
MASTER’S THESIS 2023

User-Centric Study and
Enhancement of Python Static
Code Analysers
Steven Chen

ISSN 1650-2884
LU-CS-EX: 2023-31

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-31

User-Centric Study and Enhancement of
Python Static Code Analysers

Användarcentrerad Studie och Förbättring
av Python Statiska Kodanalysatorer

Steven Chen

User-Centric Study and Enhancement of
Python Static Code Analysers

(Advancing Pylint Functionality within Visual Studio Code)

Steven Chen
steven.chen.1750@student.lu.se

June 1, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Emma Söderberg, emma.soderberg@cs.lth.se
Alan McCabe, alan.mccabe@cs.lth.se

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:steven.chen.1750@student.lu.se
mailto:emma.soderberg@cs.lth.se
mailto:alan.mccabe@cs.lth.se
mailto:martin.host@cs.lth.se

Abstract

Despite the growing integration of code analysis tools into developer workflows,
usability challenges persist in many aspects. Previous research, primarily focused
on static languages and professional programmers, has overlooked the needs of
novice Python programmers. This thesis investigates the experiences of beginner
Python programmers with static code analysis tools. We aim to understand how
these beginners interact with and perceive these tools, with a focus on identifying
usability pain points. The insights derived from this study were used to enhance
the Pylint extension in Visual Studio Code, incorporating additional quick-fixes
to improve user experience. This research contributes to the field by providing a
user-centric perspective on the design and functionality of Python code analysis
tools for novice programmers.

Keywords: Code analysis, Python, Visual Studio Code, Usability challenges, Pylint

2

Acknowledgements

I would like to express my sincere gratitude to Emma Södeberg and Alan McCabe. Their
guidance, mentoring, and expertise throughout the execution of this thesis have been invalu-
able. Their consistent support during the research process, as well as their insightful feedback
during the report writing phase, has immensely contributed to the successful completion of
this work. Their knowledge, patience, and dedication have inspired and challenged me, for
which I am truly grateful.

3

4

Contents

1 Introduction 7
1.1 Objectives . 8
1.2 Delimitations . 8
1.3 Risks . 8
1.4 Contribution . 9

2 Background 11
2.1 Static Code Analysis in Python . 11
2.2 Usability Challenges in Code Analysis . 12

3 Method 15
3.1 Review of the State of the Art . 15

3.1.1 Literature Review . 16
3.1.2 Python Code Analysers Review . 17

3.2 Python Analyser User Experience . 17
3.2.1 Survey . 18
3.2.2 Interview . 19

3.3 Prototype Development and Evaluation . 19

4 Related Work 21
4.1 User-Centric Studies about Analysers . 21
4.2 Python Code Analysers Review . 22

5 Survey and Interview Findings 23
5.1 Survey . 23

5.1.1 Basic Information . 23
5.1.2 User’s Experience with Code Analysers 23
5.1.3 Previous Knowledge about Analysers 24

5.2 Semi-Structured Interview . 24
5.2.1 Positive Experiences with Code Analysers 24

5

CONTENTS

5.2.2 Negative Experiences with Code Analysers 25
5.2.3 Understanding Code Analyser’s Message 25
5.2.4 False Positives . 26
5.2.5 Quick-fix Solutions to Problematic Code 26
5.2.6 Suggestions . 27
5.2.7 Discussion . 28

6 Prototype Development 29
6.1 Pylint . 30

6.1.1 Message Severity . 30
6.1.2 Message Control . 30

6.2 Language Server Protocol . 32
6.3 Pylint Extension on VS Code . 34
6.4 Current Quick-Fix Features . 34
6.5 Adding Ignore Features to C0103 . 39

6.5.1 Disabling Through Annotations . 40
6.5.2 Disabling Through Pylintrc . 42

7 Prototype Evaluation 45
7.1 Evaluation Setup . 45
7.2 Results . 46

7.2.1 Experience of the Exercise . 46
7.2.2 Adding Annotation . 47
7.2.3 Dealing with Pylintrc . 47
7.2.4 Discussion . 47

8 Threats to Validity 49
8.1 Internal Validity . 49
8.2 External Validity . 50

9 Conclusion 51
9.1 Future Work . 51

References 53

Appendix A Query Strings, Survey and Interview Questions 59

Appendix B Survey Results 67

Appendix C Code Listing 75

6

Chapter 1

Introduction

Code analysers are tools that inspect the program source code for potential problems, such
as syntax errors, performance inefficiencies, and coding standards violations, among others.
In the context of static code analysis, these analysers operate without executing the program
code.

Code analysers are often integrated into the development process in different ways [23].
Some analysers are plugged into integrated development environments (IDEs) to provide pro-
grammers with immediate feedback as the code is written down. Others may need to be
executed separately in the command-line interface (CLI).

One of the main advantages of static code analysis is that it helps to identify issues early
in the development process, which can be easier and less expensive to fix. For example, iden-
tifying a security vulnerability in the source code during development can be much less costly
than finding it after the code has been deployed and is in use.

While static code analysers can be a powerful tool for programmers, they also have limi-
tations. One of the main challenges is the high false positives rate [11], where the analysis tool
flags a piece of code as problematic when it is actually correct. Moreover, usability issues can
be problematic. Some tools may require a significant amount of configuration and setup, or
may produce messages that are difficult to understand [23, 24]. These issues can make it chal-
lenging for programmers to integrate static code analysers into their development process
and get benefits from them.

Especially for novice programmers or the Python language, code analysis tools might be
difficult to use or require a steep learning curve. If the tools are not intuitive or require
extensive training, programmers may be less likely to use them or may use them incorrectly,
leading to inaccurate results. Therefore, the usability experience of users with static code
analysers is a critical aspect of this research. By examining the usability of these tools and
identifying areas of enhancement, we can aim to improve the effectiveness of the tools and
experience of the users.

7

1. Introduction

1.1 Objectives
The overall objective of the thesis is to investigate the precision and performance of Python
static code analysers and to design and implement improved features that can enhance the
efficiency and fluency of the programmers’ workflow. To achieve this objective, we seek
answers to the following research questions:

• RQ1: What does previous research say about Python static code analysers and their
usability problems?

This research question helps us understand the current state of Python static code analysers,
their limitations, and the challenges faced by users. By reviewing previous research, we can
identify areas of improvement and build upon existing knowledge.

• RQ2: What functionalities do current Python analysers offer in commonly used devel-
opment environments such as IDEs or notebook editors?

By exploring the functionalities of existing Python analysers in different development environ-
ments, we can identify gaps in their features and usability. This information will guide us in
designing and implementing enhanced features for Python static code analysers.

• RQ3: What experience do novice Python programmers have with static analysis?

Python has become a popular language of choice for many users whose primary focus is not
programming. Industries such as AI, ML or data analysis are fast-growing fields where Python
has gained popularity. This is why understanding the experiences and challenges faced by novice
Python users when using static analysis tools is important for improving the tools’ usability. This
research question aims to gather insights into these specific issues, allowing us to incorporate
these findings into the design of more user-friendly features.

• RQ4: In order to increase the usability of static analysis results, how can the interaction
with Python code analysers be improved?

This research question focuses on identifying ways to improve the interaction between users
and Python code analysers. By exploring potential improvements, we can enhance the user
experience and help programmers make better use of static analysis tools in their workflow.

1.2 Delimitations
The research studies conducted in this thesis are limited to a user sample that primarily
consists of students from Lund University. The development and enhancements made to the
chosen Python analyser were based on the feedback gathered from the sample users and were
developed locally.

1.3 Risks
Risks and challenges arose during the research process, and it was important to be prepared
to address them. One potential challenge was finding a sufficient number of participants

8

1.4 Contribution

for data collection. To minimise this risk, the research carefully designed the questionnaire
items to make it easier for people to participate while still providing meaningful feedback.

Another potential challenge was the possible lack of relevant open-source Python code
analysers. Additionally, there was a challenge in developing enhanced features for these anal-
ysers within the short project timeline. To address this, the research carefully considered
which features to develop and ensured their viability within the time constraints.

It should be noted that deviations from the original plan did occur, and we had to make
adjustments as the project evolved. To stay on track, we conducted weekly reviews. We also
established a mid-project report milestone to track the progress of the work and plan more
precisely for the second half of the project.

1.4 Contribution
This research project represents a journey undertaken primarily by a single individual: the
author. Throughout the project, the author benefited from the guidance and mentorship of
two supervisors, who helped refine the research roadmap.

The author was responsible for the subsequent data collection phase. This required de-
signing and conducting surveys, carrying out interviews, and effectively gathering critical
data. This information then became the base of the subsequent research and analysis.

Progressing to the next phase, the author undertook the design and implementation of
the prototype. This task required careful consideration and application of the insights and
knowledge gained from the research process.

This thesis reflects the author’s dedicated involvement at each stage of the project. From
conceptualisation and data gathering to the implementation of the prototype, each step was
guided by the author’s decisions and effort. The guidance from the supervisors was crucial
in shaping this project, but the final product stands as a testament to the author’s individual
journey through the research process.

9

1. Introduction

10

Chapter 2

Background

2.1 Static Code Analysis in Python

Static and dynamic programming languages are fundamentally different in how they ap-
proach type checking. In static languages like C and Java, type checking occurs during the
compilation process, allowing many errors to be caught before the code is executed. Dy-
namic languages like Python, on the other hand, perform type checking during run time,
which means that some errors may only be detected when the code is executed.

While Python’s dynamic type system and simple syntax make it an accessible program-
ming language, ideal for learning purposes as initially intended [12, 33], it also introduces
the risk of type-related bugs in source code. Therefore, type annotations were introduced in
Python via PEP-484 [8] and static type checkers like Mypy [22] have emerged as important
tools in recent updates of the language. They enable tracking of type-related issues within
the code and catch potential issues before they cause problems for end-users.

On the other hand, dynamic language’s type system makes the adaption of static analysis
method challenging. Nonetheless, research has demonstrated that many techniques utilised
in static languages such as pattern matching, abstract syntax trees (AST) matchers, symbolic
execution[9] and abstract interpretation [1, 6] can be applied to Python as well.

Static code analysis is critical for improving code quality and reducing the likelihood of
defects in any programming language. In the context of dynamic languages like Python, re-
search and development of effective static analysis methods and tools are important to ensure
code correctness, maintainability, and security. Considering Python’s significant popularity
and use [33], it is essential to understand how users perceive and interact with static analysers
in dynamic languages. In Chapter 4, we discuss several previous works related to Python code
analysis.

11

2. Background

2.2 Usability Challenges in Code Analysis
In spite of the importance of the code analysis in the programming world, there are still nu-
merous challenges that hinder users from integrating analysers into their workflow. In recent
years, several studies [23, 24] have identified the main problems that lead to poor communi-
cation between analyser tools and users. To summarise the issues related to usability, most
of the barriers can be grouped in six different challenges:

• Incomprehensible messages: After identifying a problematic code segment, the tool
must explain to the user the reasons for flagging the code as an issue. The warning mes-
sage displayed by the tool should be both clear and intuitive; however, numerous as-
pects could be enhanced in this regard. Some tools might not provide any explanation
as to why specific code is considered problematic, whereas others may inundate users
with excessive information. The challenge lies in determining the appropriate level
of detail for the warning message, considering that users may possess varying levels of
expertise and knowledge. The message should be comprehensible to the vast major-
ity of users, ensuring that it is neither inadequately explained nor be overwhelmingly
informative.

• Auto-fix support: This category relies heavily on the technical aspects of the tool. After
detecting a problem with the code, some analysers lack options for fixing the issue.
Since the tool is capable of detecting the error, it should also provide some type of
hint on how to solve it. While many commercial IDEs offer quick-fix functionalities,
there is still a shortage of this type of feature in general. Other useful related functions
include the option of previewing the refactored code before applying the fix, providing
examples of similar problems and solutions, and more.

• False positives: One of the biggest reasons why programmers may not trust code anal-
ysers is the existence of false positives. This problem is highly dependent on the tech-
nical implementation of the analyser, similar to the issue of fixing support. When the
rate of false positives is high, the tool can become more annoying than useful. One
possible solution to address this problem from a usability perspective could be to col-
lect users’ feedback and improve the quality of reports based on it [23]. Users could
also inform the tool about false positives or mark warnings as not useful, which could
help the tool learn from users’ knowledge and preferences and adapt accordingly for
programmers.

• User feedback integration: The lack of customisation options is a common issue with
code analysers. Users should be able to incorporate their feedback into the tool to
adapt it to their specific requirements. Some analysers offer options to adjust warning
severity, customise or create rules, or temporarily suppress alerts. Validating true pos-
itives could also serve as a valuable form of feedback, assisting analysers in adapting
and improving, similar to marking false positives.

• Workflow integration: It is important to integrate the tool seamlessly into the devel-
oper’s coding workflow. Some analysers are standalone tools that require installation

12

2.2 Usability Challenges in Code Analysis

and configuration, while others may already be integrated into the development en-
vironment. If executing the analyser requires a complicated and disjointed process,
programmers are less likely to utilise the tool [11].

• User interface: The interface serves as the link between the analyser and the user.
The tool should provide a clear overview of errors and display warnings in visually
intuitive manners. Additionally, it should offer features that guide users through the
issues, enable them to examine them in more detail, track their progress, and provide
unambiguous visual feedback. Moreover, the timeliness aspect of when to present or
request user information is another subject to investigation [23].

