.se
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ma7874fr-s@student.lth.se
mailto:mo0708ho-s@student.lth.se
mailto:bjorn.granvik@prevas.se
mailto:pierre.nugues@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

The classification of toxic comments is a well-researched area with many
techniques available. However, effectively managing multi-label categorization
still requires a considerable amount of work. In this thesis, we performed a clas-
sification experiment on over 200 thousand comments from the Jigsaw toxic
comment competition data available on Kaggle. We aimed to optimize a model
to identify six different categories of hate speech. Initially, we implemented a
baseline model using a simple vectorization technique and logistic regression.
Subsequently, we compared this model with more advanced approaches that em-
ployed elaborate vectorization techniques in conjunction with recurrent neural
networks and transformers. After thorough analysis, we found that a fine-tuned
transformer-based model called RoBERTa yielded the best performance, achiev-
ing a mean macro average F1-score of 0.808. This model surpassed the previous
state-of-the-art set by van Aken et al. (2018), which achieved an F1 score of 0.791.
Finally, we integrated the optimized model in a web application to visualize the
toxicity of messages.

Keywords: Natural language processing, machine learning, offensive speech detection,
transformers, multi-label classification

2

Acknowledgements

We want to truly thank our supervisor Pierre Nugues at LTH for all the help and ideas we
have received during the master thesis. His input has been invaluable, and having him as
a supervisor has been a pleasure. Our examiner Jacek Malec has also assisted us with many
answers along the way, for which we are very grateful.

We express our sincere gratitude to Björn Granvik at Prevas for his contribution, ideas,
and enthusiasm for this thesis. His dedication to making the world a less hateful place is truly
admirable. Finally, thanks to all the colleagues at Prevas who have assisted us along the way
and welcomed us as colleagues.

3

4

Contents

1 Introduction 7
1.1 Context . 7
1.2 Problem Formulation . 7
1.3 Contributions . 8

1.3.1 Contribution to Research . 8
1.3.2 Division of Work Between Authors 8

1.4 Related Work . 9
1.5 Background . 10

2 Data 13
2.1 Dataset . 13
2.2 Exploratory Data Analysis . 14

3 Approach 21
3.1 Data Cleaning . 21
3.2 Tokenization . 22
3.3 Text and Token Vectorization . 22

3.3.1 Bag-of-Words . 22
3.3.2 Word Embedding . 24

3.4 Model Architectures . 28
3.4.1 Logistic Regression . 28
3.4.2 Bidirectional Gated Recurrent Unit 29
3.4.3 Transformers . 30

3.5 Model Evaluation . 35
3.5.1 F1 Score . 35
3.5.2 ROC AUC Score . 35

4 Experimental Setup 39
4.1 Baseline . 39
4.2 Recurrent Neural Network . 40

5

CONTENTS

4.3 Transformers . 41
4.4 Resource Requirements and Computer Specific 42

5 Evaluation 43
5.1 Results . 43

5.1.1 Baseline . 43
5.1.2 Recurrent Neural Networks . 43
5.1.3 Transformers . 44
5.1.4 Results Summarized . 46

5.2 Discussion . 46

6 Application 49

7 Conclusions 53

References 55

6

Chapter 1

Introduction

1.1 Context
Hateful comments on the internet are a significant concern. Discussions, posts, and articles
can quickly become attacked by discriminatory, offensive, threatening, or otherwise harmful
comments. This problem is particularly destructive as it can increase the division between
groups of people or lead to severe mental health consequences targeting individuals.

Toxic comment classification is a significant area of research that involves developing and
applying techniques to identify and categorize offensive or harmful comments. Despite the
extensive study conducted in this field, effectively managing the multi-label categorization
of toxic comments remains challenging. Accurately categorizing toxic comments becomes
complex due to the subjective nature of determining the appropriate labels for each comment.
Furthermore, multiple labels add a layer of complexity, requiring a robust approach to handle
diverse categories effectively.

This thesis addresses the challenges above by exploring various machine-learning tech-
niques designed explicitly for multi-label classification in the context of toxic comment clas-
sification. This research identifies the most suitable methods for accurately categorizing toxic
comments with multiple labels by investigating and comparing different methodologies.

1.2 Problem Formulation
Natural language processing (NLP) has experienced a surge in popularity since its ground-
breaking advancements in the mid-twentieth century (Foote, 2019). One of the prominent
applications of NLP is text classification, which encompasses a wide range of areas, including
sentiment analysis of movie reviews, customer feedback analysis, and categorization of news
articles (Tunstall et al., 2022). Although text classification may appear simple at first glance,
finding the optimal model for this task can be challenging.

7

1. Introduction

The process of finding the optimal model involves several steps. Firstly, selecting a suit-
able dataset that aligns with the specific classification objective is essential. Once the dataset
is determined, we need to vectorize the text data, which means transforming raw text into a
numerical representation based on the features of the text. This step requires careful consid-
eration of various techniques and approaches, such as TF-IDF, word embeddings, or trans-
former encoders.

After preprocessing the data, the next step is to choose an appropriate model architec-
ture. Many models can classify text, including logistic regression, recurrent neural networks
(RNNs), and transformer-based models. Each model has its own set of hyperparameters that
we must fine-tune for optimal performance. Deciding on the best model architecture before-
hand can be a complex task due to the diverse characteristics of different datasets and the
wide range of possibilities and combinations of different parameters. Therefore, this thesis
investigates and compares numerous model architectures, as well as parameters, to deter-
mine the most suitable approach for the given dataset. The ultimate aim is to integrate the
optimized model into a web application, thus having a product able to filter out hate speech
without human interaction.

1.3 Contributions

1.3.1 Contribution to Research
This thesis gives an account of toxic comment classification using machine learning. It thor-
oughly explains the attempted implementations and their performance, which could inspire
future research and projects. The mean macro average F1 score obtained beats the previous
record found by van Aken et al. (2018). Therefore, the best model obtained is a state-of-the-
art model we can apply to online platforms. The actual method, in the form of code online,
is available for anyone who wants to test or improve the final tool 1.

Additionally, this report explains why a hate-comment categorization tool is needed. The
hope is that this project will serve as a tool for diminishing hate speech online.

1.3.2 Division of Work Between Authors
In the early parts of the master thesis, Mosa researched existing models and attempted sim-
ple natural language processing methods. Mosa compared different data sets and performed
introductory exploratory data analysis on the data sets of interest. Matilda, on the other
hand, focused on structuring the work. She did the planning of the project, setting dates,
communicating with professors and Prevas, as well as constructing guidelines.

Once we had chosen the data set and the objective, we jointly started researching the
techniques we had found in agreement with our LTH supervisor, Nugues. Mosa started by
illustrating and analyzing the data in a visual sense. When we had prepared the data, Mosa
started with the TF-IDF implementation, whereas Matilda researched and attempted the
more complex techniques. Simultaneously, both attempted the fastText and GloVe embed-
dings and picked the best performing. Mosa continued this part by constructing the recurrent

1https://huggingface.co/spaces/4stra/mean_or_clean

8

https://huggingface.co/spaces/4stra/mean_or_clean

1.4 Related Work

neural network model architectures for the fastText and GloVe embeddings, whereas Matilda
went on to experiment with transformers.

Matilda performed the initial feature extraction for the transformers method. She created
the code for the feature extraction, whose output we wanted to send as the input to the logis-
tic regression model. However, she needed a powerful computer to perform the extraction.
Since Mosa could do it, he ran the code for the feature extraction. Both authors were mak-
ing multilingual transformer attempts. Mosa performed the final parts of the transformer
procedure, where he compared multiple pre-trained models and fine-tuned the models.

At the end of April, we held our final presentation at Prevas. We contributed equally to
preparing the slides, choosing the content, and talking during the presentation.

Once we had presented at Prevas, Matilda focused almost entirely on writing the report,
whereas Mosa continued to find the optimal model. He simultaneously visualized the results
and added them to Section 5.1. Matilda finished chapters 1, 3, 4, and 5.

In the final stage, Matilda mainly focused on finalizing, cleaning, organizing the report,
and creating designs using Canva, whereas Mosa focused on perfecting the results, applica-
tion, and visualization parts. He also cleaned the code, organized the files, and created a
GitHub repository. Matilda wrote the popular science summary. We put equal effort into
the final presentation at LTH.

1.4 Related Work
Davidson et al. (2017) introduced significant contributions to hate speech categorization.
The authors created a dataset of tweets and annotated them as toxic or non-toxic, provid-
ing a valuable resource for hate speech classification research. Additionally, they presented
a binary classification approach for identifying hate speech based on this dataset. Further-
more, they highlight the difficulty of letting a computer predict toxicity in text, as text is
nuanced and toxic speech has many interpretations. They discuss the bias of annotation and
the variation of toxic language on online platforms. Various feature extraction techniques are
discussed in the paper, capturing different characteristics. Support Vector Machine (SVM)
operated as the machine learning classifier and ultimately presented effective results com-
pared to baseline model results. Davidson et al. (2017) provide insights into the challenges
and advancements in hate speech categorization.

In 2012 Warner and Hirschberg presented a categorization approach to hate speech. In
their work, the authors discuss their definition of hate speech and detail the process of cre-
ating a corpus. They also provide techniques for detecting hate speech that can identify ways
individuals try to bypass common “dirty word” filters. Due to the early studies, their results
are sufficient, with an F1 score of 0.63, but far from being as good as some later models.

Georgakopoulos et al. (2018) explain the need for prominent hate speech models, the
uses and limitations of existing models, and the abundance of information on the internet.
They specifically compare models based on convolutional neural networks with traditional
bag-of-word models and find that the CNN approach provides better results than the more
straightforward approaches.

A common trait of the papers mentioned is the difficulty defining toxic hate speech. The
bias of comment annotation is evident since language is nuanced, and human annotators have
different perceptions. Schmidt and Wiegand (2017) addresses subjectivity in labeling hate

9

1. Introduction

speech. Apart from describing hate detection methods, the authors also describe strategies
to combat the issue of subjectivity. Ross et al. (2017) delves deeper into the reliability of hate
speech annotations, specifically in the context of the European refugee crisis in 2015. They
performed a study with two internet groups. They presented a definition of toxic speech to
one group, whereas the other group did not see a definition beforehand. Ross et al. concluded
that toxic speech is not always binary and that more detailed instructions on toxic speech
annotation are needed before labeling comments.

In 2020, Kauranen classified hate speech as either hateful or not, in other words, binary
classification. In doing so, he got an arguably good F1 score as a result. In this Master’s thesis,
we aim to build upon the approaches presented by Kauranen. However, we decided to explore
the possibility of finding a better model and doing multi-label categorization since the field
has advanced drastically.

Wang et al. (2017) explain the challenges and difficulties with multi-label classification
and mentions that the F1 score is a good metric for this problem. We used their paper as a
source of information for multi-label categorization.

