
Novel Method of ASIC interface IP development
using HLS

Anestis Athanasiadis
an7644at-s@student.lu.se

Chandranshu Mishra
ch3843mi-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Academic Supervisor:
Liang Liu

Supervisor: Mattias Sönnerup (Ericsson)

Examiner: Erik Larsson

August 23, 2023

© 2023
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

High-Level Synthesis(HLS) is a design methodology that enables designers to im-
plement hardware from high-level coding languages, such as C, C++, or System
C. It provides designers with the ability to convey their design at a higher level of
abstraction, which allows more emphasis on an algorithm and functional aspects
of design instead on low-level hardware details. As precise control of signal timing
in HLS is not a straightforward task, for this reason, it has not a preferred method
for control logic designs.
The objective of this master’s thesis is to investigate the learning opportunities
associated with making use of HLS for the development of an Application Specific
Integrated Circuit(ASIC) interface module. To achieve this goal, an Improved
Inter-Integrated Circuit(I3C) controller module was built by utilizing the Cata-
pult HLS platform. After completing the design, the module was synthesized in
a sub-10nm technology process, to allow a comparison with an Intellectual Prop-
erty(IP) with the same functionality, developed in traditional Register Transfer
Level(RTL).
Furthermore, any challenges that were presented during the implementation stage
are identified and possible ways to overcome them are proposed. Consequently, the
produced design was functional, but clock accuracy was limited due to increased
latency. A 26% increase in the total area was noted, although this difference can
be reduced with further optimizations.

i

ii

Popular Science Summary

With each passing day, more advanced digital technologies are emerging, which
bring about higher clock frequencies, improved energy efficiency, and an increased
number of transistors over an area. With such advancements in design capabil-
ities, there is a need for better designing techniques that can keep up with this
advancement. There is a need for faster methods of design and verification of
designs. There used to be a time when designers used to place each individual
transistor manually, but that was replaced with hardware description languages
such as VHDL and Verilog, which increased the frequency of designing hardware.
The time to market for these products is small, so there is always a rush to finish
and verify the design to meet market requirements. Also, the designs are becoming
more and more complex day by day and all this culminates in a need for a quicker
way to design and verification.
To solve this issue, new technology has been emerging for some time, but not
very widely used. If this technology is found to be better than existing hardware
description languages, it could mark a shift in the industry in how development
is taking place. This new technology is called High-Level Synthesis. It has been
existing since 1994, but it is gaining traction in recent times. Today, there are
many vendors such as Siemens, Cadence, etc. that provide high-level synthesis on
their platforms. In this thesis, we are going to expand into how HLS can be used
to design ASIC and what challenges we face in doing so.

iii

iv

List Of Abbreviations

HLS High-Level Synthesis
ASIC Application Specific Integrated Circuit
I3C Improved Inter-Integrated Circuit
IP Intellectual Property
RTL Register Transfer Level
VLSI Very Large Scale Integration
FPGA Field Programmable Gate Array
MIPI Mobile Industry Processor Interface
IoT Internet of Things
I2C Inter-Integrated Circuit
SPI System Peripheral Interface
FSM Finite State Machine
HDR High Data Rate
SCL Serial Clock Line
SDA Serial Data Line
CCC Common Command Code
IBI In-Band Interrupt
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
CPU Central Processing Unit
RAM Random Access Memory
GCC GNU Compiler Collection
GDB GNU project Debugger
FIFO First In First Out
DRAM Dynamic Random Access Memory
SRAM Static Random Access Memory

v

vi

Table of Contents

1 Introduction 1

2 Background 3
2.1 Catapult High Level Synthesis . 3
2.2 The I3C Protocol . 4
2.3 The I3C Controller . 4

3 Catapult HLS flow 13
3.1 Workflow . 13
3.2 Design partitioning . 15
3.3 Task division and project development 18
3.4 Scheduling . 18
3.5 Synthesis . 19
3.6 Verification . 20

4 Issues and resolutions 23
4.1 Block design . 23
4.2 Latency . 24
4.3 Counters/Timers . 25
4.4 Hardware - Software mismatch . 26
4.5 Deadlocks . 28
4.6 Fault tracing . 29

5 Results 31
5.1 Area from both designs . 31
5.2 Power analysis . 32
5.3 Interpretation . 35

6 Discussions 37
6.1 Conclusion . 37
6.2 Future scope . 37

Reference 39

vii

viii

List of Figures

2.1 Simplified I3C Primary Controller FSM 5
2.2 Simplified Dynamic Address Assignment FSM 6
2.3 Simplified In Band Interrupt FSM 8
2.4 SDA offset compared to SCL . 8
2.5 I2C communications FSM . 9
2.6 I3C controller top view . 10
2.7 SDA/SCL port control . 10
2.8 Bus driver block diagram . 10
2.9 Bus action controller block diagram 11
2.10 Central controller block diagram . 12

3.1 Design flow steps . 14
3.2 Netlist design flow using HLS . 15
3.3 Mismatch error on QuestaSim . 16
3.4 Hierarchy types . 17
3.5 Parallel development of a modular design 19
3.6 Resulting timing of the HLS design 19
3.7 Verification process . 21

4.1 Connecting an output signal to two different blocks 23
4.2 Connecting an output signal to two different blocks 24
4.3 A design with feedback channel and a latency of 3 clock cycles . . . 25
4.4 Incremental counter with a latency of 5 26
4.5 Design prone to signal mismatches 26
4.6 Simulation of listing 4.2 . 27
4.7 Reconvergence of a data stream . 28
4.8 System with feedback where a deadlock might occur 29

5.1 HLS design with register based memory and RTL design area compar-
ison . 33

5.2 HLS design with external memory and RTL design area comparison 33
5.3 Power comparison of HLS design with register based memory and RTL

design . 34

ix

x

List of Tables

5.1 Area report of the RTL and HLS design with register based memory 31
5.2 Area report of the RTL and HLS design with externalized memory . . 32
5.3 Power comparison of RTL and HLS design with register based memory. 32

xi

xii

Listings

3.1 Class hierarchy example . 16
3.2 Multiple class hierarchy example 17
4.1 Use of non-blocking reads . 24
4.2 Example of a module where a mismatch is present 26
4.3 Proposed fix for the mismatch present in listing 4.2 27

