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In most normative and prescriptive decision theories, transit-
ivity is a presumed property of any preference relation, stating
that for any choice alternatives x, y, z and preference rela-
tion R, if xRy and yRz, then xRz. However, what is norm-
atively expected of an ideally rational agent may still be de-
scriptively false under certain contexts and empirically mo-
tivated decision models. One such possible context is that
of Choice Blindness manipulation. Current investigations at-
tempts a purposeful elicitation of intransitivity by utilizing
preference change effects following choice blindness manipu-
lation. To the extent that this is possible, the thesis seeks to dis-
cern possible cognitive mechanisms that contribute to the de-
fence or preservation of transitivity in choice and preference.
Initial results indicate no effect of choice blindness manipula-
tion on the rates of intransitive preference. Further analysis
demonstrates different patterns of behavior which are most
readily interpreted as attempts at defending against intrans-
itive or otherwise preserving already transitive choice struc-
tures.

1 Introduction
Imagine you’re standing in the grocery store investigating the
ripeness of three bananas x, y and z. Two different pair-wise
comparisons allows you to judge that x is more ripe than y
and y more ripe than z. Before comparing x and z you come
to realize that “more ripe than” is a transitive relation on the
domain of bananas, and so you proudly infer that x must be
more ripe than z! Based on a confluence of factors (of which
ripeness is but one) you likewise judge your preference for x
to be greater than y and your preference for y to be greater
than z. Given the facts of the situation you can now ask two
questions about your pair-wise preference of x and z: (1) am
I rationally obliged to prefer x over z? (2) Do I and people in
relevantly similar situations tend to prefer x over z? (1) asks
a normative and (2) a descriptive question with regards to the
transitive nature of human preference.
Although obviously interrelated, an affirmative answer to

one of these question does not force the issue with regards to
the other. In classical (real-valued) quantitative attempts to
model preference, transitivity is both a formal constraint and
a presumed approximation to preference-driven choice beha-
vior (Bernoulli, 1738; Friedman & Savage, 1952; Von Neu-
mann & Morgenstern, 1947). An influential argument for the
normative claim employs a pragmatic justification, showing
how intransitive individuals are subject to exploitative ”money
pumps” (Bar-Hillel & Margalit, 1988; Block, Barnett et al.,
2012). Be that as it may, going back to Tversky (1969) there
has been plenty of decision-contexts in which people’s prefer-
ences seemingly violate transitivity (e.g. Brandstätter, Giger-
enzer & Hertwig, 2006; Butler & Pogrebna, 2018; Kivetz &

Simonson, 2000; Loomes & Sugden, 1987). However, it is
notoriously hard to show that these are true cases of intransit-
ive preference as opposed to the result of inherent variability in
choice data (Regenwetter, Dana & Davis-Stober, 2011). Prop-
erly testing the empirical validity of transitivity presupposes
an appropriate translation of what is essentially a deterministic
algebraic axiom, to a statistical model which accommodates
the random sampling process of empirical data (Luce, 1995,
1997).
This thesis aspires to contribute to the existing literature

with a study on binary choice and preference in the context
of Choice Blindness. This involves the use of a common two-
alternative forced-choice task (2AFC) with two repeated pair-
wise choices per comparison, where the object of analysis is
choice (and by extension preference) defined over triples of
choice alternatives. False feedback is used on certain pair-
wise comparisons in order to elicit intransitivity in people’s
preferences. Although common hypothesis testing and model-
ling will be used, the choice blindness phenomena allows for
certain novel indirect ways at probing the cognitive alignment
with transitivity. As such, the thesis is driven by an indirect
question as to the potential existence of a cognitive barrier
against intransitive choice and preference. The research ques-
tion(s) can be formulated thus:

(Q) Is cognition equipped with mechanisms for pre-
serving transitive or defending against intransitive
choice and preference?
...
(q) Can choice blindness manipulation reliably in-
duce intransitive preferences?

An affirmative answer to (q) is suggestive of a negative an-
swer to (Q), and vice versa. Answering (Q) in the affirmative
involves statements of hypothesized transitivity preserving be-
havior. That is, patterns of behavior which effectively coun-
teracts the intrusive promotion of intransitivity in the choice
blindness context. By adopting this partially indirect approach
to studying transitivity, the ambition is to gain novel insights
and potentially sidestep some of themethodological challenges
encountered in previous research efforts.

The Choice Blindness Phenomena

Change blindness demonstrates our failure to, across sensory
modalities, notice quite ostensible changes in our immediate
perceptual environment (Auvray, Gallace, Hartcher-O’Brien,
Tan & Spence, 2008; Dickerson & Gaston, 2014; Simons &
Rensink, 2005). The phenomena of choice blindness extends
this observation to the realm of intention and action, where
particular changes to one’s perceptual field is of considerable



subjective importance (Johansson, Hall & Sikström, 2008).
In their original paper, Johansson, Hall, Sikstrom and Olsson
(2005) asked participants to make pair-wise choices between
faces based on attractiveness. On some trials they then gave
participants false feedback in relation to their prior intention,
showing and asking participants to give reasons for selecting
a face opposite of their actual choosing. In the great majority
of manipulated trials participants failed to notice the mismatch
between prior intention and the outcome of their choice; even
going on to report confabulated reasons for their behavior.
In a subsequent study, Johansson, Hall, Tärning, Sikström

and Chater (2014) incorporated a second round of choice into
their experimental procedure, which included all the face-pairs
from the first round. This allowed for a measure of choice
consistency between the two rounds of choice, i.e. the extent
to which the same face in each pair was chosen the second
time around. Results show that people are very consistent
with their first round choice in non-manipulated conditions,
but that this rate drops significantly for manipulated face-pairs.
Choice blindness manipulation (henceforth, CB-manipulation)
can therefore be seen to change peoples preferences in linewith
the previously non-chosen alternative. This effect has since
been replicated in multiple studies (Izuma et al., 2015; Luo &
Yu, 2017; Strandberg, Sivén, Hall, Johansson & Pärnamets,
2018; Taya, Gupta, Farber & Mullette-Gillman, 2014).
This paper utilizes CB-manipulation and the observed pref-

erence change effect to study the transitivity of preference over
triples of faces. An adapted version of the general procedure
will be used to try and induce intransitive preference relations
or otherwise investigate ways in which this is systematically
avoided by participants. The specific nature of such avoidance
or defense against intransitivity will be outlined in successive
degrees of detail, beginning with a course formulation in the
section titled Hypotheses.

Notation and definitions

Before moving on it will be useful to introduce notation and
some accompanying formal definitions. In the study of trans-
itivity, the paradigm of two-alternative forced choice goes
back to Tversky (1969) and has since then been commonplace
(Müller-Trede, Sher &McKenzie, 2015; Regenwetter, Dana &
Davis-Stober, 2010; Regenwetter et al., 2011). It involves the
exclusive selection between alternatives xi and xj in a pair-
wise comparison {xi, xj}. This exclusiveness of choice as-
sumes that underlying preference states can be modeled by
a strict preference relation, denoted by ≻. Essentially, strict
preference relations precludes a decision maker (DM) from be-
ing in states of indifference (denoted by ∼) between any two
choice alternatives. From its weak order counterpart, ⪰, ex-
pressing ”better than or equal in value to”,≻ can be defined as
follows:

(≻def ) for any choice alternatives xi and xj ,
xi ≻ xj ⇔ [xi ⪰ xj ∧ ¬(xi ⪯ xj)].

In words: xi is strictly preferred to xj if and only if xi
is of equal or greater value than xj , but not the other way
around.1Next, let X = {x1, x2, . . . , xi} denote a finite col-
lection of alternatives called a choice set (e.g. bananas, face
pictures, cars). With the available notation, the axiom of trans-
itivity states that:

1Another implication of the 2AFC paradigm is completeness, requiring of
a decision maker that she always possesses a well-defined preference for any
pair of choice alternatives (i.e., xi ≻ xj , xi ≺ xj , or xi ∼ xj ).

(Transitivity) for any choice alternatives xi, xj ,
xk ∈ X, [xi ≻ xj ∧ xj ≻ xk]⇒ xi ≻ xk.

A preference relation is intransitive when the above statement
fails. Discussion of transitivity and its probabilistic formula-
tions will follow in subsequent sections. To explicitly distin-
guish between choice and preference we make use of a bin-
ary choice relation ≻∗. ψ ≻∗ ϕ means that an external agent
has observed some DM make a forced choice of ψ on a com-
parison {ψ, ϕ} (inspired by Nishimura & Ok, 2018). What it
means for ≻∗ to be transitive is of course no different from
the case of ≻. xi ≻∗ xj ≻∗ xk is a compressed way to ex-
press a particular pattern of choice where xi ≻∗ xj , xj ≻∗ xk
and xi ≻∗ xk. (X,≻∗) is a short-hand way of referencing
a choice pattern defined on choice set X . One may think of
the earlier expanded pattern (and any arbitrary one) as a set,
(X,≻∗) = {(xi, xj), (xj , xk), (xi, xk)}, of ordered pairs con-
structed from a subset of such elements inX×X , denoting the
Cartesian product of X with itself. Thus, (xi, xj) ∈ (X,≻∗)
is another way of stating that xi is chosen over xj , where
xi, xj ∈ X . Substituting ≻∗ for ≻ gives an equivalent way of
thinking and denoting arbitrary preference patterns (Takemura
& Takemura, 2014).

