
MASTER’S THESIS 2023

Evaluation of Rust Codebases
Using Public Information
Emil Eriksson

ISSN 1650-2884
 LU-CS-EX: 2023-39

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-39

Evaluation of Rust Codebases Using Public
Information

Utvärdering av kodbaser i Rust utifrån
publik information

Emil Eriksson

Evaluation of Rust Codebases Using Public
Information

Emil Eriksson
em5184er-s@student.lu.se

June 15, 2023

Master’s thesis work carried out at Volvo Car Sverige AB.

Supervisors: Alexandru Dura, alexandru.dura@cs.lth.se
Nikolaos Korkakakis, nikolaos.korkakakis@volvocars.com

Examiner: Christoph Reichenbach, christoph.reichenbach@cs.lth.se

mailto:em5184er-s@student.lu.se
mailto:alexandru.dura@cs.lth.se
mailto:nikolaos.korkakakis@volvocars.com
mailto:christoph.reichenbach@cs.lth.se

Abstract

Understanding the content of a software project is a complex endeavour.
While the Rust programming language promises developers a safer programming
language, a program may still include vulnerable code through its dependencies.

In this thesis we present a CLI1 tool, cargo-indicate, to query the depen-
dency tree of Rust projects using standard GraphQL. This tool aggregates data
from a variety of sources, such as program analysis tools (cargo-geiger), source
control platforms (GitHub), and package registries (crates.io) and exposes them
in a schema.

We use this tool to collect data about popular Rust packages, and describe
their distribution. We employ a clustering strategy to identify categories of Rust
projects.

We conclude that some, but not all, data contain useful information that
can help developers understand their dependency tree. We describe three cate-
gories of Rust packages, and have reason to believe that project marketing is a
significant factor in separating projects.

We believe that our tool provides a novel approach to aggregate data about
the Rust ecosystem from di�erent sources, with an interface that can easily be
extended. For developers this tool is a possible stage in a future CI pipeline, and
for researchers it provides a way of analyzing the Rust ecosystem.

Keywords: Rust, Code Evaluation, Open Source, Crates.io, Cargo, GraphQL, Query,
Dependencies

1Command-Line Interface

2

Acknowledgements

This thesis would not have been possible without the contributions, guidance, and insights
of a few individuals.

First of all, I owe a debt of gratitude to my supervisor Alexandru Dura. He has gone above
and beyond in helping me, and his suggestions have been invaluable in writing the thesis you
are currently reading. I am deeply thankful for the time he has taken to help me, and for the
insightful discussions we had in his o�ce next to the ever growing stack of co�ee cups.

I would also like to express my appreciation for Nikolaos Korkakakis and Julius Gustavs-
son at Volvo Cars, whose expertise and experience greatly contributed to the quality of this
project. Their daily feedback and suggestions significantly enriched this thesis. I am also
grateful to Philippe Burlion at Volvo Cars for giving me the opportunity to work with this
project, and for his continuous support.

The tool presented in this work would not be possible without Predrag Gruevski, the
author of trustfall. His interest in my project has been truly motivating, and I want to
thank him for his patience in answering my questions. With this I also want to give a wider
thanks to the Rust community, for which I wrote this thesis. Without the community and
the open source contributors this thesis would not be possible.

Finally, thanks to Lena Eriksson for the cover image.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 The Rust Programming Language . 9

2.1.1 The Ownership Model & The Borrow Checker 9
2.1.2 Unsafe Rust . 11
2.1.3 The Rust Ecosystem . 13

2.2 Motivation . 15
2.2.1 Rust at Volvo Cars . 15
2.2.2 Basis for Further Research . 15

2.3 Related Work . 16
2.3.1 deps.dev and the OpenSSF Scorecard 16
2.3.2 Rust Software . 17
2.3.3 Studies . 17

3 Method 21
3.1 cargo-indicate Overview . 21
3.2 An In-Depth Look at cargo-indicate 26

3.2.1 The Trustfall Project . 28
3.2.2 Trustfall Data Structure . 28
3.2.3 Signals as Vertices . 30

3.3 Selecting Signals . 31
3.3.1 The Dependency Tree . 32
3.3.2 Unsafe Rust . 33
3.3.3 Code Stats . 34
3.3.4 GitHub . 34
3.3.5 RustSec Advisory Database . 35
3.3.6 crates.io . 36
3.3.7 Signal Characteristics . 36

3.4 Data Collection . 37

5

CONTENTS

3.4.1 Package Selection . 37
3.4.2 Automated Querying . 38

3.5 Statistical Analysis . 39
3.5.1 Structuring Data . 40
3.5.2 Finding Correlations & Reducing Redundancy 40
3.5.3 Finding Outliers . 42
3.5.4 Finding Clusters . 43
3.5.5 Using Existing Categorical Data . 44

4 Results 47
4.1 Distribution of Raw Data . 47
4.2 Correlations . 58
4.3 Clustering & Outliers . 61

5 Discussion 77
5.1 Distribution of Data . 77
5.2 Correlations of Signals & Features . 78
5.3 Clusters & Outliers . 79
5.4 Implications for cargo-indicate . 81
5.5 Threats to Validity . 81

5.5.1 Underlying Tools . 82
5.5.2 Validity of the Dataset . 82
5.5.3 Selection of Number of Clusters 83

6 Conclusion 85
6.1 Summary of Contributions . 85
6.2 Further Work . 86

References 87

A Package Features 91

B Implementation Details 95
B.1 Implementing BasicAdapter . 95
B.2 Adapter-Client Relationship . 96

C Schema 97

6

Chapter 1

Introduction

In a world where the importance and impact of software rises exponentially, the correctness
of that software becomes increasingly important in our lives. The ever increasing number of
services being provided to replace the old require no IT professional to notice; In Sweden
alone the usage of cash is ever decreasing, important mail is sent via online services, and car
owners may find that the most powerful computer in their household is standing on their
driveway.

It is no surprise that more and more people rely on software in their everyday life, and
when that software fails, or worse, is exploited by malicious actors, things start to fall apart.
Historically, many of most severe cases of software failures is due to developer error; Bugs
such as Heartbleed1 went undetected for years, coming into public view only when the e�ects
became much too clear.

While these software bugs may be created by human developers, the mistake is an easy
one to make. Memory is notoriously di�cult to manage, and programming languages such
as C and C++ allow mistakes to happen. While they provide excellent performance and low
level control, they require a skilled developer that makes no mistakes to be safe.

The Rust programming language aims to help developers by providing performance char-
acteristics similar to that of C and C++, while ensuring that memory mismanagement is dif-
ficult. It also provides a modern and comfortable ecosystem, where third-party code can
easily be integrated in their own project. On the other hand, can Rust developers really be
sure that the code they do not write themselves holds up to their standards? While a lot
of information about projects is publicly available, many developers adds third-party code
without much thought. After all, a project that simply helps you parse some specific file
format cannot be dangerous, or can it?

This thesis aims to provide a tool that can analyze Rust packages using information that is
available to the public, from various sources, some of which are unique to the Rust ecosystem.
Developers should be able to use the tool to for example identify dependencies of their project

1https://heartbleed.com/

7

https://heartbleed.com/

1. Introduction

that should be considered for further, perhaps manual, investigation.
This is to be done by identifying signals that may indicate the quality or risk associated

with a Rust third-party package from the Rust ecosystem. Signals here define any source of
data that is available to the public, and may be sampled at any time to provide some value.
While the data sampled may in some cases also contain historical data, such as the commit
history of a project, some signals do not and simply provide a snapshot of the project at that
time. With this definition, some signals that do not inherently contain historical data will
need continuous sampling to provide a time series.

The initial goal is not to provide a tool for static code analysis, but rather to collect,
compose, and evaluate signals from various sources available to projects written in Rust, and
make it possible to write queries to search through a Rust dependency tree.

To ensure the quality of the tool, the signals are to be evaluated. If deemed feasible, the
tool should provide some way of filtering a project (for example in a CI2 environment) on
some characteristics.

These goals lead to the following research questions:

• RQ1. What signals contain information that can di�erentiate a package against another pack-
age? (and which do not)?

• RQ2. Do the selected signals correlate in any way, and if so, how?

• RQ3. Can we find clusters of Rust packages based on their signals?

• RQ4. Does combining signals in multiple dimensions provide benefits for analysis of a Rust
package?

• RQ5. Are Rust packages of the same category likely to have the same signal characteristics,
and if so, what are they?

• RQ6. How can we use signals to identify Rust packages in need of manual developer attention?

2Continuous Integration

8

Chapter 2

Background

This chapter aims to provide an introduction to the Rust programming language (Section 2.1),
a motivation for the work done (Section 2.2), as well as presenting related work (Section 2.3).

2.1 The Rust Programming Language
This section aims to provide some background to the Rust programming language, and can be
skipped by those familiar with the language. Interested readers are recommended to read [15].

The Rust programming language is a relatively new programming language, first an-
nounced by Mozilla in 2010. Described as a language intended to provide developers with per-
formance, reliability, and productivity, the language has grown considerably and was marked
as stable in 2015. It has reached widespread adoption, at companies such as AWS, Facebook
and Volvo Cars.

At the center of the Rust programming language is an ownership-system, used to guar-
antee memory-safety and thread-safety at compilation. This removes the need for a garbage
collector at runtime, while preventing common errors related to memory safety.

This safety, while still providing performance on par with C/C++, made Rust the first
language in addition to C and assembly to be accepted for use in the Linux kernel as of
version 6.1 [8].

2.1.1 The Ownership Model & The Borrow Checker
The Rust ownership system provides some guarantees against common memory errors at
compile-time. While an in-depth explanation will not be provided here (again [15] provides
a good explanation), we will provide an overview to provide context for the thesis.

Rust provides several tools to prevent programmer mistakes, or writing code that could
contain memory-safety issues. The Rust compiler guarantees memory-safety and thread-
safety, which in turn protects the developer against common bugs.

9

2. Background

Unlike other languages such as Java or Go, Rust does not need a garbage collector at
runtime, to clear unused memory. Instead Rust uses the concept of ownership of values.

Listing 2.1: An example of a Rust program that will not compile
due to attempt to borrow moved value

1 fn foo(x: String) {
2 println!("x␣is␣\’{x}\’");
3 // ...
4 } // ‘x‘ is automatically dropped at the end of the scope
5
6 fn main() {
7 let x = String ::from("Hello ,␣world!");
8 foo(x);
9 println!("{x}"); // Will cause compile -time error!

10 }

Listing 2.2: An example of a C program that will compile, but
contains a bug

1 # include <stdlib.h>
2 # include <stdio.h>
3 # include <string.h>
4
5 void foo(x: *char) {
6 printf("x␣is␣\’%s\’\n", x);
7 // ...
8 free(x);
9 }

10
11 int main() {
12 char* x = (char*) malloc(sizeof("Hello ,␣world!"));
13 strcpy(x, "Hello ,␣world!");
14 foo(x);
15 printf("%s\n", x); // ‘x‘ is used after free
16 return 0;
17 }

Listing 2.3: An example of a Rust program where borrowing is
used

1 fn foo(x: &str) {
2 println!("x␣is␣\’{x}\’");
3 // ...
4 }
5
6 fn main() {
7 let x = String ::from("Hello ,␣world!");
8 foo(&x);
9 println!("{x}"); // ‘x‘ was never moved , so this is fine!

10 }

At any one time, a value in Rust has one single owner. Other parts of the program can
borrow a reference to the value to using the & operator. A Rust reference is similar to a C
pointer, but with an important requirement: A Rust reference may never point to invalid

10

2.1 The Rust Programming Language

memory, and will always point to a valid instance of the type of the reference. Ownership
can also be moved. A value may not be used after it is moved, preventing a freed value to be
accessed. When the owner of a value goes out of scope, the value is automatically dropped
(freed).

In Listing 2.1, the x variable has ownership of the String value. When passed to the
free function, the ownership is moved and the value is then immediately dropped, since the
block of the free function is empty. However, when the x is attempted to be printed in the
println! macro, it is attempted to be used after a move, which is not allowed by the Rust
compiler.

Writing the same program in C is trivial (although odd), and will compile. One such
program can be seen in Listing 2.2. Note that lines 12-13 in the C example corresponds to
line 7 in the Rust example.

It is possible to write a program that performs the operation above in a memory safe way
in Rust using references, as seen in Listing 2.3.

While these programs are simple, and the C program is especially poorly written, for
larger programs it is not as trivial to keep track of pointers to values. To guarantee that
they are never used after free, or containing other memory problems, is a challenge even for
experienced C programmers. Rust provides this guarantee without any runtime penalties,
since the checks are made at compile-time.

2.1.2 Unsafe Rust
THE KNOWLEDGE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF UNLEASHING INDESCRIBABLE HORRORS THAT
SHATTER YOUR PSYCHE AND SET YOUR MIND ADRIFT IN THE UN-
KNOWABLY INFINITE COSMOS.

(Disclaimer at the start of The Rustonomicon, the book for Unsafe Rust)

While providing several benefits in regards to safety and correctness of Rust programs,
the Rust compiler can for some applications be too restrictive. This is deliberate design
decision, but does create a problem where Rust would not be able to solve some problems.
The solution used in Rust can be seen as dividing the language in two parts: Safe Rust (used
by default) and Unsafe Rust (denoted by the unsafe keyword) [2]. In this context, safe refers
to the guarantees given by the Rust compiler for safe Rust such as type-safety and memory-
safety. This means that there can be no dangling pointers, use-after-frees, or any other kind
of undefined behavior in safe Rust [2].

Unsafe Rust is in many ways similar to Safe Rust, with some important additions often
referred to as unsafe superpowers. These superpowers include the following [15]:

1. Dereference a raw (C-like) pointer

2. Call an unsafe function or method

3. Access or modify a mutable static variable

4. Implement an unsafe trait

11

2. Background

5. Access fields of unions

An interesting aspect is that calling foreign functions via an FFI (Foreign Function Inter-
face), such as C library functions, is always unsafe. This means that some calls to important
system libraries can only be made in unsafe Rust.

It is also the case that some parts cannot be safe due to their nature; Code that relies
on hardware interfaces may fail, although the code itself is correct. Listing 2.4 provides an
example where Unsafe Rust is required, as it calls a native C function.

Listing 2.4: Rust code calling inheritly unsafe C functions using
the libc package

1 fn main() {
2 let m = std::mem:: size_of::<i64 >();
3
4 // Call to unsafe function
5 let p: *const i64 = unsafe { libc:: malloc(m) } as *const i64;
6
7 // ‘p‘ is never checked against ‘libc :: PT_NULL ‘ to ensure
8 // memory allocation succeeded
9

10 // Unsafe dereference of raw pointer
11 println!("Found␣{}␣at␣allocated␣memory", unsafe { *p });
12
13 // ‘p‘ is never freed!
14 }

This example presents both benefits and dangers of Unsafe Rust; While C functions can
easily be called using the FFI provided by the libc package, the code contains dangers. The
call to malloc inside the unsafe block is non-problematic, however the handling of the
resulting raw pointer is not. Not checking if the allocation succeeded results in a dangerous
memory access at line 11, and libc::free is never called on the raw pointer.

A common Unsafe Rust design pattern is to wrap unsafe code in a safe API, to provide
functionality not possible with standard Rust [2]. This is the case for several parts of the Rust
standard library, such as RefCell<T>, which will guarantee Rust borrowing rules at runtime
instead of at compile-time.

This wrapping of unsafe code in a safe API can lead to a problem that is referred to as
unsoundness. Unsound code is not unsafe, but if a Rust library is not sound, it is possible to
use it in such a way that it leads to, for example, memory unsafety. Say that an arbitrary C
function hates8 takes an integer as input. For all inputs except 8 it works fine, but if a user
were to pass 8 to it, the function will immediately start doing all kinds of memory unsafe
procedures. While it probably will not summon eldritch horrors the likes of which will drive
any person to insanity, it may cause security problems. If a (safe) Rust function where to
call hates8 via an FFI and it does not ensure the input is not 8 in some way, the function is
considered unsound. It presents itself as safe, but it is possible for a caller to reach memory
unsafety while using it.

To avoid the invocation using the forbidden number, the library designer may use several
di�erent techniques, or just pass the danger to the library consumer by marking the function
as unsafe and add a disclaimer in the documentation that 8 is not to be used as a parameter.

Unsafe functions are instead functions that require that the caller fulfills some require-
ments described by the documentation to be safe [15].

12

2.1 The Rust Programming Language

2.1.3 The Rust Ecosystem
The foundation of the Rust ecosystem is the cargo package manager. While it is possible to
build Rust projects without cargo, such as using make, this thesis will only discuss projects
using cargo. Together with the crates.io code registry, cargo provides software developers
with an easy way to publish code to the community, and to use published code as depen-
dencies. The cargo command-line interface provide Rust developers with built-in tools to
interact with their code, including the Rust compiler rustc. To download dependencies,
compile the package and link it, the user simply has to use the cargo build command.

We must here make a distinction we have so far avoided; crates and packages. The Book
provides a definition of both which we will provide here, however the term package is used
by our tool. A crate is the smallest amount of code that the Rust compiler considers at a time.
A crate can either be a library crate, intended to be used by other crates, or a binary crate, a
program that is executable. A package is a set of at most one library crate and any number of
binary crates [15]. Since only library crates can be dependencies, dependencies in Rust are
often called packages, even though the true dependency is the library crate in that package,
which may or may not share the name of the package. To complicate the matter, it is also
possible to split a Rust project into several packages, where one package contains only the
binary crate, and one contains only the library crate. We have decided to use packages as our
lowest point of interest, since there may be several crates available in the src/ directory of
a package, and a Cargo.toml file (see Listing 2.5) refers to a package (or workspace). While
this may lose some granularity, and some confusion in the case where a library crate does not
share the name of its package, we consider this description to be more clear. By convention it
is unlikely that this will cause problems, but it may result in unexpected behavior and results
when a package has an advanced configuration.

