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Abstract

The Swedish energy market is becoming more and more sustainable, with an increasing

volume and number of diversified energy sources being continuously added to the mix.

To stabilize the grid frequency, auctions are held to offer energy providers incentives to

produce or consume energy on short notice. This paper is applying different multivariate

time series models and their ensemble to find reliable forecasts. Given the high dimen-

sionality through a variety of factors influencing the energy market, penalized models

are used to perform variable selection and obtain sparser models. The investigated data

contains a lot of noise. Therefore, part of the work focuses on the effect of noise filtering.

The goal is to create reliable price forecasts which may help sustainable energy providers

maintain their position or enter this market, stabilize the grid, and help Sweden make

the transition to renewable energy.

i



Contents

1 Introduction 1

2 Literature Review 3

3 Theoretical Background 6

3.1 FCR-D Market in Sweden . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Noise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Auto-ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Vector Autoregression (VAR) . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Lasso VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 OnlineVAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Methodology 15

4.1 Data Description and Processing . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Forecasting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Analysis 23

6 Research Outlook 32

7 Conclusion 33

A Appendix 40

ii



List of Figures

1 Auction 1 Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Time Series of FCR-D Prices . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Heatmap of Hourly Price Changes in FCR-D Down A1 . . . . . . . . . . 17

4 Heatmap of Hourly Price Changes in FCR-D Down A2 . . . . . . . . . . 18

5 Monthly MSFE for FCR-D Down A1 . . . . . . . . . . . . . . . . . . . . 27

6 Predictions of the Short Span OnlineVAR . . . . . . . . . . . . . . . . . 28

7 Comparison of Best Predictions for FCR-D Down A1 . . . . . . . . . . . 29

8 Comparison of Best Predictors for FCR-D Down A2 . . . . . . . . . . . . 30

9 Auction 2 Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Heatmap of Hourly Price Changes in FCR-D Up A1 . . . . . . . . . . . . 41

11 Heatmap of Hourly Price Changes in FCR-D Up A2 . . . . . . . . . . . . 42

12 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 Comparison of Differenced Fit for FCR-D Up A1 Prices . . . . . . . . . 47

14 Monthly MSFE for FCR-D Down A2 . . . . . . . . . . . . . . . . . . . . 49

15 Monthly MSFE for FCR-D Up A1 . . . . . . . . . . . . . . . . . . . . . . 50

16 Monthly MSFE for FCR-D Up A2 . . . . . . . . . . . . . . . . . . . . . . 51

17 Comparison of Best Predictions for FCR-D Up A1 . . . . . . . . . . . . . 52

18 Comparison of Best Predictions for FCR-D Up A2 . . . . . . . . . . . . . 53

iii



List of Tables

1 Variable Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Noise Filter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Forecasting Performance FCR-D Down Prices . . . . . . . . . . . . . . . 25

4 Forecasting Performance FCR-D Up Prices . . . . . . . . . . . . . . . . . 26

5 Variable Importance FCR-D Down Prices . . . . . . . . . . . . . . . . . . 31

6 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Noise Filter Performance for all Variables . . . . . . . . . . . . . . . . . . 48

9 Variable Importance FCR-D Up Prices . . . . . . . . . . . . . . . . . . . 54

iv



Acronyms

A1 First FCR-D auction that takes place at D-2, two days ahead of the delivery day.

A2 Second FCR-D auction that takes place at D-1, six hours ahead of the delivery day.

AdaLasso Least absolute shrinkage and selection operator.

aFRR Automatic frequency recovery reserve.

AIC Akaike information criterion.

AR Autoregressive.

ARIMA Autoregressive integrated moving average.

ARMA Autoregressive moving average.

FCR-D Frequency containment reserve - disturbance.

FCR-N Frequency containment reserve - neutral.

KPI Key performance indicator.

Lasso Least absolute shrinkage and selection operator.

MA Moving average.

MAE Mean absolute error.

MSFE Mean-squared forecast error.

NN Neural network.

OLS Ordinary least squares.

SES Simple/single exponential smoother.

SVK Svenska kraftnät.

TSO Transmission system operator.

VAR Vector autoregressive.

v



1 Introduction

Through the increase of renewable energies in the Swedish energy market, the frequency

of the energy grid is under constant threat of deviating from the nominal frequency of

50Hz. Solar and wind power are weather dependent and thus behave randomly, and reg-

ulation in case of frequency disturbance is becoming ever more important. Since January

2022, Svenska kraftnät (SVK) is therefore providing several auctions that are offered to

licensed Swedish energy providers like Modity AB. These companies can place bids for

hourly prices and volume for either providing energy on a product called Frequency Con-

tainment Reserve - Disturbance (FCR-D) Up if the frequency is lower than allowed or

consuming/stopping producing energy if the frequency in the grid is too high (FCR-D

Down). In case of a deviation from the grid frequency, the energy providers have to act

within seconds and produce more electricity or stop production. In either case, the energy

providers are paid if they win in the first auction 1, which takes place two days ahead the

delivery day, or in the second auction 2, which closes six hours before the delivery day.

The auction design follows the pay-as-bid approach meaning that winning entities are

being paid the amount they placed in the auction for providing the service. The purpose

of this paper is to provide reliable forecasting methods for Modity AB to consider in

their bidding process on FCR-D Down and FCR-D Up markets, with the former being

the focus of the analysis. Having such predictions can generally help renewable energy

sources to become more attractive to energy providers and help accompany the transition

to those resources.

Several works have dealt with forecasting applications for balancing services on Nordic

markets, which will be used for identifying relevant variables and models. Given the noisy

characteristics of the prices, filtering of the input variables is considered and supported by

the investigated research. While the existing literature seems to focus on Neural Network

(NN) approaches, this thesis tackles the problem with a classical time-series approach.

The variables of interest are fitted into an Automated Autoregressive Integrated Moving

Average (Auto-ARIMA) model, which is then used to forecast the prices. That model

serves as a starting point. It is expected that including further variables and using a

Vector Autoregressive (VAR) model can help to increase the forecasting performance

further. Given a large number of included coefficients due to the lag structure of the

VAR, penalized methods dealing with the Lasso regularization are considered and tested

in several variants. Further improvements might then be achieved by combining the

models into an ensemble forecast. The models used in this work are all time-series models

and build up on each other so that a continuous improvement of the models can be seen

and will provide an outlook of what could be done in future research.

1The first auction closes at 3 pm and is also called (A1) auction or D-2 auction.
2The second auction takes place at 8 pm the day after the first auction and is also called A2 auction

or D-1 auction.
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The performance of the models is measured against a naive predictor, which is using

the last-seen observation through the forecasting period. Our out-of-sample analysis

comprises 8, 800 hourly forecasts (370 days) between March 2022 and March 2023. During

that period, a total of 40 model variants are compared for both FCR-D Down and FCR-

D Up markets. As comparative measures, the Mean Squared Forecast Error (MSFE)

and Mean Absolute Error (MAE) are the key performance indicators (KPI). Concluding

the research objective, this master thesis aims at developing penalized multivariate time-

series models to obtain reliable FCR-D forecasts for the Swedish market, mainly focusing

on the FCR-D Down product.

The structure of the thesis is organized as follows. Section Two contains the literature

review. The following chapter covers the theoretical background of the Swedish FCR-D

market in more detail, as well as the theoretical background of the noise filtering methods

and time series models used in this work. In Section Four, the methodology is presented.

Section Five contains the analysis and is followed by a further research outlook. Finally,

Chapter Seven entails the conclusion and provides practical implications of the results.
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2 Literature Review

To provide a motivation for the methodology and to provide an overview of the current

state of academic research in the scope of this work, in this chapter, a literature review

is conducted. Since a large body of literature is available in the area of ancillary energy

price forecasting, this literature review focuses on the contributions most relevant to this

work. The relevance is determined by the applied methods and the geographical market

focus. This chapter generally follows the structure of this work. First, research from

the narrow scope of ancillary energy service price forecasting using statistical methods

instead of numerical models (see for example Siddiqui et al., 2001 or Gilmore et al., 2022)

is presented. To build on those results later, emphasis is put on variable selection. Then,

a brief review of noise filtering for energy market data is provided followed by research

on (Lasso) VAR applications in the energy market context.

The work by Pihl (2019) is closely related to the scope of this work and investigating

the behavior of Swedish FCR-D and FCR-N prices between January 2016 and April 2019.

In addition to the price data, data on hydro production, energy spot price, reservoir levels,

aFRR3 and time-fixed effects are used to explain the variation in FCR prices. Using all

covariates, 48% of the price variance can be explained using linear regression, with the

reservoir data being most important for explaining FCR-D prices. With regard to price

predicting, the author finds a simple Neural Network (NN) with one hidden layer and

15 hidden units to significantly improve the forecasting performance compared to the

linear regression model, especially for extreme price values. While the article can serve

as an indicator for detecting explanatory variables related to FCR-D prices, it does not

consider time-series methods for prediction. Furthermore, it should be noted that the

data was obtained from an old market structure of the FCR-D market when there was

no separation in the auction process between FCR-D Down and FCR-D Up. The results

might, therefore, not be fully transferable to the new market design as explained in the

next chapter but can be used as a first indication to build upon.

Giovanelli et al. (2018) investigate the predictability of the Finnish FCR-N market

using NN models with a simple ARIMA(1,1,1) and Support Vector Regression (SVR)

model as benchmarks. A total of 64 variables from 2015 and 2016 are collected from

different categories such as electricity import/export, load, and generation as well as

energy spot prices, oil prices, weather, and calendar data. They find the three-layer NN

to outperform the benchmark models at most times and the ARIMA model to provide the

least accurate results, especially during volatile periods. However, no tuning on the time-

series model was performed, and with the ARIMA, only a univariate time-series model has

been considered. Kraft et al. (2020), in contrast, consider a SARIMAX model with seven

3The automatic Frequency Recovery Reserve (aFRR) is an ancillary energy service aiming at restoring
the frequency to the nominal value of 50Hz.

3



exogenous regressors in their FCR price forecasting study for continental Europe between

2014 and 2018. They conclude that while simple NN setups with one hidden layer yield

the best forecasting performance, that approach lacks the interpretability of relevant FCR

price predictors. Their SARIMAX model manages to beat a naive forecaster in terms of

predictive performance and identifies the lagged FCR prices, future energy prices, load,

and planned unavailable capacity to be the most important covariates in driving FCR

prices. Again, these results might not be transferable to the current Swedish FCR-D

market structure but yield interesting insights about potential covariates and indicate

the potential relevance of multivariate time-series approaches.

Another forecasting research contribution with regard to the German market comes

from Narajewski (2022). Using a total of 947 regressors with various lags from the load,

wind and solar generation, price data (energy spot, aFRR/mFRR4, coal, gas, and oil),

and time dummies, the author addresses the forecasting of the Imbalance Price which

is derived from aFRR and mFRR market data, among others, between 2018 and 2021.

