
Exploring Ethernet Switching Architectures for
Area-Efficient Low-End Switches

JON SWEDBERG AND FELIX GHOSH
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

JO
N

 SW
ED

B
ER

G
 A

N
D

 FELIX
 G

H
O

SH
Exploring Ethernet Sw

itching A
rchitectures for A

rea-Effi
cient Low

-End Sw
itches

LU
N

D
 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-920
http://www.eit.lth.se

Exploring Ethernet Switching Architectures for
Area-Efficient Low-End Switches

Jon Swedberg and Felix Ghosh

Department of Electrical and Information Technology
Lund University

Packet Architects AB

Supervisor: Liang Lui

Examiner: Erik Larsson

June 3, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund
All figures were made by the authors

Abstract

The aim of this thesis project has been to develop an architecture for L2 ether-
net switches that would be optimized for silicon area, targeting smaller low-end
switches. A selection was made of three different switching architectures, which
were compared and analyzed to explore the benefits and drawbacks of different
approaches. From these, one architecture called Shared Memory Linked-List was
selected that served as a base to develop a new area-efficient architecture. This ar-
chitecture was implemented in the form of two different port configurations using
MyHDL to generate Verilog code, which was used for behavioral simulation. The
RTL code was synthesized into both an FPGA and ASIC implementation which
was compared to a contemporary alternative in the form of an equivalent ethernet
switch generated by the FlexSwitch tool suite developed by Packet Architects AB.
The four-port configuration of the thesis implementation showed significant area
reductions in the buffer management subsystems for both the FPGA and ASIC
versions, while the ten-port configuration showed a similar reduction in the ASIC
version, while the FPGA implementation decreased the usage of certain hardware
components while others increased. An analysis of the architecture, its benefits,
and drawbacks was performed and potential future improvements were suggested.

Keywords: Ethernet Switch, Architecture, Silicon Area, Area Optimization,
ASIC, FPGA

i

ii

Popular Science Summary

Ethernet switches are electronic devices that serve a very important role in the
modern internet. These devices could be seen as some sort of traffic controller
that takes data that is being sent over the internet and ensures that it continues
to travel toward its correct destination. Ethernet switches can be found in large
data centers, office buildings, homes, and even inside other machines. When you
are sending data over the internet in any form, be it sending an e-mail, or uploading
a photo to a website, that information will travel from your computer through a
long series of switches that forward it before it finally reaches its destination.

Another thing that is interesting about ethernet switches is the fact that they
come in all shapes and sizes. The switches that you might have seen in a data
center are very large and contain hundreds or thousands of ports connected to
ethernet cables, while the ones you see in an office or home are much smaller and
could contain less than ten ports. The fact that these devices vary so greatly
in size, means that the underlying design and architecture of how the switch is
constructed becomes quite important. The way in which you build a data center
switch that is the size of a large closet, might not be an ideal way to build one that
is the size of a DVD case. This is the case since even though both of these machines
are performing the same tasks, the way in which they do it might be completely
different. A very large switch must be built to be as fast as possible, while a smaller
one might have to consume less power or be as small as possible. There exists
plenty of research regarding how one should build very large switches effectively,
but there seems to be an apparent knowledge gap regarding architectures that are
well suited for smaller switches. This is the gap that this thesis work attempted
to start filling.

The thesis goal was to produce an efficient architecture for constructing smaller
"low-end" ethernet switches. This architecture was constructed to minimize the
total area of the switch, since for a low-end switch, making it smaller can be
deemed more important than making it faster. This was done by selecting and
comparing different existing architectures so that their respective benefits and
drawbacks could be studied. These architectures were in some ways combined
with each other as well as with some ideas of our own in order to produce the final
architecture. Finally, the architecture was actually built. In order to measure its
"area-efficiency", its size was compared against a contemporary alternative in the
form of ethernet switches produced by the company Packet Architects AB. The

iii

results showed that the thesis architecture enabled significant area reductions for
certain parts of the switch, but also that this architecture does not seem to be well
suited for larger switches.

iv

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Project scope and methodology . 2
1.3 Project target . 3

2 Theory 5
2.1 Layer 2 ethernet switches . 5
2.2 IC technology . 9
2.3 Design tools and measurements . 11

3 Design and implementation 15
3.1 Design . 15
3.2 Selected architectures . 17
3.3 Final architecture . 24

4 Result and analysis 33
4.1 Total size of buffer management modules 33
4.2 Implementation results . 34
4.3 Result analysis . 36
4.4 Architecture analysis . 38

5 Future work and conclusions 41
5.1 Future work and improvements . 41
5.2 Conclusion . 43

References 45

v

vi

List of Figures

2.1 A look at the inside of an ethernet packet. 5
2.2 A conceptual overview of an ethernet switch. 7
2.3 An illustration of how the silicon area of the design affects the die

yield, given the same three defective spots on the wafer. 10
2.4 An overview of the IC design flow. 12

3.1 Dedicated vs shared memories. 16
3.2 Overview of a cut-through switch, where a packet starts exiting the

switch before it has fully entered it. 18
3.3 A gap in the data in the main memory. 21
3.4 Memory structure, with one data memory and one link memory. . . . 23
3.5 An overview of the final thesis architecture. 25
3.6 An overview of the different memories that reside in the buffer-manager

module. 27

4.1 Number of FPGA LUTs used vs. configuration 35
4.2 Number of FPGA flip flops used vs. configuration 35
4.3 Ram blocks for each configuration 35
4.4 Gate equivalents generated by Yosys for each configuration. 36
4.5 Flip flops generated by Yosys for each configuration. 36
4.6 Number of bits of memory each configuration use. 37
4.7 The total area of the memories in μm2 for each configuration. 37

vii

viii

List of Tables

4.1 Vivado measurements of the size of the buffer management mod-
ules of the FPGA implementations in relation to the total size of the
FlexSwitch switches. 33

4.2 Yosys measurements of the size of the buffer management modules of
the ASIC implementation in relation to the total size of the FlexSwitch
switches. 33

4.3 Memory measurements of the size of the buffer management modules
in relation to the total size of the FlexSwitch switches. The mem-
ory bits are the same for both the FPGA and ASIC implementations,
however, the memory area only represents the ASIC implementation. 34

4.4 Measurements obtained from Vivado for four and ten ports respectively. 34
4.5 Measurements obtained from Vivado for the different maximum delay

in nanoseconds of the critical paths for the different clock combina-
tions of the design. 35

4.6 Measurements obtained from Yosys for four and ten-ports respectively.
(Flip-flops are included in the total gate count). 36

4.7 Memory measurements in bits and in silicon area. 36

ix

x

Chapter 1
Introduction

1.1 Background

Ethernet switches are an integral part of networking infrastructure that serve a
variety of roles in a network. Most commonly they are found at the edges of the
network, connecting devices to an access point. Alternatively, they can be found
deeper in a network, connecting other switches that reside at the edges. The
importance of their role in network communication can be seen reflected in their
market demand, which has been observed to be increasing [1].

Different applications for switches also produce different requirements for the
devices themselves. Large-scale switches with Tbit speeds and hundreds or thou-
sands of ports are typically found in large data centers, while smaller switches in
the ranges of tens or fewer ports, with Gbit/Mbit speeds, can be found in small of-
fices, homes, or embedded constructions such as cars. This means that there exists
a very wide variety of ethernet switches that all come with different requirements
for their production.

One way of meeting the demand for such a broad spectrum of product spec-
ifications is to use IP-core generators, systems that are capable of generating IC
designs for a customized ethernet switch based on user-specified requirements.
This approach allows one to construct a design in a relatively short time com-
pared to designing the switch from scratch every time. However, constructing
such a system is not a trivial task.

Packet Architects AB is a company based in Lund, Sweden, which has devel-
oped such a tool suite, called FlexSwitch. This tool allows them to write packet
processing functionality in a high-level language which is synthesized down to RTL
code, which can then be used to implement packet processing hardware such as
switches, and routers for both FPGA and ASIC technologies. In implementing
this system, they constructed an architecture for their switches that would be
well suited for covering a broad range of specifications, and able to deliver high-
performance switches with up to Tbit/s bandwidth.

However, one architecture will never be able to cover the demands of every
specification. An architecture that is built to facilitate high performance, will do so
at the expense of other factors such as area and power consumption. These factors
can be tremendously important for switches at the lower end of the spectrum,
where performance requirements can be relatively lax. Thus they identified a

1

2 Introduction

problem in that the FlexSwitch tool suite currently does not generate designs that
are area-efficient for smaller low-end switches.

To try and rectify this problem, they reviewed the current literature regarding
ethernet switch architectures. They found that there exists research in the areas of
ethernet switch architectures as well as optimizations for area efficiency and power
consumption, focusing on larger-scale systems. An example of this is [2], where a
switch architecture is proposed for use in data centers that yielded reductions in
cost, power consumption, and area. Another example can be found in [3]. Here
the authors present an architecture that is scalable for larger systems with a design
based on using a network on chip (NoC).

However, there exists an apparent gap in the scientific literature regarding re-
search on ethernet switch architectures for smaller, "low-end" switches. Questions
regarding which architectures are well suited for smaller switches, how these archi-
tectures affect area and performance, as well as how these architectures scale, are
integral when designing an IP-core generator such as FlexSwitch. This master the-
sis aims to begin answering some of these questions by exploring different ethernet
switch architectures to produce an area-efficient architecture that is well-suited for
low-end switches.

1.2 Project scope and methodology

All ethernet switches manage data in the form of so-called packets, which are
chunks of serial data that travel into the switch through one of its ports and
exists through another port. On a conceptual level, an ethernet switch can be
divided into two parts. The first part is responsible for managing the processing
of packets, which includes modification of packet data as well as deciding which
ports packets should be sent to. The other part consists of modules that are
responsible for intermediate storage of the packet data, finding a suitable data
path for the packet through the switch, as well as deciding when to drop packets
in case of overload. These two parts can be named Packet Processing and Buffer
Management respectively and each comes with its own architectural challenges.

Presently, the FlexSwitch tool suite is developed to facilitate high perfor-
mance and throughput of packets, and its architecture reflects this. However,
given the relaxed performance requirements for a low-end switch, certain architec-
tural changes may yield a more area-efficient design. The FlexSwitch architecture
has a highly advanced packet processing unit, which consists of two modules IPP
(Ingress Packet Processing) and EPP (Egress Packet Processing) which have the
capabilities to perform the address lookups as well as to modify the packet for
more advanced forwarding using technologies such as VLAN. This system is highly
complex as it is developed to be configurable to be able to meet high performance
requirements. Given this high complexity, this thesis limited its scope to devel-
oping architectural improvements for the second part of the switch, namely the
buffer management. The storage and movement of data inside the switch contains
many different architectural decisions that must be made with due consideration
paid to the performance requirements of the device.

Thusly, in testing and simulation, the real Packet Processing modules were

Introduction 3

substituted for dummy modules that provide the basic address lookup functional-
ity that is required for the switch to operate, but will not have any of the more
advanced features that the FlexSwitch architecture implements. In order to ensure
the accuracy of the final measurements, all the modules that facilitate the Packet
Processing capabilities of both the thesis switch as well as FlexSwitch were sub-
tracted from the final values, so that solely the Buffer Manager of each respective
switch was compared.

