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Abstract

The method of solving boundary value problems of partial differen-
tial equations numerically by first reformulating the problem as a bound-
ary integral equation has many advantages over other methods, but also
some unique difficulties. Some of these difficulties stem from problems
in evaluating singular or nearly singular integral operators, and solving
these difficulties is an active field of research. Known results are sum-
marized, and an accessible program package is developed, using under-
lying Gauss–Legendre quadrature and product integration, which can be
applied to boundary value problems with smooth boundaries. The pro-
gram package is available on Github at the link https://github.com/

erikandersson98/BIE-CELib. Different methods of implementing inte-
gral operators related to the Laplace and Helmholtz equations are com-
pared with regards to accuracy and convergence rate, both when used in
boundary value problems, and when applied to theoretical identities. The
methods are based on product integration, as well as on global and local
regularization. To conclude, recommended implementations based on the
results are given, as well as possible directions to expand the package.

1 Introduction

When solving boundary value problems (BVPs) of linear partial differential
equations (PDEs) with piecewise constant coefficients, one can often represent
the solution in the form of a convolution of a layer density against the fundamen-
tal solution of the PDE over a boundary, yielding a boundary integral equation
(BIE). Discretizing this BIE is a method of solving boundary value problems,
which has some advantages over other methods, like the finite element method.
First, since only the boundary needs to be discretized the dimension of the
problem is reduced to the dimension of the boundary. Second, boundary in-
tegral equation methods can yield very high accuracy results and high rates
of convergence compared to other methods. But there are also problems as-
sociated with methods of discretizing BIEs, like difficulties stemming from a
singular integral kernel, and difficulties evaluating the field close to, or on, the
boundary. Solving these difficulties is very much an active field of research.
State-of-the-art methods include, for example, the hedgehog method [19], re-
lated to quadrature by expansion [18], and modified versions of the trapezoidal
rule and Gauss–Legendre quadrature [10]. Also worth mentioning is the method
from the recent article [21], which utilises Stokes theorem on manifolds to solve
problems for 3-dimensional geometries. In this paper, the method of product
integration with an underlying Gauss–Legendre quadrature [14] is used to solve
the problem of evaluation close to the boundary.

The paper is about implementation of integral operators that come up when
solving the Laplace equation and the Helmholtz equation in the plane using BIE
methods. The main purpose of the paper is to summarize known results and to
develop an easily accessible program package for MATLAB, to be used by in-
terested parties. Secondly, the purpose is also to test different implementations
of integral operators arising in the solution of the Laplace and Helmholtz equa-
tions, specifically different implementations on the boundary. The package can
be found on GitHub at https://github.com/erikandersson98/BIE-CELib.

The paper is organized as follows. The current section, Section 1, serves as
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an introduction, with Section 1.1 being an introductory example to exemplify
the general structure of the types of numerical solution this paper is concerned
with, as well as to give context to the theory in Sections 2-6. In Section 2
some integral operators which arise in the solution of the Laplace equation
in the plane are introduced and defined. Section 3 describes the method of
product integration, and Section 4 introduces the methods global and local
regularization, which can serve as an alternative to product integration for target
points on a smooth boundary. Two different methods of local regularization
are considered depending on which variable interpolation is carried out in. In
Section 5 methods of handling the branch cut of the logarithm are described with
one of the methods seemingly being new for this paper. Section 6 introduces
operators which arise in the solution of the Helmholtz equation, as well as
describes a kernel splitting method of handling these operators using the theory
of product integration and regularization from Sections 3 and 4. In Section 7 the
tests which were conducted to compare the implementations are described, and
Section 8 shows the results of these tests. Lastly, Section 9 ends with discussion
of the results as well as conclusions.

1.1 Introductory example

We start with an example showing how one might arrive at an integral equation
from a BVP, and outlining the general procedure of solving the BVP. First we
apply Nyström discretization in Section 1.1.1, and then deal with a singular
integrand in Section 1.1.2, which will turn out particularly easy in this first
example. Lastly, field evaluation is mentioned in Section 1.1.3.

Consider the Interior Dirichlet problem for the Laplace equation in the plane,
that is

∆U(x) = 0 , x ∈ D , (1)

with D being some interior domain with boundary Γ. On Γ we have Dirichlet
boundary conditions

lim
D∋x′→x

U(x′) = g(x), x ∈ Γ . (2)

It is often possible to represent the solution U(x) in the form

U(x) =
1

π

∫
Γ

µ(y(t))(n(t) · (y(t)− x)) dt

|y(t)− x|2
, x ∈ D , (3)

where dt is an element of arc length, n is the outward unit normal on Γ, and
y(t) is a point on Γ. We make an ansatz that the solution U can, in fact, be
represented as in (3). The function µ(x) is called the layer density, which is
what we want to solve for as it then determines U(x). By way of identification
of R2 with the complex plane, C, z = x, n = n as well as dτ = indt with the
complex integration variable τ = y(t), we get

U(x) =
1

π

∫
Γ

µ(y(t))(n(t) · (y(t)− x)) dt

|y(t)− x|2
=

1

π

∫
Γ

µ(τ)ℜ(n̄(τ − z)) dt

|τ − z|2

=
1

π

∫
Γ

µ(τ)ℜ
(

dτ

i(τ − z)

)
=

1

π

∫
Γ

µ(τ)ℑ
(

dτ

τ − z

)
= U(z), (4)
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where the notation ℜ is used for the real part and ℑ for the imaginary part.
From (2), (4) and jump relations [9, Eqs. (2.5) and (2.6)] we get the Fredholm
integral of the second kind

µ(z) +
1

π

∫
Γ

µ(τ)ℑ
(

dτ

τ − z

)
= g(z) , z ∈ Γ . (5)

The jump relations describe how the values of the layer density on the boundary
relate to the values off the boundary.

To move further we specify the boundary Γ by a parametrization z(p), −π ≤
p < π. In this example the following parametrization holds

z(p) = (1 + a cos 5p)eip , (6)

with a = 0.3, see Figure 1. Since dτ = τ ′(p)dp, we can write (5) as

µ(z) +
1

π

∫ π

−π

µ(p)ℑ
(

τ ′(p)

τ(p)− z

)
dp = g(z) , z ∈ Γ . (7)
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'Starfish' boundary with a = 0.3

Figure 1: Starfish boundary (6), with a = 0.3.

1.1.1 Nyström discretization

Having arrived at the BIE (5), Nyström discretization leads to a system of
equations which can be solved numerically. First, composite Gauss–Legendre
quadrature is applied to the integral in (5). Divide the boundary into N panels,
Λi, i = 1, 2, . . . N , each spanning a parameter interval [ai, bi) of length ∆pi
in the parameter p which will each be integrated by 16-point Gauss–Legendre
quadrature.

µ(z) +
1

π

N∑
i=1

∫ bi

ai

µ(p)ℑ
(

τ ′(p)

τ(p)− z

)
dp = g(z) . (8)

We introduce the canonical Gauss–Legendre nodes sj and weights wj , j =
1, 2, . . . , 16. They can be used to integrate the interval [−1, 1], but here we have
intervals of length ∆pi. With a change of variables

s(p) =
p

∆pi
+ ai , (9)
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we get,∫ bi

ai

µ(p)ℑ
(

τ ′(p)

τ(p)− z

)
dp =

∫ 1

−1

µ(s)ℑ
(

τ ′(s)

τ(s)− z

)
∆pi ds

≈ ∆pi

16∑
j=1

wjµ(sj)ℑ
(

τ ′(sj)

τ(sj)− z

)
=

16∑
j=1

wi,jµ(pi,j)ℑ
(

τ ′(pi,j)

τ(pi,j)− z

)
, (10)

where wi,j = ∆piwj are the rescaled Gauss–Legendre weights, and pi,j =
∆pi(sj − ai) are the rescaled Gauss–Legendre nodes. Throughout the paper,
functions f(x) of some variable x will be written f(y) for some integration
variable y. This is shorthand which should be interpreted as f(y) = f(x(y)).
See (8) where µ(p) is shorthand for µ(τ(p)), or (10) where τ(s) is shorthand for
τ(p(s)). In short, we switch integration variables, but don’t want to introduce
intermediary functions or write out f(x(y)) every time, so we let the relation
be implicit and only write the dependence on the integration variable, f(y).
Introducing the shorthand f(pi,j) = fi,j , as well, we get

µ(z) +
1

π

N∑
i=1

16∑
j=1

wi,jµi,jℑ
(

τ ′i,j
τi,j − z

)
≈ g(z) . (11)

We arrive at Equation (11), where we have discretized the integral on the
left-hand side of (5). As the next step we set this equation to hold at every
quadrature node and get a large system of 16N equations. Relabelling pi such
that the index i = 1, 2, . . . 16N goes through every node of every panel in order,
and using the notation f(pi) = fi, we get

µi +
1

π

16N∑
j=1

wjµjℑ
(

τ ′j
τj − τi

)
= gi , i = 1, 2, . . . 16N . (12)

Or written in matrix form,
(I −K)µ = g , (13)

which we can solve for µ, a vector of µ(z) evaluated at the nodes. The reason-
ing for the −K will be clear later, as this is the negative Neumann–Poincaré

operator. The matrix −K has elements 1
πwjℑ

(
τ ′
j

τj−τi

)
. To make sense of the

diagonal elements we need to consider limit values, which we do in Section 1.1.2.
Equations (12) and (13) are the Nyström discretization of the original integral
equation (5).

