
A General Purpose Near Data Processing Architecture

Optimized for Data-intensive Applications

XINGDA LI
HAIDI HU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

X
IN

G
D

A
 LI &

 H
A

ID
I H

U
A

 G
eneral Purpose N

ear D
ata Processing A

rchitecture O
ptim

ized for D
ata-intensive A

pplications
LU

N
D

 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-950
http://www.eit.lth.se

A General Purpose Near Data Processing Architecture
Optimized for Data-intensive Applications

Xingda Li
xi6341li-s@student.lu.se

Haidi Hu
ha3077hu-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors:
Joachim Rodrigues

Arturo Prieto
Masoud Nouripayam

Examiner: Erik Larsson

August 8, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

In recent years, as Internet of Things (IoT) and machine learning technologies
have advanced, there has been increasing interest in the study of energy-efficient
and flexible architectures for embedded systems. To bridge the performance gap
between microprocessors and memory systems, Near-Data Processing (NDP) was
introduced. Although some works have implemented NDP, few of them utilize the
microprocessor’s cache memory.

In this thesis, we present an NDP architecture that integrates static random
access memory (SRAM), which is regarded as the L2 cache of a microcontroller unit
(MCU). The proposed NDP is tailored for data-intensive applications and seeks to
address multiple problems. A coarse-grained reconfigurable array (CGRA)-based
strategy is utilized to maximize flexibility while decreasing power consumption.
Additionally, numerous approaches, such as convolution-and-pooling-integrated
computation, two-level clock gating, etc., are implemented to improve energy effi-
ciency even more.

The design was constructed utilizing STMicroelectronics (STM) 65 nm Low
Power Low VT (LPLVT) technology with a maximum clock rate of 167 MHz.
Two popular algorithms, the convolutional neural network (CNN) and K-means,
were mapped onto the hardware to evaluate it. As a result, the power efficiency
of CNN and K-means algorithms can be boosted by 12x and 26x relative to field-
programmable gate array (FPGA) and MCU implementations, respectively, and
by several orders of magnitude relative to other K-Means accelerators.

i

ii

Popular Science Summary

In the past two decades, Machine Learning (ML) has rapidly advanced and been
widely utilized in research, technology, and commerce [1]. In a variety of domains,
including automated driving, computer vision, and speech recognition, ML has
proven to be an effective technique for producing useful applications. However,
existing ML methods and computer systems are currently confronted with a huge
obstacle provided by the exponential growth of data.

The most prevalent method for accelerating data-intensive ML applications
is to increase the speed of existing central processing units (CPUs) and graphics
processing units (GPUs). However, given to the flexibility of these two processors,
they can be somewhat power-hungry when executing particular ML approaches.
Certain candidates, such as FPGA/ASIC accelerators, can achieve a decent bal-
ance between performance and power consumption. Unfortunately, due to their
high cost and comparable huge power consumption, they may not be suitable for
use in various rapidly expanding consumer electronics, such as smart watches,
sweeping robots, smart speakers, etc.

In order to address these issues, the proposed solution must be as accommo-
dating as possible and capable of supporting a wide variety of applications in the
ML domain. Additionally, novel techniques should be employed to enhance the
power efficiency so that it can be integrated into IoT devices.

iii

iv

Acronyms

AI Artificial Intelligence.

ALU Arithmetic Logic Unit.

ASIC Application-Specific Integrated Circuit.

ASSOC Associativity.

CGRA Coarse-Grained Reconfigurable Array.

CIFAR Canadian Institute For Advanced Research.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

DNN Deep Neural Network.

DPEU Dual Processing Element Unit.

DRAM Dynamic Random Access Memory.

ED Euclidean Distance.

FC Fully Connected.

FPGA Field-Programmable Gate Array.

FSM Finite State Machine.

FU Functional Unit.

GAN Generative Adversarial Network.

GP General Purpose.

GPU Graphics Processing Unit.

IC Integrated Circuit.

LPLVT Low Power Low Vt.

v

MAC Multiply–Accumulate.

MCU Microcontroller Unit.

ML Machine Learning.

MLP Multilayer Perceptron.

MNIST Modified National Institute of Standards and Technology.

MUL Multiply.

NDP Near Data Processing.

NDPU Near Data Processing Unit.

PE Processing Element.

PSUM Partial Sum.

RC Reconfigurable Array.

ReLU Rectified Linear Unit.

SED Squared Euclidean Distance.

SIMD Single Instruction Multiple Data.

SRAM Static Random Access Memory.

VLIW Very Long Instruction Word.

vi

Contents

1 Introduction 1
1.1 Thesis Scope . 2
1.2 Related Work . 2
1.3 Thesis Outlines . 2

2 Background 5
2.1 Machine Learning . 5
2.2 Coarse-Grained Reconfigurable Array 8
2.3 PULPissimo . 9

3 Hardware Architecture and Configuration 11
3.1 Hardware Architecture Overview . 11
3.2 Memory Organization . 12
3.3 Crossbar . 13
3.4 Controller . 14
3.5 Near Data Processing Unit . 18
3.6 Clock Gating . 20

4 Algorithm Mapping Examples 23
4.1 Mapping Strategy for CNN Algorithm 23
4.2 Mapping Strategy for K-Means Algorithm 26

5 Results and Analysis 29
5.1 Synthesis Results . 29
5.2 Implementation Results and Evaluation 31

6 Conclusion 39
6.1 Conclusion . 39
6.2 Future Work . 39

Bibliography 41

A Some extra material 45

vii

viii

List of Figures

2.1 Convolution layer [2] . 6
2.2 Multilayer Perception [2] . 7
2.3 Classes and their Examples in CIFAR-10 [3] 8
2.4 ADRES core [4] . 9
2.5 Block Diagram of PULPissimo [5] 10

3.1 Block Diagram . 11
3.2 Memory architecture from MCU perspective 12
3.3 Memory architecture from NDPU perspective 13
3.4 Simplified architecture of Crossbar 14
3.5 Configuration parameters layout . 14
3.6 Example of PE grouping and DPEU grouping 16
3.7 The Controller FSM chart . 17
3.8 PE array . 19
3.9 Architecture of PE and DPEU . 21
3.10 Input Buffer . 22
3.11 Clock gating circuit . 22

4.1 Dataflow of MAC operation in PE with Psum omitted 24
4.2 Computing flow of CONV_POOL operation 25
4.3 Computing flow of FC operation . 26
4.4 Dataflow of distance calculation operation in PE 27
4.5 Computing flow of distance calculation 28

5.1 Floorplan of NDP with L2 cache . 32
5.2 LeNet-5 CNN architecture . 33
5.3 K-Means Clustering Algorithm example 35

ix

x

List of Tables

3.1 Three level configuration hierarchy: PE array parameters, mode pa-
rameters, PE parameters . 15

5.1 Synthesis constraints . 29
5.2 Synthesis area report . 30
5.3 NDP architecture specifications . 31
5.4 Shape parameters for CONV layers and FC layers in LeNet-5 33
5.5 Performance breakdown of the five layers in LeNet-5 at 1V. The core

runs at 167 MHz. 34
5.6 Performance and energy efficiency analysis on different LeNet-5 Layers 34
5.7 Performance and energy efficiency analysis on K-Means Clustering Al-

gorithm . 35
5.8 Comparison with other MCU and FPGA implementations 36
5.9 Comparison with existing CPU-FPGA K-Means accelerators 37

xi

xii

List of Algorithms

1 Address Generation in CONV_POOL Mode 46
2 Address Generation in FC Mode 47
3 Address Generation in GP Mode 48

xiii

xiv

Chapter 1
Introduction

The memory wall was first discussed by Wulf and McKee in 1994, predicting
that the performance gap between microprocessors and memory could become a
significant concern in the future [6]. For many years, various forecasts have been
made regarding the impending memory wall, which would result in severe processor
performance limitations. Such concerns are not baseless, given the yearly gain in
central processing unit (CPU) performance from 1980 to 2000 was over 60%, whilst
the annual improvement in dynamic random-access memory (DRAM) access time
has been less than 10% [7]. There is a mismatch between the rise in memory
capacity and the corresponding decrease in memory latency as the main memory
size grows continually [8].

