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Abstract

The growing demand for network cameras to support real-time image processing
and machine-learning applications has created a need for low-power solutions.
Although technology scaling makes complex computations feasible, voltage scaling
is limited, leading to higher power density and dark silicon problems. One potential
solution is the use of Approximate Arithmetic Circuits (AACs). This effectively
reduces the number of logic gates required to perform arithmetic computations on
ASICs. This technique is particularly suitable for image applications because the
human eye’s perceptual tolerance makes a degree of error admissible.

In this thesis, the Lanczos scaling is selected as the image application to evalu-
ate the feasibility of applying AACs to trade off accuracy for power. To quantita-
tively evaluate the impact on image quality introduced by AAC errors, arithmetic
accuracy metrics and image quality metrics are studied to find a correlation be-
tween them. Furthermore, power simulations are conducted on AACs using sub-10
nm technology to validate the power savings the chosen fabrication node achieves.
Finally, the exact multipliers in the Lanczos scaling hardware are replaced with a
selection of AACs, and then the system-level power consumption is assessed when
scaling actual images.

The outcome of this study shows that the image scaling application produces a
power saving exceeding 50% while maintaining a high Structural Similarity Index
Metric (SSIM) of up to 0.9. This finding contributes to understanding the potential
of an AAC in reducing power consumption in image processing circuits, paving
the way for future advancements in approximate computing techniques.
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Popular Science Summary

In today’s technology-driven world, images surround us in various forms, from
social media posts to security camera feeds. Behind the scenes, powerful compu-
tational processes work tirelessly to enhance and analyze these images in real time.
However, this quest for image perfection comes at a cost - power consumption. As
our appetite for image processing grows, so does the need for power-efficient solu-
tions to curb the skyrocketing power demands.

In the pursuit of power efficiency, engineers are faced with a conundrum. While
technology advancements enable complex computations, scaling down voltage or
frequency to reduce power is increasingly challenging. This has led to the emer-
gence of Approximate Arithmetic Circuits (AACs), prioritizing power efficiency
over absolute accuracy. By introducing controlled errors into arithmetic computa-
tions, AACs significantly reduce the logic gates needed for image processing while
maintaining perceptible image quality. This breakthrough opens new possibilities
for power-conscious image applications.

In this thesis, meticulous studies are conducted to assess the impact of approx-
imation on image quality and power consumption by integrating AACs in image
resizing techniques, such as the widely used Lanczos scaling. By exploring the cor-
relation between arithmetic accuracy metrics and image quality metrics, optimal
power savings can be achieved while preserving visual fidelity.

AACs offer a promising solution to address the power challenges in image
processing. By leveraging the innate error tolerance of human perception, approx-
imate circuits pave the way for greener and more sustainable image-processing
technologies. With AACs, we can build power-efficient systems that meet the
ever-growing demands of image applications while reducing power consumption.
This research sets the stage for future advancements in approximate computing
techniques, shaping a world where power efficiency and innovation go hand in
hand.
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Chapter 1
Introduction

With the ever-increasing demand for network cameras to support real-time image
processing and machine-learning applications, low-power solutions are needed. As
computational demands increase, more sophisticated computations are performed
on a single chip, leading to higher power density and heating issues in the in-
tegrated circuits. A percentage of transistors on the chip may be powered off
to alleviate these thermal issues in network cameras. However, this approach can
also lead to performance degradation, as powered-off transistors may be needed for
certain computations. Thus, finding a balance between reducing power consump-
tion and maintaining performance remains a significant challenge in developing
low-power solutions for network cameras that require real-time image processing
and machine learning.

During our pilot investigation into an image scaling application with a set-
up similar to our thesis, we conducted circuit-level power simulations. The results
revealed that the consumption of dynamic power constitutes about 90% of the total
power consumption, exceeding the importance of static power. This significant
proportion of dynamic power consumption is attributed to the frequent switching
activity of transistors during computations, particularly in adders and multipliers,
which are fundamental constituents of a Arithmetic Logic Unit (ALU).

To resolve the high dynamic power consumption of ALUs, many researchers
have considered using Approximate Arithmetic Circuit (AAC) for image process-
ing applications with the error resistance property [1] [2]. The inherent limita-
tions in human perception allow certain errors that do not significantly degrade
the output quality of images. Moreover, real-world applications often involve noisy
inputs, which inherently pose challenges in accurately representing useful informa-
tion with precision [3]. Using system-level error tolerance, controlled inaccuracies
in computations can be introduced using AAC, reducing power consumption while
maintaining acceptable output quality.

The feasibility and effectiveness of AACs depend on various factors, including
specific system requirements, circuit-level design choices, and the characteristics
of the fabrication technology used. Evaluating error metrics plays a crucial role in
identifying the error characteristics of AACs and helps to select appropriate designs
for specific applications [4]. Additionally, researchers should consider how AACs
affect the resulting image quality, ensuring that acceptable levels of accuracy are
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2 Introduction

maintained for the specific application. Furthermore, gate-level logic optimization
of the design is highly dependent on standard cell technology libraries, resulting
in a substantial impact on power consumption.

Thorough analysis and understanding of these inter-dependencies are essen-
tial to ensure that AACs effectively reduce power consumption while maintaining
acceptable levels of accuracy for the target application.

1.1 Aim of the Thesis

This thesis explores the design space of utilizing AACs in hardware to reduce power
consumption for a specific image scaling algorithm and semiconductor technology
node. The investigation encompasses multiple tasks, including 1. evaluating the
image quality from an algorithmic perspective, 2. analyzing power reduction at
the circuit level, and 3. evaluating the effectiveness of power reduction using a
given fabrication technology.

From an algorithmic perspective, the thesis uses the Lanczos resampling as
an image scaling algorithm to assess the error tolerance and maintain satisfactory
image quality. Subsection 2.4.1 provides additional explanations on the rationale
behind this choice of application. Different error metrics and colour spaces of the
input images, as well as hardware adaptations, are investigated to determine the
impact on the quality of the output image. Furthermore, an error visualization
approach is presented to aid in selecting suitable approximate arithmetic circuits
for specific algorithms.

At the circuit level, power simulations are conducted on arithmetic units to
understand how AACs achieve power savings. Furthermore, a selection of state-
of-the-art approximate arithmetic circuits are selected and subjected to power
simulations to evaluate the claimed power-saving benefits.

To evaluate the effectiveness of power reduction using sub-10 nm Comple-
mentary Metal-Oxide-Semiconductor (CMOS) technology, synthesis is performed
using a standard cell library for this process node. The post-synthesis netlist of
the Lanczos resampling implemented with selected AACs is simulated to provide
a more accurate power estimation from a system-level perspective.

In this thesis, 8-bit unsigned approximate adders and multipliers are chosen as
arithmetic units, which are sufficient to handle computations of 8-bit colour image
input. EvoApproxLib v1.2022 [5] is the primary source for the study of approx-
imate circuits, offering a choice of up to 40 unique 8-bit unsigned approximate
adders and 40 unique 8-bit unsigned multipliers in an open-source library. The
error metrics in this thesis are chosen from the survey paper [3], which discusses
and evaluates a selection of state-of-the-art approximate circuits based on these
same metrics.



Introduction 3

1.2 Thesis Outline

This thesis is organized in the following chapters.

• Chapter 2: Background - Provides the necessary background knowledge
about power and power-saving techniques using existing AACs and their
error metrics for evaluation in image applications.

• Chapter 3: Methodology - Explains the simulation method to evaluate
the power of existing AACs and how to incorporate it into hardware-adapted
image scaling applications to find the correlation between error metrics and
image quality.

• Chapter 4: Results and Discussion - Explains the AACs selection
process and their impact on power and image quality when used in image
applications.

• Chapter 5: Conclusion and Discussion - Summarizes the conclusions
derived from the thesis and contributes ideas for future work.
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Chapter 2
Background

This chapter provides an overview of the background knowledge necessary to un-
derstand the method and discussion parts. The main emphasis is on the factors
that impact dynamic power consumption in arithmetic circuits and various pre-
viously proposed methods for reducing power consumption using AACs and error
metrics for assessing them. Additionally, the section outlines how these circuits
can be applied in image processing using various image scaling algorithms and
techniques for evaluating image quality. Finally, an explanation of how these ap-
plications can be implemented on actual hardware is given.

2.1 Dynamic Power

The total power consumption comprises two components: dynamic power and
static power. Static power relies heavily on CMOS technology, whereas dynamic
power is primarily influenced by specific applications. Based on our pilot exper-
iment, we found that about 90% of the total power consumption in our image
scaling application is consumed by dynamic power. Therefore, dynamic power is
one of the main concerns that should be focused on for reducing power consump-
tion in these applications.

The dynamic power consumption of a circuit, as in (2.1) is proportional to
the total capacitance CL of the switching nets, the operating frequency f of the
circuit, the switching activity Aswitching, and the square of the voltage swing Vdd

[6].
Pdynamic = CL × V 2

dd × f ×Aswitching (2.1)

Although Dynamic Voltage and Frequency Scaling (DVFS) [7] and Adaptive
Voltage Scaling (AVS) [8] are commonly used power management techniques to
lower power consumption, in this thesis, we specifically focus on addressing the
power consumption associated with the switching of signals between logic gates
and nets. Since the supply voltage and operating frequency are limited by CMOS
technology and the given requirements, reducing the switching activity can be a
solution to reduce dynamic power consumption. In addition, the reduction in the
number of charges and discharges of the load capacitance can be an additional
benefit of this method.

5



6 Background

The switching activity can be categorized into toggling and glitches. Signal
toggling refers to a signal switching from one logical state to another within a
single clock cycle. Conversely, a glitch is an undesired brief fluctuation in a signal
that occurs when there is a delay in the output transition from one combinational
logic to another. When a signal switches, the capacitive loads in the switching nets
are charged and discharged, which consumes power. Thus, the more frequently
the signal toggles, the higher the probability of glitches occurring and the higher
the circuit’s power consumption.

In [9], the behaviour of a 4-bit Ripple Carry Adder (RCA) circuit consisting of
four cascaded Full Adders (FAs), as in Figure 2.1 is analyzed under different input
conditions, and the worst and best-case scenarios for the signals are identified. The
input combination that results in the least switchings is considered the best case,
and the input with the maximum switching is the worst case. Here, a unit delay
model for every FA is assumed for the worst-case and best-case input calculation
to observe the behaviour of signal glitching. The input combination for which the
worst-case switching is detected based on the experiments in [9] is shown in Figure
2.2.

Figure 2.1: 4-bit Ripple Carry Adder

In real applications, the implementation of a FA circuit depends on the pro-
vided standard cell library. Therefore the delay on each gate depends on circuit
loads and the logic optimizations done differently by the synthesis tool. To vali-
date this assumption, we perform the same experiment on the 4-bit RCA with a
clock frequency of 500 MHz, followed by netlist simulation to find the worst and
best-case input combinations.

We can observe from Figure 2.3a that the number of switchings in the output
sum propagates from the Least Significant Bit (LSB) to the Most Significant Bit
(MSB). Bit 0 of the sum has only one toggle and is considered a useful switch-
ing. However, in higher-order bits, multiple undesired switching events known as
glitches occur within a single clock cycle. These glitches are considered useless,
as they do not contribute to the final output while still consuming power. In
contrast, Figure 2.3b represents the best-case input scenario, where such excessive
glitch behaviour is not observed.
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0 1 0 1 0 1 1 1

1 1 0 0 1 1 0 -Previous State

Next State

Figure 2.2: Worst case input and output switching as claimed in the
reference paper

(a) Worst case input with maximum switching of 19 and power consumption of 690nW

(b) Best case input with minimum switching of 3 and power consumption of 340nW

Figure 2.3: Simulation result of 4-bit RCA to detect worst-case and
best-case input combinations based on switching activity
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Based on our experiment result, we found that the maximum switching of the
output bits is detected in different worst-case input combinations compared to
the result found in the paper. This result could be due to the technology-specific
library and logical optimization techniques used in this analysis.

