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Abstract

In this thesis, an autonomous system capable of navigating and mapping
unknown environments is developed. The solution uses a family of algorithms
called SLAM or simultaneous localization and mapping, capable of mapping the
environment and retaining accurate position data without external sensors such
as GPS. Firstly four different SLAM algorithms are implemented and then four
different pathing algorithms are tested with a generated map. Everything runs
on a hoverboard-based robot using an RPI as the processing unit and LIDAR as
the only sensor. The performance is evaluated by analyzing the processor uti-
lization, the positional accuracy and the accuracy of the generated map. It is
concluded that the RPI has good enough performance to run the program while
leaving processing power for other tasks. The achieved positional accuracy is
usually better than 10 cm which is a good result given the circumstances. The
generated map has a map-resolution dependent accuracy causing an error of less
than 10 ∗√2 cm between points on the map, it reproduces long distances of >20
m with no further error.
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Chapter 1

Introduction

Self-driving robots have had an explosive evolution during the last 20 years. Today they are
used in a wide range of fields ranging from transportation of goods in factories or logistic
warehouses to self-driving people carriers or human-interacting healthcare robots. What all
of these have in common is that they need a way to traverse the environment they operate
in. To do this the robot needs some kind of map to position itself on and a way of sensing
the current position on the map. If it isn’t guaranteed that the map is static and correct,
additional obstacle avoidance is also required. In most cases, the map will not be static and
moving objects such as humans, other robots or animals might be present.

To make things simpler it is usually possible to assume at least one of two things. The
mapmay be known, this map does not have to include moving objects but only the stationary
scene. What this known map means is that the robot only needs to localize itself within the
map, an example of this is described in [7].

The other case is when the pose of the robot is known at all times, the pose is a unique
way of describing the state of the robot. For a robot operating on a 2D plane the pose has
three attributes, (x, y, θ) where x and y describe the position and θ the heading of the robot.
The pose can be acquired by receiving signals, for example, laser pulses or radio signals from
sensors with known positions or satellites. One example of this is an automatic lawn mower
that uses GPS to get the pose and using that it can build a map of the area it operates in to
cut the grass efficiently.

These cases assume that either the map or the pose is known. What can be done if both
of these are unknown? One solution commonly applied in robotics is called SLAM (Simul-
taneous Localization And Mapping). This is a solution to the problem where an unknown
environment is traversed at the same time as a map is built all while keeping track of the
current pose. This makes it a combination of two problems, creating a map from sensor data
assuming the pose is known and getting a pose estimate from a map. What makes SLAM so
difficult is similar to the "What came first the chicken or the egg?" problem [8]. A map is
needed to know the pose and the pose is needed to build the map. There exist different types
of SLAM algorithms to solve this problem and they are usually split into two categories,
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1. Introduction

landmark-based and map-based. Landmark-based SLAM variations focus on positioning
while building a map of landmarks. A landmark should be something easily recognizable
and stationary, examples of this are walls, corners or vertical poles. Map-based SLAM does
not use landmarks but instead builds a map of all environment features. To do this memory
and computationally effective the world is often discretized into chunks. Depending on the
expected size of the map and required resolution the size of the chunks can range between a
couple of mm to meters. In this work, both types of SLAM are implemented and analyzed.

1.1 Research questions
• RQ1: Is it possible to run a SLAM algorithm implemented in Python with the limited
computing power a single board computer like a Raspberry Pi has?

• RQ2: How accurate positioning can be achieved?

• RQ3: How accurate is the generated map?

1.2 Contributions
This thesis aims to make the following contributions, all implemented in Python and capable
of running without ROS (Robot Operating System)[4]:

• A SLAM implementation that is capable of producing an accurate map in a static
environment.

• A self-driving system that can plan paths and drive within a previously generated map
while adapting for new obstacles.

• A landmark-based SLAM algorithm capable of following a predetermined path in a
dynamic environment without crashing.
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Chapter 2

Background

2.1 Elements needed to perform SLAM
To use a SLAM algorithm in a real-world application several things are needed.

• A robot that can be controlled.

• Sensors on the robot that can provide information about the surrounding environ-
ment.

• Processing unit to run the SLAM algorithm on.

• SLAM algorithm.

• Pathing and control.

These items can be divided into hardware: robot, sensors and processing unit and software:
control, pathing and SLAM algorithm.

2.1.1 Hardware
Robot
The robot is based on a hoverboard that uses a differential drive system to move. A differ-
ential drive system has two drive wheels that can move independently, this results in a very
maneuverable robot that requires two control signals, the speed of both wheels which can be
positive or negative. To keep balance two additional caster wheels are used which provide a
very stable platform. The hoverboard is made to move humans and is therefore capable of
moving a lot of weight, the rebuilt hoverboard has no problem driving heavy loads of around
75kg on flat ground. The robot with everything required attached is shown in Figure 2.1 Hov-
erboards also need very precise control and to achieve this they have wheel encoders that give
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2. Background

an accurate value of the position of the wheels, these sensors are crucial in this implementa-
tion to provide rough positioning. Brushless motors are built into the wheels, see Figure 2.2
and require a three-phase motor driver. An ODrive [2] controller is used for motor control
which has an easy-to-use Python library.

Figure 2.1: The robot, named "Oliver" by chatGPT.

Figure 2.2: Inside of a hoverboard wheel.
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2.1 Elements needed to perform SLAM

Sensors
The only sensor that is used except for the wheel encoders is a LIDAR, specifically an RPL-
IDAR A3, it is a relatively cheap 2D LIDAR that produces measurements in 360 degrees. It
is capable of producing a maximum of 16000 measurements per second and has a max range
of around 25 meters, depending on the surface it is measuring against.

Processing unit
The code runs on a Raspberry Pi 4B which is a very capable and popular single-board com-
puter. It interfaces with the LIDAR using two USB ports, one for power and one for com-
munication. The ODrive is controlled using another USB port.

2.1.2 Software
The map-based algorithm works in two stages, the exploration stage and the driving stage.
During the exploration the robot tries to build a complete map of the environment, when the
exploration is done it enters the driving stage where it can drive to any reachable point on
the map. The landmark-based algorithm does not explore the environment actively and only
conducts the driving stage. This means that it can follow a predetermined path consisting of
a sequence of points it should drive to, while doing this the robot will retain good positional
data using the SLAM algorithm.

SLAM
The SLAM algorithm needs several things to work at its best. Firstly a rough guess of the
robot’s posewill help the algorithm greatly, this guess is usually obtained by odometry. Odom-
etry is a process that can be used to estimate the motion of a robot by analyzing the move-
ments of the wheels or other sensors. For wheeled robots and especially differential drive
systems that don’t angle the wheels for steering this is a simple problem. It only requires
the distance traveled by both drive wheels to get the change of the pose. For landmark-based
SLAM there needs to be a system to get positions of landmarks, this can be done inmanyways
and the examples implemented in this work search for corners or walls. Map-based SLAM
does not utilize individual landmarks but instead does the localization by matching different
measurements, in this work the measurement matching is done by the iterative closest point
algorithm.

Pathing and control
The output from the SLAM algorithm is a map and pose estimate. These themselves do not
make the robot move, to do that a pathing algorithm in conjunction with a control system
is used. How the pathing should be performed during the map building depends on the
intended usage of the robot. It might have a requirement such as it should start close to one
point and explore outwards or have prioritized areas. In this thesis, this is done in different
ways for landmark-based SLAM and map-based SLAM. For the landmark-based alternative,
a precomputed path is used and no path planning algorithm or exploration is conducted, the
control algorithm simply follows the predetermined path. For the map-based alternative, the
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2. Background

robot explores actively with no predetermined path. This is done by setting the goal of the
pathing algorithm to be outside the map, this returns a path that is currently viable. If the
robot operates in a closed area it will find an obstacle somewhere along the path which makes
the path undrivable. When that happens a new path that leads outside the map is created.
When it is impossible to create a path having the goal outside the map the area is closed and
the robot enters the driving stage where it can drive between points.