xiii

xiv

Chapter 1
Introduction

For a long time, RTL has been the predominant approach for describing Very
Large Scale Integration(VLSI) systems and their IPs. The advancements in tools
describing RTL designs have experienced growth, yet the complexity of VLSI de-
signs has concurrently escalated. This has resulted in a bottleneck in the design
process[1]. HLS is a design methodology which can be explored to tackle this
challenge, as it enables designers to implement designs at a more abstract level.
This makes the development process simpler [2][3]. HLS is predominantly used in
designs focusing on data flow, not so much in clock-accurate control and control-
oriented designs. This project aims to explore how HLS can be used to design a
clock-accurate design[4]. An I3C controller module is designed in untimed C++
language having the same specifications as a pre-existing design in Verilog. Both
designs are synthesized using similar technology library files and compared on the
basis of area and power.
There were many challenges encountered throughout course of the project. Un-
timed C++ does not have concept of time during the execution time and clock and
enable is automatically generated by the HLS tool[5]. The inability to probe the
clock and reset pin while designing a clock-accurate design is a major constraint.
HLS has been explored to a lesser extend for clock-accurate designs so there is a
limited number of related publications. Thus, many challenges which can occur in
implementation are still undocumented.
Firstly, the HLS platform allows for numerous optimizations that can be applied
to different parts of the design, and for each case, the most optimal configuration
must be selected. Therefore, an extensive understanding of the tool’s available pa-
rameters must be acquired, before proceeding to implementation. Subsequently,
due to the nature of the comparison, it is difficult to acquire an accurate area and
power difference, as both designs need to have 100% similar functionality. Also, a
specific coding style needs to be followed and the hardware design approach still
needs to be adhered to.
In this project, it was discovered that HLS reduces the time to design but also
there are many factors which effect the quality of it. The coding approach differs
from traditional software development practices, and a hardware-oriented mindset
should be maintained. Many issues surfaced during the implementation process
and some solutions are proposed. The produced design has an increased area by
26%, but this margin can be decreased with further optimizations.

1

2 Introduction

Chapter 2
Background

2.1 Catapult High Level Synthesis
In this section we are explaining more about the tool used for developing our HLS
design and some of its features.

2.1.1 Brief description
Catapult HLS, developed by Siemens EDA, is an advanced HLS toolkit that en-
ables the transformation of high-level language description into hardware designs.
High-Level Languages such as C, C++ and SystemC are directly translated into
RTL and are subsequently synthesized for use in Field Programmable Gate Ar-
rays (FPGA) or ASIC. Additionally, the platform provides an HLS Verification
Flow that can be imitated before the design’s completion, and allows for higher
simulation speeds [6].

2.1.2 Untimed C++
Untimed C++ or Algorithm C refers to a subset of object-oriented programming
in C in which the concept of time is not included in the execution model. It
prioritizes algorithmic and functional aspects over consideration of timing or syn-
chronization of operations.
Subsequently, the language diverges from timed or real-timed programming, which
tightly associates code execution with specific time intervals or synchronization re-
quirements, by enabling a higher level of abstraction for representing algorithms
and system behavior. It makes the design process simpler by removing the need
to define timing constraints at the time of designing [5].

2.1.3 Clock accurate designs with HLS
Due to the automatic scheduling of untimed C++ processes, no clock signal is
present on a code level. Designers cannot access the system’s clock status, but
have to rely on a set of directives and timing configurations implemented via
the HLS tool. Subsequently, control and reset enable signals cannot be probed

3

4 Background

or controlled manually [5]. The automatic generation and configuration of these
signals by the software, limit design flexibility, by creating a constant dependence
on the project’s configuration parameters. Therefore, this increases the difficulty of
creating applications where clock accuracy and high responsiveness are important,
such as communication protocols [4].

2.2 The I3C Protocol
I3C is an abbreviation of Improved Inter-Integrated Circuit protocol which has
been developed by Mobile Industry Processor Interface(MIPI) Alliance. In the
realm of mobile devices and Internet of Things(IoT) applications, I3C offers a
streamlined and efficient approach for facilitating communication between sen-
sors and peripherals. It presets an optimized solution that enhances performance,
extends capabilities, and incorporates advanced features tailored to meet specific
communication requirements within these domains. Because of these features, I3C
provides seamless integration and enables reliable data transfer between sensors
and controller.
By utilizing the existing Inter-Integrated Circuit(I2C) and System Peripheral In-
terface(SPI) communication protocols as a starting point, I3C expands upon their
features and capabilities to create a comprehensive and adaptable communication
solutions. It has back-compatibility with I2C, which lets legacy devices to operate
over I3C bus [7].
The key features of I3C are:

• increased data transfer rates
• support for multiple controllers
• hot join and dynamic address assignment
• utilizes low power

2.3 The I3C Controller
2.3.1 Functionality
In this section, the I3C module designed for the project is clarified. An I3C module
can act either as a "target" or a "controller" [7], the module described here provides
the latter functionality. To obtain an improved understanding of the applicability
of HLS in complex clock-accurate systems, we based our module on an already
existing commercial design, thus increasing the code complexity. By doing this,
it was possible to locate a broader range of issues that would not be visible in
a design of lesser scale. Figure 2.1 shows the top Finite State Machine(FSM) of
the module, although some functions have not been implemented as they were not
present in the design made in traditional RTL. The excluded features are High
Data Rate(HDR) mode support, hot-join capability and controller role request.
Consequently, a brief explanation for the key features of the design is given below.

• Private read/write

Background 5

• Dynamic address assignment

• Ability to broadcast "Common Command Code" commands.

• In-band interrupt support

• Adjustable Serial Clock Line(SCL) and Serial Data Line(SDA) timing fre-
quency and offset delays.

• Backward compatibility with legacy I2C target devices.

Nex
t

cm
d

START

BCAST
"0x7E+W"

CCC
data

BCAST
CCC

RSTART

WRITE
DATA

READ
DATA

STOP

T=1 if
more
data

End
if T=0

RSTART

BCAST
 ADDR+W/R

WRITE
DATA

T=1 if
more
data

WRITE
DATA

RSTART

Dynamic
address

assignment

DAA
CMD

I2C Private
read

I2C
read cmd

New cmd

IDLE

In-Band
Interrupt

START
from target

RSTART

set bus
to Idle

set bus

to Idle

Next
cmd

Next
cmd

No
data

set bus
to idle

No data
&

Next
cmd

Next
cmd

Direct
CCC

BCAST
CCC

set bus
to idle

T=1 if
more
data

I2C Private
writeI2C

write cmd

WRITE
ADDR+W

WRITE
ADDR+W

Writecmd

Rea
d

cm
d

Private
Read/Write

Figure 2.1: Simplified I3C Primary Controller FSM

Private read/Private write
Private read refers to the process where the I3C controller can read from one of
the target devices. Private write refers to the process where the controller can
transmit data on one of the target devices through SDA line. This can be done
by selecting the respective target by their static or dynamic address and read or
write data [7].

6 Background

Dynamic address assignment
Dynamic address assignment is the process where the controller discovers and
assigns addresses to the target devices present on I3C bus. When a target device
is connected on I3C bus, the controller assigns an address to the target from a pre-
determined address table. The controller has a predefined set of addresses which
are assigned to targets when needed. This allows a better management of the
addressing memory because the dynamic address is only assigned to the targets
whenever it is required [7]. This can be seen in Figure 2.2.

ACK

BCAST
0x7E+W

BCAST
ENTDAA

CCC

RSTART

ACK

BCAST
0x7E+R

READ
PID, BCR,

DCR WRITE
NEW DYN.
 ADDRESS

ACK

ACK,
next target

STOP

ACK,DAAcomplete
NACK

NACK

NACK

NACK

Figure 2.2: Simplified Dynamic Address Assignment FSM

Background 7

Broadcast Common Command Codes
Common Command Codes(CCC) is one of the features in I3C protocol which
are used to control and configure the target devices present on the line. There
are a number of functions for which CCCs are used like requesting configuration
information from the target and controlling which target gets bus access in order
to maintain reliable configuration [7].

