
Analysis of flash memory wear based on
cache configuration and available memory

Markus Andersson
ma6254an-s@student.lu.se

Filip Hermansson
fi2807he-s@student.lu.se

August 28, 2023

Department of Electrical And Information Technology

Lund University

Master’s thesis work carried out at Beijer Electronics AB.

Supervisor: Erik Larsson, erik.larsson@eit.lth.se

Examiner: Christian Nyberg, christian.nyberg@eit.lth.se

mailto:ma6254an-s@student.lu.se
mailto:fi2807he-s@student.lu.se
mailto:erik.larsson@eit.lth.se
mailto:christian.nyberg@eit.lth.se

Abstract

This thesis aimed at examining the effects of file and disk cache for certain writ-
ing patterns and file sizes for Beijer Electronic’s human machine interface (HMI)
panels with the focus on write amplification factor (WAF). The goal was to de-
termine optimal configurations to reduce WAF for different use cases to prolong
the lifetime of Beijer Electronic’s HMI panels. A test application and logs were
created to measure commands sent over the bus for chosen tests. It was found
that write amplification decreased naturally as file sizes grew. It was also found
that enabling disk cache without file cache had the most negative impact on the
write amplification factor, but that enabling file cache together with disk cache
reduced the negative effect as well as improved writing speed. Furthermore, only
enabling file cache or not enabling any form of cache resulted in the lowest write
amplification factor for file sizes between 10 and 10000 KB, however always re-
sulting in slower execution times than configurations with both caches enabled.
It was also found that operating the panels at close to max capacity reduced writ-
ing speed because of the internal wear-leveling required for the SD cards during
tests to not wear out prematurely, but no increase in write amplification factor
was measured.

Keywords: flash memory, file cache, disk cache, write amplification factor, over-provisioning,
HMI panel, wear leveling

2

Acknowledgements

To begin with we would like to thank Erik Larsson at Lund University who, through consis-
tent enthusiastic guidance, made the technical and administrative parts of this masters thesis
a transparent and easygoing process.

Furthermore we want to thank Beijer Electronics for both the opportunity and resources
to make it possible to conduct this masters thesis. At Beijer Electronics we would like to
especially thank Christoffer Ohlsson and Daniel Forsberg for their role in presenting the
project, supplying all technical equipment and solving all other administrative tasks that oc-
curred during the process of this masters thesis.

Lastly we would like to send a big thank you to Stefan Lindgren, also at Beijer Electron-
ics, for his passionate and continuous technical guidance with the possibility to discuss both
practical and theoretical problems. Without you the scientific parts of this masters thesis
would be significantly more difficult and tedious.

3

4

Contents

1 Introduction 9

2 Background 11
2.1 Beijer Electronics AB . 11

2.1.1 Human-Machine Interface . 11
2.1.2 Problem Description . 12
2.1.3 Thesis Goals . 13
2.1.4 Limitations and Scope . 13
2.1.5 Research questions . 14

2.2 Flash Memory . 14
2.2.1 The Floating Gate Transistor . 15
2.2.2 NAND & NOR flash . 17
2.2.3 Erase-Before-Write Architecture for NAND memory arrays 18
2.2.4 Reading from a NAND array . 19
2.2.5 Single-Level Cell (SLC) & Multi-Level Cell (MLC) 19
2.2.6 Flash Translation Layer . 21

2.3 Windows CE . 22
2.3.1 Windows CE Storage Stack . 22

3 Previous research & methodology 31
3.1 Previous research . 31
3.2 Methods . 33

3.2.1 HMI Panels at Beijer Electronics 33
3.2.2 HMI OS . 34
3.2.3 Synopsis . 34

3.3 Test Configurations . 35
3.3.1 Short-term tests . 35
3.3.2 Long-term tests . 36

5

CONTENTS

4 Results 37
4.1 Short term tests . 37

4.1.1 Panel Configuration . 37
4.1.2 Main Results . 37
4.1.3 Sequentiality . 38

4.2 Long-term tests . 39
4.2.1 Configuration . 39
4.2.2 Main Results . 39
4.2.3 Spare Block Usage . 40
4.2.4 Logical address usage for the SD bus 41
4.2.5 Bad block counts . 42

5 Discussion 43
5.1 Short-term tests . 43

5.1.1 Write amplification factor . 43
5.1.2 Execution time . 44
5.1.3 Data read . 44
5.1.4 Table access reads & writes . 44
5.1.5 Sequentiality . 45
5.1.6 Limitations & unknowns . 45

5.2 Long-term tests . 45
5.2.1 WAF . 45
5.2.2 Over-provisioning usage for card space 45
5.2.3 Execution time & Average Speed 46
5.2.4 Correlation between theoretical and actual SD card wear 47
5.2.5 Limitations & unknowns . 47

5.3 Optimal panel configurations for different practices 48
5.4 Research questions . 49
5.5 Further Work . 50

6 Conclusion 51

References 53

Appendix A Figures 59

6

Glossary

.NET A software framework developed my Microsoft. Used to develop applications that
may be executed on the Windows OS. 33

API Stands for Application Programming Interface. Is a software mediator that allows two
applications to communicate. Often used to more easily extract and share data within
or between different organization products. 22

ATP Company manufacturing NAND memories. 36

capacitor Device that stores electrical energy in an electric field. 14

CRC Stands for Cyclic Redundancy Check. Is an error-detecting code commonly used in
storage devices to detect and fix accidental data changes to minimize any data corrup-
tion. 19, 33

die Flash die, or chip, is a segment of cells. 21

EEPROM Stands for electrically erasable programmable read-only memory. 18

embedded system A computer system where the computer processor, memory and input/out-
put is combined. Often used in smaller mechanical or electronic systems. In shorter
terms a computer where the memory, processor and input/output is placed on a single
board. 22

eMMC Stands for Embedded Multimedia Card. Is an embedded storage solution which has
a MMC interface, flash memory and controller. Used for high performance application
such as smart phones and tablet computers. 12, 34

FAT Stands for file allocation table. Is a method of storing data commonly used in embedded
systems. Variations include FAT16 and FAT32. 24

FTL Stands for flash translation layer. 21

7

Glossary

GUI Stands for Graphical User Interface. A form or user interface that allows a user to
interact with an electronic device through graphical icons such as buttons. 33

IDE Stands for Integrated Development Environment. A software application providing
extensive equipment for software development. Often containing a source code editor,
build automation tools and a debugger. 34

MOSFET Stands for metal–oxide–semiconductor field-effect transistor. 15

NAND NAND, or NOT-AND is a logic gate representing the logical inverse of the AND
gate. 19

NOR NOR, or NOT-OR is a logic gate representing the logical inverse of the OR gate. 17

OS image A collection of files that contains the OS, the executable and all related data files.
In other words the collection of files that makes the OS functional. 13

OS kernel A computer program in the absolute core of an operating system that is always
present in memory. The kernel handles interactions between software and hardware
controls such as memory or I/O. 22

PLC Stands for Programmable Logic Controller. An industrial computer often used in man-
ufacturing processes especially designed to withstand harsh conditions. 12

RAM Stands for Random Access Memory. Type of computer memory where each element
can be changed in any order in essentially the same amount of time. 15

ROM Stands for Read Only Memory. Memory that cannot be modified once written to. 23

SD Stands for secure digital and is a type of memory commonly used by computers. It is a
non-volatile flash memory. 34

SPI The Serial Peripheral Interface is a short-distance interface used for synchronous comm
unctions through serial ports. 35

TexFAT Stands for transaction safe extended file allocation table. It is an extension of FAT,
is transaction safe and supports large tables. 24

tunneling Tunneling in quantum mechanics is a concept that electrons can behave as waves
or particles. And can cancel the effects of an energy barrier provided that it is thin
enough. This means that an electron can pass through a physically impassable medium
since there is a non-zero chance that it can exist on the other side. 18

volatile memory Computer memory that only maintains its data when the device is powered.
14

Win32 A 32-bit version of Windows. 22

Windows Registry A hierarchical database that stores low-level settings for the Microsoft
Windows operating system. 34

8

Chapter 1

Introduction

Although the term flash memories is a comprehensive term with multiple types of storage
devices, all useful in specific contexts, they all have one common unavoidable flaw. Since the
basic principle of all flash memories is to store and contain a specific electronic charge in
each memory transistor the memory will, through continuous use, inevitable degrade. This
degradation yields a memory unable to successfully store the intended information and will
eventually become unusable. Due to the fact that each flash memory has a lifetime the ability
to lower the degradation, and hence extend the memory lifetime, becomes a main factor.

The topic of memory degradation is something that has been well studied since the creation
of flash memories. With this heavy scientific background multiple countermeasures to more
efficiently write information to flash memory have been developed to lower the degradation
rate. However, many of these countermeasures are conducted by privatized companies that
develop and sell flash memory devices. Consequently, due to the ability to stay competitive,
a majority of companies choose to keep the internal schematics of their memory efficiency
algorithms hidden. [1] As a natural consequence the collaboration between certain software
systems and a flash memory storage device may become more difficult.

One of the software systems where this difficulty becomes more predominant is the operat-
ing system. The reason for this is because a vast majority of operating systems closely handle
the storage process of storing software program information in connected hardware storage
devices. Therefore any ambiguity of internal working algorithms in the hardware storage de-
vice may cause issues in the storage process. These issues often result in memory inefficiency
which will lower the lifetime of the storage device.

Due to these reasons the purpose of this masters thesis is to conduct research of the syn-
ergetic storage process between an operating system running on a hardware that has a con-
nected flash memory storage device. By running custom designed memory storing programs
in the context of a specific operating system the results of this masters thesis might hopefully

9

1. Introduction

be used to better design future memory efficient programs in the operating system.

The structurally design of this report is as follows. In chapter 2 the background of the project
is presented. In this chapter the project problem description, thesis goals and scope are given.
Additionally the reader can also find all relevant technical information behind the research
in chapter 2. In chapter 3 the methodology of all conducted tests as well as test configurations
are described. Chapter 4 presents the results of the conducted tests and chapter 5 yields a
discussion of the results in chapter 4. Ultimately chapter 6 presents a concise conclusion of
this masters thesis.

10

Chapter 2

Background

2.1 Beijer Electronics AB
This masters thesis was conducted at Beijer Electronics’ headquarters located in Malmö, Swe-
den. Beijer Electronics is a multinational company that specializes in communication, digi-
tization and automation through web based services and hardware products. Although the
company’s initial business model mainly consisted of producing programmable logic con-
trollers (PLC), micro data systems and other smaller hardware equipment it has gradually
shifted towards producing more advanced hardware with a graphical user interface front-
end. Today one of the main hardware products manufactured by the company is their HMI
panels. [6]

2.1.1 Human-Machine Interface
Following the rapid and advanced evolution of computer based information systems used by
the modern society there is no surprise that humanity have become highly dependent on dif-
ferent computer systems with a flawless communication working within or between them.
These days a vast majority of industry processes uses some type industrial control system
(ICS), often consisting of multiple subsystems, that requires sufficient communication to
not halt either parts of or a whole process in its entirety. Although many parts of industry
processes today have become automated, by either software or hardware, there are still parts
that require human interaction. This is where HMI:s play a central role.

