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Popular scientific summary

As the stereotype states, mathematicians tend to think of yet nonexistent prob-
lems and seek solution to them as a challenge. Such a rich and still expanding world
of the p-adics, the main focus of this thesis, have arisen in this exact manner - with
a question: what if one change 10 in decimal representation of a number into a
prime? This simple idea led to the discovery of completely new mathematics, that,
although follows the same schemes, produces some surprising twists.

Here, the reader shall gain knowledge about the basic laws of mathematics re-
defined in the p-adic setting. We will begin by introducing the necessary different
branches of mathematics, starting from basic arithmetic properties, through topol-
ogy and absolute values, finishing on the power series.

Therefore if the reader is looking for the answers to how is it possible that there
are more p-adic numbers than the ones with base of 10, or why do only isosceles tri-
angles exist in the p-adic space, this reading should not come as a disappointment.

Abstract

The thesis consists of four chapters, each focused on developing the knowledge
and drawing new connections with the p-adic numbers and the notions that are
well known from the usual analysis on the real topology.

In the first chapter, we introduce the basic structure of the p-adics, in connection
to the conergent series and field axioms. Following that, in chapter two we focus
on the defining the distance in the p-adic world, recalling the definition of the
absolute value, valuation and exploring the metric space defined by them. After
introducing the distance, we will introduce the p-adic topology connected to it,
recall some of the notions from the topology and explore more the p-adic field
structure. Our considerations will be rewarded by introducing the Hensel’s lemma,
centered on polynomials and solving congruence equations with their help.
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1. Introduction

The p-adic numbers were developed more than a hundred years ago by Kurt
Hensel, who based his deliberations on the work of Ernst Kummer. Their arisal
was mainly influenced by an urge to extend the meaning of the power series in the
subject of number theory. Hensel, basing his ideas on some structures proposed by
his predecessor, made an attempt to connect the p-adics with the rational numbers,
and thus introducing a new way of tackling the power series in the broader sense.

The revolutionary algorithms he defined implied the beginning of the very new
field of p-adic numbers, Qp. The potential within this newly emerged number struc-
ture was quickly noticed, and thus the expanding of its calculus began. Hensel’s
analogy describes the relation that was also a motivation for the p-adics to get
developed; it recounted the direct similarities between the known structure of the
real numbers and complex polynomials with the p-adic numbers. The similarities
noticed by Hensel led to defining completely analogous operations on the p-adic
numbers as for real arithmetic, where various methods were evaluated based on the
basic operations, such as addition and finding inverses.

In this thesis, we shall follow the steps of Hensel to slowly develop understand-
ing and, most importantly, an intuition of the p-adic numbers. The considerations
dating back to the nineteenth century will be interposed by some notes from the
author, with many useful examples, and some drawings in order to give the most
complete picture of the p-adic numbers as possible. We shall give a concise outline
of the work, so the fluency of reading will not be interrupted by questions such as
"why do we care about that?" or "what does it have to do with the subject?", as
it often might be the case with mathematical texts.

Although, the introduction of the numbers themselves was not such an extra-
ordinary contrivance, but the development of the completely new form of calculus
definitely was. In the p-adic sense, Hensel has redefined the meaning of the metric,
giving the foundations of the p-adic analysis. Ensuing the metric, we will follow
the steps of Hensel’s journey and present more detailed considerations about the
absolute value function, and we will eventually introduce the connection between
the importance of the absolute values and valuations in the p-adic calculus.

Thereafter we will take a closer look into the topology, exposing the variety of
differences between the usual rational field and the p-adic fields. We will take a
deep dive into the different rings and fields among the p-adics, and elaborate on
their relations. Also, using the theory provided in the previous chapter, we will
derive numerous advanced proofs of all the properties we manage to introduce.

The above considerations will sum up with the most important piece of the the-
ory in this work: Hensel’s Lemma. When stating the lemma, the intuition, as
well as the alternative formulation drawing connection with Hensel’s analogy will
be given. Furthermore, numerous examples will develop the reader’s intuition and
give an idea of the proof of the lemma, that follows the same pattern.

The p-adic numbers, after the development discussed above was done, have found
applications in various number theory proofs and types of the equations. Probably
the most important result was the use of the p-adics in famous proof of Fermat’s
Last Theorem by Andrew Wiles.
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2. Introduction to the p-adic world

2.1. Hensel’s analogy and construction of the p-adics. The historically ac-
curate description of the p-adic numbers begins with Kurt Hensel, who at the turn
of the 19th and 20th century described what we now call Hensel’s analogy. He
proposed an analogy between the already well-known field of complex polynomials
and the newly defined p-adic numbers.

The ring of integers Z and the field of rationals Q are related to each other
by the fact that any x 2 Q is a quotient of a, b 2 Z: x = a

b .
Analogously, the ring of complex polynomials C[X] and the field of quotients

on such are related to each other by the fact that for f(X) 2 C(X) we have
p(X), q(X) 2 C[X] such that f(X) = p(X)

q(X) 2 C(X), where C(X) is a field of quo-
tients; compare Theorem 2.1.2 below.

Moreover, all elements of both Z and C[X] have unique factorizations, where
primes p 2 Z are analogous to the linear polynomials (X � ↵) 2 C[X].

Definition 2.1.1. The ring of quotients of the complex polynomials is

C(X) =

⇢
g(X)

h(X)
: g(X), h(X) 2 C[X] with h(X) 6= 0

�
.

Theorem 2.1.2. The ring of quotients of the complex polynomials C(X) is a field.

Proof. As the ring of polynomials C[X] already satisfies associativity, commutativ-
ity, distributivity and identity axioms for both addition and multiplication, and has
an additive inverse, it remains to show that any element 0 6= f1(X) 2 C(X) has a
multiplicative inverse. Therefore let g(X), h(X) 2 C[X] be such that

f1(X) =
g(X)

h(X)
2 C(X).

Observe that g(X), h(X) 6= 0. Then there exists

f2(X) =
h(X)

g(X)
2 C(X)

giving f1(X) · f2(X) = 1. ⇤
From now on, C(X) will be referred to simply as the field of quotients.

Furthermore, for a given prime p, any positive integer m can be written as

m = a0 + a1p+ · · ·+ anp
n =

nX

i=0

aip
i

for some n � 0 and a sequence (ai) with elements in the set {0, 1, . . . , p� 1}.
Let us give a draft of the comparison between the usual integer and the p-adic
number below.

We can write every integer in the usual base of 10, which can be decomposed
into

327 = 7⇥ 100 + 2⇥ 101 + 3⇥ 102.

Although note, that this element does not have an inverse in Z! If we let p = 7 and
consider the 7-adic expansion of 327, namely

327 = 5⇥ 70 + 4⇥ 71 + 6⇥ 72
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we will later show, that we can indeed find its inverse among 7-adic numbers.
Similarly, any complex polynomial can be written with the use of Taylor’s ex-

pansion as follows:

f(X) = a0 + a1(X � ↵) + · · ·+ an(X � ↵)n =
nX

i=0

ai(X � ↵)i,

where n is the degree of f(X), the quantity ↵ is an arbitrary integer, and (ai) a
sequence derived from Taylor’s formula, that we do not focus on; all we intend to
emphasize is that it is always possible to use such representation.

More formally speaking, the map
f(X) 7�! expansion around (X � ↵)

defines an inclusion of fields C(X) ,! C((X �↵)), where C((X �↵)) represents all
expansions:

f(X) =
p(X)

q(X)
= an0(X � ↵)n0 + an0+1(X � ↵)n0+1 + · · ·

=
X

i�n0

ai(X � ↵)i.

Analogously, any positive rational number x = c
d can be written as formal power

series
x =

X

n�n0

anp
n where x = pn0

c̃

d̃
with p - c̃d̃

with no usual notion of convergence with respect to the usual absolute value. Here
n0 reflects the multiplicity, that will be discussed in detail later, namely in Defini-
tion 3.1.4, and the discussion of the convergence (with respect to a different absolute
value) will follow. This shows the main idea behind the construction of the p-adic
numbers, and one to be considered the most formal.

Let us consider a simple example on how to compute a p-adic expansion.

Example 2.1.3. [Gou65, p.13, p.14] Consider a 5-adic expansion of 1
2 . First, we

divide 1
2 by 5 as follows

1

2
= �1

2
· 5 + 3,

so that last digit is 3. Now, taking � 1
2 and dividing by 5, we get

�1

2
= �1

2
· 5 + 2.

Since the new quotient is equal to � 1
2 , we obtain 2 in the expansion forever, yielding

1

2
= (. . . 2223)5.

As a check, we can multiply both sides by 2 and notice that the identity agrees (on
the right hands side, taking modulo 5 of each digit).

We remark that in the above example we take uniqueness for granted; this matter
will reappear in the later part of this thesis.

Definition 2.1.4. For a positive rational x, the formal power series

(2.1) x = an0p
n0 + an0+1p

n0+1 + · · · =
X

n�n0

anp
n,
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is called the p-adic expansion of x, where (ai) is an arbitrary sequence of numbers
taking values between 0 and p� 1, and n0 is the multiplicity of x with respect to p.
More generally, we consider X

n�n0

anp
n

for n0 2 Z and ai = {0, 1, · · · , p� 1}. Such an expression is called a p-adic number.

It turns out that the set of all series in the powers of p (i.e. p-adic expansions)
form a field, just as C(X�↵) is a field, which we have shown in the Theorem 2.1.2.
With some additional tools introduced in this chapter, we will prove that fact in
detail in Theorem 2.2.9. Although from this point, we will refer to Qp as the field
of p-adic numbers.

The function taking x to its p-adic expansion gives the inclusion of fields Q ,! Qp,
analogous to the inclusion for complex polynomials.

Before we formulate algorithms for the basic operations on the p-adic numbers,
and we consider an example of the usefulness of the construction we have introduced.

Example 2.1.5. Show that if the p-adic number has a periodic expansion then it
is rational.
To solve such a problem in the intuitive way, we would use the trick similar to
proving that 0.999 · · · = 1:

x = 0.999 · · · () 10x = 9.999 · · · =) 10x� x = 9 () x = 1.

Thus the idea is that if the expansion in the p-adic sense is periodic, then multiplying
by the right power of p and subtracting will give a finite expression. The general
formulation goes as follows:

x = a0 + a1p+ · · ·+ ak�1p
k�1 + a0p

k + · · ·+ ak�1p
2k�1 + · · ·

() pkx = a0p
k + a1p

k+1 + · · ·+ ak�1p
2k�1 + a0p

2k + · · ·+ ak�1p
3k�1 + · · ·

and now

x� pkx = a0 + · · ·+ ak�1p
k�1 () x =

a0p+ · · ·+ ak�1pk�1

1� pk

therefore x 2 Q given that x has periodic expansion.
Note that now we have shown that the periodic expansion implies that the num-

ber is rational, but we can also aim for the reverse. The fact that the expansion
is in fact unique for any number would give us the desired result, and the reverse
claim will hold as well. That fact is proved later on, in Chapter 5.