A regular Lasso model shows competitive results compared with NNs and Generalized

Additive Models for Location, Scale, and Shape but fails to beat the naive forecast.

However, a combination of the considered methods manages to beat the latter. The results

provide a first indication for applying the Lasso in the context of ancillary energy service

prices but do not consider the method in combination with time-series models. A further

application of Generalized Additive Models is published by Hameed et al. (2023), who

are predicting week-ahead FCR-N prices for several Nordic markets (Denmark, Finland,

and Norway). They conclude that FCR-N products are harder to predict compared to

spot markets, and smoothing curves differ for each country, even though the market

characteristics are rather similar. Therefore, many inter-country market behaviors might

not be present for the markets under investigation. While the research in the field of

European ancillary energy service price forecasting seems to focus on the importance of

NN, time-series models are rather used as benchmarks. Especially multivariate time-series

analysis seems to be lacking research despite its benefits in identifying price drivers and

the opportunity to combine it with variable selection methods such as Lasso as applied

by Narajewski (2022). The considerable body of literature on the topic comes with the

advantage to ease the identification of relevant variables to explain FCR-D prices, as

explained later in this work.

Issues with the predictability of FCR prices might be related to the noisy structure of

the data containing many outliers (Hameed et al., 2023; Pihl, 2019). That characteristic is

likely to limit the forecasting accuracy of statistical time-series models. Therefore, several

researchers argue for noise reduction when working with energy-related data (Hurta et al.,

2022; Lago et al., 2021; Weron, 2014). Consequently, many different filtering techniques

4mFRR stands for manual Frequency Restoration Reserve and, in contrast to the aFRR, is usually
manually activated by the Transmission System Operator (TSO).

4



have been applied. Janczura et al. (2013), for example, show that the performance of

their Markov Switching Chain models for predicting Australian and European electricity

spot prices can be improved when filtering the data before training the model. Several

filters, such as the recursive filter on prices (RFP), are considered with none of them

significantly outperforming the others. However, all of them manage to yield superior

performance compared to non-filtered series. Narajewski and Ziel (2020) apply several

transformations to intraday electricity price data to boost predictive performance. While

Hanzák (2011) argues in favor of simple exponential smoothing (SES) to improve time-

series forecasts through a GARCH approach, Hao et al. (2022) propose a more complex

approach via Kalman filtering to denoise wind data for wind speed forecasting.

All these contributions reflect the heterogeneity in filtering approaches used in the

academic literature. Hurta et al. (2022) notice that not only the filter selection but

also its parameter choice determine the improvement in accuracy through its application.

With their investigation of the impact of several filtering methods on electricity price

forecasting via a Seasonal Component Autoregressive with Exogenous Factors (SCARX)

model, Afanasyev and Fedorova (2019) aim at closing that gap in the existing literature.

In line with Janczura et al. (2013), they find that filtering of the original data, in most

cases, increases the forecasting accuracy and an ensemble of different filtering techniques,

such as threshold and standard deviation filters (SFP) on prices, yield competitive results.

That result is confirmed by Shah et al. (2021) for data on Italian electricity spot prices.

They show that a combination of the RFP or Moving Window Filter on Prices (MFP)5,

together with threshold value replacement, help to decrease forecast inaccuracy. Further,

they conclude that a multivariate Vector Autoregressive (VAR) model in all investigated

cases outperforms univariate time-series models such as AR and ARIMA which leads to

the next focus of this literature review.

Several authors have applied VAR models to exploit multivariate data for the pre-

diction of energy-related data. Garćıa-Ascanio and Maté (2010) show that using a VAR

model in forecasting Spanish energy demand between 2006 and 2007 with interval time

series leads to more accurate results compared to multi-layer NNs. A more recent study

investigates energy demand forecasts generated by VAR and VARX (a VAR model with

exogenous variables) for France between 2010 and 2018 and concludes the method to be

appropriate in the short- and long-run (Auray and Caponi, 2020). For Nordic energy

spot markets, Haldrup et al. (2010) show that simple VAR models, in some cases, can

improve the forecast accuracy when compared to a univariate RS-SARFIMA (Regime

Switching Seasonal Autoregressive Fractionally Integrated Moving Average), especially

when considering regime-switching VAR models.

Given the high dimensionality of VAR models, they are often combined with penal-

ization techniques to obtain sparser model representations (Dowell and Pinson, 2016; He

5The MFP is a modification of the SFP with a fixed rolling window.
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et al., 2015). A natural extension of the VAR model to perform variable selection in

the presence of many coefficients is the Lasso (Least Absolute Shrinkage and Selection

Operator, Tibshirani, 1996). Cavalcante et al. (2017) provide a comprehensive review

of different Lasso VAR approaches, including the standard and row-wise Lasso VAR,

and apply those models to wind power plant data to forecast their production. They

conclude that none of the structures serves as a universally best solution, and different

approaches might maximize the forecasting ability for different data structures. However,

all variants produced better results than a regular VAR and an AR model. The outperfor-

mance compared to the AR model seems to decrease with an increasing forecast horizon.

Nicholson et al. (2020) confirm the outperformance of Lasso VAR compared to the regu-

lar VAR and AR model applied to stock market data and energy use data for appliances.

Additionally, the Lasso sometimes outperforms their proposed HLag (Hierarchical Lag

Structures) model with embedded lag selection. Further evidence for the relevance of the

Lasso VAR procedure comes from Messner and Pinson (2019). They show that for wind

power forecasting in Danish and French markets the Lasso VAR consistently outperforms

a time-adaptive AR model. Additionally, they expand the Lasso VAR approach with a

time-adaptive component exerting exponentially decaying weights on data from the past.

This approach allows the model to adapt to changes in the data dependencies, supports

efficient computing, and outperforms the regular Lasso VAR in the exercised forecasting

application.

Concluding the literature review, it is observed that the research on ancillary en-

ergy markets, especially on FCR markets, to date seems to focus on investigating the

forecasting abilities of NNs instead of multi-variate time-series applications. So far, only

exogenous variables have been added to an ARIMA model setup, as in Kraft et al. (2020).

Given that FCR prices are usually characterized by noisy data structures, noise reduction

through data filtering might be appropriate. However, there seems to be no single-best

approach to apply to energy-related data and several methods have been proposed by the

academic literature depending on different data characteristics. Connecting to the lack of

multivariate time-series applications in the ancillary energy price forecasting research, the

VAR model seems to be an appropriate choice that has been successfully applied to other

data from the electricity market topic. A natural extension of the VAR model, given its

often large number of coefficients, is the Lasso regularization. Promising research has

been published underlining the potential of sparse Lasso VAR models to outperform the

standard VAR and univariate time-series models.

3 Theoretical Background

This Section covers the theoretical background of the investigated market and the method-

ologies described in the next chapter. Since the data used here exhibit a lot of noise, noise

6



filtering methods are considered to pre-process the data. The Auto-ARIMA model is in-

troduced as a baseline model, followed by the Vector Autoregression (VAR) framework,

which allows for multivariate time series analysis. Given the high dimensional structure

of the analyzed data, a Lasso VAR procedure is introduced to obtain a sparser forecasting

model. To increase the computational efficiency, an adaptive version of that approach as

described by Messner and Pinson (2019) is considered and briefly explained in the final

part of the Chapter.

3.1 FCR-D Market in Sweden

The FCR-D market emerged in 2018 and underwent a significant change in 2022. Before

that year, the FCR-D market represented a single market. Now, the market is divided

based on frequency ranges, either above the allowed 50Hz grid frequency, or the range

below. 50% of the service needs to be provided within 5 seconds, and the full service

needs to be activated within 30 seconds. The service should endure for up to 30 minutes

(Kraftnät, 2023a). Since the new market introduction, the market volume has been

increased stepwise (usually quarterly) with a target market volume of 558 MW (FCR-D

Up) and 538 MW (FCR-D Down)(Kraftnät, 2023b).

Before 2022, energy providers were required to bid for both frequency ranges at the

same time, which restricted the potential sources of energy. Notably, hydro plants domi-

nated the FCR-D market due to their ability to regulate their energy production at will.

Modity AB provides bidding services with a particular focus on the FCR-D Down mar-

ket. The FCR-D Down market is especially relevant for wind farms, as they have the

ability to reduce their energy output but cannot increase it in the absence of wind. This

is precisely why the market was split into two frequency ranges. Without this split, wind

energy providers would be unable to participate, as they would be required to increase

their production to meet increased demand, even when they lacked sufficient wind to do

so. Not being able to meet the required demand leads to heavy penalty payments. The

FCR-D market offers significant advantages to sustainable energy companies, enabling

them to operate at maximum capacity and adjust their energy production as needed to

generate additional revenue.

As previously noted, the auction process occurs in two stages. The first stage begins

seven days prior to the delivery day, where companies are allowed to submit their bids

until 3 pm, two days before delivery day. During this stage, companies may specify the

prices and volume they can provide, whether in production or reduction/consumption,

for each hour on the delivery day. The lowest price is ultimately selected, and all lowest

prices are accepted until the required volume for A1 is met. All accepted bids are then

averaged, and only the resulting averaged price is published the latest two hours after

the end of the corresponding auction. Figure 1 illustrates the available average prices at

7



the closing of the gate for A1. As most of the variables are sourced from mimer.se or are

forecasts, they are available even beyond the gate closing time. Specifically, A1 data from

D-3 is available until the end of D-1, thereby enabling predictions to be made from that

point forward. However, certain variables, such as A2 data, then cannot be incorporated

into the multivariate time series models utilized to predict A1 prices. There exists a trade-

off between the incorporation of more variables and the necessity of forecasting further

into the future versus utilizing fewer actual variables and simulating closer proximity to

the delivery day.

Figure 1: The timeline highlights important times for the first auction A1. The bold blue vertical line at 15:00h

shows the gate closing time, while the dashed line an hour later indicates the results of the auction. The blue

colors represent data or related points to A1 prices, while the orange represents elements of A2, and its dedicated

schedule can be found in Appendix 9.

3.2 Noise Filtering

The noise filtering methods explained here are considered as a data pre-processing step.

Therefore, it is refrained from giving a detailed introduction of the methods, and only an

intuitive introduction of the applied methods is provided. Three methods are described

(in order of complexity): Frequency Averaging, Exponential Smoothing, and Kalman

Filter6.

The underlying data consists of hourly measurements collected over the course of

a year, yielding roughly 11,000 data points. To reduce the number of observations,

frequency averaging is employed to average sequential data that are in close proximity.

In this research, a moving average is utilized to merge two-hour blocks of data, resulting

only in a slight noise reduction (Enders, 2015). While a stronger approach may be

feasible, it risks oversimplification and may hinder the prediction of spikes. Frequency

averaging, however, provides more than just noise reduction benefits. Compressing the

6It should be noted that there are more applicable filtering techniques available. See Hyndman and
Athanasopoulos (2021, Chapter 7) for a more comprehensive overview.
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data enables a compressed forecasting horizon, meaning fewer steps into the future need

to be predicted (Hyndman and Athanasopoulos, 2021).