Although memory-wall refers specifically more to main memory (DRAM), it
can be extended somehow to cover the mismatch between processor speed (multi-
core multi-threading) and cache (SRAM) responsiveness. With the emergence
of memory-intensive workloads, such as MapReduce, graph processing and deep
neural networks [9], the lack of temporal locality exacerbates the problem because
the processor must wait when there is a cache miss. An obvious way to tackle
this issue is to move the computation closer to the data. To this end, near-data
processing (NDP) was proposed and became a promising solution.

The memory hierarchy of today typically includes multiple cache levels, main
memory, and storage. The conventional method involves moving data from stor-
age to caches before processing it. NDP refers to the creation of dedicated hard-
ware positioned near the data. This data-centric strategy aims to avoid costly
data transfers [10]. A key decision for NDP systems is the processing element
type. In the past, NDP systems have employed a range of approaches, includ-
ing general-purpose programmable cores with Single Instruction Multiple Data
(SIMD) or multi-threading capabilities, throughput-oriented GPUs, reconfigurable
arrays, and application-specific integrated circuits (ASICs). Each alternative rep-
resents a unique compromise between performance, area and energy efficiency,
and adaptability. Programmable cores and Graphics Processing Units (GPUs)
offer the greatest degree of flexibility; but, their increased area and power re-
quirements may limit the number of elements per chip, thereby underutilizing the
high memory bandwidth offered by NDP [11]. ASICs are highly efficient, but can
only serve a limited number of applications; hence, they lack the adaptability to
accommodate a variety of workloads [11].

1

2 Introduction

1.1 Thesis Scope

Our Master’s thesis work aims to design and implement a general-purpose NDP
that helps reduce excessive power consumption related to abundance of data ac-
cesses and has the potential to fit on a Microcontroller Unit (MCU) platform.

To accomplish this objective, the thesis is organized into the following tasks:

• Identifying applications for optimization

• Implementing NDP hardware architecture

• Evaluating design with applications mapping

• Comparing design with other hardware

1.2 Related Work

Research on computing near memory started in 1990s [12–16]. Recently, NDP has
been brought back to researchers’ attention, and this resurgence is largely attribute
to the following three reasons: the advanced technology, the memory-package pin-
count limitations and the advent of modern data-intensive applications [17].

Processing near memory can be coupled with different processing elements [17].
Reconfigurable architecture such as coarse-grained reconfigurable arrays (CGRA)
and field programmable gate array (FPGA) is more flexible while dedicated hard-
ware is highly efficient. Farmahini-Farahani et al. [18] implemented an acceleration
engine with multiple CGRAs into the NDP logic layer to accelerate a large-scale
loop body of big data applications and indicated that CGRAs have higher perfor-
mance and less power consumption than FPGAs. Gao et al. [11] took advantages
of both CGRA and FPGA to improve power and area efficiency and utilized spe-
cialized units to handle branch operation. Lim et al. [19] proposed a Triple En-
gine Processor (TEP), a heterogeneous near-memory processor with three types
of computing engines, which are in-order core, CGRA, and dedicated hardware,
to accelerate different types of kernel operations.

This work proposes an NDP architecture that utilizes CGRAs to achieve flex-
ibility and energy efficiency and dedicated hardware to facilitate various data-
intensive kernel operations.

1.3 Thesis Outlines

Chapter 1 Introduction This chapter highlights the challenges faced by current
computer architecture and defines the scope and objectives of this thesis.

Chapter 2 Background This Chapter gives a brief introduction of the archi-
tecture, target applications, and target MCU platform of the design.

Chapter 3 Hardware Architecture and Configuration This Chapter describes
the details of the architecture and the techniques used to optimize for the
target applications.

Introduction 3

Chapter 4 Algorithm Mapping Examples This Chapter shows three map-
ping strategies for better demonstration.

Chapter 5 Results and Analysis This Chapter presents the implementation
results of the examples in Chapter 4 and compares them with other works.

Chapter 6 Conclusion This Chapter is a discussion regarding the results and
future work that can be done.

4 Introduction

Chapter 2
Background

This Chapter introduces the background and the motivation behind the design.

2.1 Machine Learning

Machine Learning (ML) refers to statistical models that may be taught to a system
by presenting it with examples of desirable input-output behavior as opposed to
being directly programmed [1]. It has grown significantly over the past several
decades and developed into a number of algorithms to address a wide range of
ML challenges. Although the majority of machine learning algorithms comprise
relatively simple operations, the dataset size is expanding. For instance, a state-
of-the-art deep neural network (DNN) known as Alex-Net has over 60 million
parameters [20], resulting in lengthy CPU processing times.

2.1.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is commonly employed in computer vision
applications. As images have a two-dimensional structure, it is logical to explore
correlations in adjacent pixels. CNNs receive as inputs a series of nonlinear func-
tions from geographically adjacent regions of outputs from the prior layer, which
are subsequently multiplied by the weights, reusing the weights several times [2].

The concept behind CNNs is that each layer increases the level of picture
abstraction. For instance, the initial layer may just distinguish horizontal and
vertical lines. They may be combined in the second layer to locate corners. The
following phase may involve rectangles and circles. This input might be used by
the subsequent layer to detect dog body parts such as the eyes and ears. The
upper layers would attempt to identify traits of various dog breeds [2].

Each neural layer generates a collection of two-dimensional feature maps,
where each cell attempts to detect a single feature in the corresponding area of
the input [2].

subsectionConvolutional Neural Network Convolutional Neural Network (CNN)
is commonly employed in computer vision applications. As images have a two-
dimensional structure, it is logical to explore correlations in adjacent pixels. CNNs
receive as inputs a series of nonlinear functions from geographically adjacent re-
gions of outputs from the prior layer, which are subsequently multiplied by the

5

6 Background

Figure 2.1: Convolution layer [2]

weights, reusing the weights several times [2].
The concept behind CNNs is that each layer increases the level of picture

abstraction. For instance, the initial layer may just distinguish horizontal and
vertical lines. They may be combined in the second layer to locate corners. The
following phase may involve rectangles and circles. This input might be used by
the subsequent layer to detect dog body parts such as the eyes and ears. The
upper layers would attempt to identify traits of various dog breeds [2].

Each neural layer generates a collection of two-dimensional feature maps,
where each cell attempts to detect a single feature in the corresponding area of
the input [2].

The input data for an image-processing DNN would be a pixel of a image, with
the pixel values multiplied by the weights. Numerous nonlinear functions have
been attempted, but a prominent one today is f(x) = max(x, 0), which returns
0 if x is negative or the original value if positive or zero. (This simple function
is known by the complex acronym ReLU, or rectified linear unit.) An activation
is the output of a nonlinear function since it is the output of the artificial neuron
that has been "activated" [2].

Pooling Layer

Pooling is also known as downsampling. Commonly, a convolutional layer is ac-
companied by a max pooling layer, which computes a local maximum across the
filtered response. This permits a little degree of translation invariance. It also
minimizes the size of the higher layers, which significantly accelerates comput-
ing [2].

Fully Connected Layer

This layer will be explained in the following section-Section 2.1.2.