1.1.2 Limit values

Some trouble occurs when i = j in (12) since there is a singularity in
τ ′
j

τj−τi
, but

the imaginary part is actually finite. Considering the real parameter p variable:

τ ′(pj)

τ(pj)− τ(p)
= −

|τ ′j |2

(p− pj)|τ ′j +O(p− pj)|2
−

τ ′jτ
′′
j

2|τ ′j +O(p− pj)|2
+O(p− pj) .

(14)
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The first term on the right hand side of (14) has no imaginary part, and the
third term goes to zero as p goes to pj , so we only need to consider the second
term.

lim
p→pj

ℑ
(

τ ′j
τj − τ(p)

)
= lim

p→pj

ℑ

(
−

τ ′jτ
′′
j

2|τ ′j +O(p− pj)|2

)
=

τ ′′j
2τ ′j

, (15)

and this limit value is used in the diagonal elements in the matrix K.

1.1.3 Field evaluation

In the field evaluation we evaluate the function U(x) = U(z) from (3), for z ∈ D.
After solving (13) for the density µ, field evaluation is in theory easy. We only
need to integrate

U(z) =
1

π

∫
Γ

µ(τ)ℑ
(

dτ

τ − z

)
≈ −Kµ , z ∈ D . (16)

But in practice there are difficulties in the evaluation for z close to the boundary
Γ, because of the pole in the integrand. We did not have difficulties with the
Nyström discretization stemming from close evaluation on the boundary, since
the integrand in (8) is smooth, at least on a smooth boundary, and its singularity
is removable, replaced with a limit value in the diagonal of K. It might not be
clear at first glance that the integrand is smooth on a smooth boundary, but the
fact that numerical results are good even without close evaluation considerations
indicates this, as well as, for example, [13, Sec. 4.3]. We will put a pin in this
and move on to some more general concepts and return later to field evaluation.

2 Operators and potentials, Laplace equation

In this section we define integral operators which arise in the solution of the
Laplace equation. Since this is not the first paper written on the subject of
boundary integral equations, most of the more common integral operators have
already been named, and it is good if naming conventions are respected. Though
in this case, it is difficult to find consistent naming conventions, and there can
be differences in sign or a multiplicative constant between different authors.
Integral operators from potential theory are also called layer potentials in the
literature, and we will use the terms layer potential and integral operator syn-
onymously for those integral operators.

Starting with the fundamental solution to Laplace’s equation in two dimen-
sions

E(x,y) =
1

2π
log

1

|x− y|
, (17)

we define the single-layer potential,

Sf(x) =

∫
Γ

E(x,y)f(y) d|y| , (18)

as well as the double-layer potential [3, Eq. (2.2)]

Df(x) =

∫
Γ

∂

∂ny
E(x,y)f(y) d|y| , (19)
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and the adjoint of the double-layer potential

DAf(x) =

∫
Γ

∂

∂nx
E(x,y)f(y) d|y| , (20)

where the directional derivatives

∂

∂ny
= ny · ∇y ,

∂

∂nx
= nx · ∇x , (21)

have been introduced. We have

∇yE(x,y) =
1

2π

x− y

|x− y|2
, (22)

so the double-layer potential and it’s adjoint are

Df(x) =

∫
Γ

D(x,y)f(y) d|y| = 1

2π

∫
Γ

ny · (x− y)

|x− y|2
f(y) d|y| , (23)

DAf(x) =

∫
Γ

DA(x,y)f(y) d|y| = − 1

2π

∫
Γ

nx · (x− y)

|x− y|2
f(y) d|y| , (24)

where D(x,y) is the kernel of the double-layer potential, and DA(x,y) is the
kernel of its adjoint.

There is also a similar integral operator to the double-layer potential, namely,
the Neumann–Poincaré operator [3, Eq. (2.5)],

Kf(x) = 2

∫
Γ

D(x,y)f(y) d|y| = 1

π

∫
Γ

ny · (x− y)

|x− y|2
f(y) d|y| . (25)

The adjoint to the Neumann–Poincaré operator is then obtained by replacing
D(x,y) with DA(x,y) in (25).

To give some examples of works which use different definitions, in [9], the
single-layer and double-layer potentials are of opposite sign, and in [6] the ker-
nel of the Neumann–Poincaré operator seems to be −DA(x,y). Though the
definitions given above seem most common in the literature and are used in this
paper.

Of use when discretizing layer potentials are the following three integral
operators: The Cauchy singular operator

MCf(z) =
1

πi

∫
Γ

f(τ) dτ

τ − z
, (26)

the logarithmic operator

MLf(z) =

∫
Γ

f(τ) log |τ − z|d|τ | , (27)

and the hypersingular operator

MHf(z) =
1

πi

∫
Γ

f(τ) dτ

(τ − z)2
. (28)

Note that these integral operators are defined on functions of a complex variable.
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In order to make sense of the singularities in the integrands of the integral
operators (26) and (28), in the context of solving BIEs arising from BVPs for all
problems considered in this paper, MC should be taken in the Cauchy principal
value sense and MH should be taken as the Hadamard finite part. There exist
obvious connections between MC and the double-layer potential and Neuman–
Poincaré operators, as well as between ML and the single-layer potential. For
real f , the real part of MC is the negative Neumann–Poincaré operator. Only a
multiplicative constant separates the double-layer potential from the Nemann–
Poincaré operator, and only a multiplicative constant separates the single-layer
potential from ML.

As in Section 1, by identification of R2 with C, τ = y and z = x, the single-
layer and double-layer potentials as well as the Neumann–Poincaré operator can
be written as integrals in a complex variable. Using d|y| = d|τ | = 1

iny
dτ ,

Sf(z) = − 1

2π

∫
Γ

f(τ) log |z − τ |d|τ | , (29)

Df(z) =
1

2π

∫
Γ

f(τ)ℜ
(
nτ (z̄ − τ̄)

|z − τ |2
d|τ |

)
=

1

2π

∫
Γ

f(τ)ℜ
(

dτ

i(z − τ)

)
, (30)

DAf(z) =
1

2π

∫
Γ

f(τ)ℜ
(
nz(z̄ − τ̄)

|z − τ |2
d|τ |

)
=

1

2π

∫
Γ

f(τ)ℜ
(
nzn̄τ dτ

i(z − τ)

)
, (31)

Kf(z) =
1

π

∫
Γ

f(τ)ℜ
(

dτ

i(z − τ)

)
. (32)

3 Product integration

3.1 General

In this section we summarize the product integration method introduced in [14]
and expanded in [20, 11]. Starting in Section 3.1 with the concept and general
notation. In Section 3.2 selected product integration weights are introduced and
calculated, and in Section 3.3 the operators MC, ML, and MH are rewritten to
a form in which the product integration weights are easily applied. Lastly, in
Section 3.4 we return to field evaluation of the introductory example mentioned
in Section 1.1.3.

In the evaluation of a layer potential close to a kernel singularity, there could
be problems with discretization, as mentioned in Section 1.1.3. The problem
was not present for z ∈ Γ in (13) since the singularity was removable in this
case and the integrand was smooth if the boundary was smooth. Sometimes
we will have the same problem in the discretization on the boundary, say, with
any of the three operators MC, ML and MH. One way to solve this problem
of close evaluation is to split the integration over the panels and use product
integration on the panels close to the singularity, a method popularized in [14].
For an integral operator with kernel G(z, τ),∫

Γ

G(z, τ)f(τ) dτ =

∫
Γf

G(z, τ)f(τ) dτ +
∑
i∈Ic

∫
Λi

G(z, τ)f(τ) dτ , (33)

where Ic is an index set of panels close to the target point, z, and Γf is the part
of the boundary far from the target point. This split of the boundary can be
seen for the starfish boundary and an example point in Figure 2.
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Figure 2: Split of boundary into one part close to target point, Γc, and one
far from target point, Γf . Target point is z = 0.7 + 0.5i, seen in red. Starfish
boundary used with 30 panels.