The exponential smoother works recursively and is simple to apply to real-time data.

Despite its easy implementation, it yields competitive results compared to rather com-

plex techniques. Examples of frequent applications are stock market data and inventory

control (Orfanidis, 2018). While many exponential smoothing variants exist, the sim-

ple/single exponential smoother (SES) is used here. The filter assigns larger weights to

recent observations compared to long-past observations. That is obtained by calculating

a weighted average with exponentially decreasing weights. The methodology is described

in the equation below, where 0 ≤ α ≤ 1 acts as the smoothing parameter (Hyndman

and Athanasopoulos, 2021). Smaller values for α imply a smoother filtering of the series,

while larger α values result in a filtered series being closer to the original one.

ŷT+1|T =
T−1∑
j=0

α(1− α)jyT−j + (1− α)T l0, (1)

where ŷT+1|T is the filtered observation of y at time T +1 given the observations until

T and l0 reflects the initial observation. Applying SES, therefore, requires deciding on

the parameters α and l0.

The Kalman Filter is introduced as the most complex one in the set of considered

filters. It is a state space model, and as the SES recursively provides estimations or

predictions based on previous observations (Kalman et al., 1960). Since its first im-

plementation, it has been subject to extensive research, mainly in the area of dynamic

systems such as target tracking and noise cancellation (Badhwar and Sappal, 2016). For

the computation only the previous filtered value (state estimate) and a new observation

are required, resulting in high computational efficiency due to the low memory require-

ment (Kamen and Su, 1999). The filtering algorithm is designed to minimize the Mean

Squared Error (MSE) recursively (Haykin, 2002) and deducts parameters from noisy ob-

servations (Badhwar and Sappal, 2016). Although there are many variants of the filter

available, the standard version of the filter with the simplification for noise reduction as

provided by Ma’arif et al. (2019) is used. The algorithm comprises a prediction and an

update step.

Prediction: 7

ŷT |T−1 = ŷT−1|T−1, (2)

PT |T−1 = PT−1|T−1 +Q, (3)

7In the implementation by Ma’arif et al. (2019), the process variance is time-variant (QT ). In this
work, a time-fixed Q is used due to simplicity.
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Update:

KT = PT |T−1(PT |T−1 +R)−1, (4)

ŷT |T = ŷT |T−1 +KT (yt − ŷT |T−1), (5)

PT |T = (1−KT )PT |T−1, (6)

where ŷ represents the filtered observation (estimated state), P is the state estimate

variance (estimate uncertainty), Q is the fixed process variance, R is the fixed measure-

ment variance, andK is the Kalman gain. Once values for y0 and P0 have been initialized,

the first prediction can be obtained from the prior state estimate (ŷT−1|T−1). The fixed

process variance Q acts as an uncertainty parameter that will always be added to the

prior state estimate variance. The Update step of the algorithm then measures the cur-

rent state of the system and provides the updated and filtered observation ŷT |T . The new

value depends on its previous estimate ŷT |T−1 and the weighted difference between the

new observation yt and ŷT |T−1. The Kalman gain, defined in Equation 4, serves as the

weighting of the difference. From its definition, it is close to zero with high measurement

uncertainty R and low estimate uncertainty (PT |T−1). Intuitively, the Kalman gain would

put a large weight on the difference term in Equation 5 and vice versa with low measure-

ment uncertainty and high estimate uncertainty. Since 0 ≤ K ≤ 1, Equation 6 implies a

decreasing estimate uncertainty as more observations become available. Both, the mea-

surement variance R and the process variance Q are implemented as fixed parameters in

this application. Mainly the measurement variance R is tuned to vary the degree of noise

reduction resulting from the approach. As larger values lead to a smaller Kalman gain,

choosing high parameter values for R leads to stronger filtered series.

3.3 Auto-ARIMA

The automated-ARIMA from the forecast package in R is a powerful and easy-to-use tool

that can be used to find the best fitting ARIMA model to a univariate time series (Hyn-

dman and Khandakar, 2008). The authors state that this function is created to overcome

the difficulty of finding the right order, which is often-times difficult or subjective. An

ARIMA model is an integrated autoregressive and moving average (ARMA) model that

in turn consists of the autoregressive (AR) and the moving average (MA) component.

The AR(p) component is a parametric estimator that uses p lags of itself to predict its

value at time t. See Equation 7 for an AR(2),

yt = a0 + a1yt−1 + a2yt−2 + ϵt, (7)
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where a0 is a constant, a1, a2 are coefficients, yt is the univariate time series at time t and

ϵ is a random error component at time t, which is assumed to be normally distributed

with mean 0 and constant variance σ2. The MA(q) component is using past errors to

predict the current value of the time series. Equation 8 shows a MA(2) process and both

components together can be found in Equation 9, resulting in an ARMA(2,2),

yt = µ+ β1ϵt−1 + β2ϵt−2 + ut, (8)

yt = a0 + a1yt−1 + a2yt−2 + β1ϵt−1 + β2ϵt−2 + ut, (9)

where µ is the mean of the time series, β1, β2 are coefficients, and ut is an error term

with the same properties as ϵ. ARMA models assume stationarity, which is required to

get meaningful coefficients. Stationarity means that the time series is time-independent

in terms of mean, variance, and covariance (Enders, 2015). That usually requires some

pre-processing of the data. That is performed by the integrated term, which indicates the

order of differencing to be made to achieve stationarity. This means an ARIMA model

can process most unprocessed data. An ARIMA(p,d,q) is differenced d times and has p

and q lags for the AR and MA component respectively. The auto.arima function selects

the optimal lags p, q, as well as how often the data is differenced to find the best fit

according to the Akaike’s Information Criterion (AIC). Hyndman and Khandakar (2008)

point out that the auto.arima function is mainly used to select a suitable model order,

including the seasonality components (P,D,Q). p,q (and P,Q) can be selected via the AIC

if d and D are known. To see how the AIC is used to choose the orders, see Hyndman

and Khandakar (2008) Chapter 3.1.

3.4 Vector Autoregression (VAR)

VAR models extend the univariate AR model to a dynamic multivariate time series

model. Given its flexibility, easy implementation, and often superior forecasting perfor-

mance compared to univariate models, it has become extensively used in economic and

financial time series applications. While the usage of the VAR model is not restricted

to forecasting purposes but can also serve for structural inference and policy analysis -

given certain assumptions - (Zivot and Wang, 2003), the scope of the model is restricted

to the forecasting functionality in this work. The p-lag VAR(p) model can be defined as

yt = c+

p∑
l=1

Alyt−p + ϵt, (10)
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with yt = (y1t, y2t, ..., ynt)
′ being a (n × 1) vector of n time series variables at time t, c

reflecting a (n × 1) vector of constants, Al are (n × n) coefficient matrices for each lag,

and ϵt being an unobservable white noise error process characterized by a time-invariant

positive-semidefinite covariance matrix Σ. Further, it is assumed that all series in yt are

stationary (Enders, 2015). Considering Equation 10, a bivariate VAR(2) model could

then be written as a system of two the two equations

y1t = c1 + a111y1t−1 + a112y2t−1 + a211y1t−2 + a212y2t−2 + ϵ1t,

y2t = c2 + a121y1t−1 + a122y2t−1 + a221y1t−2 + a222y2t−2 + ϵ2t,
(11)

where a111 reflects the first entry in the coefficient matrix A1 for the first lag and so on.

Forecasts ŷt from the VAR model can be deducted from Equation 10 and denoted as

ŷt = ĉ+

p∑
l=1

Âlyt−p. (12)

The three previous equations result in 1-step ahead forecasts which can then be used

to iteratively compute multi-step ahead forecasts. Another feasible strategy is to predict

direct forecasts by leading the target vector yt+h by the desired h forecasting steps. Taieb

et al. (2011) provide a comprehensive overview of different forecasting techniques and

conclude that the iterative forecasting strategy often outperforms the direct approach.

Other authors, such as Messner and Pinson (2019), instead argue that using iterative 1-

step forecasts can lead to an accumulation of forecast errors and prefer direct forecasting.

The assumption of stationary input time series for the VAR(p) model requires differ-

encing of I(1) series, where a series is considered I(1) if it is non-stationary in levels but

becomes stationary after being differenced once. However, there is some academic liter-

ature arguing that VAR(p) models can be estimated in levels, especially in forecasting

applications. Luetkepohl (2011), for example, argues that linear forecasts from a VAR

model are still MSE-minimizing even if the model contains I(1) components, however,

with unbounded increasing forecast uncertainty as the forecast horizon increases.

The standard VAR(p) approach is estimation via OLS and therefore the coefficient

matrix Al is obtained by minimizing the SSE

T∑
t=1

∥yt − ŷt∥22, (13)

with ∥x∥2 = (
∑N

i=1 |xi|2)1/2 being the L2-norm. That property allows for finding an

analytical solution to the coefficient matrix Al. Taking the quadratically increasing

number of coefficients n2p into account, with a considerable number of included time

series and lags, a VAR(p) model can quickly be prone to overfitting. That could then
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result in distorted forecasting performance, particularly when dealing with small sample

sizes (Messner and Pinson, 2019).

3.5 Lasso VAR

To limit the problems that might arise from overfitting, the Lasso regularization intro-

duced by Tibshirani (1996) is a popular choice for variable selection in regression prob-

lems. The method has been applied to VAR models in various academic publications

(see, for example, Davis et al., 2016; Hsu et al., 2008; Song and Bickel, 2011) and ap-

plied in the energy market context (Cavalcante et al., 2016; Messner and Pinson, 2019).

Even though the Lasso model selection consistency is restricted to certain dependence

structures of the covariates, Callot et al. (2014) argue for the Lasso method in the VAR

context to select relevant covariates and estimate their coefficients with high accuracy.

In addition, it combines variable selection and estimation, which is beneficial, especially

in high-dimensional settings where a multiple-step procedure for variable selection and

estimation would result in costly computations. The Lasso regularisation extends the

objective function in 13 by a penalty term,

1

2

T∑
t=1

∥yt − ŷt∥22 + λ

p∑
l=1

∥Al∥1, (14)

with the L1 norm ∥x∥1 =
∑N

i=1 |xi| and the penalty parameter λ ≥ 0. The latter

is determining the sparsity induced to the model by shrinking coefficients with smaller

explanatory power to zero. As a result, the coefficient matrix reduces to a sparse selection

reflecting covariates with the largest contribution to the prediction. It should be noted,

that the penalty is not applied to the constant of the model. In this work, the approach

by Callot et al., 2014 is followed, and one Lasso VAR is estimated for each time-series

yit in the system. This approach allows for identifying an individual solution for each of

the n time series. However, it should be noted that a solution for the complete system as

applied, for example, in Cavalcante et al. (2016) can be considered as well and potentially

yields better results.