The Cargo Book1 contains a great overview of cargo and the Rust ecosystem. We will
provide a brief summary here to provide a background for the rest of the thesis.

Each package can have several versions, and versioning is made using semantic version-
ing [1]. Semantic versioning can be summarized as a scheme where versions are split into
three parts; MAJOR.MINOR.PATCH, with the following definitions2:

• MAJOR versions are incremented on incompatible API changes

• MINOR versions are incremented on adding functionality in a backward compatible
manner

• PATCH versions are incremented on backward compatible bug fixes

In a Rust package handled by cargo, code dependencies are listed in a Cargo.toml file.
An example Cargo.toml file can be seen in Listing 2.5.The user may specify which version(s)
of a dependency is to be used, and can define intervals (like All MINOR versions above X.Y.Z).
The actual versions used when the package is first compiled will be written to a Cargo.lock
file, so the same versions are reused as long as they fulfill the versions requirements defined
in Cargo.toml. It is also possible to define dependencies with a specific path on the local
filesystem, or to use a git repository (with an optional revision hash).

1https://web.archive.org/web/20230422160738/https://doc.rust-lang.org/cargo/
2https://web.archive.org/web/20230528123304/https://semver.org/

13

https://web.archive.org/web/20230422160738/https://doc.rust-lang.org/cargo/
https://web.archive.org/web/20230528123304/https://semver.org/

2. Background

Listing 2.5: An example Cargo.toml file
1 [package]
2 authors = [" Emil Jonathan Eriksson <eje1999 +cargo - indicate@gmail .com >"]
3 name = "cargo - indicate "
4 version = "0.2.0"
5 edition = "2021"
6 description = " Crate for running GraphQL queries on Rust dependency trees "
7 keywords = [" cargo ", "cli", " search ", " dependencies ", " graphql "]
8 categories = [" command -line - utilities ", " development - tools :: cargo - plugins "]
9 readme = "../ README .md"

10
11 [[bin]]
12 name = "cargo - indicate "
13 path = "src/main.rs"
14
15 [dependencies]
16 clap = { version = "4.1.4" , features = [" wrap_help ", " derive "] }
17 indicate = { path = "../ indicate ", version = "^0.2.0" }
18 serde = { version = "^1.0" , features = [" derive "] }
19 serde_json = "1.0.93"
20
21 [dev - dependencies]
22 trycmd = "0.14.12"
23 test -case = "3.0.0"

When cargo builds a package locally, the source code of the dependencies are down-
loaded to the $CARGO_HOME directory on the users machine, by default $HOME/.cargo.
While the Cargo Book notes that the internal structure of $CARGO_HOME is not stabilized, we
note that cargo keeps a cache for each git repository and package index used here, making
it able to easily access the source code when needed to build a package. This aspect, that
cargo keeps local copies of the source code, is important for the thesis, as it ensures that we
can access the source code of dependencies as easily as the source code of our target package.

It is not uncommon that Rust packages share repositories with other (related) Rust pack-
age; in those cases each crate have their own Cargo.toml file, but they may also share a
workspace Cargo.toml file higher up in the directory tree. This makes it possible for crates
to share target/ directories, and already compiled dependencies. These crates may also use
a path specifier for their dependencies, in which case they can refer to crates in the same
repository or workspace, which we found several instances of in our data collection.

A Rust crate or its versions cannot be removed from crates.io once published with the
exception of use deemed illegal or malicious by crates.io administrators3. To provide a way
of marking a version containing known bugs or vulnerabilities, a package author can mark
individual versions as yanked (marked that they should not be used). Yanked versions are
only used if they already appear in the Cargo.lock file, but will not be selected by cargo
otherwise.

We can also note an important functionality in Listing 2.5, namely the features key.
The Cargo Book describes it as a mechanism to provide a form of conditional compilation
and optional dependencies. A package author may define that some dependencies are only
needed when some features are enabled, and also that some items in the code are enabled (or
disabled) when a feature is enabled. An example of a function for which the implementation
changes depending on a feature can be seen in Listing 2.6

In addition to the built-in functionality provided by cargo, users are free to write their
own extensions, which is how the software was implemented in this thesis.

3https://web.archive.org/web/20230422160710/https://crates.io/policies

14

https://web.archive.org/web/20230422160710/https://crates.io/policies

2.2 Motivation

Listing 2.6: Example of a Rust program for which the
implementation of foo changes depending if compiled
with the worldwide feature or not (rustc <file> vs
rustc --cfg ’feature="worldwide"’ <file>)

1 #[cfg(feature = " worldwide ")]
2 fn foo() {
3 println!("Hello␣world!");
4 }
5
6 #[cfg(not(feature = " worldwide "))]
7 fn foo() {
8 println!("Hej␣Sverige!");
9 }

10
11 fn main() {
12 foo();
13 }

2.2 Motivation
This sections intends to provide motivation for the work, both from an industry standpoint
and from an academic standpoint.

2.2.1 Rust at Volvo Cars
At Volvo Cars, Rust is increasingly being adopted as a programming language for embedded
software development. The language has gained popularity in the organization, and users are
often advocates of further adoption by others within the organization. Perceived benefits
include the built-in ecosystem in cargo, the safety inherent in the language, as well as a rich
type system allowing for faster development.

Open source software, as published on crates.io, is frequently used in development at
Volvo Cars. While allowing faster development, and reuse of code for common tasks, this
leads to problems regarding the quality, safety, and risk associated with using outside code.
This problem is amplified by the dependencies listed in a Volvo Cars Cargo.toml file may
itself depend on other crates. Internal processes aim to minimize these risks, but this does
not mean that the practice is risk-free.

Given this dependency tree, it quickly becomes very hard, if not impossible, for a team of
developers to manually verify for quality and correctness. For this reason, the need for a tool
to automatically warn a developer of problems in their dependency tree becomes apparent.
It would also be helpful for a developer to easier get insight in their dependency tree without
doing a manual investigation of all metrics for all dependencies.

2.2.2 Basis for Further Research
The open source software community is ever evolving, producing more and more software
of varying amounts of quality. While studies in this field continue to make interesting dis-

15

2. Background

coveries in the relationship between di�erent data sources, these may often focus on smaller
subsets of signals such as repository information or simply analysis of the code.

However, modern software development includes the production of much more informa-
tion than just the code itself; The history of the software, the people creating it, the website
hosting it, the historical issues are all pieces of information that may paint a bigger picture.
Accessing this information in a way that benefits both developers and academics provide a
challenge, that we aim to solve in part for the Rust ecosystem with the tool we provide with
this thesis.

2.3 Related Work
This section provides examples of work in related domains, and especially Rust projects, that
aims to solve the same or neighboring problems as presented in the motivation section. We
will start by introducing the Google project deps.dev, followed by existing Rust tooling that
we have found during our research. Finally we will present studies looking at similar areas of
research.

2.3.1 deps.dev and the OpenSSF Scorecard
Open Source Insights, a service by Google, provides some of the functionality presented in
this thesis. Its website deps.dev provides developers with the ability to search for any open
source project in several ecosystems, including cargo. The service provides developers with
a detailed dependency graph, as well as an OpenSSF Scorecard.

The OpenSSF Scorecard is a project4 by the Open Source Security Foundation. The
scorecard aims to provide a template for best security practices for open source projects. It
currently lists 16 criteria, such as branch protection, CI-tests, if it is maintained (has recent
commits) etc. It then aggregates this to a final score. Our tool can provide some of the
information used to create the scorecard, but does not provide a score to the user. Instead,
it provides more metrics that can then be evaluated according to the needs of the user. The
OpenSSF scorecard can thus be a suitable tool for initial screening, while more in-depth
analysis, including more Rust-specific metrics, of a project can be done with our tool.

While our tool contains overlap in what it can provide for the user, we believe that our
tool provide novel functionality. While deps.dev and the OpenSSF scorecard provides infor-
mation in a easy-to-use way, making the information accessible, it is limited in its function-
ality by focusing mainly on best practices found in a repository. We also note that our tool
focuses entirely on Rust, while deps.dev supports multiple ecosystems. This provides us with
the ability to take Rust-only parameters into account. We note that our tool is extensible,
both in adding more data sources, but also because the user can write their own queries that
can investigate new relationships, similar to how one would write queries to a database.

4http://web.archive.org/web/20230508021952/https://github.com/ossf/scorecard

16

http://web.archive.org/web/20230508021952/https://github.com/ossf/scorecard

2.3 Related Work

2.3.2 Rust Software
There exist several Rust crates and packages intended to make it easier to evaluate the de-
pendencies used by a project. Such work includes, but is not limited to:

• cargo-geiger, a tool for finding usage of unsafe Rust in a project, including how it
uses unsafe Rust in its dependencies

• cargo-audit and the RustSec Advisory Database, which lists and audits known vul-
nerable crate versions

• cargo-crev, which allows for cryptographically verifiable code review system

• cargo-vet, which ensures third-party crates have been audited by a trusted source

• cargo-deny, which allows for listing blocked dependencies in a deny.toml file and
linting the dependency graph, which is similar to the tool that is presented in this
thesis

While these projects provide valuable information, and could be considered for any Rust
project, they themselves does not provide a way to query the results, or combine the di�erent
metrics. We do note that some of these may be more easily integrated into a CI pipeline, such
as using cargo-deny for preventing some known issues.

2.3.3 Studies
Software repositories stored on services like GitHub and GitLab provide much of the foun-
dation for this report. One study by Schueller et al. used an approach collecting information
similar to the tool we provide in this paper [21]. They found that in the Rust ecosystem, a vast
majority of projects could be cloned from either GitHub or GitLab, with a majority being
available on GitHub. They provide a data processing pipeline to collect data, process it, and
then make it available in a database. The data includes information about the repositories,
such as stars, package versions, pull requests, issues etc. The declared purpose of the database
is to give a comprehensive view of several dimensions of the ecosystem.

While the processing of the data in this pipeline is more rigorous than the one provided
by our tool, the presentation of data is not immediately accessible in the same way to Rust
developers. Tools are provided to recreate the dataset, and one version of it is available on
GitHub. We believe that our tool could use a more stable source of information for reposito-
ries in the future, and that a database with a rigorous data pipeline could be one such source.
Nothing prevents such an extension, but the current implementation has benefits of being
up-to-date and providing ease of use.

GrimoireLab is another project providing insights into multiple data sources, which
include GitHub among others [11]. The data can be anything from tweets to answers on
StackExchange sites. This data can then be used to create software development analytics
dashboards and reports. Even with the capabilities of aggregating data from di�erent sources,
the problem of assessing FOSS (Free and Open Source Software) project health is very com-
plex, and no set of metric has been found to reveal the health of a project. It should also be

17

2. Background

noted that our work focuses exclusively on the Rust ecosystem, with the added benefits of
focusing on Rust-specific metrics (such as the usage of Unsafe Rust).

There has been several more works in the area of mining data from software repositories,
and the International Conference on Mining Software Repositories5 is a source of several
articles.

Software Bills of Material is another aspect that is related to this thesis. SBoM can be
described as a inventory of all components that make up a software project, and is described
by the American Cybersecurity & Infrastructure Security Agency (CISA) as a key building
block in software security and software supply chain management6. However, a recent re-
view of the usage in practice [25], based on interviews and surveys of SBoM practitioners,
reveals that the practice is still in early stages, and that while beneficial, there is need for
standardization. The tooling is currently held down by a lack of maturity. While practice
may vary between projects and organizations, it reveals underlying problems present in the
practice. We do not claim that our tool provide a SBoM, especially not to be held to strict
requirements, but the adaptive capabilities makes it easier for developers to create queries
that takes all components of a software component into account.

In our analysis we look at several scalar metrics in the Rust ecosystem, to attempt to cre-
ate a baseline for what users of our tool might expect to find. In [23], the authors attempt to
find indicators of software vulnerabilities. Looking at complexity, code churn, and developer
activity, the authors found that they could reduce the number of files and lines of code to
inspect by significant amount for the Mozilla Firefox web browser and the Red Hat Enter-
prise Linux kernel. The authors used a binary classification technique, measuring how well
di�erent metrics managed to identify known vulnerable files, and found that several metrics
that are also available using our tool (such as lines of code) are indications of vulnerabilities.
We should note that the paper focuses on file detection in two projects, whereas we focus on
detecting complete packages that are of interest (vulnerabilities or otherwise)

There have been several studies on the ability of Rust to prevent bugs. One such study
[26] looked at all Rust CVEs (Common Vulnerabilities and Exposures) regarding memory-
safety, and found that unsafe Rust was present in all but one of the bugs. This analysis focuses
on code-level, which is not our goal, but the results provides support for our assumption that
Rust unsafety is a signal worth investigating.

There has also been further work to understand how software developers use Rust, and
in particular unsafe Rust. [10] looked at publicly available Rust code, and used the call graphs
to determine how unsafe Rust was used by that code. It was found that less than 30% of Rust
libraries use unsafe, but that unsafe usage was sometimes hidden in the call chain. [19] used
another approach, and performed manual close inspection of 850 unsafe usages and 170 bugs
in five open source Rust projects. It was found that unsafe code was unavoidable in many
cases. No cases were found of memory-safety issues that did not also include unsafe code.
[6] used a combination of automatic code inspection, intermediate representation inspection,
type information provided by the Rust compiler, and manual inspection. The results agree
with the other papers, and found unsafe usage to be a source of bugs, but also that sometimes
API providers hide unsafe usage from the API consumers.

These studies support usage of unsafe Rust as an important factor in identifying memory-
related issues with projects, which is a unique feature of Rust and something our tool sup-

5http://www.msrconf.org/
6https://web.archive.org/web/20230518045746/https://www.cisa.gov/sbom

18

http://www.msrconf.org/
https://web.archive.org/web/20230518045746/https://www.cisa.gov/sbom

2.3 Related Work

ports.
While the Rust compiler provides static analysis of programs, several works have at-

tempted to extend this verification with additional resources; [12] implements a static code
checker using the Viper verification infrastructure developed at ETH; [17] provides a tech-
nique to mitigate the security threat of unsafe Rust by using a heap allocator separating the
memory of safe and unsafe Rust; [16] provide and evaluate a bug detection framework for
the Rust mid-level intermediate representation (MIR). These example papers all focus on a
static code checking, and we believe our approach to be a complement to this focus on the
code itself.

To summarize, there exists past and ongoing research into the field of identifying vulner-
able Rust code. Several studies and projects exist to analyze Rust code statically. There exists
studies in GitHub and GitLab usage, and also specific research into usage of these services for
Rust packages. We consider our tool to provide a novel approach to provide this information
with a unified interface, and with a combination of focus on stats about source code as well
as information from other sources.

19

2. Background

20

Chapter 3

Method

This chapter will start by providing a black-box description of the tool, cargo-indicate,
and its underlying library indicate, that we created. We will then provide a more in-depth
description of the inner workings and its underlying technologies. We will then present a
way of collecting data using cargo-indicate, followed by the methods used to analyze the
data to answer our research questions and evaluate the usefulness of our tool.

Some implementation details are omitted but are included in Appendix B.

3.1 cargo-indicate Overview

Listing 3.1: Invocation of cargo-indicate with a simple
query; cargo indicate is the software, the -q flag accepts
one or more queries, or the paths to files containing queries,
-p is the target package name, and the path after -- is where
cargo-indicate should look for a Rust package

1 # With query inline
2 cargo indicate \
3 -q ’{␣RootPackage␣{␣name␣@output␣}␣}’ \
4 -p cargo -indicate \
5 -- $SOME_DIR/
6
7 # With query in a file and more precise package path
8 cargo indicate -q query.graphql -- $SOME_DIR/cargo -indicate/

We built cargo-indicate, a cargo add-on to provide a way to write queries on a local
Rust package and its dependencies. After being installed, it can easily be invoked by calling
cargo indicate. A high-level overview of cargo-indicate can be seen in Figure 3.1.

cargo-indicate uses a subset of GraphQL to make it possible to execute queries on
a package and its dependency tree. The indicate library provides a schema, accessible

21

3. Method

Figure 3.1: A high-level overview of cargo-indicate

cargo-indicate

Query Cargo.toml

User Output

Schema Tool XTool XTool X

indicate internals

Files

GitHub

. . .

using the --show-schema flag (see Appendix C). By providing cargo-indicate with a
query and the path to a Rust package, it can resolve the query across the dependency tree
of the target package. cargo-indicate then uses underlying tools, one for each signal, to
sample data. Listing 3.2 shows a simple query counting the number of lines in a package.
Figure 3.2 provides a graphical representation. In this figure, circles are vertices, arrows are
edges, rectangles are properties, and vertices enclosed in a box are a list of vertices. In Rust
code, the vertices in this query are variants of a Vertex enum with a counted reference to a
struct with fields corresponding to the properties. The edges are more abstract, and we refer
to Appendix B and the code itself for more implementation details. Note that the root of the
query is RootPackage, which means that the query will start at the root of the dependency
tree.

Listing 3.2: An example cargo-indicate query counting the
number of lines of code and comments in the src/ directory of
a package

1 {
2 RootPackage {
3 name @output
4 version @output
5 codeStats(includedPaths: ["src"]) {
6 language @output
7 code @output
8 comments @output
9 }

10 }
11 }

22

3.1 cargo-indicate Overview

Figure 3.2: A graphical representation of the query in Listing 3.2
(duplicate properties omitted)

rq
RootQuery

p
Package

RootPackage

name @output

version @output

0
LanguageCodeStats

1
LanguageCodeStats

. . .

language @output

code @output

comments @output

[LanguageCodeStats]

codeStats(
includePaths: ["src"]

)

vertex

root vertex

property
vertex list

edge

The results are JSON lists that can be printed to standard output or saved in files. Fields
marked with the @output query directive are included in this output, and can be renamed
by using @output(name: "foo"). By checking if the results of a query are an empty list
([]), filters can be created. This makes it possible to disallow any characteristics that are
undesirable. A sample output for Listing 3.2 can be seen in Listing 3.3.