Power analysis in the design feeding all input combinations revealed that the
input transition with maximum switching on output bits and a higher capacitance
load would consume maximum power. Table 2.1 shows that the worst-case input
with maximum switches causes almost twice the power consumption compared to
the best-case input.

Table 2.1: Power consumption of a 4-bit Ripple Carry Adder

Input Type Input Transition Number of
Toggles/Glitches

Total Power
Consumption ( nW )

Worst case
A - 1011 -> 0101
B - 0100 -> 1011

Cin - 0 -> 1
19 690

Best case
A - 1011 -> 1011
B - 1110 -> 1111

Cin - 0 -> 1
3 340

Thus, one solution to reduce the number of glitches will be to minimize the
logic complexity of the circuit, resulting in lower switching and load capacitance,
leading to lower circuit power consumption. AACs can be used in error-tolerant
applications, such as image processing, resulting in a significant power reduction
and still giving an acceptable outcome.

2.2 Arithmetic Circuits

Arithmetic circuits such as adders, multipliers, dividers, and shifters are the basic
ALUs used in a data path to perform calculations. The design and implementation
of these elements are often dominant in the power and speed of overall system
performance. Therefore, careful design and selection of these arithmetic circuits
are needed when designing hardware to trade off power, performance, and area

This thesis focuses on power optimization by replacing 8-bit adders and mul-
tipliers with their approximate alternatives. In the following, a brief introduction
focusing on the power consumption of exact unsigned integer adders and multi-
pliers will be discussed and extended to approximate unsigned integer adders and
multipliers.
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2.2.1 Exact Arithmetic Circuits

Exact Arithmetic Circuits (EACs) is designed to provide precise and accurate
results for logic operations in arithmetic circuits. They are typically implemented
using logic circuits, where the inputs and outputs are represented and processed
with full precision. EACs are commonly used in critical parts of a circuit or
applications where accuracy is crucial, such as the control logic of a processor.

EACs can be more power-hungry than AACs, requiring more complex circuitry
to perform precise calculations. However, the actual power consumption of EACs
depends on various factors such as the size of the circuit, the operating frequency,
and the technology used for implementation.

The scope of this section focuses on the adders and multipliers among these
EACs.

Basic Full Adder Circuit

A full adder circuit is one of the most common exact adders used to build other
multi-bit adders and multipliers. In the subsequent chapters, we focus on the
design of FAs and explore the potential for modifications into AACs. A FA is
usually used by cascading N FAs to construct an N -bit adder. To analyze the
implementation of an 8-bit unsigned adder, a 1-bit FA is discussed first in this
section.

A FA adds three 1-bit inputs and produces two 1-bit outputs. The first two
inputs are A and B, and the third input is an input carry Cin. The sum of
the inputs is represented as Sum, and the output carry is designated as Cout as
shown in Figure 2.4.

Figure 2.4: Full Adder

The FA design in Figure 2.5 using 2-input NAND gates is one way of imple-
mentation to analyze the switching activity and glitches at each stage of the NAND
gate and find the correlation between peak power and switching. By verifying the
observation in Section 2.1, power simulations of a FA prove that a circuit’s power
consumption is directly proportional to the number of switching of the output bits.
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Figure 2.5: 1-bit Full Adder using NAND Gates

In practical implementations, the FA circuit may not exclusively comprise
NAND gates. The synthesis tool can select optimized logic from a standard cell
library when optimizing for power, area, or performance. These FAs are then
cascaded differently to design different exact arithmetic adders.

A binary FA is also the basic component for building multipliers. Multipliers
are essentially adder arrays that typically comprise three components: (a) partial
product generation, (b) accumulation, and (c) final additions. The operation of
partial product generation primarily involves the use of AND gates. On the other
hand, the (b) and (c) stages can be implemented using adders of different bit
lengths depending on the type of multipliers.

The authors in [10] have done some experiments and compared the power
consumption of different exact and approximate circuits. The adders include Rip-
ple Carry Adder (RCA), Carry-Select Adder (CSA), and Carry-Lookahead Adder
(CLA). The multipliers include Ripple Carry Array, Multiple Carry-Save Array,
and Wallace Tree circuits. When performing an accurate calculation, RCA is con-
cluded to be the optimal circuit for power saving while CLA demonstrates a better
performance with less delay.

In the subsequent section, we will dive into strategies for reducing power con-
sumption by deliberately introducing errors within the arithmetic circuits using
approximate circuits. This thesis investigates various approximate circuits re-
searchers propose in [10][11].

2.2.2 Approximate Arithmetic Circuits

Approximate arithmetic circuits are becoming increasingly popular due to their
ability to reduce delay, area, and power consumption compared to accurate arith-
metic circuits. This is achieved at the expense of some loss in accuracy. However,
if the errors resulting from approximate computation are within acceptable limits,
approximate arithmetic circuits can be utilized in various practical applications
such as digital signal processing, image processing, and the implementation of
hardware for neural networks in artificial intelligence and machine learning. [12]
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Approximate Adders

Some common approaches to designing approximate adders can be (a) by approx-
imating the full adders, (b) by reducing the critical path of the circuit, and (c) by
truncating the carry propagation.

One of the previous works [13] on the design of approximate adders using the
approach (a) proposes a new design for a multi-bit FA circuit that can be used
in low-power approximate computing systems. The proposed design uses a carry-
based approach by altering the sum bit as shown in Figure 2.6 to avoid critical XOR
operation in conventional ones, which reduces the circuit’s power consumption.
The research claims that approximate circuits with wider datapaths, such as 64
bits and 128 bits, significantly reduce delay, area, and power.

As this thesis focuses on only 8-bit computations, the carry-based approach for
designing approximate adders does not give an acceptable accuracy. The authors
aim to balance accuracy and power consumption. However, there is still a limit
to how much accuracy can be sacrificed for power savings in smaller approximate
adders.

Figure 2.6: Carry Based Approximate Adders

Figure 2.7: (a)Majority Gate Circuit, (b) Their proposed 1-bit Full
Adder schematic

The multi-bit approximation adders in [11] are one type of approximate adder
using the approach (b). Multiple 1-bit full adders are cascaded with a majority
logic circuit as in Figure 2.7. With this implementation, there is a 50% reduction
in delay and a 71% decrease in the area achieved in an 8-bit approximate adder
but at the cost of a decrease in accuracy.



12 Background

In category (c), one of the approaches is the segmented adder [14] [15]. It
mitigates carry propagation delays by partitioning the input into multiple shorter
segments. Each segment is processed independently by parallel sub-adder blocks
with individual carry-in signals. This design effectively shortens the length of the
carry propagation chain, thereby enabling faster addition operations. Figure 2.8
shows the fundamental structure of the segmented adders, illustrating their key
components.

Figure 2.8: Segmented Adder

The most common segmented adder design is the N-bit Equal Segmentation
Adder (ESA) [15], which employs multi-bit sub-adders without any carry input.
Unlike other adders, the input bits used for carry computation in ESA do not
overlap. This property significantly reduces the hardware cost of ESA compared
to other adders. For convenience, sub-adders of equal size are considered in this
thesis.

Approximate Multipliers

An approximate multiplier can be designed by modifying the three primary compo-
nents of the exact multiplier. These three stages of approximation include (a) the
approximation of the generation of partial products, (b) the approximation of the
accumulation of partial products from different stages, and (c) the approximation
of the addition of the final product. These approximations allow for a trade-off
between accuracy and computational complexity in the multiplier design.

The Under-Designed Multiplier (UDM) employs a specific method for (a), as
shown in Figure 2.9 [16]. The multiplier introduces an error by modifying a single
output entry in this approach. At the same time, the adder circuit used in the final
stage of the partial product addition remains unaffected and accurate. Despite the
error introduced, it is within acceptable limits, and UDM allows for constructing
larger multipliers while achieving significant power savings.

The mentioned approaches for approximate arithmetic circuits serve as exam-
ples of reducing logic gates and computations to minimize power consumption.
However, this thesis primarily aims to evaluate the power-saving benefits of utiliz-
ing AACs. Consequently, not all of the aforementioned approaches are thoroughly
examined. Instead, our primary focus is evaluating a specific set of AACs available
within an open-source library. These AACs are designed using a novel automated
process for creating approximate arithmetic circuits, which will be presented in
the upcoming section.
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Figure 2.9: 2x2 Under-Designed Multiplier

EvoApprox Library Arithmetic Circuits

EvoApprox8b is a library of approximate adders and multipliers that can be used
for circuit design and bench-marking of approximation methods [5]. The library
contains various types of approximate adders and multipliers and their implemen-
tation of exact arithmetic circuits.

The researchers who developed this library used a multi-objective Cartesian
Genetic Algorithm to design the circuits, which allowed them to use an automatic
way to generate approximate circuits [17]. The idea is to achieve the lowest possible
power consumption of a given error metric by evaluating the switching activity
of all input combinations. This method is used to optimize approximate circuits
based on the power-saving trade-off for different error metrics such as Mean Square
Error (MSE), Mean Absolute Error (MAE), Mean Relative Error (MRE), Worst
Case Error (WCE), and Error Probability (EP). Each error metric has a collection
of circuits with different power-saving ranges that allow users to select their basic
building blocks for target applications.

In this thesis, we mainly focus our evaluation on examining 8-bit unsigned
approximate adders and 8-bit unsigned approximate multipliers circuits from the
library (v1.2022) and check if the claimed power saving ratio in the library still
holds valid with the latest technology and if it can be used in image applications. In
addition to the AACs present in the EvoApprox Library, we have also implemented
the Segmented Adder and UDM for conducting power simulations. This allows us
to compare the tradeoff between power consumption and error metrics between
the AACs in the EvoApprox Library and the AACs designed with a conventional
method.
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2.3 Error Metrics

Error metrics play a crucial role in evaluating AACs. These metrics provide dif-
ferent quantitative measures to assess the error characteristics of the approximate
results compared to the exact results, allowing researchers and designers to make
decisions in the selection of AACs.

In this thesis, we have two types of error metrics to evaluate for approximate
circuits; one is Arithmetic Accuracy, and the other is Application Specific Metrics
(ASMs). Arithmetic accuracy assumes evenly distributed input values and cal-
culates the accuracy of circuits based on those input values. In contrast, ASMs
evaluate approximate circuits from a specific application’s perspective. Based on
different applications, we can expect that the distribution of input values varies
and, therefore, has other impacts on various applications. This thesis focuses on
applying approximate circuits to image applications so that we will introduce some
commonly used ASMs for image quality evaluation.

2.3.1 Arithmetic Accuracy

To evaluate the accuracy of an approximate circuit, different aspects such as error
distribution, worse-case error, and average error distance should be considered.
Therefore, there are a few error metrics that have been adopted. Here are some
commonly used error metrics to evaluate arithmetic differences. For a total N-
output circuit, i is the output ith. The metrics in this section are referenced from
[3].

