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Abstract

With physicists actively exploring Beyond the Standard Model (BSM) theories that may
fill in the gaps of the Standard Model (SM), a fundamental question arises: which param-
eters hold physical significance? In this thesis, we present our initial progress towards the
development of a model-independent artificial intelligence framework designed for conduct-
ing parameter space scans in BSM scenarios. Our framework incorporates several publicly
available high-energy physics packages, namely SPheno, HiggsBounds, HiggsSignals, and
CosmoTransitions. These packages enable us to impose various constraints including
unitarity, electroweak precision, Higgs exclusion limits, and strong detectable first-order
cosmic phase transitions. To demonstrate the effectiveness of our framework, we apply
it to a singlet-triplet extended SM, serving as a minimal low-scale effective field theory
for a quantum chromodynamic-like Technicolor (TC) theory. A proper phenomenological
investigation and parameter space analysis of the TC theory in the UV-limit are planned
for future work. The findings from our preliminary investigation exhibit promising re-
sults, demonstrating a substantial efficiency enhancement when compared to conventional
random search approaches for identifying physically relevant parameter points. These out-
comes pave the way for future BSM studies utilizing our developed framework.



Populärvetenskaplig beskrivning

Standardmodellen är idag fysikens mest konkreta beskrivning av universums minsta
best̊andsdelar. Den till̊ater oss att kategorisera den synliga materian i sina grundläggande
partiklar och beskriva deras växelverkan genom tre av de fyra fundamentala naturkrafterna;
elektromagnetism, den starka kraften och den svaga kraften. Modellen har även lyckats
förena beskrivningen av elektromagnetism och den svaga kraften till en och samma teori,
som kallas den elektrosvaga teorin. Den elektrosvaga teorin spelar en väsentlig roll i Hig-
gsmekanismen, vilket är den mekanism som genererar massa åt många av de fundamentala
partiklarna i Standardmodellen.

Trots stora framg̊angar med Standardmodellen finns det fortfarande fenomen som den inte
kan förklara. Ett exempel är de kosmologiska observationerna som visar att det finns en
betydligt större andel materia än antimateria i universum. Ett annat exempel är vad som
i grunden driver Higgsmekanismen fr̊an första början. Eftersom modellen inte kan besvara
dessa fr̊agor, tyder det p̊a att det finns ny fysik bortom Standardmodellen.

Därför föresl̊as det regelbundet utökade modeller med fler partiklar och interaktioner, vilket
ocks̊a bidrar till flera nya parametrar. En naturlig fr̊aga blir d̊a: vilka värden ska de nya
parametrarna ha för att ge en giltig fysikalisk teori? Eftersom många parametervärden
förutsp̊ar fysik som inte kommer överens med observationer fr̊an partikelacceleratorer och
kosmologi blir många värden för parametrarna uteslutna, och en slumpmässig sökning
blir mycket tidskrävande. För att underlätta sökningen har vi utvecklat ett program som
använder sig av artificiell intelligens i form av ett neuralt nätverk. Målet är att l̊ata
nätverket rekommendera parametervärden som den anser är bra, i hopp om att sanno-
likheten för att hitta bra parametervärden g̊ar upp. Effektiviteten av nätverket testas
genom att tillämpa den p̊a en förenklad modell, baserad p̊a den mer komplicerade ”Tech-
nicolor” modellen. När nätverket anses vara tillräckligt effektivt, planeras den att tillämpas
p̊a Technicolor modellen och andra fysikaliskt relevanta modeller. gma
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1 Introduction

The Standard Model (SM) is the most accurate description of our present knowledge of the
universe at microscopic distances. It lets us organize visible matter into its most funda-
mental structures and describe their interactions via the electromagnetic, weak and strong
forces. One of its most impressive feature is its joint description of the electromagnetic
and weak theories into one single theory, the electroweak (EW) theory. The subsequent
breaking of the EW symmetry is then used to describe how the SM quarks, charged leptons
and vector bosons acquire their mass, known as the Higgs mechanism [1, 2]. Nevertheless,
despite its remarkable achievements, the SM is still an incomplete theory, some of its most
imminent shortcomings include a missing description of gravity, predicting zero neutrino
masses at a renormalizable level and failing to predict the observed Baryon Asymmetry of
the Universe (BAU) [3]. This has lead to various proposed extensions of the SM.

The matter-antimatter dilemma has long been a mystery of Particle Physics. Assuming
an initially symmetric universe (baryon number B = 0), the observed imbalance must be
attributed to some baryon-generating process. This phenomenon is referred to as baryoge-
nesis, and the necessary conditions for it to occur were first formulated by Andrei Sakharov
in 1967 [4]. One way to realize Sakharov’s conditions and enable baryon-generating pro-
cesses is through a cosmic phase transition characterized by bubble nucleation, referred to
as a First-order Phase Transition (FOPT). Additionally, the FOPT must be of sufficient
strength to avoid the asymmetry being washed out through reverse processes [5]. The EW
phase transition, which describes the transition of the universe from a state that respects
SU(2)W × U(1)Y symmetry to a broken state, is commonly used to explain the BAU. How-
ever, the measurement of the Higgs mass atmh = 125.25 GeV [6] has ruled out a first-order
EW phase transition within the SM alone [7].

Another concern regarding the SM is the origin of its Electroweak Symmetry Breaking
(EWSB). Currently, it is postulated that the Higgs field’s mass parameter µ2

H is negative
at the EW-scale, leading to the EW symmetry spontaneously breaking. However, no un-
derlying reason is given to what drives µ2

H to negative values in the first place. Furthermore,
during this process, the Higgs acquires a VEV v = 246 GeV, but the fundamental reasons
for this particular VEV also remain unknown [8].

One possible way of addressing the latter concern is by incorporating the Quantum Chro-
modynamic (QCD)-like extension of the SM, known as Technicolor (TC). TC is a strongly
coupled SU(NTC)-based gauge theory, where NTC is the number of technicolor charges.
The theory contains N2

TC − 1 ’techni-gluon’ gauge bosons (T-gluons) and Nf non-chiral,
or vector-like, ’techni-quarks’ (T-quarks). One advantage of the vector-like nature of the
T-quarks is that it provides a ”natural” way for them to attain mass without relying
on the Higgs mechanism, giving the theory a certain elegance. At energy scales around
ΛTC ∼ O(1− 100 TeV), TC exhibits a phenomenon called technicolor confinement. In
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complete analogy to QCD, below its confinement scale, the theory predicts bound states,
including T-baryons (combination of T-quarks) and T-mesons (pairs of T-quarks and T-
antiquarks).

The main feature of the theory is its composite Higgs sector, consisting of the H and K
iso-doublets, with the components being T-mesons. Chiral symmetry SU(Nf)L × SU(Nf)R
(R for right and L for left) is broken explicitly at O(1− 100 TeV) by supplying the techni
bound state σ with a non-zero vacuum expectation value (VEV). Since TC phenomenology
is not the primary focus of this thesis, a minimal EW-scale Effective Field Theory (EFT)
inspired by TC will be adapted. In this simplified EFT, we make the assumption that the
Higgs mass term flows towards negative values due to radiative corrections, triggering the
EWSB spontaneously. In a SM-like way, the breaking is characterized by the Higgs field

H acquiring a VEV at ⟨H⟩ = 1√
2

(
0
v

)
with v = 246 GeV.

With the emergence of new BSM theories, a natural question arises concerning the required
values of the Lagrangian parameters for achieving a physically viable theory. Addressing
the BAU requires the presence of strong FOPTs, preferably accompanied by detectable
Gravitational Waves (GWs). These constraints can be characterized by the amount of
energy released by the phase transition and the amplitudes of the resulting GWs, respec-
tively. Naturally, the theory must also satisfy constraints imposed so far by high-energy
colliders such as the LHC and other experimental facilities. The parameter space is there-
fore further constrained when taking into account the impact of collider observables. In
this respect, for the purposes of this thesis, we consider the EW precision observables in-
troduced by Peskin and Takeuchi [9, 10], commonly referred to in literature as the oblique
parameters. These parameters characterize the impact of the new physics in the radiative
corrections of the SM gauge bosons. Additionally, we also take into account the most up-
to date constraints set by direct Higgs searches, including exclusion limits on production
and decay channels [11, 12]. On the theoretical side, tree-level unitarity is incorporated to
the network, which is related to the conservation of probabilities in scattering processes [13].

To the best of our knowledge, there is currently no publicly available framework that ef-
ficiently performs large-scale parameter scans for collider and cosmic constraints. This is
the motivation behind our proposition of constructing a framework that utilizes Artificial
Neural Networks (ANNs) for faster probing of BSM parameter spaces for such constraints.
The objective of the ANN is to suggest which regions of parameter space to scan, in an
attempt to increase the low accuracy associated with random search. Once the framework
is built, it will be applied to the EW-scale EFT, serving as our toy model. The primary
focus of this thesis lies on creating and improving the parameter space scanner, while giv-
ing less attention to phenomenology that is unrelated to the framework’s development.
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The structure of this thesis is as follows. In Sec. 2, the UV-complete TC theory and the
Compose Higgs Model (CHM) within it are formulated, from which we take inspiration
to construct the EW-scale EFT toy model. The theoretical constraints are laid out and
the low-scale theory is implemented using the SARAH Mathematica package [14, 15, 16].
In Sec. 3, the collider constraints and the theory behind them will be covered. This
includes Higgs search exclusion limits from the LHC, LEP and Tevatron experiments, using
HiggsBounds [17, 18, 11] and HiggsSignals [19, 12], as well as constraints imposed by
the Peskin-Takeuchi parameters. Properties such as STU parameters and particle masses,
will be calculated through the use of SPheno [20, 21]. Following, in Sec. 4, the cosmic
constraints are looked into. FOPTs are identified by numerically evaluating the bounce
action, which is done by the CosmoTransitions package [22]. On the other hand, the
thermal effective potential of the theory is constructed via dimensional reduction using
DRalgo [23]. In Sec. 5 the structure of the developed framework is specified. The High-
energy Physics (HEP) packages are tied together into a Python script, and a machine
learning algorithm is defined to scan through the model input parameter space against the
constraints defined above. In Sec. 6, the framework is applied to the toy model and results
are presented. Finally, concluding remarks are made in Sec. 7.
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2 Constructing the Technicolor Model

2.1 Composite Higgs models

A popular method of retaining EWSB while avoiding the introduction of a scalar Higgs
particle into the theory is by extending the SM by a new strongly coupled gauge theory.
This new sector will include a set of new fundamental particles, from which a Higgs bound
state can be constructed with the constraint that its mass and quantum numbers match
the experimentally observed Higgs boson. In addition, the mass-generating description
for SM fermions and bosons must be updated to account for the compositness of the new
model. Such CHMs are introduced as following: The strongly coupled gauge sector and
associated interactions within the new theory are added to the SM Lagrangian (excluding
the SM Higgs boson). The two sectors may then be connected by introducing interaction
terms between them. Schematically, we arrive at [24]

LSM → LSM0 + Ls + Lport,

where LSM is the SM Lagrangian, LSM0 the SM Lagrangian excluding the SM Higgs boson,
Ls belongs to the strongly coupled gauge theory and Lport is the portal between the SM
and the new gauge theory, describing interactions between the two sectors.