Additional relevant work for our master thesis was research within neural networks and
Transformers. By examining previous work in these areas, we gained valuable insights and
knowledge that contributed to developing and implementing our models. Regarding neural
networks, and recurrent neural network in particular, the research within long short-term
memory (LSTM) by Hochreiter and Schmidhuber (1997) and gated recurrent unit (GRU) by
Cho et al. (2014) was essential sources of information.

The second complex model architecture we use is based on Transformers, first introduced
by Vaswani et al. (2017). The module “Transformers” on Huggingface, introduced by Wolf
et al. (2019), has pre-trained transformer tokenizers and pre-trained models and was crucial
for our thesis work.

The dataset in this thesis was initially used in a Kaggle competition called ‘Toxic Com-
ment Classification Challenge’ (cjadams et al., 2017). The comments belong to between zero
and six different categories of toxicity. Another dataset regarding offensive language classi-
fication is the OffensEval dataset, introduced by Zampieri et al. (2019). The comments in
their dataset are either labeled as offensive or not. They can further be labeled as a targeted
insult or threat if offensive.

van Aken et al. (2018) explain how they performed multi-label classification on the Kaggle
dataset we use. The authors tackle the difficulties of identifying toxic text but still success-
fully obtain positive outcomes on the dataset. We will use their findings as a foundation to
outperform.

1.5 Background
In this section, we will explain the concept and terminologies that will appear in this paper.

Artificial Neural Networks
Artificial Neural Networks (ANN) are computing systems that are inspired by biological
neural networks. It is a network of interconnected nodes with assigned weights. Neural
networks are a fundamental component of machine learning and have been successful in

10

1.5 Background

solving complex tasks such as classification, regression, and decision-making. The training
procedure involves adjusting the weights of neural networks so that the loss is minimized.
Loss is the error between the predicted and the actual label.

Machine Learning
Machine learning, a branch of artificial intelligence, empowers computers to learn from data
and make predictions without relying on explicit programming.

Transfer Learning
Transfer learning is a machine learning technique that involves using a pre-trained model,
which was initially trained on one task, to solve a different but related task. Instead of starting
the learning process from the beginning, the pre-trained model’s knowledge is transferred and
adjusted (fine-tuned) for the target task. This approach results in enhanced performance and
faster convergence compared to starting from scratch.

Hyper parameter optimization
When training a machine learning model, certain parameters cannot be learned directly from
the data but need to be set manually. These parameters are known as hyperparameters.

Hyperparameters play a vital role in optimizing the model, and finding the optimal val-
ues for these hyperparameters is a crucial task for machine learning engineers. The specific
hyperparameters that need to be adjusted depend on the chosen model architecture and the
learning algorithm being used.

Some commonly optimized hyperparameters are:

• Batch size
Most of the time, it is computationally expensive to train all data at once, so we di-
vide them into smaller batches. Batch size refers to the number of training samples
processed together. The choice of batch size can affect performance.

• Optimizer
To minimize loss, we need an optimization method. Choosing a suitable optimization
method is an essential part of training. Common optimization methods for classifica-
tion tasks include SGD, Adagrad, Adam, and Nadam. SGD and Adagrad move in the
negative gradient direction, while Adam and Nadam are based on momentum.

• Learning rate
All of these optimizers rely on a hyperparameter called the learning rate. The learning
rate determines the magnitude of steps towards the minima. If the step is too large,
we might miss the minima; if it is too small, convergence requires many iterations.

• Number of hidden layers and neurons
These hyperparameters determine the architecture and capacity of the neural network.
The number of hidden layers and neurons in each layer affects the model’s ability to
learn complex representations. Too few layers or neurons can result in underfitting,

11

1. Introduction

while too many can lead to overfitting. Experimentation and understanding of the
problem at hand are necessary to find the right balance.

• Dropout
Dropout is commonly used during model training to prevent overfitting. This tech-
nique randomly disables nodes with a certain probability, effectively cutting some con-
nections. It promotes generalization in the model.

• Maximum word length
In some cases, limiting the number of words in the training data can lead to faster
training and potentially better performance. Determining the appropriate number of
words to include is a hyperparameter that requires experimentation.

12

Chapter 2

Data

Data is essential to any machine learning model, and toxic text classification is no exception.
There are many open-source hate speech corpora on the internet. Some of these corpora offer
binary labels, distinguishing between offensive and non-offensive content. Others provide a
limited set of specific categories for classification. However, most hate speech datasets are
designed to be binary or multi-class, wherein each comment belongs to a single category.
Nevertheless, it is essential to acknowledge that toxic messages often incorporate different
forms of toxicity. For instance, a hateful comment can be both threatening and insulting.
Hence, our objective was to explore a dataset encompassing numerous distinct categories
while allowing for a comment belonging to multiple hate classes. The dataset we chose, the
‘Toxic Comment Classification Challenge’ dataset from a Kaggle competition (cjadams et al.,
2017), satisfies these criteria effectively.

2.1 Dataset
The dataset contains 223,548 manually annotated comments from Wikipedia, of which 159,571
belongs to the train and 63,978 to the test set. Figure 2.1 shows an example, where the labels
toxic, severe toxic, obscene, threat, insult, and identity hate are seen. A comment which does
not belong to any of the categories is considered not offensive.

The language in the dataset is predominantly English, but in the training set, there are
some non-English sentences wrapped in English text. An example of such a sentence is

\n\n Spventi: ""but perhaps it’s \n safest to discuss ... Plus, the explanation
「松浦靜山の『甲子夜話』にみえる川柳。おそらくはよみ人知ら
ず」
sounds much more reliable than
「江戸後期の平戸藩主・松浦静山が詠んだ句」 ...
#Cultural_point_of_interest?

13

2. Data

Figure 2.1: The figure illustrates an example from the training data.
The column “id” is the unique id of that particular comment. The
column “comment_text” contains the comments, and the other six
columns contain a binary number indicating whether the comment
belongs to that category.

On the other hand, the test set included some non-English comments; see Figure 2.2.
We checked for Chinese, Greek, Arabic, and Hindi texts and retrieved 235 comments. This
number would have been higher if we had included more languages. Due to the existence of
non-English comments, we will also test some multi-lingual solutions.

Figure 2.2: Example of non-English comments in the test set.

2.2 Exploratory Data Analysis
This section explores the dataset and presents related statistics. Please note that most of the
statistics and graphs are based on the training data unless otherwise specified. Figure 2.3
shows the frequency of comments based on the number of words. We can see that only a
small fraction of the comments exceed 200 words, suggesting that it might be a good idea to
set a limit of 200 words for all comments during the training procedure. Although Figure 2.3
suggests that a 200-word limit might be suitable, it is important to consider the possibility
that longer comments exceeding this limit could predominantly belong to a specific type of
toxic class. This raises concerns that by removing longer comments, we might inadvertently
eliminate a significant portion of valuable information related to that specific toxic class.

To address this concern and ensure that our analysis is comprehensive, the box plot in
Figure 2.4 demonstrates the word frequencies per category. This allows us to visually examine
the distribution of word frequencies across different categories and assess whether there is

14

2.2 Exploratory Data Analysis

0 100 200 300 400 500
Number of words

0

10000

20000

30000

40000

50000

60000

70000
Nu

m
be

r o
f c

om
m

en
ts

Word count distribution

Figure 2.3: Plot of frequency of comments based on the number of
words. The width of each bar represents 25 words. For example, the
first bar represents how many comments are between 1 to 25 words.
Note that the last bar is for comments longer than 500

a significant disparity between longer comments and any particular toxic class. As evident
from the figure, we have relatively homogeneous data regarding the number of words in the
hateful categories, whereas the not-offensive comments have a distinct difference in word
length.

We also investigated the distribution of comments in each category. Table 2.1 shows the
descriptive statistics for each class. First, we notice that the number of comments labeled “not
offensive” is significantly larger than other categories. Furthermore, the number of comments

Table 2.1: Descriptive data statistics of the dataset. The std, mean,
median, min, and max are calculated based on the number of words.

total
not

offensive toxic
severe
toxic obscene threat insult

identity
hate

num_comm 159571 143346 15294 1595 8449 478 7877 1405
std 99.2 98.2 106.5 186.1 108.6 137.8 107.7 114
mean 67.3 68.9 51.3 75.6 49.6 55.2 48.3 52
median 36 38 22 17 20 23 21 21
min 1 1 2 2 2 3 2 2
max 1411 1250 1411 1403 1403 1403 1403 1247

15

2. Data

not
 offensive

toxic severe
 toxic

obscene threat insult identity
 hate

Categories

0

25

50

75

100

125

150

175
nu

m
be

r o
f w

or
ds

Box plot of word frequency in each category

Figure 2.4: This chart displays the distribution of the number of
words per category. The orange lines in the middle represent the
median word length of each category. The boxes contain 50% of
comments in each class. The lower and upper whiskers correspond
to the 25% of comments with fewer words and the 25% of comments
with more words, respectively.

labeled “threat” is small. Table 2.2 shows the data distribution of the train and test set. In all
categories except severe_toxic, a third of the data is reserved for the test set.

To understand the extent of the imbalance of each category compared to the number of
non-toxic comments, we plot the number of comments labeled as one against the rest for
each of the six categories. As shown in Figure 2.5 for the class threat, there is a significant
difference in the number of comments not labeled as “threat” that the bar is barely visible
in the plot. The number of samples in the under-represented categories is difficult to see
in Figure 2.5. Thus Figure 2.6 illustrates the same bars as Figure 2.5 but without the bars of
non-labeled comments.

Table 2.2: Test and train ratio in each category.

% not_off toxic severe_toxic obscene threat insult identity_hate
Train 71.29 71.52 81.29 69.6 69.38 69.68 66.37
Test 28.71 28.48 18.71 30.4 30.62 30.32 33.63

16

2.2 Exploratory Data Analysis

Toxic Obscene Insult Severe
Toxic

Identity
Hate

Threat

categories

0

20000

40000

60000

80000

100000

120000

140000

160000

nu
m

be
r o

f c
om

m
en

ts

Frequency of categories

labeled = 1
labeled = 0

Figure 2.5: Plot of label 1 and 0 in each category. Note that for the
category threat, the number of samples labeled as 1 is so small that
it is not visible in the plot.

toxic severe_toxic obscene threat insult identity_hate
categories

0

2000

4000

6000

8000

10000

12000

14000

16000

nu
m

be
r o

f c
om

m
en

ts

Frequency of categories

Figure 2.6: Bar plot of the frequency of comments in each category

17

2. Data

toxic

severe_toxic identity_hate

threat

12439

0 103

29

1202
0

0

923 0

271

281 0

66 80

32

144145

Figure 2.7: Venn diagram of 4 categories. “severe_toxic” is a subset
of “toxic”. Some comments are only labeled as “identity_hate” or
“threat” without belonging to any additional category.