Two schemes for determining which panels are considered far from the target
point and close to the target point are explained in Section 7.4. After a split
according to (33), for each of these integral terms close to the singularity we
transform the panel by scaling, rotation and translation, so that it starts in −1
and ends in 1. Calling this transformed panel Λt

i, we end up with a sum of
terms like ∫

Λt
i

G(z, τ)f(τ) dτ . (34)

And here we interpolate f(τ) as a polynomial on the transformed panel. If we
interpolate to a polynomial of order m, f(τ) ≈

∑m
i=0 αiτ

i, and integrate each
term exactly, we end up with∫

Λt
i

G(z, τ)f(τ) dτ ≈
m∑

k=0

αk

∫
Λt

i

G(z, τ)τk dτ =

m∑
k=0

αkGk(z) , (35)

where Gk(z) denotes the exact value of the integral of the kernel G(z, τ) multi-
plied with a monomial τk.

For the part of the boundary far from the singularity, Γf , regular Gauss–
Legendre quadrature can be used. If we use 16-point Gauss–Legendre quadra-
ture, we could interpolate f as a 15-degree polynomial using the quadrature
nodes, τi, i = 1, 2, . . . 16.

We interpolate by solving the system of equations

15∑
k=0

τki αk = f(τi) , i = 1, 2, . . . , 16 ,

⇐⇒ V α = f , (36)

where V is a Vandermonde matrix. If f is a layer density, then we might not
know the value of f at the nodes, in fact, that is exactly what we are trying
to approximate in the first step of solving the BIE, the Nyström discretization.
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But in the product integration∫
Λt

i

G(z, τ)f(τ) dτ ≈
m∑

k=0

αkGk(z) = G(z)Tα = G(z)TV −1f . (37)

We can factor out f and include the remaining factors in the matrix resulting
from Nyström discretization. In other words, if product integration is used
for the Nyström discretization, the result is a modification to the matrix so
that it includes submatrices of the form G(z)V −1, corresponding to the close
evaluation. If the close evaluation is used in field evaluation, then f is known
at the quadrature nodes and (37) can be used immediately for a target point z.

3.2 Product integration weights on transformed panels

If we want to use product integration in the close evaluation for the operators
MC, ML and MH, we need the following quantities, which we call product
integration weights,

pk(z) =

∫
Λ

τk dτ

τ − z
, (38)

qk(z) =

∫
Λ

τk log(τ − z) dτ , (39)

p̃k(x) =

∫ 1

−1

sk ds

s− x
, (40)

q̃k(x) =

∫ 1

−1

sk log |s− x|ds , (41)

rk(z) =

∫
Λ

τk dτ

(τ − z)2
, (42)

where k = 0, 1 . . . , 15 and Λ is a transformed panel, starting in −1 and ending in
1. The variants (40) and (41) are taken with the parameter integration variable
s, with x being the parameter value corresponding to the target point z, that
is, τ(x) = z where τ(s) is a parametrization of the whole boundary Γ, with τ(s)
for s ∈ [−1, 1] being points on the panel Λ.

If z ∈ Λ or τ(x) ∈ Λ then (38) and (40) are to be taken in the Cauchy
principal value sense, and (42) is to be taken as the Hadamard finite part, see
Section 2. If the boundary is smooth we could imagine pushing the boundary to
move in a circle segment, Cϵ, of radius ϵ around the target point z, see Figure 3.
With Λϵ being the panel Λ with the segment inside the circle of radius ϵ around
z removed, and assuming that the branch cut of log(τ − z) isn’t crossed as τ
traverses the curve Λϵ + Cϵ, z being fixed,∫

Λϵ+Cϵ

dτ

τ − z
= log(1− z)− log(−1− z) , (43)∫

Λϵ

dτ

τ − z
= log(1− z)− log(−1− z)−

∫
Cϵ

dτ

τ − z
. (44)

The principal value of (38) for z ∈ Λ is the limit of the integral along Λϵ in (44)
as ϵ → 0, so on a smooth boundary and assuming the branch cut of log(τ − z)
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isn’t crossed as τ traverses Λϵ + Cϵ, we get

p0(z) =

{
log(1− z)− log(−1− z) , if z /∈ Γ ,

log(1− z)− log(−1− z)∓ πi , if z ∈ Γ ,
(45)

where the sign of πi is dependent on the orientation of the circle segment Cϵ.
Note that in one of these cases of circle orientation, the assumption that the
branch cut of log(τ−z) isn’t crossed will not hold, so we need to compensate this
case by adding or subtracting 2πi. What is seemingly two answers depending on
the sign of πi in (45), is actually the same answer because of this compensation
term.

Once we have p0(z), we can get all other pk(z) by recursion,

pk+1(z) = −zpk(z) +
1− (−1)k+1

k + 1
, k = 1, 2, . . . ,m− 1 . (46)

We also get qk(z) by integration by parts,

qk(z) =
−pk+1(z) + log(1− z)− (−1)k+1 log(−1− z)

k + 1
, (47)

So far we haven’t committed to a branch of the logarithm, keeping the
general notation log, but if k is even then we now get a qk(z) which varies
depending on which branch of the logarithm is chosen, because the log terms
are added instead of subtracted. So do we now need to commit to a branch,
and if so which one? For now we can state that the integral (39) comes from
the logarithmic operator (27) and the rewrite∫

Λ

f(τ) log |τ − z|d|τ | =
∫
Λ

f(τ)ℜ
(
log(τ − z)

dτ

inτ

)
= ℜ

(∫
Λ

ℜ(f(τ))
inτ

log(τ − z) dτ

)
+ iℜ

(∫
Λ

ℑ(f(τ))
inτ

log(τ − z) dτ

)
. (48)

In (48) the functions to be interpolated are ℜ(f(τ))
inτ

and ℑ(f(τ))
inτ

. The logarithmic
operator has log |τ−z| in the integrand and so obviously shouldn’t depend on the
choice of branch, but the problem arises as a result of the inexact interpolation.
Let us assume f is real, and we have∫

Λ

f(τ) log |τ − z|d|τ | = ℜ
(∫

Λ

f(τ)

inτ
log(τ − z) dτ

)
≈ ℜ

(∫
Λ

(

m∑
k=0

αkτ
k) log(τ − z) dτ

)
. (49)

For (49) we get

ℜ

(∫
Λ

(

m∑
k=0

αkτ
k) log(τ − z) dτ

)

=

∫
Λ

log |τ − z|ℜ

(
(

m∑
k=0

αkτ
k) dτ

)
−
∫
Λ

arg(τ − z)ℑ

(
(

m∑
k=0

αkτ
k) dτ

)
, (50)
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where the function arg(z) gives the argument of z in some interval of length
2π, but the interval should be thought of as not yet fixed. The approximation
sign in (49) is one which we hope holds, we want to think about if it actually
does. In other words, we want to think about if a small interpolation error
leads to a small error in the real part of the integral. If the interpolation
f(τ)/(inτ ) ≈

∑m
k=0 αkτ

k is good then∫
Λ

log |τ − z|ℜ

(
(

m∑
k=0

αkτ
k) dτ

)
≈
∫
Λ

f(τ) log |τ − z|d|τ | , (51)

since
∑m

k=0 αkτ
k approximates f(τ)/(inτ ), and we have dτ/(inτ ) = d|τ | which

is real. The right-hand side of (51) is the logarithmic operator we wanted to
approximate, so the approximation (49) is good if the second term in (50) is
small. We can find an upper bound∣∣∣∣∣

∫
Λ

arg(τ − z)ℑ

(
(

m∑
k=0

αkτ
k) dτ

)∣∣∣∣∣ ≤M

∫
Λ

∣∣∣∣∣ℑ
(
(

m∑
k=0

αkτ
k) dτ

)∣∣∣∣∣ =Mϵint ,

(52)
where M = maxτ∈Λ(| arg(τ − z)|) and ϵint is the value of the integral. If the
interpolation is good then ϵint should be small, since, as mentioned after (51),
we have dτ/(inτ ) = d|τ | which is real. If the branch is chosen to give small
values of the argument the second term in (50) should be ≈ 0, since M would
be relatively small. But say that we choose a very non-standard branch of the
logarithm that gives argument values in [1010, 1010 +2π), then the second term
in (50) might be large even for a good interpolation.