While dividing each problem category into many subcategories is possible, addressing all of
them would make code analysers overly complex and go beyond this project’s scope. Instead,
we will focus on studying users’ real experiences and evaluating the technology’s user aspect.

Empirical research over the past decade has looked into programmers’ user experiences
to understand why they need or use static code analysers [3, 5]. These studies also aim to
identify the issues and barriers that stop programmers from using program analysers [11].
Most of these studies use surveys and interviews with professional programmers who have
prior knowledge of code analysers. Some use them to improve code quality, while others
employ the tools for policy and security reasons within their company.

In this project, we focus on the experiences of novice Python users. As Python has rapidly
grown within the industry, and considering the usage characteristics of the language as dis-
cussed in RQ3, there’s a notably higher percentage of non-programmers who are less familiar
with code analysis tools. This target group differs from those of previous studies, as most
beginners are early in their careers or students. They may not be concerned about false pos-
itives, and some might not even be aware of code analysis, even though they encounter it
within their coding environments, such as IDEs or notebooks.

The first step in this project will be to detect the barriers relevant to this user group. We
will observe and identify usability issues from the perspective of novice Python programmers,
aiming to improve the tool in this aspect. By understanding the challenges and requirements
of this target group, we can contribute to the development of more effective and user-friendly
static code analysers for Python. This will, in turn, help novice programmers build a strong
foundation in code quality, correctness, maintainability, and security as they progress in their
careers.

13

2. Background

14

Chapter 3

Method

In this Chapter we will discuss in detail the methodologies employed to address the different
raised research questions.

The first step was a learning exercise about static code analysers, conducted by reviewing
existing literature. This enabled us to address RQ1 by gaining an understanding of static
code analysers and other key features of these tools. The findings and insights derived from
this exercise are presented in Section 3.1.

After having a general idea of the topic, to address RQ2, we investigated open-source
Python code analysers by conducting a literature review and also experimenting with the
available analysers (section 3.1.2). Static code analysers could be present in IDEs or notebook
editors, so the main objective of this step was to determine what functionalities or features
these different tools present.

To answer RQ3, we gathered data from volunteer Python novice programmers via a survey
and interview (section 3.2). This involved the design and implementation of a questionnaire
(section 3.2.1) and semi-structured interview (section 3.2.2) aimed at gathering data on the
user experiences of analysers.

To answer RQ4, we used the insights and information gathered from addressing the previ-
ous research questions to inform the design of an enhanced tool (section 3.3) that incorporates
enhanced features of Python static code analysers.

Finally, the enhanced tool underwent a final evaluation using a different group of volun-
teer Python users.

3.1 Review of the State of the Art
In this section we describe how we reviewed related literature. The methods aim to find useful
information to help us understand the context of our thesis and explore available resources
about Python code analysis tools.

15

3. Method

3.1.1 Literature Review
Our main approach for reviewing existing literature was to query the Scopus database [2] us-
ing relevant keywords. The primary objective was to identify studies related to code analysis,
with a focus on the user experience perspective. We experimented with different combi-
nations of keywords and collected the results of each query in separate spreadsheets that
were combined into a single data sheet file. In total, we tried six different searches A.1, and
recorded each query in an index sheet that specified the sheet where the data was saved and
the number of results for that search.

The next step we took was to extract the EID1 column of all papers and merge it into a
new sheet under the same column. We then removed the duplicated rows.

Once we filtered unique papers’ EIDs in the same column, based on the identifier, we
extracted three additional columns with information of: which query the paper originated
from, paper’s title, link to the main page of the paper. At this stage, we obtained around
710 rows of papers, which needed to be reduced. The next step was a manual selection of
interesting work titles by highlighting them.

Aiming to find answers to the research questions RQ1, RQ2, and RQ4, we defined a set
of selection criteria, which were applied at the filtering stages of our research. These criteria
are as follows:

• C1: The work in question must be related to code analysis. This was our primary
requirement in all filtering phases.

• C2: A more specific requirement was that the paper had to be related to user experience
or the usability of the code analysis tool itself.

• C3: We looked for empirical works that investigate why and how programmers use or
choose not to use code analysers.

• C4: We attempted to identify studies focusing specifically on Python code analysers,
although this criterion did not yield many results.

Applying these criteria, we identified several relevant papers. For instance, criterion C1
and C2 led us to some empirical works that investigate the use of code analysers. However,
with respect to criterion C4, we only found a few papers focusing specifically on Python code
analysers.

Many times the titles were not informative enough, so we reviewed the abstracts and
proceeded to download those that still looked relevant to our work. This resulted in 14 papers,
which was a manageable amount of works to check and study. It’s worth mentioning that we
found a lot of interesting and related literature on the topic but not relevant given the criteria
used. We highlighted those works in another color in the spreadsheet so that we can revisit
them in the future.

The final step involved a detailed reading of each of the 14 papers, focusing on the ones
that specifically addressed our research areas. These include papers on the usability of code
analysis tools, programmers’ utilisation and perception of these tools, and specialised research
on Python code analysers. Through this review process, we filtered and excluded those papers
that did not directly contribute to our research questions.

1The EID is a unique academic work identifier assigned in Scopus bibliographic database [34]

16

3.2 Python Analyser User Experience

At this final step, we had identified 7 relevant papers. The strings used to query on Scopus
can be found in the Appendix A.1.

3.1.2 Python Code Analysers Review
The literature review identified several relevant papers that provided different perspectives
on the topic of code analysis. While all of them were valuable in understanding the field, only
two studies were directly related to Python.

To gain a better understanding of Python code analysis tools, we examined the survey
study conducted by Hristina and Zoltán in 2019 [9]. The research evaluated the performance
of popular Python code analysers in identifying typical Python errors and bugs.

In addition, we came across a large-scale study of code analysis tool usability issues [24].
While the study evaluated analysers for multiple languages, it included 15 Python code anal-
ysers.

Following the literature review, we explored Python code analysers in different IDEs and
notebooks such as Pycharm, VS Code, and Jupyter Notebook. We thoroughly reviewed the
documentation and explored the features offered by the built-in analysers. Moreover, we
researched the potential integration of extensions or external Python analysers into these
coding environments.

3.2 Python Analyser User Experience
For the data gathering phase of our research, we utilised two different methodologies. First,
we designed a questionnaire to gather the opinions and experiences of students regarding
Python code analysers. The main target of this project was users with some basic knowledge
of Python, with a focus on novice programmers who have just started learning the program-
ming language. The questionnaire consisted of a series of multiple-choice and open-ended
questions that covered topics such as familiarity with different code analysers, perceived use-
fulness of code analysers, and challenges encountered while using code analysers. To reach a
wide range of novice users, we distributed the questionnaire both offline and online.

Additionally, we conducted semi-structured interviews with a subset of participants who
expressed interest in contributing further insights on the topic. The interviews were generally
conducted via video conferencing and followed a flexible structure that allowed for in-depth
exploration of participants’ experiences and perspectives. The interviews focused on topics
such as the impact of code analysers on participants’ coding practices, their preferred fea-
tures and functionalities of code analysers, and their suggestions for improving code analyser
usability.

In total, we received 39 completed questionnaires and conducted 6 interviews. The data
gathered from both methodologies provided valuable insights into students’ experiences and
perceptions of Python code analysers, and helped to inform the development design of our
project.

17

3. Method

3.2.1 Survey
Before administering the survey, we obtained informed consent from all respondents, per-
mitting the use of their information for research purposes. The survey was structured in three
sections:

1. Basic information: We asked respondents how long they have been working with
Python, what type of programming experience they have, and what environment they
usually work in.

2. Users’ experience with code analysers: In this section, we presented figures about code
analysers in different IDEs. We aimed to guide respondents to recall their coding rou-
tines and identify situations where they have interacted with static code analysers. The
core of this section is to explore the reasons behind every possible interaction between
users and the tool. We aimed to understand why programmers pay attention to tool
warnings and highlights, how they perceive the displayed messages, whether they un-
derstand them or not, and whether they think the tool is significant to their coding
routine.

3. Previous knowledge: Finally, we wanted to know whether respondents had previous
knowledge of static code analysers, even in other languages.

Most of the questions were multiple-choice, with an “Others” option where respondents
could provide further comments.

Before distributing the survey to collect answers, an initial version was tested with five
pilot users, who provided constructive feedback about the questionnaire. The feedback from
the testing phase was used to enhance the structure and questions of the survey.

The survey was first distributed offline in the Physics building of Lund University for two
days. We set up a stand with free pastries and coffee to encourage student participation. The
advantage of gathering data with this methodology is the possibility of having direct contact
with respondents, which encourages them to provide good-quality data. This method also
ensures that they fully understand the questions and do not answer randomly just to receive
the reward.

On the other hand, valuable insights may also arise from informal conversations. For
example, one student mentioned that for their university work purposes, the performance
and formality of their code might sometimes be irrelevant as long as the script can execute
and provide the right output.

To increase the number of responses, we distributed the same questionnaire in differ-
ent social media platforms. We used the survey tool from Lund University and published
the anonymous survey in relevant student groups on Facebook, WeChat, and WhatsApp.
The advantage of publishing the survey in different groups is that it diversifies the academic
backgrounds of the respondents, while decreasing the influence of other factors such as na-
tionality, gender, age, and so on. The designed survey can be found in the Appendix A.

In total, we collected 39 responses, with 13 from the offline distribution, 21 from the
online distribution, and 5 from the pilot subset.

18

3.3 Prototype Development and Evaluation

3.2.2 Interview
To gain further insights and perspectives from users, we conducted a second phase of ex-
ploration into their experiences with Python static code analysers. Although we provided
options for respondents to express their opinions during the survey beyond the established
questions, we aimed to delve deeper and establish direct conversations to explore more in-
sightful data and experiences through semi-structured interviews.

After completing the questionnaire, we asked respondents if they were willing to partic-
ipate in an interview. Through this method, we successfully contacted six participants and
scheduled interviews with them.

The structure of the interviews followed a general guide of questions to discuss differ-
ent aspects of users’ experiences with the tool. We began by asking about their previous
knowledge and understanding of the technology, followed by their positive and negative
experiences with Python code analysers. We concluded by encouraging them to provide sug-
gestions for enhancing the tool, whether from a user interface or functional perspective. The
interviews were flexible and did not necessarily follow a strict question-and-answer format,
with the goal of encouraging participants to speak freely and share their ideas.

We initiated all interviews by first seeking the informed consent of the participants for
recording the conversation and using the information for our research purposes. Of the inter-
views conducted, five were carried out remotely, and one was conducted face-to-face. After
the interviews, we used Descripti [4] to code the conversation, manually checked the content,
and highlighted relevant quotes. We then cleaned the quotes and summarised the interesting
content by grouping it according to the participants.

After reviewing the cleaned transcriptions, we organised the information into categories
that correspond to various topics in Section 5.2. This categorisation helps us to organise the
data and facilitate the analysis process.

3.3 Prototype Development and Evaluation
One of the most commonly used working environments identified in Section 5.1 was VS
Code. As a result, we decided to focus on VS Code and chose a Python code analyser com-
patible with the platform. After evaluating several options, we opted to use the Pylint [18, 27]
plugin extension for the notebook [20]. Pylint is a popular and well-supported Python code
analyser with a variety of features and customisation options.

Based on user feedback presented in Section 5.2, we decided to work on the invalid-
name [26] issue of Pylint, as it was a recurring problem that users found annoying from a
usability perspective. The invalid-name issue occurs when Pylint raises a warning when a
name doesn’t conform to naming rules associated to its type (constant, variable, class...).

The main development process consisted of cloning the repository, understanding the
open-source project, and using it as the starting point. This required us to comprehend and
master concepts like VS Code extension integration and LSP (language server protocol). It
was a complex learning process that demanded extensive reading of API documentation [16]
and the official repository of the Pylint extension on VS Code, which was based on Python,
TypeScript, and JavaScript.

During the learning process, besides the previously mentioned concepts, we also became

19

3. Method

familiar with essential Python packages like pygls [31, 32] and lsprotocol[21].
After grasping how the LSP works as a server, interacts with the VS Code client, and

exchanges information with Pylint, we added new features and options for ignoring the
invalid-name issue raised by the tool. This allowed users greater flexibility to interact with
and provide feedback to the analyser.

We then proceed to evaluated the enhanced tool. To recruit volunteers for this phase, we
posted announcements on Facebook and, this time, also in a Python-based course at Lund
University. Unfortunately, we only received responses from one person from each source,
which led us to consider involving previously interviewed users. Eventually, we experimented
the tool with four volunteer programmers and asked them to solve two different exercises
using both the classic and enhanced versions of the Pylint extension on VS Code. Following
this, we conducted a semi-structured interview to understand their experiences with the new
feature of the tool. We discuss the specifics of the experiment setup in Section 7.1. The general
guidance and code used for the experiment can be found in Appendix A, C.

20

Chapter 4

Related Work

Similar to our work, many other studies [3, 5, 10, 11] have focused on the user experience
of code analysers using empirical methodologies. Most of these studies conducted interviews
with professional programmers within organisations to identify the barriers that hinder users
from utilising code analysers. A common characteristic of these studies is that participants
are typically experienced software programmers who primarily work with statically typed
programming languages.

On the other hand, there are relatively few studies [9, 25] that investigated code analysis
topics specifically related to the Python language.