We were interested in the correlation between categories and decided to illustrate the in-
terdependence between categories. A Venn diagram demonstrates the distribution of com-
ments throughout the classes. In Figures 2.7 and 2.8, we illustrate two different Venn dia-
grams with four categories each. We chose not to illustrate the six categories in the same
figure because that would imply more than 40 sections. Thus, it would be hard to read the
information. As Figure 2.7 shows, the “severe_toxic” category is a subset of “toxic”. Further,
some comments are only labeled as “identity_hate” or “threat” without belonging to any ad-
ditional category. For the set “threat”, few comments do not share the intersection with toxic.
This may suggest that the category “threat” might also be a subset of toxic, and the comments
labeled as “threat” without being labeled as “toxic” were mistakenly annotated. In Figure 2.8,
we see numerically more comments only belonging to one category (“obscene” and “insult”).
However, since these are categories with many registers in total, they are percentage-wise
still relatively few.

Another practical way of visualizing the dependencies between categories is to plot a
correlation matrix of the categories. Figure 2.9 shows that the correlation between the “toxic”
and “severe_toxic” categories is relatively low even though, as Figure 2.7 demonstrates, all
comments labeled “severe_toxic” are also labeled as “toxic”. The low correlation is because
the toxic category contains considerably more comments not labeled as “severe_toxic” leading
to a lower correlation between those two categories. Therefore, Figure 2.8 demonstrates the
importance of the size of the intersection between two classes compared to those not in that
intersection. For instance, most comments labeled as “obscene” and “insult” are found in the
intersection between the two. Thus, we see a more significant correlation between the two.
The correlations between “toxic” and “obscene” and “toxic” and “insult” are also significant
due to their large intersection. The lowest correlation is between “severe_toxic” and “threat”,
which Figure 2.7 explains since they share very few comments.

18

2.2 Exploratory Data Analysis

toxic

obscene threat

insult

5846

320 22

329

1957
2

3

132 199

1370

15 2

20 5672

282

143400

Figure 2.8: Most comments are in the category “toxic”. For the set
“threat”, few comments are not in the intersection with toxic.

to
xi

c

se
ve

re
_t

ox
ic

ob
sc

en
e

th
re

at

in
su

lt

id
en

tit
y_

ha
te

toxic

severe_toxic

obscene

threat

insult

identity_hate

1 0.31 0.68 0.16 0.65 0.27

0.31 1 0.4 0.12 0.38 0.2

0.68 0.4 1 0.14 0.74 0.29

0.16 0.12 0.14 1 0.15 0.12

0.65 0.38 0.74 0.15 1 0.34

0.27 0.2 0.29 0.12 0.34 1 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.9: The correlation matrix of categories. A number closer to
one means a stronger correlation between the categories.

19

2. Data

20

Chapter 3

Approach

This chapter explains the approach to obtaining a model for recognizing and categorizing
hate speech. It describes the most basic procedure as well as more complex methods to ob-
tain more precise models. We give a comprehensive explanation of the process, starting from
cleaning and tokenization, followed by token vectorization, word embedding, and classifica-
tion. Ultimately, there is a description of how we evaluated the models to choose the optimal
one.

3.1 Data Cleaning
We performed data cleaning on the training data for all procedures except for the trans-
former, which we explain further in Section 3.4.3. This process stage is standardizing the text
(Chollet, 2021). In other words, we cleared the data column containing the comment texts
from URLs, substituted uppercase letters with lowercase letters, and removed stopwords,
i.e., common words or words providing no contextual meaning. We also removed characters
that were not letters or numbers. By doing so, the strings on each row were as simple as
possible without losing their context. Standardization takes the following comment, part of
the training set, from

“Please stop. If you continue to vandalize Wikipedia, you will be blocked from
editing. | Talk If this is a shared IP address, and you didn’t make the edit, consider
creating an account for yourself so you can avoid further irrelevant notices.”

to

“please stop continue vandalize will blocked editing talk shared ip address didnt
make edit consider creating account can avoid irrelevant notices”

The advantage of standardization is that words appear only once, regardless of capital-
ization. For example, the word “please” appears in lowercase, although we initially have the

21

3. Approach

word “Please” in the comment above. However, when doing this part of the process, one
has to take careful consideration of what the outcome will be. Punctuation can be crucial
depending on what kind of text analysis one performs. For example, maintaining question
marks is essential when identifying questions in a text, as Chollet (2021) discusses.

3.2 Tokenization
In the next step, we split the text into tokens, transforming the complete strings into units
of text. There are several ways to do tokenization, each chosen depending on the task. The
most common ones are word-level tokenization and N-gram tokenization, whereas character-level
tokenization is less popular (Chollet, 2021). On the word level, each token corresponds to
one unit of text separated by white space, and character level intuitively means treating each
character as a token. N-gram tokenization treats N number of consecutive words as a token.
A subcategory of word tokenization is subword tokenization, where a word can be split up
into shorter words. When treating text, either the order of the words matters, or it does not.
Chollet refers to these models as either sequence models or bag-of-word models. The models
where the sequence is important use word-level tokenization and the N-gram tokenization
when creating a bag-of-words mode. The latter one, due to the loss of structure of the text,
is normally not used in deep learning models due to lacking the ability to provide as good
predictions as the sequence models.

3.3 Text and Token Vectorization
Before training any model, we needed to transform the sequence of raw text tokens into a
feature vector. Different methods are available to achieve this goal. This section discusses
bag-of-words methods and word embedding. We explain the concepts behind these methods
and provide a methodology for using them.

3.3.1 Bag-of-Words
Bag-of-words is a simple way of representing text, its usage widespread in analyzing senti-
ments (El-Din, 2016). When using the bag-of-words technique, we kept track of the occur-
rence of a word within a document without considering the grammar and order. To demon-
strate the procedure, let us assume we have the following documents:

D1 : The cat sat on the mat.
D2 : I love my cat.

the cat sat on mat i love my
D1 2 1 1 1 1 0 0 0
D2 0 1 0 0 0 1 1 1

Table 3.1: Bag-of-word representation of D1 and D2.

22

3.3 Text and Token Vectorization

Table 3.1 shows the bag-of-word representation of these two documents. It counts the
number of times a certain word occurs in a document. For instance, the word “the” shows
up twice in the first document, but not once in the second one. We could improve several
things with this representation. To begin with, it is a good practice to normalize the input
vectors to the neural network. Another problem is that connecting words will have more
occurrences in each document, even if they are not crucial for capturing meaning.

For that reason, a modification of the bag-of-word representation exists. Sparck Jones
(1972) introduced the term frequency-inverse document frequency, TF-IDF, which measures
the importance of a word in a document relative to all other documents in the corpus. TF
stands for term frequency. It counts how many times a specific word appears in the document
and divides the count by the total number of words. For example, if we want to calculate the
term frequency of the word w in document/comment d we do it according to Equation 3.1.

t f (w, d) =
count(w ∈ d)∑

word∈d count(word)
(3.1)

However, term frequency alone is not a good measure of the importance of a word. Words
such as “the”, “and”, “or”, “how”, “where”, and “was” for connecting phrases will have a high
term frequency even if they do not have any noticeable importance in the document. We
need a method to reduce the significance of these words.

Hence, we introduce Inverse Document Frequency, IDF, which measures the relative rar-
ity of a term in a corpus. IDF is defined as

id f (w,D) = log(
count(D)
count(Dw)

), (3.2)

where D is all documents in the corpus and Dw is all documents containing the word w.
Looking at Equation (3.2) we notice that it does not depend on individual documents. There-
fore, the IDF of a specific word stays the same for all documents and can be interpreted as a
weight for the term frequency. Consequently, words that appear only in one document will
have higher importance than words that appear in all documents. Combining TF and IDF
gives us TF-IDF, defined as

TF − IDF(w, d,D) = t f (w, d) · id f (w,D). (3.3)

During the TF-IDF implementation on our data, we utilized scikit-learns TF-IDF vector-
izer. Scikit-learn’s implementation of TF-IDF slightly differs from the usual definition and
is shown in Equation 3.4. Using this version, a word present in all documents will not be
completely disregarded and will retain some degree of significance.

id f (w,D) = log(
count(D) + 1
count(Dw) + 1

) + 1,) (3.4)

Scikit-learn’s TF-IDF vectorizer receives a list of documents, referred to as a corpus, and
returns a matrix where columns are the number of unique words in the whole corpus and the
rows correspond to the number of documents in the corpus. This is the feature matrix. In our
case, a document was a comment and the corpus was the whole training data. The cleaning
described in Section 3.1 was performed on the training comments.

23

3. Approach

However, there are several drawbacks to the TF-IDF method. First of all, it creates a
sparse feature matrix. The resulting feature matrix has dimensions RD×V , where D is the num-
ber of documents and V is the number of unique words in all the documents. When dealing
with many documents, each containing a high number of unique words, storing the resulting
matrix would require considerable memory. There are approximately 289,000 unique words
and approximately 160,000 comments in the training set, resulting in a matrix dimension
of 159,000 × 289,000. Additionally, the longest comment in the training set is 5,000 words
long, meaning that, at most, only 5,000 elements in each row are non-zero, making the matrix
very sparse.

Second, this method is too simplistic and captures neither context nor semantics of a
sentence. For example, words like “tea” and “coffee” will get completely different vectors
even though they are highly related.

Due to these limitations, we needed to try more complex vectorization methods, leading
to word embedding.

3.3.2 Word Embedding
A better way of representing words in documents is to use word embedding. Word embed-
ding is mapping each word to a real-valued fixed-sized vector. These vectors are learned
representations of the words such that they can encapsulate some properties of the word.
In contrast to the bag-of-words method, which results in a sparse high-dimensional one-hot
encoded vector, the result of word embeddings is dense and of a much smaller dimension
(Chollet, 2021). By using word embeddings, similar words will have a similar vector repre-
sentation. With similar words, we mean words that share some properties. In Figure 3.1, eight

Figure 3.1: Word embedding representation (Gautam, 2020)

24

3.3 Text and Token Vectorization

different words and their mapping to a seven-dimensional vector are illustrated. The words
“man” and “woman” are diverse when it comes to the feature “gender”; 0.9 in comparison
to −0.7, suggesting that the number 1 refers to a word of strong masculinity and −1 strong
femininity. However, they are barely associated with “gender”, resulting in values close to 0.
However, the words “king” and “queen” are strongly connected to royalty and their respective
gender.

The rest of this subsection addresses the word embedding techniques used in this thesis,
starting with fastText and followed by GloVe.