Decision problems and models

In empirical decision theory as it relates to transitivity, a rough
distinction can be made between (1) types of decisions prob-
lems, (2) decision-making models, and (3) probabilistic mod-
els for testing preference axioms (in this case the transitivity
axiom).
So far, we have encountered the concept of a choice set X ,

representing a collection of alternatives that a DM can choose
from. In addition, we have used binary relation ≻∗ to com-
pactly represent patterns of pair-wise choice over such collec-
tions. Implicit in this representation is a certain determinism-
of-outcome in relation to a particular choice. That is, for a
DM to choose alternative xi over xj in a comparison {xi, xj}
is, for all intents and purposes, equivalent to DM receiving
some outcome θi, where θi is identical to xi. More precisely,
the decision problem can be described as a one-to-one map-
ping, f : X → Θ, from the set X of alternatives to the set
Θ of outcomes. A decision context or problem of this nature
is aptly called decision-making under certainty, where “cer-
tainty” refers to the epistemic certainty between an agents ac-
tion and outcome (Takemura & Takemura, 2014). Within the
choice-blindness paradigm, making a decision amounts to a
selection between two choice objects, and as far as any DM is
concerned, this will result in a determinate outcome (e.g. feed-
back of the face you selected, political statement you selected,
the jam jar you chose). In other words, what you see is what
you get.
This makes the present study quite unique in that the great

majority of experiments investigating transitivity make use of
decision-making under risk (Birnbaum & Schmidt, 2008; But-
ler & Pogrebna, 2018; Tversky, 1969).2 A canonical example
of decision-making under risk is betting on a soccer match. For
example, betting on a team xi over xj is, with some probabil-
ity, associatedwith an outcome θi (youwinning some $ amount
of money), where the outcome θi is dependent on intermediary
states of the world (i.e. whether team xi wins, loses or ties with
team xj). In these contexts, choice of an alternative no longer

2Although for interesting exceptions, see Wang, He and He (2021) and
Müller-Trede et al. (2015)
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has a single one-to-one mapping with an outcome, but is in-
stead only so connected with some degree of certainty, where
the degree of certainty depends on some probability distribu-
tion over worldly states (in this case, the probability of team
xi winning, losing or scoring a tie with team xj). Likewise
in experiments on transitivity, the by far most common stim-
uli used is different types of gambles or lotteries (Birnbaum &
Schmidt, 2008; Cavagnaro & Davis-Stober, 2014; Kalenscher,
Tobler, Huijbers, Daselaar & Pennartz, 2010).
The conjunction of a decision context and decision model is

enough to predict either transitive or intransitive choice beha-
vior. Decision making under risk has been modelled extens-
ively, the most classical example being that of Expected Util-
ity Theory (EUT) (Von Neumann &Morgenstern, 1947). EUT
exemplifies a model which not only predicts transitivity but
normatively enforces it. It postulates a so called utility function
U, which gives a real-valued quantitative measure of subject-
ive value associated with some set of choice objects (Peterson,
2017). On this account, a preference relation ≻ over a choice
set X , can always be represented as a maximization of utility,
such that for any xk, xg ∈ X:

(U-representation) xk ≻ xg ⇔ U(xk) > U(xg)

In other words, the preference relation always favors the op-
tion with greatest utility (Steele & Stefánsson, 2020). This
construct can then by turned into a decision-rule, stating that
the best choice (under risk) is always the one which maxim-
izes expected utility (EU), where the expected utility for any
alternative xk can be represented by the sum:

EU(xk) =

n∑
i=1

pi · U(θi)

where pi is the probability and U(θi) the utility of the ith out-
come associated with xk. Now, since the utility function is
defined on the real number line, it must reflect the structure of
the greater than (i.e. >) relation on that set, and so transitivity
is therefore implied (Briggs, 2019). The numerical representa-
tion of preference orderings (as captured byU-representation)
can be very useful and will to some extent be used in the con-
text of both methodology and data analysis in this paper. How-
ever, as a descriptive model of choice behavior, EUT has been
challenged several times (for a meta-analysis, see Yaqub, Saz
& Hussain, 2009); perhaps the most famous case being that
of the framing effect as presented by Tversky and Kahneman
(1986, 1992). Other transitive decision-models include that of
Cumulative Prospect Theory (CPT), Rank Affective Multiplic-
ative (RAM) and Transfer of Attention change (TAX) (Birn-
baum, Patton & Lott, 1999; Birnbaum & Schmidt, 2008; Wak-
ker & Tversky, 1993).
A model of risky decision-making which predicts

intransitive behavior is the Most Probable Winner model
(MPW). Consider a triple of choice alternatives: x = [15$,
15$, 3$], y = [10$, 10$, 10$], z = [27$, 5$, 5$], each rep-
resenting a gamble with three equally likely outcomes (i.e.
1/3). According to MPW, a DM will always select a gamble
with the highest probability of yielding a favorable outcome
(Blavatskyy, 2006). Following this rule, DM selects x on
comparison {x, y} (x yields favorable outcome 2/3 of the
time), y on comparison {y, z} (y yields favorable outcome 2/3
of the time), and z on {x, z} (z yielding a favorable outcome
5/9 of the time). This implies an intransitive choice pattern: x
≻∗ y ≻∗ z ≻∗ x. Using 11 sets of this kind of triple, Butler and

Pogrebna (2018) has demonstrated that individuals exemplify
substantial proportions of intransitive choice patterns.
Risky choice typically involves multi-attribute alternatives

that vary in factors such as payoff and probability of suc-
cess, similar to the gambles mentioned above. But not all
multi-attribute choices are risky. Imagine you have rank-
ordered preferences for cars along the dimensions of price and
horsepower, where horsepower is what you value the most, all
else being equal. Imagine further that things are only equal so
long as the price between two cars does not exceed a certain
threshold δ. If the difference in price between cars x1 and x1+n

exceed δ, you prefer the cheaper one nomatter the difference in
horsepower. Given that you follow such a sequential decision-
rule, it is possible to construct a sequence of car-comparisons
where, some where along the line, you will make a choice that
violates transitivity.
In a seminal paper by Tversky (1969) he demonstrates sys-

tematic violations of transitive choice by utilizing this kind of
structure, technically called Lexicographic semi-order (LS).
The LS-model is an example of a non-compensatory decision
strategy, allowing for no trade-off between the attribute val-
ues of a choice alternative. The example above demonstrates
this lack of trade-off between, in this case, horsepower and
price. As soon as one car exceeds the price threshold, inform-
ation about horsepower is completely disregarded.3 Other so
called heuristic decision models, such as Take-the-Best and
the priority heuristic, are subsets of lexicographic decision
strategies (Brandstätter et al., 2006; Gigerenzer & Goldstein,
1996). EUT exemplifies a compensatory decision model, de-
scribing decision processes where all relevant values are con-
sidered and weighted to form a unitary numerical value, which
therefore necessitates transitivity.
In a recent study, which takes inspiration from Tversky’s

original study, Wang et al. (2021) investigated transitivity in
the context of human mate preferences. To test how people
integrate different cues in partner selection, they construc-
ted partner profiles varying in physical attractiveness (indic-
ated by face pictures) and financial resources. The profile
comparisons were set to have a negative correlation between
physical attractiveness and financial resources. In theory, this
could prompt DMs to apply an intransitivity-compatible non-
compensatory cut-off rule. The current study utilizes a similar
decision problem with one important exception, namely the
(explicit) uni-dimensionality of the choice alternatives, vary-
ing only in their degree of physical attractiveness. However,
judgements of physical attractiveness is known to decompose
(perceptually speaking) into differently prioritised facial char-
acteristics and so the use of lexicographic rules, especially un-
der time constraints, is an ecologically valid possibility (Little,
Jones & DeBruine, 2011).
Interestingly however, Wang et al. (2021) found that choice

data from the great majority of DMs could best be explained
with different stochastic specifications of transitivity. They
reference other recent studies which give similar converging
evidence for human mate preferences being transitive (Brand-
ner, Brase & Huxman, 2020; Hatz, Park, McCarty, McCarthy
& Davis-Stober, 2020). This research gives some clues as to
the level of intransitive behavior that will be observed in the

3Tversky (1969) conduced two different experiments: one used typical
risky gambles varying in probability of success and payoff, whereas the second
experiment asked participants choose between hypothetical university applic-
ants, varying in dimensions of intelligence, emotional stability and social fa-
cility.
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current study, at least in conditions where choice blindness ma-
nipulation is not a factor. While the decision problems in this
study are not explicitly framed as mate choice problems, it is
important to note that assessments of physical attractiveness
play a fundamental role in such contexts.

Probabilistic models of Transitivity

A big challenge in the transitivity literature consists in spelling
out when and how intransitive preference can be inferred from
intransitive choice. An answer to this question is part of what
determines if sample data can be said to truly violate transitive
preference. Contrary to revealed preference theory (Samuel-
son, 1948), choices made on binary comparisons may not al-
ways reflect ”true” latent preferences. The act of choosing is
subject to error and other kinds of variability, a fact which has
to be accounted for when studying the empirical validity of
a deterministic axiom such as transitivity. There are generally
two different approaches to this challenge in the literature. One
tries to incorporate variability at the level of binary choice pro-
portions, the other studies aggregate choice patterns defined
over triples of comparisons (Regenwetter et al., 2010). The
former approach is briefly discussed below and subsequently
contrasted with the latter.
Tversky (1969) formulated and found violations of a

stochastic translation of the transitivity axiom at the level of
binary choice proportions, called Weak Stocastic Transitivity
(WST). Let p(ψ ≻∗ ϕ) denote the probability of choosing
ψ in a {ψ, ϕ} comparison. WST states that for any (distinct)
xi, xj , xk ∈ X ,

(WST) if p(xi ≻∗ xj)≥ 0.5 and p(xj ≻∗ xk)≥ 0.5,
then p(xi ≻∗ xk) ≥ 0.5.

This translation is supposed to account for choice variability
and thus allow for inference to true intransitive preference if
violated. But despite its intuitiveness, WST has well known
conceptual issues: repeated rounds of pair-wise choice over
a single choice set X , can violate WST if there is a certain
mixture of different but all transitive choice patterns on that
set (Birnbaum & Diecidue, 2015).
In light of this, Regenwetter et al. (2011) suggest an altern-

ative account they call the mixture model of transitive pref-
erence (MMTP). This model explicitly incorporates variabil-
ity by allowing mental preferences states themselves to vary
from one point in time to another. Nevertheless, choices made
at any given time is always the expression of some determin-
ate transitive preference order. More precisely, any DM has
some (not necessarily uniform) probability distribution over
transitive mental states and xg is chosen over xk at time t if
and only if DM is in a sampled preference state where xg is
preferred to xk. One such transitive preference state might be
xi ≻ xg ≻ xk. This model implies the Triangle Inequality,
which serves as a supposedly transitive restriction on binary
choice proportions akin to that of WST:

(TI) p(xi ≻∗ xj)+p(xj ≻∗ xk)−p(xi ≻∗ xk) ≤ 1.