4.1 User-Centric Studies about Analysers
In a study by Christakis and Bird [3], they conducted surveys and interviews at Microsoft,
aiming to understand the desired functionalities, barriers, and pain points associated with
using code analysers. They addressed non-functional features the tool should have and how
the tool should display and represent its results. The study highlighted the significant impact
of false positives and recommended tools to not enable all rules by default. It proposed adding
specifications or annotations in the code to enhance analyser performance. It was also shown
that team policy is often the driving factor behind actively using code analysers, which differs
from our studied sample since they are mostly students.

Johnson et al. [11] conducted 20 interviews to find out the reasons why professionals stop
using code analysers, which revealed that the false positive issue was the most impactful. The
reasons for use addressed in the study generally match some of the discoveries in our research
study, associated with the acceleration and automation of finding bugs. The study also high-
lights the importance of having the analysis tool integrated into their coding environment as
a major factor in using the tool.

Another recent study that uses similar methodologies is the work conducted by Do et
al. [5]. With the objective of deriving new tool requirements to assist programmers, they

21

4. Related Work

conducted a user-centered survey and interview to understand the motivation behind the
usage of code analysis tools. One of the interesting conclusions from the study mentions the
importance of being able to integrate programmers’ experience into the tool so it can adjust
and provide more personalised results.

4.2 Python Code Analysers Review
Hristina and Zoltán [9] conducted a detailed investigation about static analysis tools for
Python programs. They mentioned different techniques used by analysis tools, such as pat-
tern matching, AST matchers, and symbolic execution. All of these techniques are heuristics,
which could display imperfections leading to false positives and negatives. Another note-
worthy aspect of the study was the evaluation of available Python code analysis tools against
common Python bugs and errors. This provided a comprehensive overview of the current
capabilities and limitations of these tools in the field.

Oliveira et al. [25] analysed 1119 open-source projects with six different types of lint-
based warnings. They discovered that a significant percentage of projects contained code
with at least one of the six lint-based warnings, and programmers prefer their code without
those lints. This last part matches some of the characteristics from our survey results in
Section 5.1.2, where many of the questionnaire respondents did not want to see their code
being highlighted.

22

Chapter 5

Survey and Interview Findings

In this chapter, we discuss some of the results and findings from the conducted survey and
semi-structured interview.

5.1 Survey
In this section, we will present the results of the distributed survey. The questionnaire aimed
to gather insights and feedback from our target users, particularly novice programmers, pro-
viding valuable information on their experiences and preferences when using Python static
code analysers. By analysing the responses, we seek to better understand the workflows of
novice programmers in the context of code analysis tools, shedding light on their needs and
potential areas for improvement. This analysis will help us address RQ3, which focuses on
the experiences of novice Python programmers with static analysis.

5.1.1 Basic Information
The first section of the survey aimed to understand the programming background of the
respondents. In Appendix B.1, we observe that 67 % of the participants have less than two
years of programming experience. Figure B.2 shows that almost everyone has used Python in
academic courses. Additionally, in Figure B.3, we see that the most commonly used coding
environments were VS Code, Pycharm, and Jupyter Notebook. These results are as expected
and appropriate since we targeted students.

5.1.2 User’s Experience with Code Analysers
In this section, we presented a screenshot scenario featuring several Python code analysis re-
sults (see Appendix A, Figure 1) to the respondents, asking if they had encountered similar

23

5. Survey and Interview Findings

situations before. One of the reasons for this was that we suspected most users had experience
with code analysers, although they may not have had knowledge of the concept and technol-
ogy. As expected, in Appendix B.4, we see that the majority of users had indeed worked with
analysers. When we examined the environments for Python code analysis, VS Code emerged
as the most common platform, followed by Pycharm and Jupyter Notebook (Appendix B.5).

We also investigated the level of interaction users had with the tool, discovering that 59%
frequently checked analyser results while only 15% typically ignored the warnings. As Ap-
pendix B.7 illustrates, the tool is viewed as beneficial by 69% of users who believe it can en-
hance their code quality, while 47% expressed frustration upon seeing their code highlighted.
Two reasons people ignore and do not check highlighted code by the tool are because they
think the warning is useless, which relates to the concept of false positives, and because they
are indifferent to warnings or messages (Appendix B.8).

Despite these frustrations, a high percentage (92%) of users who interact with the tool
agreed that the analyser positively influences their coding process by detecting errors and
bugs early (Appendix B.9). When it comes to the reason for ignoring warning messages after
checking, 62% of users felt the warnings didn’t apply (false positives), and 47% considered the
problem difficult to fix (Appendix B.10). In some cases, users mentioned that the problem
looked hard to fix, meaning that the tool did not provide an immediate or adequate solution.

As shown in Appendix B.11, the users’ reactions to issues varied: most look for external
assistance (from the internet or experienced programmers), while 49% attempted to solve the
problems themselves. Finally, most users interacted with the code analyser while they were
writing their code, as the highlighting feature appeared during this phase (Appendix B.12).

5.1.3 Previous Knowledge about Analysers
In the last section of the questionnaire, we wanted to verify whether the user had previous
knowledge or experience about code analysis, even in other programming languages. Almost
everybody answered negatively in this section, as expected.

5.2 Semi-Structured Interview
In this section, we will present the results from the interviews, dividing them into six different
topics: positive experiences with the tool, negative experiences with the tool, understanding
the tool’s message, false positives, quick-fix solutions to problematic code, and suggestions.
The participants will be referred to as P1-P6 to respect their anonymity. The insights and
analysis from these interviews will serve as valuable input and feedback, informing the design
of an enhancement feature for an existing Python static code analyser. By examining the
responses, we aim to address the issues faced by novice programmers and improve the overall
user experience with code analysis tools, thus answering RQ4.

5.2.1 Positive Experiences with Code Analysers
Among the six users we interviewed, all expressed a positive attitude towards code analysers
in general. They admitted that it is a powerful tool that accelerates their coding by detecting
errors at an early stage.

24

5.2 Semi-Structured Interview

"It’s very practical that you get like the underlying, the colored underlying based on the
importance of the problem. The first example that comes to mind is when I forget to
import a library and a warning pops up reminding me to do so. It’s helpful because it
directs me to the solution right away." – P1

"Analysers are incredibly helpful because they save a lot of time. Instead of having to
run the code, wait for it to break, and then look at the interpreter to figure out what
went wrong, you can catch the mistake ahead of time. It’s especially helpful when you
miss something like a semicolon or a mismatched parentheses. If I don’t catch an error
like that before running the code, and it breaks, it can be frustrating." – P3

"I get instant feedback when I write something that is not syntactically correct. Correct-
ing bad coding practices and stuff could be helpful. Makes the code nicer in general. You
don’t have to run it and it speeds up the programming process." – P5

5.2.2 Negative Experiences with Code Analysers
After hearing about the positive aspects of code analysers, we asked the respondents to share
their dislikes about the technology. We specifically asked about any pain points or frustra-
tions they had experienced while using code analysers in their work or studies. This part
of the survey was a important source of feedback for identifying areas of improvement and
designing features that would address those issues.

"Sometimes it tells me that a variable should not be named a certain way, but I feel like
I can name my variable however I want." – P1

"You can have code that works, even though the tool doesn’t like how it is presented. But
that’s just the way the code is structured. So I can’t change it, or it would take me a
long time to change the use of that kind of code everywhere. So I just leave it there and
it distracts me from the important things. If it’s just a break against some kind of style
guide that nobody really cares about, then it’s not a big deal." – P3

"Many times you just accidentally click on something and change your code, like maybe
you press enter and it automatically changes things. It is really annoying. I tried to get
rid of it but I couldn’t." – P4

"I really dislike when the analyser suggests a possible error of code. Because I wrote it
for a reason, I probably wanna do it. I don’t like when it informs me of something that
may not be an error." – P6

5.2.3 Understanding Code Analyser’s Message
We asked the respondents if they felt the tool’s messages were clear enough and what they
typically do if they don’t understand them. Based on their responses, we found that the tool’s
messages are usually understandable when the issue is simple, but when it becomes more
complex, the messages would be difficult to understand and do not provide enough options
to help them further. Most users tended to turn to Google to find a solution.

25

5. Survey and Interview Findings

"Most of the time, the error messages are clear, and the ones that are hard to understand
are usually runtime errors that stack up. But overall, editors usually provide helpful and
nice error messages." – P1

"I think I rarely read what it says. It’s just like, oh, it marks this place. And I quickly
realize what is wrong. Almost all the time I understand the message, but when I don’t
understand it, I really don’t understand it. If it marks something and I don’t understand,
reading it probably won’t help me." – P3

"I would try to understand the message. If it has a little help icon I probably would use
it, it’s easier to press up than to go to Google." – P4

"I think in general it’s usually fairly understandable. If I don’t understand the message.
I would probably run it and see what happens. If it doesn’t run, I might get a better error
message or then I will Google." – P5

"Mostly, I think they’re quite clear. Sometimes you have to do a quick Google search to
understand, but, you know, that’s not a lot of work." – P6

5.2.4 False Positives
False positives are a major usability problem with code analysers. To better understand the
frequency of this issue among students and novice Python programmers, we asked the re-
spondents about their experience with false positives.

"There have been times that I’ve disagreed with some of these warnings, but it usually
ends up that the machine is right." – P1

"I think it happens with typos, for example when you misspell a variable, but it’s actually
something you wanted to call it in that way on purpose." – P2

"I don’t think there have ever been false positives to me that I can remember. If it suggests
something, it’s probably going to be very technically correct." – P3

"I don’t think that’s ever happened. My code doesn’t usually get too complicated." – P4

"False positives can be very annoying, but I don’t think I’ve experienced it in Python." –
P5

5.2.5 Quick-fix Solutions to Problematic Code
We asked the respondents about a specific feature that we believed would be useful in code
analysers: providing suggestions to help users solve the problems identified by the tool. We
asked for their thoughts on this feature and on the quality of the solutions suggested by the
tool.

"As long as it doesn’t affect the program’s functionality, I usually just say ’Okay, sure’
and apply the suggestion" – P1

26

5.2 Semi-Structured Interview

"Quick fixes for simple things are good, you just click it and change it and it is really nice,
I use a shortcut in VS all the time. I don’t think it’s ever happened that it marks something
and the suggestion is bad. Most of the time there is a suggestion that is probably good."
– P3

"I would probably try to ‘quick fix’ it at the beginning. But if I noticed that they’d rarely
work or they’re gibberish, I would probably stop using them pretty quickly. I think as
long as it’s understandable, like as long as it makes sense from a glance, I will be fine
with it. But I think if it starts doing things I don’t understand, I wouldn’t dare use it."
– P5

" I’ve almost never seen a quick fix that works. The only time I’ve seen it work is it’s like,
oh you haven’t imported, Numpy or other packages. But I, if it’s more complicated than
that, I’ve never seen that actually function in the tools I’ve used." – P6

5.2.6 Suggestions
In the final section of the interview, we asked the respondents to suggest areas of improve-
ment for the code analyser tool. We encouraged them to provide suggestions for enhance-
ments in various areas, including user interface design and other functionalities that they felt
were lacking.

"What annoys me is that sometimes it’s hard to apply the suggestions because you have
to either select the light bulb next to the text, but it sometimes disappears when you’re
trying to click on it. Alternatively, you have to click there and use some sort of shortcut
to apply the suggestion, but this can be distracting as it makes you forget where you
initially were. It would be nice to have an easier way to interact with the suggestions."
– P1

"Analysers usually detect syntax errors. But they don’t detect compiling or run run-time
errors. For example, when you’re dividing by zero, some calculation ends at infinity." –
P2

"It would be nice to dismiss some specific warnings. I don’t care about this thing on this
line, but it usually will recheck every time. Like just dismiss this specific error in this
specific situation. So in general, I want the check, but for this time, ignore it." – P3

"I think a lot of code analysis doesn’t provide quick fixes or don’t for a lot of cases, and I
feel often there’s pretty easy solutions to things. So getting some more quick fixes would
be helpful." – P5

"I think a feature that is quite lacking in a lot of these built in code analysers is they
give you a very superficial description of the problem, but there’s no option to have them
explain more, or dig deeper. Then you have to go to an external source to understand
what that means. You only get the superficial explanation from the tool most of the time."
– P6

27

5. Survey and Interview Findings

5.2.7 Discussion
Despite the generally positive experience with code analysers, many users also expressed sev-
eral pain points that can be frustrating when using the tool.

One common issue is that, when code issues become complex, the tool often lacks re-
sources to help the user understand the message. Similarly, the tool’s limited quick-fix solu-
tions can also be a source of frustration.

Interestingly, the mainly novice programmers among our participants did not appear to
be significantly affected by false positives. Although a high percentage of respondents in
Figure B.10 answered that they ignore warning messages because they believe the warning
doesn’t apply, none of the users we interviewed could provide an example of frustration with
false positives.

In the suggestion section of the interview, many users talked about improving the warning
messages, increasing the number and variety of quick-fix features, and improving the user
interface and other functional options.

One specific issue that caught our attention is the problem of naming terms that do not
follow certain style standards. This type of warning occurs when a user names a variable, for
example, that does not follow Python’s official PEP8 [7] style standard, even though it is not
related to the functionality of the code. In some cases, users may want to name a term or
variable in a specific way, regardless of the formatting, capitalization, or case. The fact that
the tool does not provide a solution or a fast and intuitive way to ignore the warning can be
frustrating for users and may discourage them from using the tool.