FastText
FastText is widely regarded as one of the most popular word embedding techniques because it
can overcome critical limitations in other methods, such as word2vec introduced by Mikolov
et al. (2013). While word2vec ignores the internal structure of words, i.e. the combination
and arrangement of characters in words, FastText considers these internal structures, making
it a more powerful and effective approach for word embedding.

Before we delve into the workings of fast Text, let us introduce the two primary archi-
tectures used to train word embeddings in fastText: continuous bag-of-words (CBOW) and
Skip-gram. Both techniques consider a certain number of consecutive words at a time in a
document. The number of words to consider as context for the current word is determined
by a context window in both CBOW and Skip-gram models.

For the CBOW model, the context words are the input, and we try to predict the current
word. Skip-gram model is the opposite of CBOW, where the input is the current word, and
we predict the context. Both techniques are illustrated in Figure 3.2.

It is worth noting that CBOW and Skip-gram models are used in training word2vec

Figure 3.2: This illustration was inspired by the work of Mikolov
et al. (2013) and depicts the CBOW and Skip-gram models. In the
figure, w(t) is the current word and w(t−2),w(t−1),w(t+1),w(t+2)
are the context words. The window size in this case is 2. The word
“projection” in the figure refers to the usual vector-matrix multipli-
cation.

25

3. Approach

input hidden output

x1

x2

xn-1

xn

Figure 3.3: Illustration of CBOW for fast Text. Character N-grams
features, x1, x2, · · · , xn of context words are input, the hidden layer
contains the representation of words, and outputs are probabilities
of each word in vocabulary being current words.

and fastText. However, one of the differences is that the input of word2vec is words, while
fastText utilizes a combination of character n-grams features as input. It improves the vector
representations of words by handling both words and sub-parts of words with the character
n-grams.

Figure 3.3 illustrates an architecture similar to CBOW where the inputs are the N-gram
features of text, and the outputs are the probabilities of each word being the current word.
The softmax function, f in equation 3.5 calculates the probabilities.

The loss function for this architecture is the negative log-likelihood, defined as

−
1
N

N∑
n=1

yn log(f (BAxn)), (3.5)

where N is the number of documents, i.e., training inputs, and yn is the target. Matrices B
and A are weights, and xn is the normalized bag of features (Joulin et al., 2016).

FastText is a highly efficient algorithm because it utilizes hierarchical softmax instead
of the traditional softmax. This choice enables faster computation and makes the algorithm
time-efficient in processing large amounts of text data. The hierarchical softmax is especially
useful when the architecture has many output classes.

Another advantage of fastText word embedding is that it can represent rare words since
some of their n-gram properties are similar to common words. FastText uses n-gram infor-
mation when creating word representations, allowing for embeddings for out-of-vocabulary
words (words that have never existed in the training corpus).

26

3.3 Text and Token Vectorization

GloVe
One of the drawbacks of models like fastText and word2vec is that their context is defined
locally by their context window. Thus, they cannot capture contextual relations between
words that are too far apart but are still semantically connected.

In 2014, Pennington et al. addressed this issue by developing a new word embedding
technique called GloVe. GloVe stands for global vectors and is a type of word embedding that
takes advantage of both local and global properties of words. A context window captures the
local properties. The local properties refer to the relationship between a target and current
words. A word-to-word co-occurrence matrix captures the global properties. Let X denote
the co-occurrence matrix. Xi j is the number of times the word j occurs in the context of the
word i. Further, let Xi =

∑
k Xik be the number of times any word appears in the context of

the word i. Then the co-occurrence probabilities are defined as

p(i| j) =
Xi j

Xi
(3.6)

The GloVe paper, published by Pennington et al. (2014), includes a simple example demon-
strating how co-occurrence probabilities cluster contextually similar words. The example
in Table 3.2 shows how co-occurrence probabilities retrieve certain semantic aspects. For
words that frequently appear as context for both target words, like the word “water”, the ra-
tio P(k|ice)/P(k|steam) is close to one. The same goes for words that rarely appear as context
for the selected target words, like the context word “fashion”. Further, we notice that if the
probability ratio is close to zero, the context word is semantically related to the target word
“steam” and if it is larger than one, the context word correlates to the “ice”.

Probability and Ratio k = solid k = gas k = water k = fashion
P(k|ice) 1.9 × 10−4 6.6 × 10−5 3.0 × 10−3 1.7 × 10−5

P(k|steam) 2.2 × 10−5 7.8 × 10−4 2.2 × 10−3 1.8 × 10−5

P(k|ice)/P(k|steam) 8.9 8.5 × 10−2 1.36 0.96

Table 3.2: The simple example from Pennington et al. (2014) shows
co-occurrence probabilities of target words “ice” and “steam” for se-
lected context words.

The probability ratio is a better way to separate relevant and irrelevant words. It is also
better for discriminating the two relevant words from each other (Pennington et al., 2014).
Therefore the ratio of co-occurrence probabilities is a good starting point for word vectors
in GloVe representation. Thus the most general model for word vectors can be formulated as

F(wi,w j, w̃k) = Pik/P jk, (3.7)

where wi,w j ∈ Rd are target words and w̃ ∈ Rd are separated context words. Starting from
Equation 3.7, We can derive the following cost function:

J =
v∑

i, j

f (Xi j)(wT
i w̃ j + bi + b̃ j − log(Xi j))2, (3.8)

where v is the size of vocabulary, f (Xi j) is a weighting term to scale down stop words, wi is
i:th word and w̃ j is j:th context word. The terms bi and b̃ j are bias terms, and lastly, Xi j is the

27

3. Approach

number of times the word j appeared in the context of the word i. We skip the derivation
of these cost functions and refer the curious reader to the paper Pennington et al. (2014).
Equation 3.8 can be minimized using optimization methods like stochastic gradient descent
or the Adam method to obtain word vectors. According to Dharma et al. (2022), GloVe can
capture semantic and syntactic aspects of words.

To summarize the section about word embeddings, fastText, and GloVe are models that
map words into vector spaces, capturing semantic relationships between words. However,
they do not consider the contextual meaning of words. Section 3.4.3 introduces an improve-
ment.

3.4 Model Architectures
We used logistic regression, neural network variants, and transformers as model architec-
tures. Creating a baseline using logistic regression was our initial approach. We did this for
comparative purposes and to help us move on to more complex models.

Neural networks are another approach to categorizing text. The two main types of neural
networks are convolutional neural networks (CNNs) and recurrent neural networks (RNNs).
According to Yin et al. (2017), hierarchical CNN architecture is traditionally preferred for
extracting position-invariant features. However, when considering sequential architectures,
RNN performs better on average. The sequential architecture of RNN makes it a preferred
choice in NLP, and two further developed methods based on RNN have gained significant
popularity. The long short-term memory (LSTM) was first introduced by Hochreiter and
Schmidhuber (1997), and gated recurrent unit (GRU) by Cho et al. (2014). Section 3.4.2
explains the bidirectional gated recurrent unit in more depth.

The transformer architecture uses an altered version of neural network architecture.
Vaswani et al. (2017) argues that transformer models can replace traditional deep neural net-
works in NLP since they can capture long-term dependencies.

3.4.1 Logistic Regression
In logistic regression, we aim to predict the probabilities that a given sample belongs to a
class. The likelihood ŷi that sample i belongs to class 1 is given by

ŷi = f (zi), (3.9)

where
f (x) =

ex

1 + ex , (3.10)

is called the logistic function zi is:

zi = xiω =
m∑

k=0

xikωi. (3.11)

The vector xi = (1, xi1, · · · , xim) are the features for sample i. If we use TF-IDF, the
elements xi1, · · · , xim correspond to the TF-IDF vector of size m representing comment i.
The first element, 1, in the vector, represents the bias, a constant value. The elements in

28

3.4 Model Architectures

the vector ω = (ω0, ω1, ...ωm) are weights of the network that will be adjusted during the
training phase.

Figure 3.4: Illustration of logistic regression. The value of ŷ is the
output probability of a given sample.

Figure 3.4 illustrates Equations 3.10 and 3.11 as a neural network. The input vector in
Figure 3.4 is the final output from the feature extraction step explained in Section 3.3.2. We
can regard Equation 3.10 as an activation function of a simple feed-forward neural network
with m + 1 input nodes and one output node. The probability output predicts the label as
zero or one, using a threshold of 0.5. Ultimately, we compare the predicted label against the
true label of the sample. In this procedure, individual models are created to predict whether a
sample belongs to a specific class or not. Consequently, the process is repeated for each class.
For instance, when we employ logistic regression, six models are generated, each dedicated
to predicting one of the six classes.

3.4.2 Bidirectional Gated Recurrent Unit
Unlike the simple neural network depicted in Figure 3.4, the recurrent neural network archi-
tecture can capture temporal dependencies through feedback connections. Figure 3.5 pro-
vides a visual representation of a recurrent neural network, where the arrows pointing to the
left or looping back to the same node signify the recurrent behavior inherent in the network.
The six output nodes in the illustration signify that six categories can be predicted, as in the
case of this thesis.

Figure 3.5 illustrates the fundamental concept of a recurrent neural network. In our thesis,
we specifically directed our attention to the GRU, which belongs to the subgroup of RNNs
and represents an enhanced version of the conventional RNN. By examining a single GRU
unit, we can gain valuable insights into its functionality. This unit comprises two crucial
gates, namely the update gate and the reset gate, as discussed in the research conducted by
Cho et al. (2014).

The reset gate determines how much information from the previous hidden state can be
discarded or forgotten. It takes the sum of the previous hidden state and the input multiplied
by their corresponding weights and passes it through a sigmoid function to produce a value
between 0 and 1. If the value is close to 0, the current state is forced to ignore the previous
states. The reset gate of the jth GRU unit is

r j = σ([W rx] j + [Urht−1] j) (3.12)

29

3. Approach

Figure 3.5: An illustration of a recurrent neural network. The arrows
going backward in layers or returning to the same layer demonstrate
the feedback connections. In the illustration, there are six output
nodes, demonstrating the six categories in this thesis.

where x is the input, ht−1 is the previous state , W r and Ur are the weights of input respective
previous state. Note that [.] j means the jth element of the vector.

The update gate will decide how much of the previous state’s information will be carried
to the current state. It has an equation similar to the reset gate, defined as

z j = σ([W zx] j + [U zht−1] j). (3.13)

Using Equations 3.12 and 3.13, we can write the update formula for the current hidden state
as

ht
j = z jh(t−1)

j + (1 − z j)h̃ j
(t)
, (3.14)

where h̃ j
(t)

is

h̃ j
(t)
= tanh([Wx] j + [U(r ⊙ ht−1)] j]) (3.15)

and W and U are weights and the symbol⊙ denotes Hadamard product. Figure 3.6 illustrates
the BiGRU mathematics explained above.

