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Abstract 
 

Context: The CardioHolter, developed by Kaunas Institute of 

Technology, Lithuania, has been used in previous studies on 

cardiovascular behavior at the Department of Biomedical 

Engineering at Lund University. This equipment associates two 

finger photoplethysmography (PPG) sensors and an 

electrocardiogram (ECG) sensor. It is robust and efficient but very 

bulky.  

The CardioHolter equipment is getting outdated and hence, new 

equipment is needed for future chamber exposure studies. 

The equipment should be easy to use for the study nurse and 

comfortable for the study participants and the acquired data should be 

of sufficient quality. This is why another solution is explored with 

this thesis.  

 

Objective: The objective of this project is to investigate the feasibility 

of replacing the CardioHolter by the association of a Wristband PPG 

sensor (Empatica Embrace Plus Wristband PPG) and an ECG sensor 

(Bittium Faros 360 ECG) in a future chamber exposure study.  

 

Methodology: The first phase of the project is the data acquisition 

with the CardioHolter, the Empatica Embrace Plus and the Bittium 

Faros 360. Then the characteristics of the signals gathered are 

analyzed and compared in order to know the quality and robustness 

of each signal. 

 

Conclusion: The signals of the Faros and Empatica devices are robust 

and of good quality, but one problem remains: the synchronization 

between both devices. 
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BP: Blood pressure 

ECG: Electrocardiogram 

HF: High frequency power 

HR: Heart rate 

HRV: Heart rate variability 

LF: Low frequency power 

MAE: Mean absolute error 

PPG: Photoplethysmogram 

PTT: Pulse transit time 

RMS: Root mean square 

RMSSD: Root mean square of successive RR-intervals differences 

SDRR: Standard deviation of the RR-interval 
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1 Introduction 

1.1 Aim 

 

Biomedical engineering is one of the fastest growing fields of 

technology [1]. Taking its roots in the 1780s, this field has never 

stopped its development through the centuries, going from what was 

called “animal electricity” to modern biomedical engineering using 

state of the art technologies. Biomedical engineering has undergone a 

meteoric evolution in the second half of the XXth century with the 

apparition of computers leading to the development of high 

technology devices. 

 

“Wearable devices are becoming widespread in a wide range of 

applications, from healthcare to biomedical monitoring systems, 

which enable continuous measurement of critical biomarkers for 

medical diagnostics, physiological health monitoring and evaluation” 

[2]. Wearable devices used in biomedical engineering have a certain 

number of characteristics, making them useful and pertinent 

depending on the application. Of course, every device has its proper 

purpose depending on what it measures such as temperature, heart 

pulses, blood pressure, glucose level, physical activities or even 

insulin levels [3]. But for different devices measuring the same 

physiological indicators, it is pertinent to compare not only their 

quality (precision, accuracy, robustness) but characteristics that are 

less technical like their bulkiness, their weight, their user interface, 

their price or their use complexity to compare their use convenience. 
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This thesis will focus on 3 devices particularly. Indeed, the 

Biomedical Engineering department in Lund University has led 

studies exploiting electrocardiography and photoplethysmography 

using a device called the CardioHolter. However, even though this 

device has a high signal quality [4], it begins to be outdated because 

of its bulkiness, the number of wires used and the need of a computer 

in proximity. This is why this thesis will explore the possibility of 

replacing it by the association of the electrocardiogram Bittium 

eMotion Faros 360 [5] and the photoplethysmogram Empatica 

Embrace + [6]. 

 

This paper will discuss the general principles of PPG and ECG 

signals, including the different ways to acquire them and their 

characteristics to answer the question: “Can the CardioHolter 

equipment be replaced by the Empatica wristband and Faros 360?”. 

From these signals, heart rate, heart rate variability, pulse transit time 

and pulse decomposition will be computed and analyzed to compare 

results from the three different devices. The possibility of assessing 

PTT using Empatica Embrace + and Faros 360 will be explored. 

Finally, the following question will be studied: “Are PPG pulse 

morphology changes in CardioHolter finger PPG also visible in 

Empatica wristband PPG?”. 

 

The results will be presented and discussed to conclude on the 

possibility of replacing the CardioHolter with the combination of the 

Faros 360 and the Empatica Embrace + device. 
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2 Background 

2.1 General Principles 

2.1.1 PPG Signals 

 

Photoplethysmography (PPG) is a non-invasive technique that 

measures blood volume changes in the microvascular bed using a 

light source and a detector. The PPG signal is widely used in clinical 

settings for pulse rate and oxygenation function and in research for 

various applications. 

 

A PPG pulse (Figure 2.1) is formed by the interaction of the left 

ventricle and the vessels [7] and is decomposed in two parts. The first 

part is characterized by a high slope until a maximum value called the 

systolic peak, corresponding to the contraction of the heart muscle. 

After that peak there is a decreasing slope until the dicrotic notch 

before an inflection point for an increasement until the second peak 

called the diastolic peak, corresponding to “the  reflected wave  

through  the  blood  transmitted  to the  lower  extremities and  sent  

back  to  the  aorta” [7]. It then gets its initial position back. 
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Figure 2.1: PPG pulse waveform [8]. 

 

There are two primary methods for acquiring PPG signals: reflection 

and transmission. In reflection mode, the light source and detector are 

placed on the same side of the tissue. In this method, the PPG signal 

is generated by the reflection of the light by the tissue. In 

transmission mode, the light source and detector are placed on 

opposite sides of the tissue and the PPG signal is generated by the 

absorption and the transmission of the light through the tissue. 
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The PPG signal consists of several components, including the 

Alternating Current (AC) component and the Direct Current (DC) 

component. The DC component is due to the non-pulsatile changes in 

blood volume and tissue absorption whereas the AC component is 

due to the pulsatile changes in blood volume. So, it is the AC 

component of the PPG signal that is typically used for analysis 

because it is correlated with changes in blood flow and oxygen 

saturation. 

The PPG signal can be affected by various factors such as motion 

artifact, ambient light, and skin pigmentation. Motion artifact occurs 

when the tissue moves relative to the light source and detector, 

resulting in changes in the signal amplitude and shape. Ambient light 

can interfere with the PPG signal by introducing noise or saturating 

the detector. Skin pigmentation can affect the amount of light that is 

absorbed by the tissue, which can impact the signal amplitude. 