The fact that the interpolation used in the application of the product in-
tegration method to the logarithmic operator leads to an approximation which
changes depending on the choice of branch is at the very least an issue worth
mentioning, though not mentioned in, for example, [20], where no branch is
given. Though, as was just shown, the choice of branch shouldn’t matter much
as long as it’s chosen to give small argument values.

The issue of interpolation leading to a product integration weight with a
value depending on the branch of the logarithm is not present in (41), for which
we get

q̃k(x) =
−p̃k+1(x) + log |1− x| − (−1)k+1 log | − 1− x|

k + 1
, (53)

p̃0(x) = log |1− x| − log | − 1− x| , (54)

and the recursion for p̃k(x) is the same as for pk(z), given by (46). The Cauchy
principal value for p̃k(x) when z ∈ Λ is the same as the value when z /∈ Λ,
where z is the target point, so we don’t separate those two cases here. Note
that the weights p̃k(x) and q̃k(x) in (40) and (41) only apply if the target point
z is on the boundary, since we need an x which has τ(x) = z for τ(s) being a
parametrization of the boundary Γ.

Lastly, we have by integration by parts

r0(z) = − 1

1− z
+

(−1)k−1

−1− z
, (55)

rk(z) = kpk−1(z)−
1

1− z
+

(−1)k−1

−1− z
, if k ≥ 1 . (56)

12



3.3 MC, ML, and MH

We have the product integration weights on transformed panels Λt. Now we
want to apply the results from the previous section to the Cauchy singular
operatorMC, the logarithmic operatorML and the hypersingular operatorMH.

The operators are first split according to (33), keeping the notation general
as to allow use in both field evaluation and Nyström discretization.

MCf(z) =
1

πi

∫
Γf

f(τ) dτ

τ − z
+
∑
i∈Ic

1

πi

∫
Λi

f(τ) dτ

τ − z
, (57)

MLf(z) =

∫
Γf

f(τ) log |τ − z|d|τ |+
∑
i∈Ic

∫
Λi

f(τ) log |τ − z|d|τ | , (58)

MHf(z) =
1

πi

∫
Γf

f(τ) dτ

(τ − z)2
+
∑
i∈Ic

1

πi

∫
Λi

f(τ) dτ

(τ − z)2
. (59)

If Λi is a panel spanning [ai, bi) in parameter and τ(p) is a parametrization of
the boundary, the endpoints of the panel are za = τ(ai) and zb = τ(bi). The
transformation

y =
τ − (zb + za)/2

(zb − za)/2
= T (τ) ⇐⇒ τ(y) =

(zb − za)y

2
+
zb + za

2
, (60)

brings Λi to the transformed panel Λt
i which has start point -1 and endpoint 1.

We are now going to change integration variables from τ to y = T (τ) in the
right-most terms in (57), (58) and (59). For (57), (58) we will also change the
right-most terms to a form in which the weights (40) and (41) can be applied.

Starting with MC we have∫
Λi

f(τ) dτ

τ − z
=

∫
Λt

i

f(y) dy

y − ẑ
, (61)

where ẑ = T (z). Alternatively, if z ∈ Γ and z = τ(pz),∫
Λi

f(τ) dτ

τ − z
=

∫
Λi

f(τ) dτ

τ − z
−
∫ bi

ai

f(p) dp

p− pz
+

∫ 1

−1

f(s) ds

s− sz
, (62)

with s as in (9) and sz = s(pz). The first two terms of the right-hand side in
(62) together make a smooth expression if the boundary is smooth, which can
be integrated by Gauss–Legendre quadrature.

Now for ML. Assume for simplicity that f is real, then∫
Λi

f(τ) log |τ − z|d|τ | =∫
Λi

log

∣∣∣∣zb − za
2

∣∣∣∣ ρ(τ) d|τ |+ ℜ

(
zb − za

2

∫
Λt

i

f(y)

iny
log(y − ẑ) dy

)
, (63)

where ny = nτ |τ=τ(y). If f is not real then it can be split into a real and
imaginary part, to which the results can be applied. Alternatively, if z ∈ Γ, and
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z = τ(pz),∫
Λi

f(τ) log |τ − z|d|τ | =∫ bi

ai

f(p) log

∣∣∣∣bi − ai
2

τ(p)− z

p− pz

∣∣∣∣ |τ ′(p)|dp+ ∫ 1

−1

f(s) log |(s− sz)||τ ′(s)|ds ,

(64)

with s as in (9) and sz = s(pz).
Lastly, for MH we have∫

Λi

f(τ) dτ

(τ − z)2
=

2

bi − ai

∫
Λt

i

f(y) dy

(y − ẑ)2
. (65)

Then we interpolate according to (37), replacing Gk(z) with one of the prod-
uct integration weights from Section 3.2.

3.4 Field evaluation of introductory example

Now that we have described the process of product integration we can solve the
problem of evaluating (16). We will do so by splitting the integral according to
(33)

U(z) =
1

π

∫
Γf

µ(τ)ℑ
(

dτ

τ − z

)
+

1

π

∑
i∈Ic

∫
Λi

µ(τ)ℑ
(

dτ

τ − z

)
. (66)

And the integrals over panels close to the target point are calculated by prod-
uct integration. In practice we can first evaluate U(z) at every point by using
standard Gauss–Legendre quadrature, and then go through and add compensa-
tion terms for every panel which the target point is close to, which makes the
algorithm of evaluating many field points simpler:

U(z) =
1

π

16N∑
j=1

wjµjℑ
(

τ ′j
τj − z

)
+

1

π

∑
i∈Ic

16∑
j=1

ℑ(wcmpC
i,j (z))µi,j , (67)

where wcmpC
i,j (z) are compensation weights for the Cauchy singular operator

multiplied by πi. The compensation weights consist of one part related to the
product integration, and one part to correct for the inappropriate parts of the
first sum in (67). Looking back at (26), there is a coefficient 1/(πi) in the kernel
of the MC operator. We let the compensation weights compensate for the oper-
ator multiplied by πi and divide by πi when using the weights. The π is outside
the sums in the right-most term in (67), and the i has been implicitly divided,
as we take the imaginary part of the weight, while the real part of the Cauchy
operator is the negative Neumann–Poincaré operator. This same method of first
using regular Gauss–Legendre quadrature and then adding compensation terms
related to the product integration can also be used in Nyström discretization
for the operators like ML, where close evaluation is a problem on the boundary
as well.

14



4 Global and Local Regularization

If the target point is on the boundary, then for the operators MC and MH

there is another option of using global or local regularization [11]. In global
regularization, we replace the integrand with one smooth term and one term
which we can integrate exactly. In local regularization we only do this rewrite
for the part of the boundary close to the target point. For MC, z ∈ Γ where Γ
is a smooth boundary, and assuming the branch cut of log(τ − z) isn’t crossed
as τ traverses Γc, deformed to go around z in a circle-segment of radius ϵ,

MCf(z) =
1

πi

∫
Γ

f(τ)− f(z)

τ − z
dτ + f(z) , (68)

MCf(z) =
1

πi

∫
Γf

f(τ) dτ

τ − z
+
f(z)

πi
(log(zb − z)− log(za − z)∓ πi)

+
1

πi

∫
Γc

f(τ)− f(z)

τ − z
dτ , (69)

where Γc is the part of the boundary close to the target point z, starting in
za and ending in zb. Again, the sign of πi depends on which way around z
we imagine pushing the boundary. When discretizing, the diagonal terms will
contain f ′(z). We will get this derivative by interpolating f as a polynomial
of degree m, and then differentiating the polynomial is easily done by matrix
multiplication with a matrix D which is zero except on the first superdiagonal
which is (1, 2 . . . ,m− 1). One could imagine two different ways of interpolating
f , one by interpolating f(z) directly in the complex plane, and another by
rewriting f ′(z) = f ′(p)/τ ′(p), with a parametrization τ(p) and interpolating f
in the parameter variable.

Considering both of these possible interpolation methods for the regular-
ization is an idea which seems new, though logical since a similar separation
has been considered for the product integration. Compare (39) and (41) for
example.

For MH, z ∈ Γ, where Γ is a smooth boundary we will just consider local
regularization,

MHf(z) =
1

πi

∫
Γf

f(τ) dτ

(τ − z)2
− f(z)

πi
(

1

zb − z
− 1

za − z
)

+ f ′(z)(log(zb − z)− log(za − z)∓ πi)

+
1

πi

∫
Γc

f(τ)− f(z)− f ′(z)(τ − z)

(τ − z)2
dτ . (70)

Here we have also the second derivative in the diagonal terms of the discretiza-
tion, which we will get by interpolating and twice differentiating the resulting
polynomial. Once again one could imagine interpolating f(z) and differentiat-
ing or using f ′(z) = f ′(p)/τ ′(p) meaning f ′′(z) = f ′′(p)/τ ′(p) − f ′(p)/τ ′(p)2

and interpolating f in the parameter variable. See again Section 3.1 for more
on the interpolation.
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5 Handling the branch cut

This section treats the question of handling the problems which might arise from
the branch cut of the complex logarithm, and we introduce a simple method for
target points on the boundary, new for this paper, as well as a variation of a
method seen in [20].