The thesis work was conducted by first reviewing existing switching architec-
tures. Three different architectures were selected for further study and compar-
ison, which were used to determine how an area-efficient architecture could be
constructed. One of these was selected as a base and in some ways combined with
aspects of the other architectures as well as other design ideas, in order to produce
a final area-efficient architecture. This architecture was implemented using the
Hardware Descriptive Language (HDL) MyHDL, which was used to generate RTL
(Register Transfer Level) Verilog code that could be used to simulate the behavior
of the architecture as well as synthesize FPGA and ASIC implementations of the
switch. To measure the area efficiency of the final architecture, the implementa-
tion was compared to a design corresponding to the same switch specifications,
that was generated by FlexSwitch. This allowed for observations regarding how
the architecture holds up against a contemporary alternative for both FPGA and
ASIC technology using several different measurements.

1.3 Project target

This thesis produced an ethernet switch architecture for low-end switches. The
target of the project was to ensure that this architecture was optimized for area-
efficiency. A switch using this architecture was implemented in RTL code that
met the following requirements:

• The switch will operate solely on Layer 2.

• The port configuration will be 4 and 10 ports respectively.

• The data bus width will be 8 bits.

• The clock frequency will be 12.5 MHz.

• Scheduling will use a strict priority scheduler with 4 queues.

This RTL code was used to synthesize an implementation for a XILINX Field
Programmable Gate Array (FPGA) board as well as a synthesis for a 0.18 μm
Application Specific Integrated Circuit (ASIC) technology.

A "Mesh Test" was employed in order to verify the behavior switch. This
tested the switch during a "full overlap" scenario that consists of every port con-
tinuously sending simultaneous packets to a single destination port which rotates
with every packet. During this test, the switch had to be able to correctly identify
the destination port of every packet and forward it correctly without dropping a
single packet.

4 Introduction

Chapter 2
Theory

This chapter presents the prerequisite theory regarding ethernet switches, their
function, as well as their composition. After this, a brief introduction is given
regarding different IC technologies. Finally, the tools that were utilized during the
thesis are described.

2.1 Layer 2 ethernet switches

Traditionally, ethernet switches operate on layer 2 in the OSI-model, the so called
link layer. This means that the switch uses the protocol data unit of the second
layer, namely the Ethernet frame, to make decisions about where an incoming
packet should be forwarded. As seen in Figure 2.1, an ethernet frame contains the
MAC address of both the sender of the packet as well as the destination machine.
An ethernet switch uses these two addresses to deduce where the packet should
be sent.

Figure 2.1: A look at the inside of an ethernet packet.

5

6 Theory

2.1.1 Algorithmic overview

A switch contains a lookup table that matches MAC addresses to ports on the
switch. This lookup table uses Content-Addressable Memory (CAM)[6] which can
be viewed as a hardware equivalent of a software key-value map data structure.
That is, the memory can be searched using a key, which will return the data
corresponding to the key if it exists in the table. This table is filled by looking
at the source address of a packet and creating an entry mapping it to the port
that received it. This way the switch will gradually learn which ports lead to
which MAC addresses. This means that when a packet arrives, the destination
address can be used as a key to lookup which destination port the packet should
be sent to. If the destination address is not currently contained inside the table,
the switch has no way of knowing which port leads to the destination machine.
To ensure that the packet will arrive at its destination, the switch will then flood
the packet, meaning that it is sent to every port except the port that received it.
When a packet is received on a port, it will be placed in some kind of buffer while
its destination port is being determined. It will also need to be placed in a buffer
while it is waiting for its destination port to become available since a port can
only send out one packet at a time. The switch will also implement some kind of
prioritization regarding the order in which it sends out its packets. The method by
which this prioritization is determined varies and certain switches will even look
at the contents of the L3 protocol data unit inside the payload of the packet to
make this decision.

This process of learning which MAC addresses are associated with which ports,
and using the lookup table to forward packets to the correct ports constitute
the basic algorithm that L2 switches implement. Of course, there exist other
more advanced features that a switch may implement such as packet modification,
Virtual Local Area Networks (VLAN), and mirroring. However, these are of no
relevance to this thesis, since these features fall outside of the project specification.

2.1.2 Architectural introduction

Here follows a brief introduction to the different conceptual modules that make
up the inner workings of an ethernet switch. These modules, their implementa-
tion, as well as their interconnections and layout, constitute the architecture of a
switch. Thus, understanding the basic function that each module serves is vital
to understanding the switch as a whole.

The switch itself can be divided into an outer layer that handles receiving and
transmitting data using standard modules for ethernet communication, as well as
an interior layer called the Switching Core. When one refers to different ethernet
switch architectures, one is usually really referring to different architectures of the
switching core, since this is what performs the actual switching. This core can be
divided into five different conceptual modules as can be seen in Figure 2.2.

The switching core takes its input data from each ethernet port in the form of
a stream of serial bytes. For each byte in this stream there also exists one-bit of
data indicating if this byte is the first byte of the packet, one bit indicating if it
is the last byte of the packet, as well as one bit indicating if the byte is valid or
not. This data is sent into the first of the five modules named Serial to Parallel

Theory 7

SP

CBI
Packet processing

CBE

PS

Figure 2.2: A conceptual overview of an ethernet switch.

or simply SP. In general, it can be quite cumbersome to handle information as a
stream of serial data in hardware. It tends to be easier to handle larger chunks
of parallel data given the inherently parallel nature of integrated circuits. Thus,
the job of the first module is to convert the stream of serial data into parallel
chunks of a fixed size that are referred to as cells. Throughout the rest of the
switch, these cells will be used as the smallest primitive of packet data that is
sent around, until the packet is exiting the switching core on its way to its output
port, when the data will need to be converted back to a serial stream. The SP
module usually performs this conversion from serial to parallel data by using a
shift register that can output cells at regular timed intervals. These cells will then
be sent as input to the next module (along with data marking the first and last
cells as well as how many bytes are valid in each cell). Since data can arrive at
many ports simultaneously, one SP module is needed for each port.

Once a packet has been divided into cells, the next step is to perform the
address lookup in the Content Addressable Memory to determine which port the
packet should be sent to. However, since many packets of data can arrive at the
same time on different ports, and only one lookup can be performed at a time,
these cells must be placed into some kind of intermediate storage while they await
their destination. The next module in the switch is where this buffer is located,
and it is called Cell Buffer Ingress or CBI. This buffer memory can either be
one large memory that all ports share or each port can have its own dedicated
memory. If the memory is shared between the ports, then the SP modules will
need to use some sort of buffer for their cells, since only one cell can be written to
the memory at any given time. In this case, some sort of basic scheduler will also
be needed to ensure that all ports have equal access to the buffer memory.

The next module in the chain is the one called Packet Processing or PP.
This module can be split into two parts called Ingress Packet Processing (IPP)
and Egress Packet Processing (EPP) respectively. The IPP module is respon-

8 Theory

sible for performing the address lookup in the content addressable memory to
determine the destination port of the packet. IPP also determines which priority
level the packet has. This priority level is used by a scheduler to determine in
which order packets should be sent out of the switch. The EPP module is respon-
sible for modifying the packet in any way deemed necessary by the switch before
it is ready to be sent out to its destination port. Since the scope of this thesis
is limited to the buffer management of the switch, the details of exactly how or
why a packet should be modified, are not relevant to the reader. It is sufficient to
say that IPP determines the destination port and prioritization of the packet, and
EPP may or may not modify the packet itself before it is sent out. IPP and EPP
can be two distinctly separate modules in the switch that are placed in different
areas, or they can be directly connected and viewed as a single unit. In the first
case, there needs to exist some kind of intermediate buffer for the cells that are
output by IPP, where they can reside before being sent to EPP.

The cells output by EPP are then ready to be sent to their destination port.
However, since the destination port may already be busy outputting the data of
another packet, the cells must yet again be placed into a buffer. This is the role
of the fourth module, Cell Buffer Egress (CBE). This module holds packets
and forwards them to their destination port according to their prioritization level.
Just like the CBI module, CBE can exist as one singular buffer that is shared by
all the ports, or each port can have its own dedicated buffer.

The final module in the chain is Parallel to Serial (PS). This module takes
the cells from CBE and converts them back into a serial stream of bytes that are
sent out to the ethernet port. Consequently, the switch needs one of these modules
per port, just like the SP module.

This overview of the switch and how packet data flows through it represents
only a conceptual abstraction of an ethernet switch, not an actual implementation.
There exist many different architectures that vary from the system described here,
with different modules, layouts, and terminology.

One thing of particular import to understanding an ethernet switch architec-
ture is the fact that packets that enter the switch for the first time do not have a
corresponding entry in the CAM, which again means that they will be flooded to
all ports except the one through which they entered. This means that the output
bandwidth of the switch suddenly becomes larger than the input bandwidth since
more packets will leave the switch than enter it. The consequence of this is that
the memory buffers inside the switch will start to fill up with cells more quickly
than they can be sent out. Thus, the switch will potentially use all of its available
memory and become full. When this happens, incoming packets must be dropped.
Given this, it becomes impossible to design a switch that will always be able to
process every single packet sent to it, no matter the size of its internal memory.
The actual architecture of the switch will determine when, how, and why packets
must be dropped.

Theory 9

2.2 IC technology

When creating integrated circuits and systems that use them, there exist different
ways and methods that can be used to produce chips. These methods differ from
each other in significant ways and have a significant impact on factors such as
production cost, performance, and size of the actual IC. Understanding the dif-
ferences between these technologies is essential to understanding the importance
of the area of an IC-design. Therefore, the following sections describe two of the
most common technologies called ASIC and FPGA.

2.2.1 ASIC

Application Specific Integrated Circuits are chips that are custom made for a
specific application. The actual method of production for asics is highly complex
and comprised of hundreds of steps, but the general idea of the process can be
summarised as follows [4]:

• Silicon is extracted from sand and quartz and is purified into electrical grade
silicon.

• The silicon ingot is cut into thin disks called wafers.

• These wafers are placed under beams of ultraviolet light that travel through
several photolithographic masks.

• When this light hits the wafer it undergoes a chemical reaction that "etches"
the design onto the wafer.

• The design is printed onto the wafer this way as many times as it will fit.

• Finally the wafer is cut into several chips (or dies).

Modern chip production technologies allow for production of integrated circuits
where a single transistor has a width of several micrometers down to as little as
five nanometers [5].

Since ASIC chips are printed onto circular wafers, the actual size of the design
that is being manufactured is of crucial import, for several reasons. Firstly, given
a silicon wafer of a fixed size, the smaller the chip that is being produced is, the
more chips will be able to fit onto a single wafer. This means that the price
per chip will shrink if the total area of each die is lowered. Secondly, given the
rectangular shape of each die, there will always be a certain area of the circular
wafer along its edges where no chip will fit. This area will go to waste during
production. However, a smaller chip area means that the effective silicon area
that can be utilized on the wafer will increase since the smaller die resolution
leaves a shape that is closer to approximating a circle, as can be seen in Figure
2.3. Lastly, the photolithographic process that etches designs onto the wafer will
leave imperfections that can manifest themselves as faults in the dies. Given that
a certain number of points on the wafer will statistically be incorrectly produced,
the area of the chip itself will determine how many chips are likely to be faulty
on a given wafer. The ratio of functional chips to faulty ones is referred to as the
die yield, and a smaller design will lead to a higher yield as can again be seen

10 Theory

in Figure 2.3. Since the production methods for ASICs are so complex, the costs
are very high. The photolithographic masks need only be produced once for the
fabrication of a single design, but each mask may cost as much as over one million
dollars to produce, and a different number of masks will be required depending
on which ASIC technology is used. In addition to this, each wafer of chips also
costs large amounts, which means the price per chip will be large unless the chips
are produced in large quantities. Thusly, reducing the area of the IC design can
drastically affect the production cost for each chip.

