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Abstract

In a recent paper [31], Hur and Wheeler proved the existence of periodic steady water waves

over an infinitely deep, two-dimensional and constant vorticity flow and subject to gravity whose

profile overhangs, among which, waves whose surface touches at a point, enclosing a bubble of air.

We take this further, proving the existence of a continuous curve of water waves from a laminar flow

up to a touching wave for fixed non-zero gravity. This implies the existence of a wave profile that

is vertical at a point but not overhanging, which is referred to as a breaking wave. This allows us

to study the behaviour of critical layers, which are points where the horizontal velocity vanishes, at

locations where the wave profile is vertical. This applies to both overhanging and breaking waves.

We also extend our results regarding the continuous curve of water waves from a laminar flow up to a

touching wave to finite but very large depth. We formulate our problem as a modified version of the

Babenko equation. We then use methods from local bifurcation theory to construct solutions near

the laminar flow and use a compactness argument to ensure the maps obtained from the different

Implicit Function Theorems coincide. In the last Section, we extend our results to the finite depth

case. To do this, we formulate the problem utilising the periodic Hilbert transform on a finite

strip. Properties of this operator discovered by Constantin, Strauss and Varvaruca [12] turn out

instrumental for our purposes.
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Popular Abstract

I denna uppsats studerar vi en matematisk modell av vattenv̊agor över djupt vatten. I synnerhet

studerar vi v̊agor som färdas med konstant hastighet i en horisontell riktning och är likformiga i

den vinkelräta horisontella riktningen. P̊a grund av den matematiska sv̊arigheten med den allmänna

modellen är det vanligt att utg̊a fr̊an förenklade versioner av problemet. I denna uppsats, gör vi

antaganden om att vätskan har konstant densitet, att det inte finns n̊agon luftrörelse utanför vattnet,

att det inte finns n̊agon viskositet, att vorticiteten är konstant och att vätskan är oändligt djup.

Specifikt fokuserar vi p̊a v̊agor som utvecklar en överhängande profil. V̊art huvudresultat visar

att det finns en kontinuerlig kurva av lösningar mellan ett laminärt flöde, det vill säga en vattenv̊ag

vars yta är platt, och en vidrörande v̊ag, det vill säga en vattenv̊ag vars yta vidrör sig själv i en

punkt och som omsluter en luftbubbla i vätskan. Vi studerar ocks̊a egenskaperna hos de punkter

där flödet är rent vertikalt. I det sista avsnittet utvidgar vi v̊ara resultat fr̊an fallet med oändligt

djup till fallet med begränsat djup.
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1 Introduction

The mathematical theory of water waves models a body of water lying underneath a layer of

air. Mathematically speaking, it is a free boundary problem, a problem to be solved in an unknown

domain that must be determined as part of the problem. The boundary conditions being non-linear

together with the boundary being unknown makes the problem challenging, and therefore there are

still a lot of unanswered questions. In this thesis, we consider two-dimensional periodic water waves

that are travelling with constant velocity over an incompressible inviscid fluid. Particularly we focus

on water waves whose surface develops an overhanging profile.

The equations that describe the motion of flow in fluids were originally derived by Euler [25]. In

1776, Laplace [40] was the first to study water waves as an initial value problem. Around the same

time, Lagrange [38] formulated the water wave problem with the particles as the variables instead of

the spatial coordinates. Extensive work on the initial value problem was done by Cauchy [10] and

Poisson [48]. In 1802, Gerstner [27] found explicit solutions for infinite depth and nonzero vorticity.

In Gerstner’s solutions, the particles move in circles, whose radii decrease with depth. Famously,

Stokes [52] conjectured that the gravity wave of the greatest possible height has a one hundred and

twenty-degree angle at the crest. Moreover, Stokes noticed that for gravity waves, as the amplitude

increases, crests become sharper, and throughs become flatter, among other contributions.

A lot of progress was achieved for the irrotational case. Using power series expansion, Nekrasov

[43] and Levi-Civita [41] were able to show the existence of small amplitude solutions. The existence

of solutions with large amplitude was first proven by Krasovskii [37]. Using bifurcation theory

for positive operators [19], Keady & Norbury [32] constructed a smooth curve of solutions with

large amplitude. Finally, Amick, Fraenkel & Toland [3] and Plotnikov [46, 47] established Stokes’

conjecture regarding the wave of greatest height.