Simply put a HMI is a user interface that connects a person to a system of machines, often in
the context of an industrial process, by displaying and sending sufficient data to connected
machines or other HMIs in the system. The interface hardware itself is often in a form of a
screen or dashboard (see Figure 2.1) which in many cases is even built-in to a machine but can
also exist as an independent separated panel. The HMI hardware enables a two-way commu-

11

2. Background

nication between a human operator and a machine. This is most often achieved by letting
the HMI communicate directly to a PLC, or some other type of industrial controller, that
exists in the system. [5]

The existing two-way communication allows a human operator to send commands to a ma-
chine or receive data from it. The operator can often easily control one or multiple machines
by just a simple touch of a screen. The commands sent from the HMI to the machine vary
in complexity. Simple commands are just to turn the machine on or off. More complex com-
mands however, may allow the operator to control certain algorithms running in the machine
or even perform specific urgent commands in case of an emergency. Finally since the HMI
can display useful data sent from a machine it allows any authorized user to see important
information such as process status, reports and historical logs. [21, p. B-7]

Figure 2.1: A Beijer Electronics HMI panel. [7]

2.1.2 Problem Description
Beijer Electronics place significance on delivering well functioning products of high quality
to their customers. For Beijer Electronics, whose main product line is their HMI panels, this
significance of high quality translates into developing and producing hardware of high en-
durance together with well structured software that may be executed on the panel. Without
these important qualities the company cannot sufficiently guarantee that their products up-
holds the warranty that is placed on the product. Unfortunately, with hardware products
consisting of multiple hardware subparts, constructed by different suppliers, this is not al-
ways an easy task.

This difficulty is of course also present in Beijer Electronic’s HMI panels where the inter-
nal schematics and algorithms of the different hardware subparts are not always explicitly
known. They may also differ between different production batches depending on what sub-
suppliers Beijer Electronic’s suppliers themselves use for a specific production batch. One of
the more central hardware subparts of the HMI panel, where this difficulty becomes more ev-
ident, is the eMMC flash memory. Although degradation for any flash memory is inevitable
a number of Beijer Electronics customers have continuously experienced problems with flash
memory degradation of a too fast rate where the warranty placed on the HMI panel cannot
be successfully sustained.

12

2.1 Beijer Electronics AB

As described the reasons for this fast rate of flash memory degradation may depend explicitly
on faults in the hardware and the cooperation between multiple hardware subparts from dif-
ferent producers. However, in reality, this is only one piece of the puzzle. The producers of
the hardware parts in the HMI panels are well established, making the risk of faulty hardware
close to non-existent. Hence the reason for a fast memory degradation might be just as, or
even more, likely to stem from the customer’s explicit usage of the HMI panel and the soft-
ware they execute on it. This of course introduces a new set of challenges for the company,
namely retrieving and examining the software used by the customers who experience a too
fast memory degradation. In practice this is often a tedious process and might not even be
achievable in certain cases.

2.1.3 Thesis Goals
Producing and selling HMI panels that successfully meet the placed product warranty are
obviously important features for Beijer Electronics. Having costumers experiencing a too
fast rate of flash memory degradation, resulting in the entire HMI panel being considered
consumed in a time span before the end of the placed warranty, may eventually harm the
reputation of the company and hurt its chances of staying competitive. Hence the objective
of this masters thesis is to yield more understanding about the flash memory that Beijer
Electronics’ HMI panels use. Particularly how different built in OS caches, namely the file
and disk cache, may affect the degradation of the flash memory. Hopefully the results of this
thesis may be used in the future to produce more efficient OS images that will degrade the
flash memories at a slower rate which will help Beijer Electronics stay competitive.

2.1.4 Limitations and Scope
Due to the fact that this work is conducted as a masters thesis there is an implicit time limit,
namely 20 weeks each consisting of 40 hours. This time limit is the central reason to why
certain decisions need to be made to restrict the scope in such a way that it can be realisti-
cally completed within the 20 weeks. As discussed in the previous section the reasons for a
fast memory degradation might depend on both hardware faults and certain memory heavy
software usage. Because of the limited time span this masters thesis will focus on handling
software usage and in what way software running on the HMI panel may degrade the flash
memory. The reason for this decision is that examining faulty hardware is harder and re-
quires multiple HMI panels which is harder and costlier. The risk that faulty hardware is the
reason for fast memory degradation also significantly lower than the reason being memory
heavy software usage.

This masters thesis will solely conduct research on how the HMI panel’s operating system,
Windows Compact Embedded, can be used to slow down the flash memory degradation.
Since all customer software running on the HMI panel will use Windows Compact Embed-
ded focusing on the operating system is a more specific and better suited approach. However
many of the results found in this paper might still be applicable to other operating systems.

Furthermore, due to the reason that the flash eMMC memory is soldered directly to the

13

2. Background

embedded board in the HMI panel it cannot be exchanged when degraded. Hence the entire
HMI panel is considered consumed whenever the eMMC flash memory is worn out. Because
of this reason flash memory degrading tests executed in this paper will not use the internal
eMMC flash memory but will instead use external SD cards inserted into the HMI panel.
These cards are of course exchangeable when degraded and will not consume the entire HMI
panel. Since degradation of both eMMC and SD card flash is a time consuming process, often
taking well over a month of constant usage before significant degradation becomes visible,
the specific SD card used in the tests will be a (industrial) card that degrades as fast as possible.

Lastly, without the possibility of collecting user metadata such as file sizes, results acquired
from tests conducted may differ from costumer experiences. Attempts will be made to emu-
late customers’ memory read/write patterns, but will not be identical.

2.1.5 Research questions
Since the thesis, analysis and research all have been conducted in close correlation with a large
multinational company the research questions have been formulated in a way to put the main
focus on solving the specific company based problems. However the question formulation
has been carefully chosen to create generalization and hence find a good balance between
cooperate interests and academic research.

• How do file cache and disk cache effect flash wear in embedded systems?

• How do different levels of free memory effect IO performance and flash wear?

• What are the optimal panel configurations for Beijer Electronics?

2.2 Flash Memory
As long as computers have existed the ability to store data has played a central role for the
development of the modern small, fast and efficient computers that exist today. Although
notorious for being of enormous size in the past one can today, through decades of revo-
lutionary innovation, hold a physical memory chip available to store multiple gigabytes of
data in the palm of the hand. By using any kind of computational electrical device one will
unconsciously be dependent on some kind of memory storage. In fact, without any memory
a computer processor would not be able to compute anything of value since, just for basic
calculations, a computer reads and writes to memory multiple times a second. [2, p. 5-7]

For a majority of computer devices the ability to use memory both temporarily, for current
ongoing calculations, and more statically, to store long lasting information (even through loss
of power), is elementary. To achieve this computers generally consist of at least two different
types of memory, both with different traits depending on their specific purpose. Memory
used as storage space for ongoing program instructions currently executed in the computer
processor needs to be fast but continuously updated, often multiple times a second. This kind
of volatile memory memory will not need to store long lasting data and therefore generally
consists of an electrical network of capacitors that store binary data as long as an electric

14

2.2 Flash Memory

voltage is applied across the network. Although this kind of memory is essential for the per-
formance of the computer it will not be discussed further since this thesis only handles flash
memory and its immediate surroundings. [24, p. 657, 664-667]

Flash memory is a read-write non-volatile RAM computer memory. To achieve the non-
volatile characteristic the flash memory uses a special kind of transistor, the floating gate
transistor, to physically trap electrons in a insulate layer consisting of silicon using a high volt-
age pulse. When electrons are trapped in the transistor they will remain even when there is no
electrical voltage present and hence the non-volatile feature has been successfully achieved.
However, due to the non-volatile feature, flash memories must have an erase-before-write ar-
chitecture. Therefore, when a memory block is to be reprogrammed, an erase cycle must be
executed to reset all affected memory cells before they can be written to again. Although all
flash memories achieve the non-volatile feature there are differences between certain types
of flash. Common differences are the number of bits stored in each floating gate transistor
and how memory blocks are reprogrammed. [24, p. 647]

The architecture of floating gate transistors allows, as stated above, the memory to be non-
volatile. But it is also the reason why flash memory gradually wears out. The nature of erase
operations are such that when many cycles are performed the voltage threshold for program-
ming and erasing are reduced and increased respectively, which is a result of oxide aging. The
results of this aging is slower program/erase times which introduces an end of life expectancy
for the memory. [17]

Even though the term flash memory might, to many readers, not be entirely unfamiliar it
can still be difficult to grasp the practical use for this type of memory. However, average
people, regardless of technical background, likely to encounter some kind of flash memory
in their everyday life. Due to the importance of flash memory it is today a widespread tech-
nology used in many different branches where different memory size, shape and speed are
relevant. A common flash memory device that is used in both a professional and personal
context is the Universal Serial Bus (USB) stick. Thanks to its robustness and relative small
size it has become a popular item to move or temporarily store data. An even smaller flash
memory device is the SD memory card which is a popular choice to store data in the contexts
of smaller electric devices where data retrieval needs to be fast and conducted often. A com-
mon flash memory choice for embedded system is the eMMC flash. It is soldered directly to
the embedded system and cannot be easily replaced. Lastly, a common memory device for
computers is the SSD flash. Although a bit bigger in size and not as easily exchangeable as
the USB and SD card flash it can often handle faster transfer speeds.

2.2.1 The Floating Gate Transistor
Flash memories consist of a special kind of transistor called the floating gate transistor, see
Figure 2.2. This transistor, just as for most non-volatile read write memories, is the essential
element why flash memory gains the feature of non-volatility. The design resembles a regular
MOSFET transistor but it has one additional gate, called the floating gate, placed between

15

2. Background

the control gate and the channel. In contradiction to the control gate, the floating gate is
not connected to anything which is why the gate has received its name. By making a certain
threshold of electrons move from the channel to the floating gate the floating gate transis-
tor achieves the possibility to store binary information in a non-volatile fashion. By using
the ability to store electrons in the floating gate a specific amount of binary information,
depending on the specific cell programming (see Section 2.2.5), can be written to and read
from the transistor. However, due to the chemical and physical compounds of the floating
gate transistor any information currently stored in the floating gate must be erased before it
can be reprogrammed and store new information. [24, p. 647-649]

Avalanche-injection to the Floating Gate
In the floating gate transistor the drain is connected to ground whilst the source is connected
to the load, that is, the power system. This will effectively create an electrical current between
source and drain when the power system connected to the source is turned on. Hence by
applying a sufficiently strong positive load to the control gate a portion of the electrons will
gain enough energy to pass through the oxide insulate, through an effect called avalanche
injection, and enter the floating gate. This is of course due to the electrical field that exists
in the channel between source and drain. However, because of the negative charge of the
electron the more electrons that enter the floating gate the less the effective voltage over the
channel will become. Eventually a certain threshold will be reached and no more electrons can
avalanche inject. When the positive load of the control gate is removed any electrons placed
in the floating gate will become trapped and remain there until an erase event is executed on
the transistor. In this way the floating gate contains its specific charge even when all power
in the system is removed which is the core concept behind the non-volatility of the flash
memory. [24, p. 647-648][8, p. 493]

Reading Binary information from the Floating Gate
Depending on the amount of electrons that are trapped in the floating gate it will contain a
specific charge. By now applying a reference voltage across the source and drain a specific cur-
rent can be measured and translated into specific binary values. If more electrons are trapped
in the floating gate less current will pass through it and vice versa. Now the binary values are
be mapped to the specific measured voltage of the transistor which directly depends on the
charge of the floating gate. [8, 493-494] How binary values are mapped to measured voltages
depends on the cell coding of the transistor which can be read in Section 2.2.5. Addition-
ally a more detailed explanation of retrieving binary information from flash memory cells is
located in Section 2.2.4.