2.2. The p-adic digit, the p-adic integer and the p-adic number. From the
very formal construction, we now consider a more intuitive approach for the p-adic
numbers. In order to make a connection between the theory and the calculations, we
define different objects in the p-adic sense and construct addition and multiplication
algorithms on such; we will also focus on some basic properties of them.

Clearly, similarly as in the base of 10, the p-adic number will be an integer (a
p-adic integer in that sense) if its p-adic expansion will contain only non-negative
powers of p. Although, there is much more than that to see; thus we define p-adic
integers will more detail below.

Definition 2.2.1. [Gou65, p.17, p.84] The p-adic digit is a natural number d such
that 0  d < p, where p is prime.
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We call a sequence of p-adic digits (di)i2N a p-adic integer, which corresponds
to the formal sum and informal notation

1X

i=0

dip
i = · · · di · · · d1d0.

We define Zp as the set of p-adic integers:
Zp := {(di)i2N : di is a p-adic digit} = {· · · di · · · d1d0 : di is a p-adic digit},

that relates to the p-adic numbers such that

x 2 Zp () x =
X

n�0

anp
n.

Before we draw any conclusions, let us consider some simple example of the
p-adic integer.

Example 2.2.2. Consider an integer 583, then its 5-adic expansion is
583 = 3⇥ 50 + 1⇥ 51 + 3⇥ 52 + 4⇥ 53,

what translates into (583)10 = (4313)5 by the formulation given above. Note that
similarly to the notion of the usual integers, the p-adic integers allow only non-
negative powers of p in the expansion (so the lowest power appearing in the expan-
sion is 0).

We can clearly see that Zp is not a field, since similarly to Z it does not contain
inverses of some of its elements. Thus we want to show that apart from that
condition, the set Zp fulfills all the other axioms, and is therefore an integral domain.

Proposition 2.2.3. [Che18, Proposition 1.2] The set Zp is an integral domain.

Proof. By the construction we know that Zp is a commutative ring with unity
(containing identity element), so we only need to show it has no zero divisors.
Suppose we have two p-adic integers

↵ =
X

i

↵ip
i and � =

X

j

�jp
j , with ↵,� 6= 0, 0  ↵i,�j  p� 1 8i, j.

Then take some elements of the sums ↵n,�m that are both non-zero, and we know
they exist since ↵ and � are non-zero. Consider ↵� =: � and write � =

P
l �lp

l. It
follows that an arbitrary element of the sequence �k can be expressed as

X

n+m=k

↵n�m ⌘ �k (mod p),

and for ⌫, µ minimal such that ↵⌫ 6= 0, �µ 6= 0, then � 6= 0, which implies � 6= 0.
Therefore Zp has no zero divisors and is an integral domain. ⇤

The integral domain Zp does not contain all inverses as we have mentioned
above, thus we consider if there is some condition on which we can easily determine,
whether the element has an inverse.

Lemma 2.2.4. [Che18, Lemma 1.3] A p-adic integer is invertible if and only if
d0 6= 0.

Proof. Define reduction modulo p as the map

' : Zp �! Z/pZ by (di)i2N =
1X

i=0

dip
i 7! d0 (mod p),
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i.e. mapping a p-adic integer to its last digit. It is easy to see that this is a ring
homomorphism.

(=)) Suppose (di)i2N is invertible, then '((di)i2N) = d0 is as well, since ' maps
one element of the sequence to the other. This means d0 has an inverse in Z/pZ and
d0 6= 0.

((=) Suppose d0 6= 0, we want to show (di) is invertible by proposing a general
method to find such an inverse. By assumption, we can always find an inverse

a0 = d�1
0 2 (Z/pZ)⇥ such that a0d0 ⌘ 1 (mod p).

Then

(di)i2N =
1X

i=0

dip
i = d0 + d1p+ d2p

2 + · · · = d0 + p�,

where � = d1 + d2p+ · · · , which yields
(di)i2Na0 = d0a0 + d1a0p+ d2a0p

2 + · · ·
= 1 + pa0(d1 + d2p+ · · · )
= 1 + pa0� ⌘ 1 (mod p).

We also note that for some t 2 Qp

(di)i2N a0(1 + pt)�1 = 1 () (di)
�1
i2N = a0(1 + pt)�1,

thus we only need to prove that (1 + tp) is invertible. By the Taylor expansion we
can write

(1 + tp)�1 = 1� tp+ (tp)2 � (tp)3 + · · · = 1 + b1p+ b2p
2 + · · · 2 Zp,

with (di)i2N the p-adic digits. We see that constant term 1 is never eliminated,
thus (1 + tp)�1 6= 0 and (di)i2N has an inverse. ⇤

We shall summarise with defining the relation between the p-adic integers Zp

and the p-adic numbers Qp introduced above.

Proposition 2.2.5. The ring Zp is a subring of Qp.

Proof. For Zp to be a subring of Qp, we need it to be non-empty (which is obvious to
see), closed under subtraction, multiplication and containing all additive inverses,
by the subring definition.

The last part is obvious, as we can define an isomorphism that takes a 7! �a,
which by definition of the ring is also in Zp, and thus all additive inverses are
included.

Let us consider two elements of Zp,

a =
X

i

aip
i and b =

X

j

bjp
j , with a, b 6= 0.

We know that all i, j are greater or equal to 0, thus we consider
a� b = (a0 + a1p+ a2p

2 + · · · )� b0 � b1p� b2p
2 � · · ·

= (a0 � b0) + (a1 � b1)p+ (a2 � b2)p
2 + · · ·

= c0 + c1p+ c2p
2 + · · · ,
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and we obtain some new p-adic number c = a�b. Now, it is left to show that c 2 Zp.
For that we claim that any ck 2 {0, 1, . . . , p� 1}, but we know that it might be the
case that ak � bk < 0. Therefore, if that would be the case, we consider the nearby
coefficients as below:

· · ·+ (ak � bk)p
k + (ak+1 � bk+1)p

k+1 + · · ·
= · · ·+ (�ck)pk + (ak+1 � bk+1)p

k+1 + · · ·
= · · ·+ pk((ak+1 � bk+1) · p� ck) + · · ·
= · · ·+ dkp

k + dk+1p
k+1 + · · · ,

where we expand the higher term with the given scheme, and produce new coeffi-
cients dk, dk+1 2 {0, 1, . . . , p� 1} that imply the result of the subtraction is indeed
a p-adic integer.

Lastly, we check if the multiplication of two p-adic integers also belongs to Zp.
Considering the same two elements as above, with i, j � 0, while performing the
multiplication we sum up the powers of p from the numbers a and b, thus the result-
ing powers are also always greater or equal to zero. Moreover, any multiplication of
non-zero coefficients ai and bj results in something non-divisible by p, but it might
be the case that the sum of a few such terms is indeed divisible by p or that is
greater than p� 1, and thus cannot be a coefficient of a p-adic number. In order to
cover those cases, we refer the reader to the Multiplication algorithm part of this
section. Hence we are done. ⇤

After summarising the structural properties, we shall establish some basic oper-
ations and illustrate them with examples.

Addition algorithm. Based on the formulation above, we can define addition on
the p-adic integers (and therefore, the p-adic numbers in general) as follows; if

· · · cn0+2 cn0+1 cn0 = · · · an0+2 an0+1 an0 + · · · bn0+2 bn0+1 bn0 ,

where n0 is the minimal power of p appearing in a and b. Note, that if the minimal
power is higher in one of the terms, the rest can be just zeros. Let us look at an
arbitrary part of the algorithm. Then we consider the addition as

✏k ✏k�1

· · · ak+1 ak ak�1 · · ·
· · · bk+1 bk bk�1 · · ·
· · · (ak+1 + bk+1 + ✏k) (ak + bk + ✏k�1) (ak�1 + bk�1 + ✏k�2) · · ·

where ak�1+ bk�1 = ✏k�1p+ ck�1, with ✏k�1 is either 0 or 1. Thus we consider two
cases:

ck�1 ⌘
(
ak�1 + bk�1 if ✏k�1 = 0,

ak�1 + bk�1 � p if ✏k�1 = 1,

then ✏i is called a carry digit, and we continue the scheme in the analogous manner,
resulting in some number · · · cn0+2 cn0+1 cn0 .

We note numerous similarities with the addition defined on the real numbers:
we also start the algorithm "from the end" and continue with adding multiples of
the higher powers of p, same as with base 10. Also, the idea of the carry digit is
identical to the one we have in the real sense. For focusing our attention on the
differences though, we consider the example below.



THE p-ADIC NUMBERS AND HENSEL’S LEMMA 15

Example 2.2.6. Recalling what we have introduced before, we want to show that
the 5-adic expansion of �1 can be written as

�1 =
1X

k=0

4 · 5k = 4 + 4 · 5 + 4 · 52 + · · · .

Consider expansion of 1 = 1+ 0 · 51 + 0 · 52. Then the sum of the expressions for 1
and �1 should equal to 0. We check this with the algorithm proposed above using
the carry digits.

11

· · ·444
1

· · ·000

The addition, same as multiplication, is defined for both Zp and Qp.

Multiplication algorithm. Let
P

akpk,
P

bkpk be elements in Qp. Note, that we
can always bring out the lowest power of p in any element to obtain some expan-
sion with only powers of p more or equal zero. To find the ci term of the result of
the multiplication we need to collect the terms from the corresponding multipliers,
for example:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

and so on. Although it is not trivial to see anymore as in the addition case, the
multiplication also follows the scheme from real arithmetic. Here, each ci represents
the sum "below the line", as we perform the usual multiplication. Therefore we
see, that as we move to the left, the more numbers we should add together.

Example 2.2.7. We want to prove that
p
�1 exists in Z5, so let

p
�1 =

P
i aip

i.
Then we consider

· · · a2 a1 a0
· · · a2 a1 a0
· · · a0a2 a0a1 a20
· · · a21 a0a1
· · · a0a2
· · · a21 + 2a0a2 2a0a1 a20

that has to equal · · · 444. We obtain
a20 ⌘ 4 (mod 5) () a0 ⌘ 2 or 3 (mod 5).