A Bidirectional GRU is formed by utilizing two GRU units, one for processing data in the
forward direction and the other for processing data backward. We can create a Bidirectional
GRU layer by stacking multiple such units together.

3.4.3 Transformers
Vaswani et al. introduced the transformer architecture in 2017. Since then it has become one
of the most popular architectures for NLP tasks such as machine translation, text classifi-
cation, and question-answering. The module ’Transformers’ on Huggingface has pre-trained

30

3.4 Model Architectures

Figure 3.6: Illustration of the gated recurrent unit.

transformer tokenizers and pre-trained models. The transformer library offers these advances
to the machine learning community, providing a unified API and a collection of pre-trained
models. The Huggingface team designed the transformer library to follow the standard archi-
tecture of NLP machine learning models, which involves data processing, model application,
and outcome prediction. The transformer architecture steps are more intertwined than the
previous methods described. Thus, this section explains the transformer process.

The transformer model architecture is another type of neural network structure. In con-
trast to traditional neural networks, however, it manages to model long-range dependencies
(Vaswani et al., 2017). The self-attention in the transformer model allows for capturing to-
kens’ local and global dependencies in a sequence. The transformer architecture allows for
bigger models, and the pre-trained tokenizers and models enable their use in various tasks.
In the transformer process, the encoding phase consists of tokenization, encoding, and the
self-attention mechanism. The tight interdependence of these steps is the motivation for in-
cluding a dedicated subsection that describes the transformer process as a whole. Figure 3.7
gives an overview of the whole process. During encoding, the raw input text is converted into
a sequence of numerical representations. The key innovation of transformers is the attention
mechanism, which allows the model to focus on different parts of the input sequence at dif-
ferent times, instead of processing the entire sequence at once. This allows transformers to
handle sequences of varying lengths, making them well-suited for NLP tasks.

In comparison to many other NLP architectures, when using transformers there is no
need to remove stop words, punctuation, or stem words. On the contrary, removing stop
words or punctuation can harm the classification task since it removes part of the context.
Stop words and punctuation have their encoding number in the pre-built architectures, thus
increasing the probability that a comment is correctly classified. However, before initializing
the encoding phase, the comments had to be shortened. Lengths between 50 and 300 were
tried, discussed more in Chapter 4. The number of words in a comment greatly influences
the extraction of the hidden states in the feature extraction step. This is due to the parallel
procedure when using the transformer method, for which batch size needs to be optimized.

The pre-trained tokenizer splits the raw input text into a sequence of individual subword
tokens and directly assigned an embedding, where sequence matters. Subword tokenization
is beneficial due to a decrease in vocabulary size without losing information, as discussed
in Section 3.2. Each token created is assigned a unique index to indicate its position in the

31

3. Approach

input sequence. We refer to this as positional encoding, which allows the model to distinguish
between tokens based on their position.

The tokenization methods we employ in this thesis use different techniques. The transformer-
based models BERT and distilBERT use a tokenization technique called WordPiece. We ana-
lyze the frequency and mutual information of subword sequences in the training data to break
down words into smaller units. We begin by treating each word as a sequence of characters
and merging the most common character sequences to form subword tokens. We merge un-
til we reach a predetermined vocabulary size or the maximum number of merge operations.
Wordpiece tokenization allows for handling both known and unknown subwords and allows
for a more flexible vocabulary.

The RoBERTa model, on the other hand, uses a tokenization technique called byte-pair
encoding (BPE) (Liu et al., 2019). The technique applies byte-pair encoding to represent
words as a combination of subword tokens by breaking down words into subword units based
on their frequency in a corpus.

To demonstrate the tokenization and encoding process, we will look at the example where
‘distilbert-base-uncased’ has been used as a tokenizer. The string

Figure 3.7: Transformer model architecture. The illustration is based
on a diagram by Vaswani et al. (2017), and created for this thesis
using Visual Paradigm online.

32

3.4 Model Architectures

“Quantum entanglement is a strange phenomenon.”

returns a dictionary with two keys; ‘input_ids’ and ‘attention_mask’ with values

input_ids:
[
101 8559 4372 23395 3672 2003 1037 4326 9575 102

]
attention_mask:

[
[1 1 1 1 1 1 1 1 1 1]

]
accordingly. They represent positional encoding. If converted to tokens, the encoded sen-
tence becomes

[‘[CLS]’, ‘quantum’, ‘en’, ‘##tangle’, ‘##ment’, ‘is’, ‘a’, ‘strange’, ‘phenomenon’, ‘.’,
‘[SEP]’]

Ultimately, if wished for, it can become a string again using a tokens-to-sting function within
the pre-trained tokenizer of choice. That returns

[CLS] Quantum entanglement is a strange phenomenon. [SEP],

which is the original sentence together with the seemingly unnecessary, however very impor-
tant, tokens [CLS] and [SEP]. When using a transformer tokenizer, the start and end tokens
are always added and play an important role, they mark the start and the end of a sequence.

The Transformer architecture is composed of multiple layers, each outputing a hidden
state with dimensions (batch size, sequence length, hidden size), where the hidden size typi-
cally corresponds to an embedding dimension of 768. These hidden states are corresponding
to the hidden representation of the tokens. The final layer of the Transformer yields the
last hidden state, which captures the hidden representations after all the tokens have been
processed by the Transformer layers. Although the last hidden state can be utilized for classi-
fication tasks, employing it directly can be computationally intensive. Therefore, it becomes
necessary to reduce the dimensionality of the last hidden state tensor.

Numerous methods can be employed for dimensionality reduction. For instance, one
approach involves using average pooling or another pooling technique. However, a com-
monly used method is to solely rely on the hidden representation of the CLS token (Tun-
stall et al., 2022). Because transformer models are based on a self-attention mechanism, the
hidden vector of the CLS token serves as an effective representation of the entire sequence.
Self-attention empowers the model to encode information from other tokens in the sequence
without being constrained by their positions. Through the use of three learnable weight ma-
trices, the self-attention mechanism calculates a weighted sum of token embeddings based
on their contextual relevance.

When constructing a model during the training process, it is essential to use the cor-
responding tokenizer and transformer model. For example, using the ’bert-base-uncased’
tokenizer one should use the ’bert-base-uncased’ model. This is because different tokeniz-
ers might use different positional encodings for the tokens and different transformer models
might have different ways of tokenizing words. Various pre-trained transformer models are
available, and Chapter 4 provides an overview of the models used in this thesis. To exemplify
the concept of pre-trained models, let us explain the BERT model introduced by Devlin et al.
(2018). They trained the model using masked language modeling (MLM), meaning that the

33

3. Approach

Input
layer

1 2 n-1 n

all layers
frozen

last layers
unfrozen

all layers
unfrozen

classifier output

Figure 3.8: Three transformer models techniques. Top architecture
illustrates all layers frozen, the middle one when the last layers have
been unfrozen, and the last where all layers are unfrozen. The more
unfrozen layers, the more training is redone. Illustration made using
Visual Paradigm online.

training was performed by hiding one word and, based on the surrounding words, letting the
model predict the hidden word. This technique allows for capturing both left and right con-
text, thus resulting in better models. The other pre-trained BERT models, such as RoBERTa
and distilBERT, are trained using the same MLM technique. Leveraging these pre-trained
transformer models is highly advantageous due to the concept of transfer learning. Trans-
fer learning enables using pre-trained models’ syntactic and semantic knowledge to enhance
the training process on new tasks with limited labeled data. We can still achieve promising
results by fine-tuning the pre-trained models, even with a small amount of task-specific data.

The number of the pre-trained model’s hidden layers differs depending on the chosen
transformer type. The ‘distilbert-base-uncased’ has six layers, whereas both “bert-base-cased”
and “roberta-base” have twelve layers. These layers can be treated differently during the
training process. Figure 3.8 the transformer-based model architecture. This model can be
considered as a transfer learning where the body is the transformer and its corresponding
tokenizer and the head is the classifier which usually is a deep neural network. The figure
displays three ways to treat the hidden layers. Either, we keep all layers frozen, implying
that only classifier weights are trained and the weights of transformers remain untrained.
This will help us to establish a baseline for the transformer model, and to check whether
fine-tuning the model will have any effect. By keeping all layers frozen, less training is done,
but there is the risk that the model does not adapt as well to the data, in this case, toxic
speech data. The second option is to unfreeze several layers, starting backward. This way, we

34

3.5 Model Evaluation

unfreeze a chosen number of layers and expect improved performance since the model can
capture more data details. Lastly, all layers could be unfrozen, meaning that all weights of
the models are trained.

3.5 Model Evaluation
To assess the performance of the model, we relied on the mean macro average F1 score and
the ROC AUC score. While the former is the most crucial metric for our purposes, the latter
is a supplementary tool for comparing results.

3.5.1 F1 Score
The evaluation of the model’s performance on the test set involved predicting the labels of
the test comments and comparing them with the actual labels. While accuracy, recall, and
precision were computed in this comparison, the macro avrage F1 score was deemed the most
interesting metric. The accuracy measure is a conventional evaluation technique, but it may
provide misleading results when working with an imbalanced data set. The F1 score is calcu-
lated according to

F1 score = 2 ·
precision · recall
precision + recall

, (3.16)

where

precision =
TP

TP + FP

recall (sensitivity) =
TP

TP + FN
.

(3.17)

The values TP, FN , and FP come from the confusion matrix in Figure 3.9. The acronyms are
true positive, false negative, false positive, and true negative. A comment correctly labeled
as one (hateful) is a true positive. If wrongly predicted as one, it is a false positive. Likewise,
a comment correctly labeled as zero (non-hateful) is a true negative, whereas if the actual
comment is hateful but predicted as a zero, it is a false negative.

The F1 score was evaluated using the macro-average technique. The macro-average tech-
nique gives equal weight to all categories, regardless of label balance, and provides a more
reliable measure of overall performance. For a two-class problem, the macro-average F1 score
is the average of the F1 scores for both classes. On the other hand, the weighted F1 score
considers the data ratio. It may give a false sense of security if the data is highly imbalanced,
similar to accuracy.

The ultimate aim is to calculate the mean macro average F1 score, a general comparison
method. Specifically, the mean of the macro average F1 score per class is computed to provide
a single value per model.