Throughout most of the history of water wave theory, research focused mainly on irrotational

flow. Shifting the research focus beyond irrotational flow, Dubreil-Jacotin [22] made significant

contributions in 1934 by constructing small amplitude solutions for a general vorticity flow. Us-

ing global bifurcation theory, Constantin & Strauss [14] were able to prove the existence of large

amplitude solutions over a general vorticity flow. In this thesis, we will assume the vorticity to be
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constant. This is primarily due to it being possible to adapt methods from the irrotational case to

the constant vorticity case. Recently, Constantin, Strauss & Vărvărucă [12] constructed a curve of

solutions under the assumption of constant vorticity, which possibly allows for overhanging profiles.

In 1957 Crapper [17] discovered an explicit, smooth curve of exact solutions for the case of

capillary waves over an irrotational flow without the effects of gravity. As the amplitude increases,

the crests of Crapper’s solutions become flatter, and their throughs become sharper, the opposite of

what happens for gravity waves. While proving the non-existence of a bifurcation from Crapper’s

solutions, Okamoto & Shōji [44, 45] produced closed-form recurrence relations between the Fourier

coefficients of the Fréchet derivative of an operator about Crapper’s waves. Using this relation,

Akers, Ambrose & Wright [2] and de Boeck [21] were able to construct small gravity solutions close

to Crapper’s solutions. Córdoba, Enciso and Grubic [15] took matters further and constructed a

touching wave.

Recently, Hur & Wheeler [30] discovered a family of explicit solutions for the case without surface

tension and gravity over a constant vorticity flow. The geometry of the free surface of these solutions

is the same as Crapper’s solutions, but the flow under the surface is vastly different. Recently,

Crowdy [18] showed that Hur & Wheeler’s solutions can be seen as part of a larger framework of

explicit solutions for the rotational case under the assumption of zero surface tension and gravity.

Under the assumption of no capillarity, Spielvogel [51] showed that gravity waves over an irrota-

tional flow can not be overhanging. Using an Implicit Function Theorem argument, Hur & Wheeler

[31] were able to construct overhanging and touching waves for small gravity over a constant vorticity

flow. In this thesis, we take these matters further, using local bifurcation theory and compactness

to improve the results of Hur & Wheeler by making the argument uniform. This leads to a smooth

curve of solutions from the laminar flow up to a touching wave for a fixed small nonzero gravity

and implies the existence of waves whose profile is vertical at a point but never overhanging, that

is, breaking waves. We then analyse the local behaviour of critical layers (points where the hori-

zontal velocity becomes zero) at the surface for breaking and overhanging waves. Finally, we use a

formulation of Constantin, Strauss & Vărvărucă to extend our results to large finite depth.

For a more detailed overview of the history of water wave theory, we refer the reader to [16, 20,

28, 53].
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We start by introducing the necessary notation and the mathematical machinery used throughout

the thesis in Section 2. Then, in Section 3, we formulate the water wave problem. Afterwards, we

give a brief overview of the solutions found by Crapper and Hur & Wheeler in Section 4. We

construct a continuous curve of solutions starting from the laminar flow until the touching wave in

Section 5. In Section 6, we analyze the local behaviour of critical layers at points where the wave

has a vertical tangent. Finally, we extend the results from Section 5 to the finite depth case, in

Section 7.
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2 Mathematical Background

In this section, we aim to introduce notation and present results that may be unfamiliar to

the reader. We start by going over some of the notation used throughout the Thesis in the first

subsection. The second subsection discusses Bifurcation theory, which is used to prove our main

result. In the last subsection, we state some results concerning the periodic Hilbert transform.

2.1 Notation

Let X and Y be Banach spaces, x0 be a point in X and F : X → Y be a function defined in a

neighbourhood of x0. Then we write

F (x) = O(x− x0) as x→ x0 if lim
x→x0

||F (x)||Y
||x− x0||X

<∞

and

F (x) = o(x− x0) as x→ x0 if lim
x→x0

||F (x)||Y
||x− x0||X

= 0,

where ||F (x)||Y and ||x− x0||X are the corresponding Banach space norms.

We denote by L(X,Y ) the space of bounded linear operators from X to Y .

The range and the kernel of a linear operator F are denoted by ranF and kerF , respectively.

We use Fn(X,Y ), to denote the space of bounded multilinear operators from X to Y . Let

m ∈ Fn(X,Y ), then we use m(xn) to denote m(x, ..., x).

Let z be a complex number, then we write ℜz and ℑz to denote the real and imaginary parts of

z, respectively.

We use D to denote the open complex unit disc.

2.2 Bifurcation theory

We start by introducing the Fréchet derivative, a generalization of the derivative from single

variable calculus to Banach spaces.