Background 7

2.1.2 Multilayer Perception

Multilayer Perception (MLP), which is also known as Fully Connected (FC), is
characterized by the dependence of each output neuron outcome on all input neu-
rons of the prior layer. Each new layer is a set of nonlinear functions of weighted
sum of all outputs from a prior one. The weighted sum is computed by multiplying
the output vector matrices by the weights [2].

Figure 2.2: Multilayer Perception [2]

Figure 2.2 illustrates an FC layer that resembles a vector-matrix multiplication
of an input vector by the array of weights. A Dim[i-1] input array and a Dim[i−
1] ∗Dim[i] weight matrix yields Dim[i] output array [2].

2.1.3 K-means

The objective of the K-means clustering algorithm is to divide M points in N
dimensions into K clusters so as to minimize the within-cluster sum of squares [21].
First, it allocates each instance to the cluster with the nearest current centroid
(mean). Second, it computes the new mean of each cluster using the current cluster
members, which becomes the new cluster centroid. The most likely cluster for xi
can be determined by locating its closest prototype [22] as

z∗i = argmin
k
||xi − µk||22 , (2.1)

Given the hard cluster assignments, the M step revises each cluster center by
calculating the mean of all assigned points [22] as

µ =
1

Nk

∑
i:zi=k

xi . (2.2)

2.1.4 CIFAR-10 Dataset

The CIFAR-10 dataset comprises 600,000 32x32 color images organized into 10
classes, with 6,000 images per class. There are 50,000 images for training and
10,000 for testing [3].

8 Background

Each of the five training batches and the test batch contains 10,000 images.
The test batch consists of exactly 1,000 images randomly selected from each cat-
egory. The training batches contain the remaining images in a random order;
however, some training batches may contain a disproportionate number of images
from one class. Each training batch contains exactly 5000 images from its re-
spective class [3]. Figure 2.3 shows the classes and some examples in the dataset.

.

Figure 2.3: Classes and their Examples in CIFAR-10 [3]

2.2 Coarse-Grained Reconfigurable Array

In the past few decades, a variety of hardware, such as GPU, FPGA, and ASIC,
have emerged to address various issues; nevertheless, each of these hardware types
has disadvantages when it comes to DNNs and other data-intensive applications.

To bridge the enormous power/performance gap between ASICs and general-
purpose processors, a novel architecture platform that can be effectively adapted
to a wide variety of applications in a domain or set of domains is urgently needed.
CGRA, which is generically described as reconfigurable architectures that leverage
hardware flexibility to adapt the data-path at runtime to the application, was
proposed for this purpose [23].

A very popular CGRA architecture named ADRES [4], is shown in Figure 2.4.
The CGRA shares resources with a tightly coupled very long instruction word
(VLIW) processor, including the register file and VLIW functional units (FUs),
and may thus operate in either VLIW or CGRA mode. In CGRA mode, the RA
has access to the VLIW’s register file, hence decreasing the cost of transfer [23].

Background 9

Figure 2.4: ADRES core [4]

Another widely studied CGRA architecture is MorphSys. Unlike ADRES which
leverages instruction-level parallelism, MorphSys exploits data-level parallelism to
accelerate applications [24].

2.3 PULPissimo

PULPissimo is the microcontroller architecture of the most recent PULP chips, de-
veloped by ETH Zurich and the University of Bologna as part of their continu-
ous "PULP platform" partnership [5]. It is a single-core platform that used as the
main System-on-Chip controller for all recent multi-core PULP chips, handling au-
tonomous I/O, advanced data pre-processing, external interrupts, etc. The block
diagram of PULPissimo is shown in Figure 2.5 [5].

Since it is an open-source project, it was chosen as the target platform for
our design. Consequently, the design should be capable of coupling with the
PULPissimo platform.

10 Background

Figure 2.5: Block Diagram of PULPissimo [5]

Chapter 3
Hardware Architecture and Configuration

This Chapter elaborates on the NDP hardware architecture. In addition, it de-
scribes the design’s setup and how this configurable component helps in the map-
ping of DNN algorithms.

3.1 Hardware Architecture Overview

The architecture was designed to be a general purpose near data processor and
has the potential to be integrated within PULPissimo. The block diagram of the
design is shown in Figure 3.1. The architecture of the design consists of four major
components, which are SRAM, Crossbar, Controller and NDP Unit.

Figure 3.1: Block Diagram

As the architecture was designed for the PULPissimo platform, the storage
element should correspond to that depicted in Figure 2.5. In other words, the
SRAM in Figure 3.1 must have the same width as the 32-bit L2 bank in PULPissimo
from MCU perspective.

Crossbar is the connection between SRAM and NDP Unit (NDPU), and it can
be configured to accommodate various input data schemes. It retrieves data from

11

12 Hardware Architecture and Configuration

SRAM and assigns them to the NDPU according to the Crossbar configuration.
Controller contains a context buffer that stores configuration data and dis-

tributes them to configurable components. In addition, it generates the address
signals, write-enable signals, valid signals, etc., to help with loading data and com-
putation inside processing units (PEs). This functionality is achieved through
the use of a finite state machine (FSM).

Finally, the core of the design, NDP Unit (NDPU), is a computation unit that
is made up by Input Buffer, PE Array and Output Buffer. Input Buffer re-
trieves data from Crossbar and transmits them to the corresponding processing
element, whereas Output Buffer does the opposite. As for the PE Array, it is
comprised of 16 PEs that are capable of performing multiple arithmetic and logical
operations like multiply–accumulate (MAC), multiply (MUL), ADD, XOR, etc.

3.2 Memory Organization

Figure 3.2illustrates the memory architecture from the viewpoint of the MCU. The
SRAM is divided into four submodules since each PE has 4 inout ports, which are
InputA, InputB, Psum and Result. The correspondence between memories
and inout ports is not fixed, for example, Mem0 does not necessarily need to be
assigned to inputA. In addition, each submodule is subdivided into 16 cuts to
match the bandwidth of the PE array. Thus, these 16 PEs can simultaneously
load and store data. Although there are four memories in the design, each with
16 cuts, the MCU can only access one entry per clock cycle. Therefore, it can be
interpreted as a 32-bit L2 cache, as depicted in Figure 2.5.

Figure 3.2: Memory architecture from MCU perspective

However, from the perspective of the NDPU, the memory access scheme is quite
different. Figure 3.3 illustrates the memory architecture as seen by the NDPU. The
memory access scheme can be roughly divided into 3 types: idle, setup and

Hardware Architecture and Configuration 13

operation. When the system is in idle mode and if the NDPU is deactivated,
only the MCU can access the memory, which is depicted in Figure 3.3. Once
the is_config signal is asserted, the system enters the setup state, during which
configuration data are read from the SRAM and stored in the Context buffer. In
theory, the NDPU can simultaneously access all sixteen cuts in each memory, sixty-
four cuts in total, to retrieve 2048-bit configuration data in this state. However,
512 bits are sufficient for system configuration in our case. Thus, only one memory
(MEM3 in Figure 3.3) is allocated with these data. This state lasts for one clock cycle
and is followed by an operation state in which the Crossbar connects memories
to a bidirectional, multichannel data bus.

Figure 3.3: Memory architecture from NDPU perspective

3.3 Crossbar

As the design is intended to support multiple algorithms with distinct data allo-
cations, multiple data allocations must be supported. In order to adopt different
memory layouts, a bidirectional interconnection between SRAMs and NDPU is re-
quired. As illustrated in Figure 3.4, the Crossbar consists primarily of some
mod-16 multiplexers with the select signal from Context buffer. With dedicated
configuration, the target memory banks can be connected to the NDPU, allowing
all PEs access to each memory bank.