Error Distance (ED)

The error distance (EDi) shows the arithmetic difference between the ith output
of an approximate circuit and the ith output of an accurate circuit. It is calculated
as (2.2)

EDi = |M ′
i −Mi| (2.2)

where Mi is the decimal format output of an accurate circuit and M ′
i is the decimal

format output of an approximate circuit. The absolute value is the difference
between an approximate and an accurate circuit.

Relative Error Distance (RED)

To consider the relative difference compared to the accurate output value, the
RED is a commonly used metric. It is calculated as (2.3) where EDi is divided by
the ith output Mi of the accurate circuit. When using this metric, a higher error
tolerance is expected if Mi is also larger.

REDi =
EDi

Mi
(2.3)

Above, individual differences are discussed. In the following, these errors are
accumulated to evaluate the overall accuracy of the circuits.
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Mean Absolute Error (MAE) or Mean Error Distance (MED)

MED (also known as MAE) is calculated in (2.4) as accumulating the error dis-
tance of each output multiplied by the probability that the ith input occurs. In
this thesis, the discussion revolves around 8-bit adders and 8-bit multipliers. Con-
sequently, when two inputs each have a probability of 1

256 and are combined, the
resulting probability would be 1

256×256 . This metric provides a mean error distance
based on how many input combinations it has.

MAE =

N∑
i=1

EDi × P (EDi) (2.4)

Mean Relative Error (MRE)

MRE is calculated the same as MAE but replaces ED with RED as (2.5). There-
fore, for any two types of 8-bit unsigned approximate multipliers, when ED is the
same between two circuits, but one circuit produces errors in the lower bits of the
output, it will exhibit a higher MRE than the other.

MRED =

N∑
i=1

REDiP (REDi) (2.5)

Normalization of Mean Error Distance (NMED)

NMED is the normalization of MED by dividing the maximum value of the accu-
rate circuit by (2.6). This metric is useful when comparing the different sizes of
approximate circuits. Only 8-bit AACs are explored in this thesis, so this metric
is not discussed in the later sections.

NMED =
MED

max(M1, ...MN )
(2.6)

Mean Square Error (MSE)

MSE is also a common method used to evaluate approximate circuits. The MSE is
calculated by accumulating the square of the error distance times the probability
that this error occurs as (2.7). It is sensitive to large EDs, as MSE amplifies the
impact of large errors by accumulating the square of EDs.

MSE =

N∑
i=1

ED2
i P (EDi) (2.7)

Error Rate (ER) or Error Probability (EP)

ER or EP are sometimes used interchangeably in some studies. It accumulates
1 whenever an approximate output differs from the accurate output (2.8). Then
divide the total count of the output number to calculate the probability of an
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erroneous result. This error metric does not consider the value of ED. As long as
there is any difference, 1 is accumulated.

EP =

N∑
i=1

1

N
,M ′ ̸= M (2.8)

Worst Case Error (WCE)

WCE is used to find the maximum ED in an approximate circuit as (2.9). Here,
normalization is done by dividing the maximum error by the output size N so
that different sizes of AACs are comparable. Although the comparison of different
AACs is not within the scope of this thesis, we use the same formula to maintain
consistency.

WCE =
max(ED1, ...EDN )

N
(2.9)

2.3.2 Application Specific Metrics

The next section will focus on application-specific metrics, specifically concerning
the evaluation and discussion of image quality assessment. This analysis aims to
delve into the various aspects and criteria used to assess the quality of images in
the context of the specific application under consideration.

Mean Square Error (MSE)

In image application, MSE is calculated by

MSE =
1

XY

X−1∑
x=0

Y−1∑
y=0

|I(x, y)− I ′(x, y)|2 (2.10)

it accumulates the square of error distance between each pixel from the reference
image I and each pixel from the processed image I’, divided by the total num-
ber of pixels. Symbols x and y are expressions of pixel coordinates from the x
and y directions. The width and height of an image are described as X and Y,
respectively. The mathematical expression is the same as MSE in the arithmetic
precision section, while i is replaced by (x,y) and N is replaced by the total number
of pixels X × Y of an image.

Peak Signal to Noise Ratio (PSNR)

PSNR is an engineering term used to find the ratio between the signal’s peak
power versus the power of distortion. When applied in image applications, the
peak power is the maximum pixel value of an image. In our application, the images
are represented and operated in 8-bit format, so the maximum pixel MAXi here
is 255.

PSNR = 20log10
MAXi√
MSE

(2.11)
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Based on (2.11), we can interpret the expression of PSNR as the higher, the better.
For an 8-bit lossy image, having PSNR between 30dB and 50dB [18] is common.
When the calculated MSE is 0, there is no distortion; therefore, PSNR is infinite.

Structural Similarity Index Metric (SSIM)

MSE and PSNR are relatively simple to calculate and are widely used in different
research fields. However, those metrics assume that the image quality perceived
by the Human Visual System (HVS) can be directly quantified by the error mea-
surements. In practice, different distortions on images can have the same MSE
but have a different assessment by human eyes. The authors in [19] have found
that HVS is more sensitive to extracting structural information when assessing
image quality. Based on this finding, one of the common and relatively accurate
indices called SSIM is proposed in that paper. This index separates image signals
into three relatively independent components, luminance(l(x,y)), contrast(c(x,y)),
and structure(s(s,y)). The overall image quality is considered by evaluating these
three factors. It can be represented as

SSIM(x, y) = f(l(x, y), c(x, y), s(x, y)) (2.12)

Luminance is considered as the average over the entire image, where µx is the
mean intensity of image x and N is the total number of pixels of image x, and xi

is the pixel value:

µx =
1

N

N−1∑
i=0

xi (2.13)

Standard deviation is used as an estimation of signal contrast where σx is the stan-
dard deviation (the square root of variance) as an estimate of the signal contrast
in image x, it is given by

σx =

√√√√ 1

N − 1

N−1∑
i=0

(xi − µx)2 (2.14)

The structure is derived after removing the mean intensity and normalized by its
standard deviation, and the structure expression of image x is calculated as:

x− µx

σx
(2.15)

The calculation for µy, σy, and the structure factor of image y is the same as image
x.

To compare those factors between image x and image y They are calculated
respectively as follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2.16)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2.17)



18 Background

s(x, y) =
σxy + C3

σxσy + C3
(2.18)

where C1,C2, and C3 are small values to avoid instability when denominators are
zeros. It can be calculated by

C1 = (K1L)
2 (2.19)

C2 = (K2L)
2 (2.20)

C3 =
C2

2
(2.21)

where K1, K2 <<1 are small constants, and L is the dynamic range of the pixel
values. Here, we use 255 for standard 8-bit images.

σxy is given as

σxy =
1

N − 1

N−1∑
i=0

(xi − µx)(yi − µy) (2.22)

Finally, the SSIM is calculated by combining l(x, y),c(x, y), and s(x, y) to below:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2.23)

where α > 0, β > 0, and γ > 0 are parameters used to decide the relative
importance of those three components. In the proposed paper, all are set to 1.
Based on the above formula, the SSIM index results in:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y) + C2
(2.24)

Mean Structural Similarity Index Metric (MSSIM)

The authors in [19] have proven that SSIM achieves better results when applied
locally rather than globally. An 11 by 11 circular-symmetric Gaussian weighting
function w = wi|i = 1, 2, ..., N with a standard deviation of 1.5 samples is normal-
ized to a unit sum. The estimated values of local statistics, namely µx, σx, and
σxy, are defined as:

µx =

N∑
i=1

ωixi (2.25)

σx = (

N∑
i=1

ωi(xi − µx)
2)

1
2 (2.26)

σxy =

N∑
i=1

ωi(xi − µx)(yi − µy) (2.27)

Once the above calculation has been done for all image pixels, a mean SSIM
(MSSIM) index is calculated to evaluate the overall image quality:

MSSIM(X,Y ) =
1

M

M∑
j=1

SSIM(xj , yy) (2.28)

where M is the sample number of the quality map.
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2.3.3 Image quality metrics on colour image

Metrics such as PSNR and SSIM are commonly used to assess the quality of com-
pressed grayscale images. These metrics are based on comparing the pixel values
between the original and compressed images and are, therefore, well suited for
grayscale images with only one information channel. Since this thesis focuses on
discussing the image quality of colour images, adaptation is required to apply
them to colour images. In this thesis, the scaling application has experimented on
RGB and YCbCr colour spaces. Based on HVS, human eyes are more sensitive to
luminance than chroma; thus, the colour space YCbCr is designed to separate lu-
minance from chroma, while the RGB colour space is a mixture of both luminance
and chroma in all colour channels. When a colour image is analyzed in YCbCr
colour format, they are weighted according to [20]:

imqYCbCr = 0.8× Y + 0.1× Cb+ 0.1× Cr (2.29)

while RGB channels are treated as equally weighted.

imqRGB =
R+G+B

3
(2.30)

In the upcoming sections, scaled images will be evaluated using these equations to
adapt them to colour images. Each image will have three separate image metric
values, and then, depending on the colour space employed for the scaling process,
a final value of the image metric is calculated.

2.4 Image Applications

2.4.1 Image scaling

Scaling is the process of resizing images to fit specific resolutions or aspect ratios,
often necessary for various purposes such as image segmentation, Convolutional
Neural Network (CNN) classifications, and preprocessing for other image appli-
cations. Several scaling algorithms exist for image resizing, including nearest-
neighbour interpolation, bilinear interpolation, bicubic interpolation, and Lanczos
resampling. Nearest-neighbour interpolation is the simplest method but may not
yield optimal results compared to other algorithms. Bilinear interpolation and
bicubic interpolation operate by interpolating new pixels based on the weighted
values of surrounding pixels, with bilinear considering a 2 × 2 pixel neighbour-
hood and bicubic considering a 4 × 4 pixel neighbourhood. In contrast, Lanczos
resampling is known to provide better image sharpness preservation, but its com-
putational complexity poses limitations when implemented on hardware.

This thesis selects Lanczos resampling as the target algorithm due to its ability
to preserve better image quality after scaling. Its complexity makes it meaningful
to explore the application of AACs to improve performance and power efficiency.
As referenced from [21], the algorithm possesses distinct characteristics that make
it suitable for different image types and applications.
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Lanczos resampling

Lanczos resampling is a technique used for image scaling that involves using a
kernel with a size determined by a positive integer parameter, denoted as a. Typ-
ically, a is set to 2 or 3 to achieve optimal results. In this case, we choose a to be
2, resulting in a kernel size of 4 pixels in both the x and y directions. Therefore,
a total kernel size of 4× 4 is required to interpolate one pixel in the scaled image.
This algorithm uses a sinc function as (2.31) to interpolate the pixel values for the
output image. The Lanczos kernel is calculated as follows:

L(x) =


1, if x = 1
asin(πx)sin(πx/a)

π2x2 , if − a ≤ x < a and x ̸= 0

0, otherwise
(2.31)

To perform the interpolation, we utilize an interpolation formula represented
by Equation (2.32). This formula involves two main variables: x and i. The
variable x represents the new position of the pixel that needs to be interpolated,
either in the x or y direction. On the other hand, i represents the location of the
neighbouring pixel in the original image that corresponds to x.

In Equation (2.32), the pixel value S(x) at the new position x is calculated
by summing the contributions of neighbouring pixels Si, weighted by the Lanczos
function L(x − i). The Lanczos function determines the influence of each neigh-
bouring pixel based on its distance from the new position.