We believe that this issue could be a valuable problem to study and address. In the fol-
lowing sections, we aim to provide various possibilities for addressing the issue in specific
situations.

28

Chapter 6

Prototype Development

In this chapter, we describe the selection of Pylint and VS Code for this project, the funda-
mental concepts related to these tools, and the subsequent enhancement of the Pylint exten-
sion for VS Code. Pylint is one of the most extensively used Python code analysers in the
VS Code extension market. The clear objective of our enhancement was proposing ignore
options to users when Pylint flags a code segment that does not adhere to a naming standard.

To kick off the development process, we cloned the official Pylint repository [18] and
followed the contribution guidelines, which included installing all the necessary packages and
modules. The project prerequisites consisted of NodeJs 14.19, Npm 8.5.0, and Python 3.7. We
then set up a new virtual environment and installed all JavaScript and Python dependencies
following the provided guide.

The implementation process was iterative, employing the Extension Development Host
(EDH) [19] and the editor’s built-in debugging tools for testing and debugging extensions
in VS Code. The EDH, a self-contained environment, launches a separate editor instance
distinct from the main session, allowing us to evaluate the real-world impact of our modifi-
cations.

Figure 6.1: Implemented quick-fixes.

Overall, we developed four quick-fix options, providing ways for users to ignore the

29

6. Prototype Development

invalid-name issue at various levels—single line, from a specific line, within the current block,
or at the document level by adding annotations. Additionally, we created two quick-fix op-
tions that manage a pylintrc configuration file, either disabling the rule entirely in the work-
ing directory or adding the treated naming variable as an always accepted term. The final
view of our implementation is illustrated in Figure 6.1.

6.1 Pylint
Pylint [27] is an open-source Python static code analyser widely used by programmers to
identify and fix potential issues in their code. It checks the source code for programming
errors, enforces coding standards, identifies code smells, and suggests improvements. Pylint
parses the Python code and applies various checks, rules, and heuristics, producing diagnostic
messages as output.

Pylint is highly configurable, allowing programmers to enable or disable specific checks,
define custom coding standards and internal rules, and adjust the strictness of its analysis.
This flexibility makes it suitable for projects with different requirements and coding styles.

Although Pylint is designed to be called and executed from the command line, in this
project, we will focus on integrating the tool into the user’s editor. As our aim is to implement
ignore options at different levels for naming standard issues, it is important to understand
how Pylint handles this type of problem and interacts with the developer through the user
interface.

6.1.1 Message Severity
When Pylint analyses code, it can return diagnostic messages with different levels of sever-
ity [29]: Fatal, Error, Warning, Convention, Refactor, and Information. Each category in-
cludes a default group of problematic code types. The levels of severity for each type of prob-
lematic code can be changed and customised by the user through configurations. Regard-
ing naming standards in Pylint, they belong to the Convention category, with the reference
’invalid-name/C0103’ [26].

6.1.2 Message Control
Pylint provides various options to control messages [28]. The easiest way to do this is by
adding annotations to the source code, disabling or enabling specific rules. We can disable
violations in a specific line, from a line, or within a single scope or block.

In Listing 6.1, there are different methods of applying these annotations. On line 13, we
disable the unused-argument issue, which will not raise the issue message from meth1. On
line 20, we disable the no-member error that would be raised since we are trying to call a
non-existing attribute of the class. We can always enable and disable as needed throughout
the lines, as shown in the different blocks and scopes in the meth5 (line 34) and meth6 (line
49) functions.

30

6.1 Pylint

1 class Foo(object):
2 """block -disable test """
3

4 def __init__ (self):
5 pass
6

7 def meth1(self , arg):
8 """ this issues a message """
9 print(self)

10

11 def meth2(self , arg):
12 """and this one not"""
13 # pylint: disable=unused -argument
14 print(self\
15 + "foo")
16

17 def meth3(self):
18 """ test one line disabling """
19 # no error
20 print(self.bla) # pylint: disable=no-member
21 # error
22 print(self.blop)
23

24 def meth4(self):
25 """ test re-enabling """
26 # pylint: disable=no-member
27 # no error
28 print(self.bla)
29 print(self.blop)
30 # pylint: enable=no-member
31 # error
32 print(self.blip)
33

34 def meth5(self):
35 """ test IF sub -block re-enabling """
36 # pylint: disable=no-member
37 # no error
38 print(self.bla)
39 if self.blop:
40 # pylint: enable=no-member
41 # error
42 print(self.blip)
43 else:
44 # no error
45 print(self.blip)
46 # no error

31

6. Prototype Development

47 print(self.blip)
48

49 def meth6(self):
50 """ test TRY/EXCEPT sub -block re-enabling """
51 # pylint: disable=no-member
52 # no error
53 print(self.bla)
54 try:
55 # pylint: enable=no-member
56 # error
57 print(self.blip)
58 except UndefinedName : # pylint: disable=undefined

-variable
59 # no error
60 print(self.blip)
61 # no error
62 print(self.blip)

Listing 6.1: Example of how to disable violations

The other alternative to configure Pylint is by editing its pylintrc file [30]. When Pylint
analyses a Python file in VS Code, it searches for configuration files at different levels and
with varying priorities, with the pylintrc file being the highest priority and the first one to
look for.

The pylintrc file can be generated using the command line, which creates a file with the
default configuration of the tool. In this file, there are two sections of interest. The first one
is the section under MESSAGE CONTROL; in the disable variable, we can list the rules that we
want to deactivate. The other section is under BASIC, in the good-names variable, where we
can specify the variable names that should always be accepted. We will discuss these options
in detail later in Section 6.5.2.

6.2 Language Server Protocol
The Language Server Protocol (LSP) is a standardised communication protocol designed by
Microsoft [17] to enable communication between a language server and a client, typically an
IDE or a code editor. LSP defines a common set of messages and conventions for the client and
server to exchange, enabling the language server to provide intelligent code editing features,
such as autocomplete, error-checking, and jump-to-definition, among others.

LSP allows for the development of language servers that can be reused across multiple
editors and platforms. This promotes consistency and reduces duplication of effort, as pro-
grammers can focus on implementing language-specific features in a single language server,
instead of implementing them separately for each editor.

In the context of this project, the Python Language Server serves as the analysis tool that
is implemented in Python and runs in a separate process. This approach offers benefits such
as avoiding heavy CPU and memory usage [15]. On the other hand, the Language Client

32

6.2 Language Server Protocol

Figure 6.2: Default pylintrc file.

operates as a special extension written in TypeScript/JavaScript that communicates with the
server through the protocol over JSON-RPC.

JSON-RPC is a remote procedure call (RPC) protocol encoded in JSON (JavaScript Ob-
ject Notation). RPC is a communication protocol that enables a client to request a server
to execute a specific procedure or function with supplied parameters. The server then pro-
cesses the request, performs the requested operation, and returns the result to the client. In
Figure 6.3, we can see an illustration of how the language server works in conjunction with a
development tool.

Figure 6.3: Communication protocol between a LSP and a develop-
ment tool.

33

6. Prototype Development

6.3 Pylint Extension on VS Code
The integration of Pylint as a linter into VS Code is accomplished through the editor’s exten-
sion feature [18]. The extension leverages the LSP to handle information and communicates
with the editor.

The typical workflow of the Pylint tool integrated into VS Code is as follows:

1. User opens a Python file in VS Code: When a user opens a Python file in VS Code,
the editor initialises the necessary extensions and services for that file type, including
the Pylint extension.

2. LSP initialisation: The LSP client (VS Code) establishes a connection with the LSP
server (a separate process running Pylint). This connection enables them to exchange
information about the source code and its analysis.

3. LSP configuration: The LSP server receives configuration information from the LSP
client, such as Pylint settings specified by the user in their VS Code settings or work-
ing directory. This allows the language server to customise its analysis based on user
preferences and project requirements.

4. User edits code: As the user edits the Python code in the editor, VS Code sends the
changes to the LSP server through a series of incremental updates or by sending the
full document text.

5. LSP server analyses code: The LSP server, which has Pylint integrated, analyses the
code according to the given configuration. Pylint parses the code, checks for issues
based on its rules and heuristics, and generates diagnostic messages.

6. LSP server sends diagnostics to the client: Once Pylint completes its analysis, the LSP
server generates (based on Pylint’s analysis) and sends the diagnostic messages back to
the LSP client (VS Code) using the established connection.

7. Displaying diagnostics and linting: VS Code receives the diagnostic messages and dis-
plays them in the editor. The user can then review these messages and make corrections
as needed.

8. Quick fixes and code actions: When possible, the Pylint extension in VS Code can
offer quick fixes or code actions to help the user address the reported issues. This can
include automatic fixes or suggested changes that the user can accept or reject.

The primary focus of development in this project has been on the last aspect of quick-
fix and code actions. In the following section, we will discuss in detail how the Pylint LSP
handles diagnostics to generate and provide quick-fix features for the VS Code client editor.

6.4 Current Quick-Fix Features
Among all the code issue messages available from Pylint, only a few of them have a quick-fix
feature implemented in the LSP server of the extension. The lack of options and function-
alities to assist programmers in addressing linted problems emerged as one of the primary

34

6.4 Current Quick-Fix Features

concerns from the semi-structured interview research presented in Section 5.2. As it stands,
the Pylint extension for VS Code offers a limited set of 14 code messages which doesn’t in-
clude the invalid-name issue, as shown in Figure 6.4.

The code issues that have associated a quick-fix option are grouped into three categories.
Each category provides a distinct solution for the various types of code issues. The first two
categories methods are shown in Listing 6.2. When the Pylint linter identifies a diagnostic
that returns a code issue listed in the quick_fix method, it yields a corresponding function
(using Python decorators) that generates a CodeAction object from the lsprotocol package.
This CodeAction is then transmitted to the client via JSON-RPC and provided to the user.
The formatting action involves using an external document formatting providers like pep8,
black or yapf [14]. The organise import command consolidates specific imports from the
same module into a single import statement, and organises import statements in alphabetical
order.

1 @QUICK_FIXES . quick_fix (
2 codes =[
3 "C0301:line -too -long",
4 "C0303:trailing - whitespace ",
5 "C0304:missing -final - newline ",
6 "C0305:trailing - newlines ",
7 "C0321:multiple - statements ",
8]
9)

10

11 def fix_format (
12 _document : workspace .Document , diagnostics : List[lsp.

Diagnostic]
13) -> List[lsp. CodeAction]:
14 """ Provides quick fixes which involve formatting

document."""
15 return [
16 _command_quick_fix (
17 diagnostics =diagnostics ,
18 title=f"{ TOOL_DISPLAY }: Run document

formatting ",
19 command ="editor.action. formatDocument ",
20)
21]
22

23 @QUICK_FIXES . quick_fix (
24 codes =[
25 "C0410:multiple - imports ",
26 "C0411:wrong -import -order",
27 "C0412:ungrouped - imports ",
28]
29)

35

6. Prototype Development

30

31 def organize_imports (
32 _document : workspace .Document , diagnostics : List[lsp.

Diagnostic]
33) -> List[lsp. CodeAction]:
34 """ Provides quick fixes which involve organising

imports."""
35 return [
36 _command_quick_fix (
37 diagnostics =diagnostics ,
38 title=f"{ TOOL_DISPLAY }: Run organize imports "

,
39 command ="editor.action. organizeImports ",
40)
41]

Listing 6.2: Available quick fix options acting on the editor

As seen in Listing 6.2, depending on the problematic code type, different commands
will be executed in the editor through the corresponding CodeAction. For example, when
the code type belongs to the C03 group, the Pylint extension generates a CodeAction that
triggers the formatDocument action (on line 19). Conversely, if the issue corresponds to a code
type in the C04 group, the organizeImports command (on line 39) is executed when the user
applies the quick-fix. These two commands are built-in features available within the VS Code
system.

1 @QUICK_FIXES . quick_fix (
2 codes=list(REPLACEMENTS .keys ()),
3)
4 def fix_with_replacement (
5 document : workspace .Document , diagnostics : List[lsp.

Diagnostic]
6) -> List[lsp. CodeAction]:
7 """ Provides quick fixes which basic string

replacements."""
8 return [
9 lsp. CodeAction (

10 title=f"{ TOOL_DISPLAY }: Run autofix code
action",

11 kind=lsp. CodeActionKind .QuickFix ,
12 diagnostics =diagnostics ,
13 edit= _create_workspace_edits (
14 document ,
15 [
16 _get_replacement_edit (diagnostic ,

document .lines)

36

6.4 Current Quick-Fix Features

17 for diagnostic in diagnostics
18 if diagnostic .code in REPLACEMENTS
19],
20),
21)
22]
23

24 REPLACEMENTS = {
25 "C0113:unneeded -not": [
26 {
27 " pattern ": r"\snot\s+not",
28 "repl": r"",
29 }
30],
31

32 ...
33

34 "R1721:unnecessary - comprehension ": [
35 {
36 " pattern ": r"\{([\w\s ,]+) for [\w\s ,]+ in ([\

w\s ,]+) \}",
37 "repl": r"set (\2)",
38 }
39],
40 "E1141:dict -iter -missing -items": [
41 {
42 " pattern ": r"for\s+(\w+) ,\s+(\w+)\s+in\s+(\w

+)\s*:",
43 "repl": r"for \1, \2 in \3. items ():",
44 }
45],
46 }

Listing 6.3: _get_replacement function

The third group of errors with quick-fix features requires a different type of CodeAction.
Instead of sending an action with a command to execute, it sends the workspace edit results
to the current working document. The CodeAction generation process is similar, but now
a WorkspaceEdit object from the lsprotocol package is used to create the CodeAction. This
action will use a list of TextEdit objects as arguments, generated from addressing all the
diagnoses of the document identified in the group of code issues. The message categories
that belong to this group can be found in the REPLACEMENT dictionary of Listing 6.3.