In the product integration and regularization we get expressions like

log(1− z)− log(−1− z) , (71)

log(1− z)− log(−1− z)∓ πi . (72)

when integrating along a panel Λ starting in −1 and ending in 1, where we
assume the branch cut of log(τ − z) isn’t crossed as τ traverses Λ. We could
figure out whether the branch cut is crossed, which way it is crossed, and then
compensate for it. But ideally we don’t want to figure this out for every target
point. If we now specify the principal branch of the logarithm, since this is what
Matlab uses, we could write∫

Λ

dτ

τ − z
= Log

(
1− z

−1− z

)
, (73)

which holds as long as the argument of τ − z varies less than π between the end
points as τ traverses Λ. For a target point z ∈ Λ, we get to decide whether to
imagine the panel being pushed in the positive or negative direction around z,
as described in Section 3.2, and we could choose in such a way that (73) does
hold for any reasonably shaped panel. We consider Λ oriented from −1 to 1,
and if the target point z ∈ Λ lies above the real axis, we push the panel to go
in the positive direction around z, and if z ∈ Λ lies below the real axis, we push
the panel to go in the negative direction around z. Then we will always get
the argument of τ − z varying less than π between the end points of the panel.
If z is exactly on the real axis between −1 and 1, the principal branch gives
arg((1− z)/(−1− z)) = π so we push the panel in the positive direction around
z to match the principal branch. In Figure 3, a simple example panel is shown.
The target point z has ℑ(z) ≥ 0, which means we have considered the circle
segment oriented positively in order to make the conditions for (73) hold, the
argument of τ − z varies less than π along the panel. To summarize, a method
which appears to be new for this paper, although very simple, for z ∈ Λ,

∫
Λ

dτ

τ − z
=

 Log
(

1−z
−1−z

)
− πi , if ℑ(z) ≥ 0 ,

Log
(

1−z
−1−z

)
+ πi , if ℑ(z) < 0 .

(74)
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Figure 3: Example for Cauchy principal value and handling branch cut of the
logarithm. Target point, z, in red.

If we instead have a point z /∈ Λ, then it is more difficult to find some simple
method of handling the branch cut by using the same kind of argument as the
one leading to (74). Since the point is no longer on the boundary, we have to
figure out if the point lies to the left or right of the boundary. One could do
something similar to (74) and think that the panel wraps around z if ℑ(z) ≥ 0
and z lies to the right of the boundary, or if ℑ(z) < 0 and z lies to the left of the
boundary. But it’s not so simple, as this fails for certain curves, and the shape
of, not only the transformed panel, but also the boundary outside of the panel,
plays a role. Another way to handle the problems arising from the branch cut
of the logarithm is to assume that the panel is somewhat flat and implicitly
deform the panel around z by letting ϕ = ±π

2 , positive if z is to the left of the
boundary, and negative if it is to the right and then split the logarithmic term,∫

Λ

dτ

τ − z
= Log

(
1− z

eiϕ(−1− z)

)
+ iϕ . (75)

This holds if the argument of τ − z along the deformed panel section between
z + eiϕ(−1− z) and 1 varies less than π. The basic idea is that one can deform
the panel freely while keeping the value of the integral on the left hand side
of (75) the same, as long as the start- and end points are the same and the
argument of τ − z varies the same amount between the start- and end points
as τ traverses Λ. So we deform the panel into one quarter circle around the
target point z, which is integrated exactly, and what remains to integrate is a
part of the panel which has been slightly ’unwrapped’ around the target point,
see Figure 4 and note the quarter circle part of the deformed panel called Λ′ in
the figure. The method in (75) is seen in [20], but with the angle ϕ = π/4.

Below some code that handles the branch cut in the package is included
with added variable descriptions, see Listing 1 and 2. Additionally, the code
for constructing the rest of the pk, qk and rk is included in Listing 3. For
context, the matrices P, Q and R are of size n×m, with n being the number of
target points and m being the order of interpolation. The matrix P has elements
pj(zi), with zi from the vector ztgtrc, with Q and R being defined equivalently
for qk and rk. For more details on the specific implementation, the full code is
available at https://github.com/erikandersson98/BIE-CELib.

17



Listing 1: Target point on the boundary Γ.

%Points on boundary.

sgn = ones(Nc ,1); %Nc -number of close target points

sgn(imag(ztgtrc) < 0) = -1; %ztgtrc -close transformed

%target points

argAdd = -sgn*pi*1i;

if j = 2 %true if target points are on the current

panel , Lambda

P(:,1)=argAdd+log((1- ztgtrc)./(-1- ztgtrc));

else

P(:,1)=log((1- ztgtrc)./(-1- ztgtrc));

end

Listing 2: Target point not on the boundary Γ.

%Points not on boundary

gam=-1i*ones(Nt ,1); %Nt -number of target points

loggam =-0.5i*pi*ones(Nt ,1);

gam(ifleft)=1i; %ifleft -true if point left of boundary

loggam(ifleft)=0.5i*pi;

P=zeros(Nt,Ng); %Ng-order of Gauss quadrature

P(:,1)=loggam+log((1-ztgtr)./(gam.*(-1-ztgtr)));

%ztgtr -transformed target points

Listing 3: Recursion for the rest of P, as well as construction of Q and R

R(:,1) = -1./(1- ztgtrc)+1./(-1- ztgtrc);

for k=1: ngl

P(:,k+1)=ztgtrc .*P(:,k)+c(k);

R(:,k+1) = -1./(1- ztgtrc)+(-1)^k./(-1- ztgtrc) + ...

k*P(:,k);

if mod(k,2) == 0

Q(:,k) = (-P(:,k+1) + P(:,1))/k;

elseif mod(k,2) == 1

Q(:,k) = (-P(:,k+1) + ...

log((1- ztgtrc).*(-1- ztgtrc)))/k;

end

end

18



-1 -0.5 0 0.5 1

x
1

-0.5

0

0.5

1

1.5

x
2

Point not on transformed panel, deformed panel

z

'

Figure 4: Deforming the panel as in the method (75). The dashed blue line is
the original simple panel Λ, and the black curve is the deformed panel Λ′. The
target point is in red.

6 Acoustic operators

6.1 Definitions

So far we have talked about the single-layer and double-layer potentials, the
Neumann–Poincaré operator and MC, ML and MH. In this section we move on
to slightly more complicated operators that arise when solving the Helmholtz
equation. In Section 6.1 we define the operators, and in Section 6.2 we describe a
method involving splitting the kernel into parts with singularities we can handle
with the product integration method or global/local regularization as described
in Sections 3 and 4, seen in [13, 12].

We start with the fundamental solution to Helmholtz equation with wavenum-
ber k,

Φk(x,y) =
i

4
H

(1)
0 (k|x− y|) , (76)

where H
(1)
0 (x) is the zeroth order Hankel function of the first kind, H

(1)
n (x) =

Jn(x) + iYn(x), with Jn(x)andYn(x) being the Bessel functions of the first and
second kind. We introduce the acoustic single-layer potential Sk,

Skf(x) =

∫
Γ

Sk(x,y)f(y) d|y| = 2

∫
Γ

Φk(x,y)f(y) d|y| , (77)

the acoustic double-layer potential Kk and its adjoint,

Kkf(x) =

∫
Γ

Kk(x,y)f(y) d|y| = 2

∫
Γ

∂

∂ny
Φk(x,y)f(y) d|y| , (78)

KA
k f(x) =

∫
Γ

KA
k (x,y)f(y) d|y| = 2

∫
Γ

∂

∂nx
Φk(x,y)f(y) d|y| , (79)

as well as the acoustic hypersingular operator Tk [7, Eqs. (3.8)-(3.11)],

Tkf(x) =

∫
Γ

Tk(x,y)f(y) d|y| = 2

∫
Γ

∂2

∂nx∂ny
Φk(x,y)f(y) d|y| . (80)
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Performing the differentiation using

d

dx
H

(1)
0 (x) = −H(1)

1 (x) , (81)

d

dx
H1

1 (x) =
1

x
H

(1)
1 (x)−H

(1)
2 (x) , (82)

together with the chain rule yields the kernels

Sk(x,y) =
i

2
H

(1)
0 (k|x− y|) , (83)