This probabilistic translation is immune to the kind of aggreg-
ation paradox referenced above, i.e. no aggregation of only
transitive choice patterns can violate TI. In a reanalysis of
Tversky (1969) data (and their own replication of it), Regen-
wetter et al. (2011) found no significant violation of TI (see
also, Cavagnaro & Davis-Stober, 2014).

Unfortunately, TI suffers from the reverse aggregation para-
dox: an aggregation of intransitive choice patterns (and other
mixtures) can satisfy TI. That is, in cases where transitive pref-
erence should be rejected, TI can indicate the opposite. The
moral drawn by Birnbaum from all of this is that “(...) we
should be analyzing data patterns rather than marginal choice
proportions.” (Birnbaum, 2011, p. 5) 4
The essential idea behind the alternative pattern counting

approach is to analyse choice data at the triple-level. More
precisely, let T = {(T1,≻∗

1), (T2,≻∗
2), . . . , (Ti,≻∗

i )} repres-
ent a set of choice patterns for some DM, where each Ti con-
sists of three distinct alternatives. Next, let T c be the subset of
choice patterns in T which violate transitivity. For example,
(Tj ,≻∗

j ) = {(x, y), (y, z), (z, x)} would be an element in this
set. By counting up the number of elements in T c and divid-
ing it by the number of elements in T , one gets to estimate
a rate of intransitivity for a given DM. One can then aggreg-
ate this rate across participants, which allows for comparison
of intransitivity rates between experimental groups or between
experimental conditions. This is the main method of analysis
that will be used in this study (for other studies using the pattern
counting approach, see for example, Butler & Pogrebna, 2018;
Loomes, Starmer & Sugden, 1991; Schwartz, Epinat-Duclos,
Léone, Poisson & Prado, 2018; Sopher & Gigliotti, 1993).
There are of course caveats with this approach as well. Re-

genwetter et al. (2011) points out a surprising statistical result
regarding the non-monotonic relationship between rates (or de-
grees) of intransitivity and the goodness-of-fit of conventional
significance tests. In other words: higher rates of intransitive
choice does not necessitate lower p-values. Still, the pattern
counting approach avoids blatant conceptual issues befalling
both TI and WST. In the present study, comparing rates of in-
transitivity between experimental conditions gives a straight-
forward way of revealing the potential effects of choice blind-
ness manipulation on intransitive choice and preference. How-
ever, it is in part the aforementioned methodological concerns
which motivate novel indirect methods of analysis to be de-
tailed in later sections.

Hypotheses

With the exception for the first one, the following is a fairly
abstract level delineation of hypotheses. Only after a detailed
account of the methodology can these hypotheses be turned
into precise and testable conjectures.
Recall that the main research question (see (Q)) intends at

a discernment of potential mechanisms for defense against in-
transitive or otherwise preservation of transitive choice beha-
vior (and by extension transitive preference). Assuming a neg-
ative answer to (Q) gives prima facie reasons for a positive an-
swer to (q), i.e. that choice blindness manipulation can in fact
elicit intransitive preference. Under this assumption the first
hypothesis can be formulated as follows:

(H1) In conditions of choice blindness manipulation,
rates of intransitive preference will be significantly
higher when compared to non-manipulated condi-
tions.

In other words: undetected false feedback (and confabulation)
will have amarginal effect on the rate of intransitive preference
so as to exceed the base rate occurrence in non-manipulated

4See also the True and Error model, by (Birnbaum & Schmidt, 2008).
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conditions. This marginal effect is then to be attributed to
choice blindness induced (CB-induced) preference change.
Answering (Q) in the affirmative results in a set of hypo-

theses which are both antithetical to the first. One of these hy-
potheses pertains to defense against choice blindness initiated
intransitive choice:

(H2a) Detection of false feedback is more likely
when accepting such feedback implies an intransit-
ive pattern of choice.

To get a sense for what this means, imagine a DM exemplify-
ing the following choice pattern: (Ti,≻∗) = x ≻∗ y ≻∗ z.
DM therefore chooses x in the forced choice between x and
z. False feedback subjected to this choice involves presenta-
tion of z as the previously chosen alternative. If DM fails to
detect this mismatch and proceeds to give confabulated reas-
ons for choosing z, she has by implication accepted z as the
previously chosen alternative, i.e. z ≻∗ x. This would in
turn commit DM to the following intransitive choice pattern:
x ≻∗ y ≻∗ z ≻∗ x. In this sense, detection rate of manipula-
tion is predicted to be sensitive to the already defined choice
pattern on Ti. Whether the acceptance of false feedback im-
plies intransitivity depends both on the choice pattern exhibited
by the DM, and on the specific comparison that is subjected to
the manipulation. The details of this fact will be spelled out
later.
The second hypothesis builds on the former, but puts em-

phasis on how a DM might preserve transitive preference:

(H2b) An organic or CB-induced between-round
choice reversal which would lead to intransitivity,
will prompt additional choice reversals to preserve
a transitive order.

Put simply, a DM will adapt choice behavior accordingly
whenever a transitive order on the relevant choice set is
threatened. Recall the case described in connection to H2a:
with x ≻∗ y ≻∗ z being the initial choice pattern, accepting
false feedback on comparison {x, z} commits a DM to z ≻∗ x
and so by implication to the intransitive patternx ≻∗ y ≻∗ z ≻
x. Imagine a case where DM actually reverses her choice on
the second repetition of {x, z}, either due to CB-induced pref-
erence change (see The Choice Blindness Phenomena) or just
by random chance (the organic case). In such cases, a transitive
order on Ti is maintained only if DM also reverses choice on
either the {x, y} or {y, z} comparisons (or both). For example,
an addition reversal on {x, y} leads DM to choose y over x, z
over x (the reversal which threatened transitivity) and y over
z (consistent with original choice in round one). This amounts
to the following transitive order on Ti: y ≻∗ z ≻∗ x. As with
H2a, a more detailed and testable formulation of H2b will be
formulated in due course.
Finally, it should be noted that H2a and H2b are not mutu-

ally exclusive predictions.

2 Methods
Logical constraints and additional notation

In an effort to induce intransitive preference with false feed-
back, certain logical imitations are important to keep in mind.
Firstly, alternatives of any pair-wise comparison are both ele-
ments in a common triple Ti = {x, y, z}. In an set with three
elements there are

(
3
2

)
= 3 unique pair-wise comparisons.

Therefore, any particular T will be associated with some or-
der of comparison, C = ({x, y}, {y, z}, {x, z}), represent-
ing the pair-wise order in which the elements of T will be
shown at the trial-level. As will become apparent soon, de-
ciding on the comparison order for triples is crucial for the
manipulation to even be logically compatible with electing in-
transitivity. We use ’Ci[n]’ to denote the nth term of any
Ci.5 In this experiment, manipulated trials will always co-
incide with the third and last term of any Ci. If T happens
to be a manipulated triple with the order of comparison C,
this would mean that subsequent to choice DM is given false
feedback on C[3] = {x, z}. Now, acceptance of false feed-
back on C[3] only implies intransitivity under circumstances
where a DM exemplifies a particular pattern of choice on T , a
so called Choice Blindness Transitive (CB-Transitive) choice
pattern. Informally, a CB-Transitive pattern is one where, had
the choice made on the last comparison been reversed, the res-
ulting pattern would end up intransitive. This concept is im-
portant in the coming refinement of hypotheses, experimental
design and in data analysis.
To get a better grip on CB-Transitivity we can make use of

the visual representation of choice patterns in figure 2. The
left-most graph (ignoring the dashed arrow) represents choice
pattern (T,≻∗

1) = x ≻∗ y ≻∗ z, black arrows pointing away
from the chosen and towards the non-chosen alternative. As-
suming C as the comparison order, choice blindness manipu-
lation on C[3] = {x, z} can lead to intransitivity if the faulty
feedback is accepted (represented by the dashed arrow). The
right-most graph represents pattern (T,≻∗

2) = x ≻∗ z ≻∗ y
(again ignoring the dashed arrow for the moment). In this case,
manipulation on C[3] = {x, z} cannot lead to intransitivity;
the counterfactual reversal on {x, z} (as represented by the
dashed arrow) would result in the following transitive order:
z ≻∗ x ≻∗ y. However, reversal of choice on the {x, y} com-
parison does lead to intransitivity: x ≻∗ z ≻∗ y ≻∗ x. Thus,
choice patterns differ crucially on which choice reversal would
make them intransitive. We will refer to comparisons in which
a reversal of choice results in intransitivity as target compar-
isons.6 Hence, the target comparison for pattern (T,≻∗

1) is
{x, z}, whereas for pattern (T,≻∗

2) the target comparison is
{x, y}.
With this exposition behind us, we can now provide a pre-

cise definition of CB-Transitivity. We say that for any choice
pattern (Ti,≻∗

i ) and order of comparison Ci,

(CB-Transitivity) (Ti,≻∗
i ) is CB-Transitive if and

only if the third comparison Ci[3] is identical to the
target comparison in Ci, as defined by (Ti,≻∗

i ).

Participants

Participants (N = 118) were recruited using Prolific and were
paid 8£ an hour for participation. Inclusion criteria included
language proficiency in English and a >.95 completion rate.
Consent forms were given before and after the experiment. In
addition, people that had previously participated in a choice
blindness experiment were screened out from the sample.