A path can be described in many different ways, one common way is to have a sequence
of points, following the points one by one results in the robot driving along the path. Driving
from the current robot pose to another point can be accomplished in many different ways,
in this implementation a MPC (Model Predictive Controller) is used [17]. It looks a certain
number of points into the future and by testing different control signals in software it tries
to minimize a cost function. This cost function can be made to rely on many different factors
to tailor the controller to a specific use case.

2.2 Related work
2.2.1 Robot Motion Model
The robot has a differential drive system. Thismeans that it has two drivewheels that can spin
independently of each other, the kinematics are described in [16]. A movement of the robot
is recorded as a change in the distance traveled by one or both of the drive wheels, this change
can be positive or negative. If the robot starts and moves one meter forward and then takes
a measurement the wheel encoder position will be one meter and the change since the last
position one meter. If the robot then reverses one meter and takes a second measurement the
wheel encoder position will be 0 meters and the change since the last measurement negative
one meter.

Pose update
To update the pose of the robot all three pose attributes have to be updated, (x, y, θ). The pose
update begins by changing θ with equation 2.1. In the equation, the wheelbase is the width
between the contact patches for the drive wheels and ΔR and ΔL is the change in distance
traveled by the left and right wheels since the last pose update.

Δθ = tan(
ΔR − ΔL

wheelbase
) (2.1)

Next, the position is updated where the x and y values are updated with equations 2.3 and 2.4.
Here D is the total distance traveled by the center of the drive wheels on the robot calculated
with equation 2.2.

D =
ΔR + ΔL

2
(2.2)

Δx = D ∗ cos(θ) (2.3)

Δy = D ∗ sin(θ) (2.4)
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2.2 Related work

2.2.2 MPC
AMPCworks by associating different costs to different parameters and by searching, finding
the input signals that produce the lowest total cost [17]. The parameters associated with the
cost can include control signals, robot state and resulting motor speeds among others. In this
thesis, the function that searched for the input signals that produced the lowest cost is the
optimize.minimize function from the Python package Scipy [6].

2.2.3 Landmark-based strategies
Extended Kalman Filter
Even if EKF (Extended Kalman Filter) SLAM is not implemented it is included here to give
some reference as it is one of the oldest SLAMmethods. One of the first to implement SLAM
was Philippe Moutarlier and Raja Chatila in 1989 [14] who used the EKF method and at the
time achieved very promising results. One problem with EKF is the computational complex-
ity. Each update requires quadratic time regarding the number of landmarks, this is because
it links each landmark to all other landmarks. Linking all landmarks to each other might
also result in issues if a wrong association between a sensor reading and the corresponding
landmark is made as it might affect several other landmarks.

FastSLAM 1
FastSLAM 1 was presented by M. Montemerlo et al. in 2002 [12] and has several advantages
compared to older algorithms like EKF SLAM. Both algorithms use the same probabilistic
motion model described in Section 3.1.1 as well as the same measurement model described in
Section 3.2.4. The main difference is that EKF applies a filter to a high dimension problem
whereas FastSLAM 1 splits the filter into many 2x2 EKFs. This makes the computational
complexity much better, another major stability improvement is the use of a particle filter
described in Section 3.6. The particle filter makes it possible to model multi-modal distri-
butions compared to EKF which is limited to Gaussian distributions. An example of this is
shown in Figure 2.3 and 2.4 where z is the probability that the robot is at any (x,y) point.
With EKF it is only possible to model the single-modal distribution and not the multi-modal
distribution unless a very large variance is used to cover both peaks. With the introduced
particle filter FastSLAM 1 can handle both situations effectively by splitting the particles
between the peaks.

FastSLAM 2
FastSLAM 2 [13] is similar to FastSLAM 1 but with one important difference. FastSLAM
1 only uses the new odometry data when applying the particle filter and sampling the new
poses, FastSLAM 2 improves the sampling by accounting for the current sensor measure-
ments. This means that it can place more of the particles where the robot is most likely to be.
As a result, fewer particles can be used to achieve the same accuracy alternatively, the same
number of particles can be used to get higher accuracy.
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2. Background

Figure 2.3: Example of a multi-modal distribution.

Figure 2.4: Example of a single-modal distribution.
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2.2 Related work

2.2.4 ICP
The map-based SLAM algorithms use ICP (Iterative Closest Point) to match the LIDAR
scans against each other, ICP works iteratively with the following steps:

1. For each point in the source point cloud, find the closest point in the reference point
cloud.

2. Find a translation and rotation of the source that minimizes some function between
all matched points. A common function is the root mean square distance between the
points.

3. Transform the source according to the best translation and rotation.

4. Goto step 1 until a maximum number of iterations or no improvement is found.

The ICP function is not implemented from scratch but the function registration_icp from
the library open3D is used [19].

2.2.5 Particle filter
The FastSLAM implementations use a particle filter [13] where each particle represents a sim-
ulated robot that contains a pose and data regarding all landmarks. Since it is possible to have
any amount of these virtual robots probability distributions of any kind can be represented,
for example, the distribution shown in Figure 2.3 can be modeled with half of the particles
centered around each peak. A robot working on a 2D plane is also particularly fitting to use
with a particle filter since it has a low dimension of only three state variables, (x, y, θ). With
more dimensions, the number of particles required increases a lot. Disregarding the angle of
the robot it would require 10 000 particles to cover a 1m x 1m 2D world with a resolution of
1 cm. Doing the same for a 1m x 1m x 1m 3D world the number of particles increases by 100
times to 1 000 000. The particle filter works in three steps: sample from the proposal, create
importance weights and lastly, resample the particles and replace the unlikely particles with
more likely ones, this is similar to survival of the fittest.

2.2.6 Pathing algorithms
RRT*
RRT* is an evolution of RRT (Rapidly exploring Random Tree)[11]. Random points are
generated and paths are created by connecting points where the line between the points does
not pass through obstacles. Compared to RRT, RRT* adds a cost value equal to the distance
to its parent. When a new node is generated it is not only the closest existing node that is
checked but also all existing nodes inside a fixed radius. The connection is made with the
node that will yield the lowest total cost. RRT* tends towards the optimal path as the number
of points goes towards infinity. However, due to practical limitations, it will in most cases
not produce an optimal path. Also, due to the random nature of RRT* it does not guarantee
it will find a path even if one exists. In most cases, a path will be found but if the environment
contains long very narrow sections it might fail to find a path depending on the placement
of the random points.
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2. Background

A*
A* is an optimal search algorithm that searches by the "best-first" rule [9]. It will continue
iterating until it finds a path to the goal or until the queue of possible next steps is empty
and in that case, no path to the goal exists. During each iteration, the node with the lowest
total cost is chosen to be expanded.

Phi*
Phi* is a variant of A* and similarly finds one of the optimal paths [15]. One advantage Phi*
has compared to A* is that it has the functionality to replan an already planned path. This
makes Phi* better if frequent replanning is required.