Kk(x,y) =
i

2
k|x− y|H(1)

1 (k|x− y|)ny · (x− y)

|x− y|2
, (84)

KA
k (x,y) = − i

2
k|x− y|H(1)

1 (k|x− y|)nx · (x− y)

|x− y|2
, (85)

Tk(x,y) =
i

2
k|x− y|H(1)

1 (k|x− y|) nx · ny

|x− y|2

− i

2
(k|x− y|)2H(1)

2 (k|x− y|)ny · (x− y)

|x− y|2
nx · (x− y)

|x− y|2
. (86)

The reason for writing the kernels on this form, without cancelling out certain
|x − y| terms, is because one can recognize parts which look much like the
kernels of the Laplace double-layer potential and its adjoint. Like before, by
identification between R2 and C, z = x, τ = y, and replacing the dot products
by a · b = ℜ(ab̄), these kernels can be considered functions of two complex
variables. We introduce the notation

Dx(x,y) = −nx · (x− y)

|x− y|2
⇐⇒ Dz(z, τ) = −ℜ(nz(z̄ − τ̄))

|z − τ |2
, (87)

Dy(x,y) =
ny · (x− y)

|x− y|2
⇐⇒ Dτ (z, τ) =

ℜ(nτ (z̄ − τ̄))

|z − τ |2
. (88)

6.2 Kernel split

The way we intend to handle these more complicated operators is to split a
general kernel G(z, τ), standing in for one of the kernels introduced in Section
6.1, into parts which we know how to handle [12, Sec. 6]. The split is for-
mulated similar to [13, Eq. (43)], with an added coefficient c to correct for a
typographical error. See the remark at the end of this section.

G(z, τ) d|τ | =G0(z, τ) d|τ |+GL(z, τ) log |z − τ |d|τ |

+ cℑ
(
GC(z, τ) dτ

z − τ

)
+ ℑ

(
GH(z, τ) dτ

(z − τ)2

)
, (89)

where G0(z, τ), GL(z, τ), GC(z, τ) and GH(z, τ) are smooth functions, and c
is a complex coefficient. Then we can handle the logarithmic-, Cauchy-, and
hypersingular singularities by a previously described method. In practice, the
idea described in Section 3.4, where, for field evaluation, first regular 16-point
Gauss–Legendre quadrature was used everywhere and then compensation terms
were added for target points close to some panel, can be used here. Then we

20



never need to consider G0, unless the target point is exactly a quadrature node,
in which case there is some need to consider the limit G0(z, τ) as τ → z.

If z is not a quadrature node then, and f is some function,∫
Γ

G(z, τ)f(τ) d|τ | ≈
16N∑
j=1

wjG(z, τj)fj |τ ′j |

+
∑
i∈Ic

16∑
j=1

(
wcmpL

i,j (z)GL,i,j + cℑ
(
wcmpC

i,j (z)GC,i,j

)
+ ℑ

(
wcmpH

i,j (z)GH,i,j

))
fi,j ,

(90)

where wcmpL
i,j are compensation weights related to the logarithmic operator,

wcmpC
i,j are compensation weights related to the Cauchy singular operator mul-

tiplied by πi and wcmpH
i,j are compensation weights related to the hypersingu-

lar operator multiplied by πi. Note that the weights wj used in the standard
quadrature are ’rescaled weights’ as introduced in Section 1.1.1, they include a
factor which accounts for the panel not spanning the canonical interval. Also,
the shorthand G(z, τi,j) = Gi,j has been used.

The compensation weights are not explicitly described here as their exact
construction differs depending on which method is used in the close evaluation,
as well as depending on if the target point is on or off the boundary. As men-
tioned previously in Section 3.4, they contain one part which corrects for the
inappropriate terms of the standard Gauss–Legendre quadrature, and one part
which is related to either product integration or regularization, including, po-
tentially, some terms arising from the change in variables as described in Section
3.3.

If z is exactly a quadrature node, z = τi, as in the Nyström discretization,
then∫

Γ

G(τi, τ)f(τ) d|τ | ≈
16N∑
τj ̸=τi

wjG(τi, τj)fj |τ ′j |+ lim
τ→τi

G0(τi, τ)fiwi|τ ′i |

+
∑
i∈Ic

16∑
j=1

(
wcmpL

i,j (z)GL,i,j + cℑ
(
wcmpC

i,j (z)GC,i,j

)
+ ℑ

(
wcmpH

i,j (z)GH,i,j

))
fi,j .

(91)

Now, if nothing else is stated, c = 1 and any smooth term in (89) is 0. Using
the representation of the Bessel function of the second kind from [1], we split
the kernels.

For the acoustic operators we have, for Sk,

Sk,L(z, τ) = − 1

π
J0(k|z − τ |) , (92)

lim
τ→z

Sk,0(z, τ) =
i

2
− 1

π

(
log

k

2
− ψ(1)

)
, (93)

where ψ is the digamma function.

21



For Kk,

Kk,L(z, τ) = − 1

π
k|z − τ |J1(k|z − τ |)Dy(z, τ) , (94)

Kk,C(z, τ) = − 1

π
, (95)

lim
τ→z

Kk,0(z, τ) = 0 , (96)

but for smooth boundaries, the Cauchy term in (89) is smooth, so for a smooth
boundary Γ and target point z = τ(p) on the boundary, we will have

Kk,C(z, τ) = 0 , (97)

lim
τ→z

Kk,0(z, τ) =
nττ

′′(p)

2π|τ ′(p)|2
. (98)

For KA
k ,

KA
k,L(z, τ) = − 1

π
k|z − τ |J1(k|z − τ |)Dx(z, τ) , (99)

KA
k,C(z, τ) =

nzn̄τ
π

, (100)

lim
τ→z

KA
k,0(z, τ) = 0 . (101)

Again, for smooth boundaries the Cauchy term is smooth, so for a smooth
boundary Γ and target point z = τ(p) on the boundary, we will have

KA
k,C(z, τ) = 0 , (102)

lim
τ→z

KA
k,0(z, τ) =

nττ
′′(p)

2π|τ ′(p)|2
. (103)

Lastly, for Tk,

Tk,L(z, τ) = −k
π
J1(k|z − τ |)ℜ(nzn̄τ )

|z − τ |2

− 1

k
(k|z − τ |2)J2(k|z − τ |)Dz(z, τ)Dτ (z, τ) , (104)

Tk,C(z, τ) =
1

2π
ℜ (nz(τ̄ − z̄)) , (105)

c = k2 , (106)

Tk,H(z, τ) = −nz
π
, (107)

lim
τ→z

Tk,0(z, τ) =
k2i

4
− k2

4π

(
2 log

k

2
− 2ψ(1)− 1

)
. (108)

Remark 1: The term Tk,C contains a typographical error in [13, Eq. (64)],
since the k2 part should be moved outside the imaginary part, leading to the c
coefficient. This will matter if a complex wavenumber k is used on a non-smooth
boundary. But for smooth boundaries we have as before

Tk,C(z, τ) = 0 , (109)

with no change in limτ→z Tk,0(z, τ).
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7 Method

Three different categories of tests were performed for assessing the success of
implementation of the integral operators described in Sections 2 and 6.

First, integral operators were tested directly with matrix-vector multiplica-
tion or solution of a linear system of equations, where the result of the opera-
tion was compared to a known analytic solution, or an approximated solution.
Here some operators identities were also tested. Second, the Laplace equation
and related operators in Section 2 were tested by a solving the Interior Laplace
problem with Dirichlet boundary conditions (ILD) and the Laplace transmission
problem (LT). Third, the Helmholtz equation and related operators in Section 6
were tested by solving the Exterior Helmholtz problem with Dirichlet boundary
conditions (EHD), and with Neumann boundary conditions (EHN).

The different ways of implementing the operators for close evaluation on
the boundary are described in Sections 3 and 4. The following shorthand is
used. A method using product integration is called PI-z or PI-p depending
on if the product integration is used for a complex integration variable (PI-
z) or the parameter integration variable s of the boundary parametrization
τ(s) (PI-p). The global regularization method for MC is called GR. The local
regularization method is called LR-z or LR-p, again depending on if the layer
density is interpolated as a polynomial of the complex variable z (LR-z), or the
real parameter s, related to the parametrization (LR-p).