 

There are several advantages of using PPG over other physiological 

measurements such as electrocardiogram (ECG). PPG measurements 

are non-invasive as they are obtained easily without requiring 

electrodes (required for ECG acquisition) or other invasive 

instruments. PPG signals can also provide information about the 

peripheral circulation, which is not directly measured by the ECG. 

 

PPG signals can be obtained from various parts of the body, such as 

the finger, earlobe, toe, forehead, and wrist. Finger PPG signals are 

commonly used in clinical settings for monitoring cardiovascular 

function. However, wrist PPG signals have become increasingly 

popular in recent years due to their convenience and versatility. Wrist 
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PPG signals can be obtained using wearable devices such as 

smartwatches and fitness trackers, which allow for continuous 

monitoring in daily life. 

 

Compared to traditional methods of blood pressure measurement, 

wristband-based PPG sensors are non-invasive, small and portable, 

and can provide continuous monitoring. These advantages can make 

blood pressure monitoring more convenient and less intimidating for 

patients, improve patient compliance, and reduce measurement 

errors. Even though  PPG based BP is still experimental, continuous 

monitoring can be particularly valuable for patients who have 

fluctuating blood pressure or who need to track their blood pressure 

throughout the day [9]. 

 

Compared to finger PPG sensors, wristband PPG sensors are more 

comfortable to wear for extended periods of time as they do not 

restrict hand movements or cause discomfort to the fingertips. 

Wristband PPG sensors are also less sensitive to motion artifacts and 

skin color changes compared to finger PPG sensors so they can 

provide more stable signals. In addition, wristband PPG sensors can 

be used for continuous monitoring of the heart, which can be useful 

for detecting changes in cardiovascular health over time. 

 

However, there are also some cons to using wristband PPG sensors. 

Indeed, they may not be as accurate as finger PPG sensors for 

measuring heart rate and heart rate variability, particularly during 

intense physical activity or in patients with arrhythmias. Moreover, 

wristband PPG sensors may be more susceptible to environmental 

factors, such as changes in temperature or humidity, which can affect 

the quality of the signal [10]. 
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Transmitted PPG signals are acquired by placing a light source and a 

detector on opposite sides of a body part, such as a finger. The light 

source emits light, and the detector measures the amount of light that 

passes through the tissue to reach it. The resulting signal is a 

waveform reflecting the changes in blood volume in the tissue 

because the amount of light passing through the tissue varies 

depending on the blood flow. 

 

Reflected PPG signals, on the other hand, are acquired by placing 

both the light source and the detector on the same side of the body 

part. The light source emits light, and the detector measures the 

amount of light that is reflected back from the tissue. As for 

transmitted signals, the resulting signal is a waveform reflecting the 

changes in blood volume in the tissue as the amount of reflected light 

varies depending on the blood flows. 

 

In terms of waveform morphology, transmitted and reflected PPG 

signals can look quite different. For two PPG signals acquired at the 

same position (here the index finger), transmitted PPG signals 

(Figure 2.2) typically have a larger amplitude and a more well-

defined waveform than reflected PPG signals due to a higher 

variation in light transmitted than in light reflected. Reflected PPG 

signals (Figure 2.3) have a smaller amplitude and a more variable 

waveform, since the amount of light that is reflected from the tissue 

can be affected by factors such as skin pigmentation and tissue 

thickness. 
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The transmitted waveform is characterized by an initial sharp peak 

followed by a dicrotic notch and a small secondary peak. The 

waveform then descends gradually before returning to the baseline. 

 

Furthermore, the height of the initial peak reflects the amplitude of 

the arterial pulse pressure, while the height of the secondary peak 

represents the amplitude of the reflected wave. The dicrotic notch 

corresponds to the closure of the aortic valve, and its depth reflects 

the level of peripheral vascular resistance [11]. 

 

 
Figure 2.2: Transmitted PPG signal. 

 

The reflected PPG signal has the same general shape with several 

differences depending on the device used. It is usually less noisy than 

the transmitted PPG signal [12]. 
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Figure 2.3: Reflected PPG signal [13]. 

 

2.1.2 ECG Signals 

 

Electrocardiography (ECG) is also a technique used to measure the 

electrical activity of the heart. These signals have clinical uses for the 

diagnosis and monitoring of various heart conditions. 

 

ECG signals are obtained by placing electrodes on the skin, typically 

on the chest. The electrodes are connected to an ECG machine 

amplifying and recording the electrical signals produced by the heart. 

ECG signals are usually recorded for a few seconds to a few minutes, 

and the resulting waveform is displayed on a screen or printed on 

paper. 
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The key characteristic of ECG signals is their waveform: the 

graphical representation of the heart electrical activity over time. 

Indeed, the ECG wave shapes consist of a series of peaks and valleys 

including the P wave, QRS complex and T wave (Figure 2.4). 

 

The P wave represents the electrical activity due to the atria's 

contraction to push blood into the ventricles. The QRS complex 

represents the electrical activity due to the ventricles' contraction to 

pump blood out of the heart. The T wave represents the repolarization 

of the ventricles, as they prepare for the next cardiac cycle. The 

components providing important and interesting information about 

the heart behavior are the duration, amplitude and morphology of 

these waves [14]. 

 

 

 
Figure 2.4: ECG pulse waveform. 
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2.2 Heart Rate and Heart Rate Variability 

 

The heart rate (HR) is the measurement of the number of pulses per 

minute. It can be measured for every beat by measuring the lag 

between two pulses and then converted as a value in pulses per 

minute. For this study, it will be necessary to detect each pulse’s peak 

for the HR measurement.  

 

Heart Rate Variability (HRV) is the measurement of the variations of 

cardiac rhythm as the human heart rate is not constant with time, 

depending on many factors (physical activities, emotions, body 

temperature, stress, hydration or medicines can affect the HR). So, by 

knowing the HR over a certain lapse of time we can deduce the HRV 

which has a key influence in determining prognosis post myocardial 

infarction and the risk of sudden cardiac death [15]. HRV metrics are 

known with the HRV computation to detect possible abnormalities 

[16]. Among those are the standard deviation of RR intervals 

(SDRR), the root mean square of successive RR interval differences 

(RMSSD), the power of the low-frequency band (LF) and the power 

of the high-frequency band (HF) and the ratios LF/HF and 

SDRR/RMSSD [17].  
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2.3 Pulse Transit Time 

 

“Pulse transit time (PTT) has been originally used, at rest, in clinical 

settings (psychophysiological, arousal studies) as a measurement of 

blood pressure. In most of the studies this parameter was suggested to 

assess arterial stiffness and more recently as a blood pressure 

surrogate. Most importantly, pulse transit time has been used as a 

measure of vascular health and condition across life span in different 

populations” [18]. 