2.3 Why Python?
Python is usually regarded as a slow language compared to other languages like C or C++.
Python is an interpreted and dynamically typed language, in short, this means that the source
code gets compiled as it is needed while running, slowing down execution. Furthermore, a
Python process can never run in more than one thread simultaneously, this can however be
bypassed by starting multiple different Python processes. The reason Python was chosen is
the huge support it has in the robotics and hardware community. For most robotic hardware
such as LIDARs, motors, cameras, PlayStation controllers etc. there exist easy-to-use Python
packages that can be installed by a package manager with one single command.
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Chapter 3

Implementation

3.1 Odometry

The first step to efficiently use SLAM algorithms is a rough guess of the pose. One common
way of acquiring this guess, and the one used in this work is to utilize wheel encoders and
odometry. The hoverboard motors have 30 permanent magnets with alternating polarity
which result in 15 pole pairs. Three hall effect sensors are used and each can output a 0 or a
1. The combined state for all three sensors repeats for each pole pair, two full revolutions are
shown in Figure 3.1. The states (0,0,0) and (1,1,1) are not used because of the placement of the
sensors. With six states per pole pair and 15 pole pairs the total amount of state changes per
wheel revolution is 15 ∗ 6 = 90. The wheel circumference is around 500 mm which means
that the encoder has a resolution of 500mm/90 = 5.6mm. Since the motor controller knows
the angular velocity of the wheels it can predict an even more accurate value. If the angular
velocity is 2π rad/s and the last encoder state change was 5ms ago the wheel should have
traveled 2π ∗ 5

1000 = 0.03rad after the state change. The Odrive controller can account for
this when calculating the distance traveled.

The pose is updated as described in Section 2.2.1. This has to be done frequently since it
assumes the robot has traveled linearly since the last update. If too much time passes between
pose updates the odometry information becomes inaccurate quickly. For example, the robot
might have a difference in encoder position of ΔR = 0.5 and ΔL = 0.5, if the maximum
speed of the robot is 1 m/s this movement can be done in 0.5 seconds. If both wheels have
the same speed throughout the movement the robot will travel straight forward. If the robot
starts with only turning the right wheel 0.5 meters and then stops the right wheel and lets
the left wheel travel 0.5 meters it will move diagonally forward and left.

To keep the accuracy of the odometry it is therefore very important to run the pose update
frequently compared to the maximum wheel velocity or acceleration.
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3. Implementation

Figure 3.1: Diagram of the hall sensor states that repeat for each pole
pair.

Wheel circumferences
To get good odometry results it is also important to know the diameter of the wheels accu-
rately since that value is used when translating the pulse readings from the wheel encoders
into the distance traveled by the wheels. To measure the wheel diameter the robot traveled
10 meters in a straight line and the wheel encoder positions were analyzed. The 10-meter dis-
tance was measured with both laser and measuring tape to get as accurate results as possible.
The test showed that the two wheels had circumferences of 501 mm and 496 mm.

Wheelbase
When there is a difference in the movement of the right and left wheels the heading of the
robot will change, the amount of this change depends not only on the distance traveled but
also on the wheelbase of the robot. The wheelbase is the distance between the contact patches
of the two drive wheels. It was measured by turning the robot around its axis ten times
and then ending in the same pose as it started. If the wheelbase value is correct the final
angle should be close to 0 or 2π. This test was conducted iteratively, if the heading after 10
revolutions was less than it should be the wheelbase value was decreased and if the heading
was too large the wheelbase value was increased. During each test, the robot spun 20πrad
and after the final iteration, the odometry had an error of 0.15rad or around 0.24% which
was considered good enough. It is important to conduct this test after the wheel diameters
are measured since the change in the forward distance only depends on the diameter of the
wheels but the change in angle during rotation depends on both the wheel diameters and the
wheelbase.
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3.2 LIDAR

3.1.1 Probabilistic motion model
The odometrywill contain some errors, the following factorsmight have a big or small impact
on the result depending on the environment.

• Wheel dimensions, The radius of the wheels is measured quite accurately but there will
always be some error. For example, the radius can increase by the wheels picking up
small rocks/dust or decrease as a cause of wheel wear.

• Wheelbase, The wheels are not perfectly perpendicular, this means that the wheelbase
will change a small amount over each revolution.

• Environment disturbances, The surface the robot drives on might not be perfect and
contains small debris that can make the wheels jump or move a small distance.

• Slipping, During acceleration or turning the wheels might slip in reference to the
ground, this means that the wheel encoders register the wrong movement.

To combat these inaccuracies a probabilistic motion model is applied to the odometry to
get a guess of not only the point where the robot is supposed to be but also a border saying
for example, with 95% confidence the robot is inside this area. This is done using Gaussian
noise which is added to the distance traveled by the wheels which is done independently for
all particles. The mean of the Gaussian is set to be 0 and the standard deviation is a base
value added with a factor of how long the wheel has traveled. The reason for the base value
is to represent the robot driving over something small and thus changing the position, this
might happen even if the robot drives a very short distance and that is the reason it is used.
The factor of the distance traveled is used since the longer the robot has traveled the bigger
the inaccuracies might be.

3.2 LIDAR
SLAM needs some way of sensing the environment it operates in, this thesis utilizes a LIDAR
to provide measurements of the surrounding area. It revolves at 10Hz and with each revo-
lution it outputs around 650 distance-bearing measurements which are combined into a list
before being sent to the rest of the program. The bearing for each measurement is acquired
by measuring the angle of the rotating part compared to the base of the LIDAR at the time
the laser pulse is sent.

To get the distance for a particular heading it uses triangulation, when the reflected laser
beam returns to the LIDAR it is focused on an image sensor. Assuming that the relative po-
sitions and angles of the laser diode, focusing lens and image sensor are known the reflection
angle and distance to the object can be calculated. A smaller angle means that the object is
further away, an example of how this works is shown in Figure 3.2.
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Figure 3.2: LIDAR triangulation principle, image courtesy of [1]

3.2.1 Precision
To investigate if the performance of the LIDAR would affect the result of the SLAM algo-
rithm a test was conducted where the LIDARmeasured the range to different materials. The
distance between the LIDAR and the test surface was 5 meters. That particular distance was
chosen since the robot operates indoors and 5 meters is a common distance the LIDAR will
see. The results are presented in Table 3.1.

Material Number of samples Mean Standard deviation
Black cotton 1975 5002.0 6.59

Brown cardboard 1678 5011.0 10.97
Unpainted plywood 2096 5005.2 8.70
Glossy white plywood 1372 5015.35 5.13

Table 3.1: LIDAR accuracy, mean and Std Dev is measured in mm.

3.2.2 Reflective surfaces
The LIDAR sensor works very well with both light and dark surfaces and the detection dis-
tance poses no limitation in the indoor environments the robot operates in. However, reflec-
tive surfaces pose a large problem for the LIDAR if they exist, when the laser beam is reflected
on a surface it will look like there is a copy of the room on the other side of the reflective
surface [18]. Mirrors and shiny screens are problematic in most angles, regular glass works
depending on the angle, if the laser beam goes directly towards the glass it goes through with-
out a problem but if the angle between the laser and glass gets too small the laser beam will
reflect and produce bad measurements.

The robot used is very low and thus the LIDAR is placed around 30 cm above the ground,
at this level very few reflective surfaces exist and since it operates in a testing environment
the surfaces that cause problems can be moved or covered. An example of this problem can
be seen in Figure 3.3, several observations have been done in the middle of the corridor’s open
space, these observations can be seen as very faded red areas. These are a result of the short
top-left wall being a glass door that reflected the laser beam. Small disturbances like this do
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not affect the algorithm since an obstacle needs to be seen several times, currently at least 5
to be considered as an obstacle.

Figure 3.3: Example of erroneous measurements in the open space.

3.2.3 Limitations with 2D vision
The RPLIDAR A3 can only measure in a plane. This results in a small amount of measure-
ments that have to be analyzed and reduce the computational complexity compared to a 3D
LIDAR but it also means that the robot is restricted to sensing in a plane around 30 cm
above the floor. Certain obstacles that are lower than this or obstacles that hang from the
ceiling will not be spotted. The localization algorithm has no problem with this as long as
sufficiently many landmarks are observable or in the case of the map-based SLAM, enough
distinct features exist in the room. The problem is that the robot can run into all obstacles
not seen in the plane of the LIDAR.