5The subscript ’i’ is used both to indicate that we are talking about an ar-
bitrary as opposed to a particular comparison order, but also to associate it to
the ith triple Ti.

6From a technical standpoint, the elements of a target comparison corres-
pond to the greatest and least elements of T , as determined by the≻∗ relation.
An element ψ ∈ Ti is said to be the greatest element of Ti iff for any y ∈ Ti:
ψ ≻∗ y. Correspondingly, an element ϕ is said to be the least element of Ti
iff for any z ∈ Ti: ϕ ≺∗ z.
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Figure 2: Black and dashed arrows are pointing away from the
chosen and towards the non-chosen alternative. The left-most
graph is CB-Transitive since choice reversal on the last C[3]
comparison (represented by the dotted arrow) would lead to
intransitivity. The right-most graph is correspondingly non-
CB-Transitive: reversal of choice on C[3] = {x, z} leads to
the transitive pattern z ≻∗ x ≻∗ y. In this case, reversing the
arrow between alternatives x and y would make the pattern
intransitive.

Following a pilot study with 15 participants, a frequent-
ist power analysis was conducted with respect to the required
sample size to test hypothesisH1. To get a plausible effect size
estimate, parameters such as detection rates, CB-Transitivity
rates and preference change rates were used to calculate an ex-
pected difference in the mean intransitivity rate between ma-
nipulated and non-manipulated conditions. With the most con-
servative parameter estimates, this difference amounted to 5%.
Hence, the rates of intransitive choice is at worst, expected to
be 5% higher in manipulated conditions. Using the sample
standard deviation from the pilot data (σ =

√
p(1− p) = .26),

we end up with a low Cohen’s D effect size equal to 0.18. The

R-package ’simr’ was used to conduct the power analysis for
a generalized linear mixed model – to be specified in the sec-
tion on Statistical methods (Green & MacLeod, 2016). With
a significance of α = 0.05 and a minimum power = 0.80, the
minimum sample size to test H1 is N = 110 (power = 85%,
CI[75.26, 92.00]).

Materials

The experiment was implemented online with primary use of
plugins from the JavaScript jsPsych library.

Procedure and General Structure

To test stated hypotheses, a within-subject experiment with
three experimental phases was conducted. During phase one
of the experiment, a DM was asked to sequentially rate pic-
tures of faces using a visual analogue scale (VAS). Each face
picture was shown for 4.2 seconds and was then covered by a
card-back, after which the DM could express her perceived at-
tractiveness of the face. Themotivation for using a 0-100VAS-
scale was based on its precision (similar to a slider), its un-
biased starting position (requires clicking to initiate tick place-
ment) and the fact that it generates normally distributed data
(Funke, 2016). The precision was especially important for
current purposes, as the individual ratings of faces were used
to determine participant-specific orders of comparison for any
choice set (see Order of comparison). 20 different triples of
face pictures was used, for a total of 20× 3 = 60 trials.
Phase two of the experiment constitutes the main set of bin-

ary forced choice trials. On each trial, a DM was tasked with
deciding on which of two horizontally aligned faces she finds
the most attractive (see figure 1A). Both faces pictures are
shown for 4 seconds and then covered by differently colored
card-backs. DMs then chose the face she preferred by press-
ing either a ’left face’ or a ’right face’ button with her mouse
cursor. The relative positioning of faces were randomized on
each trial, avoiding possible ”left/right” face selection bias.

Figure 1: A illustrates the main binary choice procedure. In this case, DM receives feedback congruent with her selection. In
a manipulated trial DM would be given feedback of the face opposite of her choosing during the feedback and explanation
screen. B represents an example of what the trial-structure may look like. On trial 9, DM selects y and so two pairs from a
non-manipulated triple swap places at the trial-level, demonstrating the dynamic presentation rule.
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Following this choice, DM stated on a VAS-scale how much
stronger her preference was for the face she selected (relative
preference rating) (see 1A). Followed immediately by this rat-
ing was a feedback display showing the purportedly selected
face picture (in the same spatial position as the ’selected’ face).
At this stage the face picture was visible until theDMhad given
an explanation of her choice from a fixed array of facial char-
acteristics (e.g. nose, eyes, proportion). In addition to these
options, a DM could also state ’I actually prefer the other face’,
allowing her to reject false feedback on manipulated trials (or
to change her mind) (see figure 1A).
In 12 out of 66 trials (including 6 filler trials), DMs were

subject to false feedback on the third comparison (i.e. C[3])
with respect to a given choice set and its associated comparison
order. To reduce detection, the first manipulated trial started at
trial position 7-8 and manipulations were then distributed over
the remaining trials with a 3-6 trial interval (see figure 1B).
Fillers were used to ensure this interval is respected. Filler
pairs were never manipulated, and so there was likewise 12
cases of manipulations counted at the aggregate triple-level.
For each DM, 12manipulated triples (M-triples) was randomly
sampled from the pool of 20, the remaining 8 acted as non-
manipulated control triples (NM-triples).
During phase three, participants were tasked with a second

round of binary forced-choice trials on the same set of 60
comparisons (filler pairs are excluded). Only this time DMs
were not asked to explain their choice subsequent to selection.
During this choice phase, the trial structure seen in figure 1B
was completely randomized, meaning no order was respected,
neither internal to a choice set nor between choice sets. By
utilizing data from this phase it becomes possible to examine
the consistency of choices between the two rounds of binary
choice. This data further enables investigation into the mar-
ginal effects of manipulation on the rates of intransitive pref-
erences in manipulated conditions (see H1).

Stimuli

The stimuli used consisted of hand-picked triples from the
Chicago Face Database, a database with standardized photo-
graphs and extensive norming data for each individual (e.g.
attractiveness ratings, age, sex, race). Attractiveness ratings
and algorithmically approximated similarity ratings was used
to hand-pick triples of face-pairs. Faces within a triple were
broadly similar in their facial features (and by the categories
listed above). This effort was mainly made to reduce the de-
tection of false feedback and so boost the number of independ-
ent variable manipulations, i.e. undetected false feedback on
binary choice.

Order of comparison

The order in which triples of comparisons was presented dur-
ing the first round of binary choice was a crucial component
of the experimental design. This was in order to maximize
the chances of false feedback being logically compatible with
inducing intransitive preferences. Stated with the now intro-
duced vocabulary: we would like to raise the probability that
a given choice pattern, (T,≻∗), satisfies CB-Transitivity rel-
ative to its order of comparison C and this amounts to having
the target comparison in C coincide with C[3]. Now, if one
always knew beforehand, exactly what choices a DM was go-
ing to make over T , this would be a trivial matter. The crux
consists precisely in not having such omniscient powers.

Nonetheless, participant-specific VAS-ratings during the
first part of the experiment gives expected choice/preference
orderings. We can use these ratings to decide which choice ob-
ject to include in which comparison. More specifically, let f
be an attractiveness rating function for a DM on a given triple
T = {x, y, z}, such that f(z) = n, f(y) = n+ 1 and f(x) =
n+2. The resulting order of presentation for DM will then be
given by STAT = ({x, y}, {y, z}, {x, z}), i.e. the 1st and 2nd
highest rated face is shown first, 2nd and 3rd shown second
and the 1st and 3rd shown last.7 We might call this a static
rule of comparison since it is based solely on the attractiveness
ratings in the first part of the experiment.
If a DMs behavior aligns completely with their prior attract-

iveness ratings, it would yield a pattern of x ≻∗ y ≻∗ z,
since f(x)> f(y)> f(z). This pattern is CB-Transitive since
the target comparison {x, z} is identical to STAT[3] = {x, z}.8
However, if a DM deviates from even one of our prior expect-
ations, this condition will no longer hold. For instance, if DM
chooses y over x, the target comparison transforms into {y, z},
which aligns with STAT[2]. Consequently, any manipulation
on STAT[3] could no longer result in intransitivity. The CB-
Transitive property is therefore quite fragile.
To increase the likelihood of CB-Transitivity, we used a dy-

namic rule of comparison which was sensitive to the choice
made by a DM on the very first comparison in STAT. Let ψ
denote the face selected on STAT[1] and ϕ denote the face not
selected on STAT[1]. The rule can then be expressed as fol-
lows:

DYN = ({x, y}, {ϕ, z}, {ψ, z})

To understand the advantage of this rule, let’s assume, as be-
fore, that DM violates f with respect to comparison {x, y},
choosing y over x instead of the other way around. Despite
the prediction error in this case, rule DYN will ensure that
DYN[3] coincides with the relevant target comparison: DM
selects y in comparison {x, y}, and so is presented with com-
parison {x = ϕ, z} second and {y = ψ, z} third. This effect-
ively ”saves” CB-Transitivity through rearrangement of term
two and three in STAT. Manipulation on the third comparison
(if accepted) can now lead to the following intransitive choice
pattern: y ≻∗ x ≻∗ z ≻∗ y. Figure 1B demonstrates the
dynamic presentation rule between trials 9-12.
Now, certain prediction errors cannot be accommodated this

way, but exactly the same can be said for rule STAT. How-
ever, rule DYN will distribute expectancy violations in a more
favorable way (with respect to f ) across all possible transit-
ive choice orders. More precisely, if we assume that it is al-
ways more likely to choose in accordance with f than not, then
rule DYN will effectively increase the probability, conditional
on f , that the third comparison ends up being identical with
the target comparison. This is equivalent to saying that DYN
raises the probability of any DM satisfying, on any given triple
of comparisons, a CB-transitive choice pattern (see Appendix
for details).

7From now on, variable x, y and z always denotes the highest, second
highest and lowest rated face, respectively. Hence, even when a DM exempli-
fies z ≻∗ y ≻∗ x, the rating function f will always give f(x) > f(y) >
f(z).