Listing 3.3: Sample result for the indicate package for the
query in Listing 3.2

1 [
2 {
3 "code": 187,
4 "comments ": 47,
5 "language ": "GraphQL",
6 "name": "indicate",
7 "version ": "0.1.0"
8 },
9 {

10 "code": 2661,
11 "comments ": 120,
12 "language ": "Rust",
13 "name": "indicate",
14 "version ": "0.1.0"
15 }
16]

23

3. Method

Listing 3.4: An example cargo-indicate query counting the
number of lines of code and comments in the src/ directory
of a package, filtering out results with less than the argument
minLoc.

1 {
2 RootPackage {
3 name @output
4 version @output
5 codeStats(includedPaths: ["src"]) {
6 language @output
7 code @output @filter(op: ">=", value: ["$minLoc"])
8 comments @output
9 }

10 }
11 }

Listing 3.5: Sample result for the indicate package
for the query in Listing 3.4, with the additional flag
--args ’{ "minLoc": 500 }’

1 [
2 {
3 "code": 2661,
4 "comments ": 120,
5 "language ": "Rust",
6 "name": "indicate",
7 "version ": "0.1.0"
8 }
9]

We can modify this query to take arguments. We can for example only output languages
with more than minLoc lines of code, see Listing 3.4.

Arguments can be set using the --args flag, such as --args ’{ "minLoc": 500 }’.
This would result in the result in Listing 3.5.

It is also possible to bundle arguments and queries in a file of a supported format (such
as .ron1 files), which is supported by the -Q/-–-query-with-args flag.

All queries can be made on the target package or its dependencies, or a combination of
both. There are some exceptions to some signals, and these are presented together with the
signals themselves.

Queries are very flexible, and have access to filters, recursion, folding (converting results
of some depth n to a list of n elements), optionals, tags, and renaming outputs. Listing 3.6
shows an example query listing all dependencies using the semver trick2. The semver trick
is a workaround for an issue that can occur in the Rust ecosystem. Rust considers a type
from two di�erent minor semantic versions to be di�erent, even if the type has not changed
between those versions (so type A in liba 0.2 is not the same as type A in liba 0.3).
When a large number of Rust projects then reuse type A in their public API, the version of
liba those projects use becomes important, and upgrades a di�cult coordination problem
between library developers. The solution is to release a patch version of liba, liba 0.2.1,

1Rusty Object Notation
2http://web.archive.org/web/20230320044313/https://github.com/dtolnay/semver-trick/

24

http://web.archive.org/web/20230320044313/https://github.com/dtolnay/semver-trick/

3.1 cargo-indicate Overview

that depends on a future version of itself (liba 0.3). The unchanged types can then be re-
exported from 0.3 to 0.2.1, so any library using A from liba 0.2.1 in their public API
actually use A from liba 0.3.

Listing 3.6: An example cargo-indicate query listing all de-
pendencies using the semver trick, by checking if a dependency
depends on itself (a true check would also ensure that the ver-
sion it depends on is newer). Note that bound values using the
@tag directive are prefixed with %

1 {
2 Dependencies(includeRoot: false) {
3 name @tag(name: "parentName") @output
4 dependencies {
5 name @filter(op: "=", value: ["%parentName"])
6 }
7 }
8 }

Figure 3.3: A graphical representation of the query in Listing 3.6

rq
RootQuery

d0
Package

d1
Package

. . .

[Package]

Dependencies(
includeRoot: false

)

name @tag(name: "parentName") @output

d0d0

Package

d0d1

Package

. . .

[Package]
dependencies

name @filter(op: "=", value: ["%parentName"])

binding used

Figure 3.3 provide an overview of the query execution; The query engine start at an "in-
visible" RootQuery vertex, and then follow the Dependencies edge to retrieve a list of all
dependencies of a project, not including the root package according to the edge parame-
ter. The dependencies are a list of Package vertices. The name of each package is bound to
"parentName" using the @tag query directive. The engine then follows the dependencies
edge of each package, to access the list of direct dependencies for that package. It then goes
through the list of packages, comparing the name of each direct dependency to the value
bound to "parentName" (the % prefix is for tagged values). The filter ensures that only
those packages (d0, d1, ...) that have at least one dependency (d0d0, d0d1, ...) with the same
name as that package are included in the output.

cargo-indicate resolves queries lazily, that is, results are only fetched and computed
when required by the query. This has several benefits for the user:

1. Only request third-party APIs when required, especially important due to rate limits

25

3. Method

2. Adding more signals do not impact old queries

3. Some parts of the schema can e�ectively be ignored by the user, without any downsides.
This is especially useful if one signal requires API keys or special configurations; the
user does not have to configure what they do not use

3.2 An In-Depth Look at cargo-indicate
This section will provide a more in-depth look at how cargo-indicate queries the depen-
dency tree of a Rust project, and aims to provide insights in its strengths and weaknesses. We
will introduce the query engine behind cargo-indicate, trustfall, and describe how it
is used to query our signals. We will end with some implementation details of the indicate
library, describing how it may further developed to include more signals.

cargo-indicate

An in-depth overview of cargo-indicate is presented in Figure 3.4. We will not discuss
the details of command parsing, which is handled by the excellent clap package.

We note that the user input is parsed into four distinct input types, namely:

1. One or more queries, to be answered by cargo-indicate

2. Optional sets of arguments to the provided queries

3. Optional options, which can be related to how cargo-indicate uses tools etc.

4. The package path, i.e. the path that is used to resolve the manifest file (Cargo.toml)
of the target root package

indicate uses the builder pattern3 to make it easy to control how the IndicateAdapter
is built, and thus how the tools are used. The only requirements to create an IndicateAdapter
instance is a valid path to a Cargo.toml file. It is then this IndicateAdapter instance that
is used by the trustfall engine, presented in Section 3.2.1, to resolve the queries.

While several tools, such as API clients and cargo-geiger, are used by cargo-indicate,
these are accessed through so-called clients. These are wrapper types to provide an interface
suitable for IndicateAdapter, and to add caching functionality. The implementation de-
tails di�er, and some clients do little more than to add a cache and expose underlying methods
in the tool. Note that not all clients have caches, and that a cache might be both in-memory
and in storage (to be used across executions).

IndicateAdapter does not create these clients from the onset. Since a set of queries to
resolve does not necessarily need the usage of all clients, initialization is deemed unecessary.
Thus, the OnceCell package4 is used to provide lazy initialization of clients and their cache.
This is made possible by the trustfall engine, which does not request edges and vertices
not required by the query.

3https://web.archive.org/web/20230406145753/https://rust-uno�cial.github.io/patterns/patterns/creational/builder.html
4To be stabilized in the Rust standard library

26

https://web.archive.org/web/20230406145753/https://rust-unofficial.github.io/patterns/patterns/creational/builder.html

3.2 An In-Depth Look at cargo-indicate

Figure 3.4: An in-depth overview of how cargo-indicate resolves
a query

Query Arguments
(optional)

Options
(optional) Package Path

Command Parsing

cargo indicate -q query.gql -a ’{ "max": 42 }’ <options> -- $SOME_DIR/

Manifest File Path
Resolution

ManifestPathIndicateAdapter-
Builder

IndicateAdaptertrustfall Engine

Schema

Output Prettifier

Output Resolution

Query Results

Client

CacheTool

Data Source

Cache

Client

Tool

Data Source

Cache

Client

Tool

Data Source

27

3. Method

3.2.1 The Trustfall Project
trustfall is a query language and engine written in Rust under an Apache-2.0 license
by Predrag Gruevski5. The project is used as the backend for the cargo-semver-checks
project, which ensures that semantic versions defined in Cargo.toml matches the changes
in the project.

This is done by running trustfall queries on the generated rustdoc documentation;
A set of queries are run to compare the old and the new documentation, and if there are
di�erences that are known to require a semver update the developer is informed.

The underlying goal of trustfall is to combine perceived benefits of the GraphQL
query language, and SQL. It is described as a way to combine data sources such as third-
party APIs, local files, and other databases.

While the trustfall project is still in early development, it does provide a framework
from which it is possible to reach the requirements of the software developed in this thesis.

3.2.2 Trustfall Data Structure
In trustfall (and GraphQL), one may think about data as a graph. Queries start at a finite
set of entry points (root queries); These entry points are a set of edges leading to vertices in
the schema. From these initial vertices a query may request the scalar properties (such as id
and name of a vertex of an arbitrary User type), or an edge leading to another vertex. An
edge may take some parameters, and leads to another vertex of some type with its own scalar
properties and edges.

trustfall requires three things to execute a query:

1. A schema to describe how data is related and can be queried

2. An adapter to resolve the fields described by the schema

3. The query itself

At the time of writing, both schemas and queries are written in a subset of GraphQL6. A
very simple GraphQL schema can be seen in Listing 3.7.

Listing 3.7: A very simple GraphQL schema
1 type RootQuery {
2 user(name: String): User
3 }
4
5 type User {
6 name: String!
7 age: Int!
8 }

This schema can be interpreted as the following, where (RootQuery has a special meaning
in trustfall schemas): There is one entry point to the schema (user), this entry point takes an
optional argument (name) and will return a nullable object of type user with two properties (name and

5https://web.archive.org/web/20230425042416/https://github.com/obi1kenobi/trustfall
6https://graphql.org/

28

https://web.archive.org/web/20230425042416/https://github.com/obi1kenobi/trustfall
https://graphql.org/

3.2 An In-Depth Look at cargo-indicate

age). Note that a ! su�x indicates that a property is non-nullable. To retrieve the age of all
users with the name "Berit", the query in Listing 3.8 could be used.

Listing 3.8: A query for the age of all users with the name "Berit"
1 {
2 user(name: "Berit") {
3 age
4 }
5 }

Figure 3.5: A graphical representation of the query in Listing 3.8

rq
RootQuery

u
User

age

user(name: "Berit")

The trustfall schema and query would be equivalent, with the exception that age
would be annotated with the @output query directive to be part of the output.

Query directives such as @output provides a lot of the power of trustfall and are built
into the query engine. At the time of writing, using trustfall 0.4, the following query
directives are available (these are also defined in the indicate schema in Appendix C):

1. @filter, for filtering on a property using a set of predefined operations such as >, =,
has_substring etc.

2. @tag, for binding a property to a name, to be reused later in the query

3. @output, for making a property part of the output

4. @optional, for making a property optional

5. @recurse, for recursing up to a depth number of times along an edge

6. @fold, for folding all outputs from a scope into parallel lists

7. @transform, for transforming, like counting the members of a @fold

These query directives are a current focus of development for trustfall, and further
updates will directly benefit cargo-indicate and the queries that can be written.

While a GraphQL API would usually provide a resolver for its schema as part of an API,
connected to a single database (SQL or otherwise), trustfall is explicitly developed to
provide a way to query across data sources (so that while the age property may come from a
file, another property may come from an external API).

This is done using the BasicAdapter trait7, providing four methods to be implemented:

7Rust traits are similar to a Java interface or a Haskell typeclass

29

3. Method

1. resolve_starting_vertices

2. resolve_property

3. resolve_neighbours

4. resolve_coercion

All of these operate on iterators of a associated type; Vertex. This is a Rust type that in
some way (decided by the user of the trustfall API) can represent all the di�erent vertices
as described in the schema. Since Rust iterators are lazily evaluated, a neighbor or property
is only evaluated when explicitly requested by the trustfall engine as long as collect is
not called on it (a Rust standard library method to force the evaluation of an iterator).

The methods to be implemented for BasicAdapter provide a way of mapping the names
of vertices, their edges, and their properties to Rust values and functions. Each function takes
string parameters that make it possible for Trustfall to traverse the graph. This requires the
programmer to ensure that all possible combinations are handled by the methods.

The implementation of BasicAdapter is described further in Appendix B (Section B.1).

3.2.3 Signals as Vertices
The trustfall graph approach allows for an extensible amount of signals, and also allows
for handling dependencies in a flexible way.

At the core of the indicate schema is the Package type. This type represents a sin-
gular package as published on crates.io, and may represent both a root package (the package
being queried), or any of its dependencies. Using the properties and edges of this vertex, it is
possible to access information and signals as they are required.

The entry point to the graph is provided by a root package. The dependency tree of this
package, along with scalar properties about it and its dependencies, are provided with the
help of the cargo_metadata crate. It provides a programmatic interface to interact with a
Rust package.

By providing the Package type with a dependencies: [Package!]! edge (non-nullable
list of non-nullable packages), queries can be run across the whole dependency tree. The
trustfall @recurse query directive allows for recursing the operation, although currently
limited by the requirement of a defined depth.

As more signals are added, they can simply be defined as new properties and edges on the
Package type. This means as long as these are only ever added, all new updates to the tool
will be fully backwards compatible with old queries, as old queries will simply use a strict
subset of the new schema.

New signals implementation details may be vastly di�erent (such as calling a third-party
API, parsing code, or querying a database), but as long as they provide an arm in the
BasicAdapter they can be resolved by the engine.

The general implementation of a signal follows some steps in the indicate library:

1. Updating the schema.trustfall.graphql to include the new edges and properties

2. Adding one or more new variants in the indicate::vertex::Vertex enum, vari-
ants either holding information directly or holding data that may retrieve information

30

3.3 Selecting Signals

3. Depending on the signal, implementing a new client. A client here simply describes a
Rust type that can sample information from some signal, providing functionality such
as caching

4. Adding the new arms in the methods of the IndicateAdapter implementation of
BasicAdapter

5. New test queries to ensure the correct implementation

Since signals vary, cargo-indicate does not provide any traits that describe common
client behavior. Further development of cargo-indicate could possibly include a stan-
dardized implementation of the adapter-client relationship, based on a design evaluation of
the existing implementations, and performance profiling.

Further implementation details for the adapter-client relationship can be found in Ap-
pendix B (Section B.2).

3.3 Selecting Signals
Due to the nature of this thesis, it is not possible to say which signals have the highest impact,
and which ones contain little information, from the start. This does not mean that we have
to approach the issue of selecting signals completely blind though; There have been studies
made on Rust and Rust bugs [6][19][26], as well as for other programming languages [23], and
thus some indication of what might be significant.

The rest of this section will list the signals implemented by indicate, with a motivation
for their initial selection, the underlying tool(s), possible quirks, and any limitations. The
validity of data provided by them will be evaluated later.

To easier categorize signals, and to be able to reason about their correlation with each
other, we will here present some behavior found in the presented signals.

1. Code-dependant; Signals that depend on the source code of a project to be sampled

2. Version-dependant; Signals that provide granularity only on the semantic version level

3. Snapshot; Signals that cannot be guaranteed to be reproducible, i.e. might di�er be-
tween samples, since they only provide point-in-time data, with no way of checking
earlier values

4. Historical; Signals that provide historical data when sampled

The signals are summarized in Table 3.1, and are further expanded upon in the following
sections.

We refer to Appendix C for details about how the signals appear in the schema.

31

3. Method

Table 3.1: Summary of the signals collected by cargo-indicate

Signal Tool Sample Scalar Values
The Dependency Tree cargo_metadata Number of dependen-

cies etc.
Unsafe Rust cargo-geiger Lines of unsafe expres-

sions, unsafe trait imple-
mentations etc.

Code Stats tokei Lines of code, lines of
comments, comments to
code ratio etc.

GitHub octorust Stars, amount of follow-
ers of repository owner
etc.

RustSec Advisory Database rustsec Number of di�erent
type of advisories etc.

crates.io crates_io_api Number of downloads,
amount of yanked ver-
sions etc.

3.3.1 The Dependency Tree

Listing 3.9: The dependency tree of serde_json v1.0.96 created
using cargo-tree (only normal dependencies included)

1 serde_json v1.0.96
2 |-- itoa v1.0.6
3 |-- ryu v1.0.13
4 ‘-- serde v1 .0.163
5 ‘-- serde_derive v1 .0.163 (proc -macro)
6 |-- proc -macro2 v1.0.59
7 | ‘-- unicode -ident v1.0.9
8 |-- quote v1.0.28
9 | ‘-- proc -macro2 v1.0.59

10 | ‘-- unicode -ident v1.0.9
11 ‘-- syn v2 .0.18
12 |-- proc -macro2 v1.0.59
13 | ‘-- unicode -ident v1.0.9
14 |-- quote v1.0.28
15 | ‘-- proc -macro2 v1.0.59
16 | ‘-- unicode -ident v1.0.9
17 ‘-- unicode -ident v1.0.9

A projects dependency tree is the tree of all the projects dependencies, and the dependen-
cies of those dependencies, and so forth. An example dependency tree can be seen in List-
ing 3.9, where we can see that some dependencies like unicode-ident can appear multiple
times in the same tree.

When describing this tree, the direct dependencies of a Rust package are the dependencies
listed under [dependencies] in its manifest file (Cargo.toml). In Listing 3.9 itoa, ryu,

32

3.3 Selecting Signals

and serde are direct dependencies of serde_json. While other dependency types, like
development dependencies, are also direct dependencies, cargo-indicate does not include
them. Further development may see a flag to change this behavior though.

The other type of dependencies, transitive dependencies, are the dependencies of a pack-
age that are not explicitly listed under [dependencies]. These are the dependencies of
dependencies, dependencies of those and so forth.