Figure 2.3: An illustration of how the silicon area of the design
affects the die yield, given the same three defective spots on
the wafer.

2.2.2 FPGA

An alternative to using fully custom chips is to use available off-the-shelf chips.
A Field Programmable Gate Array is a chip that is programmable and can
load an IC design onto it. Given that ASIC fabrication will only yield a relatively
low price per chip for large production volumes, FPGAs stand as an alternative
and are often used for prototyping designs. An FPGA is typically composed of
several elements such as lookup tables, flip-flops, I/O-ports, as well as random
access memory units [14]. Each FPGA is often more expensive than a mass-
produced ASIC, however, if the planned production volume is low, using FPGAs
could potentially be a more economically sound choice. These FPGA chips exist
in various sizes and the larger the FPGA is, the more it will cost. Given this,
the size of the design that will be uploaded to the FPGA will decide how large
the FPGA needs to be. Given the fact that several different IC designs can be
placed together on a single FPGA (commonly referred to as a System on Chip),
the area of any particular IC such as a switching core, must often be constrained
to a particular subsection of the actual FPGA.

In summary, optimizing the area of the switch design can be of crucial im-
portance, leading to lower production costs, less silicon waste, higher yields, and
better use of available silicon area. As such, the area of the final switch design was

Theory 11

measured using several different tools that accommodate both ASIC and FPGA
technology.

2.3 Design tools and measurements

Throughout this thesis work, several different tools and technologies were utilized
to implement and measure different aspects of the switch. The following section
gives a brief introduction to these tools, what roles they fill, as well as which
measurements these tools yielded.

2.3.1 MyHDL

When designing integrated circuits, one often makes use of a Hardware Descriptive
Language (HDL) that, just as the name suggests, describes the hardware of the IC
and its behavior. These languages allow one to write Register Transfer Level (RTL)
code describing signals and behaviors which can then be synthesized into actual
logic gates. One of the most common HDLs that is used is called Verilog which
is described in the IEEE standard 1364 [11]. This language is integrated into the
workflow at Packet Architects, however, it is not the actual language that is used
for hardware implementation. One key feature that Verilog lacks that is necessary
to build a tool like FlexSwitch, which is capable of generating designs based on
a specification, is the capability to parameterize aspects of the design. Since
this is the case, another language is used that allows for parameterization, which
can then be used to generate Verilog code that is then used for simulation and
synthesis. The tool of choice is called MyHDL [12], which is a package that allows
one to use Python as a Hardware Descriptive language. MyHDL lets one define
signals and bit vectors whose behavior can be described as both combinational or
sequential logic using traditional Python function definitions that are annotated to
describe things such as clocking and reset behavior. A design written in MyHDL
can be simulated directly in Python using built-in MyHDL features, or it can be
converted into Verilog (or VHDL). In the case of this thesis, all the designs were
implemented in MyHDL, which was converted to Verilog and then simulated using
a more sophisticated simulator called Verilator. Packet Architects provided pre-
written tests that the designs were run through to verify the switch’s behavior
as well as all the necessary tools and scripts for performing the conversion from
MyHDL to Verilog code. These scripts also provide measurements of the total
memory instances of the design in bits. The generated Verilog code was finally
used for synthesis using the tools described in the following sections.

2.3.2 Vivado

The first synthesis tool used was the Vivado tool suite developed by Xilinx, Inc.
[13]. The tool suite includes an integrated development environment, a high-level
synthesis compiler, and tools for simulation. In this thesis Vivado was used to take
the generated Verilog design and target it to a Xilinx FPGA board, translating
and mapping the RTL code to components on the board in the form of lookup ta-
bles (LUTs), flip-flops (FFs), as well as block RAMs. A Xilinx Virtex UltraScale+

12 Theory

XCVU13P FPGA [20][21] was used for the final measurements. This FPGA fea-
tures three different types of RAM units: 18kb block RAM (RAMB18), 36kb block
RAM (RAMB36), as well as larger 288 kb UltraRAM (URAM) [15][16]. Vivado
was utilized to take measurements of the total component utilization on the FPGA
board as well as a timing analysis that was used to measure the critical path and
total slack of the design. These measurements were used to evaluate the potential
usefulness of the final thesis architecture for the use with FPGA technology.

2.3.3 Yosys

The second synthesis tool that was utilized was an open-source project by the name
of Yosys [17]. The Yosys framework can be used for Verilog RTL synthesis into an
ASIC standard cell library. The standard cell library that was used in the thesis
was the Oklahoma State University Library for 0.18μm TSMC technology[18] [19].
This tool was used to obtain measurements for the total gate equivalent area of the
design for ASIC technology. However, since the thesis design instantiates specific
memory instances, Yosys is not able to translate these memories into standard cells
and will therefore put these modules into a "black box" which is not accounted for
in the final measurements. This effectively means that the Yosys measurements
are covering everything in the design except for the memories, which means that
it can be utilized as an effective way to observe how the combinational logic as
well as sequential logic in the form of regular flip-flops scale with the architecture
for ASIC technology. This however means that the memories must be measured
using a different tool. An overview of the design flow using the different tools is
presented in Figure 2.4

Figure 2.4: An overview of the IC design flow.

Theory 13

2.3.4 Arm Artisan Embedded Memory IP

The final tool that was utilized was an embedded memory compiler developed by
ARM Physical IP, Inc. by the name of Ultra High Density 2P SRAM SVT MVT
Compiler. This compiler is part of the Arm Artisan physical IP product range and
is capable of compiling SRAM memories for 16 nm TSMC ASIC technology [22].
This tool gave measurements on the total silicon area of the memory instances (in
μm2), which combined with the Yosys measurements gives comprehensive coverage
of the total area design for ASIC technologies.

14 Theory

Chapter 3
Design and implementation

3.1 Design

3.1.1 IC design

Designing an IC can be a difficult process for many reasons. There exist plenty
of pitfalls, and one must consider how every architectural decision will affect the
design as a whole. One of the foundational principles of IC design that one must
take into consideration is the fact that (almost) nothing comes for free. Every
architectural decision is a trade-off, meaning that improvements in one area of the
design will almost certainly come at the cost of another one. Therefore, one of the
keys to a successful IC design lies in evaluating the resources at one’s disposal and
realizing which ones should be spared at the expense of others.

In the case of this thesis work, the key resource is quite obvious since the
aim is to optimize the design for silicon area. In practice this means that since
the performance requirements for the switch are quite lax, there exist situations
where optimizations can be made that sacrifice performance in terms of through-
put and latency, to gain a smaller area. Any decision that leads to area being
gained by expending more clock cycles, should be considered optimal for the de-
sign. This principle served as the guiding motivation behind the selection and
comparison of the different architectures, as well as most of the final architec-
ture itself. Given this, the first optimization that was explored was the idea of
shared-memory buffers.

3.1.2 Shared-Memory switches

In Section 2.1.2, the switch architecture overview, two different ways of structuring
the buffers CBI and CBE are proposed, either with one buffer per port or as one
shared memory. Even though the shared memory approach requires some extra
external buffers and a scheduler to ensure fairness between ports, this approach has
some major benefits when it comes to potential utilization. In the case where all
input ports send packets to the same output port, the queue of outgoing packets
will start to grow, since the output bandwidth on one port is lower than the
bandwidth on all input ports combined. With separate buffers for each port, only
the buffer of the port connected to the destination of the packets will be utilized,
while all other buffers will sit empty. However, with a shared buffer the free

15

16 Design and implementation

space in the empty buffers could be utilized by the congested port. This does not
eliminate the risk of packet drops, since the output buffer can grow indefinitely.
It does, however, lower the memory requirements given a worst case it should be
able to handle without packet drops. This is made clear in Figure 3.1, where less
memory is needed to handle the data from a congested port. The figure illustrates
that shared memories give better utilization of the memory area, meaning that
the total area can possibly be reduced.

Switching architectures that implement a shared memory suffer from one main
drawback that congestion on one output port could potentially occupy memory
space needed for a different port, which in turn means that a packet that should
have a ready path from its input to its output, instead gets dropped due to the
high load on the first output port. This situation is not acceptable for a switch
and must be dealt with in some fashion. To solve this issue, memory can be
guaranteed for each port. The idea is to not let a single port use all the memory
so that packets with a congested destination port will be dropped before a packet
with an uncongested destination port.

Figure 3.1: Dedicated vs shared memories.

In the case of CBI, using one shared buffer instead of separate ones does not
yield as clear of a benefit. The system needs to be designed in a way so that
the IPP module can handle packets at least as fast as packets can arrive on the
input ports, which means that CBI can not grow indefinitely, and has a maximum
amount of data it needs to be able to buffer, with or without shared memory.
Packets are not allowed to be dropped before they have received their destination
port and priority. This is because packets with a higher priority are never allowed
to be dropped over packets with a lower priority.

There are however benefits to letting CBI and CBE share a physical memory.
CBI needs to be conceptually separate from CBE since it needs to be guaranteed
that none of its packets get dropped. This means that the two buffers can not
use any space allocated to the other. However, in the case of shared memory
between CBI and CBE, only one instance of the buffer manager is needed. Both
of the buffers can use the same logic, to perform tasks such as selecting the next
packet to be sent to a port or the packet processing module. Other parts of the

Design and implementation 17

manager, such read and write logic can also be shared between the two buffers.
This effectively halves the bandwidth available on both the input and the output
of the buffer. However, this is not a problem because of how the buffers handle
data. The input on the ports is at most one byte per clock cycle, but the buffers
handle data in cells, which consist of several bytes. Therefore, as long as the cell
size is sufficiently large, the available bandwidth on the input and the output of
the buffers are still enough to handle the total input bandwidth of the input ports.
The idea of spending time to gain area is also perfectly in line with the aim of this
project.

3.2 Selected architectures

Given the principle of shared-memory switches, three different architectures com-
patible with this idea were selected for evaluation and comparison. These archi-
tectures were analyzed with the goal of selecting the one offering the best potential
gains in terms of area optimizations. The selected architecture was then used as a
base to construct the final architecture that was implemented. The three selected
architectures were a Cut-Through switch, an Allocation/Defragmentation switch,
and a Shared Memory Linked List switch.

3.2.1 Cut-Through

When a packet enters a switch and is divided into cells, there exist different ways
of transporting the data that comprises the packet through the switch. One of the
most common methods is known as Store and Forward switching. In this method,
the entire packet is treated as one unit, and every single byte of data must enter
the switch before its cells can begin traveling through it. As an alternative to this,
Cut-Through switching is a method where the packet can start traveling through
the switch before the entire packet has finished entering it [7]. Figure 3.2 shows a
conceptual representation of this architecture, with the same packet on the input
port being sent out on an output port, and one cell of the packet in memory.