In Figure 3.4 an example measurement is shown that is the result of the scene in Figure
3.5. The v-shaped obstacle is described accurately by the lidar since it has the same geometry
independent of what height it is looked at. The measurement from the office chair marked
with "A" does not have the same property. The plane of the LIDAR only intersects the vertical
pole of the chair and as such the true width of the chair is not seen. If this data were to be
given to the robot it would assume it could drive right next to the measurement which would
result in the robot driving into the wheels of the chair, this will be referenced as the office-
chair problem. In the space the robot normally operates in almost all obstacles such as shelves,
desks, walls or trash cans have the same geometry the lowest 40 cm and thus pose no problems
for the robot. However, there are plenty of office chairs and these have to be moved out of
the way to avoid crashes.
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Figure 3.4: LIDAR scan of the scene in Figure 3.5 marked with dif-
ferent kinds of landmarks. The red dot is the LIDAR position.

Figure 3.5: Real-world scene that resulted in the measurement
shown in Figure 3.4
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3.2.4 Measurement model
Similarly to the motion the sensor measurements might have some noise and do not have
to be perfect. In the landmark-based SLAM variants, the measurements of a landmark are
given an EKF filter for the position. In the map-based SLAM algorithm, the raw data from
the LIDAR is used. This works since LIDARs are very accurate and the same reasoning would
probably not work if another sensor with a lot of noise was used.

3.3 Landmark extraction
In landmark-based SLAM, landmarks have to be extracted from the sensor data. For some-
thing to be considered a good landmark, it should fulfill the following requirements.

• Easy to spot. If the landmark is in range of the sensor it should be detected, there
should never be a landmark that is only seen once.

• Differentiable. It should be possible to differentiate different landmarks from each
other, close landmarks might be mixed up.

• Single position. All landmarks should only have one position.

• Stationary. If a landmark is moved it will influence the SLAM algorithm, a slow-
moving landmark might "pull" the robot pose with it and cause large errors.

• Enough landmarks in the environment. The more landmarks re-observed at any given
time the better the pose estimate. The environment should contain enough landmarks
for the robot to get a good pose estimate.

3.3.1 Landmark strategies
As long as the previous requirements are fulfilled a landmark can have many different shapes.
One additional soft requirement is that the amount of processing power needed to extract
the landmarks from the sensor data should not be too high. The following types of landmarks
were thought of as fulfilling all requirements in an indoor environment:

Spike landmarks
Spike landmarks consist of something small that stands out compared to the rest of the en-
vironment. Examples of common indoor spike landmarks could be for example table legs or
the legs of chairs. Using a ranging sensor such as a LIDAR these landmarks can be spotted
by looking for a small region with some distance d to the LIDAR. Both sides of this region
should contain some amount of space where all points are significantly further away from
the lidar compared to d. An example of a spike landmark is shown in Figure 3.4 marked with
"A". Here it is possible to see that the blue dot marked with A has no measurements close
and is relatively small, less than 10 cm. This would be a good geometry for a landmark if
spike landmarks were used. The advantages of spike landmarks are that they can usually be
seen from a large variety of angles and that they are easy to find in the measurements. This
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approach for landmark detection was not chosen mainly because the robot will be operated
around humans. A human leg closely resembles a spike landmark and that might violate the
requirement that landmarks should be stationary. Another weak point of spike landmarks is
that the edge of a flat surface will look like a spike.

Wall landmarks
Wall landmarks consist of large flat areas, indoors these mainly come from walls or furniture
with flat portions. A good landmark should only have one single position as described earlier.
If the whole length of a wall can be seen in one measurement the landmark position can be
decided as the middle of the wall. If only part of the wall can be seen then there is an issue.
If the position is set as the middle of the current observed wall then the landmark position
can jump around depending on what part of the wall is visible. If the edge of a wall is seen
this can be used as a landmark. Advantages with wall landmarks include that they are usually
plentiful in indoor environments and even if they are a bit more complicated to extract from
the data compared with spike landmarks it is still not very hard. The implemented wall
landmark extraction algorithm is described in Algorithm 1. In Figure 3.4 two wall landmarks
are present, one of them is marked with "B". In this example, the whole length of the wall
can be seen and thus a single position can be decided, therefore this would work as a good
landmark.

Corner landmarks
Corner landmarks consist of two connected flat surfaces with an angle between them. It is
similar to one of the cases in wall landmarks where the edge of the wall is used but adds
the additional requirement that it should form an angle with another connected flat surface.
This also means that it is computationally more expensive to find corner landmarks as wall
landmarks have to be found first and then also combined into corners. In practice, it works
by extracting all segments that can be approximated as lines and that have a minimum real-
world length and a minimum amount of laser measurements. When all line segments have
been extracted it loops over the segments and tries to find corners in connected segments.
Not all combinations of line segment pairs have to be checked because of the structure of
the measurements. It is only segments that are connected that are interesting and segments
can only be connected if they follow each other directly in the sequence. Since the LIDAR
outputs data in order only the following segment to the current has to be checked for the
angle, the algorithm implemented is shown in Algorithm 2. A corner landmark is shown in
Figure 3.4 marked with "C". To get C it is required to see both lines that create the corner
but the whole length of the lines does not have to be seen.

This is the technique chosen, even if it requires more processing power the advantages of
stable and correct landmark positions outweigh the additional processing time.
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Algorithm 1 Line segment extraction algorithm

Require: measurements, min_measurements, min_distance
walls← ∅
for i in measurements do

j ← i + min_measurements
while distance(i, j) < min_distance do

j← j + 1
end while
line← (i, j)
if distance(k, line) < ε ∀ k ∈ {i... j} then

walls← walls + (i, j)
end if

end for

Algorithm 2 Corner landmark extraction algorithm.

Require: line_segments, min_angle max_angle
corners← ∅
for i in line_segments do

ls_1← i − 1
ls_2← i
if max_angle > angle(ls_1, ls_2) > min_angle and

closest_distance(ls_1, ls_2) < ε then
corners← corners + corner(ls_1, ls_2)

end if
end for
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3.4 Landmark SLAM
There exist several different landmark-based SLAM algorithms. To begin both FastSLAM
and FastSLAM 2 described in Section 2.2.3 were implemented and tested with the robot.

3.4.1 SimpleSLAM
During the FastSLAM implementation, an effort was made to make it require very little
processing power. This removed almost all safety mechanisms of FastSLAM but resulted
in a functioning SLAM algorithm with very low CPU requirements. Like the FastSLAM
implementations, it uses corner landmarks but that is almost the only similarity. When one
landmark has been found it will never be moved or removed. Landmark association works by
checking if any existing landmark is within 20 cm of the observation. If that is the case then
it is associated with the observation, if no landmark is close a new landmark is created. To
perform pose correction an average is calculated between all observation-landmark pairs, if
one association suggests that the x error is 5 cm and another 10 cm the correction will be the
mean, 7.5 cm. SimpleSLAM also removes the particle filter, which means that it only models
one belief of where the robot is further increasing the risk of errors.

3.5 Map-based SLAM
In some situations, a completemap of the environment is needed and in these cases, landmark-
based SLAM is suboptimal since it only keeps track of the pose and some amount of land-
marks. Landmark SLAM can be used for mapping purposes but needs to be combined with
another program that uses the pose and sensor measurements to create the map and in that
case, both algorithms have to be well-synced to get good results. Another solution is scan
matching which is the approach used in this work. The goal of scan matching is to take at
least two different datasets that have some common features andmerge them into one unified
dataset. This is similar to how phones create panorama photos by stitching together images
that are slightly overlapping. In this thesis, the goal is not to match images but instead point
clouds or sets of points. This is easier thanmatching images and there exist several algorithms
to do this, one popular variant and the one used in this work is ICP described in Section 2.2.4.