S(x) =

⌊x⌋+a∑
i=⌊x⌋−a+1

SiL(x− i) (2.32)

The Lanczos resampling is illustrated in Figure 2.10 where in the horizontal
direction, four input pixels P11, P12, P13, P14 are weighted according to the cor-
responding Lanczos coefficient to interpolate the value of 1 intermediate pixel I1.
The same procedure is repeated in the y direction, where the input pixels P are
replaced with intermediate pixel values I.

To provide an example, given the situation where we want to interpolate a
new pixel located at (3.5, 3.5) using Lanczos resampling. In the x direction, we
take into account the pixels at positions (2, 3.5), (3, 3.5), (4, 3.5), and (5, 3.5) of
the original image, along with their respective pixel values. These neighbouring
pixels play a crucial role in interpolation calculation, using the Lanczos function
to determine their contributions.

However, since the y coordinate 3.5 is unavailable in the original image, we
must apply the same interpolation technique in the y direction. To accomplish
this, we repeat the interpolation process four times in the x direction, resulting
in interpolations involving 16 pixels. Later, we perform the interpolation in the y
direction again to achieve the final interpolated pixel value.
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Figure 2.10: Lanczos resampling

Therefore, we would need to consider the pixel locations for the x direction as
below, where the location of each pixel is expressed as (x,y):

(2, 2) (3, 2) (4, 2) (5, 2)
(2, 3) (3, 3) (4, 3) (5, 3)
(2, 4) (3, 4) (4, 4) (5, 4)
(2, 5) (3, 5) (4, 5) (5, 5)

 (2.33)

By performing (2.32) where i corresponds to the x location of the pixels in
(2.33), we can interpolate four intermediate pixels as shown in (2.34). By perform-
ing the y-direction interpolation once, the pixel value at (3.5,3.5) is calculated.


(3.5, 2)
(3.5, 3)
(3.5, 4)
(3.5, 5)

 (2.34)

The above example can be extended to perform on all new pixels to obtain
a final scaled image. For a kernel with a set to 2, 16 input pixels are needed to
calculate one output pixel. Therefore, the Lanczos resampling is slower than the
bilinear and bicubic interpolation. On the other hand, it preserves the sharpness
of the image with these Lanczos kernels.
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The choice of algorithm depends on the specific application and the trade-off
between speed and image quality. Lanczos resampling produces better image qual-
ity while having more complex computations than Bilinear interpolation. There-
fore, bilinear interpolation is still the most commonly used algorithm for scaling.
In this thesis, we discuss the possibility of reducing the computation complexity
of Lanczos resampling with approximate multipliers.



Chapter 3
Methodology

This thesis employs a methodology that includes various stages, starting with
software-level evaluation involving algorithmic evaluation. This evaluation then
extends to circuit-level experimentation and finally leads to system integration.
Section 3.1 provides an overview chart that summarizes the methodology adopted
in this thesis. Further, Section 3.2 and Section 3.3 elaborate on the software-level
algorithmic assessment and the circuit-level experimentation, respectively. Finally,
Section 3.4 delves into the integration aspect of the system.

3.1 Methodology Overview

An overview of the design methodology is shown in Figure 3.1. The methodology
steps represented by dashed lines indicate the tasks implemented in a high-level
programming language to demonstrate the proof of concept for the thesis. On
the other hand, the steps represented by solid lines involve implementation in a
hardware description language, followed by synthesis and power simulation. It
involves three key steps:

• Scaling Applications: The software implementation of image scaling appli-
cations is an efficient means of evaluating and analyzing the image quality
of scaled images using approximate multipliers. These implementations in-
clude hardware-friendly adjustments, as described in Subsection 3.2.2, which
are crucial to ensure the compatibility and seamless integration of approx-
imate multipliers in software and hardware systems. Subsection 3.2.3 will
mention which part of the design is being replaced with approximate mul-
tipliers. The expected output would allow us to evaluate image quality and
its correlation with error metrics.

• Arithmetic Circuits: In Sections 2.1 and 2.2, we comprehensively anal-
yse how switching activities affect the overall power consumption of the
adder circuits. This study provides valuable information on the mecha-
nisms through which power reduction can be achieved in AACs. Based on
this understanding, in Subsections 3.3.1 and 3.3.2, we present the synthe-
sis and power simulation methodologies used in this thesis to evaluate the
power gains achieved using AAC.

23
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Figure 3.1: Methodology overview

Furthermore, in Subsection 3.3.3, we describe the software implementation
utilized to calculate error metrics and generate error plots. These method-
ologies enable us to assess the effectiveness of AACs in reducing the power
consumption of the selected fabrication technology while maintaining ac-
ceptable levels of precision.

• System view: In Subsection 3.4.1, we present a hardware implementation of
the designed circuit based on the results obtained from the previous steps.
By implementing and evaluating the circuit in hardware, we can verify the
power reduction achieved through the use of AAC.

In Subsection 3.4.1, we will evaluate and estimate the power consumption of
the entire system based on the hardware implementation described above.
This estimation considers the power consumption of the AACs and other
components and modules within the system. Comparisons were made be-
tween the estimated system power consumption and the actual power gain
achieved by using AAC, and the results are shown in Section 4.3. This
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comparison allows us to assess the effectiveness of AACs from a system per-
spective. Based on this evaluation, we can provide recommendations and
suggest specific AACs suitable for integration into the system, considering
both power reduction and system-level performance requirements.

3.2 Scaling Applications

This section follows the steps required in designing and evaluating the image scal-
ing application using AACs in the software domain.

3.2.1 Implementation of scaling applications on software

By implementing the image scaling algorithms in software, we can simulate and
assess the performance of the approximate multipliers without the need for physical
hardware. This software-based approach allows for a more efficient evaluation of
multiple approximate multipliers and enables us to analyze the impact of these
multipliers on the resulting image quality. Figure 3.2 shows the image scaling
application flow in software. A combination of Python and C code is used to
achieve better performance in implementing image scaling software. The Python
code handles initial processing tasks, such as loading the input image and setting
the scaling ratio. It prepares the necessary data and parameters for the scaling
operation.

Multipliers.c
Multipliers.c

Python API

input.png

Main:
image scaling

Pre processing: 
read image

Post processing:
Calculate image 
quality metrics, 
correlations
Image save

main.py

scaled_img.png

start

End

scaling 
ratio

reference_img
.png

C API

Multipliers.c

Compiled

./scaling

Lanczos 
resampling.c

pixel values.txt

Figure 3.2: Flow of image scaling in software

To ensure efficient execution, the image scaling process is implemented in the
C code. The Python code passes the image data and scaling parameters to the
C code, which performs the scaling operation. This implementation in C takes
advantage of the lower-level capabilities in the programming language, resulting
in improved performance and faster processing times.
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Once the scaling operation is complete, the resulting scaled image is returned to
the Python code for further analysis. The Python code then calculates the image
quality metrics MSE, PSNR, and SSIM of the resulting image and a reference
image that is scaled with the same scaling method using an exact multiplier.
These metrics are compared to assess the quality of the scaled image. The Python
code can also save the final scaled image for later analysis and comparison. This
allows us to visualize and subjectively understand the scaling results and assess
the image quality.

3.2.2 Adapting for a hardware-friendly implementation

The arithmetic logic units of a low-power, real-time image processing ASIC are
constrained to 8-bit unsigned integer numbers in this thesis. Therefore, an adap-
tation to image scaling is required.

The specification of image scaling is as follows:

• Input images are all square-shaped, with the horizontal and vertical direc-
tions having the same dimensions. In this thesis, we only consider square
images to simplify our analysis, but all conclusions are valid for any image
size.

• The input images are 8-bit colour images; the colour format can be either
RGB or YCbCr.

• The image scaling ratio is limited to downsizing within the range between
100% and 50%. This limitation is imposed to simplify the analysis in this
thesis, but the approach remains applicable when adapted to hardware.

• The scaling factor is fixed to 24.

To implement image scaling using 8-bit unsigned integer adders and multipli-
ers, the following steps are undertaken:

• Determine the scaling factor: The scaling factor, or grid size, is utilized to
scale up floating point values and calculate the integer parts. The output
is then divided by the scaling factor, and the nearest integer is taken as
the final output. By avoiding floating-point operations, this approach sim-
plifies hardware implementation. Choosing a larger scaling factor generally
improves the accuracy of the scaling result, but it also increases the hard-
ware requirements. Larger scaling factors necessitate higher-bit arithmetic
circuits, adding complexity and resource demands to the implementation.
Additionally, they require the storage of larger Lanczos kernels, which con-
sume more memory and can be limiting in resource-constrained systems. To
ensure a hardware-friendly design, a grid size of 16 is chosen in this thesis,
as it is a power of 2 and enables efficient implementation using right-shift
operations instead of division.

• Select the available scaled image size: The coordinates of the new pixels in
the scaled image are interpolated according to the ratio of the new image
versus the original image, as shown in (3.1) and (3.2). The new pixels’
coordinates in the scaled image are interpolated based on the ratio of the
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new image size to the original image size. The new image size is determined
by applying an integer step size between 16 and 32, corresponding to scaling
between 100% and 50%. The coordinates of the new pixels are calculated
incrementally using the step size as shown in (3.3), ensuring that the new
image size is an integer value. Since the new image size is often not a
multiple of the scaling factor, an offset, as shown in (3.4), is introduced to
prevent the loss of the last pixels during multiple scaling operations. This
offset, which varies from 0 to 8 (less than or equal to half the scaling factor),
is added at both the beginning and the end of the image. The calculation
of the new image size is determined by the scaling factor, the original image
size, the offset, and the step size, as shown in (3.5). It is important to
note that this limitation of a new image of integer size applies solely for the
purpose of simplification in this thesis, while real applications may employ
other methods to accommodate different image sizes.

Scaling ratio =
New image size
Old image size

(3.1)

New pixels = i× 1

scaling ratio
, i= 0, 1, ...New image size -1 (3.2)

Scaled new pixels = i× step size, i= 0, 1, ...New image size -1 (3.3)

Offset = (0, 1, ...
Scaling factor

2
) (3.4)

New image size - 1 =
Scaling factor × (Ori image size - 1) − 2× Offset

Step size
(3.5)

• Calculate the scaling coefficients: For the Lanczos resampling algorithm,
the sinc coefficients are scaled from ±1 to ±255. This thesis uses a filter
size of 4; since the grid size is 16, the number of Lanczos kernels is 4 ×
grid size. Resulting in a total of 64 precalculated filter coefficients stored in
a lookup table. It is worth noting that when the negative coefficient in the
interpolation formula is calculated, it is computed as a positive value. This
means that the absolute value of the negative coefficient is also achieved
using unsigned multipliers. The sign of the coefficient is added after the
calculation to obtain the correct result.

• Resize the image: To derive the interpolated pixel values in the new image, it
is necessary to obtain the floor integer from a floating point value, denoted
as (2.32). Since all computations are performed using integers, the floor
operation is computed as shown below in (3.6):

Scaled floor = ⌊(new pixel/scaling factor)⌋ ∗ scaling factor (3.6)
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3.2.3 Replacement with approximate multipliers

In implementing image scaling using approximate multipliers, only the multipli-
cation operations involved in pixel value calculations during Lanczos resampling
are replaced with approximate multipliers. Control logic and pixel location calcu-
lations, such as determining the source and destination pixel coordinates, are kept
intact and implemented using exact adders.

The Lanczos resampling algorithm requires the calculation of weighted neigh-
bouring pixels to determine the new pixel values in the scaled image. These
weighted values involve multiplication operations between the pixel values and the
corresponding filter coefficients. In the software implementation, these multiplica-
tion operations are replaced with approximate multipliers.