Implementing a Cut-Through switch would potentially offer several benefits,
some of which could lead to silicon area optimizations. The most immediate
benefit that is often associated with Cut-Through switches is the fact that they
reduce packet latency. Since the switch starts to forward the packet data before
it has fully entered the switch, the first cell will leave the switch through its
destination port sooner than its Store-and-Forward counterpart. This benefit does
not directly align with the design philosophy guiding the thesis architecture, which
states that extra clock cycles should be spent in order to decrease the total area of
the design. However, a side effect of cut-trough switching is that each packet being
sent through the switch will not need to take up the size equivalent to the entire
packet in buffers and memories that it travels through. If the packet is forwarded
as soon as each cell is constructed, then every buffer would only need to be able to
hold one cell, and likewise, only one cell would need to exist in the main memory
at a time. This means that the size of the main memory as well as the various
intermediate buffers could potentially be reduced.

18 Design and implementation

Figure 3.2: Overview of a cut-through switch, where a packet starts
exiting the switch before it has fully entered it.

These benefits made this architecture a suitable candidate for further study.
This analysis revealed several drawbacks that were taken into consideration. Firstly,
a basic requirement of a Cut-Through switch is the fact that the bandwidth of the
outgoing port of a packet must be equal to or lower than that of the incoming
port. If the outgoing port sends out an entire cell as a stream of bytes before the
next cell is ready to be sent to the port, then the outgoing packet will be left with
a hole inside its data, which will lead to corruption. This is not a problem for the
target switch of the thesis, since all ports are specified to have a constant uniform
bandwidth, however, it would mean that this architecture would not be able to
be scaled to another switch configuration with non-uniform bandwidths across the
ports. Another potential issue is the fact that a cut-through architecture imposes
stricter timing and scheduling requirements for every part of the switch. Given the
fact that a single packet can simultaneously be entering and exiting the switch on
different ports, there can be no gaps in the flow of data from the input port to the
output port, and every single cell must be delivered to the destination at strictly
timed intervals to ensure the continuity of the data flow. This means that more
sequential and combinational logic in the form of cycle counters and schedulers
would be needed, which servers to make the architecture more complex. If the
total area of silicon required to implement these complexities is lower than the
total area reduction of the buffers and memory, then this architecture would still
serve as a good candidate to be implemented.

However, upon further analysis, it was also discovered that there exists a
scenario that negates most of the main benefit that a cut-thorough switch offers.
In an ideal scenario, each packet traveling through the switch only needs to store
a single cell in the switch’s main memory at any given time. However, this only
applies if the packets are traveling to mutually exclusive destination ports. Since
a single port can only output the data of a single packet at any given time, if two
or more ports are simultaneously sending packets to the same destination port,

Design and implementation 19

only one of them would be able to exit the switch, and the rest would need to be
stored in memory until the port is free again. In the worst case, every single port
except for one is sending packets to the same port, meaning that only one packet
receives the benefit of only storing one cell in memory at a time, and all the others
must store full-size packets. Since the switch needs to be dimensioned for this
worst case, it would not be possible to reduce the size of the main memory to any
significant extent. This revelation made this architecture an unlikely candidate
for implementation.

Nevertheless, even though the worst case scenario makes significantly reducing
the size of the main memory impossible, the idea of reducing the size of interme-
diate buffers was still deemed a good idea. For instance, since a shared memory
between ports was planned to be used, there needed to exist a buffer between
the SP and CBI modules so that cells could be buffered in case they arrive si-
multaneously to the ingress buffer. Using the idea of a cut-trough switch, one
could dimension this intermediate buffer to only be one cell large, and construct
the packets cell by cell inside the CBI memory, rather than waiting for the entire
packet to enter the switch, and then writing it into memory all at once.

3.2.2 Contiguous allocation/Defragmentation

The next architecture that was selected deals with a specific method for how
packets and cells should be efficiently stored in memory. The main memory of
the switch can be viewed as a long array of cells. When a packet is written to
memory, it must be allocated a number of these memory cells, which will store the
packet data. There exist several different methods for allocating and deallocating
memory to packets that offer different kinds of benefits and drawbacks. The main
idea of this architecture is that a packet will always be allocated a list of cells that
are contiguous in memory. In essence, this means that starting from the address of
the first cell of the packet, the rest of the packet can be found by simply iterating
over the following addresses until the last cell is reached. If the cells were not
contiguously allocated but rather spread out in a fragmented pattern all across
the memory at different addresses, one would need a second link memory that for
every cell in the packet keeps track of at which address the next cell can be found.
This means that every packet would require memory equivalent to one address
pointer per cell in the packet. If the cells are instead contiguously allocated, these
links are unnecessary, and instead, only one pointer to the first cell and one to the
last would be needed for every packet. Alternatively, one could use one pointer to
the first cell, and store a value indicating how many cells long the packet is.

Given that this benefit directly decreases the amount of memory required for
keeping track of packets in memory, and thus reduces area, this allocation method
was deemed a suitable candidate for evaluation. Upon analyzing this architecture,
two different methods were discovered for handling contiguous allocation.

Method one - Traditional allocation algorithms

The first method is to use one of several traditional memory allocation algorithms
that are commonly found in software. Two of the most common of these would be

20 Design and implementation

a linked-list allocation algorithm or a buddy system allocation algorithm [8] [9].
The main idea of these algorithms is that they keep track of all the memory

regions that are free in some kind of data structure which is iterated over to find
suitable regions to be allocated. In the case of a linked-list allocator, the data
structure takes to form of a linked list just as the name implies, while a buddy
system allocator splits the memory into different tiers and groups together regions
of the same size. Since these memory regions consist of a contiguous series of
cells, each region only needs one pointer to the starting cell and one to the final
cell (alternatively a size variable). When a packet is to be allocated a memory
region, this data structure of free memory which henceforth will be referred to as
the free list, is iterated over and a suitable region is returned. This iteration will
either need a very large combinational net of logic gates so that the entire data
structure can be searched in one clock cycle or a single or small subset of regions
can be processed in one cycle. This approach would yield a smaller net of logic
gates at the cost of taking more cycles to find a region for allocation. Both of
these algorithms are quite complex, and must in addition to this manage the free
list by splitting regions into smaller pieces and mergeing together different regions
into larger blocks based on different circumstances. This complexity is not an
issue when implementing such an algorithm in software, but given that hardware
implementations of algorithms cannot rely on the principle of sequential execution,
it would inevitably take longer to implement such an algorithm compared to other
simpler alternatives discussed below.

Another prerequisite of this type of allocation algorithm is the fact that the
entire packet size must be known at the start of the algorithm, since a contiguous
memory region must be found that will fit the entire packet. This means that the
approach discussed in Section 3.2.1 of building packets in memory one cell at a
time and thus minimizing the size of the input buffers, would not be compatible
with this approach. The final drawback of this approach that was discovered, was
the fact that in a worst case scenario where the entire memory is free and has been
split up into the smallest possible size of one cell per region, then the size of the
free list data structure would grow to one entry per cell in the memory. Given
the fact that one of the main benefits of this method was the fact that the data
structure would only need a single pair of pointers per memory region, this worst
case unfortunately invalidates that benefit since the switch would need to be able
to handle this worst case scenario. This combined with the complex nature of the
allocation algorithms meant that this approach was not deemed a good candidate
to reduce the area of the switch.

Method two - Defragmentation

The second method to handle contiguous allocation would be a much simpler
approach. The idea is to keep a single pointer to an address in memory beyond
which every cell is free. Again the size of the packet would need to be known when
allocation happens, but the actual allocation algorithm is as simple as allocating
this address as the first cell, and then moving the free-pointer forward as many
steps as the packet contains cells. In essence, this pointer would then mark the
region of allocated memory, and everything below it must be considered allocated.

Design and implementation 21

In theory, this seems like a great idea since it not only greatly simplifies the
allocation algorithm, but it also practically eliminates the free list and replaces it
with a single pointer, and thus reduces the silicon area. However, this approach
introduces a new problem. Whenever a packet is sent out from memory, its cells
need to be deallocated. The problem lies in the fact that the only way to reclaim
a region and add it back to the memory that can be allocated, is to move the
free-pointer backward, which means that this can only happen if the packet which
left the memory was the one that is located last in memory. There is however no
guarantee that the packet that is situated last in memory will be sent out first,
which means that every time another packet is sent out, that memory region will
become lost and will not be able to be utilized until the pointer is moved back
to that region again. This means that the allocated region of the memory will
become fragmented and full of holes that cannot be utilized.

Figure 3.3: A gap in the data in the main memory.

A potential solution to this problem which was considered was to employ some
sort of defragmentation algorithm that could move packets around in memory and
push packets together in such a way that the gaps would be filled. Consider the
following example as illustrated in Figure 3.3 where the colored cells represent
different packets in memory and the white cells are free. There exist two different
alternative algorithms that can be employed to fill the gap between packets. The
first involves iterating over all the remaining packets in the memory after the
gap and searching for one that fits the dimensions of the hole. Given that this
iteration happens in hardware, either a very large combinational net of logic gates
would be required to find a packet of the correct size (also consider that this size
will vary depending on the size of the gap) in one cycle, or a subset of potential
packets would need to be searched through every cycle, which means that the
process takes longer but requires a smaller combinational net. When a suitable
cell is found, it needs to be read and written into the cells that constitute the gap.
The cells that this packet previously occupied in memory must simultaneously
be deallocated. If the packet which was transferred was not the last packet in
memory, then this means a new gap has now formed and the process would need
to be repeated recursively, filling each hole with a new packet. Unfortunately,

22 Design and implementation

there is no guarantee that a packet of the correct size will exist in memory to fill
the gap, which means that the second algorithm would need to be utilized. This
method involves shifting all data after the gap backward to fill the empty cells.
This means that each cell that resides at a higher address than the gap would need
to be read and written back to another position. This process therefore takes as
many clock cycles as there are occupied cells after the gap.

Whenever these kinds of data transfers occur inside the memory, both the
read and write facilities would be occupied, essentially blocking both the input
and output to and from the memory, meaning that this would potentially lower
the bandwidth of the main memory significantly. Both of these methods take
up tens if not potentially hundreds of clock cycles each, at which point it would
perhaps have become more efficient to simply send the packets out of memory
instead, thus shrinking the block of allocated memory. This combined with the
fact that method one was deemed infeasible, meant that this architecture was also
not considered an optimal choice for implementation.

3.2.3 Shared memory linked-list

Since the method of allocating cells contiguously in memory was deemed an unfa-
vorable approach, the alternative of allocating cells in memory and linking them
together was instead explored.

Chao, H. J., & Liu, B.[10] present several implementations of switches utilizing
shared memory buffers, without contiguous allocation. One of these architectures
achieves this by using linked lists to link the addresses of cells belonging to the
same packet. This linked list approach consists of using lists to link both cells in
a packet as well as packets in a queue. In essence, memories are constructed that
contains pointers to memory addresses, that can point to the other cells and serve
as links between different memory elements. The main memory of the switch is
split into two segments, one where the actual data cells are stored, and one where
links between the cells of a packet are stored. This second link memory needs
to have as many entries as there are cells in the main memory. An additional
memory could be used to keep track of a linked list of all the cells that are free
to be allocated in the memory. Keeping one pointer to the start of this list, and
one to the end means that allocation becomes quite simple. Each cell that is
to be written to memory is simply allocated the first cell of the free list, and
the pointer to this free list head is then updated by reading which address that
cell points to in the free list memory. This means that the cells of one packet
could potentially be spread out across different addresses that are not contiguous.
Removing the requirement of contiguous allocation means that fragmentation of
data in the memory no longer becomes an issue at all since all free cells will be
accessible through the free list, which gives perfect utilization of the memory on
the cell level.