8Recall that manipulations only occur, if and when they occur, on the third
and last comparison with respect to any triple. With the introduced notation,
we say that manipulations occur only on Ci[3] comparisons.
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Statistical methods

All statistical modelling and visualization of data was done
in R 4.2.0. The primary analysis to test H1 used a Bayesian
mixed logistic regression model, with the proportion of in-
transitive second-round choice as dependent and choice blind-
ness manipulation as independent variable; subjects and triples
as random effects. Every other analysis relating to H2a and
H2b likewise assumed a Bayesian framework, the details of
which will be explicated in the results section. Estimates are
accompanied with a Bayes factor and 95% credible intervals.
The Bayes factor (BF) represent the marginal likelihood ratio
between the null and the alternative hypothesis (i.e. that there
is an effect of some independent variable). For example, BF =
5 means that the sample data is 5 times more likely to be seen
under the alternative hypothesis.

3 Results
Refinement of Hypotheses

Having introduced the methodology and additional conceptual
machinery, initial formulations of hypotheses can now be re-
fined and made testable. Starting withH1, recall that under the
assumption of there being no defensive mechanism against in-
transitivity, the preference change effect is expected to induce
some number of intransitive preferences. Thus,

(H1*) In conditions of choice blindness manip-
ulation, rates of second-round intransitive choice
will be significantly higher when compared to non-
manipulated conditions.

Proceeding to the hypotheses based on the assumption of
an affirmative answer to research question (Q), suggesting the
presence of a defensive mechanism against intransitivity in
cognition. With the concept of CB-Transitivity, hypothesis
H2a can be formulated as follows:

(H2a*) The detection rate of manipulation will be
greater whenever the manipulated comparison be-
longs to a CB-Transitive choice pattern.

If there is a difference in detection rates between CB-Transitive
and non-CB-Transitive choice patterns, it would indicate a
higher sensitivity to false feedback when accepting such feed-
back leads to an intransitive choice.
Before hypothesisH2b is reformulated, a preamble is in or-

der. Assume the following trial-level order of comparison for
some Ti: Ci = ({x, y}, {y, z}, {x, z}). The left-most graph
in Figure 3 represents a CB-Transitive choice pattern in round
one of binary choice trials: x ≻∗ y ≻∗ z. If, in the second
round, the choice on Ci[3] is reversed in isolation, intrans-
itivity would follow. Nevertheless, the right-most graph in
3 illustrates (with dotted arrows) how this can be avoided if
additional reversals take place on either the C[1] = {x, y}
or C[2] = {y, z} comparisons. Such conditional reversals
wouldmanifest as drops in choice consistency between the two
rounds of binary choice. With this in mind, hypothesis H2b
can be refined as follows:

(H2b*) Choice consistency on Ci[1] and Ci[2] com-
parisons will be uniquely low when two conditions
are met: (1) the round one choice pattern is CB-
Transitive and (2) choice is reversed/inconsistent on
Ci[3] between the two rounds of binary choice.

Figure 3: The left-most graph represents the first round (R1)
CB-Transitive choice pattern. The right-most graph tries to il-
lustrate, with dotted arrows, the ways for DM to remain trans-
itive in the second (R2), given that she has reversed her choice
on the {x, z} target comparison.

The initial reversal on Ci[3] may be caused by CB-induced
preference change (in manipulated conditions) or by organic
choice variability. No matter the cause, H2b* predicts sys-
tematic adaptation of non-target choice behavior in order to
preserve transitivity.
In presenting the results we will use code notation to

express different choice/preference patterns. Let numbers
1, 2, and 3 denote choice objects x, y and z, respectively in
comparisons {x, y}, {y, z} and {x, z}. For example, ’223’
means a DM chose y in {x, y}, y in {y, z}, and z in {x, z}.
With two possible choices on each comparison over a total
of three different comparisons per triple, there are 23 = 8
possible choice patterns: 121, 131, 133, 123, 221, 233, 223,
231. Patterns 123 and 231 are intransitive, patterns 121 and
221 are CB-Transitive, the rest are non-CB-Transitive.9

Rates of Intransitivity

Prior to testing H1*, it is important to revisit the underly-
ing mechanism that is supposed to drive the elicitation of in-
transitivity, namely the preference change effect as attributed
to choice blindness confabulation (Luo & Yu, 2017; Taya et
al., 2014). This effect should manifest as a drop in choice
consistency for manipulated pairs, relative to non-manipulated
pairs. Figure 4 shows the binary choice consistency between
the two rounds of choice, grouped according to conditions of
manipulation, detected manipulation, undetectedmanipulation
and non-manipulation. As can be seen by comparing the two
middle columns in Figure 4, the total difference in choice con-
sistency betweenmanipulated and non-manipulated conditions
is negligible (82.1% vs 82.2%).10 When consistency data is

9Unfortunately, current methodology reduces the transparency of this code,
in that the code and the actual trial-level comparison order will not always be
sequentially aligned. Whenever y is chosen in the first {x, y} comparison,
{x, z} will follow second and {y, z} third (in accordance with DYN). So for
example, in pattern 221, the first ”2” represents selection of y in the first com-
parison, the second ”2” represents selection of y in the third comparison, and
”1” represents selection of x in the second comparison.

10To ensure the meaningfulness of the comparison between manipulated
and non-manipulated conditions, only the two-fold choices made on face-pairs
within Ci[3]-comparisons are included in both conditions. The rationale be-
hind this is that, on manipulated trials, the manipulation is consistently applied
to theCi[3] comparison and so including other comparisons might lead to con-
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aggregated based on CB-Transitivity, it becomes evident that
choices belonging to CB-Transitive patterns are more likely to
be consistent. However, there is still no meaningful difference
observed between the experimental conditions. The consist-
ency rate for CB-Transitive choices is 90% and 91% in M and
NM-conditions, respectively. For non-CB-Transitive choices,
the consistency rate is 73% in M-conditions and 72.4% in
NM-conditions. A comprehensive exploration of the poten-
tial reasons for the absence of a preference change effect will
be presented in the forthcoming Discussion.

Figure 4: Binary choice consistency between the two rounds
of choice, grouped according to conditions of manipula-
tion, detected manipulation, undetected manipulation and non-
manipulation. Dotted line represents sample mean across all
groupings of the data.

Given these numbers we do not foresee any difference in the
rates of intransitive choice between conditions. As expected,
according to the logistic regression model specified in Stat-
istical methods, 3.5% [2, 5.2] and 3.6% [2.3, 5.23] of choice
patterns were intransitive in non-manipulated and manipulated
conditions, respectively. The Bayes factor for the (log-odds) β
(0.04 [-0.52, 0.58]) was estimated to 0.3. The intransitivity rate
was remarkably low in general: averaged across conditions,
the intransitivity rate is 3.58% [2.4, 4.8]. Table 1 summarizes
the sample proportion of patterns across rounds of choice (R1
vs R2) and condition (NM vsM). For any choice triple T , there
are 2(

3
2) = 8 possible choice patterns, two of which are intrans-

itive (i.e. 123 and 231), and so the intransitivity rate is way
below chance-level at 25%.

Table 1: Observed proportion of each pattern, grouped accord-
ing to round and condition.

NM-R1 M-R1 NM-R2 M-R2

121 0.33 0.33 0.32 0.34
221 0.18 0.198 0.184 0.166
131 0.18 0.19 0.2 0.19
133 0.08 0.09 0.106 0.092
233 0.06 0.056 0.061 0.066
223 0.08 0.087 0.08 0.084
123 0.029 0.02 0.021 0.029
231 0.037 0.022 0.022 0.025

To get a better idea of the true rate of intransitive prefer-
ence, we follow previous studies in examining the occurrence

founded conclusions about the relative choice consistency.

Figure 5: A plots individual choice reversals against number
of intransitive choice patterns. The dotted line divides parti-
cipants into two even groups based on a threshold of 12 choice
reversals. The same analysis from Butler and Pogrebna (2018)
can be seen in figure B, but with the complete opposite pattern
being displayed. Note. figure B is adapted from ”Predictably
intransitive preferences”, by Butler, D. J., and Pogrebna, G.,
2018, Judgment and Decision Making, 13(3), p. 226.

of repeated intransitive choice patterns between the two rounds
of choice (Birnbaum & Diecidue, 2015; Butler & Pogrebna,
2018). Repeating a choice pattern means consistently select-
ing the exact same set of three alternatives within a triple across
both repetitions of pair-wise choice. When examining all cases
of repeated patterns among the total sample size of N = 118,
only 2 instances were found to be intransitive, accounting for
a mere 1.6%. This contrasts with the findings of the study by
Butler and Pogrebna (2018), discussed in the introductory sec-
tion, where they reported a much higher rate of 32% intransit-
ive patterns among all repeated cases.
To further separate noisy transitivity from true intransitive

preference, we follow the aforementioned authors in examin-
ing the correlation between individual choice inconsistency
(or ”noisiness”) and the number of intransitive patterns ex-
hibited.11In a data set with low rates of repeated intransitivity,
we would likewise expect the low rates of intransitive choice
(3.58%) to be driven by choice variability rather than true in-
transitive preference. Figure 5A plots the number of choice
inconsistencies, at the individual level, against the number of
intransitive choice patterns. The dotted line divides the parti-
cipants into two even groups based on a threshold of 12 choice
reversals. The group with <12 reversals exhibited an average
of .94 intransitive patterns, whereas participants with >12 re-
versals exhibited an average of 3.27. The complete reverse pat-

11It is important to recall that the choice consistency is identical across the
experimental conditions, thus eliminating manipulation condition as a poten-
tial confounding factor in the analysis.
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tern can be seen in Figure 5B, which is an adapted figure from
Butler and Pogrebna (2018). In their study, with high rates of
intransitive choice and repeated intransitivity, more consistent
individuals likewise exhibited greater numbers of intransitive
choice patterns.