Note that a transitive dependency can also be a direct dependency, if it appears both in
the manifest file and lower in the dependency tree. In this case, cargo-indicate considers
it to be both.

While providing a backbone for further queries, as each node in this tree is a Package
and can be queried as such, the dependency tree may also contain information on its own.
For example, the amount of direct dependencies might suggest how open the author is to
include third party code, while the amount of transitive code perhaps does not (as it is not
under direct control).

As stated earlier, cargo_metadata is used to gain programmatic access to the depen-
dency tree. In indicate, the IndicateAdapter struct uses types from this crate to identify
and handle packages.

3.3.2 Unsafe Rust
Unsafe Rust has been found to be a significant indicator for bugs [19], and also that unsafe
Rust usage is widespread [6]. Due to these factors, unsafe Rust usage is very likely to contain
information valuable for our purposes.

The Rust cargo-geiger crate provides a way to check how much of the binary of a Rust
project is unsafe Rust, including calls to dependencies. This approach is not perfect, and the
cargo-geiger repository8 contains issues where cargo-geiger is unable to fully describe
the unsafe usage. We found false positives where cargo-geiger included unsafe code that
should have been excluded in the analysis, since conditional compilation via Rust features
should have excluded the code. We also found instances where Rust procedural macros (a
form of preprocessing) impacted the analysis.

While not providing a stable interface, cargo-geiger provides the option to output
data in a JSON format, which can then be easily parsed to Rust data types using the serde_json
crate. The implementation of this in indicate relies on replicating the structure of JSON
data in Rust structs, and then providing methods to those data types for computing data such
as percentage of code compiled being unsafe. One important aspect here is that cargo-geiger
may, for a number of reasons, fail to resolve the unsafe usage for some package in the query.
By examining the logs for our data collection script, we noted that this often were the case
when some dependencies were only used for the Microsoft Windows OS. In this case, the
edge for geiger unsafety will simply be null.

The implementation of geiger unsafety in the cargo-indicate comes with a downside;
It is very possible to write queries retrieving information that simply holds no value. For
example, it is possible to write a query that looks at the unused code, and how much of that
code is unsafe out of all unused code. One such query can be seen in Listing 3.10

This may provide some information (such as in a context where a developer has decided

8https://github.com/rust-secure-code/cargo-geiger

33

https://github.com/rust-secure-code/cargo-geiger

3. Method

what not to use), but a better alternative is to see what is actually used, or how unsafe the
dependencies are in total.

Another important aspect is what we mean by used; in the cargo-indicate schema,
it means used in the context of the root crate. This means that running the same query lower
in the dependency tree will represent something di�erent. While being a step away from
the requirement that all queries can be run anywhere in the dependency tree, it follows the
underlying logic of cargo-geiger.

Listing 3.10: A cargo-indicate query retrieving the percent-
age unsafe code not used, out of all unused code

1 {
2 RootPackage {
3 geiger {
4 unused {
5 # total = unsafe functions + unsafe traits + ...
6 total {
7 percentageUnsafe @output
8 }
9 }

10 }
11 }
12 }

3.3.3 Code Stats
Code stats is here defined as statistics about some codebase, like number of lines of code,
lines of comments, etc. The tokei crate provides an API to quickly access this information.

It is not guaranteed that stats like these do provide insights in a package, however large
amounts of uncommented code is harder to maintain than small packages with a lot of com-
ments. On the other hand, very small dependencies could likely be implemented directly.

In [23], several such metrics were investigated, and it was found that code line count was
significant in detecting files with vulnerabilities, while comment density was not.

To be able to calculate this information, tokei needs access to the source code. Since
all source code for dependencies is downloaded by cargo and stored locally in a registry
directory, accessing the source code in the adapter can simply be done with the source path
provided by cargo_metadata.

3.3.4 GitHub
GitHub is a popular way of hosting Rust packages, and provides an API that can be used to
retrieve information about a repository, or its owner. We use the octorust crate to access
it. It is possible to gain insights into several metrics provided by GitHub, such as number
of (git) forks, number of stars (akin to social media likes or favorites), if the repository is
marked as archived or not, etc.

The motivation for these data points is as an indication of popularity, which in turn may
increase the scrutiny of the code. This follows Linus’s law; Given enough eyeballs, all bugs are

34

3.3 Selecting Signals

shallow [20], assuming GitHub metrics would provide insight in the amount of eyeballs, i.e.
the amount of developers investigating a project, finding issues, and fixing them.

In fact, studies on the code review and decision making structures of GitHub repositories
have revealed significant di�erences in behavior between groups of developers, that may in
turn be important when selecting which FOSS projects that are likely to be sustainable over
an extended period of time [27].

Contrary to information from crates.io, metrics from GitHub generally require more
conscious decisions from a user; while downloads in crates.io count even those done without
the user knowing (as when downloading dependencies), GitHub stars for example require a
form of e�ort to produce.

According to [7], stars are considered by practitioners as the most useful measure of popu-
larity on GitHub, ahead of forks and watchers. The authors selected a sample of 400 Stack Over-
flow users, and e-mailed them asking them to rate the three metrics according to how useful
they are to assess the popularity of a GitHub project. However, this study also revealed that
stars may favour projects with larger marketing campaigns, than projects with higher quality.
It also revealed that the starring is done mainly to show appreciation to the projects (52.5%),
to bookmark the projects (51.1%), and because they used the projects (36.7%). The same study
also found that a majority of developers (73.0%) considered the number of stars before using
or contributing to a project. Among these, 29.3% also considers other factors such as code
quality, license, and documentation.

On the other hand, using metrics from GitHub requires both that the API returns reli-
able information, and that the client used collects this information accurately. Perhaps most
pressing is that even if the data is collected and correct, it may still not be useful to us as the
data might not provide any new insights about project quality or health. One study found
several perils with mining GitHub data, many relating to the nature of some projects [14].
While we avoid some perils by focusing on popular Rust projects, some are harder to avoid,
such as patterns in commits and the project structure.

The initial signal includes only information about the repository and the owner, and a
more developed signal may include detailed information about issues and pull requests. Due
to the extensible nature of cargo-indicate, this should be considered an easy target for
development.

3.3.5 RustSec Advisory Database
The RustSec Advisory Database is a repository of security advisories against Rust crates pub-
lished on crates.io[3]. It aims to provide a way for the Rust community to report advisories for
crates in a centralized location, using GitHub pull requests as a way of reporting advisories.

Using a client provided by RustSec, rustsec, it is possible to query this database using
several parameters, such as the severity of the vulnerability, the versions a�ected, etc.

While advisory-db at face value provides a lot of information, many of the fields pro-
vided are nullable. This means that we cannot rely on always being able to compare advisories
using all available fields. Severity has also historically been a measure that is hard to keep ob-
jective, and sources of advisory information may conflict in their rating [9].

One must also consider one major issues with advisories; The creators of code that are
very likely to contain future advisories are perhaps the least likely to report it. While others
may choose to do so, severe vulnerabilities may go unreported for some packages while other

35

3. Method

developers may report even the most miniscule issues. This is a similar behavior that can
become a problem with yanked crate versions, as we will see later.

Neuhaus et al. [18] showed that past reported exploits may not even correlate with fu-
ture issues by analyzing the Mozilla vulnerability history. While interesting, it would still be
interesting to see how advisory reporting correlate to other data points.

3.3.6 crates.io
The Rust package registry itself provides an API with information about crates, such as in-
formation about the number of downloads for a specific crate. We use the crates_io_api
crate to access it.

This information can in some way provide insight into the popularity of a project. Here it
is important to remember that libraries that often appear lower in a dependency tree, further
from the root, are likely to have more downloads. If they provide some core functionality, or
utility that is useful, they are more likely to have more downloads as transient dependencies
than conscious downloads. Nonetheless, downloads provides a real insight in the usage of a
project.

One caveat is that there may exist alternative package registries with other stats. It is
possible to provide a registry that cargo can interface with, and this is described in the
Cargo Book. It may be the case that a company host a private copy of the crates.io registry
for any number of reasons, such as not wanting their package usage to be public. It is a
possibility that such usage skews the data, but we do not take it into account in this thesis.

3.3.7 Signal Characteristics
In the table below, the characteristics of the signals are listed. Note that while it is possible
to create historical data for some signal (with multiple queries, against di�erent targets etc.)
historical in this context means if the sample is a series of historical data points.

Signal Code-dependant Version-dependant Snapshot Historical
Dependency Tree For root package For dependencies Yes No

Unsafe Rust For root package For dependencies Yes No
Code Stats For root package For dependencies Yes No

GitHub No No Yes No
RustSec Advisory DB No Yes No Yes

crates.io No Yes Yes No

An important point to note here is the time discrepancy between signals that provide at-
best version granularity (crates.io and RustSec Advisory Database), and those that can instead
look directly at the code. While for example Code Stats can be checked on any source code,
only download stats for specific versions (or sums of them) can be checked with crates.io. This
creates a discrepancy when the time between a version release and the code being queried.
While one could rely on only the latest releases from crates.io, this would still create a dis-
crepancy as the GitHub signal always provides only the current data on the master branch,
which may not be representative of the latest released version.

36

3.4 Data Collection

3.4 Data Collection
While the project structure set out in Sections 3.1 and 3.2 provides a framework for running
queries on Rust projects, it does not provide any guidance on what queries to use, or how
they are to be interpreted.

Our goal is to explore if there exist trends in the Rust ecosystem that can be applied when
writing queries or filters using cargo-indicate. Since queries being run on one package
can be reused on the dependencies of another, we can attempt to set a baseline for what is to
be expected by running queries on popular Rust packages.

This section sets out to present a semi-automated environment that uses the CLI devel-
oped to run di�erent queries on open source Rust projects, and to save the results as a form
of baseline for further evaluation. We will first present the selection process for target Rust
projects, and then how we ran queries on these projects.

3.4.1 Package Selection
We explored two ways of selecting target packages to be used in the data analysis; one man-
ual and one semi-automated. We found that manual selection process removes some of the
identified issues with the semi-automated approach, but had other drawbacks.

Initially, manual selection from crates.io was used to manually find target crates. crates.io
provides functionality for sorting crates by recent downloads, all downloads, keywords, and
categories. As a result, crates with a lot of recent downloads in di�erent keywords were added
to the package list, and their selection criteria was logged.

However, as the initial data from these crates was analyzed, we concluded that it would be
preferable to scale up the data collection to provide a larger basis for further analysis. While
manually selecting packages from crates.io provides the possibility of filtering some crates
(such as only including a library and not a CLI using that library), it is a very slow process.

Thus, we created a program that relies on the crates.io public API; this in turn relies
heavily on the Rust consecrates crate, allowing a simple interface for querying the most
popular categories as listed on crates.io

This revealed a classification di�culty with Rust packages; authors are allowed to list
their packages with several di�erent categories and keywords in the Cargo.toml file of their
project, meaning that it becomes entirely subjective on how crates are categorized. This could
be avoided when using a manual package list to collect data, as we could be more consistent.
However, we decided to instead rely on the self-reported categories and keywords of Rust
packages, and these two properties were simply added to the trustfall schema to be part
of the query results. We chose 28 categories from the list of 52 possible categories on crates.io
categories9 at random, using the consecrates built-in selection of categories.

Using the consecrates crate, the top10 100 crates of 28 categories were written to a new
package list, and the duplicate entries were removed (going by name, as names are unique on
crates.io).

To also include the most popular crates, the script also ensured to include the 500 most
popular crate by downloads, both with regards to recent downloads and downloads for all

9https://web.archive.org/web/20230323232002/https://crates.io/categories
10Top by amount of recent downloads

37

https://web.archive.org/web/20230323232002/https://crates.io/categories

3. Method

time. Duplicate entries, including duplicates from the top-by-category, was removed.

It should be noted that the usage of downloads as a metric of popularity may favor li-
braries, as these are downloaded each time they are added as dependencies. Binary crates
that are used as standalone tools may only be downloaded when used directly.

There is also the downside that some data may be queried twice. It is common for Rust
projects to be divided across multiple packages. This is necessary in some cases, as when
providing procedural macros, as Rust currently does not support them to be defined in the
same crate as they are used. This means that the hypothetical crates A and A_macros both are
included in the data collection (after all, if A_macros is needed to build A, it must have at least
the same amount of downloads as A). In some cases, such as when A relies heavily on A_lib
to provide its logic, the result may be almost duplicate, since they share many characteristics.
They might even be hosted in the same repository. In our data collection, we found several
such cases. Out of 2435 analyzed packages, 692 or 28.4% did not have a repository that was
unique in the data set.

3.4.2 Automated Querying

Since some signals, such as cargo-geiger, require access to the source code locally, and
since the CLI tool is intended to be run locally, a simple test setup was constructed where
the latest version of a Rust crate repository was cloned using git into a temporary directory,
and then had a set of queries run on it in series. The script executing these functions is
called dcoll.sh. This script took a file with a list of packages and their repository links as
an input. The script was executed in a instance provided by a cloud service provider over
the course of several hours. This allowed for some expensive queries to be run, with the
possibility of waiting for third-party API quotas if they were reached (such as the GitHub
1000 requests/hour quota). The workflow of dcoll.sh is described in Figure 3.6

To find a package in a repository required a special flag for cargo-indicate, --package,
which ensured that the name listed in the initial found Cargo.toml file matched the pack-
age listed in the package list, and if not, recursively searched the directory for a Cargo.toml
file matching that package name.

Due to the nature of the data collection procedure, only the latest version as available in
a repository will be the basis for signal sampling. In our case, the information was collected
on 2023-04-21. This is only significant for the code-dependent signals, i.e. unsafe Rust usage
and code stats. This can in some cases lead to misleading data, as cargo reports the version
provided in the Cargo.toml file, while a code-dependant signal on the latest commit may
in fact report data on a commit made later than when the manifest file and crates.io was last
updated. An alternative approach may be to instead download a tarball of the source code
for a specific version, and to run code-dependent queries against that. This does not provide
a perfect representation of a project either, as signals without easy access to the time series
(such as GitHub API responses), more accurately reflect the current status of the repository
than any specific version.

38

3.5 Statistical Analysis

Figure 3.6: The workflow of the dcoll.sh script, collecting data
using cargo-indicate. The package list contains package names
and a link to their git repository

dcoll.sh Package ListPrint Version, Date etc.

Map Repo to Packages
Create Temporary

Directory
Clone Repo to

Temporary Directory

cargo indicate \
-d queries/ \
-p ’<package> ’ \
...
-- <tmpdir>

Save Query Results

Any Remaining
Packages in Repo?

Remove Temporary
Directory

Any Remaining
Repos? Finished

YesNo

Yes No

3.5 Statistical Analysis
Due to the amount of di�erent features collected for each package in the data collection,
we want to identify which data points from each signal provide information, how signals
correlate etc. To be able to answer the research questions as described in the introduction
(Chapter 1) we must therefore analyze the data.

Even though cargo-indicate makes it possible to run any query anywhere in the de-
pendency tree of a project, we only focus on root packages (i.e. the packages in our list
described in Section 3.4.1) for the analysis. Due to our way of collecting data, this includes
popular dependencies, since the popular packages likely appear in the dependency tree of
many other packages. Using the scalar data provided by a thorough root-level query will
then provide the insight that can later be used when constructing queries on the dependency
tree.

39

3. Method

For this section, we will focus on analysis on this root-level scalar data. As such, some
parts of the capabilities of cargo-indicate will not be subject to thorough analysis.

One problem when working with data of the type presented here is that we may inadver-
tently a�ect our analysis by our own presumptions; for example, we have already discussed
that we believe that unsafe Rust is useful in distinguishing between package characteristics.
However, this can skew our view of our data. Therefore, we will suggest an approach whereby
models will instead provide much of the interpretation we seek. This does come with the
caveat that we cannot and do not state desireable outcomes; we simply do not know what
analyzed packages may be of interest.

The rest of this section will provide di�erent concepts that will aid us in finding value,
or lack thereof, in the data provided by cargo-indicate.

3.5.1 Structuring Data
The basis for our work is the Python pandas library, a project providing many capabilities
useful when working with the output of cargo-indicate. A pandas DataFrame is a data
structure that provides a large amount of functionality, and in our case can be seen as a matrix
of dimensions p×n, where p is the packages, and n is the collected scalar values, or features. We
note that the values in this matrix, D, are not necessarily floating point values. Instead they
can also be integers, booleans, dates etc. Pandas columns use the dtype property to describe
which type a column may be. Some values in D may also be None or NaN, indicating no
value present. This can be the case when cargo-indicate failed to retrieve some data for a
package (such as GitHub stars for a package that is not hosted on GitHub). The count column
in Table 4.1 provides some insight in which values where missing; generally information from
cargo-geiger is more likely to be missing. This could be the case when cargo-geiger
fails to compile the package in question.

Another important aspect is that DataFrame provides ways of filtering out rows that
contain None/NaN, and to select columns with some data types only. For some calculations,
only floating point operations make sense (and for these, pandas often ignore columns that
have dtypes that does not make sense to include). Equation 3.1 shows an example of D
(transposed for clarity).

DT =

p1 p2 . . .

starsCount 13 37 . . .
files 4 20 . . .

usedTotalPercentageUnsafe None 69.0 . . .
...

...
... . . .

(3.1)

3.5.2 Finding Correlations & Reducing Redundancy
This section provides two goals; To find which features (columns in D) correlate with each
other, and to which degree, and to eliminate duplicate information to provide a new DataFrame,
without this redundancy. This is related to answering RQ1 (What signals contain information
that can di�erentiate a package against another package?) and providing insight into RQ4 (Does
combining signals in multiple dimensions provide benefits for analysis of a Rust package?).