For the portal between TC and the SM, a minimalistic approach is taken here, where the
unknown Lport in the UV-limit triggers the SM-like Yukawa interactions of the composite
Higgs sector and elementary SM fermions. Due to the compositeness of the exotic Higgs
boson, at the fundamental level this would require interaction terms between the T-quarks
and the SM quarks, charged leptons and vector bosons. In our simplified description, we
assume that the exotic Higgs sector interacts with the SM in the ordinary SM-like way,
without delving into the associated UV-complete theory phenomenology. The gauge group
of the full model is SU(NTC)TC × SU(3)C × SU(2)W × U(1)Y, where, C is color, W is weak
and Y indicates hypercharge.

Before constructing the chirally symmetric Lagrangian, which is done using a method called
the Linear Sigma Model (LσM), a slight detour is taken into chiral symmetry breaking in
QCD. Although the source of the (explicit) symmetry breaking in QCD is different from
ours, the dynamics are very similar and valuable insight can be gained by looking at the
SM case first.

2.2 Chiral symmetry breaking in QCD

Typically, the flavours are divided into light quarks (u, d and s) and heavy quarks (c, b
and t). In the low-energy QCD limit (≪ mc, where mc is the charm quark mass), the QCD
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Lagrangian may be approximated by its light quark flavours

LQCD =
∑

f=u,d,s

q̄f (i��D −mf )qf −
1

4
Ga
µνGµν

a =

=
∑

f=u,d,s

q̄f,Li��Dqf,L + q̄f,Ri��Dqf,R −mf (q̄f,Lqf,R + q̄f,Rqf,L)−
1

4
Ga
µνGµν

a (2.1)

In the last step the fermionic fields have been split up into their chiral components. Here,
f runs over the light quark flavours, qf is a color triplet and a is an index that runs
over the adjoint representation of SU(3). For simplicity of the presentation we have
omitted the colour indices for the quark fields. The covariant derivative is defined in
the usual way Dµ = ∂µ − igs(λaA

a
µ) where gs is the strong coupling constant, λa are

the Gell-Mann matrices and Aa
µ is the gluon field. The field stress tensor is defined as

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

a
bcA

b
µA

c
ν where f is the SU(3) structure constant. We have also

introduced the Feynman slash as ��A ≡ Aµγµ.

It is straightforward to prove that the above Lagrangian is invariant under the chiral
SU(3)L × SU(3)R transformation

qL → ULqL ,

qR → URqR ,

in the chiral limit mu = md = ms = 0. UL and UR are special unitary 3 × 3 matrices
independent from each other. Although the up, down and strange quarks are not massless,
their relatively small masses still leave the chiral symmetry an approximate symmetry [25].

During spontaneous chiral symmetry breaking, SU(3)L × SU(3)R is broken down to the
flavour SU(3)V group and manifests itself by producing eight Nambu-Goldstone bosons.
One way of breaking the symmetry spontaneously in the QCD chiral limit is via the for-
mation of a non-vanishing flavour-diagonal quark condensate ⟨q̄q⟩. Since chiral symmetry
is not an exact symmetry of the low-scale QCD Lagrangian, the non-invariant mass terms
induce an explicit symmetry breaking on top of the spontaneous one, effectively turning
the massless Goldstone bosons into massive pseudo-Goldstone bosons [26].

2.3 Linear sigma model

The TC theory considered in this thesis relies on the Linear Sigma Model description to
break chiral symmetry explicitly, similarly to QCD producing massive T-mesonic pseudo-
Goldstone bosons. For now, these bosons may be thought of as regular QCD mesons. In
this approach, the source of the explicit symmetry breaking comes from Yukawa T-quark-
meson interactions. Below, we summarize the treatment given in [27] on how to construct
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a chirally symmetric Lagrangian in the two-flavour case using the LσM.

We extend the original massless Lagrangian by adding the fermion-meson interaction terms
via

Lint = −ψ̄LMψR − ψ̄RM
†ψL , (2.2)

where ψ =

(
u
d

)
is the two-flavour fermionic field and M is the superposition of the scalar

σ and pseudo-scalar iso-triplet π as following M = gσσ1 + igπγ
5τiπ

i. Here, gσ and gπ are
real constants, and τi are the Pauli matrices. The following transformation properties must
hold for chiral invariance on Lint

ψL/R → UL/RψL/R , M → ULMU †
R , (2.3)

where UL/R are the SU(2)L/R transformation matrices.

The kinetic terms for the self-conjugate σ and π fields are

LKE =
1

2
∂µσ∂

µσ +
1

2
∂µπ

i∂µπi =
1

4
Tr
(
∂µΣ∂

µΣ†) , (2.4)

where in the last equality, we have set gσ = gπ due to chiral invariance, and used the
following simplifying relation for M = gπΣ:

1

2
Tr(ΣΣ†) =

1

2
Tr
(
[σ + iγ5τiπ

i][σ − iγ5τiπ
i]
)
= σ2 + π2 . (2.5)

Thereby, a SU(2)L × SU(2)R symmetric LσM Lagrangian may be constructed in terms of
Σ as

Lσ = iψ̄γµ∂µψ +
1

4
Tr
(
∂µΣ∂

µΣ†)− 1

4
m2Tr

(
ΣΣ†)− 1

16
λTr
(
(ΣΣ†)2

)
− gπψ̄Σψ . (2.6)

2.4 Technicolor Lagrangian & chiral symmetry breaking

A two-flavour UV-complete TC theory has been the primary focus of [28]. The theory was
extended to three flavours in [29] and its cosmological implications have been investigated
in [30]. While this thesis primarily focuses on developing the analysis for probing BSM
parameter spaces, with the three-flavour-TC inspired low-scale EFT as our toy model, we
still provide a brief overview of the UV-complete LσM-based theory below for the sake of
completeness. The proper phenomenological investigation of the full parameter space of
the high-scale QCD-like TC theory is left for future studies. After this introduction, we
will construct the low-scale EFT. For the readers interested in the details of the original
model, we refer to the papers mentioned above.
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2.4.1 Technicolor Lagrangian

The fundamental TC Lagrangian, which bears a similar form the QCD one, may be written
as [30]:

LTC = −1

4
T η
µνT

µν
η +iQ̄γµ

(
∂µ −

i

2
gWW

A
µ τA − i

2
gTCA

′n
µ τn

)
Q−mQQ̄Q

+ iS̄γµ
(
∂µ −

i

2
g1Bµ −

i

2
gTCA

′n
µ τn

)
S −mSS̄S (2.7)

where A′n
µ represents the T-gluon gauge field, T η

µν is the corresponding field strength tensor,
and S and Q are the SU(NTC = 3) vector-like iso-singlet (YW = 1/2) and iso-doublet
(YW = 0) T-quarks, respectively. Since the vector-like T-quarks’ left- and right-handed
components transform identically under the SU(2)W symmetry group, mass terms are not
disallowed in the symmetry unbroken phase, and so receive ”natural” masses1.

2.4.2 LσM Technicolor Lagrangian

We would now like to formulate the chirally symmetric UV-complete TC Lagrangian using
the LσM. Assuming a three-flavour theory (Nf = 3) with three TC charges (NTC = 3), the
T-quarks and T-antiquarks form the SU(3)L/R triplets

QL,R =

UD
S


L,R

, Q̄L,R =
(
Ū D̄ S̄

)
L,R

,

with the transformation properties

QL →
(
1 +

i

2
ζaλa

)
QL, QR →

(
1 +

i

2
ξaλa

)
QR, (2.8)

where λa

2
are the group generators of SU(3)L and SU(3)R.

In analogy to QCD, the TC spectrum consists of the following pseudo-scalar and scalar
T-mesons (T-quark and T-antiquark pairs), respectively

π+, π0, π−, K+, K0, K̄0, K−, η, η′,

a+, a0, a−, H+, H0, H̄0, H−, f, σ.

The first eight T-mesons in the top-row correspond to the expected eight pseudo-Nambu-
Goldstone bosons from the chiral symmetry SU(3)L × SU(3)R breaking into the T-flavour

1That is, they do not rely on the Higgs mechanism to receive mass, unlike the SM quarks.

7



SU(3)V group. The realization of this will become apparent during the discussion of chiral
symmetry breaking. Analogously to the two-flavour case, the above listed fields form a bi-
fundamental representation of the SU(3)L × SU(3)R group when placed into the multiplet
Σ = λa

2
σa − iλa

2
πa, where σa are the scalar fields and πa are pseudo-scalar fields [29, 31]:

Σ =
1√
2


1√
2
a0 + 1√

6
f + 1√

3
σ a+ H+

a− − 1√
2
a0 + 1√

6
f + 1√

3
σ H0

H− H̄0 −
√

2
3
f + 1√

3
σ



− i√
2


1√
2
π0 + 1√

6
η + 1√

3
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η + 1√

3
η′ K0

K− K̄0 −
√

2
3
η + 1√

3
η′

 ,

with the transformation property

Σi
α → Σi

α +
i

2
ζaλ

i
kΣ

k
α − i

2
ξaλ

β
αΣ

i
β. (2.9)

The UV-complete LσM TC Lagrangian worked out in [29] may now be written down as

Lσ =iQ̄γµ∂µQ+ ∂µΣ
†∂µΣ + µ2Tr

(
ΣΣ†)− λ1

(
Tr
(
Σ†Σ

))2 − 3λ2Tr
(
Σ†ΣΣ†Σ

)
+ 2

√
6Λ3Re(detΣ)−

√
6κ(Q̄LΣQR + Q̄RΣ

†QL). (2.10)

The first two terms are the kinetic terms, while the remaining belong to the potential.
The last term consists of the T-quark-meson interactions, corresponding to the Yukawa
interactions discussed in Sec. 2.3, from which a linear source term is formed when evaluating
the T-quark vacuum expectation value. The presence of the this linear term (in Σ) makes
it possible to generate a non-trivial VEV in the σ meson field through the minimization of
the meson potential2, breaking chiral symmetry explicitly. Knowing that only the σ field
will receive a VEV (apart from the Higgs field during EWSB), we go ahead and simplify
the last term in the Lagrangian

Lσ =iQ̄γµ∂µQ+ ∂µΣ
†∂µΣ + µ2Tr

(
ΣΣ†)− λ1

(
Tr
(
Σ†Σ

))2 − 3λ2Tr
(
Σ†ΣΣ†Σ

)
+ 2

√
6Λ3Re(detΣ)− uθ, (2.11)

with
θ = κ⟨0|ŪLUR + ŪRUL + D̄LDR + D̄RDL + S̄LSR + S̄RSL|0⟩. (2.12)

As will become evident in the following section, the θ term is responsible for the masses
acquired by the pseudo-Goldstone bosons of the chiral symmetry breaking.