If we choose a0 ⌘ 3, then we carry +1 to the next term (since a20 = 9 = 4 + 1 · 5)
and

2a0a1 + 1 ⌘ 4 (mod 5)

() 6a1 + 1 ⌘ 4 (mod 5)

() a1 + 1 ⌘ 4 (mod 5)

() a1 ⌘ 3 (mod 5).
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Now we get 2a0a1+1 = 4 · 5+4 from the first equation, thus we carry over +4 and
get

a21 + 2a0a2 + 4 ⌘ 4 (mod 5) () 9 + 6a2 ⌘ 0 (mod 5)

() a2 ⌘ 1 (mod 5).

Carrying the algorithm over we would get more coefficients, but for now we obtain
· · · 133. We also note, that choosing a0 ⌘ 2, we would get different representation
of
p
�1.

That is correct, we will obtain two different representations of
p
�1, but it

doesn’t contradict the uniqueness proposed above! Indeed, also in the usual C, we
have two different representations of

p
�1: i and �i, and the reason is that square

root will always give two different results.

Example 2.2.8. We want to find the 5-adic expansion of 7
15 . Let

7 =
X

i

ai5
i = 2 · 50 + 1 · 51,

and
15 =

X

j

bj5
j = 0 · 50 + 3 · 51.

Thus in Q5, the number 7
15 corresponds to

↵

�
=

2 · 50 + 1 · 51

0 · 50 + 3 · 51 .

We notice that while ↵ is coprime with 5, the number � is not, thus we need to
manipulate the fraction a bit to obtain

� = 5
X

j

bj5
j�1 = 5(3 + 0 · 5 + 0 · 52 + · · · ).

Then ↵

�
= 5�1(2 · 50 + 1 · 51 + · · · )(3 + 0 · 5 + 0 · 52 + · · · )�1,

so we are looking for an inverse of (· · · 003)5.
We look for an integer that multiplied by (· · · 003)5 would give (· · · 001)5, so we

are actually looking for what we are multiplying by (second row of the multipli-
cation). Therefore we carry the multiplication digit by digit, again, by guessing
and checking. We start from "what we have to multiply 3 with to get 1 under the
line, what gives us the obvious answer 2, and the first row to be 6, or in the 5-adic
(· · · 0011)5. Now, we look for a digit x such that 3 ·x+1 ⌘ 0, so the guess is 3, and
we continue in the similar manner to obtain (· · · 003)�1; see the left computation
below. Finally, we multiply ↵ · (· · · 003)�1 in the right computation.

· · ·00003
· · ·13132
· · ·00011
· · ·0014
· · ·003
· · ·14
· · ·
· · ·00001

· · ·13132
· · ·00012
· · ·31314
· · ·3132
· · ·000
· · ·00
· · ·
· · ·13134
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Hence (· · · 003)�1 = (· · · 13132)5, and
↵

�
= 5�1(· · · 13134)5

= 4 · 5�1 + 3 · 50 + 1 · 51 + 3 · 52 + 1 · 53 + · · · = (· · · 1313.4)5.

Finally we are able to prove that Qp is indeed a field.

Theorem 2.2.9. [Gou65, Chapter 3] The set Qp is a field.

Proof. Consider two p-adic numbers

x =
X

n�n0

anp
n, y =

X

n�n1

bnp
n.

Suppose without loss of generality that n1 � n0, and thus n1 = n0 + k. Then the
addition is performed as

x+ y = an0p
n0 + an0+1p

n0+1 + · · ·+ bn1p
n1 + bn1+1p

n1+1 + · · ·
= an0p

n0 + · · ·+ an0+k�1p
n0+k�1 + an0+kp

n0+k + · · ·+
bn0+kp

n0+k + bn0+k+1p
n0+k+1 + · · ·

= an0p
n0 + · · ·+ an0+k�1p

n0+k�1 + (an0+k + bn1)p
n0+k + · · · .

By assumption, we have ai, bj < p, but ai + bj might not be less than p anymore.
In that case, consider an arbitrary term from the second part of the sum with the
property an0+k+l + bn1+l > p, then

(2.2) (an0+k+l + bn1+l)p
n0+k+l = (c1p+ d1)p

n0+k+l = d1p
n0+k+l + c1p

n0+k+l+1.

Note that the term c1pn0+k+l+1 will get included in the next element of the expan-
sion, and thus addition is defined on Qp.

Multiplication is defined analogously as
xy = (an0p

n0 + an0+1p
n0+1 + · · · )(bn1p

n1 + bn1+1p
n1+1 + · · · )

= an0bn1p
n0+n1 + (an0bn1+1 + an0+1bn1)p

n0+n1+1 + · · · ,
then we can rename the given sequence as

cn2 = an0bn1 ,

cn2+1 = an0bn1+1 + an0+1bn1 ,

...
where

xy = z =
X

n�n2

cnp
n.

Lastly, we check if all the non-zero elements of Qp indeed have inverses. Let x
and y as above, with xy = z. We want to show that we can always find y such
that z = 1, the identity element, given some x in Qp. If z = 1, then the coefficient
c0 = 1 and all other cn = 0, for n � n2, n 6= 0. Now compare it to the coefficients
given above: all of cn2+1, cn2+2, ... can be solved to be equal to zero, as they are
defined as sums of elements in modulo p. Only cn2 cannot be equal to zero, as
neither an0 nor bn1 are zeros by assumption. But it can be equal to 1: given x and
thus an0 , which is an element modulo p, is always had an inverse modulo p, so we



18 JUSTYNA DĄBROWSKA

let bn1 = a�1
n0

. Therefore solving the system of equations
cn2 = an0bn1 = 1,

cn2+1 = an0bn1+1 + an0+1bn1 = 0,

...
will give the desired result, that will be a well defined element of Qp, just as z is.
The fact that the solution will be indeed unique will be proven in the next chapter,
after introducing less tedious notation.

The above shows that Qp is indeed a field. ⇤
As the derivation of the p-adic numbers, together with basic operations on them,

has been introduced in detail, we switch our focus onto the construction of the
absolute value functions. The next chapter will require a bit more of patience, as
we will slowly explore the type of such functions, and smoothly move into the p-adic
setting.
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3. Absolute value functions

3.1. Valuations. After introducing the main idea of the p-adics, we begin this sec-
tion with recalling some basic terms, and the mathematical meaning behind them,
that will appear regularly in regards to the general idea of the p-adic numbers.

A space is a set with some added structure. By p-adic space we mean the set
of p-adic numbers along with the valuation and absolute value structures, that we
will define soon.

The reason of introducing the term is to draw an analogy between the p-adic
space and the usual real space.

This chapter will focus on developing the structure of the field Qp of the p-
adic numbers. In order to give more intuition behind Qp, we define the notion of
distance, which is well defined on the set of real numbers, in a more detail manner.

Therefore we start this section by redefining the absolute value function, or in
other words, expanding its definition in the p-adic sense. We will draw a connection
between both, and mark the differences, which will also give more understanding
of the distinctions between the fields. Lastly, we will give some intuitive examples
on how to approach the valuations.

In order to not lose generality yet, we present the definitions with the use of
some arbitrary field k.

Definition 3.1.1. [Gou65, Definition 2.1.1] An absolute value on a field k is a
function

| · | : k �! R+

such that it satisfies

(1) |x| = 0() x = 0,

(2) |xy| = |x||y| for all x, y 2 k,

(3) |x+ y|  |x|+ |y| for all x, y 2 k.

Moreover, the absolute value is called non-archimedian if it satisfies

(3)⇤ |x+ y|  max{|x|, |y|} for all x, y 2 k.

The above inequality is often referred to as an ultrametric inequality.

We note that the condition (3)* is much stronger than (3), thus we have just
created a new subset of absolute values. We shall consider two easy examples of
functions that respectively do and do not satisfy the condition (3)⇤ to give the
intuition behind their behaviour.

Example 3.1.2. The infinite absolute value is defined as we know it from basic
calculus:

|x| =
(
�x if x < 0,

x if x � 0.

It is easy to notice (for example, by taking x = y = 1) that the condition (3)⇤ does
not hold for this absolute value, thus we refer to it as archimedian. Also, for the
reasons described later, we call it the infinite absolute value, denoted as | · |1.
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Example 3.1.3. The trivial absolute value is defined as

|x| =
(
1 if x 6= 0,

0 if x = 0.

This absolute value works on every given field, and is the easiest example of a non-
archimedian absolute value. Even though it plays an important role in general, we
will not be referring to it in this text.

After stating in detail what the absolute value functions are, and dividing them
into two main groups by their properties, we shall focus on relating them to the
p-adic numbers. In order to further study the p-adic numbers, we want to introduce
the notion of distances on Qp - that is the main reason we have shifted our attention
to the absolute values. The goal is to introduce a function measuring any object
with the relation to our prime p, therefore we should consider defining a map
measuring "how much the given object is divisible by p".

Definition 3.1.4. [Gou65, Definition 2.1.2] The p-adic valuation on Z is the func-
tion

vp : Z� {0} �! R
defined as follows: for an integer n 2 Z � {0}, let vp(n) be the unique integer
satisfying

n = pvp(n)n0 where p - n0.

We extend the map vp to the field of rationals as follows. If

x =
a

b
2 Q then vp(x) = vp(a)� vp(b).

By the construction we get vp(0) =1.

Notice the similarity with the general real case here as well. The usual absolute
value measures how many units we are from the origin, thus here the equivalent
units are the powers of p.

As in general now we are dealing with some exponents, it is rather easy to see that
the computational rules for the p-adic valuation will follow the ones for exponents
from the real analysis.

Lemma 3.1.5. [Gou65, Lemma 2.1.3] For all x, y 2 Q we have

(1) vp(xy) = vp(x) + vp(y),

(2) vp(x+ y) � min{vp(x), vp(y)}.

Proof. (1) Let

x = pvp(x)x0, y = pvp(y)y0 where p - x0, p - y0

by definition. Then we have

xy = pvp(x)x0pvp(y)y0 = pvp(x)+vp(y)x0y0 where p - x0y0

=) vp(xy) = vp(x) + vp(y).

(2) Consider a similar set-up for x and y, then

x+ y = pvp(x)x0 + pvp(y)y0.

By picking the smaller power of both, we let

x+ y = pmin{vp(x),vp(y)}(pvp(x)�min{vp(x),vp(y)}x0 + pvp(y)�min{vp(x),vp(y)}y0),
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where one of the powers in the parenthesis is equal to zero. Without loss of gener-
ality, we let

vp(y)�min{vp(x), vp(y)} = 0

and thus we see
p - (pvp(x)�min{vp(x),vp(y)}x0 + y0)

as p | pvp(x)�min{vp(x),vp(y)}x0 but p - y0 by assumption. Hence
vp(x+ y) � min{vp(x), vp(y)}. ⇤

Finally, we make the connection between a valuation and an absolute value
function, by defining the p-adic absolute value as below.