By replacing exact multiplication operations with their approximate counter-
parts, the implementation provides a targeted approach to evaluate the impact of
approximate multipliers on the overall image scaling process. This allows a focused
analysis of how the approximation affects the calculation of the pixel value and
the image quality.

The software implementation can effectively calculate the image quality met-
rics using approximate multipliers. By isolating approximate multiplication op-
erations, it becomes possible to evaluate the accuracy and fidelity of the scaled
images while maintaining the integrity of the control logic and the calculation of
the location of the pixels, which are crucial for achieving correct system behaviour.

Overall, this approach enables a controlled evaluation of the effects of approx-
imate multipliers on image scaling, providing valuable insights into the trade-offs
between power consumption and image quality in later usage in the thesis.

3.2.4 Relation between Arithmetic Accuracy and Application Specific
Metrics

This thesis uses three widely used correlation coefficient methods to establish the
correlation between Arithmetic Accuracy and Application Specific Metrics. These
methods are Pearson’s correlation coefficient, Spearman’s, and Kendall’s rank cor-
relation coefficients, which have also been used in image quality assessment and are
referenced from a widely cited research paper on finding the correlations between
different image quality metrics [22]. Pearson’s coefficient is ideal for assessing lin-
ear relationships between continuous variables, while Spearman’s is suitable for
studying monotonic relationships or ordinal data. Kendall’s coefficient is also
used to analyze ordinal data, account for ties, and focus on the order or ranking
of variables. Since PSNR is in a logarithmic scale and does not present a linear
relationship, Pearson’s correlation is unsuitable, but the other two methods may
be applied.
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3.3 Approximate Arithmetic Circuits

The implementation and analysis of Approximate Arithmetic Circuits (AACs)
for image scaling application involves - (a) evaluation and optimization of the
RTL approximate circuit design by performing logical synthesis with the given
technology and standard cell library, (b) performing power simulations on the
optimized design to check the power savings that can be achieved using AAC,
and (c) calculating the error metrics of various approximate circuits to find the
correlation between power and error values to select the best suitable multiplier
for our image application.

3.3.1 Synthesis

Designers can effectively tackle current design challenges using an Register-Transfer
Level (RTL) synthesis tool, which enables concurrent optimization of timing, area,
and power. The tool offers high accuracy in predicting post-layout area, timing,
and power without requiring the wire load models. It generates a virtual de-
sign layout to accurately predict the net capacitances and adjust the net delays.
With this method, there is no longer a need for optimistic wire load models in
synthesis. This accurate prediction of net capacitances helps generate a netlist
optimized for all design objectives. With the ability to address real design issues
during synthesis, designers can obtain a better starting point for the subsequent
placement and routing stages, ultimately resulting in improved overall design re-
sults. Consequently, the power consumption can be accurately analyzed using the
netlist simulation results comparable to those obtained from execution on actual
hardware.

Experimental Setup

After the RTL simulation is performed and verified, the design is synthesized for
gate-level optimization with sub-10 nm technology. The synthesis process requires
technology libraries and constraints to build a specific architecture from the cells
in the library. To achieve the best possible hardware design at this stage, libraries
with Low Voltage Threshold (LVT) characteristics are utilized for better perfor-
mance, and the tool is set for a high level of optimization with a clock frequency of
500 MHz. The synthesized netlist is then subject to simulation for power analysis.

Synthesis is first performed on the design with one instance of each approxi-
mate adder and multiplier and then on the design with ten instances of adder and
multiplier together. The netlist of both designs is subjected to power analysis to
check the power consumption of each approximate circuit and verify if the multi-
ple instances affect the power consumed by the adders and multipliers. Circuits
with an acceptable power range are then selected for implementation in the image
scaling application, and synthesis is carried out on the design for further power
analysis.

The results of the synthesis stage are discussed in Chapter 4.
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3.3.2 Power Simulation

System flow of scaling application

Power simulation is performed on a post-synthesis netlist estimating the power
consumption of a sub-system. The power analysis includes average power, peak
power, glitch power, clock network power, and dynamic and leakage power.

The power estimation tool can effectively simulate the power consumption from
a gate-level netlist strongly correlated with the actual power usage observed during
the implementation and signoff stages. By providing accurate power consumption
estimates, designers can confidently analyze, explore, and optimize the design.
This leads to improved power efficiency and shorter design cycles.

Experimental Setup

Several modes are available for power analysis, including average, time, and toggle-
based modes. Of these, the time-based mode is considered the most accurate.
During netlist simulation, an Fast Signal Database (FSDB) file is generated, which
stores the simulation waveform data, recording the state and time of the nets. The
switching activity of an FSDB file is used to measure accurate power consumption,
glitch power, and state-dependent leakage power.

This thesis performs time-based power analysis by providing the switching ac-
tivity at each time unit. The tool generates various summary reports that provide
insights into different power consumption aspects, including hierarchical and sum-
mary reports. The hierarchical report offers a detailed analysis of power consump-
tion for each sub-module in the design. In contrast, the summary report presents
the total power consumption of the entire sub-system, including power groups like
registers, clock networks, and sequential and combinational logic. Both reports
include information about the dynamic power (including internal and switching
power), leakage power, and glitch power, which are crucial for selecting the appro-
priate multiplier for further image analysis when comparing the powers of different
implementations.

3.3.3 Calculations of error metrics and error plots

All input combinations are fed to the target circuit to evaluate approximate arith-
metic circuits and calculate the error metrics. In the thesis, a flow to speed up
this process is proposed. As illustrated in Figure 3.3, approximate circuits are
implemented or imported into a C program, and the calculation is performed in C
code. Since 8-bit unsigned adders and multipliers are of interest in this thesis, two
input numbers are given with a nested loop from 0 to 255. After the calculations
are completed, a Python script reads the results from text files and calculates the
error metrics, plotting the result in charts. This flow significantly reduces the
calculation time compared to only the implementation with Python script.
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Python APIC API

Approximate 
circuits.c

Compiled

./exac.out

Calculate error 
metrics

Read in 
calculated 

results

Plot error 
charts

main.py

Start

End

Run ./exac.out

mult.res
mult.resmult.res

mult.res

Figure 3.3: Flow of calculating error metrics of arithmetic circuits

Visualization of errors in approximate arithmetic circuits

Error metrics are a common method for evaluating errors in approximate circuits.
However, in this thesis, we found a need to visualize approximate arithmetic cir-
cuits since error metrics are global metrics, and some local characteristics are
lost in those metrics. In Table 3.1, eight 8-bit multipliers, including exact and
approximate multipliers with their corresponding error metrics, are listed.

Table 3.1: Approximate multipliers and corresponding error metrics.

Index Multiplier MAE(%) MRE(%) WCE(%) MSE EP(%)
(a) exact 0.00 0.00 0.00 0.00E+00 00
(b) mul8u_UDM 1.38 3.28 22.05 6.46E+06 47
(c) mul8u_197B 0.18 4.42 0.66 2.10E+04 98
(d) mul8u_17C8 0.56 10.85 2.41 2.10E+05 99
(e) mul8u_T83 2.15 39.78 8.21 3.09E+06 99
(f) mul8u_17MN 8.01 59.69 27.24 4.28E+07 99
(g) mul8u_1A0M 2.88 34.69 10.99 5.45E+06 99
(h) mul8u_Z9D 4.84 15.66 49.22 3.36E+07 89
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Based on the given error metrics, it is hard to interpret the characteristics of
each multiplier. With the visualization of the approximate multipliers as Figure
3.4, we find it useful to identify the characteristic of the approximate multipliers
more intuitively. In Figure 3.4, eight selected multipliers as given in Table 3.1 are
plotted in rows of orders from (a) to (h). The figures for each column are plotted
with different types of error plots. It is calculated and plotted as follows.

Ci represents the column ith where each figure is calculated according to the
equation below. am and bn are the two input values given in sequence from 0 to
255. The symbol ∗ represents the multiplication calculated by the given multiplier,
while tm,n is the accurate output calculated by the exact multipliers. The last
column C6 is the error histogram of the corresponding multiplier. From these
error plots, a clearer view is provided.

C1m,n =


(a0 ∗ b0) (a1 ∗ b0) · · · (a255 ∗ b0)
(a0 ∗ b1) (a1 ∗ b1) · · · (a255 ∗ b1)

...
...

. . .
...

(a0 ∗ b255) (a1 ∗ b255) · · · (a255 ∗ b255)

 (3.7)

C2m,n =


t0,0 − a0 ∗ b0 · · · t255,0 − a255 ∗ b0
t0,1 − a0 ∗ b1 · · · t255,1 − a255 ∗ b1

...
. . .

...
t0,255 − a0 ∗ b255 · · · t255,255 − a255 ∗ b255

 (3.8)

C3m,n = max(C2m,n, 0) (3.9)

C4m,n = min(C2m,n, 0) (3.10)

C5m,n = C2m,n/t0,0 (3.11)

If the gradient of pixels from blue to green in the first column C1 is smoother, it
indicates higher accuracy for the multiplier, as there are no abrupt pixel changes.
The C2 column is a combination of the second and third columns. C3 and C4
are the plots of the error distance between the exact multiplier and the approxi-
mate multiplier of the target. Column C3 shows the difference when the output
of the approximate multiplier produces a smaller value. In comparison, column
C4 shows the difference when the output of the approximate multiplier produces
a larger value. From these two columns, we can visually see that these approxi-
mate multipliers show different characteristics locally. Some multipliers are more
accurate when the input values are smaller, while others perform the opposite.
Some multipliers have errors spread evenly among all pixels. Column C5 shows a
relative error corresponding to each output of the exact multiplier. The relative
error is quite small in some multipliers to be visible in the error plot. The last
columns provide an error histogram of how errors are distributed compared to an
exact multiplier. The graphical representation in the last columns can be used
to detect patterns in the distribution of errors, such as identifying whether errors
follow a normal distribution, determining the range of the error distribution, and
identifying the presence of outliers.
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In practical implementation, the outputs of each multiplier in the image scaling
process are typically scaled by a scaling factor and then shifted by 8 bits after the
multiplication, as mentioned later in Section 3.2. Consequently, in Figure 3.4, all
the pixel values in the error plots are shifted by 256. This adjustment makes the
plots more relevant to the target application and better estimates the differences
between the pixel values and the actual output. By shifting the values, we can
more accurately assess how the pixel values deviate from the desired output in the
image scaling process.

In conclusion, error plots can be useful in identifying areas where a multiplier
is performing well or poorly. For example, suppose the error is highlighted higher
within a specific range. In that case, it may suggest that this multiplier should be
avoided in some applications requiring more calculations in that particular area.
This information can help identify suitable multipliers for a target application.
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3.4 System View

To evaluate the error tolerance of AACs applied in image applications, this thesis
selects the Lanczos resampling algorithm as our target application.

3.4.1 Implementation of Lanczos scaling on hardware

Python API RTL/netlist

input.png

pixel.txt
Lanczos_coe.txt

dimention.txt Lanczos scaling

Pre processing: 
RGB/YCbCr color space
Convert PNG to txt

main_scaling.py

start

scaling 
ratio

Lanczos scaling

pixel.txt
Lanczos_coe.txt

dimention.txt

pixel.txt
Lanczos_coe.txt

dimention.txt

tb.sv

scaled_ref.png

scaled_img.txt

verify.py

Read in txt to PNG
Calculate image quality

End

scaled_img.png

Figure 3.5: System diagram of scaling application

Block diagram of Lanczos scaling

The Lanczos scaling is implemented as Figure 3.5. We calculate the RGB/YCbCr
image pixels and the Lanczos coefficients using the Python/C model. These values
are then fed into the RTL design, where the scaling operation occurs. This scaling
model is implemented in 4 pipeline stages as described in Figure 3.6. The pixel
values are stored in memory, and 16 pixels are read at each clock cycle. There is
a latency of four clock cycles with a throughput of 1.