The size of these memories needing one pointer per cell initially seemed like
it would be a problem until it was discovered that the equivalent data structure
discussed in Section 3.2.2 would be as large, needing two pointers per cell (or
one pointer and a size value). Another exciting possibility that was discovered
which makes this even less of an issue is the fact that these two memories that

Design and implementation 23

link packets and the free cells, can be combined into a single memory since the
subset of cells that are allocated will never overlap with the subset of cells that
are free. Thus one unified link memory can be kept meaning that in total only
one pointer per cell is needed. There is one problem with this approach, however.
When a cell is written to memory, both the link that represents the packet and
the link representing the free list need to be updated simultaneously. Likewise,
when cells are read from memory and deallocated, both the link from the packet
and the free list must be read. In essence, this means that these link memories
would need to be able to perform two reads and two writes simultaneously if reads
and writes to the memory are to be able to occur in parallel. One solution to
this would be to only perform reads or writes exclusively, but this would halve the
bandwidth of the switch. Another solution would be to overclock this memory at
double the clock frequency which means that, essentially, a memory with double
the amount of ports is created. Given the clock frequency requirement of 12.5
MHz in the project specification, this means that this overclocked memory would
run at 25 MHz instead giving a maximum critical path of 1

25∗106 = 4 ∗ 108s or 40
nanoseconds. So long as the design can meet this timing requirement then that
means that this one unified memory could be used to keep track of all links and
still be able to handle parallel reads and writes.

In Figure 3.4 an overview of the system is shown, with two packets in memory,
one colored green, and one colored red, with the cells of each packet linked through
entries in the link memory. The data in the link memory is the address of the next
cell of the same packet. The figure also shows that the list of free entries is part of
the same memory structure. Since this approach only allocates one cell at a time
instead of a contiguous region, the size of the packet does not need to be known
when allocation occurs, which means that the method of constructing packets in
memory one cell at a time mentioned in Section 3.2.1, would be compatible with
this architecture.

Data memory Link memory
Address

0

1

2

3

4

5

6

Cell 0

Cell 0

Free
Cell 1

Free
Cell 1

Free

5

3

4
x

6

x

x

Figure 3.4: Memory structure, with one data memory and one link
memory.

The unified link memory and the data memory will have the same number of
entries and therefore share the same address space, however, the size of the data

24 Design and implementation

blocks will vary. In the part of the memory that stores the actual cells, the block
size needs to be the size of the cells, while the link memory block size will need to
be large enough to fit a pointer to an address in this address space. This means the
cell size of packets will impact the size of the link memory since given a fixed data
memory size, the cell size will determine how many entries the link memory has
as well as how large each entry will be. A smaller cell size yields more addresses in
the data memory, and therefore more link entries, and since the address space is
larger, the size of each pointer will grow as well. However, a smaller cell size means
there will be less memory wasted in the case where the last bytes of data don’t
utilize an entire cell, meaning that the memory utilization will increase as the cell
size decreases. Finding the optimal cell size will therefore be of great import to
optimizing the size of the memories.

In addition, each packet needs a data structure to store information about
where in the memory its cells are located. This data structure will henceforth
be referred to as a header. This header can be constructed in several ways, for
instance by storing just one pointer to the first cell of the packet. Any cell could
still be accessed since all cells have a link to the next in the packet. To find the last
cell, which is needed to append cells, the whole packet would need to be iterated
through. Another way to structure the header is to store both a pointer to the
first and last cell, which would eliminate the need to iterate through the whole
packet each time a cell is appended. Choosing between the two approaches takes
careful consideration between minimizing the memory required and the amount
of clock cycles required for appending one cell. Important to note is also that
the maximum number of cells a packet could consist of determines the maximum
number of clock cycles needed to append a cell to a packet.

Given the fact that this architecture gives perfect utilization of every cell in
the memory without the need for complex defragmentation algorithms, combined
with the simplicity of allocation and deallocation, the fact that it is compatible
with the method of building packets in memory one cell at a time, and the fact the
the link memory can combine the free list as well as the packet links, the shared
memory linked-list architecture was finally chosen as the base upon which to build
the final thesis architecture.

3.3 Final architecture

Given the benefits and drawbacks discussed in Section 3.2, the architecture actually
implemented in this project is mainly a shared memory, linked list architecture,
with ideas taken from the cut-through approach. Mainly the idea of letting just a
small part of a packet stay in a buffer, and sending the first part of the packet to
the next module before the last part of the packet has reached the buffer.

The architectural overview of a switch discussed in Section 2.1.2, is a good
starting point when discussing the actual implementation in this project. In the
overview data only flows one way, from input to output via both buffers and packet
processing modules. On a conceptual level the implementation works in the same
way, however, the CBI and CBE buffers share one physical memory contained in
a module that was named Buffer Manager, much like the concepts discussed in

Design and implementation 25

Section 3.1.2. This large shared buffer will be further explained in the coming
section.

Figure 3.5: An overview of the final thesis architecture.

3.3.1 Buffer manager

As discussed in Section 2.1.2 packets move through the switch from input ports
to output ports via intermediate buffer storage and packet processing modules.
Because of the fact that the buffer manager contains both the CBI and CBE,
packets need to be buffered twice, both on the way in, when it is waiting to be
processed by IPP, and on the way out from IPP to the actual output port. As seen
in Figure 3.5, the output to and input from IPP can be seen as any other input or
output port. This effectively adds another port on each end of the buffer manager.
This is in line with the goal of the project, where the same hardware can be used
for several purposes. However, since each packet has to go into the buffer two
times, the bandwidth is halved. In this architecture, the buffer manager module
can handle one cell per clock cycle on its input, which would set the limit on the
total bandwidth on all input ports combined to not be more than one cell per two
clock cycles, because of the fact that each packet goes through twice. The worst
case is when every input port has incoming data on a given clock cycle. Therefore,
for the switch to function, Section 3.1 needs to hold. Where N is the number of
ports on the switch, and C is the cell size in bytes.

N ≤ C

2
(3.1)

The switches implemented in this project will have four and ten ports respec-
tively, which means that a hard lower limit on the size of cells exists. For the
switch with four ports the limit is 8 bytes, and 20 bytes for the ten-port configura-
tion. However, this calculation does not take into account the fact that the buffer

26 Design and implementation

manager needs clock cycles to handle the packets inside the switch when no input
is permitted, meaning that in practice the cell size will need to be at least slightly
larger than this.

The main part of the buffer manager is the cell memory. This is the memory
where the actual data passing through the switch is stored. This is, however, not
the only memory needed to build a buffer utilizing shared memory and linked lists.
As discussed in Section 3.2.3, a memory that stores the links between cells is also
needed. The link memory has as many entries as the actual cell memory and has
the purpose of representing the links between cells of the same packet. The content
of a memory entry is an address to another cell in the same address space and
represents the address to the next cell of the packet. This can again be illustrated
in Figure 3.4, where, for example, cell 1 is followed by cell 3, which means that at
address 1 in the link memory exists the value 3. Every cell in the main memory
will either belong to a packet, or it will be free and not have any valid data stored
in it. As discussed above, due to the fact that this memory is overclocked at twice
the speed, this link memory can keep both the links between the cells in a packet,
and the free list. The free list needs additional external information in the form
of the addresses of its head and tail, to allow appending elements to the list at
the same time as reading the next free element. Another benefit of having a link
memory with both packets and the free cells in it is the fact that deallocation of a
packet becomes quite simple. Because of how the cells are linked in the memory,
deallocating an entire packet is as easy as deallocating a single cell. Since the cells
of the packet are already linked, only one link needs to be set, the link between
the tail of the free list, and the first cell of the packet that is being deallocated.

The idea of having a link memory separate from the data memory is also used
in other parts of the buffer manager, namely in situations where an ordered list
of elements is needed. In the case of this architecture, it is needed to keep track
of the packets. Both in keeping information about each specific packet in their
headers and in maintaining queues, to make sure that the packets are processed
in the correct order.

Packet headers

In this implementation of the architecture, a data structure is used to keep track
of information about packets, called headers. It consists of the following 7 fields:

• Destination port, a bitmask indicating which ports the packet has as its
destination.

• Source port, the port the packet arrived on.

• Valid bytes, how many bytes are valid in the last cell of the packet.

• Last pointer, a pointer to where the last cell is stored in the cell memory.

• First pointer, a pointer to the first cell.

• Ready to send flag, one bit indicating whether or not the packer has all
its cells in memory and is ready to be sent.

Design and implementation 27

Upon entry of the first cell of a packet into the buffer manager, it is assigned a
header. The last cell field of the header is updated each time a new cell arrives
from the same source port until a last flag is set on the input port. Then one
bit is toggled in the header, which signals that this packet is ready to be sent
to the packet processing module or output port. Packets can come interleaved
with one another, one cell at a time. Therefore, each source port gets its own
header allocated, so there exist as many allocated but unfinished headers, as the
switch has input ports. The header memory is also organized in a similar way
as the data memory, with one part consisting of the actual headers, and another
part being the links between them. In the memory, there exists both a list of free
elements as well as links between headers that represent an ordered list of packets.
This memory is also used to keep track of the links between the queue of packets
that are awaiting to be sent to the packet processing module, in exactly the same
fashion as the cell link memory. However, once a packet returns from the packet
processing module and has received its destination port, the possibility exists that
the packet will be sent out on multiple ports. This means that the packet must
then be placed in several queues simultaneously. Since the header link memory can
only link a packet to one other packet, that means that this memory cannot also
be used to maintain the queues for the output ports. This is instead handled in
another memory, the packet queue memory. This is also split into two parts, one
containing the address of the packet header, and one linking these entries together
to form the queues. This means that a single header address can be written to this
packet queue memory more than once, and the links will be written to link it to
the next packet in each respective queue. An overview of the different memories
contained inside the buffer manager is presented in Figure 3.6.

Figure 3.6: An overview of the different memories that reside in the
buffer-manager module.

28 Design and implementation

Initially, the headers were built using flip-flops, however, early results showed
that this approach did not scale well when the number of headers increased. The
number of headers needed in this switch is discussed later in Section 3.3.3. Instead,
the headers were remade using memory modules, since large memory modules
should be constructed out of memory blocks. The behavior of the original switch
that was constructed using flip-flops was tested and verified. However, modifying
the new version to produce identical behavior to the first unfortunately fell outside
of the time frame for the thesis. But in order to ensure a fair comparison of the
thesis architecture to its FlexSwitch counterparts which are constructed using
memory instances instead of flip-flops, the measurements were taken on a switch
that uses memory instances that equal the size of the original flip-flop counts.

The results therefore come from a switch that was not tested, but given minor
adjustments it would work the same way as the fully tested version, with flip
flops as header memory. This choice was made since the goal of this project
is to minimize and compare area, which means that fair area comparisons take
precedence over a fully tested design.