14 Hardware Architecture and Configuration

Figure 3.4: Simplified architecture of Crossbar

3.4 Controller

Controller is used to configure the design at three levels, as shown in Table 3.1:
PE array level, mode level, and PE level. The layout of all the configuration
parameters is depicted in Figure 3.5.

Figure 3.5: Configuration parameters layout

Hardware Architecture and Configuration 15

Table 3.1: Three level configuration hierarchy: PE array
parameters, mode parameters, PE parameters

Configuration Parameter DescriptionLevel

PE Array

sys_en Systolic enable
pe_en PE enable
assoc PE grouping

xbar_config Crossbar configuration
addrA_start Start address of inputA
addrB_start Start address of inputB

addrPsum_start Start address of Psum

Mode_CONV

chi
cho

row_size
column_size
kernel_size

stride
relu_en

of input channel
of output channel

Horizontal size of ifmap
Vertical size of ifmap

Filter plane size
Convolution stride

ReLu enable

Mode_POOL

Pool_row_size
Pool_column_size
Pool_kernel_size

Pool_stride

Horizontal size of pooling
Vertical size of pooling
Size of pooling kernel

Pooling stride

Mode_FC
in_len
out_len
relu_en

of input neurons
of output neurons

ReLu enable

Mode_GP

loop_A
loop_B
len_A
len_B

Loop cycles for input A
Loop cycles for input B

Length of input A
Length of input B

PE

data_width Bit-width select
datapath_config Computing pattern

opcode ALU operation code
shift_param Parameters for shifter

3.4.1 PE Array Level

At the PE array level, there are primarily seven configuration parameters: sys_en,
pe_en, assoc, xbar_config, addrA_start, addrB_start, and addrPsum_start. The
pe_en is used to control power-saving clock gating at the PE level The assoc
and sys_en define the grouping pattern of PEs and the data flow fashion within
Input Buffer and Output Buffer, respectively. As described in Section 3.3,
the xbar_config determines the source of inputs and destination of outputs for

16 Hardware Architecture and Configuration

PE Array. addrA_start, addrB_start, and addrPsum_start are required as base
addresses since data for different layers may be saved in the same memory block.

Associativity

To further increase the flexibility of the design, associativity (assoc) is introduced
to the design. Due to the limited data parallelism in some tasks, it may not be
possible for all PEs to collaborate on a single task. Assoc is then proposed to aid
in the grouping and assignment of PE tasks.

By configuring assoc, we can decide the number of members in each PE set
or DPEU set. However, due to the hardware constraints, our assoc only supports
numbers that are the powers of two and range from 1 to 16 for PE set or 1 to 8 for
DPEU set. The detailed grouping pattern is presented in Figure 3.6.

To avoid read-and-write conflicts when accessing the same memory blocks,
the PEs or DPEUs in the same set are activated sequentially in a systolic manner.
Section 4.1 will expand on the usage of assoc.

(a) 8-bit data mode (b) 16-bit data mode

Figure 3.6: Example of PE grouping and DPEU grouping

3.4.2 Mode Level

Although the hardware is to be general purpose, several optional modes are pro-
vided to optimize DNN applications. There is a total of four modes of operation:
Convolution mode, Convolution with Pooling mode, Fully Connected mode
and General Purpose mode.

The mode level parameters are used to control the processing of one specific
mode, achieved by using finite state machine(FSM), as seen in Figure 3.7. The
default state of the Controller is IDLE state, in which NDP is disabled. Once
the configuration data has been written to MEM3 and ndp_en signal has been
pulled high, the Controller will transition to CONFIG state, where three-level
configuration parameters will be loaded and decoded. The Controller then enters
into EXE state to generate addresses based on the mode level parameters, and will
not shift to the subsequent state until exe_done is set to ’1’. To better illustrate
mode level configuration, the address generation patterns of three representative
modes are expressed by the pseudo code.

Hardware Architecture and Configuration 17

Figure 3.7: The Controller FSM chart

A. Convolution with Pooling Mode

Convolution with Pooling (CONV_POOL) mode is proposed to accelerate convo-
lution layers in CNN algorithms. Since the shape of the layer can vary significantly
between CNNs, all the shape parameters in our design are configurable to better
support general purpose acceleration.

As seen in Algorithm 1, the addresses of the data needed for computation
in CONV_POOL mode are generated based on the layer shape parameters like chi,
kernel_size, stride, pool_kernel_size, pool_stride, etc., which are listed in Ta-
ble 3.1. For the sake of brevity, only the address generation pattern of constructing
a single output feature map (ofmap) channel is illustrated in the algorithm.

B. Fully Connected Mode

In Fully Connected (FC) mode, large matrix multiplication is divided into smaller
ones to accelerate the computation.

The address generation pattern is made up of two loops controlled by mainly
three parameters: in_len, out_len and assoc, as can be seen in Algorithm 2. The

18 Hardware Architecture and Configuration

inner loop repeats in_len times to complete the vector-matrix multiplication of
one output neuron. As for the outer loop, rather than executing out_len times,
it executes out out_len/assoc times to compute all the output neurons. This is
accomplished by utilizing assoc PEs or DPEUs concurrently performing one task.

C. General Purpose Mode

In addition to CNN layers, our NDP also supports acceleration for some other
operations, for example, distance calculation, bit operations, etc. To achieve this,
we propose a General Purpose (GP) mode with four parameters: loop_A, loop_B,
len_A, and len_B. The usage of these parameters is presented in Algorithm 3.

loop_A and loop_B refer to the update frequency of inputA and inputB,
which means inputA and inputB will be updated every loop_A cycles and
loop_B cylces, while len_A and len_B represent the number of inputA and
inputB, respectively. For instance, suppose we wish to calculate all distances
between 1024 data points and four centroids using eight DPEUs. In that case, we
can set loop_A, loop_B, len_A, len_B to 1, 1024/8, 1024/8, and 4, respectively,
as demonstrated in the mapping example in Section 4.2.

3.4.3 PE Level

The PE level configuration determines the input data width, PE’s functionality,
the precision of outputs, etc. By configuring data_width, we can choose between
8-bit and 16-bit input data width. The combination of datapath_config and
op_code specifies PE’s functionality, including multiply-and-accumulate (MAC),
squared euclidean distance (SED), and some other bit operations. The detail of
PE’s functionality will be illustrated in Chapter 4. The configurable precision of
fixed-point outputs is achieved by shift operation controlled by shift_param.

3.5 Near Data Processing Unit

As mentioned before, the NDPU is the computational unit of the design. It can be
divided into three parts, PE array, input buffer and output buffer. The PE
array contains 16 PEs that do arithmetic or logic operations independently, while
input buffer and output buffer are responsible for the data streaming.

3.5.1 PE Array

The simplified architecture of the PE array is shown in Figure 3.8. In order to
leverage power and area efficiency, an 8-bit fixed-point computation is implemented
in PE array. However, for some applications like DNNs, 8-bit computation is not
sufficient. For example, quantization errors can easily get accumulated if the
results go through a couple of layers in DNNs. Therefore, as shown in Figure 3.8,
two PEs are organised as a Dual Processing Element Unit (DPEU) to realize
the mix precision fixed-point computation. The details in the mixed precision
fixed-point implementation will be introduced in Section 3.5.3.