Erasing the charge and insulate degradation
Since the reprogramming of the floating gate requires the charge to be reset the trapped
electrons must somehow leave the floating gate. This is done by applying a high voltage
charge across source and drain while simultaneously applying a sufficiently strong negative
charge on the control gate. This forces the trapped electrons through the oxide insulate and
into the channel which will neutralize the charge of the floating gate. Each cycle of write

16

2.2 Flash Memory

and erase commands will require high voltages to force electrons through the oxide insulate.
This will inevitably lead to the degradation of the oxide insulate layer and make it thinner.
A thinner insulate layer will lose the capability to uphold the charge when the power is off
and hence the non-volatile functionality of the transistor will degrade until an end-of-life
threshold is reached. The erasing architecture of flash memory cells will be more thoroughly
explained in Section 2.2.3. [8, p. 492, 495]

Figure 2.2: A floating gate transistor.

2.2.2 NAND & NOR flash
Flash memories are used for several different purposes. As such, they require a certain amount
of tailoring to the specific system they are used in. The two main categories of flash memo-
ries are NAND and NOR flash, and they differ in how the floating gate transistors, hereby
denoted as cells, are arranged.

NOR flash is organized on a byte or word basis, while NAND is organized on whole pages
or blocks. NOR having a parallel architecture is the reason that random access is so fast for
NOR flash. NOR can be further classified into several subcategories, but are not covered
more in this thesis.

NAND is unlike NOR organized serially. See Figure 2.3. In NAND memory arrays several
cells can be found between two special transistors, which are not used to store information,
and two contacts. This makes random access slow due to the fact that no contacts are directly
accessing memory cells. However, since there are fewer transistors per cell the effective cell
size is significantly smaller than that of NOR, making NAND a more size efficient choice
and thereby costing less per bit. NAND also has the advantage on a per-page basis, where
writing to whole pages is significantly faster than NOR (0,4 µs/byte compared to 10 µs/byte).
All things considered NOR is a good choice for storage requiring performance code storage
and code execution, while NAND is better suited for larger and cheaper storage. [16, 4]

17

2. Background

Figure 2.3: Rough schematic of a NAND array consisting of a num-
ber of floating gate transistors.

2.2.3 Erase-Before-Write Architecture for NAND mem-
ory arrays

Just as any other type of memory the flash EEPROMs have their own specific set of restric-
tions. Due to the structure of NAND memory arrays, see Section 2.2.2 and Figure 2.3, a single
floating gate transistor cannot be solely reprogrammed. The specific size of each memory
block is unique for each individual memory but usually stores hundreds of bytes of informa-
tion. Because of this memory array design the whole memory block must be erased whenever
a single memory cell needs to be reprogrammed.

This feature in NAND arrays eventually generates one of the main restrictions in flash mem-
ories. Namely the erase-before-write problem. As a consequence of needing to erase an entire
block before being able to write to it a lifetime consisting of a number of erasure cycles are
placed on the memory block. This is due to the fact that an erasure process damages the
insulate in the floating gate transistor. Eventually this leads to the loss of the non-volatile ca-
pability of the memory block. The exact number of erase cycles a memory block can handle
through a lifetime varies greatly depending on what cell coding the memory uses, see Section
2.2.5, but usually stays in the interval of a couple of thousands cycles to a hundred thousand
cycles. [13]

The erasure process of a memory block is not as straight forward as one might initially think.
Firstly a 0 V voltage is applied to the drain whilst a high voltage charge is placed on the
source, see Figure 2.4. Any potential electrons in the floating gate are thereafter ejected via
tunneling through the source gate. This process should erase all memory cells simultaneously.
However, to make sure that no cells stay programmed, a read cycle is applied. If any cells are
still detected as programmed a new erase cycle begins. This algorithm continuous until all
cells in the memory block are erased. This algorithm is potentially very slow, at least com-
pared to the write and read cycles, and typical erase times are between 100 ms to 1 s.

After the erase cycle is completed a write operation cycle may begin, see Figure 2.5. To pro-
gram a memory cell the block source and drain are grounded whilst high voltage pulse is
applied to the control gate of the memory cell to program. The memory cells with a positive
voltage applied to their control gate will receive electrons from the channel to the floating
gate through avalanche-injection. The remaining memory cells with no voltage applied to
the control gate will remain empty. Depending on the NAND memory coding the specific
charge in the floating gate whilst programming the cell may alter. [24, p. 651-652]

18

2.2 Flash Memory

Through continuous ongoing research there are of course several techniques developed to
halter the NAND flash degradation and hence extending the lifetime of the memory. A well
designed Flash Translation Layer (FTL), see Section 2.2.6, will perform balanced wear level-
ing and garbage collecting algorithms that spread the load more equally to all memory blocks.
Most memory producers also choose to include a technique called over-provisioning. In this
technique a certain threshold of additional memory blocks are added to the memory. The
extra blocks are said to become over-provisionized. An over-provisioned memory block can-
not be reached by the user and can only be used by the internal algorithms of the memory
controller, such as the FTL. In turn this technique extends the memory lifetime since the in-
tensive writing of internal memory algorithms may now use these extra memory blocks. [12]
Finally most memory producers include a Cyclic Redundancy Checksum (CRC) to coun-
teract data corruption. This check becomes more important in the later stages in memory
lifetime since worn out memory blocks generate bit errors at a higher rate. Eventually, even
though the countermeasures described are present, the floating gate transistors in a memory
block will degrade enough to yield bit errors too big for even a CRC algorithm to correct.
When this happens a memory block is often denoted as a bad block in memory terminology
and becomes unusable. [28, p. 1]

2.2.4 Reading from a NAND array
When reading from an individual cell in a NAND array a high voltage is applied to all the
other cells in the array, also known as applying voltage to the word lines, see Figure 2.3. This
makes them conduct electrons through their channel whether they have electrons trapped
in their floating gate or not. Then, a different threshold voltage is applied to the specific
cell that will be read. This voltage makes the cell conductive only if there are no or very few
electrons in its floating gate. Since all cells are connected serially, if electrons are not able to
flow through the cell, meaning it has electrons trapped, then no current will be measured at
the bit line. This is interpreted as a logical 0 in single level cells. If however there is a current
at the bitline, meaning there are no electrons at the floating gate, it is interpreted as a logical
1. [24, p. 651-654]

2.2.5 Single-Level Cell (SLC) & Multi-Level Cell (MLC)
A 0 or a 1 is read from a NAND flash cell by reading the output voltage of the floating gate.
By increasing the voltage levels more than one bit can be stored in a single cell. If the voltage
levels are four the cell can effectively store two bits, since the levels can represent 00, 01, 10
and 11. Therefore, every doubling of the number of voltage levels adds one bit of storage to
the cell. The benefits of this is that more data can be stored on the same amount of cells
without increasing process complexity. It does however increase the time for programming
and reading the cells. Implementing these intervals also require precise signaling and sensing
inside the memory so that bit errors don’t occur which would make the memory cells prone
to degradation and decrease endurance. [16]

As seen in Figure 2.6 we can see that by designating voltage intervals as specific bit values,
the storage capabilities of a single NAND cell will be increased.

19

2. Background

Figure 2.4: The erasure cycle of a NAND memory floating gate tran-
sistor.
A - A negative voltage is applied to the control gate, a positive volt-
age is applied to the source and the drain is grounded.
B - Electrons in the floating gate are ejected through tunneling.
C - The control gate and source are grounded and the floating gate
remains empty.

20

2.2 Flash Memory

2.2.6 Flash Translation Layer
FTL is a layer between the file system and the memory array. Since flash memories lack the
capability to write to single pages inside a flash, something that is hard for the file system
to manage, the responsibility of this is placed on the FTL. Doing so allows the file system to
write to individual pages and the FTL handles the details of how this should be done by, for
example, copying the entire block and writing it to a new place with the new page as well.
The FTL also handles garbage collection, clustering of hot and cold data, and wear leveling.
All essential tasks for the FTL to do efficiently.

Clustering of hot data is done for the purpose of optimizing garbage collection in flash. Since
the garbage collector has to delete data blockwise it is optimal if the data contained inside
all blocks is organized in a gradient from cold to hot. This way when the garbage collector
needs to clear hot data that often becomes invalid, it does as few unnecessary erases of cold
data as possible thereby reducing flash wear. [16]

Wear leveling
Wear leveling is performed in the FTL layer for the purpose of increasing the total lifespan of
a flash memory by distributing the writes from frequently used to less used blocks. There are
three main types of wear leveling, dynamic, static and global. Dynamic wear leveling makes
update data being written to a block actually point to a new block, while marking the orig-
inal one as invalid. This prevents repeated writes to the same logical address from wearing
out the physical block connected to that address by switching the block that it points to.
This kind of leveling is unable to fully wear level the memory since parts of memory is never
updated, which makes static wear leveling necessary. Static wear leveling regularly transfers
static blocks from one address to another, which allows most blocks to be used to their end
of life.

Lastly global wear leveling ensures even wear between different chips/dies. Since both dy-
namic and static wear leveling are done on the local level it is possible that one die runs out
of spare blocks and has to enter read only mode long before the other dies are worn out. This
can be prevented by sharing spare blocks by employing a spare block manager. If a die de-
pletes all its spare blocks and encounters an erase error, instead of entering read-only mode
it can use a spare block from another die [29]. It is also possible to implement global wear
leveling by reallocating zones that are frequently accessed in one die to another one. These
types of wear leveling are implemented in different ways by different manufacturers. This
can change wear behavior of memories with identical write patterns depending on the wear
leveling implementation. For example, industrial grade SD cards and SSD memories usually
have more advanced wear leveling algorithms.