In-band interrupt support
This feature allows the target device to initiate a transfer without being prompted
by the controller. The target device can issue a "start" command along with its
address when the bus is in an idle state. Subsequently, the controller verifies if the
transmitting device is registered in its device address table and that it is allowed to
generate an interrupt request. If all requirements are fulfilled, then the controller
acknowledges the request and reads one byte of data from the target. Otherwise,
the request is denied, and the controller then broadcasts a dedicated command
that disables the In-band interrupt(IBI) request capability for that specific device
or all of them, depending on the controller’s configuration [7]. These actions are
also illustrated in Figure 2.3.

Adjustable SCL and SDA timing frequency and offset delays
Due to its commercial nature, the module provides some flexibility in terms of the
bus timing characteristics. The user is able to define the bus frequency by adjusting
the high and low time of the SCL waveform. Furthermore, the switching SDA line
can be manually offset by a set amount of clock cycles, as seen in Figure 2.4. These
settings can be configured via the APB bus.

Backward compatibility with legacy I2C target devices
The MIPI I3C specification dictates that I2C target devices can be interfaced in the
I3C bus. To achieve this, the FSM presented in Figure 2.5 was implemented in the
design. As I3C speeds can be much higher that the ones used in the i2c protocol,
the devices are required to have a 50ns notch filter, so all I3C transactions can
be ignored [7]. Additionally, the controller must set the bus frequency to values
specified in the I2C standard so communication can be possible.

2.3.2 Block description
The block diagram of the design can be seen in Figure 2.6. Communication be-
tween the module and the associated CPU application is achieved through the
utilization of the Advanced Microcontroller Bus Architecture(AMBA) Advanced
Peripheral Bus(APB) protocol [8], the related signals are placed on the left side of
the module, with the addition of the interrupt signal that is used to indicate the
occurrence of specified events on the module.

8 Background

Read
incoming
Address

Verify Target
Address

Check if
BCR[2]=1

SEND
NACKAddress

ok

Wrong
address

RSTART

BCAST
0x7E+W

RSTART

STOP

READ
DATA

True

set bus
to idle

Disable IBI
on NACK

Next
cmd

Next
cmd

set bus
to idle

set bus
to idle

Next
cmd

False

Figure 2.3: Simplified In Band Interrupt FSM

SDA

SCL

Figure 2.4: SDA offset compared to SCL

The I/O signals that are on the right side are related to the I3C bus. To control
and probe each line three signals are needed, "tribuf enable", "state" and input.
The first two are connected to a tri-state buffer circuit as seen in Figure 2.7, and
the latter is set directly on the bus. Lastly, two configurable pull-up resistors
must be added on the bus, to be able to switch between push-pull and open-drain

Background 9

BCAST
Target

ADDR+R/!W

WRITE
DATA

RSTART

STOP

Check target
response

ACK,
next
data

ACK,
no more

data

NACK,
next
cmd NACK,

set bus

to idle

Check target
response

READ
DATA

Send
ACK

ACK,

write

cm
d

Send
NACK

Continue

read

Stop
read

Next
cmd

set busto idle

ACK,readcmd

NACK

Figure 2.5: I2C communications FSM

modes.
To provide more detail in the designs operation, it’s sub-modules are described

below.

Bus driver block
The main function of this block is to directly regulate the bus. It manages the
switching of both SCL and SDA lines, with the latter changing its value when
instructed by the higher sub-module. To control each line, a separate inline block
was created, as seen in Figure 2.8. Additionally, it is able to switch from open-drain

10 Background

Bus action
controller

block

APB
Register Block

RAM

 enable enable

Bus
driver
block

Control
signals

Status
signals

RAM
controller

block

Target TX/RX Data

Central
Controller

block

Bus action
controller

block

RX/TX

 enable

SDA state

SCL timing
Control
signals

Status
signals

Advanced
Peripheral Bus

Event bus

Target
TX/RX
Data

Event
detector

block

Status

APB
Register Block

SCL status

SDA status

SDA state

SDA tribuf enable

SDA read

SCL state

SCL tribuf enable

SCL read

Figure 2.6: I3C controller top view

Vdd

Tribuf
enable

3-state
buffer

State

Read

Port

Pull up
resistor

Figure 2.7: SDA/SCL port control

to push-pull mode and vice-versa on demand.

SDA

Controller

SCL

Controller

Enable

SDA status

SCL status

SCL Control

SCL Control

SDA state

SDA tribuf enable

SDA read

SCL state

SCL tribuf enable

SCL read

Figure 2.8: Bus driver block diagram

Background 11

Bus action controller block
By analyzing the I3C and I2C protocols it is noted that the majority of the op-
erations are repetitive. To reduce area, these were broken down into different
functions such as "Transmit Start", "Write Byte + T bit", "Read byte", etc. The
logic behind this, is that any process can be chosen by the master controller block
when required. When the selected action is complete, a report signal is activated
so the system can move to the next one. In Figure 2.9 the bus action controller is
illustrated. To simplify the diagram some of the designed actions are phased out.

Start

Stop

Tx
Byte

Rx
Byte

...

Status

Input
data

Action
select

Bus control

Bus status

Figure 2.9: Bus action controller block diagram

Central controller block
This is the larger sub-module in terms of complexity and area. Its purpose is to
probe the setup registers and ram for new commands, and execute them. It is
comprised of a number of FSMs that are used to perform different operations,
such as private read/write, dynamic address assignment, IBI handling, etc. A top
FSM is used for deciding which process must be selected according to the input
from the APB register block and RAM, this is seen in Figure 2.10

Ram controller block
To achieve higher design flexibility, a Random Access Memory(RAM) was added
to the system, it is used to buffer communication data before these are transmitted
to a device or read from the Central Processing Unit(CPU). The memory can be
accessed by both the Master controller and APB register block, but it will always
give priority to the latter as it is more critical to the system’s operation.

12 Background

Process
selection
FSM

Private
read
FSM

Private
write
FSM

CCC
FSM

IBI
FSM

DAA
FSM

Action
status

Action
control

Control

Status

Figure 2.10: Central controller block diagram

APB register block
The main role of this sub-module is to handle read and write accesses to the
register array from the APB bus, Central controller, and Interrupt block.

Event detection block
This module’s purpose is to produce an interrupt signal whenever certain system
conditions are met. These could be an incoming IBI request, receive/transmit
buffer overflow, communication errors, etc.