Hardware Architecture and Configuration 19

Figure 3.8: PE array

3.5.2 Processing Element

The architecture of PE is illustrated in Figure 3.9a. There is a total of three
flip-flops, one 32-bit for multiplication result buffering, one 32-bit and one
8-bit for intermediate value storage. The component outlined in purple and sym-
bolized by ’x’ represents a multiplier. Multiplexers and MUL-ALU unit can be
configured to execute MAC operations, bit operations, or other types of computa-
tion. A shifter is placed before the result is delivered to the output for mix
precision fixed-point implementation. It can also be configured to shift the result
if it is necessary.

3.5.3 Dual Processing Element Unit

The implementation of bit-adaptive fixed-point is based on the distributive law of
multiplication which is given by

A(16) ∗B(8) = 28 ∗AMSB(8) ∗B(8) +ALSB(8) ∗B(8) , (3.1)

where A is the input, B is the weight, AMSB and ALSB are the most signifi-
cant bits and least significant bits of inputA respectively, and following numbers
in parentheses represent the number of bits. For the implementation of an MAC
operation, Equation 3.1 can be revised to∑

A(16) ∗B(8) = 28 ∗
∑

AMSB(8) ∗B(8) +
∑

ALSB(8) ∗B(8) . (3.2)

The architecture of DPEU is illustrated in Figure 3.9b, which is the implementation
of Equation 3.2. Each DPEU has two Flip-Flops, two PEs and one extra adder

20 Hardware Architecture and Configuration

(depicted as the ALU shape with the ’ADD’ symbol in Figure 3.9b). When the
DPEU is in 16-bit configuration, PE0 and PE1 are responsible for the first and second
terms of Equation 3.2 when the DPEU is in 16-bit configuration, and the result of
PE0 is shifted left for 8-bits before it is available. In the end, the adder combines
these two terms into a single result. Otherwise, DPEU is capable of performing two
8-bit operations in parallel.

3.5.4 Input/Output Buffer

Figure 3.10 shows the block diagram of the input buffer. It can be configured to
be systolic or independent depending on the applications. The systolic approach
may be preferable when it comes to DNNs, as the memory bandwidth is limited.

In contrast, Output buffer is a simple module that is used to concatenate
the results to match the width of SRAM and then store them.

3.6 Clock Gating

Sparse activations arise spontaneously in DNNs for a variety of reasons. One
reason is that many DNNs use the rectified linear unit (ReLU) as the activation
function, which translates negative values to zero. In deeper layers, this sparsity
tends to increase and can even surpass 90% [25]. The fact that many popular
DNNs are autoencoders or generative adversarial networks (GAN) with decoder
layers that use zero insertion to up-sample the input feature maps, resulting in over
75% zeros, is an additional factor that is becoming increasingly significant [25].

To reduce the power overhead caused by sparse matrix, clock gating is intro-
duced to the system. As DNNs are the applications that are most likely to benefit
from it, clock gating should be activated only when the PEs are doing MAC op-
eration which is the dominant operation in DNNs. As shown in Figure 3.9a and
Figure 3.11, when the zero detect logic encounters a zero from either InputA
or InputB and the system is in MAC configuration, the gated clock signal GCLK
fed to PEs is set to low to avoid unnecessary switching inside PEs, which in turn
reduces power consumption.

Hardware Architecture and Configuration 21

(a) Processing Element Unit

(b) Dual Processing Element Unit

Figure 3.9: Architecture of PE and DPEU

22 Hardware Architecture and Configuration

Figure 3.10: Input Buffer

Figure 3.11: Clock gating circuit

Chapter 4
Algorithm Mapping Examples

This chapter demonstrates several strategies to map computing primitives in dif-
ferent algorithms to the proposed NDP. Furthermore, the data flow within the PE
array and PE is also depicted to better illustrate the mapping strategy.

4.1 Mapping Strategy for CNN Algorithm

In a typical CNN architecture, there are several layers including the convolution
layer, pooling layer, and fully connected layer. Each of these layers presents its
own computational challenges. Consequently, strategies for effectively mapping
these layers onto the architecture are of importance in order to achieve optimal
performance.

4.1.1 Convolution Layer and Pooling Layer

Considering many CNN architectures, for example, LeNet-5 [26], AlexNet [20],
VGG-16 [27], max-pooling layer directly downsamples the ofmaps from convolution
layer, we propose an operation called CONV_POOL on the basis of CONV operation
to combine the mapping for these two layers. Thus, redundant memory accesses
and data transfer can be avoided. When executing a CONV_POOL operation, each
PE or DPEU is configured to perform MAC operation (shown in Figure 4.1) to
accommodate the computation of one ofmap channel, and will not move to another
until the current one has been obtained. Figure 4.2 illustrates the mapping strategy
by using an example.

Suppose a convolution layer with a kernel size of 3 x 3, stride of 1 x 1, and
four ofmap channels, followed by a pooling layer with max-pooling window size of
2 x 2 and a step size of 2 x 2. The data width of the input fmap for the layer is 16
bits. In this instance, we can divide the DPEUs into two sets by setting assoc to 4.
Each set is responsible for the construction of a single ofmap, so the batch size of
the input feature map (ifmap) can be increased to two in order to maximize the
use of computing resources.

The ifmaps, kernels, and biases are stored in different memory banks to enable
parallel processing. In order to minimize the movement of input data, the ifmap
pixel flows in the DPEU set in a systolic fashion so it can be reused across all the
filters in the same set. Each DPEU can begin processing the moment any ifmap

23

24 Algorithm Mapping Examples

Figure 4.1: Dataflow of MAC operation in PE with Psum omitted

pixel or kernel weight arrives. In the interest of simplicity, we will only describe
the first four steps of one DPEU set’s computation flow.

Step #0: At the beginning, the ifmap pixels encompassed by the blue rectangle
are flattened and sequentially loaded into the DPEU set. Meanwhile, corresponding
kernel weights and biases are also read from the associated memory banks and
written to the Input Buffer for use in generating the first ofmap pixel for each
channel. Once the computation is completed, the ofmap pixel data will be sent to
the output registers within Controller unit for further processing, such as ReLU
and max-pooling. The filters will then shift to the right by one column and cover
the red rectangle-encircled area.

Step #1: In this step, the DPEU set first loads the input data, kernel weights,
and biases again to compute new ofmap pixels. Second, when the new ofmap pixels
are produced and forwarded to the ReLU and max-pooling unit, the values stored
in the output registers will be updated if the incoming values are greater. Finally,
since the ofmap pixels prepared for max-pooling must be consecutive, the filters
will move down by one row and left by one column to the area outlined in purple
rather than continuing to move to the right as is customary for a convolution
kernel.

Step #2,3: These two steps involve the generation of the third and fourth
ofmap pixels for each channel. Once the values stored in the output registers have
been updated to the greatest, they will be written to the Output Buffer. The
associated registers will then be cleared for storing the intermediate results of the
subsequent four-step computation.

Algorithm Mapping Examples 25

Figure 4.2: Computing flow of CONV_POOL operation

4.1.2 Fully connected Layer

The predominant computation pattern of FC operations is a matrix multiplica-
tion. In order to maximize data parallelism, the input vector, weight matrix, and
biases are partitioned and stored in separate memory banks. By configuring the
Crossbar and Input Buffer, each PE or DPEU can access the input data in 8-bit
or 16-bit format from the same memory bank sequentially or from different banks
simultaneously. During computation, each PE or DPEU takes care of one output
neuron by performing MAC operation, and will not switch to another until the
current output has been obtained. For instance, the operations in the first fully
connected layer of the LeNet-5 architecture [26] can be expressed as:

O120×1 =W120×400 × I400×1 +B120×1 . (4.1)

The weight matrix W and biases B are partitioned into eight submatrices to
satisfy the memory bank’s capacity constraints and maximize the use of computing
resources. Thus, the operations can be completed in 15 iterations, with eight
output neurons are computed per iteration. Figure 4.3 depicts the computing
flow of the first loop of FC operation. First off, at cycle #0, DPEU0 performs
multiplication between the first element of the input vector I and the first element

26 Algorithm Mapping Examples

of the weight matrix W Row 0, while adding the first element of the biases. At
cycle #1, DPEU0 performs partial sum (Psum) accumulation by adding the result
of multiplying I1 by W0,1 to the psum stored at its local register. Meanwhile,
DPEU1 loads I0,W1,0, and B1 to do the multiplication and addition. In the next few
cycles, all DPEUs will be activated and do the similar operation as in cycle #0 and
cycle #1. After a certain number of cycles, when the vector-matrix multiplication
associated with the current eight output neurons has been computed, the results
will be written to the Output Buffer for further processing, and all the DPEUs
will move to next eight neurons.