Packet priority

One of the requirements from Section 1.3 is that the switch should be able to
handle priority between packets on the same port. For this functionality to be
implemented each port needs to have several queues, both to separate packets
with a different priority, and to keep the ordering between packets with the same
priority, since it is important that packets that arrive first are also sent out first.
As mentioned above, queues are structured in a similar fashion to how the data and
link memory are structured for cells, and the header data and header link memory
are structured for headers. The queue memory is also split into two parts, one
memory that holds the actual data, in this case, the entries are headers, and one
that holds the links between the packets. In the same way as with the data link
memory, the queue link memory also contains a list of all free entries. The same
principle of allowing multiple ports to utilize a shared memory was employed here,
rather than giving each port its own dedicated instance of these queue memories.
This means that the total area of this shared memory could be reduced. When
this packet queue memory is full, packets will need to be dropped.

Packet drop

On some occasions when a cell arrives on an input port to the buffer manager,
it needs to be dropped. This means all cells currently stored in the buffer that
belong to this packet need to be deallocated, and all future cells of this packet
ignored. This can happen in a few different circumstances. The first and most
obvious one is that the memory is full, there are simply no free cells available in
the buffer memory. Another reason to drop a packet is due to guarantees. Every
destination port has a part of the memory guaranteed, in order to avoid starvation
of ports when other ports are congested. There are therefore situations where a
packet is dropped even though there exist free cells in the buffer memory, however,
they are guaranteed to another destination port. A third reason to drop a packet

Design and implementation 29

is when all the entries in the queue memory are depleted.

3.3.2 External buffers

Most of the storage capacity of the switch lies within the buffer manager, but ex-
ternal buffers are also required for one main reason. The buffer manager can only
handle one input at a time, while all ports could have data coming in simultane-
ously. Some sort of intermediate buffer is required between the SP module and
the buffer manager. In this architecture, a one cell large ingress buffer is used. No
more than one cell is needed since the packets are allowed to come interleaved into
the buffer manager. The same case of needing extra buffer capacity is true for the
output as well, because of the same reasons as on input. However, the external
egress buffer is larger, it has capacity for one whole packet. This is due to the fact
that the PS module needs to have a continuous stream of cells so that there are
no gaps between bytes sent. Because of this, there exists a strict deadline for the
buffer manager or an external buffer to send the next cell to the PS module. This
would not be a problem if it were not for the way in which the IPP module receives
data. It needs all cells of a packet sent continuously, which means that a packet
sent out to IPP could potentially make a packet going out on an actual port miss
its deadline. Therefore, in this architecture, the egress buffer has enough capacity
to hold a whole packet.

A similar situation as what can happen on output, with the IPP port breaking
a strict deadline of another port, can also happen on input. However, there are
no actual deadlines for the packet to meet on input in the same way as on output,
where a missed deadline means an incomplete packet is sent out on the network.
The buffer manager can handle arbitrary amounts of clock cycles between cells of
the same packet. Input from IPP, on the other hand, comes one cell per clock
cycle until the whole packet has been written into the buffer manager. Cells from
this port are also prioritized since they can not be buffered between IPP and the
buffer manager. The issue with this approach is that a situation can arise where
cells on an input port are lost, which would mean that a packet would need to be
dropped even though there is free capacity in the buffer manager. This situation
happens when an ingress buffer has a cell waiting to enter the buffer manager,
and if this cell is not read before the next cell arrives from the SP module, the
first cell is simply overwritten. If this were to happen, the packet would no longer
be complete and would need to be dropped. However, there are criteria for when
this situation can occur. A packet coming from IPP is never allowed to take more
clock cycles to read than it takes clock cycles for SP to construct one whole cell. In
other words, the longest packet can never contain more cells than one cell contains
bytes. This is however not enough for all deadlines to be met, since the buffer
manager only handles input from one port at a time, the time taken to read all
ports needs to be taken into consideration when setting a lower limit on the cell
size. The condition in Equation 3.2 needs to be true for the timing to work, where
N is the number of ports, C is the size of a cell in bytes, and 1522 is the largest
possible packet in bytes.

N +

⌈
1522

C

⌉
≤ C (3.2)

30 Design and implementation

For four ports the lower limit on the cell size is then 41 bytes, and the same
number for ten ports is 45 bytes.

3.3.3 Cell size optimization

An important decision when designing the specifics of the implementation is choos-
ing an appropriate cell size because it affects the area of the switch in several ways.
Firstly the SP and PS modules need to be able to store at least one cell, which
means that a larger cell size scales the size of those modules linearly. However, a
larger cell size would decrease the number of cells needed to have the same amount
of data in memory. This means that the link memory would not need as many
data entries, and as a result, the pointer to the next cell address does not need to
be as large since the address space has decreased. In summary, both the number
of pointers as well as the size of those pointers decrease with a larger cell size.
However, with a larger cell size the utilization of the memory may decrease. Since
the memory can not be split up further than into the size of a cell, each packet
will in the worst case use cellsize− 1 bytes more memory than it actually needs.

The total size of the parts of the memory affected by the cell size can be
calculated by summing the memory of each module. Both the SP and PS modules
need to be able to store one cell each. In this architecture, the first ingress buffer
also needs to buffer one cell per port. The egress buffer is not affected by the cell
size since it is always able to buffer one whole packet, no matter the size of the
cells. The total size of the buffers outside of the buffer manager in bytes can be
expressed as Equation 3.3, where x is the size of one cell, and N is the number of
ports.

Mbuf (x) = 3Nx (3.3)

The total required size of the cell memory for the switch to be able to pass the
full overlap test described in Section 1.3, as a function of the cell size is described in
Equation 3.4. This is known since given a fixed number of ports, N, a set maximum
number of packets are in the switch simultaneously during the full overlap test.

Mc(x) =

⌈
1522

x

⌉
((

N∑
i=1

i) +N)x (3.4)

If the size of the memory in the buffer manager module is constant, then the
cell size mainly affects the size of the cell link memory, since the address space
grows with a smaller cell size. With a total memory size M, the number of cells
is Mc

x and the number of bytes required to represent the whole address space

is �log2
Mc
x �

8 . The size of the cell link memory in bytes can then be derived as
Equation 3.5.

Mc_link(x) =
Mc

x

⌈
log2

Mc

x

⌉
8

(3.5)

Before the optimal cell size can be found by solving Equation 3.11, an appro-
priate number of headers needs to be chosen. The upper bound for the amount of

Design and implementation 31

headers needed to never cause a packet drop, with a minimum packet size of 64
bytes, depends on the cell size. If the cell size is larger than the minimum packet
size, the number of headers is the same as the number of cells in memory, while
if the cell size is smaller than 64, the number of headers is the number of cells
in memory divided by how many cells a packet of 64 bytes needs allocated. The
number of required entries for the headers memory is then calculated as 3.6

H =
Mc(x)

x⌈
64
x

⌉ (3.6)

The number of headers is therefore dependent on the cell size, which in turn,
means that all memories dependent on the number of headers are also dependent
on the cell size. Much like the cell memory structure, the headers also have a
link memory. The address space of the header link memory is the same as the
header memory, and each entry in the header link memory is an address in the
same address space. Hence, the total size of the header link memory is described
by Equation 3.7

Mh_link(x) =
H�log2 H�

8
(3.7)

All headers store 2 pointers each, one to the first cell of the packet and one
to the last. With H headers, the size of the header memory can be then obtained
from Equation 3.8

Mh(x) = H

⌈
log2

Mc

x

⌉
4

(3.8)

The queues are also a memory that is dependent on the number of headers,
which means that its size can be described as a function of the cell size. Much
like the headers and cells, the queue memory is also split into two parts, with one
data memory and one link memory. The size of the data memory can be found
in Equation 3.9, and the size of the queue link memory can be found in Equation
3.10. Since a header can exist in several queues, the queue memory needs to be
larger than the header memory. In this architecture, the queue memory was scaled
up by a factor of 2 compared to the header memory.

Mq = 2H
�log2 H�

8
(3.9)

Mq_link = 2H(
�log2 H�

8
+ 1) (3.10)

Given this, the total combined size of every memory instance S expressed as
a function of the cell size x can then be derived as Equation 3.11.

S(x) = Mbuf +Mc +Mc_link +Mh +Mh_link +Mq +Mq_link (3.11)

According to Equation 3.11, with the number of ports set to 4 and 10, the
two configurations have an optimal cell size of 61 bytes and 153 bytes respectively.

32 Design and implementation

However, these calculations only take into consideration the memory instances of
the switch, and leave out all logic and some registers. These numbers were used
as starting points in experiments that were used to optimize the total area of the
implementations.

Memory area

It is important to note that not all memory bits are equal when it comes to
silicon area. The physical area required to instantiate a memory is dependent
both upon the technology used as well as the structure of the memory. There are
several ways to create a single memory cell, with different numbers of required
transistors, as well as different properties [23]. However, in the general case, a
larger memory is usually more area-efficient per bit stored since there exists some
overhead no matter the size, which becomes a smaller portion of the total area
with a large memory. Furthermore, in this architecture, the link memories need
to be clocked on a faster clock, in order to be able to read and write on several
addresses each clock cycle. With a faster clock comes stricter demands on the
critical path, and a large memory can based on the structure, violate the timing
requirements, since a large memory uses more area which makes the signals travel
longer distances. As with many other aspects of hardware design, this takes careful
consideration, where a benefit almost always comes with a drawback. With this
in mind, further optimizations can potentially be made on the memory level when
the exact technology used for the specific hardware implementation of the switch
is known. In conclusion, it is important to note that not all memories are created
equal, and the exact configuration can have an impact on the total area of the
switch, especially the part of the switch this thesis is focused on, the buffering and
forwarding of packets.

Chapter 4
Result and analysis

4.1 Total size of buffer management modules

In order to ascertain how large the buffer management modules are in relation
to the total switch, measurements were taken of the two generated FlexSwitch
switches which are presented in Table 4.1, 4.2, and 4.3. These measurements
demonstrate that the buffer management modules constitute a significant part
of the total switching area. The switches generated by FlexSwitch included the
packet processing module, while the thesis implementations did not contain such
a module. However, in the results presented below, the packet processing module
has been subtracted from all the measurements of the FlexSwitch switches, in
order to ensure that only the buffer management modules were compared.

Config. LUT FF RAMB36 RAMB18
FlexSwitch
4 ports 20308/62144(33%) 18813/59162(33%) 11/18(61%) 2/2(100%)

FlexSwitch
10 ports 32719/90693(36%) 34032/89500(38%) 15/22(68%) 2/6(37%)

Table 4.1: Vivado measurements of the size of the buffer manage-
ment modules of the FPGA implementations in relation to the
total size of the FlexSwitch switches.

Configuration Gates Flip-Flops
FlexSwitch 4
ports 228121/781193(29%) 18459/61183(30%)

FlexSwitch
10 ports 419950/1201549(35%) 33714/90050(37%)

Table 4.2: Yosys measurements of the size of the buffer management
modules of the ASIC implementation in relation to the total size
of the FlexSwitch switches.

33

34 Result and analysis

Configuration Memory bits Memory area (μm)

FlexSwitch 4
ports 242804/421844(58%) 23591/45149(52%)

FlexSwitch
10 ports 1162544/1389458(84%) 60893/77456(79%)

Table 4.3: Memory measurements of the size of the buffer man-
agement modules in relation to the total size of the FlexSwitch
switches. The memory bits are the same for both the FPGA
and ASIC implementations, however, the memory area only rep-
resents the ASIC implementation.