Chapter 3
Catapult HLS flow

3.1 Workflow
A typical design flow would start by creating and verifying a model of the speci-
fied system in Matlab or other high-level languages, as seen in Figure 3.1. Subse-
quently, the system is re-implemented with a hardware description language such
as VHDL or Verilog [9].
After the previous steps have been completed, the design undergoes synthesis using
the specified technology library. The synthesized model is then reviewed for any
timing violations. If such violations are found, the RTL coding phase is reassessed
with the aim of either reducing the complexity of the design or introducing addi-
tional pipeline stages. Thus, a loop between synthesis and RTL coding is created.
When the design is clear of errors, it can proceed to layout or additional testing
[9].
With the use of the HLS platform, the specified design is implemented exclusively
using C++, although certain elements of the language, such as unions or linked
lists, are not supported [5]. The resulting code can be compiled using any ap-
propriate tool depending on the operating system in use. In this project, the
GNU Compiler Collection(GCC) tool was utilized for compilation. The verifi-
cation and fault-finding process was achieved with the use of the GNU project
Debugger(GDB), along with assertions and print debugging techniques.
In the subsequent stage, the equivalent RTL version of the code is automatically
generated from Catapult HLS, followed by synthesis. In contrast to the aforemen-
tioned flow, timing violations are handled by the HLS tool [2]. Consequently, the
generated design may have increased latency or pipeline stages to meet the timing
constraints.
Afterward, the synthesized model is examined for differences in output response,
as well as potential pipeline stalls and deadlocks. This process involves utilizing
QuestaSim and SCVerify, with the latter enabling the design’s simulation with
the C++ testbench[10]. Any output mismatches are identified in the resulting
waveform, as depicted in Figure 3.2. If such an error occurs, the C++ code needs
to be modified, and the process is repeated.
For pipelining, the designer is able to instruct Catapult HLS to pipeline specific
parts of the design while defining the exact iteration interval and throughput. Fur-
thermore, any created loops can be unrolled as needed[5]. In our project, we opted

13

14 Catapult HLS flow

for an iteration interval of 1 for all blocks. Lastly, a sampling-based programming
style was adopted to minimize the design latency without requiring loop unrolling.

Preface

When buying a book on hardware design, the focus is often limited to one
area. It could be on signal processing, system level design, VHDL and other
programming languages or arithmetic. In this manual, we will try to describe
the design flow from developing code to chip layout, see Figure 1. The manual
is divided into the following main sections:

Function

Function

Synthesis

Layout

Tape out

RTL

Function
Timing

Prelayout

Postlayout
Function
Timing

Behavioral

Standard
Library

Constraints

Test Vectors

Timing
Information

Specification

RTL Coding

Synopsys: Design Compiler

C/C++
MATLAB

Cadence: Silicon Ensemble

Floating/Fixed
Point Modeling

VHDL/Verilog
Mentor Graphics: ModelSim

Standard
Library

Timing
Information

Figure 1: Common digital ASIC design flow.

— 7 — Lund Institute of Technology

Figure 3.1: .
Design flow steps, taken from [9].

Catapult HLS flow 15

Specification

Floating/Fixed
Point Modeling in

C++

Behavioral
FunctionTest Vectors

RTL Generation
and Synthesis

C++/RTL
Comparison

Timing
Information

 GCC
GDB

Catapult
HLS

QuestaSim

Standard
Library

Constraints

Figure 3.2: Netlist design flow using HLS

3.2 Design partitioning
As with any typical RTL design planning, large projects need to be partitioned
into distinct components. These components can consist of classes encompass-
ing multiple functions, with a top function encapsulating all others[11]. This top
function is invoked from a higher level where the class is utilized, which can be
either the testbench or some other top wrapper. A simple example of a top class
hierarchy is shown in Listing 3.1.
In this example, the function "run" acts as the top wrapper, and functions "write_1"
and "write_2" are considered "Inline". An inline function is not considered a sep-
arate entity but a part of the block from which it is called.
A project can consist of multiple classes under a top class that acts as a wrapper.

16 Catapult HLS flow

DUT

..

0 1

0 1 0

0 ..

10000 ns

DUT

sda_oe-TRANS# ..

sda_oe-GOLDEN 0 1

sda_oe-DUT 0 1 0

sda_oe-ERR# 0 ..

Entity:scverify_top Architecture: Date: Mon May 15 12:10:13 CEST 2023 Row: 1 Page: 1

Figure 3.3: Mismatch error on QuestaSim

In that case, each class’s main function is characterized as a block, and all blocks
are assembled in the top class. By following this partitioning strategy, each block
can have different attributes, such as pipeline stages, loop unrolling, and clock
frequency.
To facilitate effective handshaking with other blocks and prevent the loss of in-
formation in case of conditional reads, all interconnected signals are interfaced to
First In First Out(FIFO) registers acting as buffers between modules, with the
exception of the wires connected to the top-level interface[12].
The registers provide non-blocking write capability, although reads are blocking.
The library provides a solution for the latter by probing the register for existing
data before reading [5]. By following this configuration, the system becomes com-
parable to a Kahn process network [13]. Catapult HLS provides the "ac_channel"
library to be used for this purpose. Listing 3.2 provides an example of block in-
terconnection and hierarchy.
Synthesis of a hierarchical design can be accomplished in two different ways: "top-
down" and "bottom-up" hierarchy. With the former approach, one block is set
as the top file, and the rest of the blocks reside under it. The drawback of this
approach is that during each synthesis iteration, the entire design needs to be re-
synthesized.
A "bottom-up" hierarchy implies that each block is synthesized separately and
converted into a technology library file. Subsequently, these files are used in the
top wrapper block. This provides the advantage of not having to synthesize the
complete design when a sub-block is changed but only the blocks that were altered.
Therefore, the development process becomes more efficient [14].

1 class write_example {
2 public :
3 write_example (){}
4

5 # pragma hls_design top
6 CCS_BLOCK (run)(int &data_1 , int &data_2 , int &out_1 ,int &

out_2){

Catapult HLS flow 17

write1.h write2.h

top.h

top.v

(a) Top down

write1.h write2.h top.h

write1.lib write2.lib top.lib

top.v

(b) Bottom up

Figure 3.4: Hierarchy types

7 /* write 1 and 2 are inline functions */
8 write_1 (data_1 ,out_1);
9 write_2 (data_2 ,out_2);

10 }
11 private :
12 void write_1 (int &write_data , int & output){
13 output = write_data +1;
14 }
15 void write_2 (int &write_data , int & output){
16 output = write_data +2;
17 }
18 };

Listing 3.1: Class hierarchy example

1 class write_example {
2 public :
3 write_texample (){}
4

5 # pragma hls_design top
6 CCS_BLOCK (run)(ac_channel <int > &data_1 , ac_channel <int > &

data_2 , ac_channel <int > &out_1 , ac_channel <int > &out_2){
7 /* write 1 and 2 are seperate blocks */
8 write_1 .run(data_1 ,out_1);
9 write_2 .run(data_2 ,out_2);

10 }
11 };
12

13 class write{
14 public :
15 write (){}
16

17 # pragma hls_design interface
18 CCS_BLOCK (run)(ac_channel <int > &data , ac_channel <int > &out){
19 write_inline (data , out);

18 Catapult HLS flow

20 }
21 }
22 private :
23 void write_inline (int &write_data , int & output){
24 output = write_data +1;
25 }
26 };

Listing 3.2: Multiple class hierarchy example

3.3 Task division and project development
To increase efficiency in the design’s implementation time, a concurrent develop-
ment approach was followed [15]. Initially, a skeleton project was created and
pushed into a Git repository. The repository was split into two different branches,
one for each person. Both designers were assigned different blocks to work on as
seen in Figure 3.5. Subsequently, one person acted as a forerunner and focused
on working with blocks higher up in the design hierarchy, while the other designer
worked on the block adjacent to the two previously completed blocks. These steps
were repeated until the completion of the design.
In order to simplify fault detection and troubleshooting, a dedicated testbench was
created for each individual block. When two blocks are merged, the testbench of
the higher-level block is modified to accommodate the integrated system.
An issue that did occur at certain points in this process, was that the merging
procedure took longer time due to unforeseen problems, or limitations that were
not anticipated during the specification stage. In that case, only one person moved
on to the next block while the other focused to complete the merge. Lastly, at
certain points in the implementation process, it was deemed necessary to make
modifications to the design specification. Consequently, continuous communica-
tion was essential throughout the entire process.