Figure 4.3: Computing flow of FC operation

To reduce memory access, the input vector is broadcast to the DPEU set sys-
tolically during the process. Additionally, the weights can be reused by adopting
a batch strategy, which can be achieved by rerouting the input vector source and
output vector destination.

4.2 Mapping Strategy for K-Means Algorithm

The most computation-heavy part of the K-Means algorithm is distance calcula-
tion. A common way to define the distance between a data point and a centroid
is Euclidean Distance (ED) [28]. Here we adopt the Squared Euclidean Distance
(SED) method, as compared with ED, it is more hardware-friendly while the out-
put is not affected.

As shown in Figure 4.4, the input data points are partitioned into eight groups
and stored separately in different memory banks, allowing all the PEs to participate
concurrently in performing distance calculations.

Due to the hardware resource limitations, our NDP currently only supports two-
dimensional data points. Each data point is 16 bits wide and consists of two 8-bit
one-dimensional features. Given a fixed number of input data points that need
to be partitioned into four clusters, Figure 4.5 depicts the computation flow of

Algorithm Mapping Examples 27

Figure 4.4: Dataflow of distance calculation operation in PE

distance calculation. It is clear that different groups of data points are assigned to
different DPEUs, while the same centroids are shared among all the DPEUs. First,
one data point and one centroid are input into the DPEU; second, each PE uses
one-dimensional features of the data point and centroid to compute the squared
difference using the ALU and multiplier; and third, the adder sums the squared
differences of each dimension to obtain the squared distance. Each cycle, the
squared distances between eight data points and one centroid are obtained and
forwarded to the Output Buffer. The operation will continue until the distances
between all the data points and centroids have been computed.

28 Algorithm Mapping Examples

Figure 4.5: Computing flow of distance calculation

Chapter 5
Results and Analysis

This chapter presents the results of synthesis, place and route (PNR), and post-
layout power analysis. CNN and K-Means Algorithms are selected as benchmarks
to analyze the performance and energy efficiency of the proposed design.

5.1 Synthesis Results

Synthesis relates the conceptual description of the design’s desired logic functions
to their actual physical architecture elements. This section specifies the process
technology and constraints needed for synthesis and gives the result of synthesizing
the NDP with L2 Cache.

To achieve a good tradeoff between power consumption and performance,
STM65nm LPLVT technologies are applied to the design. Compared with HVT,
LVT technology introduces shorter switching delays which can lead to higher oper-
ating frequencies. The design was synthesized with the constraints listed in Table
5.1. Constraints for external input and output delay are defined as 200 ps. The
synthesis timing report indicates a timing slack of 1391 ps, which satisfies the
setup timing constraint.

Table 5.1: Synthesis constraints

Supply Voltage 1.0 V
Temperature 25°C
Clock Rate 167 MHz
Clock Uncertainty 100 ps
Clock Rise Time 50 ps
Clock Fall Time 55 ps
Clock Source Latency 100 ps
Clock Network Latency 100 ps

Table 5.2 reveals that L2 Cache occupies nearly 86% of the area. The PAD
ranks second, accounting for 7.8% of the total area. Compared to memories, the

29

30 Results and Analysis

Table 5.2: Synthesis area report

Library Instances Area[um2] Instances%
CLOCK65LPLVT 865 1517.880 1.1
CORE65LPLVT 77825 319193.160 98.7

PAD 86 385280.000 0.1
SPHS_151013 64 4198157.000 0.1

TOTAL 78840 4904148.000 100.0

area of the NDP core is only 0.32 mm2 (6.5% of the total area), which is relatively
small.

Results and Analysis 31

5.2 Implementation Results and Evaluation

The proposed NDP architecture shown in Figure 5.1 was placed and routed using
Cadence SoC Encounter and STM 65nm LPLVT technology. Table 5.3 provides
an overview of the NDP architecture specifications.

Table 5.3: NDP architecture specifications

Technology STM 65 LPLVT
Chip Size 3.1 mm x 3.0 mm
Core Size 3.0 mm x 2.8 mm
SRAM 512 KB

Num. of PEs 16
Supply Voltage 1.0 - 1.1 V
Clock Rate 100 - 167 Mhz

Peak Performance 6.67 GOPS
Operation Mode 8/16 bit

Supported

Kernel Width: 1 - 16

Convolution Layer

Kernel Height: 1 - 16

Shapes

Num. of Filters: 1 - 256
Num. of Input Channel: 1 - 256
Num. of Output Channel: 1 - 256

Stride: 1 - 8
Supported Kernel Width: 1 - 16

MaxPooling Layer Kernel Height: 1 - 16
Shapes Stride: 1 - 8

Supported Input length: 1 - 4096FC Layer Output length: 1 - 4096Shapes
Other Operations Distance Calculation, Relu, Bit Operations

32 Results and Analysis

Figure 5.1: Floorplan of NDP with L2 cache

Results and Analysis 33

To evaluate the NDP architecture performance and power efficiency, the LeNet-
5 [26] CNN architecture (Figure 5.2) and K-Means clustering algorithm are selected
as benchmarks. The input frames are from CIFAR-10 Dataset for LeNet-5 CNN
architecture.

Figure 5.2: LeNet-5 CNN architecture

5.2.1 Performance and Energy Efficiency Evaluation

A. LeNet-5

In LeNet-5, the following parameters are defined to describe the CONV and FC
layers. Ni and No represent the input and output channel numbers in the CONV
layer, or the input and output lengths in the FC layer. The sizes of the ifmap and
the ofmap are Ri×Ci and Ro×Co, respectively. The size of the kernel is K ×K,
and the stride is S. In addition, the batch size (Bs) is introduced to improve data
parallelism. As a result, the total number of operations in the CONV layer is

Nop = 2×Ni ×No ×Ro × Co ×K ×K ×Bs , (5.1)

and the total number of operations in the FC layer is

Nop = 2×Ni ×No ×Bs . (5.2)

Table 5.4: Shape parameters for CONV layers and FC layers in
LeNet-5

Layer Ni No Ri Ci Ro Co K S

CONV1 3 6 32 32 28 28 5 1
CONV2 6 16 14 14 10 10 5 1
FC1 400 120 - - - - - -
FC2 120 84 - - - - - -
FC3 84 10 - - - - - -

Table 5.5 displays the performance breakdown of the five layers in LeNet-5 at
1V with the core running at 167 MHz. The power was obtained by performing
a time-based analysis on the Value Change Dump (VCD) files generated while
running post-layout simulations. It is apparent that power consumption decreases

34 Results and Analysis

with increasing layer depth, which can be attributed to clock gating reducing
switching activities in deeper layers. As for the results of total latency, they were
obtained by performing the post-layout simulation in different scenarios. The
instruction loading and pipeline latency can be ignored compared to the processing
latency.