Definition 3.1.6. [Gou65, Definition 2.1.4] For any x 2 Q, we define the p-adic
absolute value of x by

|x|p = p�vp(x) if x 6= 0,

and set |0|p = 0 for all p.

Theorem 3.1.7. The p-adic absolute value is an absolute value function.

Proof. To check if the introduced function is an absolute value function, one needs
to check if it satisfies Definition 3.1.1 for the absolute values and is well-define; the
latter comes later in the chapter, and we focus of the first part below.

By definition, |x|p = p�vp(x) and since there exists no finite power of p that
would give 0, the only case when |x|p = 0 is x = 0. For the second condition, we
have

|xy|p = p�vp(xy) ⇤
= p�vp(x)p�vp(y) = |x|p|y|p,

where ⇤ holds from Lemma 3.1.5(1). Finally, recall that from Lemma 3.1.5(2) we
know that

|x+ y|p = p�vp(x+y)  p�min{vp(x),vp(y)}.

Then we have
|x|p + |y|p = p�vp(x) + p�vp(y)

= p�min{vp(x),vp(y)} + p�max{vp(x),vp(y)}

⇤⇤
� p�min{vp(x),vp(y)} � p�vp(x+y) = |x+ y|p,

where ⇤⇤ is true since any valuation is always greater or equal to 0. This shows the
p-adic absolute value satisfies all conditions from the definition. ⇤

Intuitively, as we increase "the divisibility" by p, i.e. we will have a higher
valuation, the p-adic absolute value will tend to zero. Speaking more simply, the
more a number is divisible by p, the lower its p-adic absolute value.

Proposition 3.1.8. [Gou65, Proposition 2.1.5] The p-adic absolute value is non-
archimedian.

Proof. Consider two arbitrary elements x, y 2 Q such that |x|p = n, |y|p = m. In
other words we have x = p�na and y = p�mb for a, b 2 Q where p - a, b. Without
loss of generality let m < n, then

|x+ y|p = |p�na+ p�mb|p = |p�n(a+ p�m+nb)|p =

= |p�n|p|a+ p�m+nb|p = n|a+ p�m+nb|p = n
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since a+ p�m+nb is not divisible by p from the assumption. Thus
|x+ y|p = n = max{|x|p, |y|p}

and the | · |p is non-archimedian. ⇤
Note that if we only concentrate on the non-negative integers for a moment, their

valuations are the natural numbers together with infinity, thus the p-adic absolute
values will all be contained between 0 and 1.

To visualise that simple concept, we consider two basic examples below.

Example 3.1.9.

|123|5 = |123 · 50|5 = 5�0 = 1,

|75|5 = |3 · 52|5 = 5�2 =
1

25
,

����
375

1010

����
5

=

����
3 · 53

202 · 51

����
5

= 5�3�(�1) = 5�2 =
1

25
.

To further develop our intuition, we consider a small exercise. Referring back
to the very first section, we conclude that according to Hensel’s analogy we should
be able to derive a similar notion for the field of quotients of complex polynomials.
For a field k, define

k(t) =:

⇢
f(t)

g(t)
: f(t), g(t) 2 k[t], g(t) 6= 0

�
.

For f(t) 2 k[t], set v1(f(t)) = � deg(f(t)), such that we have

v1

✓
f(t)

g(t)

◆
= v1(f(t))� v1(g(t)) = deg(g(t))� deg(f(t)).

The properties satisfied by this construction should also be analogous to the p-adic
valuation. If v1( fg ) = 0, we have no dependence on t, and thus the function is
constant, analogically to the number being coprime with p.
The first zero condition is obvious, thus we consider

v1(f(t)g(t)) = � deg(f(t))� deg(g(t)) = v1(f(t)) + v1(g(t)),

which is the second condition from the Definition 3.1.4. Now, for the third and last
one, we have

v1(f(t) + g(t)) = � deg(f(t) + g(t))  �max{deg(f(t)), deg(g(t))},
which is not so obvious to see. Generally, if we have two polynomials of different
degree that we aim to add, the resulting polynomial will have the degree same as the
higher degree of one of the adding polynomials. However it might be the case that
f(t) and g(t) have the same degrees and additionally when we add them together,
the first term (or terms) cancel out, then the degree of the resulting polynomial will
be lower than the maximum degree of f(t) and g(t). This shows the construction on
polynomials also makes sense with the introduced definition of the absolute value.

3.2. Properties of the absolute value functions. Before we move on to dis-
cuss the absolute value functions in more detail, we should consider an alternative
formulation of the definition. Recall that the non-archimedian and archimedian
properties, respectively, are stated as

(3) |x+ y|  |x|+ |y| for all x, y 2 k,
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(3)⇤ |x+ y|  max{|x|, |y|} for all x, y 2 k.

In order to take into account all the possibilities, we aim to rephrase the above into
a single condition written as

(3) there exists C 2 k such that |b|  1 =) |1 + b|  C.

For this purpose, we introduce the following lemmas.

Lemma 3.2.1. [Cas86, Lemma 1.2] A necessary and sufficient condition for a
valuation to satisfy the inequality (3) is when C = 2 in (3).

Proof. We prove the above by considering broader and broader cases, and expand-
ing the argument from |b|  1 to the general statement.

If the triangle inequality is true and |a|  1, then |1 + a|  |1|+ |a|  2.
Suppose (3) holds with C = 2. Consider a1, a2 2 k such that |a1| � |a2|. Then,

without loss of generality, we have a2 = a · a1 with |a|  1. Hence
|a1 + a2| = |a1 + aa1| = |a1||1 + a|  2|a1| () |a1 + a2|  2max{|a1|, |a2|}.

Similarly, without loss of generality, we can assume that for a1, a2, a3, a4 2 k we
have |a1 + a2| � |a3 + a4| and |a1| � |a2|. Then, for some b 2 k with |b|  1 we
have a3 + a4 = b(a1 + a2) and hence
|a1 + a2 + a3 + a4| = |a1 + a2 + b(a1 + a2)| = |a1 + a2||1 + b|  2|a1 + a2|  22|a1|
and hence |a1 + a2 + a3 + a4|  22 max{|a1|, |a2|, |a3|, |a4|}. Repeating the process,
we obtain

|a1 + · · ·+ a2n |  2n max{|ai| : 1  i  2n} for n 2 Z+.

Next, consider an arbitrarily long sequence a1, . . . , aN 2 k, and N such that
2n�1 < N  2n.

Let aN+1 = · · · = a2n = 0, so that
|a1 + · · ·+ aN + aN+1 + · · ·+ a2n | = |a1 + · · ·+ aN |  2n max |ai|

= 2 · 2n�1 max |ai|  2N max |ai|
and observe, that letting ai = 1 for all 1  i  N we obtain |N |  2N . (Note that
this is far from the best we can do, although it is sufficient for our proof; improved
version of this inequality can be found under the proof of 4.0.9.) Observe that we
now have

|a1 + · · ·+ aN |  2N max |ai|. (⇤)
Finally, let b, c 2 k and n 2 Z+. Then

|b+ c|n = |(b+ c)n| =
����

nX

r=0

✓
n

r

◆
brcn�r

����,

where the sum has n + 1 summands, thus referring to (⇤) and letting N = n + 1,
we obtain ����

nX

r=0

✓
n

r

◆
brcn�r

����
⇤
 2(n+ 1)max

r

⇢����

✓
n

r

◆
brcn�r

����

�
.

Now, from |N |  2N , we observe that
����

✓
n

r

◆����  2

✓
n

r

◆
,
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which then yields

2(n+ 1)max
r

⇢����

✓
n

r

◆
brcn�r

����

�
 4(n+ 1)max

r

⇢✓
n

r

◆
|b|r|c|n�r

�
.

Moreover, considering maxr
��n

r

�
|b|r|c|n�r

 
we have a single term for some r, and

it is trivial to say that a sum including that term and multiple positive terms will
be greater, i.e.

max
r

⇢✓
n

r

◆
|b|r|c|n�r

�

X

r

✓
n

r

◆
|b|r|c|n�r,

which gives

4(n+ 1)max
r

⇢✓
n

r

◆
|b|r|c|n�r

�
 4(n+ 1)

X

r

✓
n

r

◆
|b|r|c|n�r = 4(n+ 1)(|b|+ |c|)n.

Thus by taking the n’th root on both sides we obtain

|b+ c|n  4(n+ 1)(|b|+ |c|)n () |b+ c|  n
p
4(n+ 1)(|b|+ |c|).

and by letting n �! 1, by the standard argument 1
n tends to zero faster than

4n+ 4 goes to 1, which yields

lim
n!1

(4n+ 4)
1
n = 1.

Hence we finally have
|b+ c|  |b|+ |c|. ⇤

Next, we obtain the condition for the ultrametric inequality.

Lemma 3.2.2. [Cas86] A valuation | · | on k is non-archimedian if and only if one
can take C = 1 in (3).

Proof. If |b|  |a| then |ba�1|  1, and thus we can write that |ba�1 +1|  1. That
gives

|a+ b||a�1|  1 () |a+ b|  |a| = max{|a|, |b|}.
On the other hand, if C = 1 in (3), the definition reads

|b|  1 �! |1 + b|  1,

which can be rephrased as
|1 + b|  max{|1|, |b|},

which follows directly from definition. ⇤

Since we have now introduced two types of absolute value functions and have
shown that it is possible to merge their definitions together, it is worth continu-
ing this idea to show the similarities between them. Therefore we establish some
properties holding for both archimedian and non-archimedian absolute values.

Lemma 3.2.3. [Gou65, Lemma 2.2.1] For any absolute value on a field k we have:
(1) |1| = 1,
(2) if |xn| = 1, then |x| = 1,
(3) |� 1| = 1,
(4) |� x| = |x| for any x 2 k,
(5) if k is a finite field, then | · | is trivial.