3.4 Scheduling
This part of the development process is where the Catapult platform automati-
cally sets the design’s latency and throughput according to the set timing con-
straints and the user’s directives [6]. In HLS terminology, throughput denotes
the frequency at which a process can be executed and completed within a specific
number of clock cycles [5]. Subsequently, latency refers to the time between the
first input and the first output.
Since the design in this project is mainly comprised of control logic, the latency is
kept as low as possible since it allows for higher clock accuracy.
Initially, the design had a throughput value of 3, which was high for its field of
application. During the scheduling stage, it was possible to pipeline the design, by
configuring its iteration interval of the system. To elaborate, the iteration interval
is the time required for a new iteration of the design to start. Thus, by setting

Catapult HLS flow 19

Block 3 Block 2 Block 1

Designer ADesigner B

Block 4

Block 3 Block 2 Block 1

Designer A

Block 4

Designer B

Stage 1

Stage 2

Figure 3.5: Parallel development of a modular design

this value to 1 one clock cycle, a throughput of 1 was achieved. The scheduling of
the design is shown in Figure 3.6.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

 Latency

Iteration
Inteval

Clock cycles

Ite
ra

tio
ns

7

7

7

Throughput

Figure 3.6: Resulting timing of the HLS design

3.5 Synthesis
To achieve a more precise comparison, the synthesis had to be implemented with
the same process node as the pre-existing RTL design. For the implementation of

20 Catapult HLS flow

this project, a sub-10nm technology library was utilized. However, due to technical
difficulties, the HLS design had to be synthesized outside the platform. This was
made possible because Catapult extracts the finalized design in a single Verilog
or VHDL file when synthesis is complete. Initially, the design was synthesized
using the default 45nm library provided by Catapult. A low frequency of 10 MHz
was selected, to avoid increased latency due to timing constraints. Thereafter, the
RTL file was synthesized with the same medium as the RTL design.
One side-effect of following this approach, was that the inclusion of the RAM
module was no longer possible. To to achieve more clarity in the results, two
versions of the design were synthesized. One with the RAM converted to a register-
based memory and another with an externalised memory. However, the latter
version did not include a RAM module interface during the synthesis process.
Lastly, the resulting area, static, and dynamic power results were used to achieve
the comparison with the traditional RTL design.

3.6 Verification
To ensure that the device is behaving as expected, a functional verification envi-
ronment was created in C++. As seen in Figure 3.7(a), the testbench consisted
of a continuous loop containing the device under test and other elements. These
are explained below.

Target Devices
To provide automated feedback to the controller, two classes were created, one
representing an I2C device and the other an I3C device. Although, they have
limited functionalities and fixed configurations. Specifically, the register bank
block was not implemented in them, as it was deemed unnecessary. When a
written request is received, the devices always accept, read, and store the data.
Subsequently, when a read request occurs, the stored data are broadcast back
on the bus. Additionally, the I3C device can accept new dynamic addresses and
initiate IBI requests automatically after a specific series of events.

Bus handler
The bus handler function is a process designed with the goal of determining the
SDA and SCL bus states, following any changes in the outputs of all I3C and I2C
devices.

APB Controller
The APB Controller function is responsible for reading data, issuing new com-
mands, and configuring the I3C controller. As mentioned in the previous chapter,
the AMBA APB protocol is used for communication between the controller and
other IPs in the system.
Figure 3.7(b) illustrates the implemented logic for verifying different aspects of the

Catapult HLS flow 21

device. The input stream consisted primarily of two distinct components: input
and assertion data. The former contained a collection of configuration data, com-
mands, and register bank addresses that these where to be written to. The latter
was comprised of numerical values of registers and their equivalent addresses that
were to be asserted.
For each test, the required data would be loaded into the register bank via the
APB protocol and after some fixed time, the designated registers would be probed
to verify if the value contained in them was correct. This delay was necessary
because the register bank cannot be simultaneously read from and written to. To
elaborate, by consistently probing one register, other modules had to wait in a
queue to perform their write operations.

I3C/I2C Target
devices

Bus handler

I3C Controller (DUT)

Bus handler

APB Controller

(a) The main loop used in the
testbench

Write command
to the register

bank

Wait specified
time

Assert status from
the register bank

Next Command

(b) The assertion loop

Figure 3.7: Verification process

22 Catapult HLS flow

Chapter 4
Issues and resolutions

4.1 Block design
The way block interconnection and signal routing is implemented is different from
traditional RTL. One of the initial steps of the project’s implementation was over-
coming this challenge. As mentioned in section 3.2, all the blocks in a design are
interconnected with the use of FIFO registers named "ac_channels". The main
limitation of "ac_channels" is that a single channel can only be written in one
block and read by another. Thus, a connection like the one in Figure (a) is not
possible. A solution to this issue is creating two different channels for the same
data, as seen in Figure (b).

Block 2

Block 1

Block 0

(a) Not applicable

Block 2

Block 1

Block 0

(b) Proposed solution

Figure 4.1: Connecting an output signal to two different blocks

Furthermore, an additional problem that emerged was the incapability to mul-
tiplex the outputs of distinct blocks, due to the fact that top modules can only
contain interconnect elements. A solution for this problem is presented in Figure
4.2 these modules can be set to inline elements of a single block. Nevertheless, this
can lead to excessively large block sizes, although it won’t pose a problem unless

23

24 Issues and resolutions

a different pipelining or running frequency is required for each block.

Block 1

Block 2

(a) Not applicable

Inline
block

1

Block 0

Inline
block

2

(b) Proposed solution

Figure 4.2: Connecting an output signal to two different blocks

4.2 Latency
A key contributing factor to increased latency is the timing constraints set by
the clock frequency. To avoid any timing violations, Catapult breaks down the
design into separate stages. Each stage takes one clock cycle to complete its
process, therefore the design’s latency is increased. An additional contributor, is
dependencies between different blocks. Due to the blocking I/O provided by the
"ac_channel" library, one block’s process must be completed before another can
commence, resulting in additional latency. Although this doesn’t pose an issue
in feed-forward architectures, the functionality of systems that include feedback
channels is affected. Such a case is illustrated in Figure 4.3, in this example the
design has a latency of 3. Since the feedback data is generated in the last block,
it will require 3 clock cycles to reach block 0.
To mitigate this issue, a few solutions are proposed. In the case of latency due
to dependencies, the blocking reads can be replaced by a non-blocking type, seen
in listing 4.1 . The "nb_read" will return a Boolean value indicating that data
were read. If no data are in the channel, then the read is skipped. The drawback
of this approach is that some mismatches might be present in the simulation, as
SCverify might not be able to simulate the non-blocking reads in both software
and hardware.
Another solution is to convert all blocks into "inline" and merged a single module.
Therefore, the need for the "ac_channel" library is alleviated. However, this
module will be less flexible to optimizations due to it’s size. Additionally, it is not
possible to apply different scheduling and timing parameters for each inline block.