In contrast to the VAR estimation by OLS, there is no analytical solution to the

minimum of Equation 14 due to the non-differentiable L1 norm. Therefore, numerical

methods need to be applied in order to estimate the coefficient matrix for different sets

of λ. As suggested by Callot et al. (2014) and Messner and Pinson (2019), among others,

this work relies on the cyclic coordinate descent method as introduced by Friedman et al.

(2010). In addition, it needs to be decided on the choice of the parameter λ, which will

be more elaborated on in the model selection (4.2) part.

As Zhao and Yu (2006) notice, the model selection obtained from the Lasso method is

only consistent under relatively restrictive assumptions regarding the dependence struc-
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ture of covariates. Since the covariates in VAR models might be highly dependent,

especially due to the lag structure, Adaptive Lasso (AdaLasso) solutions, as suggested by

Zou (2006) should be considered. To introduce the AdaLasso, Equation 14 is expanded

by the weights vector ŵl,

1

2

T∑
t=1

∥yt − ŷt∥22 + λ

p∑
l=1

ŵl∥Al∥1, (15)

with ŵl = ∥β̂I∥−γ, γ > 0, being the set of weights for lag l, and β̂I being an initial√
T -consistent estimator of β∗. Following Callot and Kock (2014), the least squares

estimator is used for β̂I , and γ is chosen to be 1. The intuition of the weights is to let

the AdaLasso produce more intelligent choices of the penalty term. If the true coefficient

value (β∗) for any variable or its lag is zero, then its initial
√
T -consistent estimator β̂I

would be close to zero as well, letting the respective ŵil leading to a high penalty for that

coefficient. Consequently, for large values of β̂I , the penalty imposed on that coefficient

would then be small. Setting ŵl = 1 would result in the regular Lasso penalty. As

explained in Callot and Kock (2014) this two-step procedure leads to a better asymptotic

performance relative to the regular Lasso.

3.6 OnlineVAR

The idea of Lasso VAR can be further developed. In larger data sets with a large number

of observations from the distant past and many frequently updated variables, it may be

useful to consider only a subset of the data. In other words, only a few recent observa-

tions are considered, discarding older ones. This online component assumes that after

a new observation is introduced, the parameters will change only slightly, and uses the

parameters from the previous iteration as a base to compare how much has changed. Im-

plementing this process can lead to a substantial reduction in computational time, which

is valuable considering that data from the distant past may not be of high relevance for

the forecasting task at hand. However, it is essential to have a sufficient amount of data

available to obtain reliable coefficients that accurately represent the underlying relation-

ships in the model. Striking a balance between selecting an appropriate data window and

ensuring an adequate amount of data is crucial for obtaining robust coefficient estimates.

OnlineVAR combines these two aspects: it uses the learned coefficients and goes through

the data like a rolling window, emphasizing more recent data points and updating the

coefficients when necessary (Messner and Pinson, 2019). The objective function of the

OnlineVAR is only a slight variation of 14, where an exponential forgetting parameter ν

is introduced.
1

2

T∑
t=1

νT−t∥yt − ŷt∥22 + λ

p∑
l=1

∥Al∥1, (16)
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Since ν ∈ (0, 1), the closer t is to T , the greater the impact of νT−t. Their OnlineVAR also

relies on the cyclic coordinate descent by Friedman et al., 2010 and is shown in Equation

17 (c.f., Messner and Pinson, 2019),

Ap[i, j]←
S(

∑T
t=1 ν

T−tyt−p[j](yt[i]− ŷ
(j,p)
t [i]), λ)∑T

t=1 ν
T−tyt−p[j]2

, (17)

where S is a soft thresholding operator, ŷ
(j,p)
t [i] is the fitted value for yt[i] (11), and ν is

the exponential forgetting parameter (Messner and Pinson, 2019). As mentioned earlier,

for every new observation, a new calculation to get the coefficients would have to be

made. To increase calculation speed, the learned coefficients are used as initial values

for the new observations, and since the coefficients are only expected to change slightly,

converge quicker. To gain a more detailed understanding of the topic at hand, it is

referred to Chapter 2.2 of Messner and Pinson (2019). In this chapter, they provide in-

depth explanations and insights into their model. Specifically, equations 11 to 16 in their

paper offer mathematical formulations that are highly relevant to the discussed concepts.

4 Methodology

This part aims at explaining the steps applied in the methodology of the empirical analysis

whose results are presented in the following chapter. The examined data set is initially

described, with primary emphasis placed on the dependent variables, namely FCR-D

prices. The data processing stage primarily involves the application of noise filtering

methods discussed in the preceding chapter. Additionally, the characteristics of the

processed data in terms of stationarity are explored and analyzed. Following, the model

selection is described with choosing parameters for each time-series model being at the

center of that part. The subsequent forecasting algorithm part defines the implementation

of the models in an out-of-sample backtest. Lastly, the section on performance evaluation

outlines the MSFE and MAE used to assess and measure the effectiveness of the generated

forecasts. Notably, no detailed in-sample analysis is conducted as this work focuses on

investigating the forecasting performance of the described models.

4.1 Data Description and Processing

The empirical analysis is conducted on 10,893 hourly observations starting in January

2022 until March 2023 using a total of 17 variables. The variables of interest are four

price series: FCR-D Down and Up prices from their two auctions A1 (two days ahead)

and A2 (one day ahead). Following the description in Chapter 3.1, the particular focus is

on the FCR-D Down prices. Results for the FCR-D Up prices are included in the analysis
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as well. All four time series are displayed in Figure 2. They exhibit many sudden spikes,

Figure 2: The four price time series of A1 and A2 auctions, with FCR-D Down (red) and FCR-D Up (blue)

prices in EUR.

especially the data for the second auction, making it challenging to identify which of

them are signals and which of them can be considered noise. At first glance, it seems

that there might be issues with stationarity. Additionally, the within-day price structure

for the FCR-D Down A1 price over time is investigated in Figure 3. With the black lines

indicating market volume increases as described in Chapter 3.1 it appears that market

prices also increase for a while and then stabilize at lower levels again. Generally, the

market becomes much more volatile after volume increases. An additional observation,

consistent with the findings of Pihl (2019), is that the prices exhibit a tendency to be

higher during nighttime. This can be observed in the warmer colors at the top or bottom

of 3, where the horizontal lines indicate the beginning and end of the night.

For the A2 auction, it becomes much more challenging to identify patterns as reflected

in Figure 4. The prices spike throughout the year, with no clear intra-day pattern. This

could be due to the more unpredictable structure of the auction. When the TSO buys

enough volume in the A1 market, sometimes no or significantly less volume is requested

in the A2 market. That makes the A2 market harder to predict, which is in line with the

observations from Figure 2. Note, that only the plots for FCR-D Down are included as

examples while the ones for both FCR-D Up auctions are part of Appendix A.
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Figure 3: The heatmap shows the prices of FCR-D Down A1 for each day from January 2022 to the end of

March 2023. The horizontal lines indicate the switches between day and night, while the black vertical lines

indicate the beginning of a quarter when the market volume of the FCR-D is increased.

In total, 17 variables are investigated, including the price and volume data of the

auctions, to better explain the variation in the FCR-D price series. A more detailed list

of the variables, including their references and sources can be found in Table 7 in the

Appendix as well as their descriptive statistics (Table 6). The selection of the variables

is based on the findings from the literature review (Chapter 2). While Pihl (2019) argues

that reservoir and hydropower production data are particularly important for explaining

the variance of FCR-D prices, only the residual load is used as a proxy for the former.

Unfortunately, data on hydropower production is not publicly available without being

too delayed to use it in a forecasting setting. To get a better understanding of how these

variables are related to the FCR-D prices, a correlation matrix is displayed in Figure 12

in the Appendix. With regard to the prices it seems that Nuclear Power Production is

relatively strongly negatively correlated to the FCR-D Up A1 price, while the temperature

is strongly positively correlated. Another important variable seems to be the FCR-D Up

A2 price which, however, will not be used when forecasting the A1 price. This is because

the A2 prices are updated after the A1 auction is closed. Including A2 data would imply

to increase the prediction horizon, which seems to have a stronger negative impact on

the predictability of A1 prices than including A2 prices would support the predictability.

Looking at the FCR-D Down A1 price, the FCR-D Up A1 price and the FCR-D Down
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Figure 4: The heatmap shows the prices of FCR-D Down A2 for each day from January 2022 to the end of

March 2023. The horizontal lines indicate the switches between day and night, while the black vertical lines

indicate the beginning of a quarter when the market volume of the FCR-D is increased.

A2 price have the strongest (positive) correlations. Generally, price variables seem to be

mostly correlated with FCR-D Down prices, while FCR-D Up prices seem to be correlated

with production statistics and other variables such as the temperature.

The variables are checked for stationarity as this is an assumption for using the time-

series models explained in the previous chapter. Most of the variables are found to

be stationary using the ADF-Test (augmented Dickey-Fuller, Dickey and Fuller, 1979).

For rejecting the null hypothesis of a unit root, the 10% significance level has been

chosen. That is in line with the findings by Kim and Choi (2017), who argue that

higher significance levels compared to the conventional ones (1% or 5%) should be used

when dealing with low-power tests such as the ADF-Test. While they imply a typical

range between 20% and 40%, the 10% level is used, reflecting a compromise between

the conventional and the proposed levels. Using that level of significance all time series

are found to be stationary except for the FCR-D Up A1 price and the weather data.

While the former becomes stationary after being differenced once, a log transformation

is sufficient for the latter. The stationarity characteristics are listed in Table 1 as well.

In addition, the variable availability for forecasting is summarized in Table 1. For A2,

there are more variables available since the gate closing time is closer to the delivery day

of this product. A2 can therefore use all of the 17 variables, while A1 can consider 12.
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Table 1: Variable overview and their availability for predicting A1 auctions. Additionally, it is indicated if

the data is available as an actual or forecast. Stationarity is assessed through the ADF-Test using the 10%

significance level. * implies that the time series needed to be transformed by either taking the first difference

(diff) or log to make it stationary.