Proof. Using the definition of the valuation, we have



THE p-ADIC NUMBERS AND HENSEL’S LEMMA 25

(1) |1| = |1 · 1| = |1||1| =) |1| = |1|2, so we have either |1| = 1 or |1| = 0, but
since the second one contradicts the definition, we obtain |1| = 1;

(2) |xn| = |x·xn�1| = · · · = |x|n =) |x|n = 1, which gives |x| = 1 or |x| = �1,
but since the absolute value is positive by definition we have |x| = 1;

(3) |1| = |(�1) ·(�1)| = |�1||�1| = |�1|2 = 1 so that |�1| = �1 or |�1| = 1,
but by the same argument as above we have |� 1| = 1;

(4) |� x| = |� 1||x| = 1 · |x| = |x|;
(5) suppose the contrary, i.e. for some finite field k there exists an element

0 6= x 2 k such that |x| = L 6= 0, 1. Then since x needs to have a finite
order, let the order equal to m, we have x = xm+1 and from the definition
|x| = |xm+1| = |x|m+1, which gives that

L = Lm+1 () L(Lm � 1) = 0 () L = 0 or L = 1,

which yields a contradiction. ⇤

After drawing the connection between all the absolute value functions, we shall
consider the main condition that would separate the archimedian absolute values
from the non-archimedian ones. Recall that by the first definition introduced we
have noted that the non-archimedian condition, referred to as (3)⇤, was more strict
than the archimedian one, denoted as condition (3). Now we give a condition that
determines if the absolute value is non-archimedian.

Theorem 3.2.4. [Gou65, Theorem 2.2.4] Let A ⇢ k be the image of Z in k. An
absolute value on k is non-archimedian if and only if

|a|  1 for all a 2 A.

In particular, an absolute value on Q is non-archimedian if and only if
|n|  1 for all n 2 Z.

Proof. (=)) If | · | is non-archimedian, we get
|2| = |1 + 1|  max{|1|, |1|} = 1

and we repeat the argument by induction. Suppose |a� 1|  1, then
|a| = |(a� 1) + 1|  max{|a� 1|, |1|} = 1,

obtaining |a|  1 for all a 2 A, with a being the image of a positive integer.
Symmetrically, if we let ↵ = �a, for a > 0, we can argue

|↵� 1| = |� a� 1| = |� 1||a+ 1| = |a+ 1|  max{|a|, 1} = 1

and so
|↵| = |(↵� 1) + 1|  max{|↵� 1|, 1}  max{1, 1} = 1,

thus the statement holds for the negative integers.

((=) Suppose |a|  1 for all a 2 A, then we want to show that
|x+ y|  max{|x|, |y|} for all x, y 2 k.

If y = 0 we have
|x|  max{|x|, 0} = |x| since |x| � 0.

Thus we multiply both sides by y�1, assuming y 6= 0, and obtain the equivalent
inequality

|xy�1 + 1|  max{|xy�1|, |1|},
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so we only need to prove the inequality when one of the terms is 1.
We want to prove

|x+ 1|  max{|x|, 1}.
Let m 2 Z+, then

|x+ 1|m =

����
mX

k=0

✓
m

k

◆
xk

���� 
mX

k=0

����

✓
m

k

◆����|x
k| 

mX

k=0

|xk| =
mX

k=0

|x|k,

since the valuation of
�m
k

�
, an integer, is at most |1|.

Note:

• If |x| � 1, then max{|x|k : 0  k  m} = |x|m.
• If |x| < 1, max{|x|k : 0  k  m} = 1.

Therefore we have
mX

k=0

|x|k  (m+ 1)max{1, |x|m} =) |x+ 1|  m
p
m+ 1 max{1, |x|}.

It only remains to show that m
p
m+ 1 �! 1 as m �!1. This holds since

lim
m!1

(m+ 1)
1
m = lim

m!1

✓
eln(1+m)

◆ 1
m

= lim
m!1

e
ln(m+1)

m

= e(limm!1
ln(m+1)

m ) = e0 = 1,

which finally yields
|x+ 1|  max{1, |x|}. ⇤

The section will be concluded with the focus on the functions that are the most
interesting for us, the p-adic absolute values. We have already given some properties
of such, thus the last step will be to show that they actually define a function on
Qp together with its convergence for each prime p, using all the tools introduced in
the chapter.

Let us focus on the p-adic expansion of an arbitrary element X 2 Qp. Recall
that by definition

x =
X

i�n0

aip
i = an0p

n0 + an0+1p
n0+1 + . . .

for some sequence ai with elements modulo p.
When dealing with such expansions, we are not always interested in all terms

of the expansion, especially when the expansion is infinite. Although when dealing
with such expansion we know that further terms "matter less", can we be sure that
this will also be true for the p-adic expansion?

As it turns out, yes! To see it, let us consider an infinite p-adic expansion of X,
(an0 , an0+1, . . . ) and let us introduce the appropriate notation of each expansion:

x1 = an0p
n0

x2 = an0p
n0 + an0+1p

n0+1
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and so on. Consider two such elements xl and xm, and without loss of generality
say l > m. Now we obtain

xl =
n0+l�1X

i�n0

aip
i = an0p

n0 + an0+1p
n0+1 + · · ·+ an0+m�1p

n0+m�1

+ an0+mpn0+m + · · ·+ an0+l�1p
n0+l�1,

xm =
n0+m�1X

j�n0

ajp
j = an0p

n0 + an0+1p
n0+1 + · · ·+ an0+m�1p

n0+m�1,

that we compare in terms of p-adic absolute value, just as we compare the distance
between two elements in reals. Observe that

xl � xm = an0+mpn0+m + · · ·+ an0+l�1p
n0+l�1.

Indeed, let r � 1 such that an0+m = an0+m+1 = · · · = an0+m+r�1 = 0, and
an0+m+r 6= 0. Then

|xl � xm|p = |an0+mpn0+m + · · ·+ an0+l�1p
n0+l�1|p

= |an0+m+rp
n0+m+r + · · ·+ an0+l�1p

n0+l�1|p
= |pn0+m+r(an0+m+r + an0+m+r+1p+ · · ·+ an0+l�1p

l�m�r�1)|p
= |pn0+m+r|p|an0+m+r + an0+m+r+1p+ · · ·+ an0+l�1p

l�m�r�1|p

= p�(n0+m+r) · 1 =
1

pn0+m+r
,

that tends to zero as m tends to infinity, which shows that the expansions really
are relatively close to each other.

The above consideration naturally points toward the notion of the Cauchy se-
quence.

Definition 3.2.5. A sequence of elements xn 2 k is called a Cauchy sequence if, for
every ✏ > 0, one can find a bound M such that |xn � xm| < ✏ whenever m,n �M .
Moreover, for a p-adic number

x =
X

i�n0

aip
i

the xn defined above is a Cauchy representation of x.

Finally, after introducing the notion of the Cauchy sequence and its interpreta-
tion in the p-adics, we consider the fundamental connection between the set and
p-adic absolute value.

Definition 3.2.6. [Che18, Definition 1.14] For X 2 Qp, we define
|X|p : Qp 7�! [0,1) by |X|p = lim

n!1
|xn|p,

where (xn)1n=1 is a Cauchy sequence representation of X.

We shall check if the definition satisfies all required properties of the absolute
value.

(1) |X|p = 0  ! X = 0: Let |X|p = 0, then limn!1 |xn|p = 0. Since xn is a
sum of n positive numbers (see expressions for xl and xm above), all of them have
to be equal to 0, which yields X = 0. On the other hand, if X = 0, then |X|p = 0
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holds trivially.
(2) |XY |p = |X|p|Y |p: This follows directly from definition

|XY |p = lim
n!1

|xn · yn|p = lim
n!1

|xn|p · lim
n!1

|yn|p = |X|p|Y |p.

(3) |X + Y |p  |X|p + |Y |p: Similarly, we follow the definition and the property
of the limits

|X + Y |p = lim
n!1

|xn + yn|p  lim
n!1

|xn|p + lim
n!1

|yn|p = |X|p + |Y |p.

Note that in the similar fashion one can show that the ultrametric inequality holds
as well, using the established properties of | · |p function.

Proposition 3.2.7. [Che18, Proposition 1.15] The absolute value | · |p is well de-
fined on the field Qp.

Proof. Since all elements of Qp have their representation as a Cauchy sequence by
Definition 3.2.6, in order to show the absolute value on the field Qp is well defined,
we show that for X = (xn) 2 Qp the limit limn!1 |xn|p exists and is unique.
(Existence) Here, we only need to show that the limit introduced in the Defini-
tion 3.2.6 is convergent. Using the calculation from the page before, we show that

||xl|p � |xm|p|p =
1

pn0+m+r

follows from analogical reasoning:
||xl|p � |xm|p|p = ||an0p

n0 + an0+1p
n0+1 + · · ·+ an0+m�1p

n0+m�1|p
� |an0p

n0 + an0+1p
n0+1 + · · ·+ an0+m�1p

n0+m�1|p|p
 ||an0p

n0 |p + |an0+1p
n0+1|p + | . . . |p + |an0+m�1p

n0+m�1|p
� |an0p

n0 + an0+1p
n0+1|p � | . . . |p � |an0+m�1p

n0+m�1|p|p
= ||an0+m+rp

n0+m+r|p + | . . . |p + |an0+l�1p
n0+l�1|p|p

= ||pn0+m+r|p|(an0+m+r + an0+m+r+1p+ · · ·+ an0+l�1p
l�m�r�1)|p|p

= |pn0+m+r|p|an0+m+r + an0+m+r+1p+ · · ·+ an0+l�1p
l�m�r�1|p

= p�(n0+m+r) · 1 =
1

pn0+m+r
,

Therefore for n0 being multiplicity and r � 1 such that an0+m = an0+m+1 =
· · · = an0+m+r�1 = 0, and an0+m+r 6= 0, we obtain

8✏ > 0, 9 l,m > N such that ||xl|p � |xm|p|p < ✏,

and thus the function is convergent.
(Uniqueness) To prove the representation is unique, we let (yn) be a different
Cauchy sequence representation of the same element. Then

lim |yn|p  lim |yn � xn|p + lim |xn|p = lim |xn|p
by the ultrametric property, and the fact that as (xn) and (yn) both represent X
we have

lim
n!1

|yn � xn|p = lim
n!1

|yn �X +X � xn|p
 lim

n!1
|yn �X|p + lim

n!1
|X � xn|p = 0 + 0 = 0
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so limn!1 |yn � xn|p = 0. Symmetrically we obtain
lim |xn|p  lim |xn � yn|p + lim |yn|p = lim |yn|p

which implies lim |xn|p = lim |yn|p. ⇤

3.3. Introduction to the metric spaces. As we have already discussed the sim-
ilarities between various notions on R and Qp, such as valuations, we shall remind
ourselves of the differences underlying in these structures.
We begin by introducing the main phrase, that will allow us to discuss the sets (in-
cluding fields) together with the metric functions derived in detail in the chapter.