Finally, if the high latency is attributed to the HLS tool’s efforts to meet the
timing constraints, one possible approach to reduce it is to introduce pipelining
into the design.

Issues and resolutions 25

1 void Block(ac_channel <int > &data1 , ac_channel <int > &data2 ,
ac_chanel <int > &out){

2 int data1_tmp , data2_tmp ;
3 if (data1. nb_read (data1_tmp))
4 out.write(data1_tmp);
5 else if (data2. nb_read (data2_tmp))
6 out.write(data2_tmp);
7 }

Listing 4.1: Use of non-blocking reads

Block 0 Block 1 Block 2 Block 3Data in Data out

0 1 2 3Clock cycle

Figure 4.3: A design with feedback channel and a latency of 3 clock
cycles

4.3 Counters/Timers
One of the most important limitations in this project was counter latency. As
it was mentioned in section 3.4, the iteration time of a design can be increased
due to dependencies between blocks. In Figure 4.6, the iteration interval of the
HLS design’s blocks can bee seen. These waveforms show that the majority of the
block’s have some dependency, and will be active every 5 clock cycles. Additionally,
the "cpp_testbench_active" signal indicates the start of a new iteration.
To demonstrate the issue, an counter is also presented in the Figure. This signal
exists inside the "Bus driver block", it can be noted that its value will increase
every time the block is active. Therefore, the counter’s minimum and maximum
values are limited to multiples of the block’s iteration time. For example, if the
top value is set to 2, the counter will reset after 10 clock cycles. If a latency of
1 cannot be achieved, then the additional delay must be taken into consideration
when creating systems that measure time.
To reduce this delay, two different approaches are proposed. The first solution
is to merge all the system’s components into a single block, as this will remove
all the dependencies caused from blocking I/O and reduce the iteration time of
the module. The drawback of this approach is that optimisation of the design
becomes more difficult. The latter solution is the use of non-blocking reads from
the "ac_channels" library. This will remove any latency due to dependencies
between blocks, but might cause problems with the simulation of the design [12].

26 Issues and resolutions

Sync_Signals

Active_Processes

6 0 1 2 3 4 5

12500000 ps 13000000 ps

Sync_Signals

clk

cpp_testbench_active

Active_Processes

RAM controller block

Central controller block

Bus action controller block

Bus driver block

APB Register block

Event detector block

Counter-DUT 6 0 1 2 3 4 5

Entity:scverify_top Architecture: Date: Mon May 29 12:20:46 CEST 2023 Row: 1 Page: 1

Figure 4.4: Incremental counter with a latency of 5

4.4 Hardware - Software mismatch
The occurrence of signal discrepancies between hardware and software simulations
was initially discussed in section 3.1. The most likely reason for such discrepancies
is the presence of feedback FIFO registers that have not been pre-filled. This
problem is shown in listing 4.2, where the design of Figure 3.3 is described. In
this example, the function of "Block_0" is called before "Block_1", therefore,
the channel "data_out_1" is empty on the first iteration of "Block_0". To avoid
any segmentation faults in the software simulation, the channel read command is
skipped if data are not available. This causes a delay on the software side, as one
or more loop iterations are required for the register to receive data. Consequently,
the signal offset affects other elements that depend on it, leading to further delays.
As a result, tracing the source of the fault can be time-consuming. A practical
solution to investigate the origin of such errors is to replace the read of input
channel signals with fixed value assignment in the affected block. For the example
of Figure 4.5, a proposed solution is presented in listing 4.3, where the channel is
pre-filed with one data token that has a value of 0.

Block 1

Block 0

Design

input_0

input_1
Data_out

Figure 4.5: Design prone to signal mismatches

1 class mismatch_ex {
2 ac_channel <int > data_out_1 ;
3 public :

Issues and resolutions 27

4 mismatch_ex () {}
5 # pragma hls_design interface top
6 void CCS_BLOCK (mismatch_ex , run)(int data_in_0 , int

data_in_1 , int& data_out) {
7 Block_0 (data_in_0 , data_out_1 , data_out);
8 Block_1 (data_in_1 , data_out_1);
9 }

10 private :
11 # pragma hls_design interface
12 void Block_0 (int data_in , ac_channel <int > & feedback_in ,int

& data_out){
13 int feedback_tmp = 0;
14 int data_out_tmp =0;
15 # ifndef __SYNTHESIS__
16 // This part of the code is excluded from synthesis
17 while (feedback_in . available (1))
18 #endif
19 feedback_tmp = feedback_in .read ();
20 }
21 data_out_tmp = (feedback_tmp + data_in);
22 data_out = data_out_tmp ;
23 }
24 # pragma hls_design interface
25 void Block_1 (int data_in , ac_channel <int >& data_out) {
26 data_out .write(data_in * 2);
27 }
28 };

Listing 4.2: Example of a module where a mismatch is present

Sync_Signals

DUT

X 0 3 6 9 12 15 18 21

1 2 2 3 3 4 4 5 5 6 6 7 7 8 ..

1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ..

OutputCompare

0 1 4 7 10 13 16 ..

0 3 6 9 12 15 18 ..

0 1 2 3 4 5 6 ..

0 ps 100000 ps 200000 ps 300000 ps

Sync_Signals

clk

rst

DUT

data_out_rsc_dat X 0 3 6 9 12 15 18 21

data_in_0_rsc_dat 1 2 2 3 3 4 4 5 5 6 6 7 7 8 ..

data_in_1_rsc_dat 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ..

OutputCompare

data_out-GOLDEN 0 1 4 7 10 13 16 ..

data_out-DUT 0 3 6 9 12 15 18 ..

data_out-ERR# 0 1 2 3 4 5 6 ..

Entity:scverify_top Architecture: Date: Thu Jun 01 19:51:41 CEST 2023 Row: 1 Page: 1

Figure 4.6: Simulation of listing 4.2

1 class mismatch_ex {
2 ac_channel <int > data_out_1 ;
3 public :
4 mismatch_ex () data_out_1 (1, 0){} // channel is pre - filled
5 ...

Listing 4.3: Proposed fix for the mismatch present in listing 4.2

28 Issues and resolutions

4.5 Deadlocks
A deadlock is a phenomenon that occurs when the system cannot output any data
because one or multiple parts of the network are unable to proceed due to a certain
condition that is not met [16]. This condition is usually satisfied by other blocks
that are mutually dependent on the latter. Thus creating a loop that does not
allow the system to continue its operation. Although a deadlock might appear
in a hardware simulation, it is likely that the software simulation produces the
expected result.
One situation where a deadlock might occur is during the re-convergence of data in
the system. Reconvergence happens when data traverses through separate blocks
and then converges back together. This can be observed in Figure 4.7. The system
can operate continuously only if the latencies of blocks 1 and 2 are equal. When
this condition is not met, the system would have to stall for the module with higher
latency to produce its output. Subsequently, block 0 will also cease its operation,
as its output is now blocked. Therefore, the entire system will fall into a state of
inactivity.
A way to solve this issue is by adding additional FIFO registers to the block with
the lower latency to align the data sent to block 3. In Catapult HLS this can be
done by creating a directive that manually adjusts the size of the "ac_channel"
that connects to the final block [12].