40

3.5 Statistical Analysis

We first must note that the columns in D have vastly di�erent scales and distributions in
its features. According the documentation provided by scikit-learn, most of the models
require that the data is standardized, i.e. that they look like normally distributed data; Gaus-
sian with zero mean and unit variance [4]. This is provided by the sklearn.preprocessing
module. We will use StandardScaler for the purpose of this thesis, but note that we will
first look at the distribution of the features to ensure normal distributions, and make neces-
sary transformations.

A first approach is to plot the correlation matrix for D, using the DataFrame corrmethod.
This matrix represent how much two columns correlate for each other, in our case for a scale
from 0.0 to 1.0, where 1.0 would mean that two features correlate directly to each other
for all packages pn in D. While a plot of this provides an intuitive understanding of the re-
lationship between features, the same matrix can be used to prune unnecessary columns. We
can set a limit limit of the highest amount of correlation between a pair of columns we
accept before dropping one of the columns in a pair to remove the redundancy. A simple list
interpretation can then produce our redundancy-free DataFrame. The corrmethod takes an
optional parameter we can specify; method of correlation. The default Pearson method as-
sumes that the relationship between variables are linear. An option is the Spearman method,
which does not rely on the features being linear. It was decided to use the Spearman method
after initial investigations of the distributions of features, which we discuss in Section 4.1.

The selection of limit is not trivial, but as we will see later it can be set quite high
(= 0.99) and then adjusted to allow for other parts of the analysis if deemed necessary.

One problem with the dataset as presented is that even with the most correlated features
being removed, it remains highly dimensional, so it is not possible to represent these dimen-
sion in an intuitive way so that we may make conclusions. This problem could be solved with
techniques reducing the dimensionality of the data, while preserving the maximum amount
of information in the original data. We will here present models that may help us, but note
that all models must be tested against the data set and against each other to ensure their
suitability.

The models we will look at are

1. PCA, Principal Component Analysis

2. t-SNE, t-distributed stochastic neighbor embedding

PCA aims to reduce the amount of dimensions by projecting the data to a lower dimen-
sional space; an in-depth review is presented in [13]. For visualization, two or three dimen-
sions are suitable, but we may also let the implementation attempt to guess the amount of
dimensions. This can be suitable for removing redundant features. PCA is a linear method
relying on finding principal components. Each principal component is a unit vector, orthogonal
to all others in the set. The first principal components follows the same direction as a line
that best fits the data. The next principal component then follows the second-best line that
is orthogonal to the first, and so on. The line that best fits the data here means the line that
minimizes the average perpendicular distance from the points in the data set to the line.

By iterating through these principal components up to the desired amount of dimensions,
we can explain the most amount of variance in the data using the first component, and then
the second component explains the most amount of variance in what it is left, and so on.

We must here note that PCA is linear, that is, if the data we are reducing are not linear,
the principal components may fail to represent the data accurately. Since we wish to discover

41

3. Method

relationships and trends in D, we must be carful not to make assumptions about relationships
in the data.

t-SNE is another tool that can be used. It is described by [4] to be useful in data visualiza-
tion, but may need PCA to reduce noise in the original data of the amount of features high
(where 50 is suggested as a reasonable amount). The principle is to produce a map in lower
dimensions (e.g. two or three), and then place points that preserves the local structure of the
higher dimensions. This is done by first constructing a probability distribution over pairs of
high-dimensional objects, such that similar objects are assigned high probability. A similar
distribution is then defined for the lower dimension, minimizing the KL divergence between
the higher and lower dimension distributions. The KL divergence is a measure of how one
probability distribution di�ers from another probability distribution. The goal of this is to
represent the distribution in higher dimensions accurately in the lower dimension. However,
we note that t-SNE can create di�erent results with di�erent initializations [4], and that hy-
perparameters passed to it can drastically change the resulting graphs [24]. We decided to
test t-SNE to explore if it provided any additional insights into the data we collect, but as
we will discuss later were not able to find any additional insights by using t-SNE.

3.5.3 Finding Outliers
In answering RQ6 (How can we use signals to identify Rust packages in need of manual developer
attention?), we need understanding of what makes Rust crates stick out. Developers likely
want to find crates in their dependencies that deviate from the normal, and thus it would be
helpful to identify what is not normal.

One way of finding these outliers is the Mahalanobis distance dM(~x,Q) for some pack-
age data ~x for our dataset Q, as described by [5]. We only consider numerical values, i.e.
float and int. This distance is a measure of the distance of a package to the distribution
of packages we are analyzing, if we consider the data set as a probability distribution. Ma-
halanobis distance is defined as in Equation 3.2 for a distribution Q on RN with a mean
~µ = (µ1, µ2, . . . , µN), for some point ~x = (x1, x2, . . . , xN). Here, S is the positive-definite
covariance matrix.

dM(~x,Q) =
√

(~x − ~µ)T S−1(~x − ~µ) (3.2)

To identify outliers, we can then assume a normal distribution of the distances, defining
outliers as those with a distance dM of equal to or greater than 3 standard deviations from
the mean distance. This can be calculated using the z-score, described in Equation 3.3.

z =
x − µ
σ

(3.3)

Equation 3.3 means that |z| > 3 would meet our requirements for outliers.
This strategy avoids influencing what is to be defined as "deviating", but comes with the

caveat that we do not inherently know what makes these points outliers. Here we must
instead look at the features present in these points, and attempt to categorize them.

We must also here be careful of our input features, to not provide features we have earlier
deemed redundant. We must also ensure that the underlying distributions are normal. We
attempted to do so by looking at the distributions of our features, and using the log10 value
of features that appear to have a log-normal distribution. While this make several features

42

3.5 Statistical Analysis

appear normal, we note that the approach is not perfect and that some features appear to not
be normal, which may impact our results.

3.5.4 Finding Clusters
In the previous section we discussed finding correlations in our data set. In answering RQ2 (Do
the selected signals correlate in any way, and if so, how?) and RQ3 (Can we find clusters of Rust
packages based on their signals?), we want to find sets of characteristics that describe packages
that, using all available features that do not overlap over a certain limit, can be said to share
characteristics. We want to create labels for Rust packages, without knowing beforehand
what those labels might be. This is a common use case for k-means clustering [22].

k-means can be described in four steps [22]:

1. Randomly select k centroids in a d-dimensional space, where d is the amount of fea-
tures, and 1 ≤ k ≤ n for n data points

2. Assign each data point to its closest centroid

3. Move the centroids to the average location of the data points assigned to it

4. Repeat steps 2-3 until the assignments do not change (or change very little)

Since the initial selection of centroids is random, it is recommended to run the initializa-
tion multiple times to ensure that the solution is stable. There exists some additional known
issues with k-means [22]:

• There is no exact way of selecting a ‘correct’ value for k

• There may exist more than one unique solution

• It is up to the researcher to interpret the resulting clusters

It is noted by [22] that the last issue often is the biggest problem. In our case, we wish to
be able to describe what each cluster means in the context of the Rust ecosystem. Preferably
we would like to identify if some cluster is especially dangerous to be a dependency, and what
characterizes it.

One major benefit of using k-means, being an unsupervised learning algorithm, is that we
as researchers do not set the labels, but they are instead found by the algorithm. This avoids
the dangers of assuming that something ‘should’ be present in a dataset, when it actually is
not.

We also note that k-means can be combined with dimension reduction techniques like
PCA to present the clusters in 2D.

scikit-learn provides implementations of k-means which we use.

43

3. Method

3.5.5 Using Existing Categorical Data
To answer RQ5 (Are Rust packages of the same category likely to have the same signal character-
istics, and if so, what are they?), we can use the data provided by crate authors themselves.
The Cargo.toml file can contain two fields that provide categorical data; categories and
keywords. Both of these are exposed as properties of the Package type in cargo-indicates
schema, and can thus be part of D, as list of strings. We will limit ourselves by only focusing
on categories.

There exists some issues with this data however, that we must take note of. Firstly, we
are not interested in how categories and keywords a�ect other parameters, instead we seek
to find out how they appear in clusters. Thus they must be excluded in our previous analysis,
to be added at a later stage (here pandas provides excellent functionality to exclude these
columns). Our goal is to see if our clusters, describing similar signal characteristics, align
with the categories provided by developers.

Secondly, we must transform the data to a usable format. We note the following about
these features, as described by The Cargo Book:

1. A category can have any number of subcategories, denoted with a separating :: (like
math::addition)

2. We assume that a crate author is likely to reuse categories in the set of already existing
one, like the ones provided by crates.io, but they may provide others

3. A crate can have up to 5 categories on crates.io, but an author may add more in the
manifest file

4. Some categories are equal (like no-std and no_std)

For the first issue, we suggest several subcategory renaming strategies:

• TOP_PARENT_CATEGORY: For a subcategory "top::mid::bot", use ["top"]

• BOTTOM_SUBCATEGORY: For a subcategory "top::mid::bot", use ["bot"]

• FULL_SPLIT: For a subcategory "top::mid::bot", use ["top", "mid", "bot"]

• NONE: For a subcategory "top::mid::bot", use ["top::mid::bot"]

We note that this is not an exhaustive list of possible strategies, and others are possible.
It is also possible to combine the existing categories. We limit ourselves to these strategies,
and do not consider combinations of them.

For all strategies, duplicates are removed (- and _ are considered to be equivalent (as they
would on crates.io), and case is ignored).

There are benefits and drawbacks of all strategies. TOP_PARENT_CATEGORY loses some
information, but also reduces the amount of strategies while giving an overview.
BOTTOM_SUBCATEGORY retains detailed information, but can remove important context (con-
sider the categories "database::cache" and "http::cache"). FULL_SPLIT keeps all
parts, but still loses context and might be misleading. NONE retains all information, but can

44

3.5 Statistical Analysis

lead to large amounts of categories, and might actually reduce readability as subcategories
that are very closely related are considered separate.

Considering this, we decided that TOP_PARENT_CATEGORY provided the best balance of
maintaining specificity while still being easy to use. While it loses some specificity, other
categories may be directly misleading (or in the case of NONE, too noisy).

With regards to making this information easily available, the pandas.DataFrame
get_dummies method provides the needed functionality. This method breaks out the full
set of categories for all packages in our data set (from the categories column), and creates a
new set of boolean columns; each column represents a category and simply holds information
if a package was listed with that category or not. The original category column can then be
discarded. The following examples show a transformed matrix following a renaming strat-
egy combined with application of get_dummies. These examples only show the category
column(s); In reality the matrix would also contain all data features. We also note that using
NONE would be the same as just using get_dummies.

Figure 3.7, 3.8, and 3.7 provide examples how package the category column may be split
into several one-hot encoded columns for three example packages.

Figure 3.7: Transformation where TOP_PARENT_CATEGORY is used.
Note how there is no overlap in categories in the resulting matrix

categories
p1 {”database :: cache”, ”speed”}

p2 {”http :: cache”, ”web_programming”, ”web_programming :: speed”}
p3 {”no_std”}

↓ TOP_PARENT_CATEGORY + get_dummies
database http no_std speed web_programming

p1 1 0 0 1 0
p2 0 1 0 0 1
p3 0 0 1 0 0

45

3. Method

Figure 3.8: Transformation where BOTTOM_SUBCATEGORY is used.
Note that p1 and p2 overlap in categories, although these subcate-
gories represent di�erent things.

categories
p1 {”database :: cache”, ”speed”}

p2 {”http :: cache”, ”web_programming”, ”web_programming :: speed”}
p3 {”no_std”}

↓ BOTTOM_SUBCATEGORY + get_dummies
cache no_std speed web_programming

p1 1 0 1 0
p2 1 0 1 1
p3 0 1 0 0

Figure 3.9: Transformation where FULL_SPLIT is used. There is
now a lot of overlap in p1 and p2, but they retain information.

categories
p1 {”database :: cache”, ”speed”}

p2 {”http :: cache”, ”web_programming”, ”web_programming :: speed”}
p3 {”no_std”}

↓ FULL_SPLIT + get_dummies
cache database http no_std speed web_programming

p1 1 1 0 0 1 0
p2 1 0 1 0 1 1
p3 0 0 0 1 0 0

46

Chapter 4

Results

In this chapter we will present the results of the data collected to evaluate cargo-indicate
and its signals. We will start by presenting the raw data, its distribution across all target
packages. We will then present correlations found in the data set, and our reduction of re-
dundancy. Following that, we present identified outliers. These are then put into context as
we present our clustering analysis, incorporating knowledge gained from the distributions
and marking outliers.

cargo-indicate only provides the underlying data in this chapter, that is, JSON files
with query results. The visualization and other parts of the presented results were created
using a separate Python program.

4.1 Distribution of Raw Data
Table 4.1 presents an overview of the raw data. We note that the count is significantly lower
for the features relying on cargo-geiger, making it likely that the tool was not able to
compile some packages. A short description of each feature is available in Appendix A.

The distribution of data can be seen in Figure 4.1-4.9. We note that some values are better
described on a log scale, such as lines, cratesIoTotalDownloads, etc. This was found
after comparing the distributions on a linear scale and a log scale, selecting the scale that
provided the visualization that most resembled a known distribution (in most cases a nor-
mal distribution). These are provided on a log scale. To decrease variance and ease scaling,
these values will be replaced with their log10 for the rest of the analysis, when nothing else
is mentioned. Which values are replaced by their logarithm is also described in Appendix A.
We found this to improve the results of clustering and outlier detection, in accordance with
theory (lower variance is useful for k-means, and Mahalanobis relies on the normal distri-
bution of the input features). These figures also provide insights into the for some features
multimodal distribution, which we will discuss further in Section 5.1. They also include in-
formation about the amount of packages with NaN as a value, as well as when the package

47

4. Results

result was above 0.

Table 4.1: Raw data used for analysis. count is the amount of non-
NaN data points for this feature, and 25%, 50%, and 75% are the
25th, 50th, and 75th percentiles respectively

count mean min 25% 50% 75% max std

ghUnixCreatedAt 2136 2015-03-09 2008-02-25 2012-03-30 2015-01-17 2018-03-11 2023-01-15 -
ghFollowersCount 2136 734.2 0 20 87 433.2 3.4e+04 2683.7
starsCount 2136 1229.5 0 22 114.5 608.5 6.2e+04 4636.1
forksCount 2136 99.3 0 4 19 89 2352 233.2
openIssuesCount 2136 41.5 0 1 8 33 1427 95.0
watchersCount 2136 1229.5 0 22 114.5 608.5 6.2e+04 4636.1
files 2211 19.6 1 2 6 16 4736 114.7
lines 2211 6537.8 0 441.5 1339 3953 3.0e+06 7.0e+04
blanks 2211 475.0 0 49 156 436 1.2e+05 2592.3
code 2211 5888.0 0 353 1104 3307.5 3.0e+06 6.9e+04
comments 2211 174.9 0 7 34 134 1.2e+04 602.3
commentsToCode 2209 0.1 0 0.0 0.0 0.1 6.4 0.3
directDepsCount 2211 4.8 0 1 3 6 56 6.3
totalAdvisoryCount 2211 0.1 0 0 0 0 7 0.4
cratesIoTotalDownloads 2211 1.1e+07 92 3.1e+04 4.1e+05 6.0e+06 2.1e+08 2.6e+07
cratesIoRecentDownloads 2211 1.7e+06 87 7650 8.7e+04 1.2e+06 3.3e+07 3.9e+06
cratesIoVersionDownloads 2034 2.1e+06 0 1471.8 3.6e+04 4.6e+05 1.1e+08 7.7e+06
cratesIoVersionsCount 2211 23.5 1 7 14 29 401 30.2
cratesIoYankedVersionsCount 2211 1.6 0 0 0 1 148 6.4
cratesIoYankedRatio 2211 0.1 0 0 0 0.0 0.9 0.1
usedExprsPercentageUnsafe 1844 6.2 0 0 0 1.3 100 16.2
usedExprsSafe 1844 2093.6 0 124.8 464 1549 1.9e+05 8247.9
usedExprsTotal 1844 2245.6 0 133 516.5 1600.2 1.9e+05 8498.2
usedExprsUnsafe 1844 152.0 0 0 0 10 3.6e+04 1272.9
usedFunctionsPercentageUnsafe 1844 4.1 0 0 0 0 100 15.3
usedFunctionsSafe 1844 22.8 0 1 6 18.2 2429 100.0
usedFunctionsTotal 1844 25.4 0 1 7 20 2429 113.6
usedFunctionsUnsafe 1844 2.7 0 0 0 0 1315 39.2
usedItemImplsPercentageUnsafe 1844 1.5 0 0 0 0 100 7.8
usedItemImplsSafe 1844 58.9 0 3 15 45 9719 262.3
usedItemImplsTotal 1844 60.0 0 3 15 46 9719 262.9
usedItemImplsUnsafe 1844 1.0 0 0 0 0 128 6.0
usedItemTraitsPercentageUnsafe 1844 1.2 0 0 0 0 100 8.7
usedItemTraitsSafe 1844 3.3 0 0 1 3 304 9.9
usedItemTraitsTotal 1844 3.4 0 0 1 3 304 10.0
usedItemTraitsUnsafe 1844 0.1 0 0 0 0 16 0.8
usedMethodsPercentageUnsafe 1844 1.4 0 0 0 0 100 7.5
usedMethodsSafe 1844 131.3 0 5 33 106 1.1e+04 445.6
usedMethodsTotal 1844 134.8 0 6 33 109 1.2e+04 463.9
usedMethodsUnsafe 1844 3.5 0 0 0 0 665 33.0
usedTotalPercentageUnsafe 1844 5.6 0 0 0 1.3 100 15.0
usedTotalSafe 1844 2309.9 0 146 542 1704 1.9e+05 8554.5
usedTotalTotal 1844 2469.2 0 157 611.5 1772.5 1.9e+05 8844.9
usedTotalUnsafe 1844 159.3 0 0 0 11 3.6e+04 1317.2

48

4.1 Distribution of Raw Data

Figure 4.1: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

49

4. Results

Figure 4.2: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

50

4.1 Distribution of Raw Data

Figure 4.3: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

51

4. Results

Figure 4.4: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

52

4.1 Distribution of Raw Data

Figure 4.5: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

53

4. Results

Figure 4.6: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

54

4.1 Distribution of Raw Data

Figure 4.7: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

55

4. Results

Figure 4.8: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

56

4.1 Distribution of Raw Data

Figure 4.9: Distributions of numerical cargo-indicate features
used in analysis. Log scales added where appropriate. On log scales
zero values have been removed, but are visible on left bar plot, NaN
values are never present in distribution plot

57

4. Results

4.2 Correlations
Figure 4.10 and Figure 4.11 provide the correlation between the numerical and boolean fea-
tures of the dataset. Note that these values are not scaled, and are not logarithms of the mea-
sured values. Since some values have been found to be log-normally distributed, and some
not, the spearman method was selected for the DataFrame.corr method. This method
does not rely on linear relationships to find the correlations. Those values that were deemed
too similar, with a limit above 0.95, were excluded from the later analysis. See Table 4.2 for
these redundant values.