Write Amplification Factor (WAF)
Due to numerous different factors the actual amount of data written to a flash memory is
rarely exactly identical to the size of the information that is supposed to be saved in the
memory. Metadata caching, wear leveling algorithms and garbage collection are all com-
monly present in a flash memory process and increase the amount of stored data during a

21

2. Background

memory saving process. To avoid excessive memory degradation the difference between the
supposed data amount and the actual data amount saved to memory needs to be small. There-
fore the Write Amplification Factor (WAF) was developed as a unit to measure this important
difference. In short, a WAF is a numerical value that references the difference between the
size of the actual stored memory amount and the specific data amount that was to be saved
to the memory.

As an example, if a memory process would have a Write Amplification Factor of 4 this would
mean that the memory process stored four times as much information as the physical data
that was supposed to be saved. Therefore a Write Amplification Factor as close to 1 is prefer-
able. Then the memory process saves only the actual data to save with as little additional
metadata as possible. Since the amount of data saved to a memory is directly correlated with
its degradation rate a WAF value of 1 will lower any degradation compared to higher WAF
values. [22]

Sequential I/O
Sequential writing and reading is important not only for its performance improvements over
random writing. It is also necessary in maintaining a low WAF. This is because of the way
writing is done to flash memories. As seen in Figure 2.7 certain writing patterns can increase
the amount of writes disproportionately to its contents. If data from for example a file is
written sequentially, when it is erased there is no need for garbage collection methods, since
whole blocks are filled with data from the same file. However, if data were to be written
non-sequentially, upon deleting said data it would require rewriting of large amounts of data
that is contained within the same blocks, costing time and causing excess wear on the system.

2.3 Windows CE
Windows Compact Embedded is an operating system developed by Microsoft designed for
small memory devices or embedded systems that require a minimum size. Although different
from the everyday Windows OS it is still based on a subset of the standard Win32 API. [3, p. 4]
Since Windows CE is a modular component-based operating system it provides flexible but
reliable functionality needed for specific embedded system. Hence a developer may choose
to include only relevant parts of the operating system for a certain type of embedded system,
making it as small as possible. [11, p. 1-3]

2.3.1 Windows CE Storage Stack
The Windows CE Storage Stack is a vital part of the CE OS kernel that handles file man-
agement and I/O controls. It contains multiple different levels of collaborative modules that
create and translates OS files into comprehensible I/O operations for the connected storage
device. These operations will eventually be used by the storage device FTL to physically store
the actual data. See Figure 2.8 for a visual implementation of the levels in the storage stack
with a connected NAND memory.

22

2.3 Windows CE

File system manager
In Windows CE the file system, and all file related APIs, are managed by the FileSys.dll
module. This is also the module that implements the objects store and storage manager. It
will unify all file systems into a single system under one common root ’\’. Every file is now
identified with a unique path from the root in a hierarchical tree. [18, p.164, 187].

The FileSys.dll module contains different modules of its own. Firstly the Object Store
module handles a memory heap which contains the RAM system registry together with the
RAM file system. [18, p. 77, 82] There is also the ROM File System being another module
handled by FileSys.dll that is connected to the unified file system under ’\Windows’. All
files in the ROM are read-only files. [18, p. 192] Finally there is the Storage Manager module
which has four primary responsibilities. [18, p. 77, 149]

These are

• Storage drivers - Device drivers for physical storage mediums, also known as block
drivers since they provide access to randomly addressable blocks of data storage. [18,
p. 146-149]

• Partition Drivers - Translates the storage driver. Exposes the same interface as a storage
driver and translates block addresses for a partition into the true address of the block
on the storage device. It then finally passes the call to the storage driver. [18, p. 148-149,
189]

• File system drivers - Drivers that organize the data on a storage device as files and
folders. [18, p. 138-140]

• File system filters - Process calls for a file system before the file system gets them. This
allows for specialized handling of file access for data encryption and compression. [18,
p. p. 190-191]

File cache
A file cache is, as the name implies, a cache for files. The primary purpose of this cache is
not only to reduce the amount of writes being done to disk memory, but also to improve I/O
performance. The file cache works as follows: any reads or writes to disk is first written to
the cache, which is flushed at regular intervals determined by the cache manager, or when
large I/O operations are performed. Any potential read or write requests to the same area of
memory can when data is stored in cache be handled by accessing cache memory instead of
disk memory. Since cache is limited in size and files larger than the cache can not be stored
there, the effectiveness of the file cache is largely dependent on the size of the files being
accessed and created. [26] Another function of file cache is to temporarily store files before
being written to disk. Using file cache as a primary storage before writing to disk allows the
file system to optimize the writing operation, usually being able to send fewer commands
and reducing overhead.

File caching also acts as a regular cache, where several writes to the same region of mem-
ory can be stored in local cache, reducing the amount of data traveling over the bus and

23

2. Background

reducing the wear of the memory cells repeated erase/write cycles would cause. This in turn
can improve I/O performance, as the bus is free to handle other requests. File caching can
also reduce latency usually caused by disk accesses by temporarily storing frequently accessed
data in cache.

The module cachefilt.dll contains the settings for file caching implemented as a file system
filter. All file caching is implemented as a file system filter (file system caching manager). It
works with any file system and does not require changes to the file system. [18, p. 190-191]

File caching also improves I/O performance by rearranging certain random I/O operations to
be sequential. Sequential operations can be performed quicker by the system than by random
access writes and require fewer block erasures[10, p. 98-99].

Disk cache for Metadata (Metadata, logical level)
Disk cache in this context is responsible for caching metadata. That is, for example, file
names, file size, access rights, memory location etc. It is also known as system cache, cache
buffer, disk buffer or just cache.

One of its purposes is write acceleration. Upon data being sent from the system to disk,
the disk cache may signal the system that the writing operation is complete. This is some-
what dangerous, as loss of power during this period may cause data integrity to be lost. The
boon is, however, that it frees the system from waiting for the I/O operation to complete,
thereby increasing I/O performance significantly. Disk cache also allows for metadata to be
stored in the cache, which improves execution time for operations requiring this metadata.
Lastly, since disk cache allows metadata to be stored in cache, repeated erase/write opera-
tions to the same meta data will not cause unnecessary wear on the flash cells. This is because
these operations are first performed on the meta data in the cache. Then the data on disk
only needs to be updated once.

Disk caching in Windows CE is implemented as an auxiliary library. The file system driver
must use this library somewhere in its implementation to be able to use this service. The disk
caching is used to cache file system metadata. TFAT and exFAT file system can be configured
to use disk caching.

TeXFAT architecture
The TexFAT file system is a file storage system with emphasis on transaction safety and is an
extension from the original FAT file system. It uses a file allocation table at the beginning
of every volume. The OS can use the stored tables to traverse the cluster chains quickly and
easily, since the table shows the beginning and end of every cluster in the section. TexFAT
is an improvement over the original FAT file system that corrupts data when loss of power
occurs during a file system operation. TexFAT, however, maintains data integrity during
such occurrences. It does this by making its file system update functions atomic by utilizing
two FATs, one as a primary FAT and one as a buffer. When a update is to be performed the
primary FAT is not directly written to. First the buffer FAT receives the update and if loss

24

2.3 Windows CE

of power occurs during this time the main FAT is not corrupted by being interrupted in the
middle of an operation. If the update is done as planned to the buffer FAT it is then copied
to the main FAT, completing the transaction. [14] [27] By default only folder modifications
and FAT updates are protected by using TexFAT, but by changing registers normal file data
updates can also be made transaction-safe [25].
TexFAT is compatible with both Windows, Mac OS and Linux, therefore making it used in
many systems including Windows C.E 6.0.

Storage Device Driver
The storage device driver is a special kind of software that handles the communication be-
tween the OS and connected hardware. In most operating systems, including Windows CE,
there exists multiple different storage device drivers for different types of storage devices.
These types of drivers are often the final layer in the OS and communicate directly to a
connected storage device or to its FTL.

25

2. Background

Figure 2.5: The write cycle of a NAND memory floating gate tran-
sistor.
A - A positive voltage is applied to the control gate, source and drain
are grounded.
B - Electrons in the channel enter the floating gate through
avalanche-injection.
C - The control gate is grounded and the electrons trapped in the
floating gate remain.

26

2.3 Windows CE

Figure 2.6: Representation of how doubling the voltage levels mea-
sures more bits are able to be stored in a cell.

27

2. Background

Figure 2.7: Garbage collecting causing write amplification.
Left figure: Pages A-D are written to block X,
Middle figure: Pages E-H are also written to block X, four replace-
ment pages A’-D’ are written to block X as well. The original pages
A-D are stale, invalid data that cannot be overwritten until the
whole block is erased.
Right figure: To remove stale data pages E-H and A’-D’ are read and
written to block Y, allowing block x to be erased. This is garbage
collecting.

28

2.3 Windows CE

Figure 2.8: The storage stack for Windows CE with a connected
NAND flash storage device.

29

2. Background

30

Chapter 3

Previous research & methodology

3.1 Previous research
The topics of flash memory degradation, floating gate transistors and memories in a NAND-
flash context are broad and well established subjects that all have a substantial existing re-
search base. Although no previous work exists in the niche context of flash memory degra-
dation in Beijer Electronic’s HMI panels there certainly exists more general research relating
to the concepts of this thesis. Much of current research regarding flash memories revolves
around improving the flash memories themselves, more specifically topics such as cold-hot
grouping, spatial locality or learned indexes [23] designed to improve performance.

According to Detlev, important factors in developing flash memory architectures are the cost
per bit, scalability, power efficiency and performance values. Performance values range from
random read/write latency to sequential read/write data bandwidth to random data through-
put. These however are not the main focus for this thesis, but may instead be regarded as pa-
rameters that could be affected by potential changes to a flash memory system. The book also
mentions concepts for improving the read durability for NAND memories.[2] One of these
concepts involve increasing flash read durability by continually injecting write/erase cycles
between intervals of reads. It generally succeeds in extending read durability, but at the cost
of a large overhead. Another, more closely related concept, is the concept of wear leveling
and the FTL as described in Section 2.2.6. Detlev described and compared two methods of
wear leveling, static and dynamic, and found them both to be severely lacking, citing that
this form is best fitted for small, cheap storage devices.

Research has also been conducted in replacing the traditional FTL wear leveling algorithm.
In 2011, Boukhobza et al. proposed replacing the wear leveling algorithm and garbage collec-
tion mechanism completely with a two-tiered flash solution instead. They proposed that the
FTL could be replaced with a full cache-based solution. [9] Although this does not appear to

31

3. Previous research & methodology

have caught on yet.

In the context of garbage collection, Wang et al. produced in 2020 a hybrid mapping mem-
ory block algorithm to lower the negative WAF effect of modern garbage collectors. Together
with the hybrid mapping algorithm they redeveloped a greedy garbage collector that success-
fully performed memory simulations which conducted an improvement in WAF values. [22]
Although garbage collectors are not the main focus in this thesis, they are of course still highly
relevant in discussing any results yielded from memory testing.