 

PTT is the time (Figure 2.5) needed from the cardiac pulse wave to 

travel from the heart to the wrist or the finger (depending on the PPG 

device). “In practice, it is measured as the difference between the 

position of the peak of the R-waves on the ECG and the onset of the 

corresponding pulse on the PPG signal” [19]. As for the HR 

measurement, it is necessary to detect every pulse’s peak. 
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Figure 2.5: PTT definition [20]. 

 

The order of magnitude of PTT is approximately 0.2 s [21]. This 

implies the need for a perfect synchronization between the ECG and 

PPG clocks to have a decent measurement of the PTT. 

 

2.4 Pulse Decomposition 

 

The PPG pulse decomposition in Gaussian functions is an accurate 

manner for the PPG pulse waveform analysis. Moreover, this method 

is also efficient even for weak or noisy signals, or when the diastolic 

part of the pulse is not damped out [22]. 
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Yves Meyer has demonstrated that every curve can be decomposed as 

a sum of Gaussian functions [23]. The modelling of PPG pulse 

waveforms by curve fitting with Gaussian functions “constitutes a 

simple and accurate manner for reproducing and analyzing 

waveforms” [19]. 

 

There are several ways of decomposing a PPG pulse in Gaussian 

functions. Two methods are studied here (Figure 2.6): the first one is 

the decomposition of each peak in the sum of two distinct Gaussian 

functions and the second the decomposition of the entire pulse in the 

sum up to three Gaussian functions [19].  

 

 

 
Figure 2.6: Pulse waveform decomposition using Gaussian curve 

fitting [19]. 

(a) Decomposition of each peak in 2 Gaussian curves 

(b) Decomposition of the entire pulse in 3 Gaussian curves  
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3  Methods 

3.1 Devices 

3.1.1  CardioHolter 

 

 
Figure 3.1: CardioHolter electrodes positioning. 
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The CardioHolter (Figure 3.1) is a monitoring device that combines 

ECG and PPG technology to provide a comprehensive picture of the 

wearer's cardiovascular health. Developed by the Kaunas Institute of 

Technology Biomedical Engineering Institute in Lithuania, the device 

is designed for monitoring of cardiac conditions. However, this 

device is bulky with finger PPG and needs to be linked to a computer 

during the acquisition. 

 

Since 2013, the CardioHolter has been used by Lund University to 

lead several clinical investigations such as: “Health effects on 

humans of emissions from vehicles operated with biodiesel” [24].  It 

is also mainly used by the Biomedical Engineering department in 

LTH to lead several studies on heart pulses and blood pressure. 

 

On this device are 3 ECG leads and one reference lead measured at a 

sample rate of 500 Hz. The ECG electrodes are placed on the torso 

(Figure 3.1). There are also 2 PPG leads (one on each index finger). 

Those sensors measure the transmission of both red light (635 nm) 

and infra-red light (960 nm) emitted by LEDs at a sample rate of 250 

Hz. 

 

For the data handling, the device’s SD card must be plugged in the 

computer and the corresponding .DAT file downloaded. A python 

script gathers the interesting information: the ECG values, the PPG 

values and their timetables. It is important to note that before being 

modified, timestamps are the numbers of seconds from 07:00 the 

same day (so 25 200 seconds are added to have coherent values). This 

script extracts an array (2 x number of steps for the ECG acquisition) 
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with the ECG values and their associated timestamps and an array (2 

x number of steps for the PPG acquisition) with the PPG values and 

their associated timestamps. 

 

For the CardioHolter, the measurement has been taken with an 

acquisition frequency of 250 Hz for the finger ppg and 500Hz for the 

ECG and an acquisition time around 7 minutes. 

 

 

 

3.1.2  Empatica Embrace + 

 

 
Figure 3.2: Empatica Embrace +. 
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Empatica is an Italian technology company that specializes in the 

development of wearable health monitoring devices. Empatica's 

flagship product is the Embrace + to measure a range of 

physiological parameters. The company's focus on PPG technology is 

driven by the belief that it offers a more user-friendly and accessible 

alternative to traditional medical monitoring devices. 

 

The Empatica Embrace + (Figure 3.2) is a wearable health 

monitoring device that uses PPG technology to measure various 

physiological parameters of the wearer. It is a sleek, wrist-worn 

device that can track and monitor heart rate, blood oxygen levels, 

skin temperature, and even changes in electrodermal activity (EDA). 

 

The Embrace + is designed to be easy to use and comfortable to wear. 

It features a simple, intuitive interface. The device is also water-

resistant, making it suitable for use during physical activities such as 

swimming or running.  

 

This wristband device has one PPG lead and a battery life of 7 days. 

The sensor measures the reflectance of green light (530 nm), red light 

(655 nm) and infrared light (940 nm) emitted by LEDs at a sample 

rate of 64 Hz. The hardware manipulation is simple as the watch only 

has 2 buttons. It is connected to a smartphone and easily usable with 

the Empatica Care application. 

 

The Empatica data is stocked online on an AWS server in a .avro file. 

It can be gathered using an external application such as Cyberduck. 

The desired tables provided are the PPG values, the acquisition 
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frequency, the start time, the accelerometer values and the systolic 

peaks’ table. The timetable is generated using the start time and the 

acquisition frequency. This script extracts an array (2 x number of 

steps for the PPG acquisition) with the PPG values and their 

associated timestamps, an array (2 x number of steps for the 

accelerometer acquisition) with the accelerometer values and their 

associated timestamps and an array (1 x number of systolic peaks) 

with the peak’s associated timestamps. 

 

For the Empatica Embrace + wristband PPG, the measurement has 

been taken with an acquisition frequency of 64 Hz and an acquisition 

time around 5 minutes. 