In all tests the boundary used was the starfish (6) with a = 0.3. In field
evaluation, a 300 × 300 equidistant grid was used in the square with corners
in (±1.5,±1.5). All tests were carried out on a unit with the processor AMD
Ryzen 5 5500U and 8GB of RAM using the 2022a release of MATLAB. The
linear system of equations resulting from Nyström discretization was solved by
a GMRES method with stopping criterion threshhold of machine epsilon in the
relative residual, roughly 2.22 · 10−16, or a maximum iteration of 100. The
specific GMRES method is described in [14, Sec. 8], and was supplied by the
project supervisor Johan Helsing.

In the program package, a function is included for calculation of the Gauss–
Legendre nodes and weights when the number of nodes is not 16. It is a slightly
altered version of [2].

7.1 Operator implementation tests (Matrix-vector multi-
plication / Operator Identities)

Matrix-vector multiplication in the expression

Mf(z) ≈ Mf , (110)

was tested for the operators MC, ML and MH, for some test function f with
M being the discretization using Gauss–Legendre quadrature and one of the
described methods, product integration or global/local regularization. For MC

and MH, the test function was

f(z) = z6 + z−6 . (111)
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For comparison, this has analytic solution

MCf = z6 − z−6 , (112)

MHf = 6z5 + 6z−7 . (113)

For ML the test function was

f(z) = |z6 + z−6| . (114)

This has no simple analytic solution, so comparison was done with a fine dis-
cretization MLf , which approximates the exact solution.

For MC the Poincaré–Bertrand identity

MCMC = I , (115)

holds. This identity was tested by discretizing the operator and solving a system
of equations

MCMCg = f . (116)

If the implementation is good then g ≈ f should hold.
For the acoustic operators the Calderón identities hold [7, Eqs. (3.12) and

(3.13)]

KkKk − SkTk = I , (117)

KA
k K

A
k − TkSk = I . (118)

These were tested by discretization of the operators using different methods
for handling close evaluation. Then matrix-vector multiplication was performed
with the test function (111). Four different pairs of integral operator implemen-
tation were considered according to Table 1.

Pair 1 Pair 2 Pair 3 Pair 4
ML PI-p PI-z PI-p PI-p
MH PI-z PI-z LR-p LR-z

Table 1: Method pairs for testing the Calderón identities

7.2 The Laplace Equation

The formulation of the Laplace equation for an interior domain is repeated, for
a boundary Γ with Dirichlet conditions

∆U(x) = 0 , x ∈ D , (119)

lim
D∋x′→x

U(x′) = g(x) , x ∈ Γ . (120)

The solution U(x) can be expressed as a boundary integral equation with a
layer density µ(x) assumed real,

U(x) = −Kµ(x) , x ∈ D , (121)
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with K being the Neumann–Poincaré operator. From jump relations,

(I −K)µ(x) = g(x) , x ∈ Γ . (122)

The formulation of the Laplace transmission problem, from [15], for a bound-
ary Γ is

∆U(x) = 0 , x ∈ R2 \ Γ , (123)

ϵ1 lim
x′→x

∂

∂nx
U ext(x′) = ϵ2 lim

x′→x

∂

∂nx
U int(x′) , x ∈ Γ , (124)

lim
|x|→∞

∇U(x) = e , (125)

where e is an applied field of unit magnitude, ϵ1 and ϵ2 are two constants, and
the superscripts ext and int differ between the limit approaching the boundary
from the exterior domain and the interior domain. The solution U is expressed
as

U(x) = x · e+ Sµ(x) , x ∈ R2 \ Γ , (126)

with S being the single-layer potential (29). From jump relations we get

(I + λKA)µ(x) = −2λ(e · nx) , (127)

with KA being the adjoint of the Neumann–Poincaré operator, and the param-
eter λ,

λ =
ϵ2 − ϵ1
ϵ2 + ϵ1

. (128)

These two problems were implemented and solved for g(z) = ℜ(z) in the
interior domain problem and e = (1, 0) in the transmission problem.

7.3 The Helmholtz Equation

The Helmholtz equation on an exterior domain E with Dirichlet conditions on
a boundary Γ is

∆U(x) + k2U(x) = 0 , x ∈ E , (129)

lim
E∋x′→x

U(x′) = g(x) , x ∈ Γ , (130)

lim
|x|→∞

√
|x|( ∂

∂|x|
− ik)U(x) = 0 , (131)

where (131) is the added Sommerfeld radiation condition. The solution can be
expressed as a boundary integral equation with a layer density µ [7, Eq. (3.26)]

U(x) =

(
1

2
Kk − ik

4
Sk

)
µ(x) , x ∈ E . (132)

From jump relations we end up with(
I +Kk − ik

2
Sk

)
µ(x) = 2g(x) , x ∈ Γ . (133)
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For Neumann conditions on the boundary, (130) is switched for

lim
E∋x′→x

∂

∂nx
U(x′) = g(x) , x ∈ Γ , (134)

and we express U as a boundary integral equation, similar to [7, Eq. (3.29)] but
using the regularizing operator suggested in [5],

U(x) =

(
1

2
Sk +

i

4
KkSik

)
µ(x) , x ∈ E . (135)

From (130) and jump relations [7, Thm. 3.1],

(I −KA
k − iTkSik)µ(x) = −2g(x) , x ∈ Γ . (136)

These two problems were implemented using different methods of discretizing
the operators on the boundary. The function g was chosen to be from a point
source in the point x0 = (0.3, 0.5). For Dirichlet boundary conditions,

g(x) = H
(1)
0 (k|x0 − x|) , x ∈ Γ , (137)

and for Neumann boundary conditions,

g(x) = kH
(1)
1 (k|x0 − x|)nx · (x0 − x)

|x0 − x|
, x ∈ Γ. (138)

We know the analytic solution U for these boundary conditions to be the g used
in (137), but for x ∈ E. The wavenumber was chosen to be k = 10.

7.4 Screening functions

In addition to the operators and tests mentioned in Sections 7.1-7.3, two screen-
ing functions were implemented as a part of the package. One that determines
which panels a point is close to by checking the minimum distance to a quadra-
ture node divided by the length of the panel on which is it situated, as deter-
mined by 16-point Gauss–Legendre quadrature. If this quantity is less than a
constant dlim the point is considered close to the panel. In the implementation
dlim = 1.1 was chosen.

A second version of the screening function that determines if a point is close
to the boundary is suggested in [20, eq. (27)]. It is based on the fact that
there are known convergence results for the Gauss-Legendre quadrature if the
integrand is analytic within a Bernstein ellipse in the parameter variable. For
flat panels, the Bernstein ellipse in the parameter variable is well-approximated
by an ellipse with foci at the end points of the panel in the complex plane,
leading to the rule that a point is close if it lies within such an ellipse,

|z − τ(a)|+ |z − τ(b)| < CS, (139)

where the panel has end points τ(a) and τ(b), S is the length of the panel, and
C is a constant. In [20], C = 2.5 is suggested, and this value of C is tested
to see if there is any difference in the numerical results compared to the first
version of the screening function.
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The second screening function determines if a point z is to the left of the
right of the boundary by checking the dot product between the outward unit
normal nτc and the vector z − τc, where τc is the closest quadrature node on
the boundary. Note that we use complex notation here, but consider the dot
product and angles between the corresponding vectors in R2. If the dot product
is positive and the angle between nτc and z − τc is less than some constant
angle ϕlim then the point is considered to be on the left, if the dot product is
negative with the same condition for the angle, the point is considered to be on
the right. If the condition on the angle doesn’t hold, the boundary is iteratively
refined close to τc, until a closest point is found for which the condition on
the angle holds. The function assumes that the boundary is smooth. In the
implementation ϕlim = π/8 was chosen.

These screening functions are only utilized for target points off the boundary.
When the target point is on the boundary, we clearly don’t need the second
screening function. For determining which target points a panel lies close to, we
only look at points on the adjacent panels, and have a distance condition for a
target point in the coordinates of the transformed panel:

|z| < 2. (140)

If the condition holds then the target point z is close to the transformed panel.

8 Results

8.1 Operator identities/matrix-vector multiplication

The results of the two tests of theMC operator can be seen in Figure 5. Note in
Figure 5(a) how the methods PI-z, GR and LR-z seem to follow the added line
which shows 16th order convergence, while the methods LR-p and PI-p seem to
follow 15th order convergence. In Figure 5(b), the convergence is not as uniform,
except for the method PI-p, which seems to follow a 15th order convergence. At
1600 discretization points, or 100 panels using 16-point quadrature, the methods
stop converging, and LR-p is by far the most accurate method at that point.

Figure 6 shows the convergence of matrix-vector multiplication for the ML

operator. Both tested methods, PI-p and PI-z, seem close in accuracy, following
14th order convergence and reaching a similar final accuracy at 2080 discretiza-
tion points, or 130 panels using 16-point quadrature.