The text edition consists of finding the exact line of code, identifying, and replacing the
corresponding pattern of string with the correct format. One example is the C0113/unneeded-
not issue. The program finds the location of the problematic code and looks for the pattern
of "not not", and replaces it to an empty string.

37

6. Prototype Development

1 def _command_quick_fix (
2 diagnostics : List[lsp. Diagnostic],
3 title: str ,
4 command : str ,
5 args: Optional [List[Any]] = None ,
6) -> lsp. CodeAction :
7 return lsp. CodeAction (
8 title=title ,
9 kind=lsp. CodeActionKind .QuickFix ,

10 diagnostics =diagnostics ,
11 command =lsp. Command (title=title , command =command ,

arguments =args),
12)
13

14 def _create_workspace_edits (
15 document : workspace .Document , results : Optional [List[

lsp. TextEdit]]
16):
17 return lsp. WorkspaceEdit (
18 document_changes =[
19 lsp. TextDocumentEdit (
20 text_document =lsp.

OptionalVersionedTextDocumentIdentifier
(

21 uri= document .uri ,
22 version = document . version if document .

version else 0,
23),
24 edits=results ,
25)
26],
27)
28

29 def _get_replacement_edit (diagnostic : lsp.Diagnostic ,
lines: List[str]) -> lsp. TextEdit :

30 new_line = lines[diagnostic .range.start.line]
31 for replacement in REPLACEMENTS [diagnostic .code]:
32 new_line = re.sub(
33 replacement [" pattern "],
34 replacement ["repl"],
35 new_line ,
36)
37 return lsp. TextEdit (
38 lsp.Range(
39 start=lsp. Position (line= diagnostic .range.

start.line , character =0) ,

38

6.5 Adding Ignore Features to C0103

40 end=lsp. Position (line= diagnostic .range.start.
line + 1, character =0) ,

41),
42 new_line ,
43)

Listing 6.4: Utility functions used on generating CodeActions

An interesting characteristic of the current quick-fix options is that when multiple code
issues belong to the same group, they will all be affected when a corresponding CodeAction
is executed. This is because the commands sent from the first and second groups, as well as
the text edits, run on the entire document and impact problems of the same type.

This configuration may not be suitable for our design, as we want to treat each naming
case differently. There might be situations where we only want to ignore or make an exception
for a specific variable or line, so we aim to provide CodeActions that only affect the current
diagnosis of code, rather than addressing the entire document.

Figure 6.4: Current Pylint message with invalid-name.

6.5 Adding Ignore Features to C0103
After understanding how the current language server provides quick-fix options, we can now
implement similar solutions to address the invalid-name code issue. As mentioned in Sec-
tion 6.1.2, we have two approaches to help users ignore the rule: by adding annotations to
the source code or by configuring working directory’s pylintrc file.

In designing the various options, we had to consider the different usage scenarios that
a developer might encounter. Providing different levels of rule-ignoring control could be
beneficial, allowing users to adapt based on their requirements. We use the different levels
of control presented in Section 6.1.2 as a starting point for our implementation.

In the following sections, we will discuss the various CodeActions developed to address
the invalid-name code issue, as shown in Listing 6.5, 6.6, 6.7. In total, we have created four
CodeActions that add annotations to the document and two CodeActions that involve new
commands to create and modify the pylintrc file.

39

6. Prototype Development

1 @QUICK_FIXES . quick_fix (
2 codes =[
3 "C0103:invalid -name",
4]
5)
6 def ignore_naming (
7 _document : workspace .Document , diagnostics : List[lsp.

Diagnostic]
8) -> List[lsp. CodeAction]:
9 """ Provides quick fixes which involve ignoring the

naming standard at differenet levels."""
10 diagnostic = diagnostics [0] # Extract the single

diagnostic from the list
11 diag_line = _document .lines[diagnostic .range.start.

line]
12 match = re.search(r"\b([a-zA -Z_]\w*)\b", diag_line)
13 return [
14 ...
15]

Listing 6.5: New ignore naming standard quick-fix

6.5.1 Disabling Through Annotations
To add annotations in the working Python file is a similar process to the existing solution
in Listing 6.3. Our goal is to create a WorkspaceEdit objects, using TextEdit objects that
identifies the location of the underlined variable, and add the disabling annotation to the
corresponding location depending on user’s needs. The CodeActions related to annotations,
which correspond to the collapsed line 14 in Listing 6.5, are shown in Listing 6.6. Once
we have the WorkspaceEdit generated, it serves as edit argument to create the editing type
CodeAction.

1 [lsp. CodeAction (
2 title=f"Ignore: at this line ({ TOOL_DISPLAY })",
3 kind=lsp. CodeActionKind .QuickFix ,
4 diagnostics =diagnostics ,
5 edit= _create_workspace_edits (
6 _document , [_ignore_naming_line (diagnostic ,

diag_line)]
7),
8),
9 lsp. CodeAction (

10 title=f"Ignore: from this line ({ TOOL_DISPLAY })",
11 kind=lsp. CodeActionKind .QuickFix ,
12 diagnostics =diagnostics ,

40

6.5 Adding Ignore Features to C0103

13 edit= _create_workspace_edits (_document , [
_ignore_naming_next (diagnostic)]),

14),
15 lsp. CodeAction (
16 title=f"Ignore: in current block ({ TOOL_DISPLAY })",
17 kind=lsp. CodeActionKind .QuickFix ,
18 diagnostics =diagnostics ,
19 edit= _create_workspace_edits (
20 _document , [_ignore_naming_block (_document ,

diagnostic)]
21),
22),
23 lsp. CodeAction (
24 title=f"Ignore: at document level ({ TOOL_DISPLAY })",
25 kind=lsp. CodeActionKind .QuickFix ,
26 diagnostics =diagnostics ,
27 edit= _create_workspace_edits (_document , [

_ignore_naming_document ()]) ,]

Listing 6.6: Ignoring naming rule CodeActions that adds
annotation to the source code

There will be four CodeActions available for the user that add annotations. Adding the
new annotation text to the same line will ignore the naming rule at the same line of code.
Similarly, we can give the user the option to ignore the rule starting from the variable they
are dealing with by simply adding the text one line above the current one. On the other hand,
if the user wants to disable the invalid-name check for the entire document, we can easily
achieve that by adding the annotation at the beginning of the Python file.

Finally, if the user wants to disable the underline within the same block or iteration, we
will need to find the upper level of the block and add the note just below the definition. Some
utility functions used to help create TextEdits objects are shown in Listing 6.7.

Until then, all of the implementation had taken place on the language server side and in
Python. To create custom commands to be executed by the VS Code editor, we needed to
work with the client side, which was written in TypeScript and later built into JavaScript
once the project was compiled. Both commands were constructed in the commands.ts file, as
shown in Listing C.1.

1 def _ignore_naming_line (diagnostic , line_text) -> lsp.
TextEdit :

2 comment_text = " # pylint: disable =invalid -name"
3 line_length = len(line_text)
4 return lsp. TextEdit (
5 lsp.Range(
6 start=lsp. Position (line= diagnostic .range.

start.line , character = line_length),
7 end=lsp. Position (line= diagnostic .range.start.

41

6. Prototype Development

line , character = line_length),
8),
9 comment_text ,

10)
11

12 def _ignore_naming_block (document : workspace .Document ,
diagnostic) -> lsp. TextEdit :

13 comment_text = "# pylint: disable =invalid -name\n"
14 start_of_block_line = _find_beginning_of_block (
15 document , diagnostic .range.start.line
16)
17 return lsp. TextEdit (
18 lsp.Range(
19 start=lsp. Position (line= start_of_block_line ,

character =0) ,
20 end=lsp. Position (line= start_of_block_line ,

character =0) ,
21),
22 comment_text ,
23)
24

25 def _ignore_naming_document () -> lsp. TextEdit :
26 comment_text = "# pylint: disable =invalid -name\n"
27 return lsp. TextEdit (
28 lsp.Range(
29 start=lsp. Position (line =0, character =0) ,
30 end=lsp. Position (line =0, character =0) ,
31),
32 comment_text ,
33)

Listing 6.7: Ignoring naming rule CodeActions that adds annotation
to the source code

6.5.2 Disabling Through Pylintrc

Unfortunately, unlike adding annotations to the source code, dealing with the pylintrc
file has some limitations when it comes to customising rules behavior between lines of a
document.

Despite these limitations, we can provide two beneficial options to programmers. As
mentioned previously in Section 6.1.2, we can disable specific rule types under the MESSAGE
CONTROL section, by adding them to the disable variable list. Another section of interest is
under the BASIC section, where we can add exception variable names to the good-names list,
so they are always accepted.

42

6.5 Adding Ignore Features to C0103

Figure 6.5: MESSAGE CONTROL section of a pylintrc file.

For this reason, we implemented two CodeActions that execute custom commands to
create a pylintrc file (if it does not already exist in the working directory) and modify the
disable and good-names lists. When the user selects the CodeAction of ignoring the invalid-
name/C0103 rule entirely in the working directory, the command ensures that there is a
pylintrc file with the rule added to the disable list. On the other hand, when the user wants to
add a variable as an exception to be always accepted, similarly, the corresponding command
adds the name to the good-names list. The developed CodeActions related to the pylintrc file
that go into the collapsed line 14 in Listing 6.5 are shown in Listing 6.8.

1 [lsp. CodeAction (
2 title=f"Ignore: add this name as an exception ({

TOOL_DISPLAY })",
3 kind=lsp. CodeActionKind .QuickFix ,
4 diagnostics =diagnostics ,
5 command =lsp. Command (
6 title="Add this name as an exception ",
7 command ="custom. add_good_name ",
8 arguments =[_document , match.group (1)],
9),

10),
11 lsp. CodeAction (
12 title=f"Ignore: disable C0103 at this directory ({

TOOL_DISPLAY })",
13 kind=lsp. CodeActionKind .QuickFix ,
14 diagnostics =diagnostics ,

43

6. Prototype Development

15 command =lsp. Command (
16 title=" Disable naming standard violation for this

directory ",
17 command ="custom. disable_naming_standard_directory

",
18 arguments =[_document],
19),
20) ,]

Listing 6.8: Ignoring naming rule CodeActions that create and
modifies pylintrc file

For the command that disabled the invalid-name rule, it ensured that a pylintrc file ex-
isted before modifying it. If such a file did not exist, it created one by executing pylint –
generate-rcfile > pylintrcPath in the terminal, where pylintrcPath was the current project work-
ing directory extracted from the working document argument passed from the server side.
Once we knew that the file existed, the command searched in the pylintrc file for the MES-
SAGE CONTROL section and the disable listing. After identifying the location, it added the
invalid-name term at the beginning of the list by replacing the strings.

Similarly, to add a good name term to the good-name list, the corresponding command
took the working document as an argument but also received the term to add directly from
the server side. It checked for the existence of the pylintrc file and used the same methods to
search for the positions of the sections of interest. Then, it added the terms to the list.

Figure 6.6: Registering new customise commands in the extension.ts
file.

After creating these two new commands, it was necessary to add them to the extension.ts
file of the project [13], which is the starting point of VS Code extensions that initialises the
whole extension server. The registration under the activate function is shown in Figure 6.6.

44

Chapter 7

Prototype Evaluation

The two types of quick-fix options developed in the previous chapter address the problem in
different ways, each presenting unique advantages and disadvantages. For instance, adding
annotations directly into the user’s source code might be a flexible and visual way of control-
ling and customising message rules. This is a significant advantage, as users are always aware
of which rules are enabled or disabled at different points in their code, and can quickly mod-
ify the rules when necessary. However, users might be annoyed by the tool adding extra
information and code into their work.

On the other hand, using a configuration file, such as the pylintrc file, could be a more
discreet solution. The drawback is that it’s not as flexible as annotations, as users cannot
specify which lines, blocks, or Python files they intend to customise rules for. Although the
configuration file might be more acceptable because it remains hidden, users might not be as
aware of the available rules as they would be with annotations. Moreover, if users later want
to edit or change the settings, they need to locate the pylintrc file and modify its content,
which might not be an intuitive process for programmers.

The purpose of this final evaluation is to assess users’ experiences with Pylint, and the
newly developed features, as well as their thoughts on these two distinct methods for ad-
dressing code issues. We aim to determine which option is more suitable, if there is one, as
well as to collect valuable suggestions and constructive feedback that could guide future work
on similar topics.

7.1 Evaluation Setup
To evaluate the enhanced Pylint extension, we designed two simple Python exercises contain-
ing errors for Pylint to detect. Both Python test files were similar, each including an introduc-
tion explaining the objectives to be achieved, namely, the elimination of all linted and under-
lined code. In addition to this requirement, each file instructed the user to name every term
in a specific format. One exercise required terms to be in upper-case letters (UPPER_CASE

45

7. Prototype Evaluation

standard), while the other required naming everything in lower-case letters (snake_case stan-
dard).