The main components of the design are the Processing Element (PE) block and
the accumulation block. The PE block includes the instantiation of a multiplier,
either an exact or an approximate multiplier, which takes 8-bit pixel values as
input and an 8-bit shifter to produce an 8-bit result, as shown in Figure 3.7. The
accumulator block combines the four resulting 8-bit pixel values obtained from the
Lanczos resampling process in the X and Y directions and checks if the value is in
the pixel range of 0 to 255. If the value is outside this range, the block clamps the
values to fit within the range. The result of the accumulator is the scaled value of
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the pixels. All pixels are subjected to this process, and the scaled pixels are sent
back to the Python-implemented module, which uses them to plot the final image.
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Figure 3.6: Block diagram of Lanczos scaling module
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Figure 3.7: Block diagram of Lanczos scaling submodule
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3.4.2 Power Calculation and Estimation Framework

The power analysis of a design for an image scaling application using various
multipliers is performed. Table 3.2 displays the power ratios of each sub-module
in the design when an exact multiplier is utilized. The findings indicate that the
multipliers for the Lanczos scaling in the x direction consume the highest amount
of power compared to the other sub-modules, as it requires 16 8-bit multipliers to
perform computations per clock cycle.

Table 3.2: Sub-module power ratio of Lanczos scaling with an exact
multiplier.

Sub-module Percentage(%)
Register and others 24

Lanczos y 10
Lanczos x 55

Accumulate x 9
Accumulate y 2

The amount of power saved using approximate multipliers instead of exact
multipliers can be estimated using (3.12). Table 3.3 provides the estimated power
saving ratios of various approximate multipliers compared to exact multipliers,
revealing a notable reduction in power consumption. Taking the exact multiplier
as the reference, the approximate multiplier, such as 17C8 and 17MN, can save
about 67% and 98% of the power, respectively, when compared to the exact multi-
plier. Therefore, a significant power saving is observed when various approximate
multipliers are used.

However, it is crucial to consider the error characteristics of these multipliers
when used in image applications to maintain acceptable image quality.

Estimated power saving ratio = ratioopt × (power saving ratio) + (1− ratioopt)
(3.12)

Table 3.3: Power saving ratio of approximate multipliers.

Multiplier Exact UDM 197B 17C8 T83 Z9D 1A0M 17MN
Ratio(%) 100 92 69 33 11 17 7 2

To further investigate, a comparison between the estimated and simulated
ratios of these multipliers when used in image applications is made, and the results
are discussed in Chapter 4.
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Chapter 4
Results and Discussions

This chapter compares various AACs considering multiple aspects, including power
consumption, image quality metrics, and error metrics. The objective is to identify
approximate adders and multipliers that exhibit lower power consumption while
maintaining acceptable error rate levels and image quality.

A selection of AACs is made to perform the comparison, and these circuits are
evaluated using different test images for the specific application of image scaling.
The power consumption of each AAC is measured, and error rates, as well as image
quality metrics, are calculated.

4.1 Power Simulation of Approximate Arithmetic Circuits

In this thesis, a key aspect is evaluating the power consumption of AACs syn-
thesized using the sub-10 nm technology. Evaluation involves the implementation
of various approximate adders and multipliers discussed in Chapter 2 in Hard-
ware Description Language (HDL) or importing circuits from EvoApproxLibs RTL
source codes and synthesizing them using a synthesis tool in the given technology.
Subsequently, the netlist obtained from the synthesis is used to estimate the power
consumption.

To estimate the average power consumption, random inputs are provided to
the netlist in each clock cycle, and a simulation is run for 1000 clock cycles at a
clock frequency of 500 MHz. The power simulation tool then utilizes the generated
FSDB file to calculate the average power consumption.

The power consumption of all the 8-bit approximate adders and multipliers
optimized with various error metrics discussed in the thesis is calculated and com-
pared against each other. This comparison allows one to assess the amount of
power saved using AACs compared to the EACs.

39
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4.1.1 Power Simulation of Approximate Adders

Figures 4.1a to 4.1e represent the power ratios of different approximate adder
circuits of the EvoapproxLib Library [5] that are optimized with different error
metrics. The circuits are optimized with a 45 nm technology in the library, whereas
sub-10 nm technology is used in this thesis for optimization. The exact adder is
the baseline with a power ratio of 1, to which all other approximate adders are
compared. The baseline is indicated with a red line across the exact adder circuit.

We can observe that the estimated result from the library and simulated re-
sults with sub-10 nm follow the same trend and have similar error metric values.
However, the latter shows an increase in power consumption as the approximate
adders are synthesized with a different technology than the one claimed by the
EvoApproxLib library.

The plots also include an 8-bit segmented approximate adder designed using
two 4-bit adders. But this approximate adder consumes much more power, almost
30% more than other circuits in EvoApproxLib, even though it has similar error
values to the approximate adder from the library. The netlist report shows that
one reason for this behaviour could be that the number of logic used in these
circuits is more than that used in EvoApproxLib circuits.

From the graphs, we can observe a significant difference in the power con-
sumption of the approximate adders as we move down the power ratio scale, as
indicated in Figure 4.1a. The fact that circuits in this region have little to no logic
in the design means that the synthesis tool adds several buffer cells for optimized
design. This leads to more switching and high power consumption.

(a) Power simulation of approximate adders with WCE Optimization

Figure 4.1: Power simulation of approximate adders – EvoApproxLib
versus power simulation with sub 10nm technology
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(b) Power simulation of approximate adders with MAE Optimization

(c) Power simulation of approximate adders with MSE Optimization

Figure 4.1: Power simulation of approximate adders – EvoApproxLib
versus power simulation with sub 10nm technology
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(d) Power simulation of approximate adders with MRE Optimization

(e) Power simulation of approximate adders with EP Optimization

Figure 4.1: Power simulation of approximate adders – EvoApproxLib
versus power simulation with sub 10nm technology

4.1.2 Power simulation of approximate multipliers

In the evaluation of the power ratios of different approximate multiplier circuits
from the EvoApproxLib Library [5] optimized with different error metrics, Figures
4.2a to 4.2e provide insights into their power consumption. The baseline exact
multiplier, which serves as the reference point, is implemented simply by utilizing
a multiplication sign in the RTL code. This baseline exact multiplier is considered
the benchmark, with a power ratio of 1, against which all other approximate
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multipliers are compared.

Interestingly, the exact multiplier implemented in the EvoApprox library con-
sumes approximately 20% more power than the baseline exact multiplier. This
discrepancy arises due to the complexity of the multiplier designs in the EvoAp-
prox library, making it challenging for the synthesis tool to optimize the logic ef-
fectively. Consequently, the synthesis tool replaces the gates with available options
from the standard cell library, assuming it to be an optimized design. However,
this substitution process results in higher power consumption for all the approxi-
mate multipliers. It is worth noting that this behaviour is not observed in the case
of approximate adders, as their designs are simpler and more amenable to effective
synthesis optimization, leading to lower power consumption.

The approximate multipliers optimized with the EP error metric in Figure 4.2e
show a slightly higher variation in power consumption when simulated with the
given technology compared to the power claimed in the library. All other optimiza-
tions with other error metrics show a similar trend in power consumption as in
the library. This is not the case with EP-optimized approximate adders in Figure
4.1e because the approximate multiplier has more complicated computations and
logic than the approximate adders.

(a) Power simulation of approximate multipliers with WCE Optimization

Figure 4.2: Power simulation of approximate multipliers – EvoAp-
proxLib versus power simulation with sub 10nm technology
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(b) Power simulation of approximate multipliers with MAE Optimization

(c) Power simulation of approximate multipliers with MRE Optimization

Figure 4.2: Power simulation of approximate multipliers – EvoAp-
proxLib versus power simulation with sub 10nm technology
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(d) Power simulation of approximate multipliers with MSE Optimization

(e) Power simulation of approximate multipliers with EP Optimization

Figure 4.2: Power simulation of approximate multipliers – EvoAp-
proxLib versus power simulation with sub 10nm technology

The comparison baseline is set as 1 for the exact multiplier, and all other
approximate multipliers are evaluated relative to this baseline. Figure 4.3 provides
a detailed analysis of the power consumption of different approximate multipliers
optimized with MAE error metrics. In our image scaling application, we employ
MAE as an error metric to select the best approximate multipliers for the image
scaling application. We choose MAE because it is highly relevant to SSIM, which
will be further discussed in Subsection 4.2.2.
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Figure 4.3 highlights that some multipliers consume more power than the ex-
act multiplier. From a careful analysis of the netlist report, it was found that the
baseline that the library considers is their exact multiplier design, which, when
compared with the exact multiplier of our implementation, used more logic gates.
Ideally, both exact multiplier designs should consume a similar number of logic
cells. This leads to the higher power consumption of a few approximate multipli-
ers compared to the baseline we set from the given technology. A more detailed
analysis of the netlist report is available in Subsection 4.1.2. Therefore, only mul-
tipliers below the power ratio 1 are considered for inclusion in image applications.
In the following sections, the synthesis results of different approximate multipliers
are compared with the exact multiplier to check how the optimization affects the
number of logic gates in the design and hence, the overall power consumption.
Later, we will also examine how image quality varies depending on the power
consumption of the selected approximate multipliers.
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Investigating Synthesis Report

Synthesis is performed on various approximate adders and multipliers from the
EvoApproxLib library, and their power consumptions are compared with their
respective power numbers claimed by the library. It was found that some circuits
in the library did not demonstrate any reduction in power consumption, as claimed.
Figure 4.3 shows that some approximate multiplier circuits consume more power
than the exact multiplier. In particular, when analyzing a netlist report of two
approximate multipliers with similar worst-case errors but significantly different
power consumption, it was found that these approximate multipliers contained
more logic cells than the exact multiplier, as shown in Table 4.1. Theoretically,
the exact multiplier should require more logic cells, but the opposite was observed.
Consequently, this discrepancy leads to increased cell switching and higher power
consumption.

Table 4.1: Logic comparison between exact and approximate multi-
pliers from netlist report

Cell Type Exact Exact
mul_JJQ

Approximate
mul_12KA

Approximate
mul_NLX

Full Adder 46 33 30 46
Inverters 16 22 33 16

Other cells 81 216 211 86
Total 143 271 274 148

4.2 Evaluation of Image Quality and Error Metrics

This chapter presents the results of implemented Lanczos resampling with a selec-
tion of 8-bit unsigned multipliers. The Lanczos resampling process is performed
on images in RGB and YCbCr colour spaces. The overall image quality evalua-
tion of this study is based on commonly used image quality indexes such as MSE,
PSNR, and SSIM. These metrics provide objective measures of image quality, with
SSIM being particularly relevant as it incorporates aspects of HVS. In addition, an
investigation is conducted to identify any correlation between image quality and
error metrics specifically for the Lanczos resampling application.