3.5.1 Scan matching adaptations
The scan matching implementation works by converting the (distance, angle) measurements
to x and y coordinates using the believed robot pose. The new cartesian coordinates are used
as input to the ICP function together with the previous measurements. The ICP function
returns a transformation matrix that says how the new measurements should be translated
and rotated to match the old measurements the best. The transformation matrix is used
for two things, firstly it is used to move the source point cloud to match the reference and
secondly, it is used to correct the pose of the robot. When the source has been translated the
points are used to update the environment map. The world is discretized into 5x5 cm chunks
and it is only the first point that is seen in each chunk that is saved in the reference point
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cloud. A smaller chunk size means that more memory and CPU are used but also allows
for more precise mapping. To present certainty of the maps each chunk saves a number
corresponding to the number of times it has had an observation inside it, this value is used
in the visual representation where each chunk becomes a pixel and gets a brighter red the
more times it has been seen. The scan matching creates two maps, one is only used for visual
data presentation where only the chunks that have been seen are incremented. The other
map that is used by the pathing algorithm increments all chunks that are in a radius of 30
cm. This is done because the pathing algorithm treats the robot as a point but since it has a
size it cannot drive directly next to an obstacle. The 30 cm border makes sure the robot can
drive everywhere regarded as free space by the map. The difference between the two maps
can be seen in the results in Figure 4.8 and 4.9.

3.5.2 Dynamic map
When the robot drives along a predetermined path in map-based SLAM it can handle some
amount of dynamic obstacles for example humans as the predetermined path can go through
the obstacles created by the disturbances. However, dynamic obstacles might lead to difficul-
ties in the scan matching ICP algorithm as each observation of a dynamic obstacle will result
in a point being added to the map. If too many dynamic obstacles are observed at different
spots the reference point cloud will get cluttered with observations of dynamic obstacles.
When the ICP algorithm tries to match the source against this reference the random obser-
vations might affect the algorithm andmake it output the wrong transformation matrix. The
robot has some resilience against this as the ICP algorithm outputs an accuracy value, if this
is too low, no points are added to the reference. However, if this value is below the threshold
five times in a row the robot believes it has to inaccurate pose data and stops execution and
has to be restarted.

When the robot explores the environment and runs the pathing algorithm itself dynamic
obstacles will cause problems. A human walking by the robot will create a virtual wall, un-
passable for the robot and as no obstacles are removed the wall will stay until the map is
reset.

3.5.3 Map data structure
The map is represented by a matrix where each value is the number of times that discretized
5x5 cm chunk has been seen. The map matrix used for all experiments has a size of 600x600,
together with a chunk size of 5 cm this results in a usable map of 30x30 m which was just
enough to cover the testing environment. Memory wise a map of this size poses no problem
even if it unnecessarily uses 64bit values, the total memory requirement of 600 ∗ 600 ∗ 8B =
2.88MB is no challenge for most Linux-based computers.

3.6 Particle filter
The pose estimate is just what it sounds like, an estimate that has some levels of inaccuracies
and given enough time these minor inaccuracies might sum up to a large error. These inac-
curacies can be handled in several different ways, a part of the solution used in FastSLAM 1
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and 2 is a particle-based recursive Bayesian estimation. The bayes filter gives the probability
of the robot being in a certain pose given the previous pose as well as odometry and LIDAR
measurements. What makes the particle filter perform well is that this probability is calcu-
lated individually for each of the particles, the implementation in this thesis used between
ten and fifty particles. Each particle contains the believed pose and after each movement the
motion model described in Section 3.1.1 is applied equally to all particles. This means that all
particles get Gaussian noise added individually to the movement. In the end, the probabili-
ties for all of the particles are used as weights to select which particle the robot should base
its pose from. This means that there will be a high likelihood of the robot basing its pose on
a particle with correct pose data.

3.6.1 Landmark association
All particles get the same observations from the landmark extraction algorithm that has pro-
cessed the data from the LIDAR, the observations come in the form (distance, angle). Each
particle has a list of all previously seen landmarks. To associate an observation with one of
these landmarks the probability that the observation corresponds to each landmark is cal-
culated. If the largest probability is bigger than some set value, for example, 0.001% the
observation and landmark corresponding to the probability is matched. If the largest prob-
ability is lower than the setpoint a new landmark is created. To get these probabilities it is
assumed that the observations are represented by a multivariate normal distribution. Each
landmark that is saved has a mean position and two covariance values for distance and angle.
The covariance has a starting value when a landmark is created and the mean is set as the
current landmark position, both values are then corrected each time the landmark is seen
again. To get the probability during observation-landmark matching Equation 3.1 is used,
given the mean μ, covariance Σ and observation z calculate the probability p.

N(p) =
1√

2π|Σ| exp
{
−1

2
(z − μ)T Σ−1

k (z − μ)
}

(3.1)

3.6.2 Importance weights
When landmark association has been performed each observation is mapped to a landmark
and the probability calculated with Equation 3.1 is saved with the matching. The final impor-
tanceweight for the particle is the product of all probabilities from the landmark-observation
matchings, in the case where a new landmark was created a fixed small value is used. In the
resampling step, this small value from new landmarks will favor particles that did not create
any new landmarks. This is used to prevent several landmarks from being created for a single
real-world landmark.

3.6.3 Resampling
When all particles have importance weights resampling is conducted to reduce the amount of
"bad" particles and keep the "good" particles. The resampling works according to the pseudo-
code in Algorithm 3.
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Algorithm 3 Resampling algorithm

Require: particles
new_particles← ∅
weights← weights of particles
s← sum(weights)
scaled_weights← weights/s
for particle in particles do

i ← select i with probability scaled_weightsi
new_particles← new_particles + particlesi

end for
particles← new_particles

3.7 Pathing
During both the exploring phase and the final phase in the map-based SLAM a pathing al-
gorithm is needed to generate frequent waypoints the robot should drive towards. Several
algorithms were considered and the ones that were evaluated were A*, A*+ (A* with an ad-
ditional obstacle penalty), RRT* and Phi*. The base code for both A* implementations was
created using chatGPT but had to be heavily modified to work, the additional obstacle cost
was written totally by the author. The RRT*[5] and Phi*[3] were taken from git.

3.7.1 A*
A* searches by expanding the node with the lowest cost. The expansion is done by assigning
the nodes directly next to the current node with the same cost +1 and the diagonal neighbors
add to the cost similarly but have the constant

√
2 instead of 1. A node always keeps the

lowest cost, if it receives a lower cost than what it currently has the cost and its place in the
priority queue are updated. Since the algorithm uses the best-first rule one of the optimal
paths will be discovered the first time the goal is reached, when that happens the search stops.

3.7.2 A*+
Regular A* works well but it tends to path close to obstacles which sometimes results in the
robot bumping into the obstacles. The boundary generated in the map is a hard limit, no
path can be closer than 30 cm to an obstacle. What the "+" in A*+ has compared to regular
A* is an additional cost that increases as the distance to an obstacle decreases. This is a soft
limit and even if it results in a very high cost the robot can path there, this helps with regular
navigation and for example, the office-chair problem described in Section 3.2.3 as the robot
will try to keep additional distance to obstacles. This could also be achieved by increasing
the padding when building the pathing map but that would prevent the robot from going
through narrow gaps, this solution tries to keep a large distance to obstacles but if required
it can path close to obstacles.
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A*+ cost matrix
The obstacle costmatrix inA*+ needs to have an odd size to get a center element, the different
sizes that were tried are 7x7, 9x9 and 11x11. A center element is needed since the position
of the obstacle has to be in one element which should be in the middle of the matrix. Each
position in the matrix is a 5 cm chunk in the real world which means that the real-world
size of the matrix is between 35 cm and 55 cm. The goal of the matrix is to have positions
close to the center have a high cost and further away from the center a low cost, this is to
encourage the pathing algorithm to place the path far away from obstacles. This is achieved
by the following method. All values in the matrix get a starting value of the square of half the

size rounded up, for a 7x7 matrix this means
⌈

7
2

⌉2
= 16. All values are then subtracted with

the square of the distance between the value and the center element. The final 7x7 distance
matrix will look like Figure 3.6.