The users were asked to complete both exercises in a random order, the one exercise using
the existing Pylint extension from the marketplace, and the other using our enhanced Pylint.
They were encouraged to verbalize their thoughts, allowing us to guide them if they deviated
from the purpose of the exercise.

The aim of this experiment was to observe user interaction with the Pylint analyser and
determine if they reacted differently to Pylint’s new features. By enforcing a specific naming
standard, we simulated a situation where users intended to name variables in a non-standard
way. This approach allowed us to observe, in real time, user interactions with the Pylint
analyser, providing valuable insights into potential usability issues.

After completing the exercises, we asked users about their experience with Pylint. As
each user’s experience was unique, we remained flexible in our guidance, providing expla-
nations about the exercise as necessary. During the interview, we made sure to explain how
Pylint typically handles naming code issues, the conflict we sought to test, and the enhanced
features we developed. Once confident that the interviewee understood the topic, we sought
their preference between the two solutions our enhanced tool offered: solving the conflict by
adding annotations to their source code, or adjusting the configuration in the pylintrc file.

Finally, we openly asked for suggestions and feedback to gain insights for future studies
and improvements.

7.2 Results
All of the volunteers interviewed had some level of Python knowledge, but their expertise
varied. Some were computer science students with substantial experience with programming
languages and coding environments, while others primarily used Python as a tool to complete
tasks in specific courses. Given these differences, we will first discuss their performance
during the exercise, followed by the topics discussed during the interview. We will refer to
participants as C1-C4.

7.2.1 Experience of the Exercise
The participants’ responses to underlined codes were diverse. For instance, C2 consistently
clicked on the "View problem" option for more information and clicked the light bulb when-
ever possible. However, the participant quickly lost interest in the message as it wasn’t imme-
diately clear and intuitive. On the other hand, C3 quickly understood the error and manually
resolved some of the warnings. These differences can be attributed to varying levels of ex-
pertise with the Python language and familiarity with the code editor.

Despite these differences, all candidates reacted confused to the naming conflict pre-
sented during the experiments. However, they expressed varying levels of annoyance. Some
proceeded with the exercise without giving it much thought, while others spent a few minutes
trying to find a resolution.

A key observation was that only C1 noticed the difference between the two exercises,
where the user could apply the developed ignore options. For example, C2 tried to find

46

7.2 Results

similar options by right-clicking on the linted variables. C3, on the other hand, assumed that
the quick-fix option would enforce the standard that the linter was expecting.

7.2.2 Adding Annotation
We asked the candidates how annoyed they would feel if the tool provided an option to ignore
issues by adding an annotation to their source code.

Candidates C2 and C4 expressed a low level of annoyance, provided the number of anno-
tations wasn’t excessive. In contrast, candidates C1 and C3 expressed a high level of annoy-
ance. C1 stated that having annotations would affect the code’s readability, while C3 raised
concerns about sharing annotated code with others, as it could be less readable and confusing.
This latter opinion contrasts with C4’s; C4 expressed a preference for including comments in
the code rather than in the pylintrc file, arguing that this approach clarifies what is enabled
and disabled in the code when it’s shared with other collaborators.

7.2.3 Dealing with Pylintrc
We also asked the interviewees how they felt about adding a pylintrc file to their directory
and ignoring the rule within the configuration.

All interviewees were open to having a configuration file that manages different Pylint
code rules. However, after discussing the advantages and disadvantages of this method ver-
sus adding annotations to the source code, only C3 insisted that addressing the problem with
pylintrc would be more suitable. C4 expressed a preference for annotations to enhance col-
laboration, and C1 suggested that having the annotation at the top of the document would be
the best solution. Participant C2 mentioned that the choice between methods could depend
on the severity of the rule. They suggested that annotations could be useful for important
rules or warnings to consistently remind the user of their status, while for convention prob-
lems, the pylintrc file might be preferable.

7.2.4 Discussion
Many of the issues that emerged during the interview were related to the general usability
of the tool. One of the most significant was that 3 of the 4 candidates didn’t recognise the
difference between the original and enhanced Pylint tool. The reasons varied depending on
the user. Candidate C2 sought functionality by right-clicking the variables; C3 misinter-
preted the quick-fix functionality, and C4 didn’t notice the option as it was situated at the
bottom of the hover message. Furthermore, some problems echoed the conclusions discussed
in Chapter 5.1, such as warning messages being difficult to understand. Specifically for the
invalid-name issue, C2 mentioned that the naming standard terms like "PascalCase" might be
confusing for a user without prior knowledge of the topic, reflecting the warning messages’
inadequate explanation of the correct standard or examples. On the other hand, she men-
tioned that the option to disable the rule might be confusing as it is referred to as "C0103"
code, not the name of the code issue.

47

7. Prototype Evaluation

48

Chapter 8

Threats to Validity

In this chapter we are going to discuss some potential limitations of our project. We have
critically examine factors that might cause biases to the results of this study. We will address
different types of validity aiming to provide a comprehensive understanding of the limita-
tions in the study design and methodology.

8.1 Internal Validity
Internal validity refers to the extent to which a research study accurately establishes a causal
relationship between the independent variable (such as survey and interview results) and the
dependent variable (users’ experience with Python code analysers). It is essential to examine
potential factors that could introduce bias and influence the results of this project.

Size of sample
In this thesis, we conducted a user-centric research, including an initial survey and several
interviews, as well as a final evaluation of the enhanced Pylint tool. In the first data gathering
phase, we collected 39 responses and interviewed six participants. For the evaluation of the
tool, we interviewed an additional four participants. However, the sample size in this study
is relatively small. An investigation with a larger sample size could potentially enhance the
internal validity of our findings and the representation of the target population.

Sample selection
The diverse backgrounds of the participants might introduce bias in various ways. Factors
such as career background, user expertise, and other individual differences could introduce
bias, as participants may come from varied backgrounds and use Python for different pur-
poses. Specifically for the interview sections, we used convenience sampling techniques,

49

8. Threats to Validity

which resulted in some interviewees having prior relationships with the author. This could
introduce bias, as these individuals may have tendencies to express positive comments, po-
tentially losing objectivity.

Inconsistency procedure and conditions
In conducting the survey, we employed both online and offline procedures to collect data.
This approach could introduce inconsistencies, as the degree of interaction varied between
online and offline respondents. In the semi-structured interviews, the majority were con-
ducted virtually via Zoom, while a single session was performed in person. However, the
final evaluation took place in person on the author’s computer. It’s important to note that
the location and environmental conditions differed for each interview, which could have also
introduced variables affecting the result.

Given that the respondents’ backgrounds and expertise varied, the questions posed during
the semi-structured interviews and evaluations were not consistent. This inconsistency could
have introduced bias. Furthermore, the protocols for the surveys, interviews, and evaluations
were generally flexible and open to adjustments, which could also have introduced variability
into the results.

Robustness of the implemented code
Although we have tested the enhanced tool with different users, the new features imple-
mented in the Pylint extension lack thorough testing and evaluation from a coding perspec-
tive. As such, there may be inconsistencies or bugs that did not surface during this research.
To effectively mitigate this, more detailed future work might be needed to ensure the ro-
bustness of the implemented code. One possible approach would be to collaborate with the
Pylint community, potentially integrating our enhancements into the official repository of
the extension.

8.2 External Validity
External validity refers to the extent to which this research findings can be generalised or
applied beyond the specific conditions and participants of this study. It examines the degree
to which the results hold valid in other populations, settings, or situations.

Pylint evolution
We have been working with an open-source Python code analyser. This tool is constantly
being upgraded by the community and contributors of the project. During and after the de-
ployment of this study, the repository for the Pylint extension on Visual Studio Code may
have undergone changes and upgrades. These modifications could potentially introduce con-
flict or bias related to the development processes documented in this thesis.

50

Chapter 9

Conclusion

Throughout this project, we conducted a user-centric study, with a focus on novice Python
programmers. This was achieved by gathering a diverse set of data through the use of surveys
and semi-structured interviews.

During the data gathering stage, we were able to gain valuable insights into how beginners
in Python, particularly students, perceive and experience Python code analysers. As discussed
in Chapter 5, we found that common usability problems experienced in other static program-
ming languages, such as unclear messages and a lack of quick-fix solutions, were also prevalent
among our participants. Intriguingly, false positives, often a concern in other contexts, were
not a common issue among the students and novice Python programmers we studied.

The feedback from 39 surveys and 6 interviews informed our design process during the
project’s development stage. This served to guide us in our aim to study and implement new
quick-fix features for the Pylint extension in Visual Studio Code, particularly for the invalid-
name issue. Our goal was to provide the users with options to ignore this issue at different
levels, either through the addition of an annotation or by using a configuration pylintrc file
in the working directory.

In the final stage of our project, we put our enhanced tool to the test by conducting an
evaluation exercise and interview with four students. As discussed in Section 7.2, we found
that even when a solution to a specific problem was provided, the presence of other usability
issues could potentially hinder the effective use of the feature.

9.1 Future Work
Despite the progress we have made in this project, it is clear that there are still significant
barriers that hinder the effective utilisation of code analysers. As such, we have identified
several directions for future work:

• Conduct a more thorough investigation of the usability challenges faced by novice

51

9. Conclusion

Python programmers. This should involve a larger and more varied sample size to
capture a wider range of experiences and challenges.

• Expand the quick-fix options available in the Pylint tool for VS Code or other editor
platforms. This could involve developing new features or refining existing ones based
on user feedback.

• Consolidate the code implemented in this project and contribute to the wider Pylint
community by submitting a merge request to the official GitHub repository. This
could provide benefits to a large number of users.

• Refine the warning messages in Pylint to make them more comprehensible, particu-
larly for novice programmers. This could involve rewriting the messages or providing
additional context or examples to help users understand the issues identified.

52

References

[1] Antoine Miné Aymeric Fromherz, Abdelraouf Ouadjaout. Static type analysis of python
programs by abstract interpretation. Leibniz International Proceedings in Informatics, 2020.

[2] Elsevier B.V. Scopus. https://www.scopus.com/.

[3] Maria Christakis and Christian Bird. What developers want and need from program
analysis: An empirical study. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 332–343, 2016.

[4] Descripti. Descripti. https://www.descript.com/.

[5] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. Why do software developers
use static analysis tools? a user-centered study of developer needs and motivations. IEEE
Transactions on Software Engineering, 48(3):835–847, 2022.

[6] Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. Static value analysis of
python programs by abstract interpretation. In NFM 2018 - 10th International Symposium
NASA Formal Methods, volume 10811 of Lecture Notes in Computer Science, pages 185–202.
Springer, 2018.

[7] Guido van Rossum and Barry Warsaw and Nick Coghlan. PEP 8 – Style Guide for
Python Code. Python Enhancement Proposal, 2001. Status: Active. Created: 5-Jul-
2001.

[8] Guido van Rossum, Jukka Lehtosalo, Łukasz Langa. Pep484 - type hints. https://
peps.python.org/pep-0484/.

[9] Zoltán Porkoláb Hristina Gulabovska. Survey on static analysis tools of python pro-
grams. CEUR Workshop Proceedings, 2019.

[10] Brittany Johnson. A study on improving static analysis tools: Why are we not using
them? In Proceedings of the Conference on Static Analysis Tools, Raleigh, USA, 2023. North
Carolina State University.

53

https://www.scopus.com/
https://www.descript.com/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

REFERENCES

[11] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In 2013 35th International
Conference on Software Engineering (ICSE), pages 672–681, 2013.

[12] Faizan Khan, Boqi Chen, Daniel Varro, and Shane McIntosh. An empirical study of type-
related defects in python projects. IEEE Transactions on Software Engineering, 48(8):3145–
3158, 2022.

[13] Microsoft. Commands in visual studio. https://code.visualstudio.com/api/
extension-guides/command#creating-new-commands.

[14] Microsoft. Editing python in visual studio. https://code.visualstudio.com/
docs/python/editing#_formatting.

[15] Microsoft. Language extension guide. https://code.visualstudio.com/api/
language-extensions/language-server-extension-guide.

[16] Microsoft. Language extensions - overview. https://code.visualstudio.com/
api/language-extensions/overview.

[17] Microsoft. Language server protocol. https://microsoft.github.io/
language-server-protocol/overviews/lsp/overview/.

[18] Microsoft. Vscode-pylint. https://github.com/microsoft/vscode-pylint.

[19] Microsoft. Your first extension. https://code.visualstudio.com/api/
get-started/your-first-extension.

[20] Microsoft. Linting python in visual studio code. Visual Studio Code Documentation,
2022.

[21] Microsoft Corporation. Language server protocol types implementation for python.
https://pypi.org/project/lsprotocol/.

[22] Mypy Team. Mypy. https://mypy-lang.org/.

[23] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. Explaining static analysis
- a perspective. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), pages 29–32, 2019.

[24] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. A large-scale study of usabil-
ity criteria addressed by static analysis tools. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 532–543. ACM, 2022.

[25] Naelson Oliveira, Márcio Ribeiro, Rodrigo Bonifácio, Rohit Gheyi, Igor Wiese, and Bal-
doino Fonseca. Lint-based warnings in python code: Frequency, awareness and refac-
toring. In 2022 IEEE 22nd International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 208–218, 2022.

[26] Pylint Contributors. Invalid-name / c0103. https://pylint.readthedocs.io/en/
latest/user_guide/messages/convention/invalid-name.html.