 

 

3.1.3  Bittium eMotion Faros 

 

 
Figure 3.3: Bittium eMotion Faros 360. 
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Bittium is a Finnish technology company that specializes in the 

development of advanced wireless communication and medical 

technology solutions. Bittium's medical technology division focuses 

on the development of advanced monitoring and diagnostic devices, 

including the Faros 360 ECG device. The company's expertise in 

wireless communication and sensor technology has allowed it to 

create devices that are both highly accurate and user-friendly. 

 

The Bittium Faros 360 (Figure 3.3) is a portable electrocardiogram 

(ECG) device that offers a range of advanced features for monitoring 

and analyzing the wearer's heart function. The device is designed to 

be easy to use and comfortable to wear, making it ideal for long-term 

monitoring of cardiac conditions. 

 

The Faros 360 features a compact, lightweight design. The device 

uses advanced ECG technology to capture high-quality signals from 

the heart, even in noisy or challenging environments. 

 

The device features a long battery life, with up to 48 hours of 

continuous monitoring on a single charge. It is compatible with a 

range of software applications for data analysis and can be used in 

clinical settings or for remote monitoring of patients. 

 

On this device are 3 ECG leads measured at a sample rate up to 1 

kHz. As the Empatica wristband, it has a battery life of 7 days. The 

ECG electrodes are, for this device as for the CardioHolter, placed on 

the torso. 
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The hardware manipulation is extremely simple because the device 

only has one button to turn it on and off. 

 

The Faros data is stored on the device and is gathered by plugging the 

device to a computer and downloading an .EDF file. The frequency is 

known as it is chosen before the acquisition. As for the Empatica 

data, the timetable is generated using the frequency (hard coded into 

the script). This script extracts an array (2 x number of steps for the 

ECG acquisition) with the ECG values and their associated times. 

 

For the Faros ECG acquisition, electrodes are also placed on the 

torso. The acquisition frequency is 1000 Hz, and the acquisition time 

is approximately 5 minutes.  

 

 

3.1.4  Data Acquisition 

 

For this thesis, the data has been acquired simultaneously on the three 

devices on one volunteer. The recordings last from 5 minutes to 1h 

and at rest. 

 

The data acquisition is not the same depending on each device. As the 

purpose of this thesis is to develop a tool for the Biomedical 

Engineering Department, a manual (Figure 3.4) has been written to 

synthesize each step of the acquisition process. 
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For the CardioHolter, the hardware manipulation is then very basic 

and the software manipulation intuitive. The clock is the same as the 

one of the computer linked to the device during the acquisition and is 

the same for the ECG and PPG recordings.  

 

When worn correctly, the Empatica watch is easy to handle and does 

not impact on any motion. The clock is connected to the 

smartphone’s one. 

 

For the Faros device, both the hardware and the wires are less bulky 

than for the CardioHolter. The software allows a choice in the 

frequency of acquisition, the file format and several parameters such 

as the temperature and the channel count. Those parameters are 

entered on the software which opens when plugging the device to a 

computer. The device clock is linked to the computer clock. 

 

 

 
Figure 3.4: Data Gathering Manual. 
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3.1.5 Data Handling  

 

Once acquired, the data needs to be gathered before being exploited. 

We want to have a unique way to exploit the data and count the time 

that is the number of seconds from 00:00 the same day.  

 

As the purpose of this thesis is to develop a tool for the Biomedical 

Engineering Department, a manual (Figure 3.5) has been written to 

synthetize each step of all the data treatment process. 

 

 
Figure 3.5: Data Treatment Manual. 
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3.2 Processing 

 

Once the data is acquired and handled in a usable format, we exploit 

it to analyze its characteristics.  

 

3.2.1 Heart Rate 

 

As seen in section 2.2, the heart rate is a conversion of the lag 

between two consecutive pulses and a peak detection is mandatory to 

measure the heart rate.  

 

3.2.1.1  Peak Detection 

 

The point of detecting the peak of a pulse is to get for each pulse the 

timecode of a very specific point. Several methods exist depending 

on the waveform.  

 

For ECG signals (Figure 3.6), peaks are extremely thin and with a 

high amplitude, making their detection simple with a high precision. 

Indeed, the R wave’s amplitude is about 4 times higher than the T 

peak’s one and 10 times higher than the P peak’s one for a width of 

0.03 s whereas it is around 0.05 s for the P wave and 0.2 s for the T 

wave. 
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Figure 3.6: One ECG peak. 

 

Using these properties, we detect each peak of the ECG signal by 

detecting each maximum of the signal and excluding the ones that do 

not reach a certain percentage of the R wave maximum. In the 

following signals (Figure 3.7), peaks were selected for an amplitude 

of 50% of the maximum amplitude on a 5 s time range.  

 

This ECG peak detection is a simplified and self-computed version of 

the Pan-Tompkins algorithm [25]. Indeed, the choice has been here to 

consider the raw signal as clean (as it has been acquired at rest) and 

the parameters excluding “false peaks” (detection of peaks where 

there should not be any) are specially chosen to fit with the raw ECG 

signals after adjustments. 
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Figure 3.7: ECG peak detection for the CardioHolter and Faros 

devices and for approximately 50 s. 

 

For PPG signals (Figure 3.8), peaks are less detectable. Indeed, the 

systolic peak is quite large in time (around 0.6 s) and does not always 

have a precise peak. Furthermore, the difference between its 

amplitude and the diastolic peak’s amplitude is not that consequent 

(the diastolic peak’s amplitude is 30-70% of the systolic peak’s 

amplitude) so the peak selection could unintentionally include 

diastolic peaks or exclude systolic peaks. 

  

 
Figure 3.8: One PPG pulse. 
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Several methods exist for the PPG peak detection. Three methods 

have been tested. The first one is the detection of the points having 

the value 50%(maxPPG – minPPG) [26]. However, this method was not 

chosen as it needs the detection of the maximum up-slope of the 

pulse and the minimum of the pulse. The second method is the 

detection of the maximum up-slope of the pulse [11]. According to 

the pulse waveform, the method which seems to be the most precise 

and simplest way to detect a characteristic point of the pulse is the 

negative peak detection. Indeed, it is thinner than the systolic peak 

(less than 0.3 s) and more importantly has a well-defined peak in 

opposition to the systolic peak (or even the diastolic peak). 

 

The PPG peak selection cannot use the same criteria as the ECG 

signal peak detection because there are more variations of the 

amplitude over time. So, another criteria is used with the following 

signals (Figure 3.9): the minimum time gap between two consecutive 

peaks (0.3 s corresponding to 200 bpm) [27].  