Detection rate and CB-Transitivity

To get an idea of the general detection rate, a (random slopes)
regression model was fit: manipulation condition as fixed
effect (two-level factor, NM-conditions coded as intercept),
unique DMs and unique face-pair comparisons as random ef-
fects. Themanipulation-β was estimated to log-odds 4.13 [3.6,
4.67] (BF = 1e19), which amounts to a detection rate of 46%
[36.2, 56.4], meaning that false feedback is accepted roughly
54%of the time. DMs showed large variance in detection rates,
with an average standard deviation from the population-β at
log-odds 2.22 [1.8, 2.72] (see Figure 6). No such variation was
seen with respect to unique face-pairs (log-odds 0.72 [0.41,
1.08]).

Figure 6: Random effects of unique DMs (N = 118) plotted
against individual sample means (grey dots). Dotted line rep-
resents model best fit.

Testing H2a* involves the control for several confounds.
The aim is to study the isolated effect of CB-Transitivity on
detection rates. Or in other words: the isolated effects of hav-
ing (hypothetical) acceptance of false feedback lead to an in-
transitive choice. As a first approximation, the sample data
showed that manipulation on CB-Transitive patterns resulted
in a 20% higher detection rate compared to non-CB-Transitive
patterns (CB-Transitive = 60.8%, non-CB-Transitive = 40%).
However, this result is only interesting so long as it cannot be
wholly explained by preference strength effects.
Firstly, different choice patterns imply different degrees of

f -violations, meaning they require of a DM to make different
amounts of binary choices that are inconsistent with their pre-
viously stated absolute attractiveness ratings. For example, as-
suming again that f(1 = x) > f(2 = y) > f(3 = z), the CB-
Transitive pattern 121 will imply zero violations, whereas the
non-CB-Transitive pattern 133 implies two violations, one of
which occurs on the last Ci[3] comparison.12 Sample data in-
dicated that binary choice consistency with f on a manipulated
Ci[3] comparison raised the probability of detection by 21%
(note that this number may be inflated by other factors). There-
fore, difference in preference strength alone might account for
the difference in detection rates between CB-Transitive and
non-CB-Transitive patterns.
A promising way forward is to compare particular patterns

with matching preference strength profiles. Such a comparison

12This is a case where DM chooses z over y and z over x even though
f(x) > f(z) and f(y) > f(z).

can be found between CB-Transitive pattern 221 and non-CB-
Transitive 131. 221 and 131 have importantly similar prop-
erties except for CB-Transitivity: they have one f -violation
each, but are both consistent with f on Ci[3], and yet 221 is
CB-Transitive but 131 is not. Comparison of these two pat-
terns amounted to only a 12.6% difference in detection rates
(131 = 47%, 221 = 59.6%). However, in this case, there will
still be differences in preference strength, but in favor of the
non-CB-Transitive pattern. The absolute difference in attract-
iveness ratings between faces on Ci[3] comparisons is bound
to be larger for pattern 131. For pattern 131, Ci[3] = {x, z}
and for pattern 221, Ci[3] = {y, z},13 and so the mean abso-
lute difference in f -ratings will be greater with respect to 131:
|f(xi)− f(zi)| > |f(yi)− f(zi)|. This follows directly from
the experimental design of the triple-internal comparison or-
der; faces variables x, y and z always denoting the highest,
second highest and lowest rated faces, respectively. Sample
data indicated an average difference of 20 rating points for pat-
tern 131, and only 10 points for 221. Similarly, relative prefer-
ence ratings might differ between patterns. Another measure
of preference strength is the consistency of the patterns them-
selves, i.e. the extent to which they are repeated between the
two round of choice. All of these factors are important to con-
trol for in forthcoming regression analysis.
To test H2a*, a mixed multiple regression model was fit on

a subset of the data including only manipulated trials belong-
ing to either a 221 or 131 choice pattern. Fixed effects include
pattern 221 (131 coded as intercept), difference in f -ratings
between faces, relative preference ratings and pattern consist-
ency. Continuous variables are standardized to improve model
convergence and interpretation of coefficients (one unit in-
crease equals +1 standard deviation from the mean). Every β-
coefficient was allowed to vary with unique DMs, and unique

13Recall the dynamic rule of presentation. See the subsection titled Order
of comparison.

Figure 7: Fitted values from model, grouped according to CB-
Transitivity and pattern consistency. Error bars show 95%
Bayesian credible intervals. Dotted line represents sample
mean across the two patterns.

10



face-pairs were given random intercepts. The number of 121
and 221 patterns were evenly balanced (280 cases of 121 and
268 cases of 131).
Results indicated a strong and significant effect of CB-

Transitivity on detection rates (log-odds 0.98 [0.39, 1.57], BF
= 48.61). Computation of the fitted posterior contrast between
pattern 221 and 131 (averaged across pattern consistency)
showed that DMswere 21.4% [8, 34]more likely to detect false
feedback whenever the manipulated comparison belonged to a
221 pattern (see Figure 7). Amoderate effect of confidence rat-
ings can be seen (log-odds 0.53 [0.15, 0.97], BF = 9.7), where
+1σ from the mean predicts roughly 11.7% higher detection
rates. With respect to the effect of attractiveness difference the
evidence is in favor of the null (log-odds 0.09 [-0.23, 0.42],
BF = 0.2). Pattern consistency was also a strong predictor
of higher detection rates, but is more uncertain than the CB-
Transitivity-β (log-odds 1.19 [-0.23, 2.10], BF = 13.7).
In sum, a substantial part of the variance cannot be accoun-

ted for by reference to differences in preference strength. Thus,
what drives higher detection rates for pattern 221 is its CB-
Transitive property. In other words: DMs are markedly more
sensitive to false feedback when accepting such feedback en-
tails an intransitive pattern of choice.

Evidence for Transitivity preserving preference change

Recall that for CB-Transitive choice patterns, isolated choice
reversals on Ci[3] comparisons inevitably results in intransit-
ivity. According to H2b*, such cases will prompt additional
choice reversals onCi[1] orCi[2] in order for a DM to preserve
a transitive order on the associated triple. In terms of mod-
elling, we are therefore interested in the interaction between
CB-Transitivity and Ci[3] consistency as it is related to choice
consistency on Ci[1] and Ci[2] comparisons. When a pattern
is non-CB-Transitive,Ci[3] inconsistency should have no con-
siderable effect on the Ci[1] and Ci[2] choice consistency. In
these cases, reversal on Ci[3] does not threaten a transitive or-
der on the associated choice set. As in the case withH2a*, the
aforementioned interaction effect would only be interesting so
long as differences in preference strength cannot account for
substantial parts of the variance.
The bottom panel in Figure 8 shows relative prefer-

ence ratings for Ci[1] and Ci[2] comparisons, grouped ac-
cording to CB-Transitivity and Ci[3] consistency. Across
all combinations of CB-Transitivity and Ci[3] consistency,
no pronounced difference can be seen (Non-CB-Transitive-
consistent: mean = 46.2; CB-Transitive-consistent: mean
= 47.6; Non-CB-Transitive-inconsistent: mean = 49.3; CB-
Transitive-inconsistent: mean = 46.9). The top panel in Fig-
ure 8 represents absolute differences in attractiveness ratings
between faces in Ci[1] and Ci[2] comparisons, grouped in the
same way as before. In this case, there was a slight advantage
for comparisons belonging to CB-Transitive choice patterns
(Non-CB-Transitive-consistent: mean = 10.5; CB-Transitive-
consistent: mean = 12.9; Non-CB-Transitive-inconsistent:
mean = 11; CB-Transitive-inconsistent: mean = 12.6).
As mentioned previously, making a binary choice con-

sistent with attractiveness ratings is another good measure
of preference strength and was shown to be predictive of
higher detection rates. Likewise in the case of choice consist-
ency, choosing in accordance with f -ratings was predictive of
12.8% higher between-round choice consistency (f -consistent
= 81.6%, f -inconsistent = 69%). In other words: a DM who

Figure 8: Plots the relative preference ratings (bottom) and
absolute difference in f -ratings (top) as a function of Ci[3]-
consistency and CB-Transitivity. The dotted line in both pan-
els represents the respective sample means.

chooses a face with higher attractiveness rating, according to
her own previous judgement, will be more likely make the
same selection this face again. As also previously mentioned:
the experimental design necessitates that CB-Transitive pat-
terns are more consistent with f -ratings compared to non-CB-
Transitive patterns (see Appendix for details), implying that
CB-Transitive choices are driven by stronger subjective pref-
erences. Consequently, if choice consistency is driven entirely
by preference strength and is completely insensitive to the ab-
stract property of transitivity, higher consistency rates for com-
parisons in CB-Transitive patterns should be expected across
the board. In fact, in the section titled Rates of intransitivity, it
was shown that CB-Transitive choices (aggregated across all
comparisons) had higher choice consistency rates in both M
and NM-conditions.
To test H2b* a mixed interaction model was fit on a

subset of the data including only Ci[1] and Ci[2] compar-
isons. To repeat, the outcome variable of interest is bin-
ary choice consistency on the just referenced comparisons.
Fixed effects include CB-Transitivity, Ci[3]-consistency and
CB-Transitivity*Ci[3]-consistency as an interaction term. All
coefficients were allowed to vary with unique DMs. The
model estimated a moderate positive effect of CB-Transitivity
(log-odds 0.28 [0.10, 0.46], BF = 8.42). However, as expec-
ted underH2b*, this effect was reversed when co-present with
a reversal on a Ci[3] comparison, as shown with a decisive
interaction-β estimated to log-odds -1.58 [-2.04, -1.11]; BF =
1.9e5.
Figure 9 plots the fitted values from themodel. When choice

was consistent on Ci[3] comparisons, Ci[1] and Ci[2] consist-
ency was higher for CB-Transitive patterns (i.e. either 121
or 221). The fitted posterior contrast was 4.3% [1.6, 7.6].
In line with the interaction-β, the complete opposite effect of
CB-Transitivity becomes apparent when there is a reversal on
Ci[3]. The fitted posterior contrast indicated a drop in choice
consistency by 26% [17.2, 34.9]. In the non-CB-Transitive
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case,Ci[3]-inconsistency is, if anything, associated with an un-
certain increase in choice consistency (posterior contrast: 5%
[0.4, 9.7]; C[3]-consistency-β = log odds 0.32 [0.02, 0.65],
BF = 1.46). In sum, strong evidence has been given in favor
of H2b*: despite the presence of a strong initial subjective
preference, cross-round choice dynamics exhibits systematic
adaptation in line with the abstract property of transitivity.