Using the conclusions drawn from this analysis and the utilization of error
plots, a guideline is proposed for selecting 8-bit unsigned multipliers. This guide
aims to help decision-making when choosing appropriate multipliers that strike a
balance between power savings and maintaining acceptable image quality in the
context of Lanczos resampling.
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4.2.1 Image Scaling Results

This section presents the scaling results obtained by implementing Lanczos resam-
pling using a range of approximate multipliers with different power-saving ratios.
Using a combination of C and Python models, we tested all approximate multipli-
ers selected in this thesis to assess their effect on the quality of images scaled with
Lanczos resampling, especially using SSIM as an image quality assessment score.

To present the findings, we selected approximate multipliers for each power-
saving range. The selection was based on power simulations performed on the
netlists of the approximate multipliers. For each power saving range of approxi-
mately 20%, an approximate multiplier with the highest SSIM was chosen within
that range. However, it should be noted that there was no approximate multi-
plier available for the power savings ratio of around 50% after synthesis with our
selected technology node. The selected approximate multipliers and the corre-
sponding power savings number are in Table 3.3.

By focusing on a reduced set of approximate multipliers with different power-
saving ratios, our objective was to analyze and highlight the impact of these ratios
on the scaling results achieved through Lanczos resampling. This approach allows
for a more focused investigation of how power-saving ratios influence image quality.

In this study, two input images are used. The first image is a standard test
image called "Baboon". This image was chosen for its diverse colour range, in-
cluding red, green, and blue variations, and for many details, such as the texture
of the baboon’s fur. The second image is a surveillance image captured by the
authors at Lund University. Selecting this image provides a real-world use case
scenario closely resembling the conditions faced by network cameras. Using these
two testing images, we can observe how they are affected by the different error
characteristics of the approximate multipliers.

The original size of both images is 512 x 512 pixels, and a consistent downscale
is applied, resulting in a final size of 372 x 372 pixels. To ensure a fair comparison,
the downscaling process incorporates a grid size of 16, a step size of 22 upscaled
pixel units, and an offset of 7 upscaled pixel units. The results of Lanczos re-
sampling are split into two sections, images in RGB and YCbCr colour spaces, to
determine which colour space retains better image quality after scaling.

Image Scaling with RGB Color Space

In Figures 4.4 and 4.5, the individual results of the scaling using seven approximate
multipliers are presented. Each multiplier is evaluated separately to assess its
impact on the scaled output, compared to the output achieved with an exact
multiplier. A zoomed-in section of each image is included in the figures to provide
better visibility. Image quality evaluation is performed using MSE, PSNR, and
SSIM metrics. Based on the results in Figures 4.4 and 4.5, together with the image
quality scores presented in Tables 4.2 and 4.3 many observations can be made.
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Table 4.2: Test image in RGB colour space: Lanczos resampling
with approximate multipliers

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 0.0 inf 1.0
(b) mul8u_UDM 48.621 31.26 0.864
(c) mul8u_197B 0.798 49.11 0.993
(d) mul8u_17C8 3.109 43.20 0.967
(e) mul8u_T83 29.76 33.39 0.685
(f) mul8u_17MN 58.202 30.48 0.416
(g) mul8u_1A0M 20.663 34.98 0.717
(h) mul8u_Z9D 112.221 27.63 0.572

Table 4.3: Survalliance image in RGB colour space: Lanczos resam-
pling with approximate multipliers

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 0.0 inf 1.0
(b) mul8u_UDM 62.669 30.16 0.784
(c) mul8u_197B 0.839 48.89 0.983
(d) mul8u_17C8 3.272 42.98 0.930
(e) mul8u_T83 35.246 32.66 0.585
(f) mul8u_17MN 80.633 29.07 0.366
(g) mul8u_1A0M 23.254 34.47 0.607
(h) mul8u_Z9D 108.284 27.79 0.494

• SSIM is a more useful metric in this application to evaluate image quality.
Multipliers (c) and (d) achieve satisfactory image results, with SSIM scores
greater than 0.9, PSNR values exceeding 40dB, and MSE within 5. Multi-
pliers (b), (e), and (g) also yield acceptable image results, with SSIM scores
ranging from 0.6 to 0.8. However, the MSE and PSNR values do not align
consistently with SSIM in these cases. Multiplier (b) introduces more noise
into the image, whereas multipliers (e) and (f) exhibit sharp lines in scaled
results, making image quality look worse, as suggested by SSIM. Lastly,
multiplier (f) and multiplier (h) display poor image quality in Figures 4.4
and 4.5, characterized by the presence of a significant number of unwanted
lines in the images. Multiplier (h) produces a higher number of MSE, while
SSIM is better than the multiplier (f) result. This stresses the importance
of considering the characteristics of the HVS when evaluating image qual-
ity rather than relying solely on pixel-level errors. We can see that in this
application, SSIM is a better metric to evaluate overall image quality.
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Figure 4.4: Test image in RGB colour space: Lanczos resampling
with approximate multipliers
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• The scaling results obtained using different multipliers show varying bright-
ness. Multipliers (b) and (h) produce darker results compared to the mul-
tiplier (a) in Figures 4.4 and 4.5. On the contrary, multiplier (g) produces
brighter results. Despite the brightness differences, the higher SSIM score
of multiplier (b) suggests that image quality is not solely determined by
brightness but also by image structure and contrast. The brightness ob-
servations align with the error plots in Figure 3.4, discussed in Section 3.3.
The error plot visualizes errors in columns C3 and C4, which explain the
brightness variations. Column C3 shows smaller errors than the exact mul-
tiplier, indicated by darker blue shades. In contrast, column C4 shows larger
errors, indicated by darker red shades. Examining the error plot reveals the
relationship between errors and brightness differences in the scaling results.
Figures 4.4 and 4.5 show that images (b) and (h) have errors in C3 but not
in C4, indicating that the multipliers used for these images produce outputs
equal to or smaller than the exact multiplier. Consequently, these images
appear darker. In contrast, image (g) employs a multiplier with errors in
both C3 and C4, resulting in higher contrast than the exact multiplier.

• SSIM image quality presents a higher value when the error plots in C2
show that the maximum and minimum error values are lower. Image (f)
also displays errors in both C3 and C4. However, the resulting image is
unacceptable due to significantly higher error values, exceeding ±60, as
reflected in the low SSIM scores of around 0.3 and 0.4, depending on the
input images.

An error plot is a valuable tool for visualizing and understanding the error
characteristics among different multipliers and how they contribute to variations
in brightness in the scaled images. In this particular application, we can conclude
that SSIM is a better metric for evaluating image quality, and a multiplier with a
smaller error range in the C2 plot is more desirable.



Results and Discussions 53

Figure 4.5: Survalliance image in RGB colour space: Lanczos re-
sampling with approximate multipliers
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Image Scaling with YCbCr Color Space

Given that the human eye is more sensitive to luminance than chroma, our ob-
jective is to identify an AAC that produces better image quality when scaling the
pixels in the luminance component (Y) while allowing more error tolerance when
selecting approximate multipliers to use in the chroma components (Cb and Cr).
Based on this idea, we can further evaluate the scaling process using a combination
of different approximate multipliers.

Based on the results obtained from the image scaling using the RGB colour
space, we can conclude that AACs 197B and 17C8 consistently maintain higher
image quality after scaling. Consequently, in this section, we investigate the feasi-
bility of utilizing these AACs specifically for the luminance component (Y) and fur-
ther examine the approximate results achieved when combined with other chroma
AACs.

First, we compare Lanczos scaling with exact multipliers for Y channels, while
Cb and Cr colour channels use approximate multipliers, with Lanczos scaling with
approximate multipliers for all three channels. From Figure 4.6 to Figure 4.8
together with Table 4.4 to Table 4.6, no obvious image quality drop is found in
the test image. The same results are observed in the surveillance image from
Figure 4.6 to Figure 4.8 and from Table 4.4 to Table 4.6. Second, we also observed
that the SSIM in all of these tables appears almost all higher than 0.9, which is
quite close to what we observed from bare eyes, as the overall image quality looks
good even though in some of the images, the chroma is almost zero after being
scaled with the multiplier (f) and (h). However, this proves our assumption that
luminance has a greater impact on image quality. While it is interesting to notice
here that MSE and PSNR metrics show a large amount of noise just by switching
from exact multiplier to approximate multiplier (c) or to approximate multiplier
(d) since these metrics calculate the error distances among pixels while ignoring
HVS.

Based on different input images, such as test images and surveillance images,
we can observe that, for different approximate multipliers, the performance of
scaling different pixel values may differ. For example, in Figure 4.10 (e) and
Figure 4.10 (g), although there is an obvious purple shade in the zoomed-in parts
of the image, it still maintains good image quality.

To conclude, we observe that using a mixture of multiplier (c) or multiplier
(d) together with some multipliers, such as (e) and (f), we can still achieve higher
image quality where SSIM is greater than 0.9.
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Figure 4.6: Test image in YCbCr colour space: Lanczos resampling
with Y using an exact multiplier, CbCr using approximate mul-
tipliers (b) to (h)
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Table 4.4: Test image in YCbCr colour space: Lanczos resampling
with Y using an exact multiplier, CbCr using approximate mul-
tipliers (b) to (h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 0.013 66.99 1.0
(b) mul8u_UDM 50.05 31.14 0.996
(c) mul8u_197B 24.378 34.26 0.998
(d) mul8u_17C8 107.891 27.8 0.991
(e) mul8u_T83 890.421 18.63 0.911
(f) mul8u_17MN 619.815 20.21 0.912
(g) mul8u_1A0M 662.652 19.92 0.923
(h) mul8u_Z9D 455.35 21.55 0.97

Table 4.5: Test image in YCbCr colour space: Lanczos resampling
with Y using 197B approximate multiplier, CbCr using approx-
imate multipliers (b)-(h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 70.343 29.66 0.995
(b) mul8u_UDM 120.38 27.33 0.991
(c) mul8u_197B 94.708 28.37 0.993
(d) mul8u_17C8 178.221 25.62 0.986
(e) mul8u_T83 960.751 18.3 0.906
(f) mul8u_17MN 690.144 19.74 0.906
(g) mul8u_1A0M 732.982 19.48 0.917
(h) mul8u_Z9D 525.68 20.92 0.965
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Figure 4.7: Test image in YCbCr colour space: Lanczos resampling
with Y using 197B approximate multiplier, CbCr using approx-
imate multipliers (b) to (h)
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Figure 4.8: Test image in YCbCr colour space: Lanczos resampling
with Y using 17C8 approximate multiplier, CbCr using approx-
imate multipliers (b) to (h)
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Table 4.6: Test image in YCbCr colour space: Lanczos resampling
with Y using 17C8 approximate multiplier, CbCr using approx-
imate multipliers (b) to (h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 333.304 22.9 0.97
(b) mul8u_UDM 383.341 22.29 0.966
(c) mul8u_197B 357.669 22.6 0.968
(d) mul8u_17C8 441.182 21.68 0.962
(e) mul8u_T83 1223.712 17.25 0.882
(f) mul8u_17MN 953.106 18.34 0.882
(g) mul8u_1A0M 995.943 18.15 0.893
(h) mul8u_Z9D 788.641 19.16 0.941

Table 4.7: Survalliance image in YCbCr colour space: Lanczos re-
sampling with Y using an exact multiplier, CbCr using approxi-
mate multipliers (b) to (h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 0.204 55.03 1.0
(b) mul8u_UDM 14.224 36.6 0.998
(c) mul8u_197B 18.95 35.35 0.997
(d) mul8u_17C8 98.187 28.21 0.99
(e) mul8u_T83 334.771 22.88 0.941
(f) mul8u_17MN 675.689 19.83 0.985
(g) mul8u_1A0M 638.927 20.08 0.952
(h) mul8u_Z9D 284.455 23.59 0.989