Used in A1 Actuals Forecast Stationary
FCR-D Market
FCR-D Down Result Price A1 yes yes yes
FCR-D Up Result Price A1 yes yes diff*
FCR-D Down Result Price A2 no yes yes
FCR-D Up Result Price A2 no yes yes
FCR-D Down Result Volume A1 yes yes yes
FCR-D Up Result Volume A1 yes yes yes
FCR-D Down Result Volume A2 no yes yes
FCR-D Up Result Volume A2 no yes yes
aFRR Market
aFRR Down Price aggregated yes yes yes
aFRR Up Price aggregated yes yes yes
aFRR Down Volume aggregated yes yes yes
aFRR Up Volume aggregated yes yes yes
Production
Wind Production Forecast yes yes yes
Nuclear Power Production no yes yes
Other
Temperature yes yes log*
Spot Price SE2 yes yes yes
Residual Load yes yes yes

Following the results by Afanasyev and Fedorova (2019), different filter techniques can

impact the forecasting performance dissimilarly. Given the uncertain research findings

regarding optimal filtering techniques and since filter optimization falls outside the scope

of this work, the noise reduction part is limited to the methods explained in Section

3.2. While some research contributions in Section 2 hinted at applying the Recursive

Filter on Prices (RFP), it is refrained from applying that method here. This is due to its

nature of removing all spikes of a time series which might yield problematic forecasting

results. While it is appropriate to reduce the noise in the data, removing all spikes

will likely eliminate important signals and prevent the models from predicting them.

The same logic applies to the Standard Deviation Filter on Prices (SFP) although to

a smaller amount. Instead, the focus is on smoothing methods that can help reduce

the noisy structure of the data. Regarding SES, Hyndman and Athanasopoulos (2021)

recommend a procedure based on minimizing the sum of squared residuals/errors (SSE)

to obtain optimal values for α and l0. We limit the filtering to the methods introduced

in 3.2, which are applied using different parameter choices, and their respective impact

on the predictive performance of the benchmark model are compared. The filter setting
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contributing to the best-performing benchmark predictions is then used in the remainder

of the analysis. Each time series is filtered individually. For the Kalman Filter and

SES, the initial values8 are removed from the series such that they cannot deteriorate the

forecasting methods.

4.2 Model Selection

Given the variety of investigated models and noise-filtering techniques, there are many

combinations and tuning options to decide on. Given computational limitations and

time constraints, as explained in the previous chapter, the noise-filtering performance is

investigated on the Auto-ARIMA model. The best-performing filter is then identified

for each of them and used for the remainder of the analysis. With regard to data pre-

processing, as explained in the previous section, the FCR-D Up Price A1 is found to

be stationary only after taking the first differences. However, when conducting an in-

sample analysis using the models explained in Chapter 3, it is noted that the models

fail to fit the differenced time series leading to an even poorer fit when transforming

back to levels (see Figure 13 in the Appendix for comparison where the issue is shown

using the Auto-ARIMA model as an example). Choi and Jeong (2020) provide empirical

evidence for using level data even in the case of non-stationarity. They conduct a Monte

Carlo simulation and real-world macroeconomic forecasting to show that using level data

oftentimes outperforms using differenced data if the purpose is forecasting only.

The five models mentioned in Chapter 3 are thus all run only with the undifferenced

data sets, where only log transformation on the weather data (see Table 1) is applied.

Further, the models are slightly different for A1 and A2 predictions, and the impact of

filtering is investigated. To be more precise, this means that for each of the four prices,

the following five models are run on a data set that contains unfiltered data, and on a

data set with the filtered time series. A total of 40 models are compared.

• Auto-ARIMA model with external regressors (Auto-ARIMAX)

• VAR

• Lasso VAR

• AdaLasso VAR

• OnlineVAR

Building on the result by Narajewski (2022), an ensemble forecast is added as well,

defined as the mean of the predictions from models. That combination aims at increasing

confidence in the forecast and thereby resulting in more reliable results. For each of the

8For the Kalman filter the initial values have been set to x0 = 0 and P0 = 1. The initial value for
the SES method has been optimized to minimize the SSE according to Hyndman and Athanasopoulos
(2021) and using the ExponentialSmoothing function from the Statsmodel Python package (Seabold
and Perktold, 2010).
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VAR models, optimal lags are selected through VARSelect from the vars package in R

(Pfaff, 2008) according to the BIC (Equation 18), which usually results in a sparser model.

The optimal number of lags varies between both data sets and whether it is trained on

A1 or A2. The selected lag size for each setup is fed into all types of VAR models.

BICn = log(RSSn) +
log(T )

T
nK2, (18)

where RSSn is the sum of squared residuals from the trained VAR(p) model, n is the lag

order, and K refers to the total number of endogenous variables (Pfaff, 2008).

When specifying the Lasso VAR models (Chapter 3.5), the λ parameter needs to be

chosen. While it is common in regular Lasso regression analysis to choose the optimal

λ through cross-validation (CV), it is selected through the BIC (Equation 19) in this

paper. That is in line with Hecq et al. (2021), showing the superiority of BIC in selecting

the Lasso penalty parameter using Monte Carlo simulations and the considerations in

Kock and Callot (2015). Additionally, Bergmeir and Beńıtez (2012) show that standard

cross-validation approaches might not be appropriate for time-series data. The criterion

in that scenario is formally described as in Equation 18, modified with the new purpose

of selecting the optimal λ

BICλT
= log(RSSλT

) +
log(T )

T
df(λT ), (19)

with RSSλT
reflecting the residual sum of squares depending on a certain choice of

λT . df(λT ) represents the model’s degrees of freedom (number of non-zero coefficients;

Bühlmann and van de Geer, 2011; Friedman et al., 2010) given λT . For each series, the

BICλT
-minimizing λT is chosen. The lambda grid is chosen as in Friedman et al. (2010).

Since the number of observations for training a model is larger than the number of co-

variates, λmin is chosen to be close to zero (0.0001). A grid of 100 λ values on a linear

log-scale is then generated up to λmax, which refers to the smallest λ value such that all

coefficients would be shrunk to 0. For the AdaLasso, the parameter γ needs to be chosen.

To prevent the risk of overfitting through a grid search and to build on the expertise of

Callot and Kock (2014), the value is kept fixed at 1 in this work.

4.3 Forecasting Algorithm

Once all the methods and their tuning procedures have been specified, it is time to

establish the framework for the forecasting algorithms. Consistent comparability across

all models is achieved by employing the same setup for forecasting across all models. This

means all models generate out-of-sample forecasts through an expanding window while

having the same starting window size of three months9. Therefore, the out-of-sample

9Three months are 2016 hours.
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analysis starts end of March 2022, and 8880 hours (370 days) are predicted. Forecasting

follows the explanations in Chapter 3.1 for the FCR-D markets (see Table 1). For both

auctions, the forecast horizon is one to 24 hours ahead to obtain predictions throughout

the delivery day. That means every 24 hours the next 24 hourly values for the delivery

day are predicted. Despite the gate time for delivery closing before (or two days before)

the actual delivery day, there are already some available actuals and forecasts. It can

therefore be simulated that the auction takes place exactly one hour before delivery day,

as the necessary data is available. However, that implies some potential independent

variables are sacrificed for the trade-off of having a shorter predicting horizon. Further,

it should be noted that only historic forecast data for wind production is available, and

therefore it needs to be assumed that for the other variables such as temperature, nuclear

power production, and residual load, accurate forecasts are available.

The data utilized in the analysis consists of historically realized values, yet it is rea-

sonable to assume that the underlying forecast data that Modity has access to closely

approximates the realized values. However, the backtest will most likely result in better

forecasting performance compared to real-world performance using actual forecasts. Ad-

ditionally, the Auto-ARIMA model is run with exogenous variables to see if they are able

to improve predictability. The packages used for the forecasts are:

• Auto-ARIMA: forecast package in R (Pfaff, 2008),

• Lasso VAR: lassovar package in R (Callot et al., 2014),

• OnlineVAR: OnlineVAR package in R (Messner and Pinson, 2019).

For the Auto-ARIMA model and the OnlineVAR, a recursive forecast is used, while for

all other VAR models, a direct forecast is implemented10. Callot and Kock (2014) argue

that the advantage of using direct forecasts is the adaption to the specific forecast horizon

which could make the approach more robust at long forecast horizons. In addition, they

show in their research, while applying the lassovar package, that using direct versus

recursive forecasts does not yield significantly different results.

4.4 Performance Evaluation

The models’ performance is evaluated based on the Mean Squared Forecasting Error

(MSFE) and Mean Absolute Error (MAE). Both metrics are commonly used in the fore-

casting literature for energy market topics (see, for example, Messner and Pinson, 2019;

Narajewski and Ziel, 2020). While the MSFE is described as the optimal measure for

least squares applications, it is sensitive to outliers. The MAE, in contrast, is more robust

in terms of outliers. Both performance measures are included as their combination can

help to reveal performance differences with regard to outliers and are defined through

10It should be noted, that the OnlineVAR is done recursively due to easier implementation and shorter
calculation time for conducting the backtest.
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MSFE =
1

T

T∑
t=1

(Pt − P̂t)
2, (20)

with Pt being the original price at time t and P̂t being the forecasted price at time t,

MAE =
1

T

T∑
t=1

|Pt − P̂t|. (21)

To get a more meaningful interpretation of the models’ results, their performance is

compared against a naive forecast, using the last seen observation over the forecasting

period. Additionally, the performances will be compared over the full testing period and

month-wise. Using that approach will allow for drawing conclusions about the perfor-

mance of the models during different market conditions and accordingly provide some

recommendations about the model confidence with higher or lower market volatility.

Negative price forecasts are bottomed at 0. In addition, to prevent extreme forecasts

from deteriorating their performance evaluation too heavily, especially for the MSFE, they

are filtered out for the A1 price forecasts. Callot and Kock (2014) and Swanson and White

(1995) argue for such a procedure, and Kock and Teräsvirta (2016) show that filter tuning

for that purpose does not greatly influence the results. Here, the suggested approach by

Swanson and White (1995) is followed and defines a forecast outlier as a forecast being

outside three times the standard deviation of the estimation period plus/minus the last

seen observation. In case a forecast is identified as an outlier, it is replaced with the last

seen observation. Using that approach for A1 predictions sometimes helps to increase the

performance in terms of both metrics and never yields worse results. The forecasts for A2

prices are not filtered out given the many spikes in the data. Given the noisy structure of

the original data, better results can be achieved by getting closer to the original outliers

and filtering often decreased the performance in terms of the KPIs.

5 Analysis

After introducing the theory and methodology, the empirical analysis is conducted in this

part. The results from selecting the optimal filtering method for each of the FCR-D price

variables are presented in Table 2. For all remaining variables, the results are presented

in Appendix 8. To ease the readability, only the results based on the Auto-ARIMA

model for the best-performing filter are reported relative to the unfiltered series. For

the FCR-D prices the performance is measured in terms of the MSFE, whereas for the

remaining variables, the MAE has been used. In line with the results from Chapter 4.1

where the FCR-D price data has been found to be particularly important, the MSFE as

an outlier-sensitive metric is chosen for those series to make sure the filter still allows
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the model to fit the spikes in the data to a reasonable extent. The underlying argument

is that some spikes in the filtered series might serve as signals and are therefore useful

information when predicting. For the remaining variables, the purpose is to use the filter

in order to remove uninformative noise and therefore evaluate the filters’ performance

based on the outlier-robust MAE. However, it should be noted that usually there was no

large difference between the MSFE and MAE improvements.