Meza et al. conducted in 2015 a large-scale study of flash memory degradation in SSDs using
data collected from Facebook’s data centers. The study took place over four years consisting
of millions of operational hours. The results showed that the SSD flash went through sev-
eral failure periods where that memory wore out and lifetime strictly corresponded to the
total amount of data written to the SSD flash memory. Their results also concluded that
the amount of written data executed by the system software or OS may, due to system-level
buffering and wear reduction techniques, inflate the total amount of data actually written
to the flash memory. [15] Even though this research was performed on SSDs the structural
semantics are close to identical compared to SD cards and hence this research is deemed rel-
evant enough for this thesis.

Many reports have found that the most straightforward way of improving the endurance
of flash memories is by the process of over-provisioning. Over-provisioning in this context
means that the memory inside the device is larger than the logical addresses supplied to the
user, even though the entire memory is actually used. Hence the additional over-provisioned
memory blocks are accessible only by the memory controller and can never be used directly
by the user. [19] Most flash memory producers select a specific percentage of the total mem-
ory blocks to be over-provisioned. Although over-provisioning flash memories is a common
technique to extend the memory lifetime it is not something that may be easily changed once
the production of the memory has been finished.

Other research challenges are currently being dealt with. According to Frontiers of Qual-
ity Electronic Design current challenges for flash memories include lifetime improvements,
which in turn includes write-reduction techniques. The popular techniques do not, however,
deal with caching, but instead deal with flip-and-write and two-stage writes. [20, p. 137-165]

Due to the lack of existing proper research into how caching affects flash memory endurance,
when collecting data for this masters thesis one may conclude that such research has not yet
been done, or at least has not been widely published. As discussed in this section the research
in context of flash memory endurance is vast. However most of this research seems to include
FTL, over provisioning, garbage collecting or memory mapping as their main analysis but not
caching, perhaps considering it to be an external issue.

32

3.2 Methods

3.2 Methods
To conduct the analysis of this master thesis data indicating the wear of flash memory placed
in Beijer Electronic’s HMI panels needed to be gathered. This was achieved by explicitly de-
signing a test application written in C++ running on Windows CE which could be executed
on the HMI panels. The purpose of the application was to allow for a program to contin-
uously write a number of files of specific size to the flash memory, wearing it down in the
process. In the remaining parts of this thesis this memory degrading process will be denoted
as a test or test execution.

Both the front-end and back-end of the test application were developed where the front-end
consisted of a GUI created in the .NET framework. The GUI was used to show the current
status of the test as well as presenting interactive buttons to start or stop the current execu-
tion. The back-end consisted of all file handling and the structure of the test itself meaning
the number and size of the files to write. Due to the fact that flash memory, in general, takes
an arbitrarily long period of time to wear the test application was designed to allow its user
to conduct and design tests that could be executed indefinitely. See Figure A.1 for a visual
representation of the C++ application in question.

A third-party program, called Tera term, was used for all log files. This program could read
data from a computer port and display and save the output as well as timestamp any input.
It was used by connecting HMI panels running the previously mentioned test to a USB-port
on a PC. Tera term then logged, timestamped and saved any output produced from any panel
individually.

In addition to the test application a C# data analysis application was created. This appli-
cation also consisted of a graphical .NET GUI where the user could load specific log data
files from each individual test conducted on a HMI panel. Using the test log files the applica-
tion could calculate and display exactly what logical memory addresses were used in the test.
The application also used a Matlab API to execute two different Matlab scripts that were
used for all data plots in this thesis. The purpose of this application was not to execute it on
the HMI panels but only run it on personal computers. Hence the application was designed
in the context of the Windows OS and not Windows Compact Embedded. In Figure A.2 a
snapshot of the C# application can be seen.

Finally another third party application, Hard Disk Sentinel, was used to collect health in-
formation of the SD cards used in the tests. The health information consisted of multiple
useful data points. However, only a subset of these data points were used in the analysis of
this masters thesis. Namely the expected remaining lifetime percentage of the SD card, the
number of spare and bad memory blocks, the total erase count and finally the CRC error
count.

3.2.1 HMI Panels at Beijer Electronics
All technical testing conducted for this masters thesis was executed on four individual HMI
panels of the same model. This is to assure that any variation in the results of executed tests

33

3. Previous research & methodology

are solely due to the structure of the test itself and not due to any variation between HMI
panel models. The specific HMI panel used is Beijer Electronics X2 pro 7 model. The panel
operates on the Windows CE Embedded 8.0 operating system and have 2GB SSD eMMC
flash memory storage and a slot for an external SD memory card. [7] See Figure 2.1 for a
visual picture of the panel.

3.2.2 HMI OS
The Windows CE operating system image that the panels were using could be viewed to
extract details about the file system and surrounding systems. These could also be edited
to change the behavior of the system, thereby affecting the memory differently. Through
specific changes to the OS image the file and disk cache could be turned off or on for each
individual panel used in the tests. For disk cache this was explicitly toggled by altering a flag
value in the operating system code. File cache however was turned on and off by changing
specific values in the Windows Registry together with explicit flag values in the file I/O code.

All data handled by the panels application was redirected to an external SD card to allow
for more precise data to be recorded than with the HMI:s built-in memory. Writing to an
external SD card also avoided degrading the soldered eMMC memory which is significantly
more expensive. The panel OS image also included the SD card drivers of Windows CE. These
were altered to allow for logging of all memory requests sent over the SD card bus. The re-
quests consisted of four vital data points. First the specific SD command which described if
the request was a read from or write to memory request. Secondly the logical memory block
address to read from or write to. Thirdly the total amount of blocks the request handled
starting from the address in the second data point and counting forward. The last data point
consisted of the specific block size expressed in bytes. Therefore the collected log files could
be used to calculate exactly what logical memory addresses that were used in a test and how
many bytes were read from or written to each used address. Using this information the total
data amount read from and written to the SD card could be calculated.

After any specific alterations where made to the Windows CE OS code it needed to be
flashed onto the HMI panel hardware to update its software. This would eventually make
the effects of any OS code changes present in the panel. All code changes were done by using
the Windows Visual Studios IDE. This application was also used to build the OS code which
produced the OS image files that would be flashed to the hardware. For the flashing process
two in-house applications were used. Firstly an application called Trinity was used to connect
a computer to the HMI panel using an Ethernet cable between the two devices. Secondly an
application, named Image Loader Production, would then be used to load the image files and
flash them onto the panel that was connected through the Trinity application. After a quick
reboot of the HMI panel it would now run on the newly flashed OS image.

3.2.3 Synopsis
A C++ file writing application was executed on four different HMI panels, all with specific
individual configurations and ATP SD cards, to stress test the SD card memories. The file
size and count was explicitly set in this application. During an ongoing test execution, due to

34

3.3 Test Configurations

modifications made in the SD card drivers, all relevant SD memory bus requests were logged,
describing what logical memory addresses were read from or written to along with the total
byte amount this request handled. After or during a test execution the external SD memory
cards were physically removed from the HMI panel and placed into a personal computer.
Here a third party application was used to display relevant health information of the SD
memory card. All test logs files were also gathered and analyzed using a C# application
which calculated and displayed the total amount of data read from and written to the SD
card for the specific test execution.

3.3 Test Configurations
In this masters thesis the experimental segment is divided into two different types of test
executions. The first type of tests were quickly performed and focused on analyzing the
difference between file sizes and cache settings. The second type of tests were long time
running where the focus was to analyze the difference of long term degrading depending on
cache settings and available space of the SD cards. These tests continuously executed until
the SD card was considered consumed. From here on the first type of tests will be referred
to as short-term tests and the second test type as long-term tests. Both types are described
more thoroughly below.

3.3.1 Short-term tests
Tests monitoring bus commands to SD cards were performed. These tests could be done rela-
tively quickly and without needing brand new SD cards to monitor health status. From these
tests information such as total data written to disk, FAT table accesses, WAF and execution
time could be gathered.

To monitor the writing patterns of the panels parts of the OS drivers were changed to pro-
duce output to an output port on the back of the panel. The output consisted of the SD
SPI command denoting what type of request was made, a logical address, a block size show-
ing the size of blocks read, and lastly the number of blocks. The logical address denotes
where data started being read from or written to depending on what type of command was
used. Four specific commands were monitored, single block read, multiple blocks read, single
block written and multiple blocks written. The output ports of the panels were monitored
through the duration of the test, logged and timestamped. These logs could later be analysed.

After the tests were completed the theoretical lowest amount of data needing to be written
could be compared against the actual data being sent over the bus to the SD card. A WAF
could then be calculated based on the ratio between the two amounts. The WAF would then
indicate the efficiency of the writing pattern and the file/disk caches.

To discern the effects of different cache configurations four short term tests were performed,
all with different permutations of file cache and disk cache enabled/disabled. This was done
by editing the system software registers responsible for enabling these functionalities. Disk
caching was also disabled in the application layer itself to prevent any additional appli-

35

3. Previous research & methodology

cation buffers from acting as a local cache. This was done by setting write flags in C++
code, namely FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING as arguments in
the createfile function. In the applications where application caching was not turned off
these flags were instead set to FILE_ATTRIBUTE_NORMAL and FILE_FLAG_OVERLAPPED.

3.3.2 Long-term tests
Four long-term tests were also conducted on the HMI:s. These four tests were the results of
enabling and disabling disk caching and file caching on the panels.

To show different effects of the SD card built in FTL algorithm two of the four SD cards
were filled to 90% capacity. The writing patterns were such that the entire memory was filled
and then deleted with a fixed file size of 75 MB. In the case of the cards being filled to 90%
capacity initially only 10% of the memory was repeatedly used.

Further data was gathered by using a third party software called Hard Disk Sentinel, which
for a supported SD card can display health information. This health information includes,
depending on the specific card, viable data points such as the current used lifetime of the
card, the number of blocks that have been worn out and remaining spare blocks. The SD
cards used were chosen partly because of their compatibility with this program. Health in-
formation such as bad block count were logged before and after large writing operations to
give an estimation of real wear on the SD cards.

The reason the writing operations were completed on external SD cards was to not place
excessive wear on the built in eMMC flash drive. The SD card chosen was selected for its
industrial rating, flash architecture (MLC), health monitoring capabilities, low storage ca-
pability (8 GB) and low total erase cycle capability. A low total erase count and storage
capability will let blocks wear out relatively quickly, which could then be used as a way of
measuring real wear on SD cards.

Different manufacturers employ different wear-leveling techniques, and this is usually con-
sidered an industry secret. Therefore, knowing the inner workings of SD cards is usually not
feasible. The chosen SD cards were manufactured by ATP, who like most companies do not
provide exact information regarding their wear-leveling techniques. However, they do adver-
tise their cards with "advanced wear leveling algorithm", which is then explained to be similar
to static wear leveling with the exception that it includes the whole flash device instead of
a single die. [4] The ATP SD cards can therefore be considered to be using a form of global
wear leveling.

36

Chapter 4

Results

4.1 Short term tests

4.1.1 Panel Configuration
The configuration settings for all panels during the short-term tests can be seen in Table 4.1.