Block 3

Block 2
Block 0

Block 1

Figure 4.7: Reconvergence of a data stream

Another occasion that deadlocks might be experienced is when feedback regis-
ters are utilized, seen in Figure 4.8. As mentioned in section 4.4, feedback channels
must always be pre-filled; otherwise, a hardware-software mismatch is caused. If
the design’s latency is larger than 1, it needs to be taken into consideration. The
number of pre-filled data must be equal to the feed-forward latency. For example,
when it takes 3 clock cycles to produce an output, the FIFO needs to be filled
with 3 different sets of data. If that is not the case, then the feedback FIFO will
not have enough data for the loop to complete.
During the implementation of the design, the problems described above did occur
and a way to trace the issue was required. SCVerify provides a signal for each

Issues and resolutions 29

block that displays its operational status; these waveforms can be examined in
Questasim. By doing this, it is possible to see which block stalls first, thus find-
ing where the issue resides. However, in pipelined systems, all blocks may cease
simultaneously. One additional approach that can be used to identify deadlock
sources, is by commenting out suspected parts of the code and re-synthesising the
design. Although, this is a very time-consuming process and should only be used
as a last resort.

Block 0

Block 1

Data_outData_in

Figure 4.8: System with feedback where a deadlock might occur

4.6 Fault tracing
Most troubleshooting primarily occurs during the software implementation stage.
However, in certain situations, there is a need to visualize a signal within the
hardware simulation environment. This can be necessary either to gain a bet-
ter understanding of the signal’s status or to investigate a suspected mismatch.
One limitation that arises, is that during RTL generation Catapult HLS opti-
mizes all functions inside the blocks. As a result, any internal variable declared
in C++ is not accessible in Questasim. To address this issue, Catapult provides
the "ac_probes" library. This tool enables the preservation of a variable after
synthesis, making it possible to observe it in the Questasim simulation. Finally,
a schematic view of the design is also available, via the Design Analyzer module
contained in the platform.

30 Issues and resolutions

Chapter 5
Results

5.1 Area from both designs
After synthesizing the design and the RTL design the area which was observed is
stated in this section. The synthesis tool provides information about the total area
of design, including the sequential, combinational and memory components. The
last is the size of all the external memory modules that may have been added to
the design. Moreover, a section called "Total area excluding Macros" is included,
which states the size of the design without any external memory IPs. Lastly, the
total number of cells, flip-flops and gates is also provided.
As stated in Section 3.5, two different versions of the design underwent synthesis.
A comparison was made between both versions and the RTL design. The first ver-
sion utilized an embedded register-based memory, as indicated in Table 5.1. The
second one featured an external memory port, but no memory IP was connected
to it, as shown in Table 5.2.

Table 5.1: Area report of the RTL and HLS design with register
based memory

RTL HLS
Total area 1309 um2 1736 um2

Number of cells 21078 9535
Total area excluding Macros 1309 um2 611 um2

Combination block area 367 um2 181 um2

Sequential block area 834 um2 359 um2

Number of edge triggered flip-flop cell 5083 2177
Memory area 1125 um2 0 um2

Combinational gatecount 14009 6922
Complete gatecount (comb. + seq.) 49925 66232

The distribution and comparison of the areas within the HLS design with
externalized memory and the traditional RTL design can be seen in Figure 5.1.
To gain a clearer understanding, the RTL design’s RAM area is also shown in the

31

32 Results

Table 5.2: Area report of the RTL and HLS design with externalized
memory

RTL HLS
Total area 1309 um2 775 um2

Number of cells 21078 14210
Total area excluding Macros 1309 um2 775 um2

Combination block area 367 um2 264 um2

Sequential block area 834 um2 449 um2

Number of edge triggered flip-flop cell 5083 2755
Memory area 1125 um2 0 um2

Combinational gatecount 14009 10062
Complete gatecount (comb. + seq.) 49925 29558

chart. Subsequently, Figure 5.2 shows the comparison between the RTL design and
the HLS design with externalized memory. In this chart the total area comparison
does not include the RAM section.

5.2 Power analysis
After synthesizing the HLS design with the included register based memory and
the RTL design, the power utilization which was observed is stated in this section.
This data is presented in Table 5.3. The HLS design version with the externalized
memory is not included, as it was not deemed possible to obtain power measure-
ments with a connected RAM module to the design.

Table 5.3: Power comparison of RTL and HLS design with register
based memory.

RTL HLS
Cell Internal Power 0.2916 mW 2.0217 mW
Driven Net Switching Power 0.00481 mW 0.1752 mW
Cell Leakage Power 392.6474 nW 130.1461 nW
Total Dynamic Power 0.2964 mW 2.1968 mW

It is noted that there is internal, switching, and leakage power utilized in the
HLS design and the traditional RTL design separately. As seen in the Table 5.3,
cell interval power refers to the power which is being used in the cells in the ASIC
over an interval of time. Driver net switching power refers to the power being
consumed by the design for switching the nets present in the design. Both are
combined and presented as the Dynamic power consumed by the design. This
refers to the consumption of total power when the design is active. Another
measurement that can be noted in the results is "Cell leakage power" which is also
called static power, it refers to the power consumed when the design is not active

Results 33

and in a static state. The comparison of these values is also visualised in Figure
5.3.

A
re

a
(μ

m
²)

0

500

1000

1500

2000

Combinational area Registers area Memory area Total area

Original RTL design HLS design

Figure 5.1: HLS design with register based memory and RTL design
area comparison

A
re

a
(μ

m
²)

0

200

400

600

800

Combinational area Registers area Total area w/o macros

Original RTL design HLS design

Figure 5.2: HLS design with external memory and RTL design area
comparison

34 Results

P
ow

er
 (m

W
)

0

0.5

1

1.5

2

RTL HLS

(a) Internal power

P
ow

er
 (m

W
)

0

0.05

0.1

0.15

RTL HLS

(b) [Switching power

P
ow

er
 (n

W
)

0

100

200

300

400

RTL HLS

(c) Leakage power

P
ow

er
 (m

W
)

0

0.5

1

1.5

2

RTL HLS

(d) Total power

Figure 5.3: Power comparison of HLS design with register based
memory and RTL design

Results 35

5.3 Interpretation
From the synthesis results in the Table 5.2, and Figure 5.2 it is noted that without
the inclusion of the RAM section, the HLS design covers approximately 26% more
area than the original RTL module. The combinational part of the HLS circuit
was larger by 36% and the sequential part was 25% greater. This can be attributed
to the fact that the functionality of the design was prioritised over area, thus the
design is not as optimised as the RTL module. Additionally, a contributing factor
for the increased sequential area is the added pipelining registers.
Furthermore, the area comparison in the Table 5.1 and Figure 5.1 indicates that the
HLS design exhibits an increased quantity of flip-flops, this is due to the addition
of pipelining registers and the substitution of the RAM module with register-based
memory, leading to the addition of more sequential elements. Although the RAM
module used in the RTL design is greater in area that the register based memory,
despite having the same width and number or words.
It is also important to acknowledge, that the verification goals did not aim to
achieve 100% functional coverage, as this process is highly time-consuming and
falls beyond the scope of this thesis. Consequently, some minor variations between
the functionalities of the two designs are expected. These discrepancies can also
contribute to the differences in area and power consumption.
The comparison of power characteristics also indicates large differences, in both
static and dynamic power. The latter can be attributed to the presence of the
"Dynamic Random Access Memory(DRAM) type" memory module, as DRAM
cells have higher leakage than Static Random Access Memory(SRAM) cells [17].
Furthermore, it should be noted that the module produced from the Catapult
platform has not gone through any power optimizations.