 

 
Figure 3.9: PPG peak detection for the CardioHolter and Empatica 

devices and for approximately 60 s. 
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3.2.1.2  Time Synchronization 

 

The main advantage of the CardioHolter device is the perfect 

synchronization for both ECG and PPG signals as they are both 

measured by the same device, with the same internal clock. On the 

other hand, the Faros device and the Empatica device are not initially 

synchronized and have 2 different internal clocks. The Empatica uses 

the clock of the smartphone, which the device is paired with, and the 

Faros uses the one of the computer on which the Faros settings are 

managed. 

 

As we are interested on the pulse transit time and its variability 

between the Faros ECG signal and the Empatica PPG signal, the 

clocks of the two devices must be synchronized. It is consequently 

very important to have a precise idea of the lag between both signals.  

 

The first explored idea was to pretend that this lag is less than the 

time between two pulses. So, it could be simply calculated with the 

subtraction: tPPG_peak - tECG_peak. However, using this method, the lag 

was too variable and there was a time lag between the PPG HR curve 

and the ECG one.  

 

To know the lag between both signals, the signals from the different 

devices are unfortunately too different to allow the comparison of 

raw signals (the CardioHolter ECG with the Faros ECG and the 

CardioHolter PPG with the Empatica PPG). So, the solution has been 

to shift the Faros ECG HR curve time step by time step and 
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calculating the correlation of this curve with the Empatica PPG heart 

rate curve. 

 

As the lag consistency is studied, several acquisitions are made (7 in 

total) in the exact same conditions (at rest, on the same participant, 

with the electrodes at the same positions and for the same acquisition 

time). The lag is then computed for each acquisition. 

 

 

3.2.1.3  HR Computation 

 

The heart rate is obtained in two steps: 

 

First, we calculate the instantaneous heart rate. This value is called 

dHF (Figure 3.10): 

 

𝑑𝐻𝐹(𝑡𝑖) =
1

𝑡𝑖 − 𝑡𝑖−1

 (3.1) 

 

 

𝑡𝑖 is the time for the ith peak and 𝑡𝑖−1the time for the i-1th peak. 
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Figure 3.10: dHF computation. 

 

Then we interpolate the dHF list and multiply it by 60 to have an HR 

in beat per minute (bpm) (Figure 3.11). 

 

 
Figure 3.11: HR and mean HR computation. 

 

 

3.2.1.4  HRV Computation 

 

We use the same method as Youna Marc-Derrien’s thesis [28] to 

compute the HRV (Figure 3.12). It consists in subtracting the time-

varying mean HR from HR. The HRV value is, as the HR, in bpm. 
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Figure 3.12: HRV computation. 

 

The SDRR, RMSSD, LF and HF metrics are defined by the following 

formulas. 

 

The standard deviation of the RR interval formula is: 

𝑆𝐷𝑅𝑅 = √
∑ (𝑅𝑅𝑖 − 𝜇)²

𝑁

𝑖=1

𝑁
 (3.2) 

 

With RRi the ith RR interval, N the number of RR intervals and 𝜇 the 

mean of all the RR intervals. 

 

The root mean square of successive RR interval differences 

formula is: 

𝑅𝑀𝑆𝑆𝐷 = √
∑ (𝑅𝑅𝑖 − 𝑅𝑅𝑖−1)2𝑁

𝑖=2

𝑁 − 1
 (3.3) 

 

LF power represents the power in the low-frequency range, from 0.04 

Hz to 0.15 Hz. It is obtained by integrating the power spectral density 

(PSD) within the defined low-frequency range. 
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HF power represents the power in the high-frequency range, from 

0.15 Hz to 0.4 Hz. It is obtained by integrating the power spectral 

density (PSD) within the defined high-frequency range. 

 

 

3.2.2 PTT Computation 

 

The PTT computation for each signal is simple once the peaks are 

detected on both ECG and PPG signals. However, this can only be 

done if we are sure that the ECG and PPG signals are synchronized.  

 

The pulse transit time in our study is the lag for the same pulse: 

tPPG_peak - tECG_peak (Figure 3.13). It represents the transit time of the 

pulse from the torso to the wrist (when measured by the Empatica 

device) or the finger (when measured by the CardioHolter). But the 

peaks detected do not represent the same point of the pulse, as ECG 

and PPG pulses do not have the same waveform. Consequently, what 

will interest us is the consistency of the PTT and the comparison of 

the PTT values for the CardioHolter and for the association Faros and 

Empatica. So the PTT is computed for each pulse by calculating the 

time ECG device position – PPG device position in the body and the 

comparison of the CardioHolter PTT with the Faros-Empatica 

combination PTT will be compared in their consistency and main 

values. 
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Figure 3.13: PTT computation. 
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3.2.3 Pulse Decomposition 

 

Once the PPG pulse is isolated, we want to analyze its waveform by 

decomposing it in a sum of Gaussian functions. A Gaussian function 

is defined by the following formula [29]: 

 

𝑓(𝑥) = 𝐴 exp (−
(𝑥 − 𝑚)2

2𝜎2
) (3.4) 

 

Two methods [19] are explored for the decomposition and will be 

compared by an analysis of the correlation between the pulse from 

the raw signal and the sum of the Gaussians decomposing it. The 

correlation analysis is computed with two methods (3.2.1.2 and 

3.1.2.3). 

 

 

3.2.3.1  Pulse Decomposition 

 

The PPG pulse is decomposable in a sum of Gaussian functions as 

seen in part 2.4. For that, it is important to first identify and extract 

each pulse from the raw signal. 

 

The pulse identification (Figure 3.14) is performed by detecting the 

peak of a pulse and including the signal for a certain amount of time 

before and after the peak. In this study, the Empatica PPG pulses are 

selected with a beginning at the negative peak (part 3.2.1.1) and a 

duration of 0.8 s. The CardioHolter PPG pulses have another 
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reference which is the maximum peak. The peak detection is based 

on this reference and the pulses are shifted in time. The maximum 

peak time mean has been calculated and is 0.68 s after the beginning 

of the pulse so the pulse is shifted with 0.68 s before the peak and the 

duration of the pulse is 0.8 s. 

 

 
Figure 3.14: Computation of the identification of one pulse. 