Figure 9: Fitted values from interaction model. This figure
has the same structure as figure 8. Labels on the x-axis in-
dicate whether choice is consistent (between rounds) on the
Ci[3] comparison. The y-axis represents choice consistency
forCi[1] andCi[2] comparisons. Dotted line represents sample
mean.

4 Discussion
Elicitation of intransitivity — Limitations

At its face, the results indicate it not being possible to induce
intransitivity with choice blindness. However, equally appar-
ent is the absence of CB-induced preference change, an oth-
erwise robust effect replicated in multiple studies (Izuma et
al., 2015; Johansson et al., 2014; Luo & Yu, 2017; Taya et
al., 2014). For instance, in Johansson et al. (2014) the dif-
ference in choice consistency between M (56.6%) and NM-
conditions (93.3%) was roughly 37%, whereas in this study the
difference approaches zero. One interesting possibility is that
the effect of preference change is somehow resisted to prevent
the emergence of intransitive preferences. More specifically,
when common CB-Transitive patterns are subject to manipu-
lation, the otherwise seen preference change effect might be
”blocked” by some transitivity preserving mechanism. How-
ever, in that case we should still expect see the normal effect of
preference change in non-CB-Transitive cases. That is, when
preference change is no threat to transitivity, there ought to be
a normal discrepancy betweenM and NM-conditions. No such
indications can be found in the data. Since preference change
is the driving mechanism behind the hypothesized effect, H1
cannot be properly rejected with current data.
Several factors may account for the failure to see a prefer-

ence change effect, some more interesting than others. Firstly,
diminished engagement and self-reflective interaction with the
chosen face is believed to be on of the contributing factors. The
”explanation” of each face-selection consists in a simple but-
ton press from an array of facial characteristics. Although the
”selected” face is visible until an explanation has been given,
it is possible that participants pay more attention to the but-

tons themselves and are disposed by convenience to make a
heedless response. Taya et al. (2014) found an expected pref-
erence change effect in an online-implemented study where
participants had to provide typewritten explanations for their
choice (on half of the trials). In a follow-up study, the general
procedure will be adapted in a similar way, with the hope that
this makes confabulation genuine and more effective in align-
ing later choice with false feedback. This may also improve
the baseline choice consistency (78%, see Figure 4), another
factor which may dampen the effect size in this case.
Secondly, the current experiment is adapted for the study

of transitivity, which introduces certain structural features un-
common to other choice blindness experiments. Recall that the
initial triple-internal comparison order (barring the dynamic
rule) is based on participant-relative attractiveness ratings.
Couple this fact with patterns 121 and 131 being two of the
most common patterns in round one M-conditions (see table
1). Both of these patterns contain faces, in the last manipulated
C[3] comparison, that has the lowest and the highest attractive-
ness ratings in their respective triple. Hence, it is possible that
the differentiability of these face-pairs partly hinders the oth-
erwise observable shift in second round choice, following un-
detected manipulations. In other words, the ”confabulation”-
threshold for successfully inducing preference change, is elev-
ated by having a large part of the manipulations befall face-
pairs with relatively large discrepancies in attractiveness.
Thirdly, detection rates of manipulation are relatively high

(10%-30% detection rates seen in previous work, see for ex-
ample, Johansson et al., 2005; Taya et al., 2014). It is known
from previous studies as well as this one (see Figure 4) that
detected manipulations increase choice consistency between
rounds (e.g. Johansson et al., 2014). Low detection rates is
therefore a prerequisite for CB-induced preference change to
be discernible between experimental conditions. In a more
speculative vein, high detection rate for a given participant
(say, above 50%) may have a global negative effect on the
minority of undetected cases, in the sense of nullifying the
otherwise effective confabulation mechanism. Lowering de-
tection rates going forward may involve making faces more
similar (in attractiveness and on other dimensions). At the
same time, such efforts can unfavorably lower the baseline rate
in choice consistency; states of indifference promotes choice
variability. Another alternative is to exclude the very first
phase of the experiment. Reason being that previous expos-
ure and explicit rating of faces plausibly raises detection rates
on binary choice. However, this approach would significantly
hinder ones ability (as a researcher) to construct optimized
comparison orders, which is crucially important when trying
to maximize the rates of CB-Transitivity. Future investigation
should explore whether meta-data (e.g. averaged attractive-
ness ratings) can act as a viable alternative for constructing
triple-internal orders.

Intransitivity in General

Two lines of reasoning allow for confident rejection of intrans-
itive preference in the data. In line with other researchers, the
rate of repetition of a pattern serves as a good approximation to
whether it constitutes a true preference structure (Birnbaum &
Diecidue, 2015; Butler & Pogrebna, 2018). The presumption is
that true preference patterns exhibits robustness to choice vari-
ability or ”error”, and that repetition of the same pattern twice
means you’ve demonstrated such robustness. In this study,
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practically no repeated intransitive patterns are found. This
is solid grounds for attributing the few cases of intransitivity
to choice variability with underlying transitive preferences.
Under the assumption that intransitive choice is reflective of

noisy transitivity, greater magnitudes of noise is expected to,
purely by virtue of stochastic processes, generate greater mag-
nitudes of intransitivity. The correlation seen between choice
inconsistency and intransitivity rates therefore gives conver-
ging evidence to the same conclusion. The analysis represen-
ted in figure 5B from Butler and Pogrebna (2018), found the
exact opposite correlation on a data set with very high rates
of intransitive choice and repeated intransitive choice. They
found that participants with fewer choice reversals (i.e. more
consistent individuals) had significantly higher rates of intrans-
itive choice, supporting the rest of their analysis in favor of
truly intransitive preferences. If their reasoning is valid, the
precise opposite conclusion can be drawn from the data in this
study, i.e. the few intransitive patterns observed are not true
cases of intransitive preference.

Transitive Inference

The detection rate analysis strongly corroborates H2a: parti-
cipants are substantially more likely to notice false feedback
when the acceptance of such feedback would compel them to
intransitive choice. This is a novel kind of analysis and result
in the behavioral decision-theoretic literature. As such, it will
require quite speculative efforts in its interpretation.
One avenue looks to the well recognized phenomena of

transitive inference (TI). This refers to the cognitive capa-
city of being able to infer xRz from the prior knowledge
or exposure to xRy and yRz, where R is a transitive rela-
tion on some arbitrary set of objects. In a typical transit-
ive inference (TI) task, subjects (human or non-human an-
imals) make reinforced or trial-and-error based discriminat-
ory judgements on sequences of item-overlapping comparis-
ons: {x+, y}, {y+, z}, {z+, b}...—where ”+” represents the
in some sense ”better”, ”correct” or otherwise rewarded altern-
ative. The critical test is then made on a novel non-adjacent
comparison, such as {x, z}, where successful selection of x
is taken as evidence for a transitive inference (Greene, Spell-
man, Levy, Dusek & Eichenbaum, 2001). TI has been extens-
ively demonstrated empirically in adult, non-adult, and other
non-human animals (e.g. monkeys, rodents, fish) (Bryant &
Trabasso, 1971; Davis, 1992; Frank, Rudy & O’Reilly, 2003;
Heckers, Zalesak, Weiss, Ditman & Titone, 2004; Koscik &
Tranel, 2012; McGonigle & Chalmers, 1977). Experimental
evidence indicates that the TI-capacity presupposes no explicit
logical reasoning or meta-conscious awareness on the part of
the agent (Frank, Rudy, Levy & O’Reilly, 2005; Greene et al.,
2001). Within the current decision-context, it is plausible that
a process akin to implicit transitive inference occurs at times
when DMs exemplify CB-Transitive choice patterns.
To see why, we need to further elucidate certain proper-

ties of pattern 221, the CB-Transitive pattern compared with
131 in the analysis of detection rates. Pattern 221 denotes
the selection of y in the first {x, y} comparison. Because of
the dynamic rule of presentation (see Methods), comparison
{y, z} and {x, z} will swap places at the trial-level: C =
({x, y}, {x, z}, {y, z}).ADM then chooses x = 1 on the now
second comparison {x, z} and y = 2 on {y, z}, the third and
last comparison. Notice that for a perfectly rational agent, hav-
ing made the first two choices makes the last {y, z} compar-

Figure 10: The top graph represents a condition where trans-
itive inference can take place. The graph below allows for no
such inference. Black arrows represent actual choices made
and are pointing away from the chosen alternative.

ison superfluous; there is only one choice which is consistent
with transitivity, namely y. The first two choices in pattern 131
come with no such implications: choosing x on {x, y} and z
on {y, z} leaves open a choice of either x or z on the last {x, z}
comparison (resulting in patterns 131 and 133, respectively).
Thus, the logical relationship between the two initial choices in
pattern 221 is hypothesized to directly initiate or support a fu-
ture inferential process concerning the ”correct” choice in the
final {y, z} comparison, where the ”correct” choice is defined
as the one that conforms to a transitive choice order. The two
scenarios just described are depicted in Figure 10. The top
graph demonstrates the inference thought to be initiated in the
case of pattern 221, the bottom graph demonstrates the lack of
such an inference in the case of pattern 131. How does this
help us understand the discrepancy in detection rates?
An answer is found in the close conceptual and cognitive re-

lationship between inference and prediction. In the context of
TI, the inferential process is essentially a future-directed pre-
diction with respect to your own future choice behavior, and I
claim, with respect to the consequences of those actions. The
idea is the following: when a DM chooses y in the last compar-
ison (in pattern 221), there is an expectation of receiving y as
feedback and this expectation is grounded both in having actu-
ally chosen y, but also in its transitive relationship to the other
two choices within the same choice structure. Thus, when a
DM is given false feedback on the aforementioned choice, not
only is there an outcome-mismatch but a prediction-error re-
lating to the expected transitive order on the associated choice
set. Although a very rough sketch, thinking along these lines
can help make sense of the robust difference in detection rates
between pattern 221 and 131.
This kind of inferential reasoning might rely on quite soph-

isticated relational representations of the elements in a choice
set.14 More specifically, at the time of deliberation and choice
it would seem to require memory retrieval of discrete event
elements followed by recombination of these elements to sup-