Definition 3.3.1. [Sut09, p.37] The metric space is a set X together with the
notion of a distance between its elements. The distance is measured by a function
called a metric or a distance function

d : X ⇥X 7�! R.
It has to satisfy following properties, for x, y, z 2 X:

(1) d(x, y) � 0,
(2) d(x, y) = 0 () x = y,
(3) d(x, y) = d(y, x),
(4) d(x, z)  d(x, y) + d(y, z).

An obvious choice, as we have considered absolute values before, would be to
define the notion of the distance in the broad meaning of valuations.

Definition 3.3.2. [Gou65, Definition 2.3.1] Let k be a field and | · | an absolute
value on k. We define the distance d(x, y) between two elements x, y 2 k by
d(x, y) = |x� y|.

We call d(x, y) a metric induced by the absolute value.

Indeed, one can verify this directly with the use of Definition 3.1.1.
(1) Consider ↵ = x � y, then we want to show that any |↵| � 0. We have

|� ↵| = |� 1||↵| = |↵|, and we assume the contrary: we have ↵ such that
|↵| < 0 and thus also |� ↵| < 0. But then

|0| = |↵+ (�↵)|  |↵|+ |� ↵| = 2|↵| < 0,

which yields contradiction.
(2) d(x, y) = |x� y| = 0() x� y = 0() x = y.
(3) d(x, y) = |x� y| = |� (y � x)| = |y � x| = d(y, x).
(4) d(x, z) = |x� z| = |(x� y) + (y� z)|  |x� y|+ |y� z| = d(x, y) + d(y, z).

Example 3.3.3. The set R together with the infinite absolute value (or the usual
absolute value | · |) comprise a real metric space.

Let us now make a two small remarks in connection to what we have introduced
by now.

R is an "ordered field", i.e. it has a well-defined order of the elements and thus
notions of bigger-than and less-than; this is not the case for Qp.

The infinite absolute value on R is archimedian; all p-adic absolute values on Qp

are non-archimedian - compare with Proposition 3.3.5.
The metric induced by the absolute value can be used in surprisingly broad

contexts. It not only gives us basic intuition to the geometry, but can be also a
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useful tool in proving some results in arithmetic, seemingly not related to the metric
in a field k.

Since the introduction of the valuation was motivated by redefining the notion
of distance in the p-adic sense, and we know already that all the p-adic valuations
are non-archimedian, we limit our focus to the distances in the non-archimedian
cases. We should remember though, that the distance functions have no reasonable
geometrical sense - both with respect to the non-archimedian absolute value, and
to the p-adic absolute value, which we will show soon with the use of some basic
topology.

The following step for understanding the metric function in connection to the
valuation is rather intuitive, and follows from our previous reasonings.

Lemma 3.3.4. [Gou65, Lemma 2.3.3] Let | · | be an absolute value on a field k,
and define the metric as d(x, y) = |x�y| for x, y 2 k. Then | · | is non-archimedian
if and only if for all x, y, z 2 k we have

d(x, y)  max{d(x, z), d(z, y)}.

Proof. (=)) We have
|x� y| = |(x� z) + (z � y)|  max{|x� z|, |z � y|} = max{d(x, z), d(z, y)}.

((=) We have d(x, y)  max{d(x, z), d(z, y)}. Consider y = �y0, then
d(x, y) = d(x,�y0) = |x� (�y0)| = |x+ y0|.

By the assumption and the property d(a, b) = d(�a, b), we have
|x+ y0|  max{d(x, z), d(z, y)} = max{d(x, z), d(z, y0)}.

Now take z = 0, so that
|x+ y0|  max{|x� 0|, |0� y0|} = max{|x|, |y0|}. ⇤

Analogous to the absolute value definition, we shall mention the condition dis-
tinguishing the archimedian and non-archimedian distance.

Proposition 3.3.5. [Gou65, Proposition 2.3.4] Let k be a field and let | · | be a
non-archimedian absolute value on k. If x, y 2 k and |x| 6= |y|, then |x + y| =
max{|x|, |y|}.

Proof. By symmetry, without loss of generality, suppose that |x| � |y|. Then
|x+ y|  max{|x|, |y|} = |x|.

On the other hand,
|x| = |(x+ y)� y|  max{|x+ y|, |y|}.

If we take max{|x+ y|, |y|} = |y| we obtain contradiction, thus we need to have
max{|x+ y|, |y|} = |x+ y| and therefore |x| = |x+ y|. ⇤

This result is rather surprising. In terms of distances, we obtain that the sum of
any two vectors is equal to one of the vectors being summed. In the non-archimedian
setting, we can therefore develop a small result on how the geometrical consequences
can be expressed.

Corollary 3.3.6. [Gou65, Corollary 2.3.5] In a space with on non-archimedian
absolute value, all triangles are isosceles.
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Proof. Let x, y, z 2 Qp. We certainly have (x�y)+(y�z) = x�z. If |x�y| = |y�z|,
we are done. Otherwise, given |x� y| 6= |y � z|, by Proposition 3.3.10 we have

|x� z| = max{|x� y|, |y � z|}. ⇤
The analogous properties hold for the p-adic absolute values, as all of them

are non-archimedian. To shortly illustrate how the distance behaves in the p-
adic setting, consider x = pnx0, y = pmy0 with p - x0, y0 and corresponding p-adic
absolute values |x|p = p�n, |y|p = p�m. Moreover, suppose |x|p 6= |y|p. Then,
without loss of generality suppose |x|p < |y|p. Then it implies we have n > m and
let n = m+ ✏. Therefore

x+ y = pnx0 + pmy0 = pm+✏x0 + pmy0 = pm(p✏x0 + y0)

with p - (p✏x0 + y0). Thus
|x+ y|p = p�m = |y|p.

Finally, we complete the notion of space by examining the construction of balls
in the p-adic setting. For the purpose of the following section, we introduce some
of the basic notions used later in the text.

Definition 3.3.7. Let X be a metric space with distance function d. We call
B(a, r) 2 X an open ball centered at a with radius r, i.e. the set of all points of
distance less than r from a. We write

x 2 B(a, r) () d(x, a) < r.

Similarly, a closed ball is centered at a with radius r, i.e. the set of all points of
distance less than or equal to r from a. We write

x 2 B̄(a, r) () d(x, a)  r.

Moreover, an open ball Bp(a, r) is a p-adic (open) ball when it is defined accord-
ing to the p-adic absolute value, i.e. the set of all points of distance less than or
equal to r from a defined by the p-adic absolute value. We write

x 2 Bp(a, r) () |x� a|p < r.

For the purpose of the following section, we only consider open p-adic balls, although
the reader should be aware that closed p-adic balls also exist.

Furthermore, a few rather surprising properties of the p-adic balls are given and
explored in detail in the proofs.

Proposition 3.3.8. [Gou65, Proposition 2.3.7] Let k be a field with a non-archimedian
absolute value.

(1) If b belongs to the ball with a center a and a radius r, i.e. b 2 B(a, r), then
B(a, r) = B(b, r), i.e. every point contained in the ball is also its center.

(2) The set B(a, r) is both open and closed.
(3) Any two open balls are either disjoint or contained in one another.

Proof. (1) By definition, we have b 2 B(a, r) if |b� a| < r. Now, taking any x such
that |x� a| < r, we get

|x� b| = |x� a+ a� b|  max{|x� a|, |b� a|} < r

=) x 2 B(b, r) =) B(a, r) ✓ B(b, r).

Repeating the argument symmetrically we obtain
B(b, r) ✓ B(a, r) =) B(b, r) = B(a, r).
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(2) Consider x on the boundary of the open ball B(a, r), then any open ball centered
at x contains points from B(a, r). Take s < r, then there exists y 2 k such that
y 2 B(a, r) \B(x, s) and hence

(
|y � a| < r,

|y � x| < s  r.

Now we have the following implication:
|x� a|  max{|x� y|, |y � a|}  max{s, r} = r =) |x� a|  r

() x 2 B(a, r),

which shows that any boundary point of B(a, r) belongs to that ball.
(3) Suppose s  r. For arbitrary centers a and b, we have either

B(a, r) \B(b, s) = ; or 9 c 2 B(a, r) \B(b, s).

Then, in the latter, using (1),
(
B(a, r) = B(c, r)

B(b, s) = B(c, s)
=) B(c, s) = B(b, s) ✓ B(a, r) = B(c, r). ⇤

The geometrical understanding of the p-adic valuations is the fundamental con-
sideration to have before beginning to discuss the p-adic topology. Although we
should note that some of the above considerations will not influence the upcoming
content, and was presented for interest and to show the reader how little we have
changed, and how greatly it has impacted some basic properties of space.

After introducing the basic properties of some of the objects in the non-archimedian
setting, the focus in the next chapter will shift to the construction of the entire set of
the absolute value functions, their properties and connections between each other.
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4. The p-adic topology

Subsequent to giving the basic properties of the absolute value functions and
distinguishing the two different types of them, we shall move on to more details
about their topological meaning. The main reason for the consideration of the
valuations in this thesis about p-adic numbers in the first place was to redefine the
"usual" topology in the p-adic setting by drawing the connection with the p-adic
distance function.

This chapter will therefore tell more about the different topological concepts
and finally introduce the connection between the p-adics and cardinality of non-
archimedian absolute functions. Therefore we begin by introducing what equivalent
topology means, and we consider which properties it satisfies.

Let us start with defining the p-adic space with respect to the topology.

Definition 4.0.1. [Sut09, Definition 7.1] Let X be a set and ⌧ be a family of
subsets of X. Then ⌧ is called a topology of X if:

• Both the empty set and X are elements of ⌧ .
• Any union of elements of ⌧ is also an element of ⌧ .
• Any intersection of finitely many elements of ⌧ is also an element of ⌧ .

Every element of ⌧ is called an open set.

Example 4.0.2. Let X = R and ⌧ be the set of arbitrary unions of half-open
intervals [a, b), for a < b. Then the union of no intervals gives the empty set, and
the union of all intervals gives the whole set, thus ;,R 2 ⌧ . It is clear that for any
arbitrary ⌧1, ⌧2 2 ⌧ their union and intersection also belong to ⌧ by basic interval
properties. Therefore ⌧ gives a topology on the set R.

Proposition 4.0.3. The field Qp is a topological space with topology ⌧ given by the
set of arbitrary unions of the p-adic open balls.

Proof. Similarly as in the above example, the union of no balls gives the empty set,
while the union of all balls gives the entire set, therefore ;,Qp 2 ⌧ .

Consider an arbitrary union and intersection of two sets of such balls. Note that
by Proposition 3.3.8 we have that two balls are either disjoint or contained in one
another.