3.5.2 ROC AUC Score
Another commonly used evaluation metric for classification is the ROC AUC score. ROC
is short for the receiver operating characteristics. Fawcett (2006) states that ROC visually

35

3. Approach

Figure 3.9: Confusion matrix. A comment predicted with label 1
(hateful) with an actual label one gets classified as a TP. Similarly,
if predicted as hateful without actually being hateful, it is called a
false positive, etc.

represents how well a binary classifier performs. Before explaining how it works, let us define
two metrics. True positive rate, or sensitivity, is another name for recall (Equation 3.17). The
true negative rate, or specificity, is defined as

specificity (true negative rate) =
TN

TN + FP
. (3.18)

Moreover, we define the false positive rate as

false positive rate = 1 − specificity =
FP

TN + FP
. (3.19)

The model’s output is the probability of a comment belonging to each category; these
probabilities are real values between 0 and 1. To make the output binary, we need to choose
a threshold. Typically a threshold of 0.5 is chosen. We obtain a ROC curve if we plot the
true positive rate against the false positive rate for different cutoff values. Hence, if a model
is predicting correctly and the predictions are close to their true label, The ROC curve will
be drawn to the upper left corner, and thus the area under the ROC curve will be close to
one. Figure 3.10 illustrates two curves, where the one closer to the upper left corner gives a
better result than the one below. A curve along the diagonal represents a classifier randomly
categorizing. Thus a standard threshold to set is a number above 0.5.

The area under the ROC curve (AUC) condenses the classifier’s performance into a single
scalar. The AUC score allows for easy comparison between different classifiers and informed
decision-making for specific tasks. As Fawcett (2006) points out, the ROC AUC score offers
an advantage over metrics like accuracy when dealing with imbalanced data sets. Since we
have six categories, we will get six ROC AUC scores. Our performance metric will be the
mean of ROC AUC of these six categories.

36

3.5 Model Evaluation

Figure 3.10: The ROC AUC is calculated as the area under the curve.
The closer the area is to one, the better the performance.

37

3. Approach

38

Chapter 4

Experimental Setup

Deciding on the best model architecture beforehand was a complex task due to the diverse
characteristics of the dataset and the wide range of possibilities and combinations of differ-
ent parameters. Therefore, we wanted to investigate and compare numerous model architec-
tures, as well as parameters, to determine the most suitable approach for the given dataset.
Ultimately, we tried countless experimental setups. This chapter accounts for the three main
setups used, discussed in Sections 4.1 - 4.3, and their results are discussed in Chapter 5.

4.1 Baseline

Before exploring more complex models, we established a baseline for comparison. The base-
line served as a benchmark in evaluating future, more elaborate models. A multilabel classi-
fication problem can be decomposed into several binary classifications and this is what we
did for creating the baseline.

The initial setup consisted of six binary models, with each model specifically designed
for one category. These models were built by combining two components: TF-IDF, which
was discussed in Section 3.3, and logistic regression, a binary classifier explained in Section
3.4.

Starting the experimental setup with a baseline model was crucial for the project. We
needed to establish a basic model to improve upon using more complex models. No hyperpa-
rameter tuning was performed in the baseline architecture since neither TF-IDF nor logistic
regression has any parameters to tune. We used sci-kit-learn’s built-in function for logistic
regression.

39

4. Experimental Setup

4.2 Recurrent Neural Network
After the initial baseline approach, we constructed more complex experimental setups using
recurrent neural networks. Table 4.1 shows some attempted setups.

feature
extraction

nodes
BiGRU

dropout
BiGRU

nodes
dense

dropout
dense

learning
rate

num trainable
parameters

GloVe50 16 0 [6] [0] 0.05 6,726
GloVe50 32 0 [6] [0] 0.05 16,518
GloVe50 64 0.2 [6] [0] 0.05 45,318
GloVe50 128 0.1 [6] [0] 0.05 139,782
GloVe50 128 0.1 [16, 6] [0, 0] 0.05 142,454
GloVe50 128 0 [32, 6] [0.2, 0] 0.05 146,662
GloVe50 128 0.1 [64, 6] [0, 0] 0.05 155,078
GloVe50 (200 maxl.) 128 0.2 [32, 6] [0.1, 0] 0.001 146,662
GloVe50 128 0.2 [32, 6] [0.1, 0] 0.01 146,662
GloVe50 128 0.2 [32, 6] [0.1, 0] 0.001 146,662
GloVe100 64 0.2 [6] [0] 0.005 64,518
ft300 128 0.2 [32, 6] [0.1, 0] 0.001 338,662
ft300 + GloVe300 64 0.2 [6] [0] 0.005 256,518
ft300 + GloVe300 (svd) 64 0.2 [6] [0] 0.005 141,318
ft300 + GloVe300 128 0.2 [32, 6] [0.1, 0] 0.001 569,062
ft300 + GloVe300 (svd) 128 0.2 [32, 6] [0.1, 0] 0.001 338,662

Table 4.1: A selection of the RNN architectures tried.

Ultimately, the BiGRU architecture discussed in Section 3.4.2 performed better than the
LSTM architecture. Hence it is the model architecture of interest. Table 4.1 shows a large
variety of word embeddings and neural network structures. As word embeddings, we used
either only fastText, only GloVe, or a combination of these. A combination refers to con-
catenating the two embedding matrices. The two methods have different strengths. Thus,
we attempted concatenation to capture the semantics better. A combination will hypothet-
ically increase the understanding of the context and create a better final model. However,
the drawback of such an embedding matrix is the size — a large embedding matrix results in
a considerably larger input to the model. Thus a more complex model is created, requiring
more training time. To reduce the dimension of the word embeddings, thus reducing the
training time, the single-value decomposition technique was tried and is denoted by (svd) in
the table.

The bidirectional gated recurrent was used in most of the RNN architectures. The ar-
chitecture was a BiGRU-layer of 16-128 nodes and then one or two dense layers. The size of
the first one varied between 16-64, whereas the last one was always six due to the number
of categories. The first dense layer had a RelU activation function, whereas the second had
a sigmoid activation function to output probabilities for each of the six classes. Using the
ADAM optimizer, we compared different learning rates according to Table 4.1. Normaliza-
tion was also attempted, as well as varying the maximum length of the comments and the
batch size when training the models.

40

4.3 Transformers

model truncation layers unfrozen
num trainable
parameters

distilBERT 50 0/7 0.6M
distilBERT 120 0/7 0.6M
distilBERT 200 0/7 0.6M
distilBERT 300 0/7 0.6M
distilBERT 120 4/7 28.9M
distilBERT 120 7/7 67.0M
RoBERTa 120 0/13 0.6M
RoBERTa 120 4/13 29.5M
RoBERTa 120 11/13 79.2M
RoBERTa 120 13/13 125.2M
Twitter-RoBERTa 120 0/13 0.6M
Twitter-RoBERTa 120 10/13 71.5M
Twitter-RoBERTa 120 13/13 125.2M
m-distilBERT 120 7/7 135.3M
m-BERT 200 0/13 0.6M
m-BERT 200 13/13 178.4M
m-BERT 120 13/13 178.4M
xlm-RoBERTa 120 0/13 0.6M
xlm-RoBERTa 120 4/13 28.9M
xlm-RoBERTa 120 13/13 278.6M

Table 4.2: A selection of the transformer architectures tried. The
columns “num trainable parameters” shows the number of parame-
ters/weigths that will be tuned during training.

The combinations seen in Table 4.1 are only a fraction of the combinations tried, but the
ones resulting in the best results.

4.3 Transformers
The transformer setup was the last architecture to try. Numerous pre-trained models, such
as distilBERT and RoBERTa, were attempted when finding the optimal transformer model.
These model architectures were used in training either unchanged, letting all layers be frozen,
or unfreezing some or even all hidden layers, as explained in Table 4.2. Much altering was un-
necessary if we constructed the models using the pre-trained models. However, the possibility
of changing the hidden layers of each architecture gave us new opportunities. Depending on
which pre-trained model we used, they had different layers, shown in Table 4.2. DistilBERT,
a denser version of the original BERT, has fewer layers than RoBERTa. Therefore, it has fewer
layers to unfreeze. Figure 3.8 in Section 3.4.3 illustrates the three techniques, from all frozen
to all unfrozen. As discussed in Section 3.4.3, the greater the number of unfrozen layers in
an architecture, the more training was necessary, increasing the time required to train the
model. With more parameters retrained, the model adapts more to the data, which might be
helpful.

41

4. Experimental Setup

4.4 Resource Requirements and Computer
Specific

Our model training process utilized both a local GPU (GTX 1050 Ti) and Google Colab
(Tesla A100). While the local GPU was primarily used for training most models, computa-
tionally intensive models like m-BERT or XLM-Roberta were trained using Google Colab.
On average, training each experiment with recurrent neural networks took approximately
10 minutes, while experiments with transformer architectures required an average of 2 hours
and 30 minutes to complete.

42

Chapter 5

Evaluation

This chapter first presents the results of the experimental setup, presented in Chapter 4. The
results were evaluated according to the performance metric described in Section 3.5. Using
the mean macro average F1 score and the ROC-AUC score, we compared our methods and
determined the optimal one, which to our delight, was better than the one by van Aken et al.
(2018).

In Section 5.2 we discuss the results obtained and describe the limitations of the dataset
and the annotations of the data.

5.1 Results
5.1.1 Baseline
We combined the TF-IDF and logistic regression and created a binary model for each cate-
gory. This gave a mean macro average F1-score of 0.7371 and a ROC-AUC score of 0.7060.
Table 5.3 in Section 5.1.4 displays the results together with a few chosen models.

5.1.2 Recurrent Neural Networks
Table 5.1 shows the resulting mean macro average F1 score and ROC-AUC score for the mod-
els described in Section 4.2. The combination of the word embeddings fastText and GloVe
proved to provide better results. Despite our attempts at single-value decomposition, a com-
mon dimension-reducing technique, the setup required more success. Varying the maximum
length of the comments, varying the batch size, changing the optimizer, or normalizing the
embedding matrices did not improve the performance. The architecture with the best per-
formance uses a combined word embedding and has 128 nodes in the BiGRU layer, which
has a 0.2 dropout value. The dense layers are 32 nodes and six nodes, where the first layer has
a dropout value of 0.1. The learning rate was 0.001.

43

5. Evaluation

feature
extraction

nodes
BiGRU

dropout
BiGRU

nodes
dense

dropout
dense

learning
rate

mean macro
avg F1 score

mean ROC-
AUC score

GloVe50 16 0 [6] [0] 0.05 0.6941 0.9605
GloVe50 32 0 [6] [0] 0.05 0.7018 0.9635
GloVe50 64 0.2 [6] [0] 0.05 0.7214 0.9672
GloVe50 128 0.1 [6] [0] 0.05 0.7385 0.9685
GloVe50 128 0.1 [16, 6] [0, 0] 0.05 0.7304 0.9704
GloVe50 128 0 [32, 6] [0.2, 0] 0.05 0.7416 0.9707
GloVe50 128 0.1 [64, 6] [0, 0] 0.05 0.7459 0.9706
GloVe50 200max 128 0.2 [32, 6] [0.1, 0] 0.001 0.7496 0.9642
GloVe50 128 0.2 [32, 6] [0.1, 0] 0.01 0.6605 0.9602
GloVe50 128 0.2 [32, 6] [0.1, 0] 0.001 0.7433 0.9703
GloVe100 64 0.2 [6] [0] 0.005 0.7547 0.9722
fastText300 128 0.2 [32, 6] [0.1, 0] 0.001 0.7781 0.9817
ft300 + g300 64 0.2 [6] [0] 0.005 0.7611 0.9791
ft300 + g300 (svd) 64 0.2 [6] [0] 0.005 0.7652 0.9782
ft300 + g300 128 0.2 [32, 6] [0.1, 0] 0.001 0.7811 0.9803
ft300 + g300 (svd) 128 0.2 [32, 6] [0.1, 0] 0.001 0.7723 0.9821

Table 5.1: Results with RNN architectures. ft300 means fast-
Text300, g300 means GloVe300. (svd) mean single value decompo-
sition from 600 to 300. 200 max means a maximum length of 200
words.