Table 4.2: Columns dropped due to correlation equal or higher than
0.95 using Spearman coe�cient; dropped columns chosen randomly

Correlated Column(s)
Removed Column

cratesIoTotalDownloads cratesIoRecentDownloads (0.98)
cratesIoYankedVersionsCount cratesIoYankedRatio (0.98)
lines code (1.00)
starsCount watchersCount (1.00)
usedExprsPercentageUnsafe usedExprsUnsafe (0.98), used-

TotalPercentageUnsafe (0.99),
usedTotalUnsafe (0.97)

usedExprsSafe usedExprsTotal (0.98), used-
TotalSafe (1.00), usedTotalTo-
tal (0.98)

usedExprsTotal usedTotalSafe (0.98), usedTo-
talTotal (1.00)

usedExprsUnsafe usedTotalPercentageUnsafe (0.97),
usedTotalUnsafe (0.99)

usedFunctionsPercentageUnsafe usedFunctionsUnsafe (1.00)
usedFunctionsSafe usedFunctionsTotal (0.98)
usedItemImplsPercentageUnsafe usedItemImplsUnsafe (1.00)
usedItemImplsSafe usedItemImplsTotal (1.00),

usedMethodsSafe (0.96),
usedMethodsTotal (0.96)

usedItemImplsTotal usedMethodsSafe (0.96), used-
MethodsTotal (0.95)

usedItemTraitsPercentageUnsafe usedItemTraitsUnsafe (1.00)
usedItemTraitsSafe usedItemTraitsTotal (0.99)
usedMethodsPercentageUnsafe usedMethodsUnsafe (1.00)
usedMethodsSafe usedMethodsTotal (1.00)
usedTotalPercentageUnsafe usedTotalUnsafe (0.98)
usedTotalSafe usedTotalTotal (0.98)

58

4.2 Correlations

Fi
gu

re
4.

10
:F

ul
lc

or
re

la
ti

on
m

at
ri

x
fo

rn
um

er
ic

al
an

d
bo

ol
ea

n
fe

at
ur

es
,r

ed
un

da
nt

va
lu

es
m

as
ke

d,
us

in
g

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

e�
ci

en
t

59

4. Results

Figure
4.11:C

orrelation
m

atrix
for

num
ericaland

boolean
features,w

ith
a

correlation
lim

it
of0.95,redundant

values
m

asked,using
Spearm

an’srank
correlation

coe�
cient

60

4.3 Clustering & Outliers

4.3 Clustering & Outliers
During the data analysis we decided to use a value of k = 3 for k-means clustering. This
value provided clear clusters with a significant amount of packages each, while still being
easy to describe later. Adding another cluster made the analysis harder, and we decided to
use k = 3 as we could not provide a better analysis with more clusters. Figure 4.12 gives a
representation of the clusters on PCA-reduced data.

Figure 4.12: k-means clustering on PCA-reduced data, with identi-
fied log features as logarithms. Colored areas are cluster borders.
Descriptions of crates can be found in Table 4.4. Note that sev-
eral windows_* and winapi_* packages are stacked on top of each
other

A visualization using t-SNE was also attempted, but we failed to produce results that
were adequate for analysis or even as a visual aid. We find that the PCA-reduced plot provides
adequate support in this regard.

61

4. Results

While this gives visual insight in a reduced k-means, the following figures instead de-
scribes a k-means with all data available (except the features identified as redundant). Thus
it is not possible to say which cluster in Figure 4.12 corresponds to which label (a, b, or c),
since the data used to create the clusters di�er.

Table 4.3: Distributions of categories using the
TOP_PARENT_CATEGORY strategy; majority marked in bold,
actual frequency in parenthesis

Category Total a b c

accessibility 77 27.27% (21) 2.60% (2) 70.13% (54)
algorithms 125 56.80% (71) 10.40% (13) 32.80% (41)
api_bindings 84 47.62% (40) 17.86% (15) 34.52% (29)
ast_implementations 1 100.00% (1) 0.00% (0) 0.00% (0)
asynchronous 127 71.65% (91) 7.87% (10) 20.47% (26)
authentication 56 64.29% (36) 1.79% (1) 33.93% (19)
caching 11 27.27% (3) 27.27% (3) 45.45% (5)
cli 103 57.28% (59) 0.97% (1) 41.75% (43)
command_line 1 0.00% (0) 0.00% (0) 100.00% (1)
command_line_utilities 84 71.43% (60) 4.76% (4) 23.81% (20)
compilers 57 71.93% (41) 0.00% (0) 28.07% (16)
compression 59 59.32% (35) 6.78% (4) 33.90% (20)
computer_vision 1 100.00% (1) 0.00% (0) 0.00% (0)
concurrency 52 38.46% (20) 40.38% (21) 21.15% (11)
config 80 36.25% (29) 0.00% (0) 63.75% (51)
cryptography 132 74.24% (98) 6.82% (9) 18.94% (25)
data_structures 140 52.14% (73) 24.29% (34) 23.57% (33)
database 62 67.74% (42) 14.52% (9) 17.74% (11)
database_implementations 4 50.00% (2) 50.00% (2) 0.00% (0)
date_and_time 74 40.54% (30) 2.70% (2) 56.76% (42)
development_tools 153 60.13% (92) 9.15% (14) 30.72% (47)
email 4 50.00% (2) 0.00% (0) 50.00% (2)
embedded 18 61.11% (11) 5.56% (1) 33.33% (6)
emulators 3 66.67% (2) 0.00% (0) 33.33% (1)
encoding 134 66.42% (89) 10.45% (14) 23.13% (31)
external_�_bindings 58 34.48% (20) 5.17% (3) 60.34% (35)
� 1 100.00% (1) 0.00% (0) 0.00% (0)
filesystem 37 51.35% (19) 8.11% (3) 40.54% (15)
finance 1 100.00% (1) 0.00% (0) 0.00% (0)
game_development 25 32.00% (8) 28.00% (7) 40.00% (10)
game_engines 20 30.00% (6) 15.00% (3) 55.00% (11)
games 5 60.00% (3) 0.00% (0) 40.00% (2)
graphics 61 57.38% (35) 18.03% (11) 24.59% (15)
gui 16 43.75% (7) 18.75% (3) 37.50% (6)
hardware_support 13 30.77% (4) 30.77% (4) 38.46% (5)
history 1 100.00% (1) 0.00% (0) 0.00% (0)
internationalization 60 45.00% (27) 1.67% (1) 53.33% (32)
localization 17 52.94% (9) 0.00% (0) 47.06% (8)
mathematics 81 66.67% (54) 1.23% (1) 32.10% (26)
memory_management 18 33.33% (6) 55.56% (10) 11.11% (2)
multimedia 71 73.24% (52) 15.49% (11) 11.27% (8)
network_programming 89 68.54% (61) 11.24% (10) 20.22% (18)

Continued on next page

62

4.3 Clustering & Outliers

Table 4.3: Distributions of categories using the
TOP_PARENT_CATEGORY strategy; majority marked in bold,
actual frequency in parenthesis

Category Total a b c

no_std 270 58.15% (157) 19.26% (52) 22.59% (61)
os 83 49.40% (41) 18.07% (15) 32.53% (27)
parser_implementations 79 70.89% (56) 8.86% (7) 20.25% (16)
parsing 94 67.02% (63) 6.38% (6) 26.60% (25)
rendering 40 52.50% (21) 17.50% (7) 30.00% (12)
rust_patterns 61 44.26% (27) 19.67% (12) 36.07% (22)
science 105 61.90% (65) 8.57% (9) 29.52% (31)
simulation 54 51.85% (28) 1.85% (1) 46.30% (25)
storage 2 0.00% (0) 0.00% (0) 100.00% (2)
template_engine 5 80.00% (4) 0.00% (0) 20.00% (1)
testing 1 100.00% (1) 0.00% (0) 0.00% (0)
text_editors 29 65.52% (19) 3.45% (1) 31.03% (9)
text_processing 125 56.00% (70) 12.00% (15) 32.00% (40)
value_formatting 32 46.88% (15) 15.62% (5) 37.50% (12)
virtualization 3 66.67% (2) 33.33% (1) 0.00% (0)
visualization 12 75.00% (9) 0.00% (0) 25.00% (3)
wasm 67 76.12% (51) 7.46% (5) 16.42% (11)
web_programming 135 68.15% (92) 7.41% (10) 24.44% (33)
All Categories 3413 58.13% (1984) 10.90% (372) 30.97% (1057)

We can also list our outliers this way, as in Table 4.4. It is harder to say what makes these
packages stand out, but a more thorough analysis could manually review them to attempt to
describe what makes them stand out. We discuss the outliers further in Section 5.3.

Table 4.4: Outliers with an absolute z-score of 3 or higher. Only
floats and integers used in the Mahalanobis distance; Correla-
tion limit for columns is 0.93. Relative Mahalanobis distance is
distance/mean distance. Descriptions taken from crates.io

Outlier Place-
ment

Relative Ma-
halanobis
distance

Cluster Description

ntapi 0 3.7 c FFI bindings for
Native API

web-sys 1 2.8 a Generated bind-
ings for all Web
APIs

winapi-x86_64-pc-windows-gnu 2 2.7 c Library for Win-
dows API

winapi-i686-pc-windows-gnu 3 2.7 c Library for Win-
dows API

Continued on next page

63

4. Results

Table 4.4: Outliers with an absolute z-score of 3 or higher. Only
floats and integers used in the Mahalanobis distance; Correla-
tion limit for columns is 0.93. Relative Mahalanobis distance is
distance/mean distance. Descriptions taken from crates.io

Outlier Place-
ment

Relative Ma-
halanobis
distance

Cluster Description

optional_struct 4 2.6 c Macro that
will generate a
struct with Op-
tion fields from
another struct

typetag 5 2.6 a Serde serializable
and deserializable
trait objects

lapack 6 2.5 a Wrapper for LA-
PACK (Fortran)

viable 7 2.3 c Interop with
C++ MSVC VTa-
bles through
Rust (namespace
marked as open to
new owner)

stdweb-internal-runtime 8 2.2 c Internal runtime
for the ‘stdweb‘
crate

windows_x86_64_msvc 9 2.2 c Import lib for
Windows

windows_i686_msvc 10 2.2 c Import lib for
Windows

windows_i686_gnu 11 2.2 c Import lib for
Windows

windows_x86_64_gnu 12 2.2 c Import lib for
Windows

windows_aarch64_msvc 13 2.2 c Import lib for
Windows

windows_x86_64_gnullvm 14 2.2 c Import lib for
Windows

windows_aarch64_gnullvm 15 2.2 c Import lib for
Windows

windows 16 2.1 b Generated Win-
dows API

winapi 17 2.1 a Raw FFI bindings
for all of Windows
API

64

4.3 Clustering & Outliers

Figure 4.13: Distribution of features for three k-means clusters (a,b,
and c)

65

4. Results

Figure 4.14: Distribution of features for three k-means clusters (a,b,
and c)

66

4.3 Clustering & Outliers

Figure 4.15: Distribution of features for three k-means clusters (a,b,
and c)

67

4. Results

Figure 4.16: Distribution of features for three k-means clusters (a,b,
and c)

68

4.3 Clustering & Outliers

Figure 4.17: Distribution of features for three k-means clusters (a,b,
and c)

69

4. Results

Figure 4.18: Distribution of features for three k-means clusters (a,b,
and c)

70

4.3 Clustering & Outliers

Figure 4.19: Distribution of features for three k-means clusters (a,b,
and c)

71

4. Results

Figure 4.20: Distribution of features for three k-means clusters (a,b,
and c)

72

4.3 Clustering & Outliers

Figure 4.21: Distribution of features for three k-means clusters (a,b,
and c)

73

4. Results

Figure 4.22: Distribution of features for three k-means clusters (a,b,
and c)

74

4.3 Clustering & Outliers

Figure 4.23: Distribution of features for three k-means clusters (a,b,
and c)

75

4. Results

76

Chapter 5

Discussion

This part will discuss the results presented in the previous chapter, and provides a discussion
of implications for cargo-indicate. We will also present threats to validity.

5.1 Distribution of Data
To answer RQ1 (What signals contain information that can di�erentiate a package against another
package?), we will look at the distribution of the collected features.

We noted during analysis of the data that several collected features are better described
by their logarithm. Some of these, like code, show a clearly log-normal distribution. Due to
the need for the k-means algorithm to reduce variance in the input features, these features
were replaced by their logarithm.

We note that further work should be careful not to use some features directly, but con-
sider using logarithms of their value instead.

We also note that some features, especially regarding unsafe usage, contains a large amount
of packages with no presence at all; usedItemTraitsUnsafe is one such example. This
means that the distribution of projects using unsafe Rust, or features of unsafe Rust, relies
on a small sample size. It also means that projects are divided into groups of non-users and
users of unsafe Rust.

Also totalAdvisoryCount is zero for a vast majority of packages, which makes further
analysis of subsets of this data di�cult. It also adds to the di�culties already discussed about
using vulnerabilities as a signal; The packages reporting them are so few that they may rather
describe which authors go through the extra work of reporting them, rather than providing
any insight into future vulnerabilities (reported or otherwise). It can even be the case that
past advisories may indicate that the project is healthy and is being actively maintained.
[18] studied how past vulnerabilities predicted future vulnerabilities in components of major
software projects. The authors found empirical evidence that past reported vulnerabilities
did not predict future vulnerabilities. Based on this assumption, one can argue that projects

77

5. Discussion

without vulnerabilities are of interest when identifying dangers in a dependency tree, since
past vulnerabilities do not predict future ones, but a report of a vulnerability shows investment
in the project. This of course relies on that the advisories were not of the kind where the
project is reported as unmaintained, however it is possible to write a cargo-indicate query
that identifies such advisories (such as using a @filter directive checking if the advisory
description matches "unmaintained"). This also relies on the advisory a�ecting the version
in the dependency tree, but in the case where one wants to avoid active advisories being
included in dependencies we recommend other projects such as cargo-deny1.

One interesting aspect of the features relating to GitHub popularity, such as starsCount
and watchersCount, is that they appear to have a bimodal distribution. With regards to [7],
which tells us that GitHub stars often are a result of marketing, it may be that one distribu-
tion is due to the inherent qualities of the projects, while the other describes their marketing.
This property, if it does exist, is harder to directly query with cargo-indicate, but is some-
thing a user should keep in mind as a real possibility.

5.2 Correlations of Signals & Features
To answer RQ2 (Do the selected signals correlate in any way, and if so, how?), we consider Fig-
ure 4.10 and Figure 4.11.

Very high correlations can be found between the unsafe Rust features; many of these
correlations exist because expressions are the most commonly found type of unsafe usage,
and thus correlate highly with the total number of unsafe and safe. We also see correlations
between code stats, such as line count, and safe/unsafe usage, which is also to be expected.
More lines of code simply mean more code that can be unsafe.

We also see that measures of GitHub popularity, such as stars, forks, and watchers cor-
relate with each other. In fact, starsCount and watchersCount are found to have a cor-
relation of 1.0 in Table 4.2. This follows the distribution curves found in Figure 4.13 and
Figure 4.14. We interpret these findings to mean that these features measure the same thing.
As previously discussed, this likely corresponds to GitHub popularity.

Between signals, we see correlations between GitHub popularity (stars, forks) and the
amount of downloads on crates.io, which is also to be expected. We can also find some cor-
relation between GitHub popularity and the size of the project (measured in lines, code
etc.). It may be the case that larger projects providing more features are more likely to be
popular on GitHub.

We have been unable to find two di�erent signals (not features) that provide close to
exactly the same information, and thus find that part of the answer to RQ4 (Does combining
signals in multiple dimensions provide benefits for analysis of a Rust package?) is yes, based on
that new information can be gained with more of our identified signals. This can be seen in
Table 4.2, where the only some features are deemed redundant (correlation of 0.95 or more).
We admit that this correlation limit is somewhat arbitrary, but Table 4.2 does not describe
any unexpected exclusions based on this limit. We do not believe that minor changes to this
value would significantly a�ect our results. It could be the case that a lower value reduces the
risk of similar features measuring the same thing weighing more in the analysis, but we find
this unlikely. One must also balance this gain against the risk of removing values that have

1https://crates.io/crates/cargo-deny

78

https://crates.io/crates/cargo-deny

5.3 Clusters & Outliers

a very high correlation by chance. Further work could improve upon this by using several
di�erent measures of correlations. A Spearman correlation of 1.0 does not necessarily mean
that using both values is a bad practice for all applications.