Let B(a, r1) and B(b, r2) be two arbitrary p-adic balls in ⌧ . If B(a, r1) ✓ B(b, r2),
the result is trivial as their intersection is just B(a, r1), and their union is B(b, r2),
therefore both intersection and union are in ⌧ . In the case when they are disjoint,
both union and intersection (which is the empty set) are still some arbitrary unions
of p-adic balls, thus ⌧ is a topology. ⇤
Definition 4.0.4. [Gou65, Definition 3.1.1] The absolute values | · |1 and | · |2 on
a field k are equivalent if they define the same topology on k, i.e. every set that is
open with respect to one of them is also open with respect to the other.

Example 4.0.5. Consider two topologies on the real line. Let ⌧0 be the topology
generated by the arbitrary unions of open intervals (a, b) where a < b, and ⌧1 be
the topology generated by the arbitrary unions of half-open intervals [a, b) where
a < b. Then every nonempty set in ⌧0 contains a nonempty set in ⌧1 and vice versa,
thus ⌧0 and ⌧1 are equivalent.

Proposition 4.0.6. [Gou65, Proposition 3.1.3] The following statements are equiv-
alent.
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(1) | · |1 and | · |2 are equivalent,
(2) for any x 2 k we have

|x|1 < 1 () |x|2 < 1,

(3) 9 ↵ 2 R+ such that for all x 2 k we have |x|1 = |x|↵2 .

Proof. The statements will be proven in the circular order: first that (1) implies
(2), then that (2) implies (3) and finally (3) implies (1).

(1) =) (2). If any sequence converges with respect to | · |1, then it also converges
with respect to | · |2. Given x 2 k, if |x|1 < 1 then

lim
n!1

|xn|1 = lim
n!1

|x|n1 = 0.

Hence we have
lim
n!1

|x|n2 = 0,

which gives |x|2 < 1. The reverse implication follows symmetrically.
(2) =) (3). Choose x0 2 k so that |x0|1 < 1, equivalently |x0|2 < 1. Let ↵ 2 R

be such that
|x0|1 = |x0|↵2 ,

and taking logarithms on both sides and simplifying we obtain

log |x0|1 = ↵ log |x0|2 () ↵ =
log |x0|1
log |x0|2

.

Note that log |x0|1 < 0 and log |x0|2 < 0.
Consider any other x 2 k, x 6= 0. Then there is some � such that

|x|1 = |x|�2 () � =
log |x|1
log |x|2

.

Now our aim is to show that ↵ = �.
If |x|1 = |x0|1, then | x

x0
|1 = 1. By (2) we have | x

x0
|2 � 1. Also |x0

x |1 = 1 implies
|x0
x |2 � 1. Equivalently, we have

|x|2 � |x0|2
|x0|2 � |x|2

and thus |x|2 = |x0|2. Putting this together, we obtain

↵ =
log |x0|1
log |x0|2

=
log |x|1
log |x|2

= �.

If |x|1 = 1, then |x|2 � 1 by (2). Then we have | 1x |2  1. If we would have
| 1x |2 < 1, then | 1x |1 < 1 and |x|2 > 1, which gives |x|1 > 1, contradiction. Therefore
|x|2 = |x|1 = 1 and we can pick ↵ = �.

Thus the only case remaining for us to consider is |x|i 6= 1 and |x|i 6= |x0|i for
i = 1, 2. We can safely assume |x|1 < 1, equivalently |x|2 < 1, as the case |x|1 > 1
will follow by the argument applied to | 1x |1 < 1.

Let m,n 2 N. Then

|x|n1 < |x0|m1 ()
����
xn

xm
0

����
1

< 1 ()
����
xn

xm
0

����
2

< 1 () |x|n2 < |x0|m2
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and taking logarithm on both sides yields
n log |x|1 < m log |x0|1 () n log |x|2 < m log |x0|2

n

m
>

log |x0|1
log |x|1

() n

m
>

log |x0|2
log |x|2

;

recall that by assumption log |x|1 < 0 and hence log |x|2 < 0. Now, let us justify
why this means that the two logarithmic fractions are equal. Indeed, suppose that

log |x0|1
log |x|1

>
log |x0|2
log |x|2

.

So we can find positive integers m,m0, n, n0 such that
n

m
>

log |x0|1
log |x|1

and
log |x0|1
log |x|1

� n0

m0 >
log |x0|2
log |x|2

.

However, then
n0

m0 >
log |x0|2
log |x|2

but
n0

m0 6>
log |x0|1
log |x|1

,

a contradiction. Symmetrically, we obtain
log |x0|1
log |x|1

=
log |x0|2
log |x|2

.

If we were to consider the case when |x0|1 > 1, equivalently |x0|2 > 1, it is trivial
to see that 1

|x0|1 < 1, equivalently 1
|x0|2 < 1, so we can choose x0

0 = 1
x0

, and proceed
as before. For the case where |x0|1 = 1, we have that |x0|2 = 1. Indeed, if |x0|2 < 1,
then by (2) we have |x0|1 < 1, a contradiction. If |x0|2 > 1 we have | 1

x0
|2 < 1 and

again by (2) we have | 1
x0
|1 < 1, which is not true since |x0|1 = | 1

x0
|1 = 1. Therefore

we have |x0|1 = |x0|2 = 1, and clearly we can take � = ↵.
(3) =) (1). For x 2 B(a, r), we have

|x� a|1 < r () |x� a|↵2 < r () |x� a|2 < r
1
↵ ,

and both are open balls, which by definition implies they are equivalent. ⇤

As of now the various properties of the absolute values with connection to the
p-adics have been introduced, and therefore we narrow down our considerations to
how many of them actually exist, i.e. if there is a chance that they might align for
different primes p and q.

Corollary 4.0.7. If p, q are different primes, then p-adic and q-adic absolute values
are not equivalent.

Proof. Consider x 2 k such that

x = pnqmx0 =)
(
|x|p = p�n

|x|q = q�m,

with p - x0 and q - x0, and m,n being the maximum powers of p and q in x,
respectively. Since gcd(p, q) = 1, we know that there exists no ↵ 2 R+ such that
|x|↵p = |x|q since p�n↵ 6= q�m are still coprime and cannot be equal. ⇤

Finally, we connect the above theory with the cardinality of the set of abso-
lute value functions. The following theorem describes the relation between the
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p-adic valuations and the entire set of the absolute values, and proves that the non-
archimedian absolute value function on Q defines exactly the set of p-adic absolute
values.

Theorem 4.0.8 (Ostrowski’s Theorem). [Gou65, Theorem 3.1.4] Over Q, every
non-trivial absolute value is equivalent either to the p-adic absolute value, or to the
usual absolute value (referred to as "infinite absolute value").

Proving the theorem is quite a challenging task, hence we divide it into two steps:
introducing the estimation lemma and using it to prove Ostrowski’s Theorem.

Lemma 4.0.9. [pla13] If m,n > 1 are integers and | · | is any non-trivial absolute
value on Q, then

|m|  max{1, |n|}
log(m)
log(n) .

Proof. If m = n, then the result is clear, since logm = log n, and |m| = |n|.
Otherwise suppose that m 6= n. Then we consider m to be a composition in the
n-adic meaning (similar to the p-adic, but with less remarkable properties), so that
we have

m = a0 + a1n+ · · ·+ arn
r for some (ai)

r
i=1 2 Zn, 0  ai  n� 1, ar 6= 0.

Then, by the triangle inequality, we get
|ai| = |1 + · · ·+ 1|  ai|1| = ai  n� 1 =) |ai|  n.

Also,

nr  m () r log(n)  log(m) () r  log(m)

log(n)
.

Summing up all of the above, we have r+1 summands, we bound each |ai| with n,
and since

• |n| > 1 =) max{1, |n|, . . . , |n|r} = |n|r,
• |n|  1 =) max{1, |n|, . . . , |n|r} = 1,

this gives us
|m| = |a0 + a1n+ · · ·+ arn

r|  |a0|+ |a1||n|+ · · ·+ |ar||nr|.
Thus we have (r + 1) expressions of form |ai||ni| = |ai||n|i, where from above we
know |ai|  n and |ni|  max{1, |n|r} = max{1, |n|}r. Replacing r with the bound
obtained above we get

|m| 
✓
1 +

log(m)

log(n)

◆
n ·max{1, |n|}r.

Now the trick is to replace m by mt
0 for t 2 Z, and take the t’th root, resulting in

|mt
0| 

✓
1 +

log(mt
0)

log(n)

◆
n ·max{1, |n|}

log(mt
0)

log(n)

=

✓
1 +

t log(m0)

log(n)

◆
n ·max{1, |n|}

t log(m0)
log(n)

=) |m0| 
✓
1 +

t log(m0)

log(n)

◆1/t

n1/t ·max{1, |n|}
log(m0)
log(n)
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and as t �!1 we have limt!1 n1/t = 1 and

lim
t!1

✓
1 +

log(m0)

log(n)
t

◆1/t

= lim
t!1

(1 + at)1/t = lim
u!0

✓
1 +

a

u

◆u

,

for constant a, so consider logarithm of the limit. By the continuity

log lim
u!0

✓
1 +

a

u

◆u

= lim
u!0

log

✓
1 +

a

u

◆u

= lim
u!0

u log

✓
1 +

a

u

◆
= 0 · log(1) = 0,

and since e0 = 1, we have that the entire limit is 1, which proves the lemma. ⇤
Proof of Ostrowski’s Theorem. Case 1. Suppose that for all n > 1 we have |n| > 1.
Then by the Estimation Lemma we have

|m|  |n|
log(m)
log(n) () |m|

1
log(m)  |n|

1
log(n)

for all m,n > 1. By switching places for m and n we get the reverse, thus |m|
1

log(m)

is constant for every element in the set. Therefore we have

|m|
1

log(m) = c () |m| = clog(m)

which is equivalent to |m|1 = elog(m).

Case 2. If instead for some n > 1 we have |n| < 1, then the Estimation Lemma
gives |m|  1 and by Theorem 3.2.4, the absolute value is non-archimedian. We
define the region of interest as the ring of A = {x 2 Q : |x|  1} where the maximal
ideal (an ideal such that there is no other ideal contained between the ring and the
maximal ideal) is AM = {x 2 Q : |x| < 1}.

Considering the valuation on Z, we notice that
|n|  1 8n 2 Z =) Z ✓ A and Z \AM 6= ;

(since then the valuation would be trivial). Note that we have Z \ AM = pZ for
some prime p; that is since AM contains elements divisible by p at least once, and
its intersection with integers give integers divisible by p at least once, or integers
times p. For any element a 2 Z such that p - a we have

|a| = 1 =) a 2 A�AM .