2The linear term pushes the global minimum of the potential away from the origin.
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2.4.3 Chiral symmetry breaking

Chiral symmetry is broken by giving σ a non-zero VEV ⟨σ⟩ = u in the LσM Lagrangian
in Eq. (2.11). Keeping the other fields’ VEVs at zero, we find the vacuum potential

⟨V ⟩C = −µ
2

2
u2 +

(
λ1
4

+
λ2
4

)
u4 − Λ3

3
u3 + uθ, (2.13)

Critical points of the potential are found via:

dV

dϕi

∣∣∣∣
⟨σ⟩=u

= 0. (2.14)

where i runs over all fields. These are commonly referred to as the tadpole equations.
The only expression that is not automatically satisfied is the derivative with respect to σ,
constraining µ2 in the following way

µ2 = (λ1 + λ2)u
2 − Λ3u+

θ

u
. (2.15)

We must further ensure that the critical point is a minimum, what we refer to as local
stability in this paper. It is well known that a critical point of a multi-variable function
can be classified as a minimum if its Hessian, evaluated at that critical point, is positive
definite. Equivalently, the point is a minimum if all eigenvalues of the Hessian, that is the
squared masses, are positive. In our case, this condition is satisfied by employing a pa-
rameter space inversion where Lagrangian parameters are traded for the (squared) masses,
making the latter free parameters. It is important to note, however, that while positive
definiteness ensures we are in a local minimum, it does not guarantee a global one. The
condition for being in a global minimum is referred to as the vacuum stability condition
and will be discussed in more detail in Sec. 2.6.

The emerging particle masses in the Chiral broken phase, referred to as mass scales here,
are found by computing the 18 × 18 Hessian mass-squared matrix and evaluating it at
the given VEV configuration, that is M2

ij = ∂2V
∂ϕi∂ϕj

∣∣
⟨σ⟩=u

. In general, a change of basis

to the mass eigenstates by diagonalizing the resulting Hessian is required, however, the
structure of Σ has been already chosen a priori to give rise to a mass-diagonal mass form
for the components of Σ. Four unique mass scales are found, two for the pseudo-scalar
(PS) T-mesons, and two for the scalar (S) T-mesons

M2
PS1(0) :=M2

π(0) =M2
K(0) =M2

η(0) = −θ
u
, (2.16)

M2
PS2(0) :=M2

η′(0) = 3Λ3u−
θ

u
, (2.17)

M2
S1(0) :=M2

a(0) =M2
H(0) =M2

f(0) = 2λ2u
2 + 2Λ3u−

θ

u
, (2.18)

M2
S2(0) :=M2

σ(0) = 2
(
λ1 + λ2

)
u2 − Λ3u−

θ

u
, (2.19)
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where the zeros in the notation emphasise the point that the above mass scales are different
from the physical masses appearing after EWSB. In the expression forM2

PS1(0), we see that
the masses for the pseudo-Goldstone bosons of chiral symmetry breaking indeed arise from
the explicit symmetry breaking term θ. The above relations can be inverted to express the
remaining Lagrangian parameters θ, λ1, λ2,Λ3 in terms of the mass scales

θ(h) = −u M2
PS1(0) (2.20)

λ
(h)
1 = − 1

2u2
(M2

PS1(0) −M2
PS2(0) +M2

S1(0) −M2
S2(0)) (2.21)

λ
(h)
2 = − 1

6u2
(M2

PS1(0) + 2M2
PS2(0) − 3M2

S1(0)) (2.22)

Λ
(h)
3 = − 1

3u
(M2

PS1(0) −M2
PS2(0)) (2.23)

where the (h) superscripts have been added to indicate that these are Lagrangian parame-
ters belonging to the high-scale theory. After EWSB, the fields will receive unique physical
masses, split around the original mass scales M2

PS1(0), M
2
PS2(0), M

2
S1(0) and M2

S2(0). The

high-scale Lagrangian parameters θ(h), λ
(h)
1 , λ

(h)
2 and Λ

(h)
3 therefore give us control over

which fields become relevant modes at lower scales, assuming the physical masses do not
flow far away from their respective mass scales due to radiative corrections.

2.5 Low scale EFT limit and EW symmetry breaking

2.5.1 EW scale Technicolor Lagrangian

With the UV-limit TC introduction out of the way, we may now proceed to construct our
toy model. The construction of the full EW-scale TC Lagrangian, which the toy model
is based on, effectively amounts to extending the chirally symmetric LσM Lagrangian by
incorporating chiral symmetry-violating interactions that still respect EW symmetry.

The SU(2)W×U(1)Y invariants are formed by considering the following quantum numbers:
The Higgs fields fall into the fundamental SU(2)W representation

H =

(
H+

H0

)
, K =

(
K+

K0

)
,

carrying hypercharge YH = YK = 1/2. The a and π fields transform under the adjoint
representation, which can be represented by traceless 2x2 matrices

π =

(
1√
2
π0 π−

π+ − 1√
2
π0

)
, a =

(
1√
2
a0 a−

a+ − 1√
2
a0

)
,

The triplets carry hypercharge Yπ = Ya = 0. The remaining fields η, η′, f and σ have zero
hypercharge and are SU(2)W singlets.
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Recalling that we are able to create a hierarchy of physcial masses by using the relations
between the high-scale Lagrangian parameters and the mass scales in Eqs. (2.20) to (2.23),
we may reduce the number of relevant modes at the EW scale. We choose to do a case
study of high-scale parameters θh, λh1, λ

h
2 and Λh

3 that imply M2
PS1 ≪ M2

PS2,M
2
S1,M

2
S2.

Setting M2
LS ∼M2

PS1 and M2
HS ∼M2

PS2,M
2
S1,M

2
S2, this would entail the following

θ(h) ∼ u M2
LS, λ

(h)
1 ∼ 1

2u2
(M2

HS −M2
LS), (2.24)

λ
(h)
2 ∼ 1

6u2
(M2

HS −M2
LS), Λ

(h)
3 ∼ 1

3u
(M2

HS −M2
LS). (2.25)

The physical masses will be distributed around their respective mass scales up to RG
effects. Assuming the RG effects to be small, only the fields associated with the first set of
scalar T-mesons (H, a, f) remain relevant degrees of freedom at the EW scale, while the
remaining modes can safely be integrated out, resulting in our low-scale EFT limit

VLS =µ2
Sf

2 + µ2
TTr(aa) + µ2

HH†H+

Λ1f
3 + Λ2fTr(aa) + Λ3fH†H + Λ4H†aH+

λ1f
4 + λ2f

2Tr(aa) + λ3f
2H†H + λ4fH†aH+

λ5(H†H)2 + λ6H†aaH + λ7Tr(aaaa), (2.26)

where we additionally require that µ2
H flows towards negative values due to the RG (while

µ2
S and µ2

T are kept positive), causing the Higgs to spontaneously break EW symmetry.
The assumption that the RG flow is small, allowing the physical masses to remain close to
their original mass scales, while still driving µ2

H towards negative values, is a simplification
done for convenience, albeit a crude one. This assumption does not explicitly enter our
analysis, but is rather used to draw a connection between our toy model and the original
UV-complete TC theory. To realize this assumption, one must compute the RG equations
and select the appropriate parameters that result in the scenario outlined above. This is
planned for future work. In our toy model, we will assume all couplings to be real.

This low-scale Lagrangian will be our primary focus in the development of the analysis and
will be treated as a stand-alone theory. This amounts to treating the low-scale couplings
independent from the high-scale ones, giving us (so far) 14 free couplings. In the origi-
nal UV-complete Lagrangian Eq. (2.10), several interactions shared the same couplings.
However, these couplings will have different RG flows when pushed down to the EW-scale
and since RG equations are omitted here, we decide to treat the low-scale couplings in an
independent manner in this first analysis. Information regarding the relation between the
couplings is lost this way. A direct drawback is the increased dimensionality of the input
space to the neural network, generally making training of the ANN more complicated. Be-
fore matching, VLS may therefore be seen as a SU(2)W Singlet-Triplet Extended Standard
Model (STESM) in which only the Higgs receives a VEV. The possibility of giving VEVs
to the triplet and singlet in addition to the Higgs is discussed in Sec. 2.6.2. It should be
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noted that although VLS is treated as a toy model here, the STESM is still a phenomeno-
logically interesting model despite its simplicity. In particular, there exist dark matter
studies where the singlet and triplet are set to be charged under a Z2 symmetry [32].

2.5.2 Electroweak symmetry breaking

Similarly to the SM, EWSB is induced by supplying the H0 with the non-zero vacuum
expectation value ⟨H0⟩ = 1√

2
v with v = 246 GeV. Inserting the Higgs VEV into VLS, while

keeping the other fields’ VEVS at zero, gives us the following simple EW vacuum potential

⟨VLS⟩ =
µ2
Hv

2

2
+
λ5v

4

4
(2.27)

Out of the eight fields present in the low-scale Lagrangian, three yield non-trivial tadpole
equations, giving us the constraints

Λ3 = 0, Λ4 = 0, µ2
H = −λ5v2 (2.28)

Interestingly, two of the interactions are disallowed by tadpole equations, even though
they are allowed by symmetry. Considering the potential as a function of the H, a and
f field values, one can see that for certain non-zero Λ3 and Λ4, there will not exist any
critical points along the vanishing expectation values ⟨a⟩ = ⟨f⟩ = 0. Instead, they are
pushed along the a and f axes, but since we earlier assumed that the triplet and singlet
fields do not acquire non-zero VEVs, we cannot ”reach” any potential minima in that case.
Therefore, interactions belonging to Λ3 and Λ4 are allowed by tadpole equations only if
one in addition to the Higgs, allows for non-zero VEVs for the triplet and/or singlet.

The emerging particle masses after the EWSB are found by computing the 8× 8 Hessian
matrix. For later convenience, the procedure is performed in the complex weak basis:
M2

ij =
∂2VLS

∂ϕi∂ϕ
†
j

∣∣
ϕi=⟨ϕi⟩,ϕj=⟨ϕj⟩

, where ϕi here are complex weak eigenstates of the fields. Be-

low, the Hessian is separated for charged and neutral fields.