5.3 Clusters & Outliers
The clustering described in Figure 4.13 to Figure 4.23, and in Table 4.4 and Table 4.3 only
provides the cluster names a, b and c. To provide better understanding of how we can de-
scribe Rust projects, and to answer RQ3 (Can we find clusters of Rust packages based on their
signals?), we will attempt to rename them according to their characteristics. We summarize
the characteristics in Table 5.1, based on Figure 4.13 to Figure 4.23:

Table 5.1: Summary of characteristics for each cluster identified via
k-means

Characteristic a b c
GitHub Repository
Owner

Bimodal and aver-
age

More popular
owners

Less popular

GitHub Repository
Popularity

Bimodal and aver-
age

More popular Less popular

Code Stats Average size Greater than aver-
age size

Less than average
size, only cluster with
projects without com-
ments

Direct Dependency
Count

Average Average Less than average

Advisory Count Small amount Somewhat higher Almost none
crates.io Multimodal and

average down-
loads

Most downloaded
projects

Spread out, but more
projects with few down-
loads

Yanked Versions Average More than average Less than Average
Unsafe Usage Average All projects at

least some unsafe,
more unsafe

Few projects with un-
safe, and those are not
very unsafe

We note that not all features presented in Figure 4.13-4.23 were used to find the clusters;
Features above a threshold of 0.95 correlation were removed, since they likely measure the
same metric in di�erent ways. This can make one metric outweigh others. These pairs are
listed in Table 4.2.

While this summary is not perfect in mathematical rigor, it gives us a language to now
rename our clusters. We summarize them here:

1. a/average - This cluster is close to the average for all packages in all regards, and it is
also the largest cluster

2. b/popular-unsafe - Packages in this cluster have higher values in all regards; They are
more popular, they use more unsafe, they yank more versions, and have more advisories

79

5. Discussion

3. c/small-uninvested - Packages in this cluster is the opposite of b/popular-unsafe, and
place lower than average in all metrics. Noteworthy is that they don’t necessarily have
less downloads on crates.io, even though they are less popular on GitHub

We also saw an interesting characteristic of c/small-uninvested; it is the only cluster that
contained projects with no comments. At first glance we suspected this to be due to the clus-
ter containing generated packages. This suspicion is based partly on Table 4.4, which reveal
generated Windows packages that belong to this category. While it is possible to write a whole
package without comments, it is unlikely to be done by humans. However, when we used the
pandas sample method on the cluster, with a sample of 20 packages out of 497 packages in
the cluster, we found no packages that described themselves as generated. When we instead
sampled as many packages out of the 168 packages with no found comments, the answer
quickly became obvious upon manual inspection: The packages are small library crates, with
generally one function or macro implementation. The reason that no comments are found is
that all information is contained in Rust doc comments2, information that is used to generate
Rust documentation automatically using cargo. This reveals a need to be able to count and
quantify these documentations strings as well, in addition to traditional comments.

We want to make it clear that these names are not meant to pinpoint some projects
worse than other; It is very possible that the community around a c/small-uninvested package
is heavily invested and that the code is of the highest quality. It might also be that this
cluster contains, sometimes generated, libraries that are heavily relied on, but that lacks the
marketing capabilities (or will) of other packages.

We believe that this analysis adds to the answer of RQ4 (Does combining signals in multiple
dimensions provide benefits for analysis of a Rust package?); when looking at clusters of Rust
projects, we can see trends across multiple dimensions of features.

We must note a current occurrence in the Rust ecosystem here; The Windows API crates
that can be seen in Table 4.4 are either o�cial Microsoft support (like windows3), or they
are part of a project to collect Windows FFIs in one project (winapi4).

In answering RQ5 (Are Rust packages of the same category likely to have the same signal charac-
teristics, and if so, what are they?), we look at Table 4.3 to see how top-level categories correlate
to cluster placement. As we expect a majority of available categories (58.13%) belong to the
a/average cluster, while c/small-uninvested is at 30.97% and b/popular-unsafe is the smallest
cluster at 10.90%. Note that this table describes categories, and not packages (since a package
may have multiple categories). We find that the way the Rust ecosystem allows for arbitrary
choice of categories makes the analysis harder and the some categories very limited in use-
fulness. On the other hand it removes constraints, and developers can simply choose to use
already popular category names. The only category where b/popular-unsafe is in a significant
majority is the memory_management category, while c/small-uninvested is dominant in the
accessibility category, described by crates.io as Assistive technology that helps overcome dis-
abilities and impairments to make software usable by as many people as possible. c/small-uninvested
also contains a majority for external_ffi_bindings. This is a category where one could
expect a lot of utility, while it is not as marketable as other projects.

We must also remember that these are renamed categories; only the top category named

2Prefixed with /// or //! instead of //
3https://web.archive.org/web/20230519001001/https://github.com/microsoft/windows-rs
4https://web.archive.org/web/20230414074121/http://github.com/retep998/winapi-rs

80

https://web.archive.org/web/20230519001001/https://github.com/microsoft/windows-rs
https://web.archive.org/web/20230414074121/http://github.com/retep998/winapi-rs

5.4 Implications for cargo-indicate

was used. Since project can have any number of categories, single packages can also be in-
cluded in many rows in this Table 4.3.

RQ6 (How can we use signals to identify Rust packages in need of manual developer attention?)
has been hinted at throughout the discussion, and can be summarized as the following state-
ment: It depends on what the developer is looking for. However, we will conclude by discussing
Table 4.4 describing the identified outliers, which have a Mahalanobis distance that are 3 or
more standard deviations from the mean distance for all packages.

One downside with this list is the lack of context, since the Mahalanobis distance does
not explain what makes these packages stand out. We do however see a possibility of reusing
this strategy when analyzing a dependency tree. It would be of interest to look firstly at
the dependencies that deviate the most from the others, but it can also be the case that a
developer is only interested in popularity vs. unsafe usage for example. In that case a query
could select interesting features, which are then compared to a known distribution of those
features.

We note that we set out to use t-SNE as an alternative in visualizing clusters, but found
the results to be hard to interpret and use. They have thus been left out of the results and
discussion, but we encourage further attempts in cluster analysis of all kinds for similar sets
of data.

5.4 Implications for cargo-indicate

In answering our research questions, we have also touched on the subject of using cargo-indicate,
and what to make of its results. We find that cargo-indicate provides a useful utility in
aggregating and describing several factors in the Rust ecosystem, as way as providing an in-
terface to query these factors. However, we want to caution users against using the features
without context, and to not set hard numerical limits. Instead, we believe that further re-
search is needed to establish baselines of values for di�erent kinds of projects. There seems
to be a di�erence in the types of projects and what to expect in results. It is also the case
that some values should be normalized before comparison, such as using the logarithm of the
values.

We also note that some features of the same signal are close to identical, in accordance
to Table 4.2. Using GitHub popularity is a metric that holds value, but measuring both stars
and watchers provides no added benefit. The same is true for several unsafe metrics, as well
as crates.io downloads.

We also do not recommend using the RustSec Advisory Database as a metric to decide if
the dependency tree is "safe", since advisories currently are rare and for many types of projects
nonexistent. It is thus unlikely that even if problems exist that they are reported. It is possible
that this will change in the future as the database grows in size and popularity.

5.5 Threats to Validity
Here we will present what we identify as threats to the validity of results and conclusions.
The section is subdivided into sources of uncertainty.

81

5. Discussion

5.5.1 Underlying Tools
cargo-indicate relies on third-party tools to provide its functionality, and thus the results
are only as good as these tools. This comes with the benefits that future updates to these tools
will benefit cargo-indicate, but also means that our dataset may be a�ected. We cannot
guarantee of the dependencies, neither can we of their dependencies (which is interestingly
a problem we set out to solve).

cargo-geiger is likely the most advanced of the tools, and according to us holds the
highest risk of not providing accurate results in all cases. While other tools rely on third-
party APIs and files, cargo-geigermust handle all ways a Rust package may use unsafe. We
found several examples where this was not the case, such as with the libc crate. It provides
an unsafe interface with the C library, but its reliance on macros makes it harder to detect
properly. However, we find that the analysis is still good enough to provide information
about unsafe usage on a larger scale, and thus provides insight in this metric.

5.5.2 Validity of the Dataset
The dataset we chose has several benefits, and some downsides. While using popular pack-
ages of several categories does ensure that di�erent types of projects, that are also actively
used, they may paint a di�erent picture than the whole crates.io registry would. Thus, our
conclusions are based on popular packages, where popular is relative to the popularity of the
included categories. On the other hand, this is likely to exclude unmaintained or empty
codebases.

An increase of the sample size would benefit the analysis, but one may also raise the ob-
jection that behavior present in popular packages are more desireable than unpopular ones, as
popular packages are more likely to appear in a dependency tree analyzed by cargo-indicate.

Another issues may be that a type of package is missed by cargo-indicate, or the
queries we used to collect our data. This can be for any number of reasons, such as failure
of underlying tools, unexpected panics, or simply missing data. For example, we found that
many popular packages where results were not available was tree-sitter-bindings. Tree-
sitter is a parser generator tool and an incremental parsing library5, and we found several
bindings prefixed with tree-sitter- among projects without results. We were not able to
decide why these projects in particular failed.

cargo-geiger also provides a challenge in regards to providing results for all targets.
Since the tool relies on being able to compile target packages, packages which may require
third-party libraries may fail to compile. This means that our dataset for unsafe data may
contain a bias against packages that require a specific developer environment. While we
attempted to rectify this by installing common requirements, it is possible that some packages
with a specific requirement (e.g. a specific C library) are not included. Further work can be
more thorough in providing a "complete" developer environment for data collection, and
more actively monitor compilation failures. Package configurations are not trivial, and we
have ignored the concept of features in our analysis. This could be a point of interest in further
studies; to look into the usage of features in the ecosystem.

5https://web.archive.org/web/20230517055424/https://tree-sitter.github.io/tree-sitter/

82

https://web.archive.org/web/20230517055424/https://tree-sitter.github.io/tree-sitter/

5.5 Threats to Validity

5.5.3 Selection of Number of Clusters
In this work we set the amount of clusters in k-means to k = 3, in part due to the perceived
ease of describing the clusters present when this is the case. While the selection of k has been
described as more of an art than a science [22], we cannot escape the possibility that this
choice is unwise. During our analysis, we did not find k = 4 to provide any benefit for our
analysis, but it is possible that another value for k might be chosen in a way that provides
a more fine-grained analysis. We attempted using even more clusters, for example k = 7
and k = 9, but these were even harder to analyze than k = 4. While this may be the case,
we do not consider this to be detrimental to our work. We have provided a suggestion for
clustering with a description of characteristics, and find these abstractions to be useful in
understanding the data set.

83

5. Discussion

84

Chapter 6

Conclusion

This chapter will provide a summary of our contributions, and suggest areas of further work.

6.1 Summary of Contributions
We summarize our contributions in this thesis as the following:

• We created a tool cargo-indicate capable of executing complex GraphQL queries
on Rust packages and their dependency trees, using several parts of the Rust ecosystem
and the code itself as signals

• We collected a dataset using this tool from over 2000 Rust packages

• We described the distributions of some of the collected data

• We found GitHub popularity features to have a bimodal distribution, and hypothesize
that this is due to marketing, in addition to more natural project growth

• We found past advisories from advisory-db to be a bad measure of future issues due
to its limited prevalence, but that it might be a possible good measure of investment
in a project

• We described which features correlate and how

• We identified outliers in the set of packages collected using Mahalanobis distances

• We used k-means to classify Rust packages in three clusters

• We analyzed the characteristics of these clusters and described them

• We gave recommendation for potential users of cargo-indicate based on our find-
ings

85

6. Conclusion

6.2 Further Work
We also believe that a more advanced pipeline could be created, where cargo-indicate
collects information about a package, that is then set in a context using for example Python
that plots its stats on a distribution. We also see the possibility of providing advanced graphs
of a dependency tree that could preferably be visualized using another application, similar
to deps.dev.

We believe that the general structure of cargo-indicate provide several benefits, such
as a simple interface that is not implementation or even code-dependant in the form of a
GraphQL schema. Further developments, especially in the trustfall query engine itself,
will directly benefit cargo-indicate.

A point of interest is the connection between marketing and popularity on websites such
as GitHub. Future studies could analyze marketing for a project on for example social media,
developer forums etc. and compare this to the growth in popularity for projects. Another
interesting possibility would be to investigate if there exist adverse influence operations, or
"fake news", in these contexts; Would it be possible to use marketing to entice developers to
use malicious dependencies? Or where the project owners have malicious intent, and intend
to publish compromised updates in the future?

There is also the possibility of using Machine Learning to identify projects that are of
interest. Here cargo-indicate could provide a useful way of collecting information. Dif-
ficulties in this regard is the di�culties of labeling projects, but it could be the case that
collections of human reviews (such as provided by cargo-crev) would aid this endeavour.

86

References

[1] RFC 1105. https://web.archive.org/web/20230130111106/https:
//rust-lang.github.io/rfcs/1105-api-evolution.html. Accessed: 2023-
02-22.

[2] The Rustonomicon. https://web.archive.org/web/20230108044930/https:
//doc.rust-lang.org/nomicon/intro.html. Accessed: 2023-02-22.

[3] Rustsec advisory database github repository. https://web.archive.org/web/
20230416153313/https://github.com/RustSec/advisory-db/. Accessed:
2023-04-21.

[4] scikit-learn documentation. https://web.archive.org/web/20230425231141/
https://scikit-learn.org/stable/modules/preprocessing.html. Ac-
cessed: 2023-04-27.

[5] Mahalanobis distance. Encyclopedia of Mathematics, 2023. Accessed on: May 22, 2023.

[6] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J.
Summers. How do programmers use unsafe rust? Proceedings of the ACM on Programming
Languages, 4(OOPSLA):136:1–136:27, November 2020.

[7] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. Journal of Systems and Soft-
ware, 146:112–129, December 2018. arXiv:1811.07643 [cs].

[8] Jonathan Corbet. A first look at rust in the 6.1 kernel, Oct 2022. Accessed: 2023-05-22.

[9] Roland Croft, M. Ali Babar, and Li Li. An investigation into inconsistency of soft-
ware vulnerability severity across data sources. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 338–348, 2022.

[10] Ana Nora Evans, Bradford Campbell, and Mary Lou So�a. Is rust used safely by software
developers? In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pages 246–257, Seoul South Korea, June 2020. ACM.

87

https://web.archive.org/web/20230130111106/https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://web.archive.org/web/20230130111106/https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://web.archive.org/web/20230108044930/https://doc.rust-lang.org/nomicon/intro.html
https://web.archive.org/web/20230108044930/https://doc.rust-lang.org/nomicon/intro.html
https://web.archive.org/web/20230416153313/https://github.com/RustSec/advisory-db/
https://web.archive.org/web/20230416153313/https://github.com/RustSec/advisory-db/
https://web.archive.org/web/20230425231141/https://scikit-learn.org/stable/modules/preprocessing.html
https://web.archive.org/web/20230425231141/https://scikit-learn.org/stable/modules/preprocessing.html

REFERENCES

[11] Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar, and Gregorio Robles. Software
Development Metrics With a Purpose. Computer, 55(4):66–73, April 2022.

[12] Florian Hahn. Rust2Viper: Building a Static Verifier for Rust. 2016. Medium: applica-
tion/pdf,1 Online-Ressource Publisher: ETH Zurich.

[13] IT Jolli�e and J Cadima. Principal component analysis: a review and recent develop-
ments. Philos Trans A Math Phys Eng Sci, 374(2065):20150202, 2016.

[14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel German, and
Daniela Damian. The promises and perils of mining github (extended version). Empirical
Software Engineering, 01 2015.

[15] Steve Klabnik and Carol Nichols. The Rust Programming Language, 2nd Edition. No Starch
Press, USA, 2022.

[16] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. MirChecker: Detecting
Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 2183–2196, Virtual Event Republic
of Korea, November 2021. ACM.

[17] Peiming Liu, Gang Zhao, and Je� Huang. Securing UnSafe Rust Programs with XRust.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages 234–
245, October 2020. ISSN: 1558-1225.

[18] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Pre-
dicting vulnerable software components. In Proceedings of the 14th ACM conference on
Computer and communications security, CCS ’07, pages 529–540, New York, NY, USA,
October 2007. Association for Computing Machinery.

[19] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Understanding
memory and thread safety practices and issues in real-world Rust programs. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2020, pages 763–779, New York, NY, USA, June 2020. Association for
Computing Machinery.

[20] Eric S. Raymond. The Cathedral & the Bazaar. O’Reilly Media, Inc., Feb 2001.

[21] William Schueller, Johannes Wachs, Vito D. P. Servedio, Stefan Thurner, and Vittorio
Loreto. Evolving collaboration, dependencies, and use in the Rust Open Source Soft-
ware ecosystem. Scientific Data, 9(1):703, November 2022. Number: 1 Publisher: Nature
Publishing Group.

[22] Rachel Schutt and Cathy O’Neil. Doing Data Science: Straight Talk from the Frontline.
O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA, USA, 2014.

[23] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. Evaluating
Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software
Vulnerabilities. IEEE Transactions on Software Engineering, 37(6):772–787, November 2011.
Conference Name: IEEE Transactions on Software Engineering.

88

REFERENCES

[24] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-sne e�ectively.
Distill, 2016.

[25] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. An Empirical
Study on Software Bill of Materials: Where We Stand and the Road Ahead, January 2023.
arXiv:2301.05362 [cs].

[26] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael Lyu. Memory-
Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs, February
2021. arXiv:2003.03296 [cs].