File
Cache
On

File
Cache
Off

Disk
Cache
On

Panel A Panel B

Disk
Cache
Off

Panel C Panel D

Table 4.1: Configuration settings for panels A-D on short-term tests.

4.1.2 Main Results
Results of panels running short-term tests can be seen in tables 4.2, 4.3, 4.4 and Table 4.5,
please note unit differences between Data Written (GB) and Data Read (MB).

The data point of table access reads denotes percentage of total memory amount read from
the FAT table. This is also the case for table access writes. Data written and read is the sum

37

4. Results

of data sent by write and read commands over the bus to the SD card, calculated by the C#
application described in Section 3.2 using the data in all individual log files saved by the pan-
els during test execution. The write amplification factor was calculated by dividing the data
written with the theoretical minimum amount needed to write the files to memory. Total
data written from the test application in these tests was 10 GB respectively and was therefore
deemed as being the minimum theoretical amount needed to write the content of each test
to memory. The execution time was calculated by the C++ application executing all tests.

Test 1 - 10 KB
Panel ID Data

Written
(GB)

Data
Read
(MB)

Table
Access
Reads
(%)

Table
Access
Writes
(%)

Write
ampli-
fication
factor

Execution
Time
(H)

Panel A 87.3 120 0 86 8.70 23.25
Panel B 146.5 40960 0 43 14.65 126.35
Panel C 21.5 5 22 43 2.15 50.10
Panel D 23.5 4610 0 37 2.35 131.15

Table 4.2: 10 KB file size test results.

Test 2 - 100 KB
Panel ID Data

Written
(GB)

Data
Read
(MB)

Table
Access
Reads
(%)

Table
Access
Writes
(%)

Write
ampli-
fication
factor

Execution
Time
(H)

Panel A 20.6 16 1 50 2.06 3.75
Panel B 26.9 6963 0 36 2.69 20.58
Panel C 11.5 1 46 11 1.15 19.28
Panel D 11.7 462 0 10 1.17 28.13

Table 4.3: 100 KB file size test results.

4.1.3 Sequentiality
As described in Section 2.2.6, sequential writing patterns are important to decrease unneces-
sary garbage collection and therefore premature wear on flash memory. It is also important
to reduce execution time even on flash technology. Through analysis of test logs the aver-
age amount of sequential data that was written before a break appeared was calculated and
logged in Figure 4.6. As can be seen in Table 4.6, sequentiality varied vastly depending both
on file size and cache configuration.

38

4.2 Long-term tests

Test 3 - 1000 KB
Panel ID Data

Written
(GB)

Data
Read
(MB)

Table
Access
Reads
(%)

Table
Access
Writes
(%)

Write
ampli-
fication
factor

Execution
Time
(H)

Panel A 12.2 0 0 17 1.22 1.55
Panel B 12.2 737 0 12 1.22 1.71
Panel C 10.3 1 100 3 1.03 2.38
Panel D 10.2 47 3 2 1.02 3.88

Table 4.4: 1000 KB file size test results.

Test 4 - 10000 KB
Panel ID Data

Written
(GB)

Data
Read
(MB)

Table
Access
Reads
(%)

Table
Access
Writes
(%)

Write
ampli-
fication
factor

Execution
Time
(H)

Panel A 10.79 0.2 100 7 1.079 1.28
Panel B 10.23 65 0 1 1.023 1.78
Panel C 10.10 0.6 100 1 1.010 3.33
Panel D 10.03 5 23 0 1.003 1.69

Table 4.5: 10000 KB file size test results.

Panel ID / Test File Size 10 KB 100 KB 1 MB 10 MB
Panel A 86 KB 103 KB 76 KB 71 KB
Panel B 10 KB 18 KB 68 KB 572 KB
Panel C 21 KB 57 KB 64 KB 66 KB
Panel D 1 KB 6 KB 54 KB 557 KB

Table 4.6: Sequentiality results for short-term tests.

4.2 Long-term tests

4.2.1 Configuration
The cache configurations for the panels performing the long-term tests varied from those in
the short-term tests. Please see Table 4.7 for all panel configurations in the long-term tests.

4.2.2 Main Results
The results of the long-term test execution can be seen in Table 4.8. All data points were
calculated after each panel had finished its execution, meaning until an average total value

39

4. Results

90% full 0% full
File Cache On &
Disk Cache Off

Panel C Panel A

File Cache Off &
Disk Cache On

Panel D Panel B

Table 4.7: Configuration settings for panels A-D, long-term tests.

of 3000 block erase count was achieved and the remaining SD card lifetime then was to be
considered as 0 %.

Just as for the short-term tests the data points of data written and read were calculated by
using the previously explained C# application and all individual panel log files. The amount
of files written was logged by the C++ application that executed the tests on the panel. The
write amplification factor was calculated by multiplying the total number of files written
with the file size (75 MB). This value was considered as the lowest possible theoretical data
amount needed store all written files in memory. This value was then divided by the actual
written data amount, as seen in the first column, to finally gain the WAF value. Execution
time was constantly monitored by the test C++ application. Finally the average speed was
simply calculated by dividing the total written data amount by the total execution time.

Long-term tests
Panel ID Data

Written
(GB)

Data
Read
(MB)

Files
Written

Write
ampli-
fication
factor

Execution
Time
(Days)

Average
Speed
(MB/S)

Files
written
per hour

Panel A 9477.49 1160 122710 1.0301 39.5215 2.7755 129.4
Panel B 9601.71 1847 124233 1.0305 39.3153 2.8267 131.7
Panel C 8458.73 792 109447 1.0305 41.2181 2.3752 110.7
Panel D 8058.04 1991 104281 1.0303 39.3153 2.3722 110.6

Table 4.8: Results for the long-term tests.

4.2.3 Spare Block Usage
One of the data points gathered from the health information in Hard Disk Sentinel was the
spare block count. This value shows how many over-provisioned memory blocks, see Section
2.2.3, were available and not already in use by any internal mechanisms of the card. The more
spare blocks in use the lower this value would be. The initial spare block count for each card
was 102. See Table 4.9 for the average free spare block counts and Figure 4.1 for a plot of the
spare block count throughout the long-term test executions.

40

4.2 Long-term tests

Panel ID Average Spare
Block Count

Panel A 82.9130
Panel B 77.4783
Panel C 82.0435
Panel D 71.3913

Table 4.9: The average free spare block count for Panel A-D.

Figure 4.1: Spare block count for all panels during the long-term
tests.

4.2.4 Logical address usage for the SD bus

Because of the panel OS changes previously described in Section 3.2 the panels’ operating
system could log all traffic sent through the SD card bus. This traffic was then monitored
through individual panel log files. The C# application, as seen in A.2, deciphered these log
files and translated them to display what amount of data that was written to and from what
addresses. The translated data was then used in a Matlab script to create the plots seen in
Figure 4.2. These plots show the addresses used by the SD card bus in the context of linear
time for a 24 hours testing session. As can be seen there is a distinct difference between panels
A and C, where both SD cards were 90% full; and panels B and D that had SD cards which
were completely empty. The difference is clearly seen by noticing the amount of different
addresses used by the bus for the different panels. This is most easily seen by looking at Y-
axis values for the plots of panels A and C and then compare it to the same values in the plots
of panels B and D.

41

4. Results

Figure 4.2: Sequential plots for Panel A-D for a 24 hour testing ses-
sion.

4.2.5 Bad block counts
Throughout the long-term test executions the SD card bad block count can be used as a clear
indication of flash memory wear. This data point was expected to increase in all SD cards
when the expected lifetime threshold was approaching a value of zero. However after the
long-term test finished only the SD card in panel C had a single bad block. The remaining
cards in panel A, B and D had no bad blocks. The data retrieval of bad block count was
retrieved by using the third party software Hard Disk Sentinel.

42

Chapter 5

Discussion

5.1 Short-term tests

5.1.1 Write amplification factor
WAF as a result of file size
First thing of note when analysing the WAF of the short-term tests is that it significantly
decreases as file size grows. This can be attributed to the overhead associated with creating
a new file, since creating a new file requires the OS to not only allocate an available section
of memory, but also creates necessary metadata. With this information in hand it is fairly
evident that even smaller files would have a larger WAF for all panel configurations and larger
files would approach a WAF of 1. Therefore it is not the individual magnitude of the WAF
that is important, but rather the relative size to other panel configurations.

WAF as a result of caching configurations
For file sizes below 1000 KB configuration B performed the worst in terms of WAF. It is also
noteworthy that the same configuration also had the most data read from memory for all file
sizes by a factor greater than nine. Panel configuration A, which also had file caching enabled
and performed worst for file sizes above 1000 KB, also resulted in a higher WAF for all four
tests. But it appears that enabling file caching lowered the impact of the enabled disk cache
for smaller file sizes.

The panel configurations with the lowest WAF were panel C and D depending on file
size, but not significantly differing except for test 1, where file size was the smallest.

Panel B had the highest WAF for test 1, which upon examination of the log files was the
result of several repeated writes to the same address coupled with repeated writes to the FAT

43

5. Discussion

table. The reason for the repeated writes to the same address is not known, although it was
not observed in any other panel configuration.

5.1.2 Execution time
Although not the primary focus of the paper, execution time is an important aspect to con-
sider. A cache configuration with low WAF can be deemed infeasible if the execution time
is insufficient for the tasks required of the system.

For test 1 the lowest execution time was panel A, 23.25 hours. This was, however, not the
most effective in terms of WAF. Although, if faster execution times are required than the
ones provided by different panel configurations B or C, panel configuration A could be a
reasonable option. Panel D performed consistently worst, except for test 4 where both panel
B and A performed worse. This indicates that for smaller file sizes up to 1 MB both file and
disk caching used individually improve I/O performance. However, this trend seems to shift
for larger file sizes and it can therefore not be determined that this applies for larger file sizes
as well.

Execution time was consistently faster for panel B than for panel D up until test 4, indi-
cating that the disk cache was responsible for improving I/O performance for smaller file
sizes. This is even more remarkable considering that the WAF for panel B for test 1 was 7
times larger than that of panel D. A reason for the improved execution time coupled with the
high WAF for panel A could be write acceleration. As described in Section 2.3.1 disk caches
can use write acceleration to improve I/O performance, which would explain the fast exe-
cution times despite a higher data amount being written. Using this configuration for small
repeated writes would undeniably cause unnecessary wear on the SD card, however as seen
for both larger file sizes in the short-term tests as well as in the long-term tests, the write
amplification is significantly lower for larger sizes.

5.1.3 Data read
In all four tests panel B read a significant amount of data from disk which decreased as file
size grew. This may be the result of the file cache needing a large amount of metadata to
correctly write files from cache to disk, but the lack of disk cache meant that data needed
to be read from disk every time. Panel configuration D corroborates this hypothesis, since
disabling both file and disk cache causes significantly less data to be read than file cache on
and disk cache off (panel B).