4.2 Implementation results

The final architecture was implemented and synthesized into both an FPGA and
ASIC implementation for a four and ten-port configuration respectively. The tools
mentioned in Section 2.3 were utilized to measure the area for these implemen-
tations as well as the equivalent switches produced by the FlexSwitch tool suite.
Only the modules relating to the buffer management of the switches were used
when comparing the designs.

4.2.1 Vivado

The measurements obtain through Vivado for the FPGA implementation are pre-
sented in Table 4.4 and Figures 4.1,4.2, and 4.3.

Configuration LUT FF RAMB36 RAMB18 URAM
Thesis 4 ports 11312 9198 7 0 0
FlexSwitch 4
ports 20308 18813 11 2 0

Thesis 10 ports 35499 27992 3 1 7
FlexSwitch 10
ports 32719 34032 15 2 0

Table 4.4: Measurements obtained from Vivado for four and ten
ports respectively.

The results of the timing analysis obtained from Vivado are presented in Ta-
ble 4.5. The table presents the maximum delay path between the two different
clocks that the system uses, the core clock which is clocked at 12.5 MHz and the
overclocked fast clock which is clocked at 25 MHz.

Result and analysis 35

Figure 4.1: Number of FPGA
LUTs used vs. configuration

Figure 4.2: Number of FPGA flip
flops used vs. configuration

Figure 4.3: Ram blocks for each configuration

Configuration core-core core-fast fast-core fast-fast

Thesis 4 ports
8.67 ns
(71.34 ns
slack)

7.448 ns
(32.504 ns
slack)

4.21 ns
(35.8 ns
slack)

4.082 ns
(35.928 ns
slack)

Thesis 10 ports
18.984 ns
(61.025 ns
slack)

14.111 ns
(25.610 ns
slack)

7.336 ns
(32.675 ns
slack)

5.369 ns
(34.293 ns
slack)

Table 4.5: Measurements obtained from Vivado for the different
maximum delay in nanoseconds of the critical paths for the
different clock combinations of the design.

4.2.2 Yosys

The measurements obtain through Yosys for the ASIC implementation are pre-
sented in Table 4.6 as well as Figures 4.4, and 4.5.

36 Result and analysis

Configuration Total gate count Total flip-flops
Thesis 4 ports 111771 8699
FlexSwitch 4 ports 228121 18459
Thesis 10 ports 333637 24733
FlexSwitch 10 ports 419950 33714

Table 4.6: Measurements obtained from Yosys for four and ten-ports
respectively. (Flip-flops are included in the total gate count).

Figure 4.4: Gate equivalents gen-
erated by Yosys for each con-
figuration.

Figure 4.5: Flip flops generated
by Yosys for each configura-
tion.

4.2.3 Memory instances

The number of memory bits as well as the memory area for each configuration uti-
lize obtained through the Arm Artisan Embedded Memory compiler are presented
in Table 4.7 and Figures 4.6, and 4.7.

Configuration Memory bits Memory area (μm2)
Thesis 4 ports 236575 16286.67432
FlexSwitch 4 ports 242804 23591.07288
Thesis 10 ports 1013263 34413.82632
FlexSwitch 10 ports 1162544 60893.1324

Table 4.7: Memory measurements in bits and in silicon area.

4.3 Result analysis

The results presented in chapter four demonstrate that the thesis architecture
is successful in its aim of area optimization for the four-port configuration, but
also that the ten-port configuration seems to scale relatively poorly. The FPGA
implementation of the four-port configuration shows a decrease in lookup table
utilization, needing only 55% of the amount that FlexSwitch uses. Similarly the

Result and analysis 37

Figure 4.6: Number of bits of
memory each configuration
use.

Figure 4.7: The total area of the
memories in μm2 for each
configuration.

flip-flop count stands at 53% of the FlexSwitch counterpart, and RAM usage
is down needing only 7 36kb blocks instead of 11 and 0 18kb blocks instead of
the FlexSwitch’s 2. Comparing the utilization of different blocks of RAM is not
entirely straightforward, and given the complexity of Vivado, one cannot make
many assumptions regarding the inner workings of its compilers and how the RTL
code is mapped to the FPGA hardware, meaning that it is relatively difficult to
draw conclusions regarding how one should compare the utilization of the different
types of RAMs. However, since the four-port configuration uses fewer blocks in
both the 36 and 18 kb categories, it is safe to say that the total memory area has
been reduced. This conclusion seems to be corroborated by the fact that as can be
seen in Table 4.7, the memory instances of the four-port configuration uses 6229
fewer bits than its FlexSwitch counterpart.

The FPGA results for the ten-port configuration, however, are less straightfor-
ward. Even though the design uses only 82% of the flip-flop count of the ten-port
FlexSwitch, lookup table usage has actually increased by 8%. Similarly, the RAM
usage looks to have worsened since the thesis implementation uses a whole 7 units
of the larger 288 kb URAM blocks, whereas the FlexSwith uses only 36 and 18
kb blocks. Granted, the FlexSwitch uses 15 blocks of 36 kb blocks and 2 18kb
blocks, compared to the thesis implementation using 3 and 1 blocks respectively,
however, given the much larger size of the URAM blocks, the total memory usage
of the thesis implementation seems much higher. This is puzzling since Table 4.7
again shows that the memory instances of the ten-port configuration uses a whole
149281 fewer bits than FlexSwitch.

Looking instead at the results for the ASIC version in Table 4.6 and 4.7,
then it can again be observed that the thesis architecture demonstrates significant
reductions in area. The memory instances of the four-port configuration take
up 69% of the equivalent FlexSwitch area, and uses 49% of the FlexSwitch logic
gates. Meanwhile, the ten-port configuration also came out smaller using 57% of
the memory area and 79% of the logic gates compared to FlexSwitch.

These results suggest that the thesis architecture enables significant area re-
ductions for both ASIC and FPGA implementations for a small switch such as the
four-port configuration. Scaling up the switch configuration to a larger number of

38 Result and analysis

ports still gives beneficial results for ASIC implementations, but the results seem
to indicate that the architecture has trouble scaling up for FPGAs.

The results of the timing analysis presented in Table 4.5 demonstrate that
the timing demands are met with plenty of slack for the specified 12.5 MHz clock
frequency. This frequency gives a bandwidth of 12.5∗106 ∗8bits = 100Mbits/s per
port. The core-core clock domain allows for a theoretical maximum delay of 80 ns
while the other three involving the fast clock allow for 40 ns since the fast clock is
clocked at twice the frequency. Given this result, dividing the maximum measured
delay path by the theoretical maximum allows one to calculate the factor by which
the frequency could be multiplied while still meeting the timing requirements. The
most constrained clock domain of the four is the core-fast domain which for the
four-port configuration allows for a speedup factor of 40

7.448 = 5.37. This means that
the switch could be scaled up to handle port bandwidths of over 500 Mbits/s using
this FPGA technology. The ten-port configuration yields a maximum speedup of

40
25.610 = 1.56, meaning that this switch could be scaled up to handle around 150
Mbits/second.

4.4 Architecture analysis

The architecture itself has several aspects that directly serve to benefit the thesis
goal of area reduction, as well as certain limitations that future work could po-
tentially reduce. For starters, one of the main design principles that was heavily
utilized in the architecture is the method of combining different memories into a
large shared unit. If many ports can share a single memory buffer, that allows one
to avoid duplicating logic for managing reads and writes to different memories.
This also allows for better utilization of the existing memories, since one heavily
congested port can utilize memory space that would otherwise be exclusively re-
served for another port, even though that memory could potentially be unused at
that moment.

This principle of shared memories is also observed to be applicable when two
different components of the switch can share the same memory if they will exclu-
sively occupy distinct memory regions that are guaranteed not to overlap. Given
the fact that this is the case for the memory regions that the free list and the
packet data will occupy, having these two share the same link memory, eliminates
an entire memory of equivalent size that would otherwise have been needed. How-
ever, this would not be possible for certain higher-end switch specifications, since
the memory needs to be overclocked to twice the regular clock frequency to enable
this kind of memory sharing. This is the case, since both the free list and the
read/write processes that handle the links between cells in a packet, must be able
to independently access and modify the content of the memory concurrently.

Another decision that benefits the overall area is the decision to design the
architecture around a method of allocation that does not explicitly need to know
the size of the entire packet at the time of allocation, but rather allocates space
for the individual cells as they come. This allows for the switch to utilize buffers
that are only one cell in size rather than buffering the entire packet after the SP
module, before they can be written to memory. Combining this principle from the

Result and analysis 39

Cut-Through architecture with the rest of the thesis design seems to have directly
reduced the overall area of these modules.

Constructing the data path through the packet processing modules IPP and
EPP as a loop with the buffer manager also allowed for certain area optimizations.
Structuring the architecture in this way comes at the cost of halving the output
bandwidth of the BM module, but this is completely fine for a lower-end switch
such as the ones implemented here, given the fact that the bandwidth requirements
for these switches can still be achieved. This allowed the flow of packets to and
from the packet processing modules to be treated almost exactly the same as the
flow of packets to and from the real switch ports, which in turn allows for a lot of
the internal logic of the buffer manager to be reused. A slight drawback to this
approach is the fact that since both the CBI and CBE modules now reside in the
same memory, certain data values will need to be saved unnecessarily. A packet
that conceptually resides in the CBI module, will not need to store a bitmask
representing its destination ports, since these values are not yet known, but it will
need to store its source port. Likewise, a packet that resides in the CBE module
will not need to know its source port, but it does need to know its destination ports.
In the case of the thesis switch, both packets will still need hardware capable of
storing both of these values even though only one will be needed for any given
packet, which would not be the case if CBE and CBI were completely separate
modules. It would be interesting to implement another version of the architecture
that separates these two modules to compare the total sizes so that the question
of whether the area saved by the reuse of logic of the thesis design outweighs the
unnecessarily stored data.

Finally, the decision to use the shared-memory linked list architecture as a
base, not only greatly simplifies the allocation algorithm that can be utilized, and
thus reduces area in the form of the gates required to implement more complex
algorithms, but it also grants the switch perfect utilization of the memory at the
level of cells. This completely eliminates the issue of fragmentation, since cells
can be allocated in any order so long as the links between them are set. This
does however come at the cost of needing more pointers in the form of the link
memory, which means that these results are insufficient grounds to draw the di-
rect conclusion that this architecture is definitively smaller than an architecture
that implements a more complex algorithm that utilizes some form of contiguous
allocation. This could serve as a starting point for future work, where such an im-
plementation could be compared to the thesis architecture so that more definitive
conclusions could be drawn regarding how the different modules of the architecture
impact the total size of the switch.

The architecture implemented in this project had the aim of being suitable
for switches with low bandwidth and few ports. For a switch with more ports the
SP module and its interface with CBI would need to be altered. In the case with
many ports, a lot of demand would be put on writing to CBI, since there are a lot
of parallel data paths into the buffer. There would be an inevitable bottleneck,
either at the writing to CBI, if it would be a shared buffer, or to IPP if the
switch would have one buffer per input port. FlexSwitch is designed to be able to
generate switches with different amounts of input ports. Therefore the architecture
generated by the tool has a comparatively large module for parallelizing data and

40 Result and analysis

writing it to the ingress buffer. However, for small switches with few ports, there is
no problem in letting each input port get more direct access to the CBI. This saves
on both logic and buffer area, compared to the design generated by FlexSwitch,
and other architectures capable of handling many parallel input ports.