Starting with the charged states a± and H±, their Hessian mass-squared matrix is auto-
matically diagonal

M2
C =

(
2µ2

T + λ6v2

2
0

0 0

)
, (2.29)

giving us a charged massive and massless boson each

M2
C[1, 1] = 2µ2

T +
λ6v

2

2
(2.30)

M2
C[2, 2] = 0 (2.31)
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Considering the neutral fields a0, H0, H̄0 and f , their mass-squared matrix is

M̃2
N =


2µ2

T + λ6v2

2
0 0 −λ4v2

2
√
2

0 λ5v
2 λ5v

2 0
0 λ5v

2 λ5v
2 0

−λ4v2

2
√
2

0 0 2µ2
S + λ3v

2

 , (2.32)

whose eigenvalues are

M2
N[1, 1] = 0, (2.33)

M2
N[2, 2] = 2λ5v

2, (2.34)

M2
N[3, 3] = µ2

S + µ2
T +

1

4
(λ6 + 2λ3)v

2

−
√
16(µ2

S − µ2
T)

2 − 8(λ6 − 2λ3)(µ2
S − µ2

T)v
2 +

(
(λ6 − 2λ3)

2 + 2λ24
)
v4
)
, (2.35)

M2
N[4, 4] = µ2

S + µ2
T +

1

4
(λ6 + 2λ3)v

2

+
√
16(µ2

S − µ2
T)

2 − 8(λ6 − 2λ3)(µ2
S − µ2

T)v
2 +

(
(λ6 − 2λ3)

2 + 2λ24
)
v4
)
, (2.36)

predicting a third massless boson, in addition to three massive neutrally charged scalars.

The three massless bosons found above correspond to the three EW Goldstone bosons of
the SM and, similarly, they may be interpreted as the longitudinal polarizations of the
vector bosons W± and Z. Additionally, M2

N[2, 2] should be associated with the SM Higgs
boson and its experimentally observed mass.

2.6 Theoretical constraints

2.6.1 Local stability

As was discussed in Sec. 2.4.3, local stability is automatically satisfied by a non-imaginary
mass spectrum. Therefore, to ensure local stability in our EW-scale theory, we use the
relations (2.30) and (2.34)-(2.36) to trade four Lagrangian input parameters for the four
unique (non-Goldstone) physical mass squares M2

C[1, 1], M
2
N[2, 2], M

2
N[3, 3] and M2

N[4, 4].
From now on, these masses are denoted as mC, mh, mN1 and mN2 respectively, with the
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Higgs mass fixed at mh = 125.25 GeV [6]. The inversion relation is

λ4 =
23/2

v2

√
m2

C −m2
N1

√
m2

N2
−m2

C , (2.37)

λ5 =
m2

h

2v2
, (2.38)

µ2
T =

1

4
(2m2

C − λ6v
2) , (2.39)

µ2
S =

1

2
(m2

N1
+m2

N2
−m2

C − λ3v
2) , (2.40)

The λ4 quartic coupling will only be real when m2
N2
> m2

C > m2
N1

or m2
N2
< m2

C < m2
N1
.

Additionally, we set m2
C >

λ6v2

2
and m2

N1
+m2

N2
> m2

C+λ3v
2 so that the triplet and singlet

keep their positive mass terms.

To summarize, in the stand-alone STESM theory given by Eq. (2.26), there were initially
14 independent couplings. Three of these couplings (Λ3, Λ4 and µ2

H) were fixed by solving
the tadpole equations. Thereafter, by a simple inversion procedure, the four unique (non-
Goldstone) masses (mC, mh, mN1 and mN2) were traded for four Lagrangian parameters
(λ4, λ5, µ

2
T and µ2

S). One of these physical masses is the SM Higgs boson, and so is fixed
at the measured Higgs mass. In the end, we are left with 10 degrees of freedom, namely
Λ1, Λ2, λi, mC, mN1 and mN2 for i = 1, 2, 3, 6, 7, serving as input to our neural network.

2.6.2 Vacuum stability

Although we can locate a local minimum (along ⟨a⟩ = ⟨f⟩ = 0) using local stability, it does
not guarantee that the minimum is a global one. Being in a global minimum ensures that
there is no possibility for the system to quantum mechanically tunnel to a configuration
with lower energy. In certain cases for the STESM theory however, the lower extremum is
pushed along the a and f axes, making it impossible to reach the global minimum while
respecting the initial ⟨a⟩ = ⟨f⟩ = 0 assumption. This leads us to the topic of vacua
configuration, which involves assigning appropriate non-zero VEVs to the relevant fields to
ensure the attainment of the global minimum. In this thesis however, our focus is primarily
on establishing local stability. In future investigations, a more thorough exploration of the
vacua configuration that leads to the global minimum will be warranted.

2.6.3 Boundedness from below

A prerequisite for the existence of a global minimum in the potential is that it remains
bounded from below, meaning it does not tend to minus infinity in any arbitrary direction
|Φ| = |(H, a, f)| → ∞ [33]. However, in the context of effective field theories, which are
only defined up to certain matching scales, fields are restricted to finite values. In such
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cases, the boundedness from below condition may be reinterpreted as the potential not
taking on large negative values when the field values approach the matching scale in arbi-
trary directions.

Since quartic interactions dominate at large field values, their corresponding couplings are
the most relevant. We impose the requirement that most quartic couplings belonging to
interactions containing only bilinears must be positive, since these terms will then always
have a positive contribution to the potential. We leave λ4, whose interaction can take on
both signs, and λ6, as the only unconstrained quartic couplings. The latter, which consists
of only bilinears, is left unconstrained to make it compatible with our collider constraints
later (see Sec. 6.1). This set of constraints will not always yield a potential that is bounded
from below (e.g., when λ4fH†aH is negative and large in magnitude, while the remaining
quartic couplings are close to zero), but will still overconstrain the parameter space in many
cases. Given the highly approximate nature of these constraints, they are not intended to
be used as part of the ANN training process. Instead, we will solely consider them at the
end to assess if the obtained physical points approximately satisfy the boundedness from
below condition.

2.6.4 Tree-level unitarity

Unitarity is a fundamental requirement that the scattering-matrix (S-matrix) must be
unitary, meaning SS† = 1. The S-matrix allows for the computation of probabilities asso-
ciated with the production of certain final states, given some initial states and scattering
processes [34]. Naturally, the probabilities are required to be conserved. These constraints
are typically expressed via the eigenvalues of the S-matrix. At tree-level, unitarity simply
requires that the scattering matrix eigenvalues be smaller than the unitarity limit [13, 35].

2.7 Model implementation using SARAH and SPheno

The EW-scale STESM Lagrangian in Eq. (2.26) was implemented into the Mathematica
package SARAH-4.15.0 [14, 15, 16]. The model implementation mainly involves defining
the fields’ representations under U(1)Y × SU(2)W × SU(3)C, defining the Lagrangian and
specifying which fields mix. The TC gauge symmetry was not added to the model imple-
mentation since at the EW scale ΛEW ∼ O(100 GeV), the intrinsic structure of the TC
bound states no longer remains prominent. The T-bound states may therefore be treated
as fundamental particles. The implemented model was then exported to the FORTRAN pack-
age SPheno-4.0.5 [20, 21]. Given numerical input for the Lagrangian parameters, SPheno
was used to numerically compute the tree-level masses and tree-level unitarity constraints
considering two-particle scattering.
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3 Collider Constraints

3.1 Higgs physics

The Higgs sector plays a crucial role in addressing some of the limitations and challenges of
the SM. To overcome those challenges, different extensions of the Higgs sector are routinely
proposed. Therefore, constraining new theories via the Higgs sector by comparing predic-
tions to experiments, becomes a valuable tool. As part of the framework developed in this
thesis, constraints on Higgs physics are determined by comparing our model’s prediction to
current experimental exclusion limits on production and decay channels related to the pre-
dicted Higgs boson(s). For these limits, we apply the FORTRAN codes HiggsBounds-5.10.2
[17, 18, 11] and HiggsSignals-2.6.2 [19, 12].

Since many new theories contain enlarged Higgs sectors, often predicting multiple massive
Higgs bosons, non-observation measurements play a crucial role in constraining parameter
spaces. Using published data from LEP, the Tevatron and the LHC, HiggsBounds collects
exclusion limits on the upper limits of cross-sections for specific ”signal topologies” based
on non-observation Higgs searches. A signal topology refers to a particular Higgs produc-
tion and decay process, e.g. e+e− → hiZ → bb̄Z. The exclusion limits are expressed at
95% confidence level (C.L.). For data from the LEP, exclusion limits are mainly applied
onto Higgsstrahlung (e+e− → hZ) and double Higgs production (e+e− → hh) processes
with final decay states b̄b and τ+τ−. For the LHC and Tevatron, HiggsBounds consid-
ers gluon fusion (gg → h), Higgsstrahlung (qq̄′ → hV , V = Z,W±), vector boson fusion
(qq′ → hq′′q′′′) and Higgs production associated with heavy quarks (gg → tt̄h, bb̄h) [11].

To assess the compatibility between theory and experiment for a given (negative) Higgs
search, HiggsBounds computes the associated product of the cross-section (σ) and branch-
ing ratio (BR) denoted as Qobs(Y ) = σobs(Y ) × BR(Y ). Here, Y represents some signal
topology from LEP, the Tevatron or the LHC. The upper limit of this product, dictated
by the exclusion limits mentioned above, is denoted by Q̄obs. Thus, in the scenario of N
Higgs bosons predicted by the theory, HiggsBounds selects the most statistically sensitive
channel Y ′

i for each boson, and requires that

Qmodel(Y
′
i )

Q̄obs(Y ′
i )

< 1, (3.1)

for i = 1, 2, ..., N . Here, Qmodel represents the cross-section branching ratio product pre-
dicted by the model under consideration. If Eq. (3.1) is not satisfied by all Higgs bosons
in the model, it means a signal has been overestimated by the model, and the associated
parameter space point can be excluded at 95% C.L.

HiggsSignals on the other hand, compares the signal strengths and masses of predicted
peaks to the observed ones (i.e positive Higgs searches). The signal strength measure-
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ments mainly correspond to Higgs decays to vector bosons (h → W+W− → ℓ+νℓ′−ν ′,
h → ZZ → ℓ+ℓ−ℓ′+ℓ′−), photons (h → γγ), tau leptons (h → τ+τ−) and bottom quarks
(h → bb̄) [36]. The package offers two complementary methods to estimate the compati-
bility, the peak-centered and mass-centered methods. In the peak-centered measure, the
signal strength measurements predicted by the model and of published data is compared
at the observed Higgs mass, while in the mass-centered method the rates are compared
at the predicted Higgs mass(es). Both of these methods supply χ2 estimates to quantify
the level of agreement between the exotic Higgs sector predictions and collider experiment
observations, which can be translated into a p-value. We set the p-value cut-off at p = 0.05.

Both HiggsBounds and HiggsSignals share similar inputs requirements. The inputs
mainly consist of specifying the Higgs boson masses, Higgs branching ratios, Higgs to-
tal decay widths, as well as the couplings of the Higgs bosons to the SM fermions and
bosons. The full list of inputs can be found at [18]. The Higgs boson properties (and
others) required by the above packages can be computed by SPheno.