Figure 7 shows the convergence of matrix-vector multiplication for the MH

operator. The methods PI-z and LR-z seem to follow 16th order convergence,
while LR-p has 15th order convergence. The method PI-z has lower final ac-
curacy at around 10−12 while LR-p and LR-z reach final accuracy of around
10−13.

Figure 8 shows the resulting error of matrix-vector multiplication using the
two Calderón identities, (117) and (118). Pair 3 is by far the best of the methods,
following 14th order convergence in both tests. The other pairs follow 14th order
convergence in the test of the first identity, while in the second, they seemingly
follow 15th order convergence at higher number of discretization points, though
still behind Pair 3 in terms of accuracy.
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Figure 5: Operator tests for MC.
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multiplication with test function (114).
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Figure 8: Calderón identities tests.

8.2 Helmholtz and Laplace problems

The error for the solution to Laplaces equation with Dirichlet boundary condi-
tions as well as the Laplace transmission problem can be seen in Figure 9, with
an error around 10−14 to 10−16 for 100 panels. The resulting field plot for the
solution of the LT problem can be seen in Figure 10

The error in the solution of the Exterior Helmholtz problem with Dirichlet
boundary conditions can be seen in Figure 11. In Figure 11(a) we can see that
the method PI-p for discretizing the boundary leads to a very low error far from
the boundary, around 10−16. while the method PI-z performs worse in this
regard, with a far field error around 10−9 for 50 panels, as seen in Figure 11(b).

The error for the solution of the exterior Helmholtz problem with Neumann
boundary conditions can be seen in Figure 12. Pair 3 leads to high accuracy far
from the boundary, around 10−16, as seen in Figure 12(a), while using Pair 1
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has dire consequences for the performance of the implementation, with a far
field error around 10−6 for 50 panels, see Figure 12(b).
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Figure 9: Field error plots for ILD and LT.
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Figure 10: Field plot for the solution of the LT problem, 100 panels.
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Figure 11: Field error plots for EHD.
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Figure 12: Field error plots for EHN.

9 Discussion

First, note that the tests conducted were all successful in the sense that all
methods did converge to the correct answer, whenever the exact analytic so-
lution was simple to compare to. There is little to say about the tests of the
interior Laplace equation with Dirichlet boundary conditions and the Laplace
transmission problem, except that they indicate that there are no glaring er-
rors in the implementation of the Neumann–Poincaré operator on and off the
boundary. The screening function for determining if a point is to the left of
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the boundary seems to work. The handling of the logarithmic branch, and the
product integration methods both seem to work. Note that for field evalua-
tion close to the boundary, only the method PI-z works, since PI-p requires the
target point to be expressed in the parametrization of the boundary, and the
regularization methods only work for points on the boundary. An interesting
idea in the newer papers [17] and [16] is to apply the method PI-p to points
off the boundary by finding a pre-image of the target point. The recent paper
[4] develops this idea as well. Close to the boundary in the Helmholtz equation
problems, Figures 11 and 12, one can really see that evaluation is worse when
comparing to points far from the boundary, so it’s natural that much thought
is given to ways of improving the accuracy of evaluation close to the boundary.

Things become more interesting when moving towards implementation of
operators for which we need to use regularization or product integration on
the boundary, since there are several different method choices to compare. In
matrix-vector multiplication for both the operators MC and MH, there is an
order of convergence differing the parameter versions of PI and LR, from the
complex variable versions. One explanation for this could be that the test-
function was a complex polynomial, and therefore using a complex monomial
basis in this case could have a positive effect on convergence. In the testing of
solving a linear system of equations for the Poincaré–Bertrand identity (115), the
trend that PI-z performs better than PI-p is even more noticeable, especially
for low resolution of the boundary. Eventually, however, as the resolution is
increased, the parameter versions of LR and PI reach a better final accuracy.
The test function g(z) = cos(z) was also tried, and the convergence shows
the same trends, that the z-versions are better for low resolution, while the
parameter versions eventually reach a better final accuracy. The parameter
versions also show this sudden drop in error, as can be seen somewhat in Figure
5(b) for LR-p and PI-p. Since the convergence structure was similar for the test
using the cosine function, the explanation that the polynomial test function
was the cause of difference in convergence seems inadequate, and the differences
rather seem inherent to the methods.

For matrix-vector multiplication with the operator ML, the differences are
minimal, except maybe that PI-p is slightly better for lower resolution of the
boundary. See Figure 6.

The tests of the Calderón identities, presented in Figure 8, show very clearly
that Pair 3 is the better implementation. The special thing about Pair 3 is
that the hyper-singular operator MH is discretized through the LR-p method,
local regularization with interpolation in the parameter variable. Then, it is
interesting that LR-p does not stand out in the matrix-vector multiplication
case for MH, only when it is used to discretize the Calderón identities. We see
generally that the performance of the methods in matrix-vector multiplication
with the operators MC, ML and MH does not exactly indicate that the same
methods will perform well for implementation of other identities, or for use in
a practical setting when solving a differential equation cast as a BIE.

Despite the PI-p and PI-z methods performing similarly for the logarith-
mic operator ML in matrix-vector multiplication, the parameter version PI-p
clearly outperforms PI-z when used to solve the exterior Helmholtz equation
with Dirichlet boundary conditions, as the field far from the boundary has a
much less significant error at 50 panels. The difference between the methods
seems to get smaller as the wavenumber increases from k = 10.
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For solving the exterior Helmholtz equation with Neumann boundary con-
ditions, Pair 3 does perform much better than Pair 1, reflecting the trends in
the tests of discretization of the Calderón identities. So LR-p is a good method
to use for the hypersingular operator in a practical setting, as well.

Because we always worked with a smooth boundary and a certain choice of
PDEs and integral equations, the implementation of the Cauchy operator on
the boundary was never tested in a practical problem. In the matrix-vector
multiplication test all methods performed similarly, except a difference in order
of convergence between the z-versions and the parameter versions. If one has
a non-smooth boundary, then the Cauchy parts of the kernels of Kk, K

A
k and

Tk would have to be calculated using one of the implementations. For smooth
boundaries we could include the Cauchy part in the smooth part G0.

Using the second version of the function which determines if a target point
is close to the boundary or not by use of an ellipse made very little difference in
the results compared to the first, and so the two versions seem interchangeable.
The two versions both use the idea of comparing the distance from a target
point to points on the boundary and dividing by the length of the boundary, so
it is not odd that they give similar results. The two methods also need some
constant, C in the second version and dlim in the first, and it is difficult to know
exactly which value is best to use. There are some circular patterns in Figure
11(a) which are present for the first version but which are not present when
using the second version. But these patterns are also not visible when lowering
dlim to 0.9, for example. This might indicate that dlim = 1.1 is not ideal, at
least not for this particular test.

9.1 Further improvements

There are several ways the package could be expanded and improved. For ex-
ample, the Fast Multipole Method (FMM), introduced in [8], is often applied
to calculate matrix-vector multiplication with the part of discretized opera-
tor which corresponds to evaluation far from the boundary. The part of the
discretized operator which corresponds to close evaluation is contained in a di-
agonal of constant width in the operator matrix. The FMM can then reduce
the time complexity of the whole matrix-vector multiplication.

Another step which could be added to save time is upsampling of the layer
density. The idea is that, often, the boundary is refined enough to give an
accurate solution for the layer density µ after solving the linear system that
results from Nyström discretization. But the field evaluation is still inadequate
because the boundary isn’t refined enough to give an accurate discretization with
regards to the kernel of the integral operator. So then two grids are considered,
where µ is solved on the coarser one, and then upsampled to the finer one which
is then used in field evaluation. The same idea could be used to precondition the
Nyström discretization itself by using matrices corresponding to interpolation
between these grids, as described in [11, Sec. 5].

As a final suggestion for an improvement, methods could be added to deal
with non-smooth or highly curved boundaries in more effective ways. Methods
like iterative refinement of the boundary for parts with high curvature or parts
close to corners, as described in [20, Sec. 4].
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9.2 Conclusions

In conclusion, the results indicate that the resulting package is adequate for
solving planar problems for the Laplace and Helmholtz equation. For imple-
mentation of logarithmic singular operators on the boundary, the PI-p method
is suggested, product integration with interpolation in the parameter variable,
as it gives better results in the field far from the boundary. For implementation
of hypersingular operators on the boundary, the LR-p method is suggested, local
regularization with interpolation in the parameter variable, because the results
are far better for this method when it comes to the hypersingular part of the
Tk operator.

The package is available on GitHub at https://github.com/erikandersson98/
BIE-CELib.
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