36 Results

Chapter 6
Discussions

6.1 Conclusion
The objective of this thesis was the implementation of an ASIC interface module
in a High-level synthesis platform. The design chosen for this purpose was an I3C
controller used for commercial applications, as it is mainly comprised of complex
control logic elements, and its actions are highly time-dependent.
To achieve this, a workflow encompassing the transition from C++ design to verifi-
cation was established. Moreover, the project presented an opportunity to identify
numerous challenges that are likely to arise during the creation of such designs,
and potential solutions were proposed to overcome them. The synthesized I3C
controller was later compared with an already existing module on where it was
based on. The goal of this comparison was to observe any notable differences in
terms of area and power consumption.
As it was not feasible to synthesize the design within the HLS platform, any ex-
ternal elements such as the RAM could not be included during synthesis. Thus,
two versions of the design were created. One were the RAM was replaced with
register-based memory, and another with an externalized memory port. Addi-
tionally, the modules created in HLS did not pass through the same verification
stages as the original design as this was considered outside the scope of this study
and would require much more additional time and resources. Consequently, these
factors should be taken under consideration when comparing the area and power
results. Nevertheless, it was proven that the creation of such modules in an HLS
environment is possible and most of the issues presented can be overcome.

6.2 Future scope
To expand on this study, a few proposals are presented, which cam be the focus
of future investigations.
A SystemC design might be more suitable for clock-accurate modules. This high-
level language allows the designer to probe the status of the clock. Therefore this
approach might provide higher timing accuracy when implementing clock cycle
counters [18].
For power consumption studies, the Catapult HLS platform is capable of integrat-

37

38 Discussions

ing power optimization tools such as PowerPro or Catapult Ultra [6], this can offer
improved power characteristics than a simple synthesized design. Subsequently, a
dynamic power analysis could be utilized.
Both designs can be tested on a similar scenario over time, to capture the variations
in power consumption based on the circuit’s activity and timing characteristics.
Therefore, a more precise power estimation will be acquired.
To conclude, by porting the used technology library to Catapult HLS, it is pos-
sible to include memory in the design, have more precise control over the timing
constraints, and reduce implementation time.

Reference

[1] Siemens Digital Industries. (2021). High-Level Synthesis (HLS): status,
trends and future directions [White paper]. Retrieved from
https://resources.sw.siemens.com/en-US/white-paper-high-level-synthesis-
hls-status-trends-and-future-directions.

[2] A. Takach, "Design and verification using high-level synthesis," 2016 21st
Asia and South Pacific Design Automation Conference (ASP-DAC),
Macao, China, 2016, pp. 198-203, doi: 10.1109/ASPDAC.2016.7428011.

[3] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, “Are We There Yet?
A Study on the State of High-Level Synthesis", in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 5,
pp. 898-911, May 2019, doi: 10.1109/TCAD.2018.2834439

[4] Lahti, Sakari & Vanne, Jarno & Hämäläinen, Timo. (2016). “Designing a
clock cycle accurate application with high-level synthesis. 4756-4761.
10.1109/IECON.2016.7793783.

[5] Michael Fingeroff. 2010. High-Level Synthesis Blue Book. Xlibris
Corporation.

[6] Catapult High-Level Synthesis and Verification, Siemens Digital Industries
Software, 2020 [Online]. Available: https://resources.sw.siemens.com/en-
US/fact-sheet-catapult-high-level-synthesis-and-verification

[7] MIPI I3C Basic Specification, Version 1.1.1, MIPI Alliance, June 2022.
[Online],Available: https://www.mipi.org/mipi-i3c-basic-download

[8] AMBA APB Protocol Specification, ARM IHI 0024E, ARM Limited, Feb.
2023.[Online], Available:
https://developer.arm.com/documentation/ihi0024/e/?lang=en

[9] Lund university Digital ASIC Group, A Tutorial on the Design Flow
(2005). Accessed: Apr.19, 2023. [Online]. Available:
https://www.eit.lth.se/fileadmin/eit/courses/etin01/manualetc/dasic.pdf

[10] ChipsMedia: design and verification of deep learning object detection IP,
Siemens Digital Industries Software, 2021 [Online]. Available:
https://resources.sw.siemens.com/en-US/white-paper-chips-and-media-
design-and-verification-of-deep-learning-object-detection-ip

39

40 Reference

[11] P. P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency,
Portability, and Scalability. Hoboken, NJ: Wiley-Interscience, 2006.

[12] Algorithmic C (AC) Datatypes Reference Manual, v4.6.1 , SIEMENS, 2022

[13] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming.,” pp. 471–475, Jan. 1974.

[14] H. Vuopio, "C++ CODING PRINCIPLES FOR HIGH-LEVEL
SYNTHESIS," Master’s thesis, Faculty of Information Technology and
Electrical Engineering, University of Oulu, Oulu, Finland, 2021. [Online].
Available: http://jultika.oulu.fi/files/nbnfioulu-202109098961.pdf

[15] B. Prasad, “Sequential versus concurrent engineering—an analogy,”
Concurrent Engineering, vol. 3, no. 4, pp. 250–255, 1995.
doi:10.1177/1063293x9500300401

[16] J. L. Hennessy, D. A. Patterson, and K. Asanovic, Computer Architecture:
A Quantitative Approach, 6th ed. Cambridge (Estados Unidos): Morgan
Kaufmann, 2019.

[17] J.M. Rabaey,Anatha Chandrakasan, Borivoje Nicolic, “DIGITAL
INTEGRATED CIRCUITS ,” A DESIGN PRESPECTIVE, 2nd ed.
London, United Kingdom:Pearson Education inc., 2016.

[18] Systemc Golden Reference Guide. Hampshire, Angleterre: Doulos, 2005.

	Introduction
	Background
	Catapult High Level Synthesis
	The I3C Protocol
	The I3C Controller

	Catapult HLS flow
	Workflow
	Design partitioning
	Task division and project development
	Scheduling
	Synthesis
	Verification

	Issues and resolutions
	Block design
	Latency
	Counters/Timers
	Hardware - Software mismatch
	Deadlocks
	Fault tracing

	Results
	Area from both designs
	Power analysis
	Interpretation

	Discussions
	Conclusion
	Future scope

	Reference