54

https://code.visualstudio.com/api/extension-guides/command#creating-new-commands
https://code.visualstudio.com/api/extension-guides/command#creating-new-commands
https://code.visualstudio.com/docs/python/editing#_formatting
https://code.visualstudio.com/docs/python/editing#_formatting
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/overview
https://code.visualstudio.com/api/language-extensions/overview
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://github.com/microsoft/vscode-pylint
https://code.visualstudio.com/api/get-started/your-first-extension
https://code.visualstudio.com/api/get-started/your-first-extension
https://pypi.org/project/lsprotocol/
https://mypy-lang.org/
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/invalid-name.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/convention/invalid-name.html

REFERENCES

[27] Pylint Contributors. Pylint. https://pylint.readthedocs.io/en/latest/
index.html.

[28] Pylint Contributors. Pylint message control. https://pylint.readthedocs.io/
en/latest/user_guide/messages/message_control.html.

[29] Pylint Contributors. Pylint message overview. https://pylint.readthedocs.io/
en/latest/user_guide/messages/messages_overview.html.

[30] Pylint Contributors. Running pylint. https://pylint.readthedocs.io/en/
latest/user_guide/usage/run.html.

[31] Sourcegraph. Pygls. https://pygls.readthedocs.io/en/latest/.

[32] Sourcegraph. Pygls github repository. https://github.com/openlawlibrary/
pygls.

[33] K. R. Srinath. Python – The Fastest Growing Programming Language. International
Research Journal of Engineering and Technology (IRJET), 04(12):354, December 2017. Impact
Factor value: 6.171, ISO 9001:2008 Certified Journal.

[34] Wikidata. Scopus eid. https://www.wikidata.org/wiki/Property:P1154.

55

https://pylint.readthedocs.io/en/latest/index.html
https://pylint.readthedocs.io/en/latest/index.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/message_control.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/message_control.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/messages_overview.html
https://pylint.readthedocs.io/en/latest/user_guide/messages/messages_overview.html
https://pylint.readthedocs.io/en/latest/user_guide/usage/run.html
https://pylint.readthedocs.io/en/latest/user_guide/usage/run.html
https://pygls.readthedocs.io/en/latest/
https://github.com/openlawlibrary/pygls
https://github.com/openlawlibrary/pygls
https://www.wikidata.org/wiki/Property:P1154

REFERENCES

56

Appendices

57

Appendix A

Query Strings, Survey and Interview Ques-
tions

59

A. Query Strings, Survey and Interview Questions

Table A.1: Query Strings used to Search on Scopus

Query String
Number

of
Results

SUBJAREA (comp) AND TITLE-ABS-KEY ((program anal-
ysis OR static analysis OR dynamic analysis OR code anal-
ysis OR "PYTHON analysis") AND (assess OR measure OR
evaluate OR tracking) AND ("developer" OR "user" OR
"software engineer" OR "engineer" OR "programmer") AND
(experimental study OR user study OR case study OR ex-
periment OR "interviews" OR "survey")) AND (EXCLUDE
(DOCTYPE, "cr"))

115

SUBJAREA (comp) AND TITLE-ABS-KEY ((program anal-
ysis OR static analysis OR dynamic analysis OR code anal-
ysis) AND ("developer experience" OR "usability" OR "pro-
grammer experience")) AND (EXCLUDE (DOCTYPE, "cr"))

221

SUBJAREA (comp) AND TITLE-ABS-KEY ((program anal-
ysis OR static analysis OR dynamic analysis OR code anal-
ysis OR static analyzer OR code analyzer OR dynamic an-
alyzer OR Static Analysis Tools) AND (assess OR measure
OR evaluate OR tracking) AND ("developer" OR "user" OR
"software engineer" OR "engineer" OR "programmer" OR
"usability") AND (experimental study OR user study OR
case study OR experiment OR "interviews" OR "survey"))
AND (EXCLUDE (DOCTYPE, "cr"))

7

SUBJAREA (COMP) AND TITLE-ABS-KEY (("program
analysis" OR "static analysis" OR "dynamic analysis" OR
"code analysis" OR "PYTHON analysis" OR "dynamic lan-
guage analysis") AND ("assess" OR "measure" OR "evaluate"
OR tracking) AND ("developer" OR "user" OR "software
engineer" OR "engineer" OR "programmer") AND ("exper-
imental study" OR "user study" OR "case study" OR "ex-
periment" OR "interviews" OR "survey")) AND (EXCLUDE
(DOCTYPE, "cr"))

276

SUBJAREA (comp) AND TITLE-ABS-KEY ((program anal-
ysis OR static analysis OR dynamic analysis OR code anal-
ysis OR "Python") AND ("developer experience" OR "us-
ability" OR "programmer experience")) AND (EXCLUDE
(DOCTYPE, "cr"))

413

SUBJAREA (comp) AND TITLE-ABS-KEY ((program anal-
ysis OR static analysis OR dynamic analysis OR code anal-
ysis OR analysis tool) AND (Python) AND (experimental
study OR user study OR case study OR experiment OR "in-
terviews" OR "survey"))

31

60

Section 1
1.1. How much experience do you have working actively with Python? (Select one.)

Less than 6 months
Between 6 months and 2 year
Between 2 and 5 years
More than 5 years

1.2. What experience do you have with Python? (Select all that apply.)
University or academy courses
Personal projects
Work
Other (please specify):

1.3. What programming environment do you usually code with Python? (Select all that apply.)
Pycharm
Visual Studio
Sublime Text
Jupyter Notebook
Others (please specify):

Section 2
2.1. Figure 1 is an example of static code analysis in Python. Have you ever seen similar highlighted
code or warnings before? (Select one.)

Yes
No

2.2. In which coding environments have you seen these warnings? (Select all that apply.)
Pycharm
Visual Studio
Sublime Text
Jupyter Notebook
Others (please specify):

2.3. Would you typically interact with the highlighted objects? (Select one.)
Yes
No
Sometimes

2.4. If you interact with the highlighted objects, what are the reasons why? (Select all that apply.)
I don't like to see my code being highlighted.
I think it will improve the code.
Other reasons, please specify why:

2.5. If you don’t interact with the highlighted objects, what are the reasons why? (Select all that
apply.)

I don’t mind the warnings or messages.
They look useless to me.
Other reasons, please specify why:

2.6. Figures 2-4 show more examples of Python code analysis results. From your own experience,
how has the tool helped you improve your code? (Select all that apply.)

It helps me write cleaner, more readable code.
It helps me find errors and bugs at an early stage.
Others, please specify:

2.7. If you ignore the warnings or messages that the tool displays, what is usually the reason? (Select
all that apply.)

I don’t think the warning applies.
The message is hard to understand.
I am unsure how to fix the issue.
Others, please specify why:

2.8. If you encounter a message that you don't understand, what do you typically do? (Select all that
apply.)

Ignore them
Try to check the issue by myself.
Look for external help (e.g., other people, the internet).
Try to understand the message by digging deeper into the tool.
Other, please specify:

2.9. When do you typically check the warnings? (Select all that apply.)
When the warning appears as I code.
After finishing the script.
Before committing to Git or similar.
Other, please specify:

Section 3
3.1. Have you ever used code analysers in other programming languages? (Select one.)

Yes, please specify:
I have not used code analysers in other programming languages.

3.2. Have you ever manually installed external code analysers into your coding environment to
improve your code quality? (Select one.)

Yes, please specify:
No

3.3. Have you ever customized or configured a code analyser? (Select one.)
Yes, please specify:
No

Would you be willing to participate in an interview to provide further insight? (Select one.)
Yes, please leave us a contact email:
No

Disclaimer: The information you provide in this survey will be used for research purposes only. All responses will be kept
anonymous and confidential. Consent statement: By proceeding with this survey, you agree to allow us to use the information
you provide for research purposes. You understand that all responses will be kept anonymous and confidential. If you choose to
withdraw from the survey at any time, you may do so without penalty.

Figure 1: Piece of code highlighted by a code analyser.

Figure 2: Code analysis results by Pylint and Mypy in Pycharm.

Figure 3: Code analysis results by Jupyter-lsp in Jupyter Notebook.

Figure 4: Code analysis results by Pylint/Flake8 in SublimeText.

Semi-Structured Interview Questions
1. Can you describe your experience with using Python code analysers in the past?

1.1. What do you like and dislike about the experience?

2. How do you typically interact with the warnings or messages that are displayed by
the tool?
2.1. What would be your coding process?

3. Can you describe a situation where you found a warning or message particularly
helpful in improving your code?

4. Can you describe a situation where you found a warning or message unhelpful or
confusing?

5. How do you typically approach fixing issues that are identified by the code
analyser?
5.1. Do you use external resources or tools, or rely on your own understanding?

6. Have you ever encountered a situation where you were unsure how to fix an issue
identified by the code analyser?
6.1. How did you handle this situation?

7. Are there any features or functionality that you would like to see added to Python
code analysers to make them more useful?

8. Can you describe a situation where you feel that the code analyser could have been
more helpful in identifying an issue with your code?
8.1. What could have been done differently to make the tool more useful?

9. Do you have any suggestions for how the output of the code analyser could be
presented in a more user-friendly way?

Categories:
- Tool experience: what users have experienced with the tool's output (1, 5).
- Workflow: what are the steps that the user takes in the analysis process (2).
- Result Understandability: how the user perceives the information that the analyser

provides (3, 4, 6).
- Tool improvement: suggestions or opinion from the user about how the tool could

be improved (7, 8, 9).

Evaluation Interview Questions

1. Have you encountered similar coding situations where the IDE underlines your code?

2. Which similar code warnings have you encountered in your coding experience?

3. Have you noticed any differences between the two exercises?

4. Addressing the second requirement, have you faced any similar situations where the

IDE underlines your variable for not following a naming standard?

5. What do you usually do in those situations?

6. Would you use those ignoring features in your coding routine if they were available?

7. On a scale of 1 to 10, how much does the fact that the tool adds annotations in your

source code annoy you?

8. On a scale of 1 to 10, how much does the fact that the tool creates and/or modifies a

configuration file in your working directory annoy you?

9. Adding annotations in your code might be more visual and help you be aware of what

rules are enabled/disabled, but configuration in a file in your working directory is

more discreet. Which one do you prefer?

10. Do you have any suggestions in terms of the new features that would give you

options to ignore a rule?

Appendix B

Survey Results

67

B. Survey Results

0% 10% 20% 30% 40% 50%

>5 years

2-5 years

6 months to 2 years

<6 months

8

26

36

31

Percentage

Figure B.1: Question 1.1: How much experience actively working
with Python?

0% 20% 40% 60% 80% 100%

Work

Personal projects

Academic courses

26

46

95

Percentage

Figure B.2: Question 1.2: What experience do you have with Python?

68

0% 10% 20% 30% 40% 50% 60% 70%

Others

Pycharm

Spyder

Jupyter notebook

Visual Studio Code

15

21

28

44

46

Percentage

Figure B.3: Question 1.3: What programming environment do you
usually code with Python?

Yes No
0%

20%

40%

60%

80%

100%

85

15

Pe
rc

en
ta

ge

Figure B.4: Question 2.1: Have users seen similar code analysis re-
sults?

69

B. Survey Results

0% 10% 20% 30% 40% 50%

Sublime Text

Spyder

Others

Jupyter Notebook

Pycharm

Visual Studio Code

3

14

14

26

29

43

Percentage

Figure B.5: Question 2.2: In what coding environment have you seen
code analysis results?

Yes Sometimes No
0%

10%

20%

30%

40%

50%

60%

70%

80%

59

26

15

Pe
rc

en
ta

ge

Figure B.6: Question 2.3: Do users check the analysis results?

70

0% 10% 20% 30% 40% 50% 60% 70% 80%

To understand/learn
why the tool thinks

there is an error

I don’t like to see my
code being highlighted

I think it will im-
prove the code

11

47

69

Percentage

Figure B.7: Question 2.4: What are the reasons of interacting with
the highlighted objects?

0% 10% 20% 30% 40% 50%

Others

I don’t mind the
warnings or messages

They look useless to me

24

43

43

Percentage

Figure B.8: Question 2.5: What are the reasons of not interacting
with the highlighted objects?

0% 20% 40% 60% 80% 100%

Others

It helps me write cleaner
and readable code

It helps me find errors
and bugs at an early stage

5

37

92

Percentage

Figure B.9: Question 2.6: How has the tool helped you improve your
code?

71

B. Survey Results

0% 10% 20% 30% 40% 50% 60% 70%

Others

I am unsure how
to fix the issue

The message is
hard to understand

I don’t think the
warning applies

6

34

47

62

Percentage

Figure B.10: Question 2.7: If you ignore the warnings or messages
that the tool displays, what is usually the reason?

0% 20% 40% 60% 80%

Others

Ignore them

Dig deeper into the tool

Try to check the
issue by myself

Look for external help

3

21

31

49

74

Percentage

Figure B.11: Question 2.8: If you encounter a message that you don’t
understand, what do you typically do?

72

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Others

Before committing
to Git or similar

After finishing the script

When the warning
appears as I code

3

18

36

69

Percentage

Figure B.12: Question 2.9: When do you typically check the warn-
ings?

Yes No
0%

20%

40%

60%

80%

100%

33

67

Pe
rc

en
ta

ge

Figure B.13: Question 3.1: Have you ever used code analysers in other
programming languages?