5.1.3 Transformers
Table 5.2 presents the results from the different transformer experimental setups. The model
with the highest performance was the RoBERTa model, with eleven out of thirteen unfrozen
layers, comment truncated at 120. It resulted in a mean macro average F1 score of 0.8081,
more than 0.01 greater than the best-performing model constructed by van Aken et al. (2018).
Also, we beat their mean ROC-AUC with the result of 0.9841, compared to 0.983. Nonethe-
less, the ROC-AUC score result is such an insignificant difference that we do not dare to
claim it much better based on that result.

Figure 5.1 presents the macro average F1 scores of three transformer model architectures
based on category. The sample size on the x-axis refers to the number of samples of the
particular class, i.e., the category “threat” is the smallest class of less than a thousand samples.
Thus it is seen to the far left. In contrast, toxic has the most registers and is thus seen to the
far right. The boxes are color-coded by class to enhance clarity and visual appeal. The class
“obscene” performs the best, followed by “toxic ”. The classes with fewer samples have lower
F1 scores compared to the others. The performance of the logistic regression model improves
with larger sample sizes. However, categories with low sample sizes exhibit significantly
lower scores, while categories with high sample sizes, such as “toxic”, perform nearly as well
as the RoBERTa and BiGRU models. These findings indicate that when abundant data is
available for all categories, employing a more complex model may not be necessary.

Figure 5.2 shows the macro average F1 score based on the number of unfrozen hidden
layers. Twitter RoBERTa and RoBERTa perform very similarly when more hidden layers are

44

5.1 Results

model truncation
layers
unfrozen

mean macro
avg F1 score

mean ROC-
AUC score

distilBERT 50 0/7 0.6192 0.5844
distilBERT 120 0/7 0.6557 0.9492
distilBERT 200 0/7 0.6483 0.6157
distilBERT 300 0/7 0.6100 0.5776
distilBERT 120 4/7 0.7797 0.9824
distilBERT 120 7/7 0.7983 0.9841
RoBERTa 120 0/13 0.5737 0.9403
RoBERTa 120 4/13 0.8000 0.9838
RoBERTa 120 11/13 0.8081 0.9834
RoBERTa 120 13/13 0.7731 0.9814
Twitter-RoBERTa 120 0/13 0.6861 0.9619
Twitter-RoBERTa 120 10/13 0.7982 0.9840
Twitter-RoBERTa 120 13/13 0.7731 0.9811
m-distilBERT 120 7/7 0.7737 0.9816
m-BERT 200 0/13 0.6504 0.6165
m-BERT 200 13/13 0.7534 0.9763
m-BERT 120 13/13 0.7611 0.9773
xlm-RoBERTa 120 0/13 0.5269 0.9280
xlm-RoBERTa 120 4/13 0.7354 0.9739
xlm-RoBERTa 120 13/13 0.6948 0.9274

Table 5.2: Results from different transformer architectures. The
model architecture highlighted is the one giving the best mean
macro average F1 score.

unfrozen. Although RoBERTa ultimately gave the best results, the Twitter RoBERTa archi-
tecture performed better when fewer layers were unfrozen. The XLM-RoBERTa performed
worse than the rest.

feature extraction model mm avg F1 score ROC-AUC score
TF-IDF logistic regression 0.7371 0.7060
GloVe50 BiGRU [16] + 1 dense 0.6941 0.9605
GloVe300 + fastText300 BiGRU [128] + 2 dense 0.7811 0.9803
RoBERTa dense, 0/13 unfrozen 0.5737 0.9403
RoBERTa dense, 11/13 unfrozen 0.8081 0.9834

Table 5.3: Summary of results from baseline, BiGRU, and transform-
ers. From BiGRU and transformers, we display the most simple ones
tried as well as the best ones. (mm stands for mean macro,)

45

5. Evaluation

0 2000 4000 6000 8000 10000 12000 14000 16000
sample size

0.65

0.70

0.75

0.80

0.85

m
ac

ro
 a

vg
 f1

-s
co

re

Logistic
Bi-GRU
RoBERTa
threat
identity_hate
severe_toxic
insult
obscene
toxic

Figure 5.1: Three transformer architectures and their performance
for every individual category. The six category performances are
seen on six different x-axis locations. They range from “threat” to
“toxic”, from smallest sample number to greatest.

5.1.4 Results Summarized
Table 5.3 summarizes the most important findings and comparisons. The optimal model is
the last one, using RoBERTa with the last 11 layers of the pre-trained model unfrozen and
trained. In comparison to the results from van Aken et al. (2018), which achieved a mean
macro average F1 score of 0.793 using an ensemble of different models, our transformer-
based model is an improvement of 0.015, suggesting our model scoring 0.808 is better than
theirs. The ROC-AUC is also displayed due to being a standard evaluation metric, although
the mean macro average F1 score is the most descriptive.

5.2 Discussion
As Table 5.3 suggests, the transformer architecture performs better than a baseline or recur-
rent neural network-based method. It is not surprising that the best model happens to be a
RoBERTa model. RoBERTa is more complex than distilBERT and BERT; hence an improve-
ment was to expect. Surprisingly, distilBERT performs remarkably well, even outperforming
all other models with up to six layers. XLM-RoBERTa, on the other hand, does not perform

46

5.2 Discussion

only
 classifier

1 2 3 4 5 6 7 8 9 10 11 12 13

number of layers unfrozen

0.55

0.60

0.65

0.70

0.75

0.80
m

ea
n

m
ac

ro
 a

vg
 f1

 s
co

re

RoBERTa
XLM_RoBERTa
Distil_BERT
Twitter_RoBERTa
all weights

Figure 5.2: Four transformer models and their performance as the
number of unfrozen hidden layers is increased.

well. Neither did the m-BERT, suggesting that multilingual models are not well suited for
this data set. Although the multilingual models are developed to perform well in English,
introducing a model with multilingual capacity might lower the chances of a dataset almost
entirely made up of English comments.

RoBERTa likely provides the best results due to having more layers and more trainable
parameters. The reason for a transformer-based model being in the lead is likely because of
the attention mechanism it possesses. As discussed in Section 3.4.3, the transformer architec-
ture manages to model long-range dependencies, capturing both local and global tendencies.
Thus, it is reasonable that it performs better. When categorizing a comment as hateful, it
is helpful to look at the whole comment. There might be information at the far end of a
comment suggesting that it is, in fact, not hateful, which a transformer-based model can be
able to catch. In contrast, the less complex methods will need to consider the entirety of the
context to recognize the overall meaning of the comment and focus on much smaller parts.

Although we obtained satisfactory results, there are some limitations and issues with both
the dataset and the categorization that are important to address.

One limitation is the perception of what is hateful or not. Depending on the place of
origin, cultural background, and language, perceptions of what is hateful will differ. Some
individuals may find specific types of language highly offensive, while others may use them in
daily conversations without issue. For that reason, categorizing hate speech is a challenging

47

5. Evaluation

task for a machine learning model, which might need to be made aware of the background
of why this speech is said or not. In our case, the model does not know the subsequent
conversation, nor the sender of the comment, thus complicating the task.

Similarly, the annotation process can be subjective. The labeling depends on the individ-
ual annotator’s cultural, social, and historical background, which can influence their percep-
tion of what constitutes hate speech. Ross et al. (2017) addressed the issue of subjectivity in
the annotation process, highlighting the problems behind the definition of toxic speech. In
their study, they presented a definition of hate speech to one group of people. They did not
show the other group a definition. It became apparent that the perception of what is hateful
differs. They concluded that detailed instructions and more concise definitions are required
to annotate objectively.

Another study discussing subjectivity in hate speech is the one presented by Khurana
et al. (2022). They address the issues of not having set definitions of hate speech but also
provide guidelines on how hate speech should be annotated based on perspectives within
social science and law. They specifically give guidelines based on factors such as target groups
and their social status, perpetrator, type of negative reference, and potential consequence.
They stress the importance of reducing subjectivity in hate speech data to obtain less biased
models.

We could find little information on the annotation of the toxic comment data we used.
For that reason, there is uncertainty in how reliable the annotation is. While experiment-
ing with the trained model, we noticed that comments directed towards certain ethnic or
religious groups get classified as more toxic than others. That suggests a bias in the annota-
tion process and the identity hate category specifically or of lacking toxic comments towards
certain groups of people.

An additional problem with the dataset and its annotation is that there are some highly
toxic comments that our model does not catch due to acronyms or rewrites from toxic words.
The highly antisemitic number 88 is not recognized as toxic, severe, or identity hate, although
it symbolizes Nazis and Hitler. Additionally, acronyms such as fu, short for fuck you, are not
recognized either, meaning that some offensive words and phrases could slip by.

Likewise, the model does not catch irony or sarcasm. That is a challenging task to manage
due to the nuances of language. When catching irony and sarcasm, an analysis of previous
comments or the topic of the conversation is needed. That would give a context of the con-
versation rather than the comment, which we have been looking at so far.

Despite the issues with annotation and the dataset, the optimal model performs very
well. Our discussion suggests that future models designed to detect hate speech are likely to
perform even better, which is an optimistic thought.

48

Chapter 6

Application

One of the aims of our thesis was to implement an application visualizing the model’s per-
formance when fed a comment. We successfully created a user-friendly interface using Gra-
dio. Gradio is a powerful Python library that streamlines the process of building demos for
machine-learning models with just a few lines of code. Figure 6.1 illustrates the system dia-
gram depicting the structure behind a general application. It demonstrates the order of the
process flow, where a request is sent to the web server via a REST API when a user submits
a comment. The server checks if the comment already exists in the database. If it does, it
retrieves the corresponding predictions from the database. If the comment is not found in
the database, it gets forwarded to the classifier for the prediction of probabilities of classes.
These predictions are then returned to the user and stored in the database for future refer-
ence. This process ensures that existing predictions are efficiently retrieved from the database
while new comments undergo classification, and their predictions are made available to the
user in real-time.