Table 5.5: Performance breakdown of the five layers
in LeNet-5 at 1V. The core runs at 167 MHz.

Layer
Bit

Power(mW)
Total Num.

Bs Width Latency of
(fixed-point) (us) OPs

CONV1 2 8-bit 10.07 353 1411200
CONV2 1 16-bit 8.77 180 480000
FC1 1 16-bit 6.87 36.1 96000
FC2 1 16-bit 6.87 8 20160
FC3 1 16-bit 5.67 1.1 1680
Total - - 9.57 578.2 2009040

Table 5.6 displays the measured throughput and energy efficiency. Since the data
width differs between layers and PE utilization cannot reach 100% in all layers,
the actual throughput is less than the maximum throughput. Take the CONV1
layer as an example; if the batch size is one, there will be only six output channels
occupying six PEs, resulting only 37.5% PE utilization. To achieve this, two input
frames can be processed simultaneously, doubling PE utilization. The vacant PEs
will be deactivated to conserve power.

Table 5.6: Performance and energy efficiency analysis
on different LeNet-5 Layers

Layer
Num.

Throughput(GOPS)
Energy

of Efficiency
Active PEs (TOPS/W)

CONV1 12 3.998 0.397
CONV2 16 2.667 0.304
FC1 16 2.660 0.387
FC2 16 2.520 0.367
FC3 16 1.527 0.269
Total - 3.475 0.363

Results and Analysis 35

B. K-Means

Assuming there are n input points that need to be partitioned into M clusters,
and each point is d-dimensional. The number of subtraction, multiplication, and
addition operations required to calculate all the distances is d×M × n, d×M ×
n, (d − 1) ×M × n, respectively, for a grand total of (3 × d ×M × n −M × n)
operations. As shown in Figure 5.3, if d = 2,M = 8, n = 1024, the total number
of operations is:

3× 2× 8× 1024− 8× 1024 = 40960 (5.3)

Figure 5.3: K-Means Clustering Algorithm example

The performance and energy efficiency analysis on K-Means Clustering Algo-
rithm are shown in Table 5.7.

Table 5.7: Performance and energy efficiency analysis
on K-Means Clustering Algorithm

Bit Width(fixed-point) 8-bit
Power(mW) 29
Total Latency(us) 6.2
Throughput(GOPS) 6.606
Energy Efficiency(TOPS/W) 0.228

36 Results and Analysis

5.2.2 Comparison with Other Designs

A. CNN Algorithm

The proposed NDP architecture is compared to various MCU and FPGA imple-
mentations in Table 5.8. Compared to GAP-8 MCU in [29], the NDP offers 1.6x and
11x higher performance and energy efficiency, respectively. The implementations
described in [30] and [31] can achieve 5.8x and 11.5x higher performance compared
to the NDP, but at the cost of 12x and 26x lower energy efficiency, respectively.

Table 5.8: Comparison with other MCU and FPGA
implementations

Reference [29] [30] [31] This WorkGAP-8

Platform MCU FPGA APSoC Accelerator
(CGRA)

Core 8 - - 1
Dateset CIFAR-10 MNIST CIFAR-10
Network CNN LeNet-5

Data width INT-8
16-bit
fixed-
point

- 8-bit or 8/16-bit
fixed-point

Clock [MHz] 170 - 650 167
Performance
[GOPS] 2.14 20.3 39.88 3.475

Efficiency
[GOPS/W] 32.2 30.03 13.99 363

B. K-Means Algorithm

As shown in Table 5.9, the CPU-FPGA implementations in [28] and [32] can
achieve 1.2x–8.5x higher than the proposed design, and 730x better energy ef-
ficiency. Due to the hardware limitations, only the distance calculation in the
K-Means algorithm can be mapped to the NDP. Therefore, comparing the NDP to
other K-Means accelerators is not entirely fair. However, the NDP’s scalability
and low power consumption make it a good choice for accelerating the K-Means
algorithm.

Results and Analysis 37

Table 5.9: Comparison with existing CPU-FPGA K-Means
accelerators

Reference [28] [32] This WorkXeon+FPGA Xeon+FPGA

n 2M 4096-
65536 1024

M 8/16 256-
1024 8

d 2/4 16 2

Performance 26.2-55.9
(GFLOPS))

7.6-10.6
(GFLOPS)

6.06
(GOPS)

Energy
Efficiency

0.312
(GFLOPS/W)

0.312
(GFLOPS/W)

228
(GOPS/W)

38 Results and Analysis

Chapter 6
Conclusion

This Chapter draws a conclusion and describes the future work that can be done
to improve the design.

6.1 Conclusion

This thesis proposes a near data processing architecture that is optimized for
data-intensive applications and aims to solve a variety of problems. Although the
proposed NDP was evaluated as an accelerator, it has the potential to couple with
modern MCU platforms.

The design was implemented using STM 65nm LPLVT technology. Although
dedicated pipeline scheme was added to the architecture, the maximum achievable
clock speed is 167 MHz.

For the purpose of evaluating the design, two algorithms, CNN and Kmeans,
were mapped onto the hardware with dedicated configurations operating at max-
imum frequency. Due to the limited bandwidth of SRAM, the proposed design
cannot compete with FPGA solutions in terms of performance, but it outperforms
them in terms of power efficiency. For CNN algorithm, the power efficiency can be
increased by 12x and 26x compared to FPGA implementations, and 11x to MCU
implementations. For K-Means algorithm, the proposed hardware surpasses other
hardware by over 730x.

6.2 Future Work

There are many opportunities for further work, which can be concluded from
three aspects. Flexibility would be enhanced by adding support for additional al-
gorithms, such as the LUT-based activation function in CNN and distance calcu-
lation for multidimensional data points in K-Means. The second aspect to explore
would be performance, which can be enhanced by adding more PEsmaximize mem-
ory bandwidth utilization. The final one is energy efficiency, in which data-reuse
can be investigated further to reduce energy consumption.

39

40 Conclusion

Bibliography

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[2] P. Prinz, T. Crawford, J. Hennessy, and D. Patterson, “Computer architec-
ture: A quantitative approach,” 2018.

[3] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” 2009.

[4] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained re-
configurable matrix,” in Field Programmable Logic and Application: 13th In-
ternational Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003
Proceedings 13. Springer, 2003, pp. 61–70.

[5] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and L. Benini,
“Quentin: an ultra-low-power pulpissimo soc in 22nm fdx,” in 2018 IEEE
SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).
IEEE, 2018, pp. 1–3.

[6] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1, pp.
20–24, 1995.

[7] C. Carvalho, “The gap between processor and memory speeds,” in Proc. of
IEEE International Conference on Control and Automation, vol. 5000, no.
10000, 2002, p. 15000.

[8] D. Etiemble, “45-year cpu evolution: one law and two equations,” arXiv
preprint arXiv:1803.00254, 2018.

[9] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin, and
J. Widom, “Challenges and opportunities with big data: A white paper pre-
pared for the computing community consortium committee of the computing
research association,” Computing Research Association, 2012.

[10] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corpo-
raal, and A.-J. Boonstra, “A review of near-memory computing architectures:
Opportunities and challenges,” in 2018 21st Euromicro Conference on Digital
System Design (DSD). IEEE, 2018, pp. 608–617.

41

42 Bibliography

[11] M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible reconfigurable logic
for near-data processing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). Ieee, 2016, pp. 126–137.

[12] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational ram: A
memory-simd hybrid and its application to dsp,” in 1992 Proceedings of the
IEEE Custom Integrated Circuits Conference. IEEE, 1992, pp. 30–6.