3.2 Oblique parameters

A convenient way of constraining electroweak radiative corrections of new physics is via
the STU formalism of Peskin and Takeuchi. The formalism consists of three parameters S,
T and U , which capture corrections to the gauge boson polarization functions. This type
of correction is known as an oblique correction. Oblique corrections are only one of three
types of EW radiative corrections, but dominate in the following scenario [9, 10]:

I The EW gauge group consists of SU(2)L × U(1)Y with the only associated gauge
bosons being the photon γ and the weak bosons W± and Z.

II Coupling between new physics and light fermions is highly suppressed.

III The energy scale of the new physics Mnew is large compared to the EW scale.

The above conditions are satisfied by the TC theory considered here. First, it leaves the
electroweak group structure unchanged. Second, in our minimalistic approach, only the
(TC) Higgs interacts with the SM sector, and identically to the SM Higgs boson, the exotic
Higgs-SM interaction strength is proportional to the particle mass. Subsequently, the cou-
pling between TC and the SM is small for light fermions. Finally, the new physics appears
at O(1− 100 TeV) ≫ ΛEW, satisfying the last criteria.
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The STU parameters take on the following expressions [9]:

αS = 4s2wc
2
w

[
Π′

ZZ(0)−
c2w − s2w
swcw

Π′
Zγ(0)− Π′

γγ(0)

]
, (3.2a)

αT =
ΠWW (0)

M2
W

− ΠZZ

M2
Z

, (3.2b)

αU = 4s2w
[
Π′

WW (0)− c2wΠ
′
ZZ(0)− 2swcwΠ

′
Zγ(0)− s2wΠ

′
γγ(0)

]
, (3.2c)

where α is the fine structure constant, Π(q2) is the vacuum polarization function, MW and
MZ are the W± and Z boson masses, and sw and cw are the sine and cosine of the weak
mixing angle.

The parameters are constructed in such a way that they are zero in the SM, and deviations
in their values indicates new physics contributions. Generally, the U parameter will be
comparably much smaller than S and T . We may therefore fix U = 0, yielding following
S and T limits [6]:

S = −0.01± 0.07, (3.3a)

T = 0.04± 0.06, (3.3b)

at 68% C.L. A simultaneous fit of S and T (with U = 0) at 90% C.L. corresponds to the
following set of points forming an ellipse on the ST-plane [37]

EST =

S, T
∣∣∣∣
(
S̃ cos(θ) + T̃ sin(θ)

a

)2

+

(
T̃ cos(θ)− S̃ sin(θ)

b

)2

≤ 1

, (3.4)

for S̃ = S, T̃ = T − 0.05, θ = 0.595, a = 0.1458 and b = 0.0437. The computation of the
oblique parameters is done by SPheno. The points are then be checked against the ellipse
defined in Eq. (3.4).
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4 Cosmic constraints

Cosmic phase transitions, the universe transitioning between two vacuum states driven by a
change in the thermodynamic properties of the system, such as temperature, are of central
interest in the study of cosmic implications of BSM theories. The phases are characterized
by the symmetries that the space inside them respects. The type of transition between the
phases can be classified into two categories; first- and second-order phase transitions. The
transitions can be described by an order parameter, typically zero in the initial phase, and
non-zero in the final phase [38].

If the transition between two ground states is a continuous one, that is, the order parameter
is a well-behaved function of temperature (or some other thermodynamic observable), the
transition is said to be of the second order. On the other hand, if the ground states
co-exist at some temperature with a barrier separating them, the system must undergo
Quantum-mechanical tunnelling from the local (metastable) minimum to the global (stable)
minimum. This corresponds to the order parameter abruptly (discontinuously) changing
value. Both scenarios have been plotted in Fig. 1 (left and middle). A point in the universe
tunnelling between two minima can be seen as the formation (nucleation) of a bubble of
the symmetry breaking phase, or ”true vacuum”, surrounded by the symmetry respecting
phase, or ”false vacuum”. The bubbles, and therein the true vacuum, will continue to
expand into the false vacuum, until the entire universe is filled with the symmetry broken
phase. The bubble nucleation process is depicted in Fig. 1 (right). Here, we are disregarding
strong supercooling effects, that is, the expansion of the universe slowing down the phase
transition, and in some cases, even prohibiting it from completing. Hence, we work in the
fast phase transition approximation [38, 39].

Figure 1: An illustration of the behaviour of the order parameter (OP ) as a function of
temperature T for second- (left) and first-order (middle) phase transitions. On the right,
bubble nucleation (for a first-order phase transition) is demonstrated.

The objective of this section is two-fold. First, we will look into a formalism for describing
the behaviour of quantum systems at finite temperature. For this task we use dimensional
reduction, described in Sec. 4.1. Once the finite-temperature EFT is constructed, an in-
vestigation of its cosmic implications can be performed, covered in Sec. 4.2. The processes
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discussed above source GWs, potentially detectable by future planned GW observatories
such as LISA [40], DECIGO [41] and BBO [42]. The features we are interested in are
strong FOPTs that produce GWs within the detecting capabilities of the GW observato-
ries mentioned above.

4.1 Dimensional reduction

Dimensional reduction involves describing high-temperature effects with a purely bosonic
3D EFT, derived from the original 4D Lagrangian. This approach avoids the non-perturbative
effects originating from massless vector bosons. Perturbation theory is still commonly used
as an approximation though. However, it has been shown that it exhibits slow convergence
and suffers from large theoretical uncertainties stemming from a strong dependence on the
renormalization scale [43].

4.1.1 Superheavy, heavy and light modes

There are three energy scales which are of particular importance in dimensional reduction.
For demonstration purposes, we look at a generic theory containing a gauge field Aµ, scalar
field ϕ and a fermionic field ψ. Its Lagrangian is

L = −1

4
F µνFµν + (Dµϕ)†(Dµϕ) + ψ̄γµDµψ − V (ϕ)− gYψ̄ϕψ + δL, (4.1)

where gY and λ are the Yukawa and scalar couplings, respectively, F µν is the field-strength
tensor, Dµ is the covariant derivative, V (ϕ) is the scalar field potential

V (ϕ) = m2
Sϕ

†ϕ+ λ
(
ϕ†ϕ
)2

(4.2)

and δL are the counterterms. The bosons and fermions are the Matsubara fields

ϕ(x, τ) =
∞∑

n=−∞

ϕn(x) exp
(
iωb

nτ
)
, (4.3)

ψ(x, τ) =
∞∑

n=−∞

ψn(x) exp
(
iωf

nτ
)
, (4.4)

where τ is the imaginary time variable. The discrete frequencies ωb
n = 2nπT and ωf

n =
(2n+ 1)πT can be interpreted as the 3D tree-level masses for the bosonic and fermionic
modes respectively

The magnitude of the bosonic and fermionic masses after thermal corrections lie in three
scales: the superheavy ∼ πT , heavy ∼ gT and light ∼ g2T scales, with g as the gauge
coupling of the theory. The 3D masses of the non-static (n ̸= 0) bosonic and all (any n)
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fermionic modes lie in the πT scale, i.e are superheavy. For the static bosonic mode, the
effective mass after one-loop thermal corrections can generally be written as [43]:

m2
eff(T ) = γT 2 +m2

tree, (4.5)

with γ ∼ g2. Obviously gauge fields have m2
tree = 0, but the temporal components get a

non-zero correction γ ̸= 0. Hence, the spatial Ai and temporal A0 gauge components are
light and heavy respectively at one-loop level. The scalar fields are heavy if m2

tree ̸= −γT 2

(⇒ m2
eff ∼ (gT )2), or light if m2

tree ∼ −γT 2 (⇒ m2
eff ∼ (g2T )).

4.1.2 Three-dimensional effective field theories

There are two levels of dimensional reduction. In the first, the EFT is a theory of heavy
and light modes, with the superheavy modes integrated out. In the second, only light
modes are kept [43].

Removing all superheavy modes from Eq. (4.1), we get the 3D EFT of heavy and light
modes

L = −1

4
F ijFij +

(
Diϕ

)†
(Diϕ) +

1

2
(DiA0)(DiA

0)− V3(ϕ,A
0) + δL, (4.6)

with

V3(ϕ,A0) = m2ϕ†ϕ+ λ3
(
ϕ†ϕ
)2

+ h3ϕ
†ϕA2

0 +
1

2
m2

DA
2
0 +

1

4
λAA

4
0. (4.7)

Here, g3 is the gauge coupling with dimension GeV1/2, λ3 is a scalar coupling with di-
mension GeV and the temporal gauge component A0 has received a mass term mD ∼ gT .
Since all modes in the range of πT have been integrated out, this EFT is only valid up to
momenta k ∼ gT . We additionally require k ≪ T for the dimensional reduction to remain
valid.

Further removing all heavy modes, we get the 3D EFT of only the light modes

L = −1

4
F ijFij +

(
Diϕ

)†
(Diϕ)− V3(ϕ) + δL, (4.8)

with
V3(ϕ) = m2

3ϕ
†ϕ+ λ̄3

(
ϕ†ϕ
)2
, (4.9)

where only the light scalar fields (m2
tree ∼ −γT 2) should be included.

4.1.3 Matching

Dimensional reduction simply requires us to write down the most general 3D Lagrangian
containing the relevant fields and fixing the 3D theory couplings by matching the 2-, 3- and

21



Figure 2: Examples of Feynman diagrams contributing to mass coupling corrections via
the 2-point correlation function. The scalar field is denoted by a black line, fermionic field
by a directed black line and the gauge field by a wiggly line.

4-point Green’s functions of the 3D and underlying 4D theories. To match the dimensions
between the n-point Green’s functions, the 3D correlation function should be scaled by
T

n
2
−1 [43]. As an example, consider the 2-point correlation function(

δCT +m2
S +Π(k2)

)
4D

=
(
δ3,CT +m2

3

)
3D
, (4.10)

where Π(k2) is the self-energy, containing all diagrams that contribute to the 2-point cor-
relation function. The δCT are counter terms to cancel divergences from the loop diagrams.
For our simple Lagrangian in Eq. (4.1), examples of diagrams contributing to the 2-point
correction are depicted in Fig. 2. Once the self-energy has been found, the 3D mass cou-
pling m2

3 can be found in terms of the equivalent 4D coupling m2
S. Similarly, the 3- and

4-point correlation functions fix the cubic and quartic couplings of the 3D theory. These
techniques are applied using the Mathematica package DRalgo-1.0.2 [23], allowing us to
calculate thermal masses at two-loop level and resummation of couplings at one-loop level.
For more details on DRalgo′s implementation of dimensional reduction, we refer the reader
to the manual [23].

4.1.4 Beta functions

The beta functions, also computed by DRalgo, capture the effects of the thermal RG flows
of the couplings and are defined as the differential with respect to the log of the RG-scale
µ̄, with µ̄ = πT . The beta functions for the 4D theory can be obtained by imposing the
condition that the renormalized 4D couplings remain independent of µ̄, which implies that
their beta functions vanish. Once expressions for the beta functions are found, they provide
insight on the relevance of the associated operator (interaction) at different temperatures.
In the case where an operator is deemed irrelevant at a certain temperate, that interaction
may be omitted from that finite-temperature EFT [44].