73

B. Survey Results

Yes No
0%

20%

40%

60%

80%

100%

13

77
Pe

rc
en

ta
ge

Figure B.14: Question 3.2: Have you ever manually installed external
code analysers into your coding environment to improve your code
quality?

Yes No
0%

20%

40%

60%

80%

100%

3

97

Pe
rc

en
ta

ge

Figure B.15: Question 3.3: Have you ever customised or configured
a code analyser?

74

Appendix C

Code Listing

1

2 export async function disableNamingStandard (documentUri :
any): Promise <void > {

3 const uri = vscode.Uri.parse(documentUri .path);
4 const workspaceFolder = vscode. workspace .

getWorkspaceFolder (uri);
5 const workspacePath = workspaceFolder ?

workspaceFolder .uri.fsPath : undefined ;
6 const pylintrcPath = workspacePath ? path.join(

workspacePath , ’pylintrc ’) : undefined ;
7

8 if (pylintrcPath !== undefined) {
9 try {

10 if (!fs. existsSync (pylintrcPath)) {
11 const generateCmd = ‘pylint --generate -

rcfile > "${ pylintrcPath }" ‘;
12 exec(generateCmd , (error , stdout , stderr)

=> {
13 if (error) {
14 vscode.window. showErrorMessage (‘

Error generating pylintrc : ${
error. message }‘);

15 return;
16 }
17

18 if (stderr) {

75

C. Code Listing

19 vscode.window. showErrorMessage (‘
Error generating pylintrc : ${
stderr }‘);

20 return;
21 };
22 });
23 } else {
24 ;
25 }
26 } catch (error: any) {
27 if (error.code === ’EROFS ’) {
28 vscode.window. showErrorMessage (‘Cannot

update pylintrc : ${ pylintrcPath } is a
read -only file system .‘);

29 } else {
30 vscode.window. showErrorMessage (‘Error

updating pylintrc : ${error. message }‘);
31 }
32 }
33 } else {
34 vscode.window. showErrorMessage (’Cannot generate

or modify pylintrc : no workspace found.’);
35 }
36 }
37

38 export async function addToGoodNames (documentUri : any ,
codeName : string): Promise <void > {

39 const uri = vscode.Uri.parse(documentUri .path);
40 const workspaceFolder = vscode. workspace .

getWorkspaceFolder (uri);
41 const workspacePath = workspaceFolder ?

workspaceFolder .uri.fsPath : undefined ;
42 const pylintrcPath = workspacePath ? path.join(

workspacePath , ’pylintrc ’) : undefined ;
43

44 if (pylintrcPath !== undefined) {
45 try {
46 if (!fs. existsSync (pylintrcPath)) {
47 const generateCmd = ‘pylint --generate -

rcfile > "${ pylintrcPath }" ‘;
48 exec(generateCmd , (error , stdout , stderr)

=> {
49 if (error) {
50 vscode.window. showErrorMessage (‘

Error generating pylintrc : ${
error. message }‘);

76

51 return;
52 }
53

54 if (stderr) {
55 vscode.window. showErrorMessage (‘

Error generating pylintrc : ${
stderr }‘);

56 return;
57 };
58 });
59 } else {
60 modifyPylintrcFileToAddName (pylintrcPath ,

codeName);
61 }
62 } catch (error: any) {
63 if (error.code === ’EROFS ’) {
64 vscode.window. showErrorMessage (‘Cannot

update pylintrc : ${ pylintrcPath } is a
read -only file system .‘);

65 } else {
66 vscode.window. showErrorMessage (‘Error

updating pylintrc : ${error. message }‘);
67 }
68 }
69 } else {
70 vscode.window. showErrorMessage (’Cannot generate

or modify pylintrc : no workspace found.’);
71 }
72 }
73

74 function modifyPylintrcFileToAddName (pylintrcPath : string
, codeName : string): void {

75 const currentContent = fs. readFileSync (pylintrcPath ,
’utf8 ’);

76 const lines = currentContent .split(’\n’);
77 let namingIndex = -1;
78 let goodNamesLineIndex = -1;
79 for (let i = 0; i < lines.length; i++) {
80 if (lines[i]. trim () === ’[BASIC]’) {
81 namingIndex = i;
82 }
83 if (lines[i]. startsWith (’good -names=’)) {
84 goodNamesLineIndex = i;
85 }
86 }
87

77

C. Code Listing

88 if (namingIndex >= 0) {
89 if (goodNamesLineIndex >= 0) {
90 if (! lines[goodNamesLineIndex]. includes (

codeName)) {
91 lines[goodNamesLineIndex] = lines[

goodNamesLineIndex]. replace (’good -
names=’, ‘good -names=${ codeName },‘);

92 } else {
93 vscode.window. showInformationMessage (‘The

code name "${ codeName }" is already in
the list of good -names .‘);

94 }
95 } else {
96 lines.splice(namingIndex + 1, 0, ‘good -names=

${ codeName }‘);
97 }
98 fs. writeFileSync (pylintrcPath , lines.join(’\n’));
99 vscode.window. showInformationMessage (‘

Successfully updated the pylintrc file to add
"${ codeName }" to the list of good -names .‘);

100 } else {
101 vscode.window. showErrorMessage (’The [BASIC]

section is not found in the pylintrc file.’);
102 }
103 }
104

105 function modifyPylintrcFile (pylintrcPath : string): void {
106 const currentContent = fs. readFileSync (pylintrcPath ,

’utf8 ’);
107 const lines = currentContent .split(’\n’);
108 let messagesControlIndex = -1;
109 let disableLineIndex = -1;
110 for (let i = 0; i < lines.length; i++) {
111 if (lines[i]. trim () === ’[MESSAGES CONTROL]’) {
112 messagesControlIndex = i;
113 }
114 if (lines[i]. startsWith (’disable =’)) {
115 disableLineIndex = i;
116 }
117 }
118

119 if (messagesControlIndex >= 0) {
120 if (disableLineIndex >= 0) {
121 if (! lines[disableLineIndex]. includes (’

invalid -name ’)) {
122 lines[disableLineIndex] = lines[

78

disableLineIndex]. replace (’disable =’,
’disable =invalid -name ,’);

123 } else {
124 vscode.window. showInformationMessage (’The

naming standard violation is already
disabled in the pylintrc file.’);

125 }
126 } else {
127 lines.splice(messagesControlIndex + 1, 0, ’

disable =invalid -name ’);
128 }
129 fs. writeFileSync (pylintrcPath , lines.join(’\n’));
130 vscode.window. showInformationMessage (’

Successfully updated the pylintrc file to
disable the naming standard violation .’);

131 } else {
132 vscode.window. showErrorMessage (’The [MESSAGES

CONTROL] section is not found in the pylintrc
file.’);}}

Listing C.1: Implementation of the commands in TS

1 """
2 This exercise should be done in 5 minutes. There are 2

main objectives:
3

4 1. Eliminate every linted , underlined and highlighted
code.

5 2. Every naming term should be in cappital letters (
UPPER_CASE).

6

7 You can refresh the warnings by pressing command + S
saving the file.

8

9 Convention types:
10 - sneak_case: Lowercase letters and underscores to

separate words. Example: user_name , my_module.
11 - PascalCase: Uppercase letters for the first letter of

each word , with no underscores.
12 Example: CalculateTotalPrice.
13 - UPPER_CASE: Uses uppercase letters and underscores to

separate words. Example: TAX_RATE.
14

15 """
16

79

C. Code Listing

17 import math
18

19 A= 32
20 a=5
21 print(A+B)
22

23 def create_directory (directory_path):
24 """ Create directory """
25 direct = os. makedirs (directory_path)
26 return direct
27

28

29 class employee :
30 """ Employee class """
31 pass
32

33 def calculate_product_price (product_name , product_type ,
QUANTITY , PRICEPERUNIT , TAXRATE):

34 total_price = QUANTITY * PRICEPERUNIT
35 product_name =’product ’
36 product_type =’used ’
37 tax = total_price * TAXRATE
38 final_price = total_price + tax
39 return final_price
40

41 TEXT = ’Fusce commodo , tellus nec varius bibendum , nisi
est fringilla justo , et convallis augue elit in dolor.
’

Listing C.2: Exercise 1 used to evaluated the prototype

1 """
2 This exercise should be done in 5 minutes. There are 2

main objectives:
3

4 1. Eliminate every linted , underlined and highlighted
code.

5 2. Every naming term should be in lower letters (snake
case).

6

7 You can refresh the warnings by pressing command + S
saving the file.

8

9 Convention types:
10 - sneak_case: Lowercase letters and underscores to

80

separate words. Example: user_name , my_module.
11 - PascalCase: Uppercase letters for the first letter of

each word , with no underscores.
12 Example: CalculateTotalPrice.
13 - UPPER_CASE: Uses uppercase letters and underscores to

separate words. Example: TAX_RATE.
14

15 """
16 import datetime
17

18 name = "John"
19 age = 25
20 print("My name is", name , "and I am", age , "years old.")
21

22 def convert_to_seconds (hours):
23 """ Convert minutes to seconds """
24 seconds = minutes * 60
25 return seconds
26

27 import random
28

29 class animal:
30 """ Animal class """
31 pass
32

33 def calculate_area_of_circle (radius):
34 """ Calculate area of circle """
35 area = math.pi * radius ** 2
36 return area
37

38 sentence = "The quick brown fox jumps over the lazy dog."
39 print("The length of the sentence is:", len(sentence), "

characters .")
Listing C.3: Exercise 2 used to evaluated the prototype

81

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-01

EXAMENSARBETE User-Centric Study and Enhancement of Python Static Code Analysers
STUDENT Steven Chen
HANDLEDARE Emma Söderberg, Alan McCabe (LTH)
EXAMINATOR Martin Höst (LTH)

Decoding Python: Making Code
Analysis Tools Friendlier with
User-Centered Design

POPULÄRVETENSKAPLIG SAMMANFATTNING Steven Chen

Imagine learning Python, but a tool keeps correcting your naming style. This is exactly
what novice Python users often face when code analysers flags their variables. Our
project combined user-centric research with practical enhancements to Pylint in Visual
Studio Code, making Python’s naming conventions less daunting.

In an increasingly digital world, programming has
become a vital skill. But, for beginners, the ex-
perience can be daunting. Static code analysis
tools - software that checks code for errors - are
invaluable but often intimidating to the uniniti-
ated. This is particularly true for Python, a pop-
ular programming language, where the needs of
novice users have been largely overlooked.

While Python analysers tools are invaluable for
maintaining code quality, they still present many
usability challenges that hinder beginners from us-
ing them. Addressing this, our degree project
adopted a dual approach: insightful user-centric
research followed by a practical enhancement of
Pylint, a static code analysis tool designed to im-
prove Python code.

First, we dived into the world of novice Python
programmers by conducting interviews and sur-
veys. This helped us understand their struggles
and frustrations. Armed with these insights, we
shifted to the next phase: enhancing Pylint in Vi-
sual Studio Code by providing additional quick-fix
options for the ’invalid-name’ issue.

Instead of forcing users to rectify naming style
errors immediately, these quick-fixes offer them

the option to ignore the naming rule at different
levels. This introduces an element of flexibility to
the learning process, allowing beginners to focus
more on understanding Python’s basics and less
on adhering to strict naming conventions.

The significance of our project lies in its poten-
tial to make the early steps of learning Python
less intimidating. Code analysis tools like Pylint
are integral to writing high-quality code. By mak-
ing this tool more user-friendly, we create a more
inclusive coding environment.

Considering the future implications, our en-
hancements to Pylint aim to improve the usabil-
ity of Python analysers overall. By making these
tools more accessible and user-friendly, we’re not
only smoothing the initial journey for beginners
but also creating a more efficient coding environ-
ment for all users.

In sum, our project exemplifies the fusion of
technology and user-centric design. It underscores
the importance of user feedback and empathy in
creating tools that better meet user needs. Ul-
timately, we hope our work will serve as a step
forward in making Python static code analysers
more accessible and user-friendly.

	Introduction
	Objectives
	Delimitations
	Risks
	Contribution

	Background
	Static Code Analysis in Python
	Usability Challenges in Code Analysis

	Method
	Review of the State of the Art
	Literature Review
	Python Code Analysers Review

	Python Analyser User Experience
	Survey
	Interview

	Prototype Development and Evaluation

	Related Work
	User-Centric Studies about Analysers
	Python Code Analysers Review

	Survey and Interview Findings
	Survey
	Basic Information
	User’s Experience with Code Analysers
	Previous Knowledge about Analysers

	Semi-Structured Interview
	Positive Experiences with Code Analysers
	Negative Experiences with Code Analysers
	Understanding Code Analyser's Message
	False Positives
	Quick-fix Solutions to Problematic Code
	Suggestions
	Discussion

	Prototype Development
	Pylint
	Message Severity
	Message Control

	Language Server Protocol
	Pylint Extension on VS Code
	Current Quick-Fix Features
	Adding Ignore Features to C0103
	Disabling Through Annotations
	Disabling Through Pylintrc

	Prototype Evaluation
	Evaluation Setup
	Results
	Experience of the Exercise
	Adding Annotation
	Dealing with Pylintrc
	Discussion

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Future Work

	References
	Appendix Query Strings, Survey and Interview Questions
	Appendix Survey Results
	Appendix Code Listing