Definition 1 (Fréchet derivative). Let X and Y be Banach spaces, U an open subset of X and

F : U → Y an operator. Then, F is said to be Fréchet differentiable at x0 ∈ U if there exists
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DF [x0] ∈ L(X,Y ) satisfying

F (x0 + u)− F (x0)−DF [x0](u) = o(u)

as u → 0. The linear operator DF [x0] is called the Fréchet derivative of F at x0. Moreover, F is

said to be Fréchet differentiable on U if it is Fréchet differentiable at x for all x ∈ U .

We also introduce the notion of partial Fréchet derivatives.

Definition 2 (Partial Fréchet derivative). Let X,Y and Z be Banach spaces, U ⊂ X × Y an open

set, (x0, y0) a point in U and F : U → Z an operator. If F (·, y0) is Fréchet differentiable at x0 then

F is said to be partially Fréchet differentiable with respect to x at (x0, y0). Moreover, the partial

Fréchet derivative with respect to x at the point (x0, y0) is denoted DxF [x0, y0].

Next, we state some properties of the Fréchet derivative. We refer to chapter 9 of [54] for a more

detailed discussion.

Proposition 1 (Properties of Fréchet derivative).

(i) If the Fréchet derivative exists, then it is unique.

(ii) When F : Rn → Rm, the Fréchet derivative corresponds to the Jacobian matrix.

Afterwards, we give the definition of a real-analytic operator.

Definition 3 (Real-analytic operator). Let X and Y be Banach spaces over R, U an open subset

of X, x0 an arbitrary point in U and F : U → Y an operator. Then F is said to be real-analytic at

x0 if there exist r > 0 and bounded symmetric multilinear operators mk ∈ Fk(X,Y ) such that

F (x0 + h)− F (x0) =

∞∑
k=1

mk(h
k)

and the series converges uniformly for all ||h||X < r. A sufficient and necessary condition for the

above to hold is that

sup
k≥0

rk||mk|| =M <∞,
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where

||mk|| := sup
||x1||≤1,

...,
||xk||≤1

||m(x1, ..., xk)||

denotes the norm of the multilinear operator mk. F is said to be real-analytic on U if F is real-

analytic at x for all x ∈ U .

Throughout this thesis, we sometimes omit the real when referring to real-analytic operators.

Next, we state the analytic version of the Implicit Function Theorem. For proof, we refer to

Theorem 4.5.4 in [8].

Theorem 2 (Analytic Implicit Function Theorem). Let X,Y and Z be Banach spaces, U an open

subset of X × Y , and F : U → Z an analytic operator. Assume (x0, y0) is a point in U satisfying

the following two properties.

(i) F (x0, y0) = 0;

(ii) DxF [x0, y0] : X → Z is an isomorphism.

Then there exist open sets V ⊂ X and W ⊂ Y containing x0 and y0, respectively, and an

analytic operator χ : W → V such that F (x, y) = 0 for (x, y) ∈ V ×W if and only if x = χ(y) for

(x, y) ∈ V ×W .

It is interesting to note that a weaker result holds when the operator is not analytic. However,

the Fréchet derivative needs to be continuous. Moreover, in such a case, the operators F and X

above have the same level of regularity (see Theorem 3.5.4 in [8]).

We will now introduce Fredholm operators. For more information on Fredholm operators, we

refer to Chapter 7.2 in [54].

Definition 4 (Fredholm operator). Let X and Y be Banach spaces and F : X → Y a continuous

linear operator. Then F is said to be a Fredholm operator if it satisfies the following three properties.

(i) kerF is finite-dimensional,

(ii) ran(F ) is closed in Y ,

(iii) Y/ ran(F ) is finite-dimensional.
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The index of F is defined as dim(kerF )− dim(Y/ ran(F )).

When the Fréchet derivative is not an isomorphism but is Fredholm, one can use projections and

the Implicit Function Theorem to transform an infinite-dimensional problem into a finite-dimensional

one. This process is known as Lyapunov-Schmidt reduction. For a proof, we refer to Theorem 8.2.1

in [8].

Theorem 3 (Analytic version of Lyapunov-Schmidt reduction). Let X and Y be Banach spaces

over R, U an open set of X × Rn, (0, µ0) ∈ U and F : U → Y an analytic operator, satisfying

(i) F (0, µ) = 0, for all µ ∈ R;

(ii) L := DxF [0, µ0] is a Fredholm operator with kernel X0 and range Y0;

(iii) X0 ̸= {0} and m ∈ N is the codimension of Y0.