 

Then, the offset of each pulse is cancelled to have a quantity of pulses 

as similar as possible. As a representative pulse is wanted to be 

analyzed, all the Empatica pulses are averaged and the median 

average pulse is chosen for the decomposition. The equivalent pulse 

from the CardioHolter PPG signal is decomposed. 

 

The first method is the decomposition of the whole pulse in a certain 

number of Gaussians. I chose to decompose it in 3 Gaussians (Figure 

3.15), as it is how it was done for the CardioHolter PPG in Youna 

Marc-Derrien’s thesis [19].  
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• The first step is to find the Gaussian (Gaussian G0) with the 

highest correlation coefficient (with A, 𝜎 and m optimized 

from equation 3.2) for the initial pulse (P0).  

• This Gaussian is kept and subtracted from (P0) to have a 

modified pulse (P1).  

• The Gaussian (Gaussian G1) with the highest correlation 

coefficient with (P1) is calculated and subtracted from (P1) to 

obtain (P2).  

• The Gaussian (Gaussian G2) correlating the most with (P2) is 

calculated.  

• Then, (P0), (P1) and (P2) are added to fit with the initial pulse 

(P0). 

 

 
Figure 3.15: Pulse decomposition in 3 Gaussians step by step. 

 

The second method (Figure 3.16) uses a split of the initial pulse (P0) 

in two parts (P0left) and (P0right). This split occurs at the minimum 

point between the systolic and the diastolic peaks. 
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• It first decomposes the first part (P0right) in two Gaussians 

(G0right) and (G1right) using the same steps as the first method.  

• Then the continuation of (G0 right) and (G1 right) on the left part 

are subtracted from (P0left) to get (P1left).  

• Finally, (P1left) is decomposed in two Gaussians (G0left) and 

(G1left) and all the Gaussians are added to fit with the initial 

pulse. 

 

  
Figure 3.16: Pulse split in 2 pulses and decomposition of each pulse 

in 2 Gaussians step by step. 
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3.2.3.2  Goodness of fit – Mean Absolute Error 

 

The first method uses the Mean Absolute Error (MAE) to quantify 

goodness-of-fit for the modeled PPG pulse. It is defined by the 

following formula [30]: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖) −  𝑋𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑(𝑖)|

𝑛

𝑖=1

(3.5) 

 

With n the number of points constituting the pulse, Xoriginal the 

original pulse and Xcomputed the sum of the Gaussian functions 

decomposing the pulse. 

 

We will in our study compute the percentage of correlation between 

the inner curve and its decomposition with the formula:  

 

𝑀𝐴% = 100 −  
𝑀𝐴𝐸

1
𝑛

∑ |𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖)|
𝑛

𝑖=1

 (3.6) 

 

 

3.2.3.3  Goodness of fit – Root Mean Square Error 

 

The second method uses the Root Mean Square Error (RMSE) to 

quantify goodness-of-fit for the modelled PPG pulse. It is defined by 

the following formula [30]: 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

(3.7) 

 

 

With the same parameters as for the MAE. 

 

I will in my study compute the percentage of correlation between the 

inner curve and its decomposition with the formula:  

 

𝑅𝑀𝑆% =  100 −  
𝑅𝑀𝑆𝐸

1
𝑛

∑ |𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖)|
𝑛

𝑖=1

(3.8)
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4 Results 

4.1 Devices Signals 

4.1.1 CardioHolter PPG 

 

The CardioHolter finger PPG waveform (Figure 4.1 & 4.2) has a 

characteristic shape with distinct peaks and notches that reflect 

various aspects of cardiovascular function. However, there are 

baseline variations during the whole acquisition time and the signal 

contains high frequency noise. 

 

As seen in the background part (2.1.1), the finger PPG waveform is 

characterized by an initial sharp peak followed by a dicrotic notch 

and a small secondary peak. The waveform then descends gradually 

before returning to the baseline. 

 

 
Figure 4.1: CardioHolter PPG signal for a 7-minute acquisition. 
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Figure 4.2: CardioHolter PPG signal zoomed on a 15 s slot. 

 

4.1.2 Empatica PPG 

 

Compared to the CardioHolter PPG signal, the mean value of the 

Empatica PPG signal is stable. The general shape (Figure 4.3 & 4.4) 

is similar to the CardioHolter one, with an initial sharp peak 

(percussion wave) and a lightest secondary one (tidal wave). 

Moreover, the signal is particularly less noisy than the CardioHolter 

one. 

 

However, the peaks are less sharp for the reflected PPG signal than 

for the transmitted signal. This is a concern for the exact value of 

peak times. This is why we will have an interest in negative peaks, 

that are sharper, for the peak detection. 
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Figure 4.3: Empatica PPG signal for a 5-minute acquisition. 

 

 

 
Figure 4.4: Empatica PPG signal zoomed on a 15 s slot. 
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4.1.3 CardioHolter ECG 

 

Even if it is less than for the PPG signal, the main ECG signal value 

is variable during the whole acquisition time and is lightly noisy. 

However, when focusing on a few seconds, the signal (Figure 4.5 & 

4.6) exhibits a significant level of periodicity.  

 

The characteristics of ECG signals are recognizable on this device’s 

signal: a thin P wave and a quite sharp T wave are identifiable. The 

QRS complex is extremely sharp, this an important point for the peak 

detection in the pre-processing. 

 

 
Figure 4.5: CardioHolter ECG signal for a 7-minute acquisition. 
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Figure 4.6: CardioHolter ECG signal zoomed on a 15 s slot. 

 

 

4.1.4 Faros ECG 

 

For the Faros ECG acquisition, the signal has a significant stability 

during the whole acquisition and almost no noise. The signal is 

extremely periodical.  

 

The characteristics of ECG signals are even more recognizable on 

this device’s signal (Figure 4.7 & 4.8). The P wave is clearer than the 

CardioHolter one. The T wave is less noisy and the QRS complex is 

extremely sharp as for the CardioHolter. The signal is very periodic 

and its patterns clearly identifiable.  
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Figure 4.7: Faros ECG signal for a 5-minute acquisition. 

 

 
Figure 4.8: Faros ECG signal zoomed on a 15 s slot. 
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4.2 Signals Comparison 

 

Once the signals acquired, HR, HRV, PTT and pulse decomposition 

are computed, and those characteristics are analyzed and compared 

for the CardioHolter and for the combination Empatica/Faros.  