5.1.4 Table access reads & writes
Table access reads and writes measure how many of the reads and writes were done to the
FAT table on disk as a percentage of all reads and writes. As can be seen in all four short-term
tests for only panel configuration C was there a significant percentage of reads done from the
file allocation table. And in all tests the data read from panel C was almost non-existent. This

44

5.2 Long-term tests

may be due to the fact that the file allocation table did not need updating as frequently since
a panel with file cache enabled sends fewer write commands in total.

5.1.5 Sequentiality
As seen in Table 4.6, the sequentiality of an application can vary greatly. Generally, the table
shows a correlation between large file sizes and a greater sequentiality in the program, with
the exception of panel A. The reason for this may be the increased writing speed and amount
caused by enabling file and disk cache that facilitates the need to make frequent updates to
the file allocation table.

5.1.6 Limitations & unknowns
These short-term tests analysed cache configurations for only four different file sizes. As can
be seen in the execution time for panel B for the different file sizes, the disk cache seems
to have an adverse effect on performance for the 10 and 100 KB tests. However, for sizes
of 1000 and 10000 KB these effects diminish relative to different configurations. Without
further increasing file size this trend can not be asserted for larger file sizes.

The commands logged were because of time constraints limited to commands strictly re-
lated to writing or reading data. Because of this certain nuances of the interaction between
panel and SD-card may have been lost.

Utilising different writing patterns might also have revealed situations where certain un-
expected configurations would perform better. However, because of time constraints only
one writing pattern was examined.

5.2 Long-term tests

5.2.1 WAF
As seen in Table 4.8, the monitored WAF hardly differed between the different configura-
tions. This is most likely due to the small amount of overhead that exists relative to the file
sizes, which would result in WAF’s close to 1 with only minute variations. However, due to
other factors discussed below there may be an actual WAF significantly larger than the one
recorded.

5.2.2 Over-provisioning usage for card space
As can be seen in Table 4.9 and in Figure 4.1 there seems to exist a correlation between a panel
only having disk cache on and a higher usage of spare blocks. The average value for panel B,
77.4783, and panel D, 71.3913, shows that there exists a roughly 5% and 11% increase of
spare block usage for panel B and D compared to the usage in panel A and C. This increase
in spare block usage suggests that panel B and D have a harder working FTL to achieve wear

45

5. Discussion

leveling.

Without the file cache the panel OS cannot use any RAM memory to store file data before
being sent in bundles to the SD card. Therefore it is likely that the OS sometimes requires
the FTL of the SD card to temporarily store this file data in the over-provisioned spare blocks
while certain reorganizing operations are performed, which would explain the difference in
spare block usage

Interestingly there also seems to be a correlation between a near capacity SD card mem-
ory and a higher usage of spare blocks, especially for panels with only the disk cache active.
The fuller SD card in panel C only have an increase of 1% in spare block usage compared to
panel A whilst panel D have an increase of 6% in usage compared to panel B. This change is
likely caused by panel C having file cache activated and therefore the panel can use the OS
RAM memory file cache to store vital data. Meanwhile panel D cannot and must use the SD
card spare blocks for the same data.

Eventually one may conclude that a more filled SD card will require the internal working
wear leveling algorithms in the card FTL to work harder to alter the 10% free memory blocks
to even out the wear. Unfortunately this isn’t visible in the SD bus requests, since the FTL
may change the addresses for wear leveling and hence we see the same logical addresses con-
tinuously used as can be seen in Figure 4.2. However, in reality the FTL is likely cycling
through all memory blocks, continuously shifting what 10% memory blocks are to be con-
sidered free, evening out the wear in the process. Although this alteration is not explicitly
visible the higher spare block usage of panel D implies that this wear leveling process is hap-
pening. Also, if the FTL wouldn’t cycle through different blocks, it is highly likely that panel
C and D would break long before A or B, since the available blocks would be worn out. Since
this leveling feature requires significantly more additional data to be internally transferred
the OS in panel D, the FTL is required to store this data directly in the SD card spare blocks.
Meanwhile the OS file cache can temporarily store the majority of this additional data which
is why the difference between spare block usage is significantly smaller between panel A and
C than between C and D.

5.2.3 Execution time & Average Speed

As can be seen in Table 4.8, the execution time is not a measure of time to accomplish a task,
but rather a measure of how fast the panel broke. To gauge the writing speed of the individual
configurations files written per hour is the important field. This field shows that there were
significant differences in writing speed between panels A and B; and C and D. This can also
be gauged in the "Average speed" field, since the WAF is low enough to not affect the numbers
significantly. From these fields it could be determined that operating a panel near capacity
reduces writing speed by circa 15 %, most likely due to the internal shuffling of data that
regularly needs to be performed. It could also be determined that, for these specific file sizes,
alternating between file cache on and disk cache off to file cache off and disk cache on did
not meaningfully affect the writing speed of the program.

46

5.2 Long-term tests

5.2.4 Correlation between theoretical and actual SD
card wear

As described in Section 4.2.5 the amount of bad blocks was surprisingly low as the long-term
tests were conducted. Retrieving a single bad block in only one out of four SD cards was
indeed unexpected especially considering, as previously described, that the specific SD cards
used in the long-term tests have a MLC cell encoding with a known default erase cycle life-
time of only 3000. Since the long-term tests executed until this threshold was hit, and then
the theoretical default lifetime was reached, one could consider the very low bad block count
unreliable.

Because of the very low values of bad blocks one may with high probability conclude that
the SD cards have not experienced any advanced wear. One can at least conclude that the
actual card wear is far from close to correlate with the achieved theoretical default lifetime of
0%. The reasons why there exists such a gap between the theoretical and actual SD card wear
are multiple. Firstly, the most obvious reason is that the placed 3000 lifetime erase cycles is a
default value given by the producers of the SD card. To uphold any warranties placed on the
card the producers are likely to set a default erase cycle value on the lower end of the actual
spectrum that exists in practicality. Meaning that to assure that the card can handle a certain
placed amount of cycles a lower value is chosen accordingly.

A second reason is that the block erase cycle data point retrieved from Hard Disk Sentinel
software, which determined the end point of the long-term tests, was an average value. This
resulted in all long-term tests terminating when the memory blocks of the SD card had expe-
rienced 3000 erase cycles on average. Hence, in reality, many of the blocks are likely to have
endured less erase cycles than the default value of 3000.

In addition to these two main reasons the relatively low transfer speed existing in the long-
term tests yields a less hard working SD card. This together with the well designed physical
SD card slot in the HMI panels used in all tests eventually lead to a lower average temperature
of the SD cards. Since a lower SD card temperature conducts a lower strain of the isolating
layers in the floating gate transistors the memory blocks can handle a higher number of erase
cycles during their lifetime.

In the end, the results consisting of very low bad block counts are not as unexpected as one
might initially think. Eventually running the tests just until the default threshold of erase cy-
cles is reached is not enough to experience any advanced wear of the SD cards. In the context
of a longer existing time frame one would, by letting the long-term tests continue to execute,
likely experience an exponential increase of bad blocks after a certain amount of time.

5.2.5 Limitations & unknowns
Regarding the long-term tests, as a result of limited time only one file size was possible to
test. As can be seen in the short term tests, file size can have a large impact on outcome. The
tests were also performed on one type of platform for a specific use and operating system.
Therefore it is not possible to claim that these findings necessarily hold true for different

47

5. Discussion

platforms or operating systems. Because of these two factors the long term tests are limited
in applicability.

Due to the limited time frame the long-term tests were only executed until each SD card
would reach an average memory block erase count value of 3000, the default NAND flash
endurance of the card. Because of this, the long-term tests only executed until the default
life-time of the SD-card was reached and the card is to be consider consumed. However, as
the results show, the number of bad memory blocks for the cards are very nearly non-existent,
meaning that the cards are likely far from consumed in practice. Therefore the results of the
long-term tests are not possible to use for yielding any results in deciding what test configu-
ration would generate a non-theoretically consumed SD-card.

5.3 Optimal panel configurations for differ-
ent practices

Considering the industrial context of HMI panels any small changes in performance may
result in large and expensive differences. There are many different aspects to consider when
choosing an optimal panel configuration and the specific context of the HMI panel may
greatly alter what traits are considered optimal. The optimal values of transfer speed, amount
of data written, WAF value and memory capacity are all important features to decide for an
optimal panel configuration. Therefore, there unfortunately exists no single optimal panel
configuration.

However, considering the results yielded from this master thesis testing one could map im-
portant panel traits with a specific panel configuration. In the context of high stability and
reliability a panel configuration of having no cache enabled or only file cache enabled would
be a better choice. This configuration lowers the WAF value but scarifies transfer speed as
can be seen for panel C and D in the tables 4.2, 4.3, 4.4 and 4.5. If possible one should also
consider only writing files of substantial size, 1000 kilobytes or bigger, since this also lowers
the WAF values. However, as seen in the previously referred tables, increasing the file sizes
lowers the importance of panel configuration as the difference between WAF values decreases
for tests with bigger file sizes. For executions with big file sizes one might instead choose the
configurations of panel A and B, sacrificing a small decrease in WAF value but increasing the
data transfer speed significantly.

If, by contrast, data transfer speed would be considered more important than low WAF val-
ues then the configuration of panel A, meaning having both caches enabled, would likely be
the best fit. This configuration yields a low execution time for the tests regardless of file size.
However, one must be aware that this configuration increases the WAF values quite signifi-
cantly for executions using small file sizes as seen in Table 4.2. For the purpose of increasing
data transfer speed additionally the memory used must not be cluttered by great amounts
of unnecessary data. Instead, as can be seen in Table 4.8, there is an increase in write speed
for panel A compared to panel B and also panel C compared to panel D. Therefore, by al-

48

5.4 Research questions

lowing an execution to use the whole capacity of the used memory the transfer speed will be
increased further.

In the context of everyday usage, where a middle ground of low WAF values together with
reasonable transfer speeds is needed, enabling both caches as in panel A is likely the best
choice. As seen in the tables of Section 4.1.2 the configuration of panel A yields low WAF
values whilst it simultaneously experiences good transfer speeds.

5.4 Research questions
Thanks to the results of the short-term and long-term tests all three research questions could
be answered. Although the scope of this thesis is limited the results yielded enough informa-
tion to also additionally discuss topics such as over-provisioning and the correlation between
theoretical and actual SD card wear. Both are subjects that were not perceived as possible to
answer before the thesis was finished.

How does file cache and disk cache effect flash wear in embedded
systems?
The direct impact of different cache configurations could most easily be seen in the difference
of WAF values and data transaction speed. These two reference points also differ depending
on the explicit file size that was used in the specific test. Lower file sizes having the disk
cache enabled resulted in a higher WAF value, especially when only the disk cache was en-
abled. When considering larger file sizes the explicit WAF value difference between the cache
configurations diminished.

How does different levels of free memory effect IO performance
and flash wear?
As discussed in subsection 5.2.3, IO performance is negatively impacted by operating at near
capacity, likely due to internal shuffling of blocks to achieve wear leveling. Therefore it is
in the users best interest, regardless of use case, to have as much free memory as possible to
improve I/O performance.