[13] P. M. Kogge, “Execube-a new architecture for scaleable mpps,” in 1994 Inter-
national Conference on Parallel Processing Vol. 1, vol. 1. IEEE, 1994, pp.
77–84.

[14] M. F. Deering, S. A. Schlapp, and M. G. Lavelle, “Fbram: a new form of mem-
ory optimized for 3d graphics,” in Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, 1994, pp. 167–174.

[15] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick, “A case for intelligent ram,” IEEE micro, vol. 17,
no. 2, pp. 34–44, 1997.

[16] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “Flexram: Toward an advanced intelligent memory system,”
in 2012 IEEE 30th International Conference on Computer Design (ICCD).
IEEE, 2012, pp. 5–14.

[17] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Cor-
poraal, and A.-J. Boonstra, “Near-memory computing: Past, present, and
future,” Microprocessors and Microsystems, vol. 71, p. 102868, 2019.

[18] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda: Near-
dram acceleration architecture leveraging commodity dram devices and stan-
dard memory modules,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015, pp. 283–295.

[19] H. Lim and G. Park, “Triple engine processor (tep) a heterogeneous near-
memory processor for diverse kernel operations,” ACM Transactions on Ar-
chitecture and Code Optimization (TACO), vol. 14, no. 4, pp. 1–25, 2017.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[21] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the royal statistical society. series c (applied statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[22] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[23] M. Wijtvliet, L. Waeijen, and H. Corporaal, “Coarse grained reconfigurable
architectures in the past 25 years: Overview and classification,” in 2016 In-
ternational Conference on Embedded Computer Systems: Architectures, Mod-
eling and Simulation (SAMOS). IEEE, 2016, pp. 235–244.

Bibliography 43

[24] J. Davila, A. de Torres, J. M. Sanchez, M. Sanchez-Elez, N. Bagherzadeh,
and F. Rivera, “Design and implementation of a rendering algorithm in a
simd reconfigurable architecture (morphosys),” in Proceedings of the Design
Automation & Test in Europe Conference, vol. 2. IEEE, 2006, pp. 6–pp.

[25] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accel-
erator for emerging deep neural networks on mobile devices,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
292–308, 2019.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[28] T. S. Abdelrahman, “Cooperative software-hardware acceleration of k-means
on a tightly coupled cpu-fpga system,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 17, no. 3, pp. 1–24, 2020.

[29] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn: accel-
erating quantized neural networks on parallel ultra-low-power risc-v proces-
sors,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2164,
p. 20190155, 2020.

[30] W. Chen, H. Wu, S. Wei, A. He, and H. Chen, “An asynchronous energy-
efficient cnn accelerator with reconfigurable architecture,” in 2018 IEEE
Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2018, pp. 51–54.

[31] V. R. Laguduva, S. Mahmud, S. N. Aakur, R. Karam, and S. Katkoori, “Dis-
secting convolutional neural networks for efficient implementation on con-
strained platforms,” in 2020 33rd International Conference on VLSI De-
sign and 2020 19th International Conference on Embedded Systems (VLSID).
IEEE, 2020, pp. 149–154.

[32] M. A. Souza, L. A. Maciel, P. H. Penna, and H. C. Freitas, “Energy effi-
cient parallel k-means clustering for an intel® hybrid multi-chip package,”
in 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2018, pp. 372–379.

44 Bibliography

Appendix A
Some extra material

45

46 Some extra material

Algorithm 1 Address Generation in CONV_POOL Mode
1: pool_row ← 0
2: pool_col← 0
3: row ← 0
4: col← 0
5: kernel← 0
6: bias← 0
7: while pool_row ≤ pool_row_size− pool_kernel_size do
8: while pool_col ≤ pool_column_size− pool_kernel_size do
9: for i← 0, pool_kernel_size− 1 do . Pool kernel row

10: for j ← 0, pool_kernel_size− 1 do . Pool kernel column
11: for ii← 0, kernel_size− 1 do . Kernel row
12: for jj ← 0, kernel_size− 1 do . Kernel column
13: for kk ← 0, chi− 1 do . Input channel
14: /*Ifmap address calculation*/
15: addrA← [(ii+ pool_row + row)×
16: column_size+ pool_col + col + jj]
17: ×chi+ kk + addrA_start
18: /*Kernel address calculation*/
19: addrB ← addrB_start+ kernel
20: kernel← kernel + 1
21: /*Bias address calculation*/
22: addrPsum← addrPsum_start+ bias
23: end for
24: end for
25: end for
26: col← col + stride
27: kernel← 0 . One ofmap pixel is obtained
28: end for
29: row ← row + stride
30: col← 0
31: end for
32: row ← 0 . One max-pool result is obtained
33: pool_col← pool_col + pool_stride
34: end while
35: pool_row ← pool_row + pool_stride
36: pool_col← 0
37: end while . One ofmap channel is obtained
38: bias← bias+ 1 . Construct next ofmap channel

Some extra material 47

Algorithm 2 Address Generation in FC Mode
1: exe_done← 0
2: bias← 0
3: addrB_pre← addrB_start
4: for fc_out← 0, out_len/assoc− 1 do
5: for fc_in← 0, in_len− 1 do
6: addrA← addrA_start+ fc_in
7: addrB ← addrB_pre+ fc_in
8: addrPsum← addrPsum_start+ bias
9: end for

10: addrB_pre← addrB
11: bias← bias+ 1
12: end for
13: exe_done← 1

48 Some extra material

Algorithm 3 Address Generation in GP Mode
1: exe_done← 0
2: loop_A_cnt← 0
3: loop_B_cnt← 0
4: len_A_cnt← 0
5: len_B_cnt← 0
6: while exe_done = 0 do
7: if loop_A_cnt < loop_A− 1 then
8: loop_A_cnt < loop_A_cnt+ 1
9: end if

10: if loop_B_cnt < loop_B − 1 then
11: loop_B_cnt < loop_B_cnt+ 1
12: end if
13: if len_A_cnt < len_A− 1 then
14: if loop_A_cnt = loop_A− 1 then
15: len_A_cnt← len_A_cnt+ 1
16: end if
17: end if
18: if len_B_cnt < len_B − 1 then
19: if loop_B_cnt = loop_B − 1 then
20: len_B_cnt← len_B_cnt+ 1
21: end if
22: end if
23: addrA← addrA_start+ len_A_cnt
24: addrB ← addrB_start+ len_B_cnt
25: if len_A_cnt = len_A− 1 then
26: if len_B_cnt = len_B − 1 then
27: if loop_A_cnt = loop_A− 1 then
28: if loop_B_cnt = loop_B − 1 then
29: exe_done← 1
30: end if
31: end if
32: end if
33: end if
34: end while

A General Purpose Near Data Processing Architecture

Optimized for Data-intensive Applications

XINGDA LI
HAIDI HU
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2023

X
IN

G
D

A
 LI &

 H
A

ID
I H

U
A

 G
eneral Purpose N

ear D
ata Processing A

rchitecture O
ptim

ized for D
ata-intensive A

pplications
LU

N
D

 2023

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2023-950
http://www.eit.lth.se

	Exj_Xingda Li_Haidi Hu.pdf
	Introduction
	Thesis Scope
	Related Work
	Thesis Outlines

	Background
	Machine Learning
	Coarse-Grained Reconfigurable Array
	PULPissimo

	Hardware Architecture and Configuration
	Hardware Architecture Overview
	Memory Organization
	Crossbar
	Controller
	Near Data Processing Unit
	Clock Gating

	Algorithm Mapping Examples
	Mapping Strategy for CNN Algorithm
	Mapping Strategy for K-Means Algorithm

	Results and Analysis
	Synthesis Results
	Implementation Results and Evaluation

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Some extra material