To get the map that is used as input to the pathing algorithm each obstacle node in the
map will apply the cost matrix to its neighbors with the obstacle node itself in the center of
the matrix. This works in a maximum value function and not additive. If a node is 3 nodes
from one obstacle, corresponding to a cost value of

⌈
7
2

⌉2 − 32 = 7 and right next to another

obstacle, corresponding to
⌈

7
2

⌉2 − 12 = 15 it will take the biggest number being 15 without
any addition.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 6 7 6 3 0
3 8 11 12 11 8 3
6 11 14 15 14 11 6
7 12 15 16 15 12 7
6 11 14 15 14 11 6
3 8 11 12 11 8 3
0 3 6 7 6 3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3.6: Distance cost matrix with a size of 7x7.

3.7.3 Path replanning
In an early version, the replanning of the path was done as soon as the current path was
untraversable which had two negative consequences. Firstly it meant that the whole path
had to be validated each iteration of the SLAM algorithm which was done by iterating over
all points in the path and checking if they were free in the map. This rechecking did not take
considerable resources from the processor as the paths tested were short, usually no longer
than 100-200 points but required some processing time. The second thing that was far more
limiting was the time required to create a new path. As the robot drove it would somewhere
in the distance notice that the path collided with an obstacle, this would trigger the path
replanning.

A* is a deterministic pathing algorithm which means that the same map will give the
same output path. If the map is only slightly changed it is highly likely that the path will
also only have minor differences. What this meant for the robot was that the replanning
only moved the path a small amount such that it did not collide with the new obstacle. This
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worked but when the robot moved during the next SLAM iteration it would discover more
of the obstacle and have to do the whole process again. In short, the robot saw an obstacle,
replanned, drove for 0.5s, saw more of the obstacle, replanned again etc.

The solution was simple, instead of checking the whole path it currently only checks the
first two meters. This reduced the number of points in the path that had to be validated if
they were inside an obstacle but also, more importantly when the robot is within 2 meters of
an obstacle it is pretty certain about its geometry. Therefore the frequent replanning problem
disappeared as it would map much more of the area before replanning.

3.8 MPC controller
When a path is produced the robot has to have some way of following it. This is done using
a MPC described in Section 2.2.2.

In this work two parameters affect the cost:

• Input signals consisting of forward velocity and angular velocity.

• Pose difference between the predicted robot pose after the movement and the goal
point.

The pose difference cost is the square sum of the difference in x, y and θ. The points from
the pathing algorithm only contain x and y, the θ value is produced by the MPC controller
and represents the angle between the current point and the next point in the path. The
addition of the θ value helps the robot set up the path for upcoming points and results in the
robot handling some situations with sharp turns better. The maximum velocity of the robot
is 200 mm/s and that value is set by the rules in the MPC controller.

3.8.1 Path smoothing
The controller drives towards a point and switches to the next point when it is relatively close,
the current value used is 15 cm. With a value too small the robot might miss a point and then
have to stop or reverse to get within the limit. A large value means that the controller will
jump to the next point early resulting in an inaccurate path. Because the controller jumps to
the next point before the current is reached the actual path will cut all corners slightly. In
a square, the corners will be cut and it will path better on the straight lines. In a circle that
can be seen as a continuous corner, it will drive in a circle with a slightly smaller diameter.

3.8.2 Crash detection
To prevent the controller from selecting control signals that would result in the robot crash-
ing into an obstacle a function was implemented that checked if any part of the robot would
be too close, around 5 cm from an obstacle. If this was the case that particular control signal
would get a very large additional cost to prevent it from being chosen. This approach is not
used currently since the A*+ pathing achieved the same results at the same time as the path
was possible to follow more accurately.
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Chapter 4

Results

4.1 Path result
4.1.1 Example paths
Example paths of all algorithms are presented in Figure 4.1, 4.2, 4.3 and 4.4. To minimize the
risk of crashes the robot should stay far away from obstacles. As can be seen in the figures
the pathing algorithm that stayed the furthest distance away from obstacles is A*+ and that
is the reason it was chosen for the robot and subsequent execution time tests.
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Figure 4.1: A* pathing, the path is the green line that begins in the
center of the figure and ends in the top left corner.

Figure 4.2: A*+ pathing with additional obstacle avoidance, the path
is the green line that begins in the center of the figure and ends in
the top left corner.
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Figure 4.3: Phi* pathing, the path is the green line that begins in the
center of the figure and ends in the top left corner.

Figure 4.4: RRT* pathing, the path is the green line that begins in
the center of the figure and ends in the top left corner.
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4.1.2 A*+
To test the execution time of A*+ it was used to create paths between different points in
an already built map. To ensure stability and prevent the temperature of the processor to
affect the results all tests were done with the CPU of the Raspberry Pi locked at 1000MHz,
the regular operating frequency is 1500MHz. Another thing that could affect the results is
the CPU scheduler pausing the execution of the algorithm to run something else. Since the
processor has 4 cores and only one was used to run the algorithm there should be other lesser-
used cores that the scheduler could place other processes on. For each set of two points the
algorithm was run ten times and all times were saved, the results from this are presented in
Table 4.1. The map used was one of the maps built during the SLAM algorithm test, shown
in Figure 4.5. The points the pathing algorithm used is marked with a white dot in a green
circle. From the top left to the bottom right the following positions are marked on the map:
(200,200), (300,300), (320, 340) and (350, 400). One of the points, (0,0) is outside the visible
figure and is used as an unreachable path since the perimeter is closed. This is used as a
worst-case situation for this specific map.

The additional obstacle avoidance helps greatly with the pathing of the robot but the
map with applied cost matrices is re-computed each time the pathing algorithm runs. The
runtime required to create this map for two different environments is displayed in Table 4.2.
The original map for the two environments are shown in Figure 4.8 and 4.9.

As with the previous test the Raspberry Pi was running at 1000MHz and the test was
done ten times for each map. The reason why the larger environment with more obstacle
points requires more time to create the map is that for each obstacle point the cost matrix in
Figure 3.6 has to be applied. More points results in the cost matrix having to be applied more
times. The large map has around 6 times more points compared to the small map and runs
5 times slower. The expectation was that the increase in time should be linear compared to
the number of obstacle points and this is almost the case for these two samples.

From To Mean time Max time Min time
(350, 400) (200, 200) 4.37 4.43 4.34
(300, 300) (200, 200) 4.13 4.20 4.11
(300, 300) (320, 340) 1.72 1.72 1.70
(300, 300) (0, 0) 4.72 4.82 4.69

Table 4.1: Times in seconds required to run A*+ between two points.

Number of obstacle points Mean time Max time Min time
6484 0.33 0.34 0.33
39847 1.70 1.72 1.69

Table 4.2: Times in seconds required to calculate the distance cost
matrix used in A*+.
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4.2 Positional accuracy

Figure 4.5: Map used for the pathing algorithm test, the white dots
in green circles are the different positions the algorithm was run
through.