[27] Nikolas Zöller, Jonathan H. Morgan, and Tobias Schröder. A topology of groups: What
GitHub can tell us about online collaboration. Technological Forecasting and Social Change,
161:120291, December 2020.

89

REFERENCES

90

Appendix A

Descriptions of Package Features

Table A.1: Description of features used in data analysis, values for
which their logarithm was used for analysis marked with †

Description Notes

ghUnixCreatedAt Timestamp of when the
GitHub user owning the
repository was created

ghFollowersCount† Amount of followers of
GitHub repository owner

starsCount† GitHub repository stars
forksCount GitHub repository forks
openIssuesCount Open GitHub issues GitHub’s API counts

both issues and pull
requests as issues; This
is the sum of both

watchersCount† GitHub repository watch-
ers

files Number of files in the src/
directory

Only Rust

lines† Number of lines in the
src/ directory

Only Rust

blanks† Number of blank lines in
the src/ directory

Only Rust

Continued on next page

91

A. Package Features

Table A.1: Description of features used in data analysis, values for
which log10 was used marked with †

Description Notes

code† Number of code lines in the
src/ directory

Only Rust

comments† Number of comment lines
in the src/ directory

Only Rust, does not in-
clude doc comments

commentsToCode† comments / code Only Rust
directDepsCount Number of direct depen-

dencies
Only normal depen-
dencies (listed under
[dependencies])

totalAdvisoryCount Total number of advisories
in RustSec’s advisory-db

Does not include with-
drawn advisories

cratesIoTotalDownloads† Total downloads for the
package with this name on
crates.io

cratesIoRecentDownloads† Recent downloads for the
package with this name on
crates.io

Recent as listed by
crates.io

cratesIoVersionDownloads† Total downloads for the
package version with this
name on crates.io

Version is dependent on
the Package vertex the
CratesIoStats is con-
nected to

cratesIoVersionsCount† Number of released ver-
sions for the package with
this name on crates.io

cratesIoYankedVersionsCount Number of yanked versions
for the package with this
name on crates.io

cratesIoYankedRatio #yanked versions / #versions
used<item>PercentageUnsafe Percentage of used <item>

that are unsafe according to
cargo-geiger

Used refers to used by the
root package

used<item>Safe† Used safe <item> accord-
ing to cargo-geiger

Used refers to used by the
root package

used<item>Total† Total used <item> accord-
ing to cargo-geiger

Used refers to used by the
root package

used<item>Unsafe† Used unsafe <item> ac-
cording to cargo-geiger

Used refers to used by the
root package

usedTotalPercentageUnsafe Percentage of used code
items that are unsafe ac-
cording to cargo-geiger

Used refers to used by the
root package

Continued on next page

92

https://crates.io
https://crates.io
https://crates.io
https://crates.io
https://crates.io

Table A.1: Description of features used in data analysis, values for
which log10 was used marked with †

Description Notes

usedTotalSafe† Total used safe items ac-
cording to cargo-geiger

Used refers to used by the
root package

usedTotalTotal† Total used items according
to cargo-geiger

Used refers to used by the
root package

usedTotalUnsafe† Total used unsafe items ac-
cording to cargo-geiger

Used refers to used by the
root package

93

A. Package Features

94

Appendix B

Further cargo-indicate Implementation
Details

B.1 Implementing BasicAdapter
Implementations of the methods in the BasicAdapter trait, as listed in Section 3.2.2, was
solved using a Rust match-statement, similar to switch-cases in some languages, match-
ing on a string tuple. For example, in the match-statement of resolve_property for the
schema in Listing 3.7, the ("User", "age") tuple would be used to retrieve an iterator over
the age of a user. Using this convention allows for leveraging the powerful pattern-matching
system of Rust to allow for inheritance in the schema; in Listing B.1 the age property is re-
quired in the Mortal interface, implemented by both NonUser and User. To resolve the
age property for both User and NonUser in the same way, the
("User" | "NonUser", "age") pattern can be used.

Listing B.1: Inheritance in a GraphQL schema
1 interface Mortal {
2 age: Int!
3 }
4
5 type NonUser implements Mortal {
6 age: Int!
7 }
8
9 type User implements Mortal {

10 name: String!
11 age: Int!
12 }

While it is not necessary for these methods to be implemented in this way, it provides a
clean mapping between schema and Rust code. Unfortunately, this implementation does not

95

B. Implementation Details

fully exploit the pattern matching restraints in Rust. Rust requires match-statements to be
exhaustive, i.e. all possible patterns must be matched. Since the caller of the BasicAdapter
methods (the trustfall engine) guarantee that the strings provided must be defined in
the schema, the developer can be sure that as long as their implementations map 1:1 to their
schema, the pattern will be exhaustive, and adding a catch-all pattern at the end can call the
unreachable! macro (indicating error in the implementation).

For this reason, it was decided to keep a schema file (schema.trustfall.graphql) in
the library source folder of the project. This file is to act as a single source of truth, and any
deviance from the behavior described in it is to be considered a bug.

B.2 Adapter-Client Relationship
Since signal vary significantly in their requirements and limitations, the implementation de-
tails vary. For some signals, such as GitHub, the repository will be the same for all versions
of a particular package, so the Vertex::GitHubRepository variant holds an atomically
counted reference to a full repository response from the GitHub API
(Arc<GitHubRepository>).

In fact, it is possible to divide the work done by the adapter and the clients di�erently; If
the vertex variant contains a reference to the full data (as in the case with
Vertex::GitHubRepository), the adapter must convert this data to properties itself. If
the variant instead hold a unique identifier, it can request a (possibly cached) value from
the client instead. In this case the client may do much of the computation, and the graph
resolution simply uses the graph as a source of identifiers to be computed (repository links
to repository information, name-version tuples to crates.io information etc.). To summarize:
We can either store a reference to data in a Vertex and let the adapter do computations,
or we can store a unique identifier in the Vertex and let the client use this information to
return the desired value. Variants of this relationship can also be considered, and further ad-
ditions to cargo-indicate should consider ease of implementation, performance, as well
as other factors when deciding which model to use.

96

Appendix C

cargo-indicate Schema

Listing C.1: The full cargo-indicate schema; This is equivelent
to the output of cargo indicate --show-schema

1 # This is not truly a GraphQL file; Instead it is a GraphQL representation of
2 # the types provided by ‘indicate‘.
3
4 # _This is the single source of truth for ‘indicate‘. Any deviation from it is
5 # to be considered a bug._
6
7 # This is the currently supported Trustfall directives. They are handled by the
8 # Trustfall engine.
9 schema {

10 query: RootQuery
11 }
12 directive @filter(
13 """
14 Name of the filter operation to perform.
15 """
16 op: String!
17 """
18 List of string operands for the operator.
19 """
20 value: [String!]
21) on FIELD | INLINE_FRAGMENT
22 directive @tag(
23 """
24 Name to apply to the given property field.
25 """
26 name: String
27) on FIELD
28 directive @output(
29 """
30 What to designate the output field generated from this property field.

97

C. Schema

31 """
32 name: String
33) on FIELD
34 directive @optional on FIELD
35 directive @recurse(
36 """
37 Recurse up to this many times on this edge. A depth of 1 produces the
38 current vertex and its immediate neighbors along the given edge.
39 """
40 depth: Int!
41) on FIELD
42 directive @fold on FIELD
43 directive @transform(
44 """
45 Name of the transformation operation to perform.
46 """
47 op: String!
48) on FIELD
49
50 """
51 This is the actual types that can be used to create queries.
52 """
53
54 type RootQuery {
55 RootPackage: Package!
56 Dependencies(includeRoot: Boolean!): [Package!]!
57
58 """
59 Dependencies that are indirect dependencies of the root package;
60 excluding direct dependencies that are _only_ direct dependencies, and
61 appear nowhere else in the dependency tree
62 """
63 TransitiveDependencies: [Package!]!
64 }
65
66 # See ‘cargo_metadata::Package‘
67 type Package {
68 id: ID!,
69 name: String!,
70 version: String!,
71 license: String
72 keywords: [String!]!
73 categories: [String!]!
74 manifestPath: String!
75 sourcePath: String!
76
77 # This is expensive, due to crates.io crawler policy
78 cratesIo: CratesIoStats!
79
80 repository: Webpage
81
82 # All parameters except ‘ignorePaths‘ is exactly the same as ‘tokei::Config‘
83 codeStats(
84 # If any patterns should be ignored, defaults to an empty list.
85 ignoredPaths: [String!],
86 # To target only some patterns. Defaults to all. If used,

98

87 # ‘ignoredPaths‘ is still applied
88 includedPaths: [String!],
89 hidden: Boolean,
90 noIgnore: Boolean,
91 noIgnoreParent: Boolean,
92 noIgnoreDot: Boolean,
93 noIgnoreVcs: Boolean,
94 treatDocStringsAsComments: Boolean,
95 types: [String!] # Types of languages to be included in report
96): [LanguageCodeStats!]!
97 dependencies: [Package!]!
98
99 # For arch and OS, see ‘platforms::target‘

100 # For severity, see ‘rustsec::advisory::Severity‘
101 advisoryHistory(
102 includeWithdrawn: Boolean!,
103 arch: String,
104 os: String,
105 minSeverity: String
106): [Advisory!]!
107 geiger: GeigerUnsafety
108 }
109
110 type CratesIoStats {
111 totalDownloads: Int
112 recentDownloads: Int
113 versionDownloads: Int
114 versionsCount: Int
115 yanked: Boolean # If this version is yanked from crates.io
116 yankedVersions: [String!]
117 yankedVersionsCount: Int
118 yankedRatio: Float # yanked versions count / versions count
119 }
120
121 # Data from tokei, shared between ‘Language‘ and ‘CodeStats‘
122 interface CodeStats {
123 # Name of the language
124 language: String!
125 # Total number of files
126 files: Int!
127 # Total number of lines
128 lines: Int!
129 # Total number of blank lines
130 blanks: Int!
131 # Total number of lines of code
132 code: Int!
133 # Number of lines of comments
134 comments: Int!
135 # Lines of comments / lines of code
136 commentsToCode: Float!
137 }
138
139 # ‘tokei::Language‘
140 type LanguageCodeStats implements CodeStats {
141 # From CodeStats
142 language: String!

99

C. Schema

143 files: Int!
144 lines: Int!
145 blanks: Int!
146 code: Int!
147 comments: Int!
148 commentsToCode: Float!
149
150 # From ‘tokei::Languge::summarize()‘
151 summary: LanguageCodeStats!
152
153 # If this language had problem with parsing
154 inaccurate: Boolean!
155
156 # Code contained in this
157 children: [LanguageBlob!]!
158 }
159
160 # ‘tokei::CodeStats.blobs‘
161 type LanguageBlob implements CodeStats {
162 # From CodeStats
163 language: String!
164 files: Int!
165 lines: Int!
166 blanks: Int!
167 code: Int!
168 comments: Int!
169 commentsToCode: Float!
170
171 # Merge this with all child blobs to create new ‘CodeStats‘
172 # (‘tokei::CodeStats::summarize()‘)
173 summary: LanguageBlob!
174
175 # Blobs of code contained within this one
176 blobs: [LanguageBlob!]!
177 }
178
179 type GeigerUnsafety {
180 # ‘used‘ refers to code used by the ‘RootPackage‘
181 used: GeigerCategories!
182 unused: GeigerCategories!
183
184 # used + unused
185 total: GeigerCategories!
186 forbidsUnsafe: Boolean!
187 }
188
189 type GeigerCategories {
190 functions: GeigerCount!
191 exprs: GeigerCount!
192 item_impls: GeigerCount!
193 item_traits: GeigerCount!
194 methods: GeigerCount!
195
196 # (functions.safe + exprs.safe + ...), (functions.unsafe + ...)
197 total: GeigerCount!
198 }

100

199
200 type GeigerCount {
201 safe: Int!
202 unsafe: Int!
203
204 # safe + unsafe
205 total: Int!
206 percentageUnsafe: Float!
207 }
208
209 interface Webpage {
210 url: String!
211 }
212
213 interface Repository implements Webpage {
214 url: String!
215 }
216
217 type GitHubRepository implements Repository & Webpage {
218 # From Repository and Webpage
219 url: String!
220
221 owner: GitHubUser
222 name: String!
223
224 starsCount: Int!
225 forksCount: Int!
226
227 # This is the sum of open issues and open PRs
228 openIssuesCount: Int!
229 watchersCount: Int!
230
231 # If the issues page is available for this repository
232 hasIssues: Boolean!
233 archived: Boolean!
234
235 # If this is a fork
236 fork: Boolean!
237 }
238
239 type GitHubUser {
240 username: String!
241 email: String!
242 unixCreatedAt: Int
243 followersCount: Int!
244 }
245
246 # Partly flattened ‘rustsec::advisory::Advisory‘
247 type Advisory {
248 # These fields are flattened out of ‘rustsec::advisory::Metadata‘
249
250 id: String!
251 title: String!
252 description: String!
253 unixDateReported: Int!
254 severity: String

101

C. Schema

255
256 # These are provided by ‘rustsec::advisory::Affected‘
257 # They may be empty, so a ‘None‘ means that we do not know
258 affectedArch: [String!]
259 affectedOs: [String!]
260 affectedFunctions: [AffectedFunctionVersions!]
261
262 # These are provided by ‘rustsec::advisory::Versions‘
263 patchedVersions: [String!]!
264 unaffectedVersions: [String!]!
265
266 # If it was reported in error, this will indicate when it was withdrawn
267 unixDateWithdrawn: Int
268 #cvss: CvssBase # TODO: Add when Trustfall supports enums
269 }
270
271 # ‘Map<FunctionPath, Vec<VersionReq>>‘ from ‘rustsec::advisory::Affected‘
272 type AffectedFunctionVersions {
273 functionPath: String!
274 versions: [String!]!
275 }

102

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-06-13

EXAMENSARBETE Evaluation of Rust Codebases Using Public Information
STUDENT Emil Eriksson
HANDLEDARE Alexandru Dura (LTH) & Nikolaos Korkakakis (Volvo Car Sverige AB)
EXAMINATOR Christoph Reichenbach

Att nysta ut höstacken: Vad finns
egentligen i ditt mjukvaruprojekt?

POPULÄRVETENSKAPLIG SAMMANFATTNING Emil Eriksson

Väldigt sällan skrivs moderna mjukvaruprojekt i ett vakuum. Program kan innehålla
flera tusen delar, från ännu fler programmerare, som enkelt laddas ner från nätet. Med
mitt program blir det lättare att nysta i dessa delar, och med det har jag undersökt
trender för över 2000 populära projekt i programmeringsspråket Rust.

Idag skrivs nästan inga program av en ensam
person, team, eller ens företag. Istället förlitar
man sig ofta på kod skriven av utvecklare och
organisationer som väljer att dela med sig till
allmänheten. Detta har bidragit till den stora
mängd olika program, hemsidor, och applikationer
vi idag tar för givet. Men det krävs stor tillit till
att det man använder håller hög kvalité. Detta har
historiskt visat sig vara ett minst sagt naivt anta-
gande. cargo-indicate är ett verktyg jag utveck-
lat som gör det lättare att ställa frågor om vad
som ingår i ens program. Med hjälp av data från
hemsidor, databaser, och koden själv gör det det
möjligt att ställa frågor som Använder jag någon
skräpig kod ingen annan verkar använda? genom
sökningar som utvecklarna själva kan skriva.
Detta verktyg har jag sedan använt för att lista

ut hur det ser ut för program skrivna i det pop-

ulära programmeringsspråket Rust. Genom att
kolla på data från en stor mängd populära pro-
jekt hittade jag flera trender. Till exempel verkar
vissa projekt vara populära främst på grund av en
mindre PR-kampanj, samtidigt som de innehåller
kod som enkelt kan leda till farliga buggar. Det
verkar också, något motsägelsefullt, som att ett
projekt med många rapporter i databaser över
kända problem är ett tecken på att projektet
håller hög kvalité och inte tvärtom. Det låter kon-
stigt, men en uttråkad programmerare lär knap-
past ägna speciellt mycket tid att rapportera alla
sina misstag.
Verktyget kan komma till användning för både

utvecklare och forskare i framtiden som ett sätt
att analysera Rust-projekt, och en van program-
merare kan utan större besvär utöka det med ännu
fler datakällor.

	Introduction
	Background
	The Rust Programming Language
	The Ownership Model & The Borrow Checker
	Unsafe Rust
	The Rust Ecosystem

	Motivation
	Rust at Volvo Cars
	Basis for Further Research

	Related Work
	deps.dev and the OpenSSF Scorecard
	Rust Software
	Studies

	Method
	cargo-indicate Overview
	An In-Depth Look at cargo-indicate
	The Trustfall Project
	Trustfall Data Structure
	Signals as Vertices

	Selecting Signals
	The Dependency Tree
	Unsafe Rust
	Code Stats
	GitHub
	RustSec Advisory Database
	crates.io
	Signal Characteristics

	Data Collection
	Package Selection
	Automated Querying

	Statistical Analysis
	Structuring Data
	Finding Correlations & Reducing Redundancy
	Finding Outliers
	Finding Clusters
	Using Existing Categorical Data

	Results
	Distribution of Raw Data
	Correlations
	Clustering & Outliers

	Discussion
	Distribution of Data
	Correlations of Signals & Features
	Clusters & Outliers
	Implications for cargo-indicate
	Threats to Validity
	Underlying Tools
	Validity of the Dataset
	Selection of Number of Clusters

	Conclusion
	Summary of Contributions
	Further Work

	References
	Package Features
	Implementation Details
	Implementing BasicAdapter
	Adapter-Client Relationship

	Schema