Table 2: Noise filter performance on all variables. For each variable, the out-of-sample performance of the

Auto-ARIMA using the best-performing filter setup is compared to an Auto-ARIMA using the original series.

The performance values are compared in percentage based on the MSFE (for FCR-D prices) and MAE (other

variables). For the optimal filter, K refers to the Kalman Filter and F to Frequency Averaging with the respective

parameter choice in parentheses. For the Kalman Filter parameter values for R2 between 0.1 and 1.5 have been

considered, whereas for Frequency Averaging a frequency of 2 has been used.

Variable Performance in % Optimal Filter
FCR-D Down Price A1 +14.66 K (0.25)
FCR-D Up Price A1 +21.05 K (0.75)
FCR-D Down Price A2 +0.66 K (0.25)
FCR-D Up Price A2 −1.56 F (2)

Using filtered time series for producing Auto-ARIMA forecasts seems to work particu-

larly well for the A1 prices, whereas for A2 prices it does not seem to improve the forecasts.

For the FCR-D Up A2 prices, it even decreased the forecasting performance. Generally,

for most variables, the filtering seems to only gradually improve the predictability, except

for some of the aFRR data where it shows clearly better results. Oftentimes, less filtering

yields better results. In terms of filter performance, the Kalman filter, which is the most

complex filter investigated here, is selected most of the time. The frequency averaging

method gets selected two times, while the SES never yields the best performance. To

assess the impact of filter settings in a multivariate setting, a filtered data set was created,

using the optimal filter settings determined in this study. The filtering resulted in poorer

performance in six out of 17 cases. The respective series are then included in the data

set for the backtest without any filtering.

Investigating both unfiltered and filtered data, the results on FCR-D Down data

are presented first. The models are ordered by their complexity. Note, that the Auto-

ARIMAX setup in that comparison includes exogenous regressors and is therefore not the

same model used for the filtering selection. For the A1 market, the results are mostly in

line with expectations. Whereas the naive forecast performs worse, using more complex

models increases the forecasting performance (see Table 3). Adding more information in a

time series fashion through the (penalized) VAR models helps to gain further increases in

forecasting accuracy. Only the OnlineVAR seems to fall behind its penalized VAR peers,

which will be elaborated further on later in this section. Combining all models (excluding

the naive estimator) into an equally weighted averaged ensemble forecast yields the best

performance in terms of MSFE, which is in line with the previous reasoning (see Chapter
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Table 3: Out-of-Sample forecasting performance for the FCR-D Down prices. For both auctions, unfiltered and

filtered data are compared. For each section and metric, the best-performing model is highlighted in bold.

FCR-D Down A1 A2
Unfiltered Filtered Unfiltered Filtered

Model MSFE MAE MSFE MAE MSFE MAE MSFE MAE
Naive 108.79 4.52 85.79 4.44 7496.71 29.66 7657.10 31.28
Auto-ARIMAX 79.90 4.01 60.28 4.14 5813.18 29.93 5812.28 29.94
VAR 62.18 4.61 62.05 4.55 5818.79 35.79 5948.31 32.85
Lasso VAR 61.05 4.72 63.03 4.76 5554.27 34.96 6077.98 33.36
AdaLasso VAR 60.54 4.35 58.73 4.19 5676.69 35.29 6458.41 33.87
OnlineVAR 97.88 5.04 101.38 5.53 8988.93 31.02 9083.58 31.29
Ensemble 54.14 4.15 57.83 4.37 5483.44 31.26 5865.39 30.46

4.2). In terms of MAE the Auto-ARIMAX model performs best for the A1 auction but

lags behind some of the other models in terms of the MSFE. That could be an indication

for the model to provide generally reliable predictions but missing some of the outliers in

the data more often compared to other models such as the AdaLasso VAR. Furthermore,

that aspect highlights the relevance of the ensemble forecast combining models that might

serve different purposes. While the Auto-ARIMAX might be better for getting stronger

predictions on an absolute basis, the AdaLasso VAR, for example, might be better for

predicting spikes in the data. Applying filtering to the data seems to help increase the

forecasting performance for A1 on some models, whereas the ensemble forecasts are a bit

worse in terms of both metrics. However, while there is a large performance gain for the

Auto-ARIMAX method, the filtering only has a minor effect on the predictions. As for

the unfiltered series, the best-performing models are the ensemble (MSFE) and Auto-

ARIMAX (MAE) with slightly worse results. These results could hint at the elimination

of important signals by the applied noise filtering techniques.

Generally, the previous assumption that the A2 market might be harder to predict

is reflected in the empirical results. As mentioned before (see Chapter 4.1), the A2

market behaves differently. Here, the data contains much more spikes. In terms of the

MAE, no model is able to beat the naive benchmark. Low-complexity models could

have an advantage in such hard-to-predict environments. They tend to provide flatter

forecasts, and, therefore, are less risky. The more complex models, in contrast, are able

to predict spikes in the data as well. In the noisier A2 market data, the models fail

more often and more extreme. The ensemble method seems to help balance out both

effects and provides the best-performing results for the unfiltered data. Filtering the A2

data worsens the results for most models in terms of MSFE, and only sometimes results

in better MAE numbers. That provides further evidence for the elimination of signals

relevant information for predicting the FCR-D prices.

The FCR-D Up prices seem to be more predictable and again, all models except for

the OnlineVAR manage to outperform the naive forecast. Adding more information in the
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Table 4: Out-of-Sample forecasting performance for the FCR-D Up prices. For both auctions, unfiltered and

filtered data are compared. For each section and metric, the best-performing model is highlighted in bold.

FCR-D Up A1 A2
Unfiltered Filtered Unfiltered Filtered

Model MSFE MAE MSFE MAE MSFE MAE MSFE MAE
Naive 47.06 3.48 56.61 4.42 2329.50 26.88 2336.69 27.06
Auto-ARIMAX 45.76 3.68 47.45 3.92 2649.75 30.57 2634.30 30.38
VAR 41.60 3.67 52.06 4.20 2473.00 30.17 2500.70 30.56
Lasso VAR 40.56 3.47 54.02 4.30 2465.45 28.96 2458.76 29.55
AdaLasso VAR 46.16 3.57 54.47 4.35 2460.69 29.21 2533.46 30.16
OnlineVAR 57.85 4.36 77.26 5.36 2731.27 31.44 2761.26 31.78
Ensemble 37.91 3.32 53.32 4.31 2431.55 28.48 2448.07 28.88

form of additional variables to the forecasting approach seems to increase the performance

using the VAR and Lasso VAR model compared to the Auto-ARIMAX approach. Using

the combination of the models again yields the best performance in terms of both, MAE

and MSFE. Using the filtered data set for the predictions worsens the results for each

model on the A1 data and sometimes yields minor improvements for the A2 market. For

the A2 market, the naive forecaster performs best, both in terms of MAE and MSFE. That

highlights the difficulty of accurately forecasting the A2 market and might also indicate

that using the previous day’s last price obtains relevant information for predicting the

next day. Generally, it should be noted that using a multivariate time series model can

often help to improve the forecasting performance compared to the Auto-ARIMAXmodel,

which incorporates exogenous variables already. However, there is no single best model

choice. For example, using the VAR model without penalization can result in similar

or even better performance compared to the more complex penalized models. A reason

could be that the VAR model might be at the risk of overfitting given its large number

of coefficients, it still might be able to catch some signals in the data that are helpful for

predicting the FCR-D prices and would have been eliminated by the penalized methods.

However, for Down A1 Filtered/Unfiltered (AdaLasso VAR), Down A2 Unfiltered (Lasso

VAR), Up A1 Unfiltered (Lasso VAR), Up A2 Unfiltered (AdaLasso VAR), and Up A2

Filtered (Lasso VAR), one of the penalized models is the best choice in terms of MSFE

among the investigated models. That means that in six of the eight investigated scenarios,

a penalized VAR model is outperforming its competitors. Equally often, the ensemble

method manages to improve the performance of an individual best model in terms of

MSFE. In terms of MAE, Auto-ARIMAX shows competitive results, especially on the

FCR-D Down markets.

The performance of the models changes over time. In Figures 3 and 4, the hourly price

changes indicate that there are certain periods with a lot of volatility. It is expected, that

the models perform worse, especially around the times, when the market volume is in-

creased. In Figure 5 three months with extraordinarily high spikes are displayed11. These
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Figure 5: The performance according to the MSFE of all five models for each month in the FCR-D Down A1.

The horizontal lines in the respective color represent the mean MSFE for each model reported in Tables 3 and 4.

spikes occur all around the market volume increase. The MSFE is getting particularly

bad during January 2023, when the market volume increased for the last time. The mean

line of the corresponding models is only exceeded in those three months. Excluding the

three worst-performing months, the MSFE of the Ensemble model drops to 18.75. While

this is a good indicator for a solid prediction, the volatile markets with high prices are

interesting in terms of profit. To mitigate this, the OnlineVARs exponential factor is set

up in a way, that the model considers the last 24h before the delivery day. This may

lead to predictions with more spikes, as the model coefficients get quickly bigger if the

last day was volatile. This behavior may help to hit important spikes. On the down-

side, the model may also predict negative prices more often. Since these are meaningless

predictions, negative forecasts are set to zero, before the outlier filtering mentioned in

4.4 is applied. Most models are unaffected by the order of the outlier filtering since not

all models have negative price forecasts. The riskier OnlineVAR, however, is penalized

stronger since negative values are in that case replaced by zero instead of the last seen

value. That is applied in all models for practical reasons, to penalize models that tend to

predict lower because lower forecasts usually imply less profit. This can be seen in Figure

6, which shows the predictions of the OnlineVAR in red against the original FCR-D Down

11Figures 14, 15 and 16 in the Appendix show the MSFE for the other markets.

27



Figure 6: The predictions of the OnlineVAR compared to the original prices. Negative forecast prices are

capped at zero.

A1 prices in black. The red line lags only a bit behind the original, matching most of the

spikes. There are a few individual predictions, that worsen the overall performance of

this model immensely. That, however, may imply, that this model alone is not reliable.

On the other hand, OnlineVAR seems to be a valuable ensemble member. Including

OnlineVAR reduced the overall performance of most of the ensemble predictions for the

filtered and unfiltered data set.

In a similar fashion, the following two Figures 7 and 8 show the single best-performing

forecast for both FCR-D Down markets, compared to the respective ensemble predictions

and the original prices.

The best-performing models are chosen from Table 3 for the unfiltered data set, ac-

cording to the MSFE value. For the A1 auction, this is the Adaptive Lasso model, which

has the next lowest MSFE compared to the ensemble prediction. It may be challenging

to identify the blue line since the red line is comparable and overlapping. When the

blue line, representing the Adaptive Lasso, shines through, it is mostly above the red

line, which indicates its ability to hit potential spikes on the upside. In periods with

low volatility, the black line seems to be entirely covered by both forecasts. It should be

noted that the root of the MSFE would give prices in Euro, meaning that in the months

without May, October, and January, the prices are on average less than five Euros off.
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Figure 7: Comparison of the best predictors for FCR-D Down A1 prices. Negative forecast prices are capped

at zero.