In Section 3.3 the relation between the number of ports and cell size was
discussed, specifically regarding the bandwidth and timing when writing to the
CBI. The highest bandwidth used in this project is 10 ports with capacity for
one byte each clock cycle, which gives a total input bandwidth of 10 bytes per
clock cycle. The buffer manager module can handle one cell per cycle but needs
to process each packet twice, which gives it a maximum capacity of half a cell
per clock cycle. This means that there is a discrepancy between the input and
output bandwidth of the buffer manager. However, this surplus of bandwidth on
the input of the buffer manager results in the module being idle. The main idea of
this project is to trade clock cycles to save area, and with the final implementation,
there are still clock cycles to spare. One way of utilizing these extra clock cycles
was discussed in Section 3.2.2, however, those methods were deemed infeasible or
unnecessary. In future works, different ways of utilizing these extra clock cycles
could be explored, either in ways to further reduce the silicon area of the switch
or perhaps in ways to increase performance. For example, one approach could
be to shorten the critical paths in the implementation, in order for the switch to
be able to handle higher bandwidths. Although this is entirely dependent on the
technology used, it always has the potential to increase the maximum bandwidth
the switch can handle.

Chapter 5
Future work and conclusions

5.1 Future work and improvements

5.1.1 External buffers

The thesis work has yielded several ideas regarding potential improvements to the
architecture. Currently, there are two major drawbacks to the design that could in
theory be eliminated if the architecture was developed further. The first of these
is the fact that currently, each packet that is to be sent out to its destination port
is first sent to an external egress buffer that sends one cell at a time to the PS
module. This decision was taken since it greatly simplifies the logic of outputting
packets from the buffer manager and allows packets being sent to the PP module
to be handled in the same way as packets being sent to output ports, which allows
for the reuse of existing logic. However, this means that these external egress
buffers must be exclusively dedicated to a single port and this memory will be
unavailable to other ports that could potentially utilize it if the memory were
shared. If logic was implemented that handled the sending of cells directly from
the buffer manager to the PS modules, then the need for these external buffers
would be eliminated. This is not to say that they could be completely removed
from the design, as their memory capacity would still be needed in the calculation
of the minimum required memory of the buffer manager. Essentially these buffers
would instead become a part of the main buffer memory which would increase its
potential utilization and possibly enable it to be slightly reduced in size. However,
this would require much more complex logic with counters and a sophisticated
scheduler ensuring that each PS module receives its cell at precisely the correct
clock cycle, so that no gaps appear in the output data, corrupting the packet.

5.1.2 Headers

Another area of improvement in the design can be found within the headers mem-
ory. Currently, this memory stores lots of information regarding each packet in the
switch, and given the fact that packets can be as small as two cells in the current
design, that means that this memory must have the capacity to store as many
entries as there are cells in the memory divided by two. Given the large depth of
this memory, reducing the size of each entry would yield large reductions in its
area. Currently this memory stores pointers to the first and last cell of the packet,

41

42 Future work and conclusions

however upon further analyzing this design in conjunction with the engineers at
Packet Architects, it was revealed that these pointers could removed from this
memory if certain alterations were made to the architecture. The first pointer is
needed in order to be able to start reading a packet from memory so that it can
be sent either to the PP module or out of the buffer manager to its destination
port. Currently, the logical queues that are implemented in the thesis architecture
store pointers to the address of the header of the packet that lies in the queue,
which is then used to index the header memory and retrieve the address of the
first cell of the packet. However, instead of storing a pointer to the address of
the header, these queue memories could instead directly store the address of the
first cell, which removes one level of indirection and allows for the first pointers to
be removed from the header entries. The pointer to the last cell of the packet is
needed for two different reasons. The first is that when a packet is being written
to the buffer manager, each cell arriving needs to be linked to the previous cell
of the packet. That means that a pointer is required to keep track of which cell
is the current last cell of the packet so that this link can be written to the link
memory. However, this pointer does not necessarily need to reside in an entry
in the header memory. Instead, there could exist one such pointer per port that
keeps track of the address of the last cell that was written. Having one pointer per
port instead of one per header entry would greatly reduce the number of pointers
that are stored. The second reason the pointer is needed is so that the buffer
manager can determine when all cells of a packet have been read. An alternate
solution to this problem is to replace the last pointer in the header entry with a
much smaller memory containing a one bit flag for each cell in the memory which
could be read to determine if the cell is the last in its package or not. Using one bit
per cell instead of one address per header would also reduce the total number of
memory bits utilized so long as the header pointer is larger than two bits. If these
two alternatives were implemented, then the last cell pointer could be completely
removed from the header entries which would greatly reduce its size.

5.1.3 Overclocking

Another area that could be explored further is the ways in which overclocking
could be utilized. The thesis architecture utilizes overclocking to double the ports
of certain memories in order to ensure that the free list and cell links can share
the same memory. Another way that overclocking can be utilized is not to expand
the number of ports, but rather the shorten the data width of the memory. As has
been previously discussed in Section 3.3.3, a single bit of data in a memory will
not always occupy the same amount of silicon area, but instead, be dependent on
how that memory is constructed. Given that the data width of the memory will in
some way affect the total area that the memory will need to occupy, overclocking
the memory and writing a subsection of the data comprising the total data width
on each overclocked cycle, could potentially alter the size of the memory. Given
the low clocking requirements of the switch, this is another avenue that could be
pursued to potentially reduce the switch area even further.

Future work and conclusions 43

5.1.4 CBI and CBE separation

Future work studying an alternate version of this architecture where CBI and
CBE are separated into two modules would be able to more conclusively answer
questions regarding the design decisions made during this thesis. Additionally,
implementing an architecture that utilizes contiguous allocation and comparing it
to the thesis architecture would also be of great benefit, as suggested above.

5.2 Conclusion

This thesis project aimed to compare different architectures for L2 ethernet switches
in order to produce an architecture that was optimized for silicon area, that could
be utilized for smaller low-end switches. The resulting measurements of the switch
implementation allow one to conclude that the architecture that was produced dur-
ing this thesis, succeeds in terms of optimizing the switch’s silicon area for smaller
port configurations, and could be utilized to produce a smaller switch compared
to contemporary alternatives such as the FlexSwitch architecture. However, even
though the ASIC implementation of the architecture performed well for both the
four and ten-port configurations, the observation that the architecture currently
seems to not scale well for FPGA implementations when the number of ports
increases, suggests that further work is necessary, exploring some of the above
suggested improvements, before the architecture could be deemed generally useful
for low-end switches.

44 Future work and conclusions

References

[1] IDC’s Worldwide Quarterly Ethernet Switch and Router Trackers Show
Continued Growth in Third Quarter of 2022. International Data Cor-
poration. https://www.idc.com/getdoc.jsp?containerId=prUS49948322.
(Accessed May 8, 2023)

[2] N. Farrington et al. Data Center Switch Architecture in the Age of Mer-
chant Silicon. 17th IEEE Symposium on High Performance Interconnects.
New York. NY. USA. 2009. pp. 93-102

[3] E. Bastos et al. MOTIM - A Scalable Architecture for Ethernet Switches.
IEEE Computer Society Annual Symposium on VLSI (ISVLSI ’07), Porto
Alegre, Brazil, 2007, pp. 451-452, doi: 10.1109/ISVLSI.2007.70.

[4] From Sand to Silicon “Making of a Chip” Illustrations. Intel. (2011).
https://download.intel.com/newsroom/kits/chipmaking/pdfs/

Sand-to-Silicon_32nm-Version.pdf. (Accessed May 11, 2023)

[5] Logic Technology, Taiwan Semiconductor Manufacturing Company, https://
www.tsmc.com/english/dedicatedFoundry/technology/logic, (Accessed
May 11, 2023)

[6] K. Pagiamtzis, A. Sheikholeslami. (2006). Content-Addressable Memory
(CAM) Circuits and Architectures: A Tutorial and Survey. IEEE Journal
Of Solid-State Circuits. vol. 41, no. 3, p. 712,

[7] Switching modes: Store-and-Forward vs Cut-Through. Network
Academy. https://www.networkacademy.io/ccna/ethernet/

store-and-forward-vs-cut-through-switching. (Accessed May 31,
2023)

[8] B. Kernighan, D. Ritchie. (1988). The C Programming Language (Second
ed.). Prentice Hall P T R. p. 185-189

[9] D. Knuth. (1997). The Art of Computer Programming. Vol. 1 (Third ed.).
Addison-Wesley. p. 435–455.

[10] H. J. Chao, B. Liu (2007). High Performance Switches and Routers. John
Wiley Sons Inc. p. 207-213.

45

46 References

[11] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001). pp.1-590, 7 April 2006, doi:
10.1109/IEEESTD.2006.99495.

[12] Overview. MyHDL Community. https://www.myhdl.org/start/overview.
html. (Accessed May 16, 2023)

[13] Vivado Overview. Xilinx, Inc. https://www.xilinx.com/products/

design-tools/vivado.html. (Accessed May 16, 2023)

[14] Understanding FPGA Architecture. Xilinx, Inc. https://www.xilinx.com/
htmldocs/xilinx2017_4/sdaccel_doc/odz1504034293215.html (Accessed
May 16, 2023)

[15] BRAM and Other Memories. Xilinx, Inc. https://www.xilinx.com/

htmldocs/xilinx2017_4/sdaccel_doc/jbt1504034294480.html. (Ac-
cessed May 19, 2023)

[16] Xilinx Power Estimator User Guide (UG440). Xilinx, Inc. https:

//docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator/

UltraRAM-support-for-UltraScale-Devices. (Accessed May 19, 2023)

[17] Yosys Open Synthesis Suite. YosysHQ. https://yosyshq.net/yosys/

about.html. (Accessed May 16, 2023)

[18] Flows/FreePDK45. Oklahoma State University. https://vlsiarch.ecen.

okstate.edu/flow/. (Accessed May 16, 2023)

[19] G. Petley. Illinois Institute of Technology, Oklahoma State University Cell Li-
braries. https://www.vlsitechnology.org/html/libraries04.html. (Ac-
cessed May 16, 2023)

[20] proFPGA Xilinx Virtex UltraScale+ XCVU13P FPGA. Xilinx, Inc. https://
www.xilinx.com/products/boards-and-kits/1-18q1pyl.html. (Accessed
May 16, 2023)

[21] Virtex UltraScale+. Xilinx, Inc. https://www.xilinx.com/products/

silicon-devices/fpga/virtex-ultrascale-plus.html. (Accessed May
16, 2023)

[22] Artisan Embedded Memory IP. arm. https://www.arm.com/zh-TW/

products/silicon-ip-physical/embedded-memory. (Accessed May 16,
2023)

[23] K. Eshraghian, N. H. E. Weste (1993). Principles of CMOS VLSI Design
(Second ed.) Addison-Wesley. p. 563-579

Exploring Ethernet Switching Architectures for
Area-Efficient Low-End Switches

JON SWEDBERG AND FELIX GHOSH
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

JO
N

 SW
ED

B
ER

G
 A

N
D

 FELIX
 G

H
O

SH
Exploring Ethernet Sw

itching A
rchitectures for A

rea-Effi
cient Low

-End Sw
itches

LU
N

D
 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-920
http://www.eit.lth.se