So for x = pta
b , where p - a, b,

|x| =
����
pta

b

���� = |pt| |a||b| = |p|t

which gives a valuation equivalent to the p-adic valuation. ⇤
The theorem summarises our discourse about the absolute value functions, and

begins the discussion about the topology induced by their properties. We have made
a proper connection between the p-adic numbers and non-archimedian valuations,
therefore the next chapter will go in detail into the properties implied by their
behaviour.
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5. Hensel’s Lemma

After exploring the field of Qp, Hensel moved on to formulating probably one
of the most significant results in number theory. Using the structure provided by
the Cauchy sequences, he proposed an algorithm for finding solutions of equations
modulo pn.

Assuming that consecutive solutions, as we increase n, will follow the scheme of
a Cauchy sequence, we can construct the idea of how to obtain the solutions. In
order to introduce the reader to that concept, we first introduce a definition used
in a single step in that algorithm, that of a lift.

Definition 5.0.1. [Che18, Definition 3.1] Let f(X) be a polynomial with integer
coefficients and let p be a prime. Suppose there exists a solution to f(x1) ⌘ 0
(mod p). Then a solution xn to

f(xn) ⌘ 0 (mod pn) where xn ⌘ x1 (mod p)

is called a lift of x1 (mod pn) for some given n > 0.

Example 5.0.2. [Che18, Example 3.2] Consider f(X) = X2 + 1. We can see that
f(2) ⌘ 0 (mod 5), and we have

x1 ⌘ 2 (mod 5) () x = 5t+ 2 for some t 2 Z.
We find a lift by trial-and-error that t = 1 is a solution to:

(5t+ 2)2 + 1 ⌘ 0 (mod 25),

which gives x2 = 7. We also have f(3) ⌘ 0 (mod 5), so we could take x1 = 3.
Writing x2 = 5t+ 3 we see that t = 3 is a solution to

(5t+ 3)2 + 1 ⌘ 0 (mod 25),

thus x2 = 18.

Following this introduction of what will be a single step in the algorithm, we
now have all the tools to introduce Hensel’s Lemma in its entirety.

Lemma 5.0.3 (Hensel’s Lemma). [Gou65, Theorem 6.5.2] Let
f(X) = a0 + a1X + a2X

2 + · · ·+ anX
n

be a non-zero polynomial with coefficients being p-adic digits. Suppose there exists
a p-adic integer ↵1 2 Zp such that

f(↵1) ⌘ 0 (mod p) and f 0(↵1) 6⌘ 0 (mod p).

Then there exists a unique p-adic integer ↵ 2 Zp such that
↵ ⌘ ↵1 (mod p) and f(↵) = 0.

The next lemma is an equivalent formulation of Hensel’s Lemma.

Lemma 5.0.4 (Hensel’s Lemma, alternative formulation). [Gou65, Theorem 6.5.2]
Consider a non-zero polynomial f(X) 2 Z[X] and suppose

f(a) ⌘ 0 (mod p) with f 0(a) 6⌘ 0 (mod p),

for some a 2 Z and p prime. Then we have solutions modulo pn+1 for all n � 0:
f(an) ⌘ 0 (mod pn+1) such that an+1 ⌘ an (mod pn+1).

In other words, we obtain sequences (a0, a1, . . . ) as a solution. Each element of the
sequence is unique modulo pn+1.
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Example 5.0.5 (continued). We claim that by following our previous calculations,
we can construct a sequence representing one of the solutions of the polynomial
f(X) = X2 + 1 (mod 5n).

Recall the first two solutions we had were a0 = 2, a1 = 7. Therefore by Hensel’s
Lemma we have a2 = 25t+ 7, and from

(25t+ 7)2 + 1 ⌘ 0 (mod 125)

we see that we can take t = 2, and so a2 = 57 is a solution. Hence the 5-adic
expansion of

p
�1, the solution of the polynomial has a Cauchy sequence solution

(2, 7, 57, . . . ).

The motivation behind giving an example prior to proving the lemma is that
the scheme of the proof follows the exact same algorithm as the numerical example
considered above. Therefore it is worth to present the easy-to-follow example first,
and then "expand" our considerations into the general case.

Proof of Lemma 5.0.3. Following the idea from the example, we construct a Cauchy
sequence (↵n) of integers converging to ↵ and satisfying

f(↵n) ⌘ 0 (mod pn),

↵n ⌘ ↵n+1 (mod pn).

The sequence is Cauchy and convergent by how we have introduced it before, and its
limit ↵ will satisfy f(↵) = 0 (by continuity) and ↵ ⌘ ↵1 (mod p) (by construction).
Thus once we establish that polynomials are continuous and the existence of the
↵n, we will be done.

Recall that for some
xl = ↵0 + ↵1p+ · · ·+ ↵mpm + ↵m+1p

m+1 + · · ·+ ↵lp
l,

xm = ↵0 + ↵1p+ · · ·+ ↵mpm,

letting r � 1 such that an0+m = an0+m+1 = · · · = an0+m+r�1 = 0, and an0+m+r 6=
0, we have

|xl � xm|p =
1

pn0+m+r
,

thus as we increase l and m, we can make their difference relatively small. Indeed,
let x = xl some Cauchy sequence representation, and an arbitrarily close point
a = xm, then for some polynomial function f(X) = a0+a1X+ · · ·+anXn we have

|f(xl)� f(xm)|p = |a0 + a1xl + · · ·+ anx
n
l � a0 � a1xm � · · ·� anx

n
m|p

 |a1|p|xl � xm|p + · · ·+ |an|p|xn
l � xn

m|p
 |xl � xm|p + · · ·+ |xn

l � xn
m|p

since each ai is an integer. Looking at the first difference, we see
x2
l = (xm + ↵m+1p

m+1 + · · ·+ ↵lp
l)2

= x2
m + 2xm(↵m+1p

m+1 + · · ·+ ↵lp
l) + (↵m+1p

m+1 + · · ·+ ↵lp
l)2

=) |x2
l � x2

m|p  |2xm(↵m+1p
m+1 + · · ·+ ↵lp

l)|p + |↵m+1p
m+1 + · · ·+ ↵lp

l|2p
= |↵m+1p

m+1 + · · ·+ ↵lp
l|p|2xm + ↵m+1p

m+1 + · · ·+ ↵lp
l|p

=
1

pm+1
+

1

pm
<

2

pm
.
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By induction we argue that in fact

|xn
l � xn

m|p <
n

pm
,

and thus each such summand will be bound by respective ✏n. Finally, we claim
that

|f(xl)� f(xm)|p  ✏1 + · · ·+ ✏n < ✏

with l,m being large enough.
The argument is, if we can take a step from ↵1 to ↵2, we can repeat the procedure

to recursively obtain ↵n+1 from ↵n - therefore we only consider the first step. Let
↵2 = ↵1 + b1p, then, using the Taylor’s series,

f(↵2) = f(↵1 + b1p)

⌘ f(↵1) + f 0(↵1)b1p+ terms in p2

⌘ f(↵1) + f 0(↵1)b1p (mod p2),

which gives
f(↵1) + f 0(↵1)b1p ⌘ 0 (mod p2).

Since f(↵1) ⌘ 0 (mod p), or equivalently f(↵1) = p� for some �, then
p�+ f 0(↵1)pb1 ⌘ 0 (mod p2)() �+ f 0(↵1)b1 ⌘ 0 (mod p)

() b1 ⌘ ��(f 0(↵1))
�1 (mod p)

with 0  b1  p� 1. Then we repeat the procedure to obtain the result.
We show that the p-adic integer solution is unique.
Let ↵ = ↵0

0 + ↵0
1p + · · · be another representation of ↵ 2 Zp, and let n be the

first position where ↵n 6= ↵0
n, without loss of generality let ↵n < ↵0

n.
Similarly define

�n = a0 + a1p+ · · ·+ anp
n, �0

n = a00 + a01p+ · · ·+ a0np
n

with finite expansions, where
(ai)

n�1
i=0 = (a0i)

n�1
i=0 and an 6= a0n.

Then
�0
n � �n = (a0n � an)p

n.

We know that p - (a0n � an) since if a0n ⌘ an (mod p) we get an immediate contra-
diction.

As a0n 6⌘ an (mod p), then we can have a0n > p and by Hensel’s Lemma a0n+1

would increase, but we know a0n+1 ⌘ 0 (mod p) since n was the last element of the
Cauchy sequence, thus we get contradiction. Therefore

|(a0n � an)p
n|p = |(a0n � an)|p|pn|p =

1

pn
,

since p - (a0n � an). But by the ultrametric inequality
|�0

n � �n|p = |(�0
n � ↵) + (↵� �n)|p  max{|�0

n � ↵|p, |↵� �n|p},
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where
|�0

n � ↵|p = |a00 + a01p+ · · ·+ a0np
n � a00 � a01p� · · ·� a0np

n � a0n+1p
n+1 � · · · |p

= |� a0n+1p
n+1 � · · · |p =

1

pn+1
,

|↵� �n|p = |a0 + a1p+ · · ·+ anp
n + an+1p

n+1 + · · ·� a0 � a1p� · · ·� anp
n|p

= |an+1p
n+1 + · · · |p =

1

pn+1
.

Then we obtain a contradiction and thus the representation is unique. ⇤
Remark 5.0.6. The reader might also recognize the proof from a completely other
reason: it follows the same scheme as the Newton’s algorithm, used in the opti-
mization theory.

Hensel’s Lemma contributes hugely towards connecting p-adic fields with solving
power series problems, including solving congruence power equations, and proving
various topological concepts on the p-adics.
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6. Conclusion

The p-adic numbers make a large contribution to connecting number theory with
analysis, and present a completely new approach in tackling some of the functions
and its power series convergence (provided for example by Taylor polynomials),
that might not be obtained in the real case. This thesis presents a small portion of
treating such questions and rather gives the tools and their detailed background to
develop such intuition for the future reading. The non-archimedian absolute value
has been present in string theory and dynamics. Therefore once more, the p-adic
numbers were a type of purely abstract mathematical structure, that later began
to take part in numerous real-life developments.

It feels like this work has implemented all sorts of mathematical theory, but all
of those considerations lay the foundations of the completely new structure: the
p-adic numbers.

My hope is the reader has found the order of those considerations easy enough to
follow to not lose interest too early and has found the topic intuitive and engaging.
Most of the examples provided in the thesis were developed by myself, as well as
some of the easier proofs of corollaries or propositions.

Thank you for the time spent on reading my thesis. I hope that this rather brief
introduction to the p-adic world will arouse your curiosity about this topic.
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