4.2 Gravitational waves

We now turn to the investigation of the GW signature of the finite-temperature EFT. First,
we cover some quantities relevant for GW computations, including the three-dimension
Euclidean action, the phase transition energy budget and the phase transition (inverse)
duration.
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4.2.1 Euclidean action

The three-dimensional Euclidean action S3 makes its first appearance in the decay rate of
the false vacuum as a function of time t, defined as

Γ(t) = A(t) exp (−S3(t)/T ), (4.11)

where S3 and the pre-factor A are given by

S3(T ) = 4π

∫ ∞

0

dr r2

(
1

2

(
dϕ

dr

)2

+ Veff(ϕ, T )

)
, (4.12)

A(T ) = T 4

(
S3(T )

2πT

)3/2

, (4.13)

with r as the spherical radial coordinate and Veff is the finite-temperature EFT [39]. Here,
the effective potential is assumed to be four-dimensional. However, the finite-temperature
EFT from dimensional reduction lives in three dimensions and can be related to the four-
dimensional one by Veff(ϕ, T ) = T · V 3D

eff (ϕ/
√
T ) [45]. The expression for ϕ(r) can be found

by solving the equation of motion

d2ϕ(r)

dr2
+

2

r

dϕ(r)

dr
=
∂Veff
∂ϕ

. (4.14)

The boundary conditions require false vacuum outside of the bubble ϕ(r)
r→∞
= ϕF and a

non-singular origin dϕ(r)
dr

∣∣
r=0

= 0. The solution to Eq. (4.14) is commonly referred to as
the bounce solution [22, 39].

The reader should observe that time t and temperature T variables were used interchange-
ably in Eq. (4.11)-(4.13). This is due to the relation derived in [46]

dT

dt
= −H(T )T, (4.15)

where the Hubble parameter H(T ) is defined by

H(T ) =
T 2

1.66
√
g∗
MPl (4.16)

Above, the Planck mass is MPl = 1.2 × 1019 GeV and the relativistic degrees of freedom
g∗, found by considering the relevant bosonic and fermionic degrees of freedom at a given
temperature, will be treated as a constant g∗ = 106.75 [47].
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Some useful temperature classifications relevant to first-order phase transitions are the
critical, nucleation and percolation temperatures. The critical temperature Tc is defined as
the temperature at which the two minima (phases) co-exist and are degenerate, meaning

Veff(ϕ = ϕF, Tc) = Veff(ϕ = ϕT, Tc). (4.17)

Secondly we have the nucleation temperature Tn. It is the temperature at which on average
one bubble is nucleated per Hubble volume

N(Tn) =

∫ tn

tc

Γ(t)

H(t)3
dt = 1, (4.18)

where tn/c is the time at which T = Tn/c. Lastly, the percolation temperature Tp is reached
when 34% of the (false vacuum) space is converted to the true vacuum. Their magnitudes
are related by Tp ≤ Tn ≤ Tc [39].

An approximate expression for the three-dimensional action can be found by inserting the
expressions for the decay rate Eq. (4.11) and Hubble parameter Eq. (4.16) into Eq. (4.18),
and making a Taylor expansion of S3(T ) near Tn. Evaluating the integral leads to [48]

S3(T )

T

∣∣∣∣
Tn

≃ 141.4− 4 log

(
Tn

100 GeV

)
− log

(
β(Tn)

100

)
. (4.19)

For electroweak phase transitions, the last two terms are typically approximated away
and the expression S3(Tn)/Tn ≃ 140 is used to identify the nucleation temperature of the
system.

4.2.2 Energy budget

We will now take the first step in connecting the properties of the GW spectrum to the
finite-temperature potential. The energy budget of the phase transition (the energy re-
leased) is described by the α parameter. It is therefore intuitive to also use α as a measure
of the strength of the phase transition. We may express it as

αθ =
3

4

θ+ − θ−
a+T 4

∣∣∣∣
T=Tp

, (4.20)

where θ = (e− 3p)/4 is the trace of the energy-momentum tensor, e = Veff − T ∂Veff/∂T
is the energy density, p = −Veff is the pressure and a+ = π2g∗/30. The parameters θ+ and
θ− should be evaluated in the true and false vacuums, respectively. The α parameter may
therefore be simplified to

αθ =
30

π2geffT 4

(
∆Veff −

T

4

∂∆Veff
∂T

)∣∣∣∣
T=Tp

=
1

ρrad

(
ρvac −

T

4

∂ρvac
∂T

)∣∣∣∣
T=Tp

, (4.21)
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where ρrad and ρvac are the vacuum and radiation energy densities, respectively, given by

ρrad = g∗
π2

30
T 4 , (4.22)

ρvac = ∆Veff(ϕ, T ) ≡ Veff(ϕ = ϕT, T )− Veff(ϕ = ϕF, T ) , (4.23)

and the field value in the true/false vacuum is denoted by ϕT/F [39]. In the radiation
dominated epoch, another way to parameterize the strength of the phase transition is
by the ratio (ϕT − ϕF)/Tc [49]. The strong FOPT criteria is established by requiring
(ϕT − ϕF)/Tc > 1 in our analysis.

4.2.3 Mean bubble separation

For fast phase transitions, the false vacuum decay rate may be approximated as [39]

Γ ≈ Γ(t0) exp(β(t− t0)), (4.24)

where t0 is typically set to the percolation time tp and β may be interpreted as the inverse
duration of the phase transition. The latter is approximated by [49]

β = − d

dt

S3(T )

T

∣∣∣∣
t=t0

= H(T )T
d

dT

(
S3(T )

T

)∣∣∣∣
T=Tp

. (4.25)

In the second equality the time-temperature relation was applied. The averaged nucleation
rate is found in terms of the false vacuum probability P (t) via

Γ̄(t) =P (t)Γ(t) =

=Γ(t0) exp (β(t− t0)) exp (−I0 exp(β(t− t0))), (4.26)

with I0 = 8πv3wΓ(t0)β
−4 and vw denoting the bubble wall speed. The second equality is

explicitly shown in [39]. We work under the the non-runaway bubble assumption, where
the expanding bubbles in the plasma reach a relativistic terminal velocity due to friction
against the plasma. We pick vw = 0.95, as such high speeds provide better possibilities for
producing detectable GWs [49].

Finally, the mean bubble separation at time t is defined by

R(t) = (nB(t))
−1/3, (4.27)

nB(t) =

∫ t

tc

(
a(t′)

a(t)

)3

Γ̄(t′) dt′, (4.28)

where nB(t) is the density of the bubbles and a(t) is the scale factor of the Friedmann-
Robertson-Walker metric. Inserting our expression for the averaged decay rate and evalu-
ating the integral, one gets

nB(t) =
β3

8πv3w
(1− P (t)). (4.29)
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In the fast phase transition approximation, we may assume P (t > tp) ≃ 0 since the
probability of finding the false vacuum becomes small. Hence, at t = tp, the mean bubble
separation is found to be

R =
(8π)1/3vw

β
, (4.30)

Observe that the mean bubble separation R is inversely proportional to the inverse dura-
tion of the phase transition β. These two parameters are therefore used interchangeably
[39].

The evaluation of the bounce solution, and the computation of the nucleation temperature,
phase transition duration β, energy budget α and other relevant quantities is performed
by the CosmoTransitions-2.0.6 package [22].

4.2.4 Gravitational-wave signature

During FOPTs, GWs are produced by three primary sources: the collisions of bubble walls,
sound-waves generated by bubble collisions and Magnetohydrodynamic (MHD) turbulence
in the plasma afterwards. Under the linearized approximation, the total spectrum of GWs
from FOPTs is written as [39]:

h2Ω = h2Ωcoll + h2Ωsw + h2Ωturb, (4.31)

with the dimensionless Hubble parameter defined as h = H0/(100 km/s/Mpc) and Ω de-
noting the (dimensionless) GW amplitude. In the non-runaway bubble scenario, most of
the energy budget α is converted to GWs from sound-waves and/or MHD turbulence.
Generally, it is believed the MHD turbulence only has a small contribution to the GW
spectrum when compared to sound-waves [39, 50]. In this thesis, we therefore approximate
away GWs produced by MHD turbulence and solely focus on sound-waves.

The GW spectrum from the sound-waves has the form [39]

h2Ωsw = h2Ωpeak
sw

(
f

fpeak
sw

)3
4
7
+

3

7

(
f

fpeak
SW

)2
− 7

2

. (4.32)

Its peak amplitude Ωpeak
sw and associated peak frequency fpeak

sw are given by

fpeak
sw ≈ 1.9 · 10−5 Hz

( g∗
100

) 1
6

(
Treh

100GeV

)(
(8π)

1
3

H(Tp)R

)
, (4.33)

h2Ωpeak
sw ≈ 2.65 · 10−6

(
H(Tp)R

(8π)
1
3

)(
κswα

1 + α

)2(
100

g∗

) 1
3

. (4.34)
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Above, Treh is known as the reheating temperature, given by

Treh ≃ Tp(1 + α)1/4, (4.35)

and κsw =
√
H(Tp)τsw is an efficiency factor describing the ratio of the energy budget α

that is transferred to the strength of the GWs produced by sound-waves, with τsw being
the length of the sound-wave period. It is found via

τsw = min

[
1

H(Tp)
,
R∗

Ūf

]
, (4.36)

where Ūf is the fluid velocity of the plasma, which under the high vw limit is

Ū2
f ≃ 3

4

α

1 + α
kv. (4.37)

with the kv efficiency factor [39]:

kv =
α

0.73 + 083
√
α + α

. (4.38)

It is important for the reader to note that some approximations employed here become
increasingly inaccurate as phase transitions start approaching the supercooling regime, par-
ticularly Eqs. (4.19) and (4.24). Strong supercooling is typically associated with stronger
FOPTs, and thereby larger energy budgets α [39]. To minimize these inaccuracies, one can
introduce a cut-off for α. However, in this initial study, we keep points producing FOPTs
with large energy budgets for the sake of gathering statistics.

4.2.5 Signal-to-noise-ratio

While certain points might produce GWs within the sensitivity curves of the GW observa-
tories, the better measure of detectability of a GW signal is its signal-to-noise-ratio (SNR).
The SNR depends on the detector configuration, computed via the observation time T , the
detector sensitivity curve h2Ωdet for a given configuration and the GW spectrum h2ΩGW

as following [49]

SNR =

√
T
∫ fmax

fmin

(
h2ΩGW(f)

h2Ωdet(f)

)2

, (4.39)

where the integration is over the frequency detection region of the detector.
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5 Program structure

The framework for scanning parameter spaces against collider and GW measurement con-
straints is written in Python-3.10.6. The developed framework mainly consists of the
following files; Hub, DataConstructor, Network, UserInput and a number of bash scripts
(e.g. to run the HEP packages). Since our analysis relies on SPheno for unitarity and
EW precision constraints, HiggsBounds and HiggsSignals for Higgs exclusion limits and
CosmoTransitions for the order and strength of the phase transitions, these packages
must be available. The GW peak amplitude and associated frequency, used to evaluate
the detectability constraint in this thesis, are computed using code provided by António
Morais. The BSM theory implementation is done in SARAH, which can then be used to
export the model to SPheno. The implementation is straightforward and requires the def-
inition of any new global or gauge symmetries, the Lagrangian, (non-SM) fields and their
mixing. The finite-temperature EFT construction is done via DRalgo, requiring a similar
implementation of the BSM theory as for SARAH. For its export to CosmoTransitions, a
script provided by Mårten Bertenstam [51] was used. Since the framework is not made
publicly available yet, as more development and testing is needed, only a selection of its
key features will be highlighted in this section.