4.2.1 Heart Rate 

4.2.1.1  Peak Detection 

 

As seen in (3.2.1.1), the HR computation needs to first detect peaks. 

Both methods (3.2.1.1), minimum and maximum peak detection for 

the Empatica PPG signal are compared (Figure 4.9).  

 

This comparison shows that the HR computed is noticeably more 

consistent for the minimum peak detection whereas the HR computed 

with the maximum peak detection is extremely noisy. 

 

 
Figure 4.9: Heart rate measured by the Empatica PPG considering the 

minimum or maximum peaks during peak detection. 
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4.2.1.2  Time Synchronization 

 

The heart rate being computed, it has been plotted for the 4 signals on 

the same graph (Figure 4.10). We observe a correct synchronization 

for 3 signals (CardioHolter PPG and ECG and Empatica PPG) but a 

consequent lag with the Faros ECG (ECG Faros Uncorr.).  

 

However, the shape of the signal is similar for all signals, even for the 

Faros ECG, so HR is used for the lag correction detecting the gap for 

which the correlation coefficient between the Empatica PPG HR 

signal and the Faros ECG HR corrected signal (ECG Faros corr.) is 

the highest. 

 
Figure 4.10: Heart rate measured with the 4 signals for 4 minutes. 

 

The lag is computed for each acquisition (Figure 4.11), following the 

3.2.1.2 protocol to have an idea of its consistency. 
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Figure 4.11: Faros signal lag consistency over acquisitions. 

 

Unfortunately, the lag between the Faros signal and the Empatica 

signal is not consistent at all. This is a serious problem for the PTT 

computation (4.2.2). 

 

 

4.2.1.3  Heart Rate 

 

Using the previous results, HR is computed with the maximum peak 

detection for the CardioHolter ECG and PPG and the Faros ECG 

signals and with the minimum peak detection for the Empatica PPG 

signal. Then, the Faros signal is shifted to remove the lag between 

this signal and the Empatica signal. The HR signals are plotted on 

Figure 4.12: 
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Figure 4.12: Heart rate measured by the for signals for 200 s. 

 

We observe that the HR signals are extremely similar for the 

CardioHolter and the Empatica/Faros combination (with a slight lag 

between both HR due to a different internal clock).  

 

We can conclude on the HR analysis that the CardioHolter is 

replaceable by the Empatica device and the Faros device (as only one 

device is sufficient for HR) as the computed HR signals are as 

accurate for all the devices and very similar. 

 

 

4.2.1.4  Heart Rate Variability 

 

For each HR signal, the time varying mean HR (Figure 4.13) is 

computed for each acquisition point by averaging the HR values on a 

20 acquisition points sliding window. 
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Figure 4.13: Heart rate and time varying mean HR. 

 

The heart rate variability is computed following the (3.2.1.4) method 

and plotted (Figure 4.14). 
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Figure 4.14: HRV computed for each signal. 

 

The graph shows that the Empatica and Faros HRV are very similar 

and have the same waveform as the CardioHolter HRVs despite the 

same slight lag as the one observed in HR curves (due to different 

internal clocks). This is an expected result as HR are very similar and 

HRV computed after HR. However, the HRV amplitude is slightly 

higher for the Empatica and Faros signals (between 20 and 40% 

higher). 

 

The HRV metrics are presented in Table 4.1: 
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Table 4.1: HRV metrics for the 4 signals, based on the same 3-min 

recording. 

 SDRR (s) RMSSD (s) LF (s²) HF (s²) LF/HF SDRR/RMSSD 

CardioHolter 
PPG 0,037 0,027 0,00017 0,00011 1,54 1,37 

Empatica 
PPG 0,034 0,025 0,00016 0,00012 1,33 1,36 

CardioHolter 
ECG 0,035 0,023 0,00017 0,00012 1,42 1,52 

Faros ECG 0,033 0,021 0,00018 0,00013 1,38 1,57 

 

As for the other results, the ratios the metrics SDRR, RMSSD, LF, 

HF and their ratios LF/HF and SDRR/RMSSD have an important 

similarity for all the signals. 

 

 

4.2.2 Pulse Transit Time 

 

PTT is computed as seen in part 3.2.2. It is extremely consistent for 

the CardioHolter: the order of magnitude of the PTT variation is 10 

ms. The PTT for the combination Empatica/Faros computed when the 

minimum peaks are detected for the Empatica PPG signal (Figure 

4.16) is more consistent (variations of ≈ 200 ms) and has a closer 

mean value to the CardioHolter one than the PTT computed (Figure 

4.15) with the maximum peak detection (variations of ≈ 400 ms). 
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Figure 4.15: CardioHolter and Faros/Empatica PTT when detecting 

Empatica signal’s maximum peaks. 

 

 
Figure 4.16: CardioHolter and Faros/Empatica PTT when detecting 

Empatica signal’s minimum peaks. 
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However, the Empatica/Faros PTT computed is not reliable as the 

Faros signal has been shifted in time. Moreover, this PTT is not 

satisfying as its variations are 20 times higher than the CardioHolter 

PTT ones. Consequently, the combination of the Faros and Empatica 

devices does not allow to compute the PTT between the subject’s 

chest and their wrist. 

 

 

4.2.3 Pulse Decomposition 

 

The first part of the pulse decomposition is the isolation of each pulse 

of the Empatica PPG signal (Figure 4.17) and the CardioHolter PPG 

signal (Figure 4.18).  

 

 
Figure 4.17: Isolation of every pulse in the Empatica PPG signal. 
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Figure 4.18: Isolation of every pulse in the CardioHolter PPG signal. 

 

As seen in 3.2.3, the pulse is decomposed in a sum of Gaussians by 

two different ways and the correlation between the Gaussians’ sum 

and the inner curve is computed with two different methods (MA% 

and RMS%). 

 

In the first case the Empatica pulse (Figure 4.19) and the 

CardioHolter pulse (Figure 4.20) are decomposed in a sum of 3 

Gaussians (G0, G1 and G2). 
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Figure 4.19: Decomposition of the whole Empatica pulse in a sum of 

3 Gaussians. 

 

 

The goodness-of-fit for the modelled pulse is for the Empatica:  

MA% = 90.26% and RMS% = 82.91% 
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Figure 4.20: Decomposition of the whole CardioHolter pulse in a 

sum of 3 Gaussians. 