4.2 Positional accuracy
To test the positional accuracy over time and the ability to follow a path the following test
was conducted. The robot drove 10 laps in a circle with a diameter of 2 meters, in total
the robot traveled around 63 meters. To introduce some controlled inaccuracies a flat cable
was taped to the ground on the opposite side to the start/finish line, the cable height was
3.5 mm and width around 5.5 mm. Each time the robot passed the start it would stop for 5
seconds and the (x,y) error was recorded by taking a picture from above, an example image
is presented in Figure 4.6.

Figure 4.6: Example picture used to analyze the positional error.
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Map-based SLAM
The results for map-based SLAM are presented in Table 4.3.

Lap X error Y error
1 51.7 36.6
2 4.3 35.9
3 -40.2 43.1
4 33.0 43.8
5 -19.4 48.1
6 -34.4 43.1
7 33.0 45.9
8 -21.5 35.9
9 45.2 50.9
10 36.6 44.5

Table 4.3: Positional error in mm when following a predetermined
path using map-based SLAM.

SimpleSLAM
The results for SimpleSLAM are presented in Table 4.4.

Lap X error Y error
1 -19.7 56.6
2 -4.3 48.0
3 -63.4 50.9
4 -33.1 54.7
5 -26.9 54.7
6 -29.3 53.8
7 -44.6 46.1
8 -40.8 37.9
9 -33.1 62.4
10 -34.6 52.8

Table 4.4: Positional error in mm when following a predetermined
path using SimpleSLAM.
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FastSLAM 2
The results for FastSLAM 2 are presented in Table 4.5.

Lap X error Y error
1 -71.9 77.0
2 -41.8 63.8
3 -34.2 47.4
4 -9.2 44.9
5 -54.6 50.5
6 -34.7 57.1
7 -48.5 44.4
8 -32.1 45.4
9 -6.1 38.3
10 -39.8 31.8

Table 4.5: Positional error in mm when following a predetermined
path using FastSLAM 2.

Pure odometry
The SLAM algorithm is used to combat the inaccuracies from the odometry. In Table 4.6 the
results from the pathing accuracy test using only odometry are presented. It does not have 10
rows since the robot position ended outside the measuring area, in lap 4 parts of the robot
were outside the area but enough was visible to determine a position.

Lap X error Y error
1 -140.1 89.3
2 -131.7 92.4
3 -155.5 93.9
4 -304.9 241.8

Table 4.6: Positional error in mm when following a predetermined
path using only odometry.

4.2.1 Method comparison
In Table 4.7 results from all methods in the path accuracy tests are shown, if the reference
using only odometry had run all ten laps the result for that method would probably be much
worse.

One common thing among the SLAM algorithms is a relatively large y error that always
takes a positive value. This is probably a result of the MPC controller, as discussed in Section
3.8.1, the controller will cut corners. The pure odometry has a large error in lap 1 then similar
results in laps 1-3 and then again a large error increase during lap 4. This behavior is expected
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as the odometry can be very accurate if the robot isn’t disturbed, the first time it passed the
cable the wheels probably slipped causing the error in lap 1, the following two laps had a very
similar result likely driving over the cable with very little wheel slip. During the last recorded
lap, the wheels probably slipped again causing the increased error between lap 3 and 4.

Method Mean X-error Largest X-error Mean Y-error Largest Y-error
Odometry -183.1 -304.9 129.4 241.8

Scan matching 8.8 51.7 42.8 50.9
SimpleSLAM -33.0 -63.4 51.8 62.4
FastSLAM 2 -37.3 -71.9 50.1 77.0

Table 4.7: Comparison of different SLAM methods, units in mm.

4.3 Map creation in a static environment
To test the pathing and map generation the robot explored the same environment 20 times.
It returned to the start position when it had created the map to such an extent that the robot
could not exit the perimeter. It started in the same pose for each run and the environment
stayed the same during the whole test. The robot pose combined with a timestamp was saved
for each loop of the SLAM algorithm which ran at 2Hz and the final map was saved at the
end of the run. An exception to the 2Hz frequency was during the re-planning of the path
once a path turned out to be blocked, during re-planning the robot would stop and wait until
the next path was done. The results from the test are presented in Table 4.8. The path count
and path delay include the initial path as well as the final path back to the start position,
the number of re-plannings is therefore two less than the path count. The total time was
measured as the time between the first loop of the SLAM algorithm until the robot had
completed the map and was at the start position, this time includes both the driving time
and path re-planning time. The distance is the number of meters traveled during the whole
run. During all 20 runs, the robot had a path very similar to one of five different alternatives
that are shown in Figure 4.7

Method Path count Pathing delay Total time Distance Avg speed
Mean 6.05 15.32s 224.80s 38.505m 0.184m/s
Max 7 19.08s 263.13s 46.026m 0.192m/s
Min 5 13.18s 201.09s 34.382m 0.162m/s

Table 4.8: Results from the 20 runs of the map-based SLAM algo-
rithm.
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12 runs had a path similar to this. 4 runs had a path similar to this.

1 run had this path. 1 run had this path.

2 runs had a path similar to this.

Figure 4.7: The five different paths that occurred during the scan
matching SLAM test. The path taken is the green dots.
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Figure 4.8: Example map only used for visual representation, each
pixel is a 5x5 cm chunk and brighter red means that chunk has been
seen more times.

Figure 4.9: Example map used by the pathing algorithm, each pixel
is a 5x5 cm chunk and brighter red means that chunk has been seen
more times.
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4.4 Accuracy of the generated map

4.4 Accuracy of the generated map
To test the accuracy of the generatedmap the robot explored a larger part of the environment,
the generated map is shown in Figure 4.8. The map used for the pathing algorithm with
padded obstacles from the same run is shown in figure 4.9. Some distances in the generated
map were analyzed and compared to the real world, the distances measured are shown in
Figure 4.10 and the results are presented in Table 4.9. The distances in the generated map are
close to the real-world measurement.

D0 D1 D2 D3 D4
Generated map 26.61 1.85 1.85 5.82 9.30

Real word 26.65 1.98 1.97 5.95 9.39

Table 4.9: Map distances in meters compared to the real world.

Figure 4.10: Distances compared to the real world.

4.5 CPU requirements
To test the processor requirements of the SLAM algorithms the robot was started as usual
but the execution times were recorded during 50 seconds or 100 loops of the algorithm. The
measurements started when the robot had been running for 10 seconds, the results are pre-
sented in Table 4.10 and all values are in ms. The results for the landmark-based methods,
FastSLAM 2 and SimpleSLAM are normalized to only one landmark observation, the pro-
gram has linear time complexity regarding the number of landmarks and the results would
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vary a lot if the results were not normalized. The number of landmarks varied between two
and four, if four landmarks were observed and it took 0.2s the result was divided by four
which gives 0.05s.

The other processor-intensive parts are the LIDAR data processing and MPC, results
from these are presented in Table 4.11. Notice that the "Read LIDAR data" method is in %,
this is the code that reads the data from the LIDAR and sends the data in chunks to the rest
of the program. The reason the result is in % is that the LIDAR runs as a generator yielding
a reading once it is available and blocking the rest of the time. Starting and stopping the
timer for each of the 6500 values being generated each second resulted in strange results and
thus the processor utilization was used instead. This should work almost equally well since
the LIDAR function runs in its own Python process and the CPU utilization is only reading
from that individual process.

The results presented in Table 4.10 and 4.11 are not the only code that is being run but it
is a clear majority as only small auxiliary tasks are being run outside these functions.

Algorithm Mean Min Max Std dev
Scan matching 53.1 32.7 84.6 14.9
FastSLAM 2 53.4 47.8 76.1 6.1
SimpleSLAM 3.8 3.0 8.3 0.7

Table 4.10: Execution times in ms of different SLAM algorithms.