What is the optimal panel configurations for Beijer Electronics?
As previously stated different use cases will have different optimal configurations. It is there-
fore difficult to accurately state which configuration would be best for Beijer Electronics and
their customers without first examining their writing patterns. It would be possible to sell
different versions of the HMI panels with different emphasis, either on speed, durability, or
a middle ground.

49

5. Discussion

5.5 Further Work
To expand the knowledge of how caching effects flash wear multiple different operating sys-
tems with different implementations of these tools are affected. Furthermore, examining
the effects under different operating conditions might yield different results. Doing random
writes, multiple sequential read to the same file, and varying file sizes might all have some
effect on wear. Writing patterns closely resembling actual writing patterns will be more rel-
evant to study since the result would be easily applicable.

Further examining additional configurations, as well as their effects when combined with
each other. Closely examining these effects might yield unexpected results. A closer exami-
nation of the FTL could also give researchers a better understanding of what happens with
data after it arrives at the destination memory. Conducting a further study of sequentiality
patterns may be important in discovering faster and more durable flash memories. An ex-
panded view of the patterns would provide further insight in the inner workings of how flash
memories and file systems cooperate. Additionally examining a broader range of commands
sent between to panels and their SD-cards may give further clues into the exact behaviour of
the panels.

Finally, continuously monitoring panels performing long-term test until they were not able
to function would give a deeper insight into how good the underlying FTL actually is at wear
leveling. Currently we suspect that shifting blocks between dies for panels near capacity is
something that the FTL is capable of, though the precise cost of this was unable to be deter-
mined given time constraints.

50

Chapter 6

Conclusion

In conclusion, during the experiments conducted it was gathered that file cache and disk
cache effect the WAF, especially for small file sizes. It was found that enabling disk cache
had the most negative impact on WAF, but that the impact lessened as file sizes grew. It was
also found that enabling file cache alongside disk cache helped stave the negative effect of
disk cache until file sizes grew beyond 1000 KB. The configuration resulting in the lowest
WAF was the configuration with only file cache enabled or both forms of caches disabled.
Disabling all forms of cache however did result in the slowest write speed for file sizes of
1000 KB and below.

Regarding sequentiality it was found that file and disk cache enabled resulted in the most
sequential writing pattern, up until file sizes of 1000 KB. For larger file sizes only enabling
disk cache or disabling both forms of cache resulted in the most sequential program.

It was also found that writing to panels close to full memory capacity slowed down execu-
tion time significantly. This behavior is believed to be the result of necessary shuffling being
performed by the FTL in the background, which would theoretically increase the WAF over
the measured amount.

We found that SD cards underestimate their flash cell durability to the extent that they may
continue to operate far beyond their stated lifetime.

Lastly it is important to note that these findings are limited in their scope and platform spe-
cific research should be done before accepting these findings as true for different platforms,
as different platforms have their own implementations of these systems.

51

6. Conclusion

52

References

[1] Tom. Coughlin. A timeline for flash memory history [the art of storage]. IEEE Consumer
Electronics Magazine, Consumer Electronics Magazine, IEEE, IEEE Consumer Electron. Mag,
6(1):126 – 133, 2017.

[2] Richter. Detlev. Flash Memories - Economic Principles of Performance, Cost and Reliability
Optimization. Springer, 2013.

[3] Boling Douglas. Programming Microsoft Windows CE .NET. Microsoft Press, 2003.

[4] ATP Electronics. How wear leveling increases ssd lifetime. https://www.atpinc.
com/blog/how-SSD-wear-leveling-works, 2020. Accessed: 20.02.2023.

[5] Beijer Electronics. Hmi panels - what is hmi? https://www.beijerelectronics.
com/en/Products/Operator___panels. Accessed: 12.02.2023.

[6] Beijer Electronics. Our company. https://www.beijerelectronics.com/en/
About___us/Our___company. Accessed: 10.02.2023.

[7] Beijer Electronics. X2 pro 7. https://www.beijerelectronics.com/en/
Products/Operator___panels/X2___pro/X2___pro___7___with___2___
Ethernet. Accessed: 14.02.2023.

[8] Bez. Roberto et al. Introduction to flash memory. Proceedings of the IEEE, 91(4), 2003.

[9] Boukhobza. Jalil et al. A cache management strategy to replace wear leveling techniques
for embedded flash memory. In 2011 International Symposium on Performance Evaluation
of Computer & Telecommunication Systems, pages 1–8, 2011.

[10] Boukhobza. Jalil et al. Characterization of oltp i/o workloads for dimensioning embed-
ded write cache for flash memories: A case study. 2011.

[11] Grattan. Nick et al. Windows CE 3.0: Application Programming. Prentice Hall PTR, 2000.

53

https://www.atpinc.com/blog/how-SSD-wear-leveling-works
https://www.atpinc.com/blog/how-SSD-wear-leveling-works
https://www.beijerelectronics.com/en/Products/Operator___panels
https://www.beijerelectronics.com/en/Products/Operator___panels
https://www.beijerelectronics.com/en/About___us/Our___company
https://www.beijerelectronics.com/en/About___us/Our___company
https://www.beijerelectronics.com/en/Products/Operator___panels/X2___pro/X2___pro___7___with___2___Ethernet
https://www.beijerelectronics.com/en/Products/Operator___panels/X2___pro/X2___pro___7___with___2___Ethernet
https://www.beijerelectronics.com/en/Products/Operator___panels/X2___pro/X2___pro___7___with___2___Ethernet

REFERENCES

[12] Jeremic. Nikolaus et al. Operating system support for dynamic over-provisioning of
solid state drives. In Proceedings of the ACM Symposium on Applied Computing, number
27th Annual ACM Symposium on Applied Computing, SAC 2012, pages 1753–1758 –
1758, 2012.

[13] Jian. Hu et al. Pud-lru: An erase-efficient write buffer management algorithm for flash
memory ssd. 2010 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on, pages 69 –
78, 2010.

[14] Malueg. Michael et al. Transaction-safe fat file system, US patent, February, 2007.

[15] Meza. Justin et al. A large-scale study of flash memory failures in the field. 43(1):177–190,
jun 2015.

[16] Micheloni. Rino et al. Inside NAND Flash Memories. Springer Netherlands, 2010.

[17] Pavan. Paolo et al. Flash memory cells- an overview. Proceeding of the IEEE, proc. IEEE,
85(8):1248–1271, 1997.

[18] Pavlov. Stanislav et al. Windows® Embedded CE 6.0 Fundamentals. Microsoft Press, 2008.

[19] R. Haas et al. The fundamental limit of flash random write performance: Understand-
ing, analysis and performance modelling, 2010.

[20] Rai. Sadhana et al. Frontiers of Quality Electronic Design (QED) [Elektronisk resurs] : AI, IoT
and Hardware Security. Springer International Publishing, 2023.

[21] Stouffer. Keith et al. Guide to industrial control systems (ics) security. NIST Special
Publication, Vol 800(82), 2015.

[22] Wang. Li et al. Write amplification trade-off analysis in hybrid mapping solid state
drives. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Indus-
trial Electronics and Applications (ICIEA), 2020 15th IEEE Conference on, pages 1896 – 1901,
2020.

[23] Wang. Shengzhe et al. Learnedftl: A learning-based page-level ftl for improving random
reads in flash-based ssds. 2023.

[24] Rabaey. Jan. Digital integrated circuits : a design perspective. Upper Saddle River, N.J, 2003.

[25] Microsoft. Texfat overview, 2008. available at https://learn.microsoft.com/
en-us/previous-versions/cc907929(v=msdn.10).

[26] Microsoft. File caching. 2021. Available at: https://learn.microsoft.com/
en-us/windows/win32/fileio/file-caching, Accessed: 2023-01-26.

[27] Yadhu N. Gopalan Sachin Patel. Transaction safe fat file system improvements, US
patent, September, 2011.

54

https://learn.microsoft.com/en-us/previous-versions/cc907929(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/cc907929(v=msdn.10)
https://learn.microsoft.com/en-us/windows/win32/fileio/file-caching
https://learn.microsoft.com/en-us/windows/win32/fileio/file-caching

REFERENCES

[28] STMicroelectronics. Crc overview, 2022. available at
https://www.st.com/resource/en/application_note/
an5507-cyclic-redundancy-check-in-stm32h7-series-flash-memory-interface-stmicroelectronics.
pdf.

[29] Cactus technologies. Ctwp013: Wear leveling - static, dynamic and global,
2019. Available at: "https://www.cactus-tech.com/wp-content/uploads/
2019/03/Wear-Leveling-Static-Dynamic-Global.pdf. Accessed: 31.01.2023.

55

https://www.st.com/resource/en/application_note/an5507-cyclic-redundancy-check-in-stm32h7-series-flash-memory-interface-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an5507-cyclic-redundancy-check-in-stm32h7-series-flash-memory-interface-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an5507-cyclic-redundancy-check-in-stm32h7-series-flash-memory-interface-stmicroelectronics.pdf
"https://www.cactus-tech.com/wp-content/uploads/2019/03/Wear-Leveling-Static-Dynamic-Global.pdf
"https://www.cactus-tech.com/wp-content/uploads/2019/03/Wear-Leveling-Static-Dynamic-Global.pdf

REFERENCES

56

Appendices

57

Appendix A

Figures

Figure A.1: A C++ application running on a HMI panel developed
to write a number of files with specific size to an inserted SD card.

59

A. Figures

Figure A.2: A C# application developed to analyze created log files
from executed HMI panel tests. Used to calculate the total number
of read and written bytes. Can also display every unique memory
block address with the associated total number of bytes read and
written.

60

	Introduction
	Background
	Beijer Electronics AB
	Human-Machine Interface
	Problem Description
	Thesis Goals
	Limitations and Scope
	Research questions

	Flash Memory
	The Floating Gate Transistor
	NAND & NOR flash
	Erase-Before-Write Architecture for NAND memory arrays
	Reading from a NAND array
	Single-Level Cell (SLC) & Multi-Level Cell (MLC)
	Flash Translation Layer

	Windows CE
	Windows CE Storage Stack

	Previous research & methodology
	Previous research
	Methods
	HMI Panels at Beijer Electronics
	HMI OS
	Synopsis

	Test Configurations
	Short-term tests
	Long-term tests

	Results
	Short term tests
	Panel Configuration
	Main Results
	Sequentiality

	Long-term tests
	Configuration
	Main Results
	Spare Block Usage
	Logical address usage for the SD bus
	Bad block counts

	Discussion
	Short-term tests
	Write amplification factor
	Execution time
	Data read
	Table access reads & writes
	Sequentiality
	Limitations & unknowns

	Long-term tests
	WAF
	Over-provisioning usage for card space
	Execution time & Average Speed
	Correlation between theoretical and actual SD card wear
	Limitations & unknowns

	Optimal panel configurations for different practices
	Research questions
	Further Work

	Conclusion
	References
	Appendix Figures