REST/JSON
API

html classifier
"I hate..." "I hate..."

[0.1, 0.2,...]

database

Figure 6.1: The system diagram of the model.

49

6. Application

Use via API · Built with Gradio

Clear

Submit

Hello nicer world

Flag

outputwrite your comment here

Figure 6.2: A simple application of our model. One can write a com-
ment in the textbox and press submit to get the plot right.

The application possibilities of this model are vast. It can act as a tool for warning against
harmful content in comments on social media, particularly for sensitive users. Additionally,
it can operate as a writing assistant for individuals with autism who may not be aware that
their words can be toxic. This model holds great potential for fostering a safer and more
inclusive online environment.

In Figure 6.2, we test non-toxic comments in our Gradio environment. The green bars
indicate the probability of that specific category being non-offensive.

Next, we demonstrate an insulting comment. Figure 6.3 shows a comment with a high
probability of being classified as toxic, obscene, and insulting. Whether or not the model
should classify the comment as obscene can be discussed, depending on the definition of

Use via API · Built with Gradio

Clear

Submit

You are stupid

Flag

outputwrite your comment here

Figure 6.3: The prediction plot when the input is an insulting com-
ment.

50

obscene, but the other two categories the model predicts correctly.
In Figure 6.4, we present the results from a test with a threatening comment. Our model

could predict the two classes “threat” and “toxic” correctly.

Use via API · Built with Gradio

Clear

Submit

I will kill you

Flag

outputwrite your comment here

Figure 6.4: The prediction plot when the input is a threatening com-
ment.

The aim is to use the visual representation of the model results, presented in this section,
as inspiration for its use on online platforms.

51

6. Application

52

Chapter 7

Conclusions

This thesis presented a comprehensive approach to the multi-label classification of toxic com-
ments. We established a baseline by vectorizing the text using TF-IDF, followed by classifying
each comment using logistic regression. To improve our results further, we utilized word em-
bedding to vectorize the text and gated neural networks followed by dense layers to classify
the comments. Ultimately, we obtained the best result using a fine-tuned transformer archi-
tecture. To our delight, the mean macro average F1 score was better than we have found in
previous studies on this dataset.

Further improvement is still possible. One of the limitations discussed in Section 5.2 was
the difficulty of detecting irony and sarcasm. One potential enhancement is to utilize large
language models (LLMs), which have been trained on vast amounts of data and can detect
sarcasm to a certain degree. To determine if a sentence is toxic, one can utilize LLMs to
predict the probabilities of categories or the likelihood of the sentence being sarcastic. The
classifier and LLM’s response can then decide based on that.

According to Huggingface documentation, there are more than 120 thousand transformer
models. One future path for this project could be to experiment with more models and im-
prove performance even more. Additionally, we noticed that some models are better at pre-
dicting if a comment is toxic, and others are better at predicting the type of toxicity. In the
future, one can improve performance further by using an ensemble of different models.

Based on the results, our model is considered a state-of-the-art model. Even though there
is room for improvement, we are happy to present our findings to the open-source commu-
nity. We hope our thesis will inspire others to pursue further studies and that we, collectively,
can reduce toxicity online.

53

7. Conclusions

54

References

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using RNN encoder-decoder for statistical machine trans-
lation. CoRR, abs/1406.1078.

Chollet, F. (2021). Deep Learning with Python, Second Edition. Manning.

cjadams, J. S., Elliott, J., Dixon, L., McDonald, M., nithum, and Cukierski, W. (2017). Toxic
comment classification challenge. Kaggle.

Davidson, T., Warmsley, D., Macy, M. W., and Weber, I. (2017). Automated hate speech
detection and the problem of offensive language. CoRR, abs/1703.04009.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR, abs/1810.04805.

Dharma, E. M., Gaol, F. L., Warnars, H., and Soewito, B. (2022). The accuracy compari-
son among word2vec, glove, and fasttext towards convolution neural network (cnn) text
classification. Journal of Theoretical and Applied Information Technology, 100(2):31.

El-Din, D. M. (2016). Enhancement bag-of-words model for solving the challenges of senti-
ment analysis. International Journal of Advanced Computer Science and Applications, 7(1).

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874.
ROC Analysis in Pattern Recognition.

Foote, K. D. (2019). A brief history of natural lan-
guage processing (nlp). https://www.dataversity.net/
a-brief-history-of-natural-language-processing-nlp/. (Accessed on
02/02/2023).

Gautam, H. (2020). Word embedding: Basics. Medium.

Georgakopoulos, S. V., Tasoulis, S. K., Vrahatis, A. G., and Plagianakos, V. P. (2018). Convo-
lutional neural networks for toxic comment classification. In Proceedings of the 10th Hellenic

55

https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/
https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/

REFERENCES

Conference on Artificial Intelligence, SETN ’18, New York, NY, USA. Association for Com-
puting Machinery.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9:1735–80.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Kauranen, M. (2020). Cross-lingual comment toxicity classification. https://
lup.lub.lu.se/student-papers/search/publication/9024850. (Accessed on
02/02/2023).

Khurana, U., Vermeulen, I., Nalisnick, E., Van Noorloos, M., and Fokkens, A. (2022). Hate
speech criteria: A modular approach to task-specific hate speech definitions. arXiv preprint
arXiv:2206.15455.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach.
CoRR, abs/1907.11692.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., and Wojatzki, M. (2017). Mea-
suring the reliability of hate speech annotations: The case of the european refugee crisis.
CoRR, abs/1701.08118.

Schmidt, A. and Wiegand, M. (2017). A survey on hate speech detection using natural lan-
guage processing. In Proceedings of the Fifth International Workshop on Natural Language Pro-
cessing for Social Media, pages 1–10, Valencia, Spain. Association for Computational Lin-
guistics.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–21.

Tunstall, L., von Werra, L., and Wolf, T. (2022). Natural Language Processing with Transformers:
Building Language Applications with Hugging Face. O’Reilly Media, Incorporated.

van Aken, B., Risch, J., Krestel, R., and Löser, A. (2018). Challenges for toxic comment
classification: An in-depth error analysis. CoRR, abs/1809.07572.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Wang, B., Li, C., Pavlu, V., and Aslam, J. (2017). Regularizing model complexity and label
structure for multi-label text classification.

56

https://lup.lub.lu.se/student-papers/search/publication/9024850
https://lup.lub.lu.se/student-papers/search/publication/9024850

REFERENCES

Warner, W. and Hirschberg, J. (2012). Detecting hate speech on the world wide web. In Pro-
ceedings of the Second Workshop on Language in Social Media, pages 19–26, Montréal, Canada.
Association for Computational Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., et al. (2019). Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of CNN and RNN for
natural language processing. CoRR, abs/1702.01923.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., and Kumar, R. (2019). Pre-
dicting the type and target of offensive posts in social media. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 1415–1420, Minneapolis,
Minnesota. Association for Computational Linguistics.

57

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-01

EXAMENSARBETE Multi-Label Toxic Comment Classification Using Machine Learning: An
In-Depth Study
STUDENT Mosa Hosseini, Matilda Froste
HANDLEDARE Pierre Nugues (LTH), Björn Granvik (Prevas)
EXAMINATOR Jacek Malec (LTH)

Är du lack? AI säger hat online - nej tack

POPULÄRVETENSKAPLIG SAMMANFATTNING Mosa Hosseini, Matilda Froste

Förvandla hat till hopp i den digitala världen med vår hatdetektor. Vi använder arti-
ficiell intelligens för att identifiera och kategorisera hatiska kommentarer och hjälper
moderatorer att skapa en tryggare och mer kärleksfull online-miljö.

Vi lever i en digitaliserad värld. Många av nu-
tidens konversationer sker online, både profes-
sionella och privata. De är fyllda av kärlek, hyll-
ning och optimism, men lika ofta är de fyllda
av hat. Många har en tendens att tro att det
digitala rummet är mer stryktåligt på grund av
känslan av anonymitet och avstånd från direkta
konsekvenser. I den digitala världen kan hatet
flöda fritt, och sprids mer än de skulle göra i det
verkliga livet. Det är dags att ta itu med detta
problem och skapa en tryggare online-miljö för
alla. Vi beslutade att använda vår expertis för
att tackla detta problem.

Tack vare maskininlärning, en teknik inom ar-
tificiell intelligens (AI), har vi kunnat ta steg
för att bekämpa spridningen av hat online. Vi
har, med hjälp av stora mängder trevliga och
toxiska Wikipedia-kommentarer, skapat en hat-
detektor. Målet var att skapa en maskinin-
lärningsmodell bra nog att upptäcka hat i kom-
mentarer. Inte bara skulle den känna igen toxi-
citet i kommentarer, den skulle även kunna kat-
egorisera dessa kommentarer för mer precision.
Det lyckades vi med. Den slutliga modellen fick
ett genomsnittligt macro average F1-resultat på
0.808, där ett resultat så nära ett som möjligt är
att eftersträva. Vi slog därmed det tidigare reko-
rdet på 0.791.

Maskininlärningsprocessen bestod av fyra hu-

vudsakliga delar: förbehandling av data, extra-
hering av textegenskaper, träning av en mask-
ininlärningsmodell och utvärdering av modellen
med hjälp av testdata. Denna process upprepades
många gånger för att hitta en optimal modell.

Use via API · Built with Gradio

Clear

Submit

You are stupid

Flag

outputwrite your comment here

I figuren ovan syns en visualisering av hur
den optimala modellen presterar. En kommentar
skickas in och modellen förutser sannolikheten av
att kommentaren tillhör en av de sex kategorierna.

Det slutliga målet med detta examensarbete är
göra hatdetektorn tillgänglig för användning på
sociala medieplattformar och diskussionsforum,
där spridningen av hat och skadliga kommentarer
är särskilt utbredd. Den ska kunna tillämpas on-
line för att upptäcka illasinnade kommentarer och
flagga dem som hatiska. Detta kommer att under-
lätta för moderatorer att få hjälp i sitt arbete med
att identifiera och ta bort skadliga kommentarer.

	Introduction
	Context
	Problem Formulation
	Contributions
	Contribution to Research
	Division of Work Between Authors

	Related Work
	Background

	Data
	Dataset
	Exploratory Data Analysis

	Approach
	Data Cleaning
	Tokenization
	Text and Token Vectorization
	Bag-of-Words
	Word Embedding

	Model Architectures
	Logistic Regression
	Bidirectional Gated Recurrent Unit
	Transformers

	Model Evaluation
	F1 Score
	ROC AUC Score

	Experimental Setup
	Baseline
	Recurrent Neural Network
	Transformers
	Resource Requirements and Computer Specific

	Evaluation
	Results
	Baseline
	Recurrent Neural Networks
	Transformers
	Results Summarized

	Discussion

	Application
	Conclusions
	References