Similar conclusions about the performance from the ensemble (red) and the Lasso

VAR model (blue) can be deducted about the Down A2 market12. The difference here is

the price range, which is wider, and the spikes can increase up to 30 times compared to

the mean value. Hitting these spikes is unrealistic. Yet, some models seem to detect the

underlying pattern and can give a better indication compared to the naive model. The

single best model is the Lasso VAR. It is possible, that this model is able to detect the

relevant variables for predicting the spikes. Again, similar to Figure 7, the single best

model is mostly above the line for the ensemble prediction, indicating that models being

able to hit the spikes do perform better in terms of the chosen KPI.

Applying the Lasso VAR models allow for drawing some conclusions about variable

importance. While inference on the estimated parameters of a Lasso model is usually

invalid (Adamek et al., 2022), it is still possible to deduct some information about the

importance of the variables. Since this is not the main focus of this work, only a brief

variable importance section is presented here. It is based on the frequency of selecting

the variables on different forecasting horizons, which can help to gain a better under-

standing of important drivers of the forecasts. Given its favorable theoretical properties,

as addressed in Chapter 3.5, the AdaLasso procedure with five lags on unfiltered data

12Figures 17 and 18 in the Appendix contain the plots for the other predictions of the other markets.
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Figure 8: Comparison of the best predictors for FCR-D Down A2 prices. Negative forecast prices are capped

at zero.

is used to conduct this analysis. The five most frequently selected variables of the al-

gorithm are identified on three different forecasting horizons h = 1, 12, 24, with h = 1

being the shortest and h = 24 being the longest forecast horizon that has been used in

the previous analysis. Since direct forecasts are used for each of the horizons, 370 itera-

tions are conducted on each horizon. Hence, a variable that occurs 370 times has been

selected throughout the full backtest period. The results for the FCR-D Down market

are presented in Table 5, while the results for the FCR-D Up market can be found in

Appendix 9.

The first thing to highlight is that for both FCR-D Down A1 and FCR-D Up A1

price forecasts one hour ahead only the lagged target variable is selected. This result is

intuitive since for that short horizon the previous value of the target value should be very

important. While for the FCR-D Down A1 price forecasts with h = 12 the FCR-D market

data, especially the prices, seem to be of high importance, for h = 24 the additional

variables residual load, wind forecast, and temperature seem to gain importance. For

these horizons, 6.61 and 7.22 variables have been selected on average and all variables

have been selected at least once for one of the horizons with one of its lags. On the

more difficult-to-predict A2 market, generally, more variables have been selected on each

forecast horizon (h = 1: 10.98, h = 12: 18.58, h = 24: 15.91). It should be noted that
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Table 5: Top 5 selected variables for different forecast horizons (h) of the AdaLasso VAR model. n indicates

how often a variable was selected among the total of 370 model runs. The lag of each variable is indicated in

parentheses. ∗ refers to the case when only one variable has been used in all of the models.

FCR-D Down
A1 A2

h Variable n Variable n
1 FCR-D Down Price A1 (1L)∗ 370 FCR-D Down Price A2 (1L) 370

FCR-D Down Price A2 (3L) 274
FCR-D Down Price A2 (4L) 273
aFRR Down Volume (1L) 253
FCR-D Down Price A1 (1L) 248

12 FCR-D Down Price A1 (1L) 370 FCR-D Down Price A2 (1L) 370
FCR-D Down Volume A1 (5L) 181 FCR-D Down Price A2 (5L) 345
FCR-D Up Price A1 (1L) 156 Wind Forecast (1L) 314
FCR-D Down Price A1 (5L) 155 FCR-D Down Price A2 (5L) 313
aFRR Up Volume (5L) 140 Nuclear Power Production (1L) 289

24 FCR-D Down Price A1 (1L) 370 Temperature (5L) 338
FCR-D Up Price A1 (1L) 357 FCR-D Down Price A2 (1L) 337
Residual Load (1L) 171 FCR-D Up Price A1 (1L) 335
Wind Forecast (5L) 170 FCR-D Down Price A1 (1L) 334
Temperature (5L) 157 FCR-D Down Volume A2 (1L) 245

because of the lag length of five a total of 60 variables are available for the A1 market, and

85 variables on the A2 market are available. For the short and medium forecast horizons,

the lagged target variable is again the most important, whereas, for the longer horizon,

the temperature seems to be slightly more important. For h = 1 and h = 24, FCR-D

market data is dominating the top selection, whereas for h = 12, also the wind forecast

and nuclear power production are of importance. Often, lag size 5 of the variables is

selected, which could be an indication that some values from the past are relevant for

predicting future FCR-D Down prices. That could imply that the selected lag size of the

model could be increased. However, given computational restrictions, that part is left for

future research, and the lag size is kept as selected by the BIC.

For the A1 market, the FCR-D Up models seem to be more sparse, with fewer selected

variables on average. While for h = 12, only 2.95 variables are selected for the FCR-D

Up model (6.61 for FCR-D Down), for h = 24 only 1.44 (7.22) variables are selected

on average. However, for the A2 market, the FCR-D models are usually sparser while

selecting many more variables compared to A1. For FCR-Up 21.06 variables are selected

on average for h = 1, 16.79 for h = 12, and 15.53 for h = 24. Analyzing the variable

selection for the FCR-D Up market confirms the previous observation of the FCR-D mar-

ket data being the most relevant variables for the AdaLasso forecasting model, especially

on the short forecasting horizon. Other variables of importance are the temperature,

the residual load, wind forecasts, and aFRR market data. While all variables have been
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selected at least in one model, the spot price data did not make it to the top 5 selection.

It should be noted, that the results for the A2 markets should be taken with particular

care as the market is difficult to predict, and the model might not be able to capture the

markets’ behaviors. Still, the variables outlined here can serve as an indication of which

variables are of importance.

6 Research Outlook

Before concluding the analysis, some aspects relevant to potential future research will be

mentioned. Following the structure of this work, the parameter choice for the filters could

be optimized by performing a broader grid search, and the filters could be tuned more in-

tensively. The SES approach, for example, could be equipped with a seasonal component

(Hyndman and Athanasopoulos, 2021). Further research on filtering is required to see if a

lack of tuning or information loss through filtering resulted in the worsened performance

of the filtered forecasts. Another issue could be related to the variable selection. While

a total of 17 variables have been considered in this work, some research in the field used

many more variables (see Chapter 2). While the presented evidence suggests that the

majority of the selected variables play a significant role in the forecasting process, further

explanatory variables might have increased the predictability of the FCR-D prices. Data

on hydropower generation could be an interesting but hard-to-obtain source for further

improvements. Further meteorological data could be of help as well. However, includ-

ing more data will increase the computational costs of the approaches exponentially. A

solution to this could be employing the computationally efficient OnlineVAR for further

high-dimensional research.

During the model selection, a forward-looking bias has been introduced by running the

lag selection through the BIC on the full data set. While running the test on each iteration

would have been too costly from a computational perspective, the selection used in this

work seemed to be relatively robust to choosing smaller sample sizes, which is why that

bias should not be considered to be a major issue. The selection of the forecasting models

itself poses another challenge to tackle in future research. While this work focused on

Lasso VAR applications, considering further modifications such as the Post Lasso or the

general Elastic Net regularization might help to obtain better results. Using a completely

different model choice, such as typical machine learning models (Decision Trees, NNs),

might improve the performance further. However, it is the belief of the authors that more

variables and a longer timeframe will be required for successfully applying such models.

Reference models, as used in the research introduced in Chapter 2, have been tested on

the data set and were found to perform worse compared to the time-series approaches.

For the implementation of the forecasting algorithm, no rolling window approach was

considered to limit the model comparison. However, using that method could bear a
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lot of potential, especially given the changes in the market structure. Those could make

past observations become less important and could be captured using a properly designed

rolling window approach. That involves finding the optimal window size. For the variable

importance, changes over time could be interesting to research further. However, given

the short past of the FCR-D market in Sweden, that might be more interesting when the

market has further developed.

With regard to reporting the results, no confidence bands have been added. Adding

a measure of model confidence could be helpful for further research and help for placing

the bids. That topic has briefly been covered by including the ensemble model, which will

result in a more confident prediction. However, that does not include any information

about the possible variation of the results. As Kraft et al. (2020) highlight, the ongoing

changes in the FCR-D market should always be considered when dealing with forecasts

from econometric models as they are trained on past data. Structural, and technological

changes, as well as behavioral changes by market participants, pose a challenge to the

predictability of the market, especially given its short past. While this work has been

developed, the market volume has been increased again followed by a volatile period.

That means that the validity of the models needs to be assessed before applying them to

the changed market.

7 Conclusion

Throughout the work, it becomes apparent that filtering the data prior to forecasting has

not significantly increased the performance of the models used. While the filtering some-

times seemed to improve individual predictions of the time series, the overall performance

of the models became worse. An indication may be that some relevant signals may be lost

when attempting to reduce the noise. More research about noise filtering and inference

is recommended to find methods that actually improve predictability. As outlined in

the introduction, the expectation for better performance through more complex models

is partly met. The more volatile A2 market seems to favor the simplest models, where

either the naive forecast or the univariate Auto-ARIMAX is the single best model. The

A1 market, on the other hand, favors penalized multivariate models, where Lasso and

AdaLasso VAR are the single best models in terms of MSFE. Notably, the Auto-ARIMAX

is the single best for four out of eight combinations in terms of MAE. While the MAE is

a good KPI to check the robustness of the overall timeline, it is not a good indicator for

models predicting spikes successfully. In addition, among the multivariate models, it is

found that the VAR often yields comparable results to the more complex penalized VAR

approaches. That could indicate that penalizing the models could come at the cost of

removing signals in the data that can indeed be helpful for predicting FCR-D prices.

Most of the introduced models are capable of beating the naive predictor, especially
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for the A1 market. Following the idea of getting a more confident forecast when combin-

ing multiple models, an ensemble predictor is considered. If all models, except for the

naive, are combined, there might be potential to have a model which contains the best

of both worlds. Having models that are good at predicting spikes combined with models

that are rather stable over time, can result in an overall better performance. The ensem-

ble prediction is on average the best model. Combining all models significantly drops the

MSFE for the Down market. For practical implications, it should be noted that using the

ensemble predictions requires applying all models in parallel which will be more computa-

tionally expensive. While ensemble prediction methods have demonstrated effectiveness

to enhance forecasting accuracy, there is ongoing room for improvement. Exploring al-

ternative models or developing new approaches can lead to advancements in ensemble

forecasting, potentially yielding better predictions and more reliable results.