14Note that patterns 221 and 131 have structurally identical reinforcement
histories. On the crucial last comparison in both patterns, only one alternative
(y in 221 and x in 131) has been ”reinforced” previously by being selected
in the first comparison. Explanation via reinforcement histories can therefore
not explain the discrepancies in detection rates between pattern 221 and 131.
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port inference about future events and actions. Precisely these
kinds of flexible representations are thought to be supported
by the hippocampus, hypothesized to be able to rapidly code
individual event details and their relationships to one another
(O’Reilly&Rudy, 2001). Partial inputs (e.g. display of the last
{y, z} comparison) are thought to trigger pattern completion
mechanisms, leading to the retrieval of previous associations
between elements (e.g. ”y was chosen over x” and ”x was
chosen over z”) that can support inferences about anticipated
future associations (”y will be chosen over z”) (Eichenbaum&
Fortin, 2009; Zeithamova, Schlichting & Preston, 2012). Al-
though speculative, these kinds of processes might underlie a
kind of cementation of the transitively inferred alternative to
the rest of the choice structure (in this case face y), in turn
prompting stronger anticipations about the future outcomes of
action.
In sum, it has been argued that a general capacity for trans-

itive inference and prediction can play a plausible incidental
role in defending against intransitivity in choice and prefer-
ence. This defensive mechanisms, to repeat, manifests as dis-
crepancies in detection rates between CB-Transitive and non-
CB-Transitive patterns of choice.

Transitive choice variability

With respect to H2b, what the results show is that variability
in choice is not random. When participants change their pref-
erence or otherwise display variability, they do so in a manner
that is consistent with transitivity. This is not a trivial point.
Under the assumption that decision-makers are indifferent to
transitivity, it becomes difficult to explain why only certain
choice reversals should trigger additional reversals on com-
parisons which are otherwise quite consistent. In other words,
a plausible account of the interaction seen in Figure 9 involves
taking seriously the implications of the surface-level behavior,
namely that it systematically preserves transitivity.
The mixture model of transitive preference by Regenwetter

et al. (2011) offers a possible way tomake sense of current data.
As briefly mentioned in the introduction, on this account bin-
ary choice always originates from transitive preference states,
but the particular preference state associated with a choice is
allowed to vary from one time to another. Again, let P(ψ ≻∗ ϕ)
denote the probability of choosing ψ in a comparison {ψ, ϕ}.
Then, for a given triple T , let Γ denote the set of all strict linear
orders on T for a given DM. The linear orders are strict since
each element in Γ is defined from a strict preference relation≻
on T.Mathematically, the mixture model states that P(x ≻∗ y)
for some DM is equal to:

P (x ≻∗ y) =
∑
≻∈Γ
x≻y

P≻

where P≻ is the total probability of a DM being in a preference
state ≻ where x is preferred to y (i.e. x ≻ y). In words, the
overt probability that a DM selects x in a {x, y} comparison
is given by the probability that she is in a mental preference
state where x is preferred to y. The idea behind this model is
that decision-makers draw, at different points in time, prefer-
ence orders from some probability distribution over transitive
mental states.
Now, the psychological plausibility of this idea depends on

the interval at which preference states are supposedly sampled:
is a new preference state randomly drawn at each new binary
decision-problem, or only when the decision-maker is in a suf-

ficiently different context? The former case would seem to
entail that each binary choice is made somehow independently
of any other, even in cases where choice objects belong to the
same choice set. This is not only hard to believe but would
contradict the earlier discussion on transitive inference, based
entirely on the idea that previously established logical relation-
ships between elements can be grounds for negotiating future
decision-making.
Building on the mixture model, Müller-Trede et al. (2015)

has adopted precisely the idea of context-dependent prefer-
ences. In these so called context-sensitive preference mod-
els, the probability attached to a preference state can depend
on present and past choice contexts. The present context is
defined (at least partly) by the currently available choice al-
ternatives and their attributes. In Sher and McKenzie (2014)
”options-as-information” model, DMs use currently available
choice alternatives and their attributes to create ”posterior”
models of a wider range of possible choice alternatives and
their attributes. This posterior attribute distribution is then part
in what determines the probability distribution over preference
states, which in turn determines pair-wise choice. According to
Müller-Trede et al. (2015), the triangle inequality is no longer
a normative requirement in context sensitive preference mod-
els, thus avoiding previously discussed conceptual issues with
the original version of the mixture model (see the section titled
Probabilistic models of Transitivity).
This experiment provides one salient difference in contexts

between the two rounds of choice, pertaining specifically to the
order in which different alternatives are sampled. Recall from
the Methods section that the comparison order in the second
round of choice is completely randomized. This means that
comparisons, within a triple, that were previously encountered
first, may now be encountered last or second. For example,
the {x, y} comparison which in round one is always presen-
ted first, may now be presented last relative to the other com-
parisons within the triple. Coupled with constrained memory
of previous choices, it therefore becomes plausible that, with
differing orders of sampled options, decision-makers likewise
sample distinct yet fully transitive preference orders on the
second round of choice. To investigate this further one could
start with two statistical tests: (1) are choice patterns more
likely to be repeated when the alternatives within a triple are
shown in the same order during both rounds of choice? (2) Do
particular comparison orders correlate with particular choice
patterns?
Present considerations does not establish a rigorous case for

the aforementioned models, but it does give an intuitive inter-
pretation of the systematic choice reversals seen in Figure 9.
Going forward, more extensive analysis could be done with
respect to individual choice patterns and their cross-round dy-
namics. For every transitive choice pattern there exists exactly
one target comparison, which if reversed in isolation, would
lead to intransitivity. Take patterns 131 and 223 for example:
an isolated between-round choice reversal on the first {x, y}
comparison would make both of these patterns intransitive in
the second round (from 131 to 231 and from 223 to 123, re-
spectively). In fact, any of the three possible comparisons (i.e.
{x, y}, {y, z}, {x, z}) have two uniquely associated transitive
patterns, such that choice reversal on any of these comparisons
would make two associated patterns intransitive. Therefore,
we can equally ask what happens to non-target choice consist-
ency in these cases: will similar transitivity preserving choice
reversals obtain?
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5 Concluding remarks
Experimental findings lend no evidence to the presence of
structurally intransitive preferences. This holds both in rela-
tion to CB-induced intransitivity and with respect to any nat-
ural occurrence of intransitive choice. However, given certain
methodological limitations, the possibility of CB-induced in-
transitivity remain open until further adapted investigation has
been conducted.
Evidence is given for different kinds of transitivity pre-

serving behavior. Empirical data and educated speculation
suggests that a predictive mechanism rooted in transitive in-
ference can account for discrepancies in detection rate between
CB-Transitive and non-CB-Transitive choice patterns. In ad-
dition, analysis of cross-round choice dynamics reveal system-
atic efforts to adapt future choice behavior in line with the
transitivity axiom. It is suggested that the results can be in-
terpreted within context sensitive mixture models of transitive
preference.
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Appendix
The tables below show all the possible transitive choice patterns given either a STAT or DYN rule of comparison (6 possibilities
each). The leftmost column shows the number of expectancy violationsfor each sequence given f(x) > f(y) > f(z), expressing
that x is rated higher than y, y higher than z and x higher than z. In this context it will be helpful to use a choice function g to
represent the binary choice made on any given comparison. g takes a comparison {xi, xj} and returns a subset {xi} representing
the chosen alternative. The code notation introduced before is likewise used in the tables below. Again, note that this code will not
always be aligned with the comparison order under the dynamic rule, since comparison {y, z} and {x, z} swap places whenever a
DM selects y in comparison {x, y}. A ’⋆’ will be used to indicate whenever the there is swap of comparisons under the dynamic
rule.

DYN

f -violations Comparison 1 Comparison 2 Comparison 3 CB-transitive Code

0 {x, y} = {x} {y, z} = {y} {x, z} = {x} Yes 121
1 {x, y} = {y} {x, z} = {x} {y, z} = {y} Yes 221 ⋆
1 {x, y} = {x} {y, z} = {z} {x, z} = {x} No 131
2 {x, y} = {x} {y, z} = {z} {x, z} = {z} No 133
3 {x, y} = {y} {x, z} = {z} {y, z} = {z} No 233⋆
2 {x, y} = {y} {x, z} = {z} {y, z} = {y} No 223⋆

Table 2: Transitive preference orderings under rule DYN. Function symbol g is left out for notational brevity.

STAT

f -violations Comparison 1 Comparison 2 Comparison 3 CB-transitive Code

0 {x, y} = {x} {y, z} = {y} {x, z} = {x} Yes 121
3 {x, y} = {y} {y, z} = {z} {x, z} = {z} Yes 233
1 {x, y} = {x} {y, z} = {z} {x, z} = {x} No 131
2 {x, y} = {y} {y, z} = {y} {x, z} = {z} No 223
1 {x, y} = {y} {y, z} = {y} {x, z} = {x} No 221
2 {x, y} = {x} {y, z} = {z} {x, z} = {z} No 133

Table 3: Transitive preference orderings under rule STAT. Function symbol g is left out for notational brevity.

Relative to rule STAT, we can see that rule DYN makes it less likely, given f , that a DM satisfies any of the ordinary non-CB-
Transitive patterns (8 vs 6 total f -violations), and more likely that a DM satisfies any of the two CB-transitive patterns (1 vs 3
total f -violations). This is why rule DYN is better than rule STAT; it raises the conditional probability, given f , that S will satisfy
a CB-transitive choice pattern.
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