To use the framework, some input is required in UserInput, including paths to the HEP
packages, ANN hyperparameter definitions3, the parameter space definition (i.e ranges for
the free parameters) and the number of points to scan. If the free parameters are different
from the Lagrangian parameters (via some inversion procedure, e.g. particle masses traded
for some Lagrangian parameters), this can be specified by including expressions relating
the free and Lagrangian parameters in question. These definitions are needed to perform
the analysis in DataConstructor and to define and train the ANN in Network. The ANN
model is defined using the TensorFlow-2.12.0 [52] Python library.

The main file to call to gather data, train the ANN or to make predictions with a trained
ANN is Hub. Some of its settings and what they do are listed below:

1. If collider or cosmic training data construction is turned on, the parameter space is
sampled using Sobol sequences4 and passed to DataConstructor. The relevant HEP
packages are called, with the data and results stored into training data files.

2. Since some constraints take much longer to check than others, the framework com-
putes the latter first. An option is added so that the framework only checks the next
constraint if it has satisfied all before it.

3In machine learning, the parameters controlling various aspects of the network structure and training
are conventionally referred to as hyperparameters.

4Sobol sequences are low-discrepancy sequences, resulting in faster convergence than random sampling.
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3. If network training is turned on, an ANN model is defined and trained using the data
stored in the training data files. A summary with relevant plots of the training are
printed, and the model details (architecture, weights) are saved for future use.

4. Turning on network predictions, a second (larger) parameter space sampling is per-
formed and handed to the saved ANN. The trained neural network will suggest what
it believes to be positive points (points satisfying all constraints). The suggested
points are passed back to DataConstructor to analyze using the HEP packages, and
the true positive points are stored and plotted.

In the upcoming section, we present a demonstration of our framework using a simple
architecture for the ANN. Details about the model have been listed below. Although these
details are not essential for interpreting the results, we will attempt to include explana-
tions alongside the details when needed. For cases when the provided explanations are not
sufficient, we refer the reader to [53].

We are addressing a binary classification problem here, where points are categorized as ei-
ther positive or negative, and the objective of the network is to distinguish between them.
Points in the training data files that satisfy all constraints simultaneously are assigned the
positive label, while remaining points are labelled negative.

The architecture of the ANN is as follows: the input layer size corresponds to the number
of free parameters, which in our case is ten (Λ1, Λ2, λi, mC, mN1 , mN2 for i = 1, 2, 3, 6, 7).
We employ six hidden layers, with 60 hidden nodes each, while the output layer consists of
a single node. Given that this is a binary classification problem, the activation functions for
the hidden nodes and the single output node are the rectified linear unit and the sigmoid
function, respectively. The output of the sigmoid function (and thereby of the ANN) lies
between 0 and 1, and should be interpreted as the probability that a certain point belongs
to the positive class. Points with an output equal to or greater than 0.5 are predicted to be
positive. We used the common choice of Adam as optimizer for our problem. We apply the
L1 and L2 regularization techniques in each layer to prevent the ANN from overtraining
on the training data.

Due to the observed strong imbalance between positive and negative points5, some of this
imbalance was addressed by undersampling the majority class before training the network.
This way, we reduce the risk of the ANN solely focusing on the majority class6. Some
class imbalance (1:100 in favour of negative points), combined with class weights (2:1 in
favour of positive points) was found to be optimal for the ANN training however. Class

5There are far fewer points satisfying the constraints than the opposite.
6If there is a significant imbalance between the classes, the neural network might predict that all points

belong to the majority class in order to maximize its accuracy. However, this would defeat the purpose of
the ANN.
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weights are used to assign greater emphasis to certain classes (the class of positive points
in our case). This allows us to counter-act some of the remaining class imbalance without
sacrificing more points (information) through undersampling. Oversampling the minority
class was not observed to increase the performance of the ANN, and was therefore not
considered.
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6 Results

Before discussing the results, let us recap which constraints will be applied in our demon-
stration of the framework on the STESM. We consider theoretical and collider constraints,
including unitarity, EW precision tests and Higgs exclusion limits. On the cosmic side, we
require the presence of a FOPT, specifically a strong FOPT characterized by (ϕT−ϕF)/Tc >
1. In terms of detectability, for the sake of gathering statistics, we only set a constraint
on the GW peak amplitude during ANN training, without specifying its associated fre-
quency. Therefore, our detectability constraint is that the peak amplitude should be of
similar magnitude to where the LISA, DECIGO and BBO sensitivity curves lie, around
h2Ωpeak ∼ 10−15.

Due to the expected scarcity of points satisfying all constraints, an initial investigation over
a large region of parameter space, spanned by the free parameters Λ1, Λ2, λ1, λ2, λ3, λ6, λ7,
mN1 , mN2 and mC, is performed. Once we have an understanding of how the constraints
individually limit the parameter space, we will shift our focus to the region of interest, that
is the region where points are more likely to satisfy all constraints simultaneously. Training
data is collected inside the region of interest and the ANN is trained on the gathered data.
The trained ANN will then be used to suggest positive points to us, which will be analyzed
using the HEP packages, from which all true positive points can be collected. Although
not the prime focus of the ANN training, we will plot the GW peak amplitudes h2Ωpeak

against the associated peak frequencies fpeak for the positive points, along with the LISA,
DECIGO and BBO sensitivity curves.

6.1 Initial scan

For the initial scan, we run it over the parameter space defined by the following free
parameters

|Λi| < 5000 GeV , |λj| < 15 , 200 GeV < mk < 1000 GeV ,

for i = 1, 2, j = 1, 2, 3, 6, 7 and k = N1,N2,C. Starting with theoretical and collider
constraints, approximately 56 000 points in the above parameter space were investigated.
Out of these, 90 points individually satisfying unitarity (U), Higgs exclusion limits (H) and
oblique parameter constraints (STU) were randomly selected, and their Probability Density
Functions (PDFs) estimated using kernel density estimation (KDE) in Fig. 3. The KDE is
provided by the Python library Seaborn [54]. Since certain free parameter combinations
give complex couplings via the tadpole equations, or negative µ2

S or µ2
T via the parameter

space inversion procedure, with such points being discarded, the parameter space becomes
non-uniformly sampled. Therefore, the background (BG) sampling distribution has been
included in the plots to more easily identify any potential deviations in the distributions
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of points that satisfy specific constraints.

Examining Fig. 3, we can observe that unitarity and Higgs exclusion limits are the most
constraining, while EW precision tests reasonably closely follow the background distribu-
tion across all free parameters. We note that unitarity does not exhibit any preference in
the trilinear couplings Λ1, Λ2 or particle masses, but does show a preference for smaller
quartic couplings, particularly for λ1, λ2 and λ7. Higgs exclusion limits on the other hand,
exhibit a strong inclination towards negative λ6 and smaller charged-particle masses mC.

Although no insightful parameter distributions were found for points satisfying STU con-
straints in Fig. 3, we did observe an interesting pattern when plotting the points’ asso-
ciated free particle masses (mN1 , mN2 , mC) against each other in Fig. 4 (left). The first
notable observation is that the regions around the straight line mN1 = mN2 have the high-
est population density of points7. Additionally, considering the colour bar, it becomes
apparent that points predicting approximately equal masses for all three scalar particles
(mN1 ≈ mN2 ≈ mC) are favoured by EW precision tests. A second, more subtle observa-
tion is that in the cases where the two neural particle masses are unequal (i.e. not along
the diagonal), EW precision tests may still be satisfied if the charged particle mass aligns
with the lightest neutral particle mass, i.e., mC ≈ mNi

where i corresponds to the light-
est neutral particle. This alignment can by the vertical and horizontal lines of the same
charged particle mass (colour) meeting at the diagonal in Fig. 4 (left). This latter pattern
also emerges when considering Higgs exclusion limits in Fig. 4 (right). Once again, vertical
and horizonal lines of same colour meet at the diagonal, showing that points producing
a charged particle mass that matches the lightest neutral particle mass is preferred when
constraining the Higgs sector. However, in this case, one of the neutral particles (and
thereby the charged particle) must always remain below approximately 500 GeV.

For the cosmic constraints, we examined roughly 9000 points. Among them, 60 points
individually yielding FOPTs, strong FOPTs (S-FOPT) and detectable (as defined by our
detectability constraint) FOPTs (D-FOPT) were selected. The PDFs of these points are
displayed in Fig. 5. The parameter distributions associated with FOPTs closely follow the
background. Any (significant) deviations from the background only become apparent when
considering strong and detectable FOPTs, particularly in the λ1, λ6 and λ7 distributions.
We observe peaks in the λ1 ≈ −3 and λ6 ≈ 8 regions for strong and detectable FOPTs,
respectively. Detectable FOPTs, in addition, exhibit a sharp peak in the λ7 ≈ 8 region.
Our plots do not reveal any notable preferences in particle masses when considering the
cosmic constraints.

7The absence of points satisfying EW-precision tests appearing on the line can be blamed on the
parameter space sampling. As mentioned in Sec. 2.6.1, in order for the λ4 coupling to be real, we require
m2

N2
> m2

C > m2
N1

or m2
N2

< m2
C < m2

N1
. Hence, for mN1

≈ mN2
, there exist few mC that will keep

λ4 real. Since all couplings are assumed to be real, a sparse number of points are sampled near the line
mN1 = mN2 in Fig. 4.
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Figure 3: Probability Density Functions (PDFs) of the free parameters Λ1, Λ2, λ1, λ2,
λ3, λ6, λ7, mN1 , mN2 and mC that satisfy unitarity (U = green), oblique parameter (STU
= red) and Higgs exclusion limit (H = blue) constraints, respectively. The distributions
should be compared to the sampling distribution (BG = grey). Note that the graphs are
not scaled relative to each other.
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Figure 4: Neutral particle massesmN1 andmN2 plotted against each other with the charged
particle mass mC represented by the colour bar for points satisfying EW precision tests
(left) and Higgs exclusion limits (right), respectively.

Fortunately, there are regions for each free parameter where all corresponding distributions
overlap. It is important to note that although overlapping distributions is no guarantee that
there exist points simultaneously satisfying all constraints, these areas represent potential
areas where such points might exist.