Function Mean Min Max Std dev
MPC 65ms 8ms 104ms 16ms

Corner extraction 24ms 20ms 36ms 3ms
Read LIDAR data 74.2% 66.7% 80.0% 4.15%

Table 4.11: Execution time in ms or processor requirements for data
processing.
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Chapter 5

Summary

5.1 Limitations
In the content of this work, some areas were not thoroughly explored and some pre-existing
solutions were used.

Loop closure
The map generation can handle inaccuracies in the believed pose of the robot when gen-
erating the map, this works as long as an area that is correctly mapped is visited relatively
frequently. What the robot currently can’t do is known as loop closure. If it was to drive in
a big loop, for example, a circle with a large diameter the small errors would add up. When
the robot returned to the start the error would be too large to create a cohesive map. Finding
when a loop closure should be performed and then correcting the whole map is very difficult
and not done in this work, an example implementation is shown in [10].

Obstacle removal
The map-based SLAM method implemented does not have the feature to remove obstacles
once they have been observed, this is because it is assumed the environment is static during
mapping. Using ray casting obstacle removal could be done, this would however require a lot
of processing power. This would make it possible to handle dynamic obstacles and remove
erroneous observations, usually caused by reflective surfaces.

Incomplete maps
During the self-exploring stage, the robot will continue mapping until it can’t path out to
infinity. In some situations, this behavior will result in an incomplete map, for example, if
the room has semi-closed spaces inside the perimeter. An example of this is shown in Figure
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Figure 5.1: Example room geometry where the lines in red would not
get mapped.

5.1, here the robot would map the whole exterior rectangle and on the way probably map the
inner black lines as well. It would not on its own drive into the inner shape and thus the lines
in red would not be mapped. It is possible to run the mapping functionality when the robot
enters the drive-to-point stage. If the robot would try to go to a point in the inner shape the
lines in red would be correctly mapped and no problem should occur.

Map data struture
The use of a matrix with a fixed size as a map is not ideal for an exploring robot where the
size of the map is unknown. An effort was made to make the map much more efficient.
In this implementation, the map was divided into submaps of 1x1 m, each containing 400
5x5 cm chunks requiring 3.2kB of memory for one submap. All submaps got a unique key
of two values (x,y) where the coordinate system was aligned with the robot pose but scaled
differently. The robot would start in the middle of submap (0,0) and as an example, moving
forward one meter would result in it being in the middle of submap (1,0). The unique key of
the submap was used in a hashmap to efficiently find the submaps. This system worked and a
pre-recordedmap could be converted into this muchmore space-efficient map and then back
to the original form. The reason this was not used was the additional complexity it brought
to many parts of the program especially the pathing and scan-matching. If the robot would
operate in a bigger space where memory constraints would pose a problem this could be a
good solution.

Pathing and replanning
Currently, A*+ is used instead of Phi* which is similar but optimized for replanning. The
open-source Phi* implementation ran slowly compared to the A*+ implementation and it
did not have the required obstacle cost matrix functionality that prevented crashes. Due to
the time requirements of optimizing and implementing the obstacle cost matrix for Phi* a
decision was made to use A*+ since it ran fast enough. Phi* with the obstacle cost matrix
would produce similar results and require less time during replanning.
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Pose accuracy recording
When analyzing the positional error a picture was taken from above the robot, the camera
was placed relatively high, around 2.5 meters above the robot. The placement of the camera
gave a relatively good view of the robot but the actual position where the wheels meet the
ground could not be seen. The results are therefore not perfect but the accuracy should be
within 1-2 cm.

LIDAR test setup errors
The test setup for the LIDAR accuracy was not perfect and did have an impact on the result.
Firstly the 5 meter distance was measured with another laser distance meter, Bosch DLE50
Pro which has an accuracy of +-3 mm. Secondly, the materials that were measured had a
width of around 50 cm where only the middle of the material was 5 meters from the LIDAR.
This means that the edges had a longer distance to the LIDAR, Pythagoras theorem gives√

50002 + 2502 = 5006. This difference between the center and edges of the material raised
the mean and standard deviation.

5.2 Conclusions
RQ1: Is it possible to run a SLAM algorithm implemented in Python with the
limited computing power a single board computer like a Raspberry Pi has?

Several different SLAM algorithms were implemented and tested successfully. The com-
mon thing among these is that LIDAR data processing requires the most CPU time, as this
is easy to run in a separate process it poses no limitation on the program. The rest of the pro-
gram required a total of around 0.1 to 0.4 seconds on one core depending on SLAM method
and the number of observed landmarks, this makes it possible to run at the wanted frequency
of 2Hz while leaving two out of four cores unused. If the LIDAR data could be handled in a
more efficient way the program would only require one of the four cores on the RPI. Being
able to run the program on a small and cheap single-board computer that requires very little
space and has a low power consumption is important. One of the reasons for this is that it
makes it possible to deploy to many different platforms while not requiring large batteries.

RQ2: How accurate positioning can be achieved?
The positional accuracywas in the range of 5-10 cm for both themap-based and landmark-

based methods. The error is due to three things:

• Map resolution. The discretized grid map will hide some details in the data from the
LIDAR, a measurement in a corner of a 5x5 cm chunk will result in a point 5 ∗ √2 cm
away in the same chunk also being treated as occupied space. This means that the free
spaces will be slightly smaller in the generatedmap compared to the real world. The ef-
fect of this can be reduced by increasing the resolution of themap. The landmark-based
methods do not use a discretized map, therefore this does not affect those methods.

• SLAM algorithm inaccuracies. The SLAM algorithms are not perfect, they use prob-
abilities and cost functions to decide how landmarks should be matched and how the
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point clouds should be transformed, these methods are not 100% accurate and will in
most cases result in some errors.

• MPC inaccuracies. The MPC selects the next point before the current is reached, this
will produce some positional inaccuracies as discussed in Section 3.8.1.

Given all of these causes of error, the results are good. If higher accuracy is needed the
maximum speed of the robot can be reduced from the current 0.2 m/s to allow for tighter
tolerances in the MPC. It would also be possible to use a higher-resolution map, increasing
memory requirements. The robot has a width of 60 cm andmost doors and tight passageways
are wider than the robot width + positional error. Therefore, no reason was found to make
the robot run slower or use more memory to get better positional accuracy.

RQ3: How accurate is the generated map?
The map generated by the scan matching algorithm produces distances around 10 cm

too short between points, mostly due to the resolution of the mapping as discussed in RQ2.
The reason the distances are more than 5 ∗ √2 cm less than the real world is due to them
being measured between two surfaces, if each surface gives an error the error between two
surfaces will be twice as large. The map resolution dependent error should therefore be less
than 2 ∗ 5 ∗√2 cm. The error will also be affected by the accuracy of the SLAM algorithm as
the believed pose is used when creating the map. The error from the MPC will not affect the
accuracy of the generatedmap, this is because the SLAMalgorithm uses the pose estimate and
not the position of the current MPC point. The important thing regarding the map accuracy
is that the accuracy does not depend on the distance between points on the map but only the
constant ∼10 cm. This makes the mapping behave predictable over long distances which is
important when planning long paths.

5.3 Future work
The currently used pathing algorithm is A*+, it has an evolution called Phi* that is optimized
for replanning the path, this would be better to use since the robot would require less station-
ary time when replanning the path. It would however require the same obstacle avoidance
addition as the A*+ implementation has.

The LIDAR uses an unnecessary amount of processing power, instead of reading all 6500
values per second it would be better if only the data needed by the SLAM algorithm was
processed. This would reduce the number of values from 6500 to 1300 per second if the
SLAM algorithm was to run at 2Hz.
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