60 Results and Discussions

Table 4.8: Survalliance image in YCbCr colour space: Lanczos re-
sampling with Y using 197B approximate multiplier, CbCr using
approximate multipliers (b) to (h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 74.61 29.4 0.987
(b) mul8u_UDM 88.63 28.65 0.985
(c) mul8u_197B 93.357 28.43 0.984
(d) mul8u_17C8 172.593 25.76 0.977
(e) mul8u_T83 409.178 22.01 0.927
(f) mul8u_17MN 750.095 19.38 0.972
(g) mul8u_1A0M 713.334 19.6 0.939
(h) mul8u_Z9D 358.862 22.58 0.975

Table 4.9: Survalliance image in YCbCr colour space: Lanczos re-
sampling with Y using 17C8 approximate multiplier, CbCr using
approximate multipliers (b) to (h)

Index Multiplier Name MSE PSNR(dB) SSIM
(a) exact 294.498 23.44 0.936
(b) mul8u_UDM 308.518 23.24 0.934
(c) mul8u_197B 313.244 23.17 0.933
(d) mul8u_17C8 392.481 22.19 0.926
(e) mul8u_T83 629.065 20.14 0.877
(f) mul8u_17MN 969.983 18.26 0.921
(g) mul8u_1A0M 933.221 18.43 0.888
(h) mul8u_Z9D 578.749 20.51 0.925
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Figure 4.9: Survalliance image in YCbCr colour space: Lanczos
resampling with Y using 197B approximate multiplier, CbCr
using approximate multipliers (b) to (h)
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Figure 4.10: Survalliance image in YCbCr colour space: Lanczos
resampling with Y using 17C8 approximate multiplier, CbCr
using approximate multipliers (b) to (h)
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4.2.2 Arithmetic Accuracy versus Application Specific Metrics

In this section, we try to find a correlation between the error metrics and the
SSIM image quality metric. For the YCbCr colour space, since there are several
approximate multipliers, it is more difficult to evaluate. So we discuss only image
scaling in RGB colour space. A total of 20 approximate multipliers show a power
saving ratio below 1 in EvoApproxLib, which are discussed here. Three common
coefficient correlation methods are used here, including Pearson’s coefficient cor-
relation, Spearman’s coefficient correlation, and Kendall’s coefficient correlation,
to correlate error metrics.

We can see that MAE is the most relevant among all coefficient correlation
methods in general. EP is the least relevant error metric.

Figure 4.11: Surveillance image in RGB colour space: Lanczos re-
sampling: SSIM versus error metrics

Table 4.10: Coefficient correlation versus image quality SSIM

Error metrics Pearson’s Spearman’s Kendall’s
MAE -0.91 -0.99 -0.93
MRE -0.84 -0.89 -0.73
MSE -0.81 -0.97 -0.88
EP -0.35 -0.58 -0.46

WCE -0.88 -0.96 -0.85
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Based on this conclusion, we can see that MAE is the most important er-
ror metric when evaluating the image quality of image scaling with approximate
multipliers.

4.2.3 Hardware Selection

Based on the results of the previous section, it is clear that MAE is the most useful
metric to identify approximate multipliers in the selected image application. The
error plots, particularly Figure 3.4 where all output values are shifted by 256,
serve as a valuable tool for visualizing the error characteristics among different
approximate multipliers.

Figure 3.4 illustrates that the error distances for the approximate multipli-
ers (c) and (d) are comparatively smaller, as indicated in C2. The approximate
multiplier (c) shows a variation within the range of ±2, whereas the approximate
multiplier (d) shows a variation within the range of ±6. Moreover, errors are
uniformly distributed across all pixels.

Compared to these approximate multipliers, the multiplier represented by (f)
should be avoided. Although its WCE is smaller than that of the approximate
multiplier (h), as shown in Table 3.1, it presents significant variation between
the pixel values when considering adjacent input combinations, as illustrated in
Figure 3.4. On the other hand, MAE shows a consistent trend toward the final
SSIM score.

Another illuminating comparison can be made between the approximate mul-
tipliers (e) and (g). By examining the error metrics, we notice that the MAE is
similar for these two multipliers. However, the MSE reveals a more substantial
difference. Furthermore, when considering the SSIM score of the scaled image,
multiplier (g) demonstrates slightly superior performance compared to multiplier
(e). This observation suggests that when the MAE values are close, the MRE
becomes a more influential error metric in determining the overall performance.

In conclusion, error plots provide a deeper understanding of the meaning of
error metrics and their impact on the scaled image results with Lanczos resampling.
When considering the trade-off between power and error for image scaling, it is
found that MAE has greater significance, while EP is the least relevant error
metric.
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4.3 Power Simulation of Image Scaling Application

Image scaling is performed on different image sets using the Lanczos resampling
algorithm, followed by a power simulation of the design. The image set includes an
image generated by random pixel values, a completely black colour image along
with the test image of a Baboon standard test image in Figure 4.4, and a real
image of the surveillance image shown in Figure 4.5 .

Power is calculated for each image in RGB colour format in the image set with
an exact multiplier and approximate multiplier variants. Based on the acceptable
range of image quality and error metrics, a set of approximate multipliers is chosen
and used for image scaling evaluation. The overall power consumption is calculated
when these approximate multipliers are used. The power ratios of each image
concerning every multiplier are shown in Figure 4.12. We can observe a significant
decrease in power with approximate multipliers compared to the exact multiplier.

Figure 4.12: Comparison of power ratios of different approximate
multipliers on test images

For performing a Laczos scaling, we consider a completely black image with
all pixel values set to 0 as the optimal input scenario. This is because, in such
an image, the majority of gates do not need to toggle, resulting in lower power
consumption. On the other hand, an image with random pixel values requires
a significantly higher number of toggles, leading to increased power consumption
during the scaling process. By comparing the power consumption between the
all-black image and an image with random pixels, we can effectively assess how
the power consumption varies based on different input images.

We can conclude from the power simulation that the power consumption of the
system varies depending on the image we choose. The arithmetic computations
required depending on the pixel values have the highest impact on the power
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consumption. Random input images can be considered a good worst-case example
for power evaluation because they consist of random pixels, which creates a lot of
switching activity and will consume a high amount of power. Real-world images,
such as the surveillance and the Baboon image and random input images, both
consume similar power with various approximate and exact multipliers. Therefore,
we have done further power simulations using only a random input image, as this
result is valid and acceptable for any type of image.

Using the method of comparing the power consumption of each multiplier and
the SSIM of the image, a suitable approximate multiplier can be selected, providing
better image quality and significant power savings.

Table 4.11: Power estimation versus power simulation of Lanczos
scaling with difference approximate multipliers

Multiplier Exact 197B 17C8 T83 Z9D 1A0M 17MN
Estimated ratio(%) 100 80 56 42 46 40 36
Simulated ratio(%) 100 79 49 30 27 21 13

Various modules in a Lanczos scaling application can have a different impact on
total power consumption. In Figure 4.13, we can see the total power consumed by
each sub-module in the design. As discussed in Section 3.4.1, the Lanczos scaling
design includes several processing elements that perform maximum computations
and thus consume maximum power, which can also be proved from Figure 4.13.
The Lanczos computation in the X direction consumes more power than the Y
direction, as it is subjected to more pixels for computation. Various approximate
multipliers in these modules show a significant reduction in power usage in both
the X and Y directions. We can also observe that the accumulator module con-
sumes almost 10% of the total power. Although all the accumulators are fixed
for all designs, depending on the approximate multiplier used, some bits can be
redundant, and the synthesis tool optimizes the design of the accumulators and
their related registers. This results in a reduction in the power of the accumulator
stage and the registers.

In Figure 4.14, it is clear that dynamic power is more predominant in total
power consumption, and static power consumption is less than 10 % in all mul-
tipliers. We can observe that the approximate multipliers play a crucial role in
reducing dynamic power consumption compared to the exact multiplier.
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Figure 4.13: Total power consumed by each sub-module in the
design when different approximate multipliers are used

Figure 4.14: Power ratio of static and dynamic power consumption

Therefore, from the results of this thesis, it can be concluded that dynamic
power plays an important role in overall power consumption and that using appro-
priate approximation techniques in design can significantly reduce overall system
power.



68 Results and Discussions



Chapter 5
Conclusion and Future Works

A conclusion is presented in Section 5.1 and highlights the key findings of the
thesis results. Section 5.2 discusses a potential research area that this thesis could
inspire in the future.

5.1 Conclusion

Our results demonstrated the potential to incorporate AACs into the Lanczos re-
sampling for image scaling in the selected manufacturing technology. This resulted
in over 50% power-savings when the RGB scheme was used in the colour space
while maintaining the high SSIM score of 0.9. Furthermore, our study suggests
that there can be even greater power savings in the YCbCr colour space without
significantly compromising image quality.

Through our study, various error metrics of approximate multiplier designs
were investigated from the algorithm level, and MAE is concluded to be the most
relevant to the image quality of the scaled images, while EP is the least relevant
error metric. Additionally, the error plots serve as an effective visualization tool for
understanding the error characteristics of the approximate multipliers, helping to
select and evaluate suitable approximate multiplier designs. From the circuit level,
we show that the power savings ratio also depends on the fabrication technology.
Based on the conclusions obtained from the algorithm- and circuit-level analyses,
we demonstrate that the YCbCr colour space has a better potential to apply AACs
than the RGB colour space for scaling images with Lanczos resampling. It even
allows for a mixture of different approximate multipliers, further improving the
power-saving ratio while maintaining satisfactory image quality results.

In summary, this thesis highlights the importance of considering power con-
sumption, arithmetic metrics, image quality metrics, and fabrication technology
when using approximate multipliers in an image scaling application. It provides
promising insights into the trade-offs between power savings and error in an error-
tolerant application. It guides the selection of appropriate approximate multiplier
designs and reduces the system’s overall power consumption.
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5.2 Future work

In terms of future work, several interesting directions related to using approximate
components in image processing can be explored. First, investigating the selection
of a mixture of approximate multipliers for different Lanczos coefficients holds
the potential to further improve the overall power reduction as an extension of
this thesis. By tailoring the selected approximate multipliers to match values
of different Lanczos coefficients, achieving a better trade-off between power and
accuracy may be possible during the resampling process.

Another area of interest is understanding how compression algorithms are
affected by using approximate components. Exploring the impact of approximate
multipliers on popular image compression techniques can provide valuable insights
into the trade-offs between compression efficiency and the use of approximate
components. This research can help optimize compression algorithms for images
processed with approximate components, leading to improved compression ratios
and reduced system power.

In addition, considering the intricate computations involved in CNNs, there is
a promising potential in utilizing AACs to replace Multiply-Accumulate (MAC)
units within the CNN module. Since CNN classifications are based on probabili-
ties, a structural design that can tolerate errors could be deemed acceptable and
potentially beneficial, such as adding some noise to the module [23].

Another interesting research avenue is training the CNN module by feeding
in poorly scaled images using an approximate multiplier that consumes extremely
low power. This approach aims to reduce the system’s overall power consumption,
as image scaling is commonly used as a preprocessing step in CNNs. By training
the CNN on poorly scaled images, the network can potentially learn to adapt and
perform well even with suboptimal scaling, leading to power savings for the overall
system.

In general, future research in these areas can contribute to advancing the field
of approximate computing in image processing.
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