Accurately predicting spikes in energy demand or price fluctuations is particularly

important for sustainable energy providers. These companies possess the flexibility to

rapidly adjust their production levels, allowing them to capitalize on market opportuni-

ties. By effectively predicting and responding to spikes, sustainable energy providers can

optimize their operations, perform efficiently, and contribute to the growth and adoption

of renewable energy sources. This work focused on providing forecasts of mean prices

and, therefore, might not be applicable to maximizing profits in the FCR-D market. The

research conducted here provides useful tools and insights that help companies make

smarter decisions and optimize their operations in the market. While FCR-D Down is es-

pecially interesting to companies focusing on renewable energy, the thesis may contribute

to the growth and success of sustainable energy initiatives, promoting a greener and more

sustainable future.
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A Appendix

Auction 2 Timeline

Figure 9: The timeline highlights important times for the second auction A2. The bold orange vertical line at

18:00h shows the gate closing time, while the dashed line two hours later indicates the results of the auction.

The blue colors represent data or related points to A1 prices, while orange represents elements of A2.
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FCR-D Up Heatmaps

Figure 10: The heatmap shows the prices of FCR-D up (2 Day ahead auction) for each day over the entire

timespan. The horizontal red lines indicate the switches between morning, day and evening, while the purple

lines highlight the calendarial seasonal changes and the pink vertical lines indicate the time when the market

volume of the product was increased. Note that the white spots around June 2022 are due to very strong outliers

that distort the coloring of the entire heatmap.
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Figure 11: The heatmap shows the prices of FCR-D up (1 Day ahead auction) for each day over the entire

timespan. The horizontal red lines indicate the switches between morning, day and evening, while the purple

lines highlight the calendarial seasonal changes and the pink vertical lines indicate the time when the market

volume of the product was increased. Note that some strong outliers that distort the coloring of the heatmap

have been removed.
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Descriptive Statistics

Table 6: Descriptive statistics for all variables. N = 10,893.

Statistic Mean St. Dev. Min Max

FCR-D Down Price A1 26.07 23.54 4.13 164.28
FCR-D Up Price A1 55.77 33.13 10.25 173.86
FCR-D Down Price A2 43.36 89.20 0 1,630.15
FCR-D Up Price A2 52.42 58.67 0 1,060.09
FCR-D Down Volume A1 120.78 43.90 39.10 240.60
FCR-D Up Volume A1 478.08 42.65 68.60 599.20
FCR-D Down Volume A2 35.39 23.78 0 120
FCR-D Up Volume A2 58.76 51.60 0 542
aFRR Down Price aggregated 43.58 77.74 0 4,320
aFRR Up Price aggregated 55.78 126.91 0 6,120
aFRR Down Volume aggregated 98.27 51.50 0 241
aFRR Up Volume aggregated 83.89 49.21 0 189
Wind Production Forecast 0.32 0.25 0 0.94
Nuclear Power Production (Mio.) 5.70 0.76 3.73 6.94
Temperature 19.63 7.95 1 46.50
Spot Price SE2 656.95 806.73 −22.57 6,590.85
Residual Load (k) 11.44 3.42 −0.92 22.28
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Data Sources

Table 7: Variable list and their reference in the academic literature in related works. The numbers in the source

column refer to the list below. aFRR Variables marked with a * have been modified. Since the aFRR data is

only available per region, the total volume has been summed up and the price averaged per time point.

Variable Reference Source

FCR-D Market

FCR-D Down Result Price A1

Giovanelli et al., 2018

Hameed et al., 2023

Kraft et al., 2020

Pihl, 2019

1

FCR-D Up Result Price A1

Giovanelli et al., 2018

Hameed et al., 2023

Kraft et al., 2020

Pihl, 2019

1

FCR-D Down Result Price A2

Giovanelli et al., 2018

Hameed et al., 2023

Kraft et al., 2020

Pihl, 2019

1

FCR-D Up Result Price A2

Giovanelli et al., 2018

Hameed et al., 2023

Kraft et al., 2020

Pihl, 2019

1

FCR-D Down Result Volume A1
Giovanelli et al., 2018

Pihl, 2019
1

FCR-D Up Result Volume A1
Giovanelli et al., 2018

Pihl, 2019
1

FCR-D Down Result Volume A2
Giovanelli et al., 2018

Pihl, 2019
1

FCR-D Up Result Volume A2
Giovanelli et al., 2018

Pihl, 2019
1

aFRR Market

aFRR Down Price aggregated* Pihl, 2019 2

aFRR Up Price aggregated* Pihl, 2019 2

aFRR Down Volume aggregated* Pihl, 2019 2

aFRR Up Volume aggregated* Pihl, 2019 2

Production
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Wind Production Forecast

Giovanelli et al., 2018

Narajewski, 2022

Pihl, 2019

3

Nuclear Power Production

Giovanelli et al., 2018

Narajewski, 2022

Pihl, 2019

4

Other

Temperature Giovanelli et al., 2018 5

Spot Price SE2

Kraft et al., 2020

Giovanelli et al., 2018

Narajewski, 2022

Pihl, 2019

6

Residual Load

Kraft et al., 2020

Giovanelli et al., 2018

Narajewski, 2022

7

1. Svenska Kraftnät. (2023a). FCR. Sundbyberg. Retrieved March 31, 2023, from

https://mimer.svk.se/PrimaryRegulation/PrimaryRegulationIndex.

2. Svenska Kraftnät. (2023b). Automatisk frekvens̊aterställningsreserv. Sundbyberg.

Retrieved March 31, 2023, from

https://mimer.svk.se/AutomaticFrequencyRestorationReserve.

3. Energy Quantified. (2023b). SE Median Wind Forecast. Oslo. Retrieved March

31, 2023 (paid database).

4. Svenska Kraftnät. (2023c). Produktionsstatistik. Sundbyberg. Retrieved April 07,

2023, from

https://mimer.svk.se/ProductionConsumption/ProductionIndex

5. Sveriges Meteorologiska och Hydrologiska Institut. (2023).

Stockholm-Observatoriekullen A. Norrköping. Retrieved April 07, 2023, from

https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer/

#param=airtemperatureInstant,stations=core,stationid=98230

6. eSett. (2023). Spot SEK SE2. Helsinki. Retrieved March 31, 2023 (paid database).

7. Energy Quantified. (2023c). SE Residual Load Actual. Oslo. Retrieved March 31,

2023 (paid database).
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Correlation Matrix

Figure 12: Correlation matrix for the included variables. For better readability, the values between −0.2 and

0.2 have been removed from the overview.
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Fitting FCR-D Up Price A1

Figure 13: Comparison of three fitted auto-ARIMA models. The auto-ARIMA is constrained in a way, that it

is not allowed to take differences, meaning that the differences are made prior to feeding the model. A on the

top, uses the raw data and shows a relatively good fit. B on the bottom right depicts the very poor fit of first

differenced time-series while the in C, the second differences show an improvement, but yet fail to fit sufficiently.
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Noise Filter Performance

Table 8: Noise filter performance on all variables. For each variable, the out-of-sample performance of the

Auto-ARIMA using the best-performing filter setup is compared to an Auto-ARIMA using the original series.

The performance values are compared in percentage based on the MSFE (for FCR-D prices) and MAE (other

variables). For the optimal filter, K refers to the Kalman Filter and F to Frequency Averaging with the respective

parameter choice in parenthesis. For the Kalman Filter parameter values for R2 between 0.1 and 1.5 have been

considered, whereas for Frequency Averaging a frequency of 2 has been used.

Variable Performance in % Optimal Filter
FCR-D Market
FCR-D Down Price A1 +0.85 K (0.25)
FCR-D Up Price A1 +21.05 K (0.75)
FCR-D Down Price A2 +0.66 K (0.25)
FCR-D Up Price A2 −1.56 F (2)
FCR-D Down Volume A1 +1.33 K (0.1)
FCR-D Up Volume A1 +0.97 K (0.1)
FCR-D Down Volume A2 −1.17 K (0.1)
FCR-D Up Volume A2 +0.25 K (0.1)
aFRR Market
aFRR Down Price aggregated +1.42 K (1.5)
aFRR Up Price aggregated +4.55 K (0.25)
aFRR Down Volume aggregated −2.72 K (0.5)
aFRR Up Volume aggregated +26.58 K (0.25)
Production
Wind Production Forecast +0.90 K (0.1)
Nuclear Power Production −0.84 K (0.1)
Other
Temperature −1.79 K (0.1)
Spot Price SE2 +1.74 K (0.1)
Residual Load −10.89 K (0.25)
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Monthly Model Performance Evaluation

Figure 14: The performance according to the MSFE of all five models for each month in the FCR-D Down A2.

The horizontal lines in the respective color represent the mean MSFE for each model reported in Tables 3 and 4.
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Figure 15: The performance according to the MSFE of all five models for each month in the FCR-D Up A1.

The horizontal lines in the respective color represent the mean MSFE for each model reported in Tables 3 and 4.
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Figure 16: The performance according to the MSFE of all five models for each month in the FCR-D Up A2.

The horizontal lines in the respective color represent the mean MSFE for each model reported in Tables 3 and 4.
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Forecasting Plot Best Predictors

Figure 17: Comparison of the best predictors for FCR-D Up A1 prices. Negative forecast prices are capped at

zero.
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Figure 18: Comparison of the best predictors for FCR-D Up A2 prices. Negative forecast prices are capped at

zero.
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Variable Importance FCR-D Up Price

Table 9: Top 5 selected variables for different forecast horizons (h) of the AdaLasso VAR model. n indicates

how often a variable was selected among the total of 370 model runs. The lag of each variable is indicated in

parentheses. ∗ refers to the case when only one variable has been used in all of the models.

FCR-D Up
A1 A2

h Variable n Variable n
1 FCR-D Up Price A1 (1L)∗ 370 FCR-D Up Price A2 (1L) 370

FCR-D Up Price A2 (3L) 370
FCR-D Up Volume A2 (1L) 370
FCR-D Up Price A2 (2L) 368
FCR-D Up Price A2 (5L) 367

12 FCR-D Up Price A1 (1L) 370 aFRR Up Volume (5L) 369
FCR-D Up Price A1 (5L) 218 FCR-D Up Price A1 (1L) 325
Temperature (5L) 89 Wind Forecast (5L) 318
Residual Load (1L) 41 FCR-D Up Price A2 (1L) 303
Wind Forecast (1L) 34 FCR-D Up Price A2 (4L) 278

24 FCR-D Up Price A1 (1L) 370 FCR-D Up Volume A2 (1L) 368
FCR-D Up Price A1 (5L) 21 Temperature (5L) 366
FCR-D Down Price A1 (5L) 20 FCR-D Up Price A1 (1L) 312
aFRR Up Price (5L) 20 FCR-D Up Price A2 (1L) 306
Temperature (5L) 16 Wind Forecast (1L) 290
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