 

The goodness-of-fit for the modelled pulse is for the CardioHolter: 

MA% = 88.30% and RMS% = 81.56% 

 

The Gaussian characteristics A, σ and m are compared in Table 4.2. 

According to those results, the decomposition is therefore very 

different for the Empatica pulse and for the CardioHolter pulse. 

 

Table 4.2: Pulse decomposition characteristics for the Empatica and 

CardioHolter pulses with the 1st decomposition method. 

 

Empatica CardioHolter 

G0 G1 G2 G0 G1 G2 

A 0.026 0.008 -0.003 307.8 -175.9 102.5 

σ 0.24 0.04 0.05 0.21 0.02 0.05 

m 0.49 0.14 0.32 0.58 0.79 0.08 
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In the second case (Empatica: Figure 4.21, CardioHolter: Figure 

4.22), the right pulse is decomposed in a sum of 2 Gaussians (G0right 

and G1right) and then the left pulse is decomposed in a sum of 2 other 

Gaussians (G0left and G1left). 

 

 
Figure 4.21: Decomposition of the 2 peaks of the Empatica pulse in 2 

Gaussians each. 

 

The correlation analysis is for the Empatica pulse: 

MA% = 92.20% and RMS% = 85.58% 
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Figure 4.22: Decomposition of the 2 peaks of the CardioHolter pulse 

in 2 Gaussians each. 

 

The correlation analysis is for the CardioHolter pulse: 

MA% = 86.54% and RMS% = 76.55% 

 

As for the 1st decomposition method, the decomposition is very 

different for the Empatica pulse and for the CardioHolter pulse 

according to the pulse decomposition coefficients (Table 4.3). 

 

Table 4.3: Pulse decomposition characteristics for the Empatica and 

CardioHolter pulses with the 2nd decomposition method. 

 

Empatica CardioHolter 

G0_right G1_right G0_left G1_left G0_right G1_right G0_left G1_left 

A 0.027 -0.002 0.08 0.001 324.7 28.0 110.9 0.0004 

σ 0.20 0.04 0.06 0.01 0.18 0.05 0.06 0.02 

m 0.50 0.48 0.14 0.08 0.58 0.32 0.084 0.082 
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Due to different PPG signal waveform, the decomposition of the 

pulse in a sum of Gaussians by both ways is different for the 

CardioHolter and for the Empatica. However, it can still be used as it 

the decomposition in Gaussians fits the pulse as efficiently as for the 

CardioHolter. 
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Discussion 
 

 

Critical review of the results 

 

Results from this study demonstrates that a potential replacement of 

the CardioHolter by the combination of the Empatica and the Faros 

devices is possible for some specific studies. It is convincing that the 

analyze of the heart rate, the heart rate variability and the PPG pulse 

decomposition show a signal quality at least as good for the Empatica 

and Faros devices as the CardioHolter.  

 

Surely, the impossibility to synchronize the Empatica and the Faros 

clocks is disappointing, as is the pulse transit time computation, but it 

is exposed in this thesis that the pulse transit time is not the only 

interesting characteristic of the PPG and ECG signals. Indeed, many 

studies on the heart pulses behaviors are based on the heart rate ([27], 

[31], etc.), the heart rate variability ([10], [15], [16], etc.) and the 

PPG pulse decomposition ([8], [17], [22], [32], [7], etc.). 

 

Moreover, the CardioHolter is not comfortable and deprives the user 

of a part of its mobility whereas the Empatica device is a simple 

wristband, and the Faros device is way less bulky than the 

CardioHolter. The wearability is so much convenient with the Faros 

and the Empatica devices that those devices will open the door to 

new studies, which were impossible with the CardioHolter. 
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Study limitations 

 

The first limitation of this thesis is the diversity of participants. 

Indeed, measurements have been made on only one participant. Every 

person has a different pulse shape, a different heart rate and heart rate 

variability so it could have been interesting to compare results from 

several participants. As the focus was on the quality of the devices 

and the signal processing was time-consuming, it has been decided 

not to multiply measurements and focus on the signal’s quality for 

one participant. 

 

For the same reasons, it would also have been coherent to proceed 

measurements in various conditions. It would have been specially 

interesting on a participant while riding an exercise bike as a future 

study will be led by the department on biking participants. However, 

it has never happened for the same reasons as for the participants 

diversity and the inability to have access to a training bike. 

 

The last limitation for this thesis is the lack of robustness of the PPG 

pulse decomposition algorithm. It has been decided to decompose a 

representative PPG pulse acquired with the Empatica wristband 

device and its corresponding pulse acquired with the CardioHolter 

because the algorithm does not decompose all the pulses of a signal 

as it is expected.  

 

Those three limitations made the study based on one specific 

measurement, but it would have been better to compare various 

measurements and display them on Bland-Altman plots [33]. 
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Ethics 

 

There is not any ethical concern for this thesis. Indeed, the equipment 

is safe and has previously been approved for use in clinical studies. 

Furthermore, I was the only participant of this study. 

 

Future work 

 

Following this thesis, future works can be led. Of course, if a way to 

synchronize the Empatica and Faros clocks is found, then the 

combination of those devices would definitively replace the 

CardioHolter. But even without it, as those devices as comfortable to 

wear and easy to use, it is now possible to lead studies needing 

participants to wear the devices for a long term or in motion (for 

example participants having a physical activity while wearing the 

devices) while the pulse transit time is not studied.  
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Conclusion 
 

The aim of this thesis was to study the possibility of replacing the 

CardioHolter by the combination of the Empatica Embrace + and the 

eMotion Faros 360. Three main characteristics have been studied 

from the PPG and ECG signals acquisition: the heart rate, the pulse 

transit time and the PPG pulse decomposition.  

 

For the heart rate, the results are very similar for all devices, whether 

it is for the quality of the peak detection, the heart rate computation 

or the heart rate variability computation. For the Empatica, the pulse 

decomposition is different from the CardioHolter one but as 

computable. 

However, the impossibility of synchronizing the Empatica and the 

Faros devices and the inconsistency of the lag between both signals 

make it impossible to compute a faithful and reliable pulse transit 

time. 

 

In conclusion, both the Faros and the Empatica signals have an 

excellent quality and could replace the CardioHolter individually for 

studies where PTT is not needed but the CardioHolter remains the 

device to use for PTT computation. 
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