6.2 Data collection and ANN training

Comparing the (free) parameter distributions satisfying the different theoretical, collider
(Fig. 3) and cosmic (Fig. 5) constraints separately, we take the following parameter space
as the region of interest

− 5000 GeV < Λi < 5000 GeV, − 3.5 < λ1 < 3.5, − 7.5 < λ2 < 7.5,

− 13 < λ3 < 13, − 7.0 < λ6 < −2.5, − 3.5 < λ7 < 3.5

200 GeV < mNj
< 1000 GeV, 200 GeV < mc < 550 GeV,

for i = 1, 2 and j = 1, 2. During data collection, slightly less than 1.5 million points were
analyzed. Among the points satisfying unitarity and collider constraints simultaneously,
none satisfied our current detectability constraint h2Ωpeak > 10−15, while only four points
had GW peak amplitudes in the region h2Ωpeak ∼ 10−16, far too few for the ANN to train
on. Hence, for the sake of training the ANN, the detectability constraint was relaxed by two
orders of magnitude, becoming h2Ωpeak > 10−17, referred to as the ”relaxed” constraints 8.
This is done with the intention that by training the ANN on the relaxed constraints, and
letting it thereafter produce a large number of such points, we maximize the likelihood to

8This is still within the detecting range of DECIGO and BBO (in the appropriate frequency range).
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Figure 5: Probability Density Functions (PDFs) of the free parameters Λ1, Λ2, λ1, λ2,
λ3, λ6, λ7, mN1 , mN2 and mC yielding first-order phase transitions (FOPT = yellow),
strong first-order phase transitions (S-FOPT = cyan) and detectable first-order phase
transitions (D-FOPT = dark green), respectively The distributions should be compared
to the sampling distribution (BG = grey). Note that the graphs are not scaled relative to
each other.
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Total number of points 1 485 898

Unitarity 152 402
Electroweak precision 186 145
Higgs exclusion limits 111 191

+ Unitarity and collider simultaneously 3 480

+ FOPT 192
+ Strong FOPT 175

+ Detectable FOPT 109

Table 1: A list specifying the number of points satisfying different constraints. Only points
satisfying all theoretical and collider constraints simultaneously, specified in the fifth row,
are checked for cosmic constraints. The ’+’ indicates that the points in that particular row
have passed all constraints above them. The final row of points are labelled positive for
the network training.

finding points that also satisfy our original constraints.

A breakdown of the number of points satisfying each constraint can be found in Tab. 1.
Here, we observe that although a reasonably large fraction of points, approximately 10.1%
on average, satisfy unitarity, EW precision and Higgs constraints separately, this percent-
age drops significantly to around 0.23% when requiring that these constraints be satisfied
simultaneously. Among these points, only 5.5% yield FOPTs, with majority of them being
strong FOPTs however. Applying the relaxed detectability constraint, 109 points are left
at the end. Thus, our training data comprises 109 positive points (satisfying theoretical,
collider and relaxed cosmic constraints simultaneously) and 1 485 789 negative points. Al-
though the number of positive points may seem small considering the dimensionality of
the ANN input space (10) and the complexity of the training data, it still holds potential
to enhance our scan.

The first relevant metric for us to measure the performance of the ANN is the accuracy AN.
It is the fraction of points that are correctly positively predicted AN = TP/(TP + FP),
where ”T/F” denotes ”True/False” and ”P/N” denotes ”Positives/Negatives”9. Based
on Tab. 1, the accuracy of identifying physical points through a random parameter scan
is approximately AR ≈ 7.34 · 10−3 % 10. To deem our network successful, we consider
AR as the baseline and aim at obtaining a higher accuracy with the ANN. However, we
must also ensure that the network does not become overly conservative in its predictions.

9E.g., TN is the number of correctly negatively predicted points (i.e., number of points predicted to be
negative by the ANN, that in fact are negative), while FP is the number of incorrectly predicted positive
points (i.e number of points predicted to be positive by the ANN, which are negative in reality).

10Note that it is not completely random in reality. It takes into account our findings from the initial
scan, allowing us to probe the parameter space region where we are more likely to find a physical point.
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This aspect is measured by the ”exhaustiveness” parameter E = TP/(TP + FN) (ratio of
correctly predicted positive points to the total number of positive points in the system),
representing the proportion of positive points the ANN is capable of locating. This allows
us to assess if the network is giving its undue attention to certain regions of the parameter
space while completely ignoring other parts that also contain positive points. Thus, the
objective here is to obtain a network accuracy AN > AR, while maintaining reasonably
high exhaustiveness.

Training the model defined in Sec. 5 provides an ANN accuracy of AN ≈ 1.74% with
exhaustiveness E ≈ 0.84 11. This is an enhancement in accuracy by a factor 237 compared
to random search. On top of this, the ANN has a large coverage of the parameter space,
indicated by the high E value.

6.3 ANN predictions

We can now utilize the trained ANN to suggest positive points, which we run through the
HEP packages. Through this approach, we collected 2537 points satisfying the imposed
theoretical, collider and relaxed cosmic constrains, out of which 230 points satisfy our ap-
proximate boundedness from below conditions from Sec. 2.6.3. Different intersections of the
parameter space containing the collected positive points (excluding the boundedness from
below constraint) have been plotted in Fig. 6. In the upper-left graph we observe that the
positive points are mainly distributed in the region µ2

S ≲ 5 · 105 GeV2, µ2
T ≲ 1.5 · 105 GeV2

(these mass terms go up to µ2
S ∼ 9 ·105 GeV2 and µ2

T ∼ 2.5 ·105 GeV2 in the training data).
A dependence between µ2

T and λ6 is also seen here, however, this dependence can already
be seen in the tadpole Eq. (2.39). The upper-right and bottom-left graphs show clusters
of positive points in the λ1-λ2 and λ4-λ7 planes, respectively, with λ3 constrained in the
range −5 ≲ λ3 ≲ 9. In the bottom-right graph we observe a similar pattern in the scalar
particle masses as in Fig. 4, that is, physical points must always predict one light neutral
particle and a light charged particle that approximately align at 200-300 GeV, while the
other neutral particle mass is allowed to vary freely in our pre-defined range 200-1000 GeV.

Of the 2537 points above, we identify four points satisfying our original detectability con-
straint (h2Ωpeak > 10−15), meeting our initial objective: finding points satisfying unitarity,
collider and cosmic constraints that produce GW amplitudes in the sensitivity regions of
LISA, DECIGO and BBO. Among the four points, one additionally satisfies the approxi-
mate boundedness from below conditions. These points can be seen in Fig. 7, where their
GW peak amplitudes h2Ωpeak has been plotted against the associated frequencies fpeak.
Here, we additionally include points with any GW peak amplitude, but that are physical
in all other senses (i.e satisfy theoretical, collider constraints and yield strong FOPTs). It

11These numbers are found by applying the trained ANN on data which it has not previously seen,
known as a validation set.
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Figure 6: Four intersections of parameter space containing positive points (under relaxed
constraints) collected by the trained ANN. These points satisfy unitarity and collider con-
straints, and produce strong FOPTs with GW peak amplitudes h2Ωpeak > 10−17.

is important to note that since the ANN is specifically trained to identify physical points
with h2Ωpeak > 10−17, the number of points below the line h2Ωpeak = 10−17 will be pro-
portionally smaller than the number of points above it when compared to random search.
The LISA, DECIGO and BBO sensitivity curves have also been included using the PTPlot
code [55, 56].

We observe that the ANN has produced a large number of points that lie above the DE-
CIGO and BBO sensitivity curves. Furthermore, we have even found a point above the
LISA sensitivity curve, with a GW peak amplitude h2Ωpeak ∼ 10−12. This value exceeds
the largest GW peak amplitude in the training data by four orders of magnitude. We
would like to emphasize that while points above the sensitivity curves are promising, the
SNR value provides a more accurate measure of detectability, and our detectability results
should therefore be interpreted with some caution.
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Figure 7: GW peak amplitude h2Ωpeak plotted against associated peak frequency fpeak

for physical points (satisfying unitarity and collider constraints, and producing strong
FOPTs) with any GW peak amplitude. The Sensitivity curves belonging to LISA, BBO
and DECIGO are plotted using the PTPlot tool.

7 Conclusion

This work has served as a trial to investigate the effectiveness of neural networks in probing
BSM theory parameter spaces, considering both collider and GWmeasurement constraints.
In order to test the capabilities of the ANN, an EW scale EFT inspired by the QCD-like
TC theory was employed as a toy model, taking the form of a SU(2)W singlet-triplet ex-
tended SM. In addition to the three EW Goldstone bosons and one SM-like Higgs boson,
our STESM predicted four additional massive scalar particles, making it a phenomeno-
logically interesting, yet simple, toy model for an investigation of its collider and cosmic
impacts. In total, the theory contains ten free parameters: seven Lagrangian couplings,
two neutral particle masses and one charged particle mass, which serve as input to the
ANN. The space spanned by these parameters is analyzed using the publicly available
packages SPheno, HiggsBounds, HiggsSignals and CosmoTransitions to apply unitar-
ity, EW precision, Higgs exclusion limit and strong, detectable FOPT constraints. The
primary focus of the developed framework is to perform a parameter space scan guided
by the suggestions of the neural network, aiming at increasing the accuracy in identifying
physical points compared to random search.

Overall, the findings of this thesis have been positive, demonstrating an increased accuracy
in locating physical points by a factor larger than 200. This high accuracy was achieved
while maintaining a large coverage of parameter space by the network (i.e a high ”exhaus-
tiveness” in locating physical points). With random search, we encountered challenges in
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identifying points satisfying our original stringent constraints. However, by slightly relax-
ing these constraints and passing the gathered data to the ANN for training, the neural
network successfully isolated points that satisfied our initial requirements. In doing so, we
were able to find a large number of physical points potentially detectable by the future
planned DECIGO and BBO GW observatories, and even a point potentially detectable by
LISA.

While this initial investigation has yielded intriguing results, there is still much develop-
ment and testing left to be done. Most notably, parts of the script are yet to be generalized
to make the framework as model independent as possible. Since the HEP packages which
our framework relies on can be applied to a wide range of BSM theories, the framework can
in theory be just as model independent. This entails further development efforts. Once the
necessary modifications are applied, a proper parameter space investigation of the high-
scale QCD-like TC theory, as well as other phenomenologically interesting BSM theories,
can be performed using the developed framework. Considering that a large portion of time
during this thesis has been dedicated to developing the parameter space scanner using the
HEP packages, relatively less time has been allocated for the ANN model selection. There-
fore, we believe potential exists for further advancements on the ANN front, particularly
in exploring new neural network configurations (e.g. separate neural networks for collider
and cosmic constraints) and training techniques. We believe that with further develop-
ment, the framework can become a useful tool for scanning a wide verity of BSM theory
parameter spaces.
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