Then there exist open sets V ⊂ U and W ⊂ X0 × Rn, and two analytic operators χ : W → X and

h : W → Rm, such that (0, µ0) ∈ V, (0, µ0) ∈ W and χ(0, µ0) = 0. Moreover, F (x, µ) = 0 if and

only if χ(x0, µ) = x for some (x0, µ) ∈ V with h(x0, µ) = 0.

For convenience, we give an outline of the proof in the following remark.

Remark. Let X1 and Y1 denote complements of X0 and Y0, respectively, in the sense that X0⊕X1 =

X and Y0 ⊕ Y1 = Y , where ⊕ denotes the topological direct sum operator. Additionally, define

P : X → X0, Q : Y → Y0, (I − P ) : X → X1 and (I −Q) : Y → Y1 be projection mappings. Define

x0 = Px and x1 = (I − P )x, this implies x = x0 + x1. Then the problem F (x, µ) = 0 is equivalent

to

QL(x1) +QN(x0 + x1, µ) = 0, (1a)

(I −Q)N(x0 + x1, µ) = 0, (1b)

where N := F − L. Since QL is an isomorphism, we apply Theorem 2 to (1a), yielding that

F (x, µ) = 0 is equivalent to the finite-dimensional problem

(I −Q)
(
N
(
x0 + X̃(x0, µ), µ

))
= 0, (2)
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where X̃ : W → X1. Moreover, the analytic map h is defined as the left-hand side of (2) and the

analytic map χ is given by x0 + X̃(x0, µ).

Next, we state an analytic version of the Crandall-Rabinowitz theorem. It can be proved using

Lyapunov-Schmidt’s reduction as above. See Theorem 8.3.1 in [8] for more details.

Theorem 4 (Analytic version of the Crandall-Rabinowitz theorem). Let X and Y be Banach spaces,

µ0 ∈ R and F : X × R → Y an analytic operator satisfying the following three properties.

(i) F (0, µ) = 0, for all µ ∈ R ,

(ii) DxF [0, µ0] is a Fredholm operator of index zero with a one-dimensional kernel spanned by some

x0 ∈ X,

(iii) DxµF [0, µ0](x0) ̸∈ ran(DxF [0, µ0]) (transversality condition).

Then there exist ϵ > 0 and a curve (χ(s), µ(s)) where χ(s) = sx0 +O(s2) and µ(s) = µ0 +O(s)

such that F (χ(s), µ(s)) = 0 for s ∈ (−ϵ, ϵ). In addition, there exists a neighbourhood of (0, µ0) where

these are the only non-trivial solutions.

Moreover, χ(s) and µ(s) are analytic functions from (−ϵ, ϵ) to X and R, respectively.

The next Proposition states formulas for the first and second derivative of the parameter map

under the same assumptions as the Crandall-Rabinowitz Theorem. For a proof, we refer to Section

I.6 of [33].

Proposition 5. Under the assumptions of Theorem 4, we have that

∂

∂s
µ(0) = −1

2

(I −Q)D2
xxF [0, µ0](x0)

2

(I −Q)DxµF [0, µ0](x0)

and

∂2

∂s2
µ(0) = −1

3

(I −Q)D3
xxxF [0, µ0](x0)

3

(I −Q)DxµF [0, µ0](x0)
,

where (I −Q) denotes a projection onto the complement of the range of DxF [0, µ0].

The next Proposition is a modified version of Theorem 4 for the case when there exists one extra

parameter, the proof is very similar to the proof of the Crandall-Rabinowitz Theorem.
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Proposition 6. Let X and Y be Banach spaces, µ0, λ0 ∈ R and F : X × R × R → Y an analytic

operator satisfying the following three properties.

(i) F (0, µ, λ) = 0, for all µ, λ ∈ R;

(ii) DxF [0, µ0, λ0] is a Fredholm operator of index zero with a one-dimensional kernel spanned by

x0 ∈ X;

(iii) DxµF [0, µ0, λ0](x0) ̸∈ ran(DxF [0, µ0, λ0]) (transversality condition).

Then there exist ϵ > 0 and a curve (χ(s, λ), µ(s, λ), λ), where χ(s, λ) = sx0 +O
(
s2 + s(λ− λ0)

)
and µ(s, λ) = µ0 +O (s+ (λ− λ0)) such that F (χ(s, λ);µ(s, λ), λ) = 0 for s, (λ− λ0) ∈ (−ϵ, ϵ). In

addition, there exists a neighbourhood of (0, µ0, λ0) where these are the only non-trivial solutions.

Moreover, χ(s, λ) and µ(s, λ) are analytic functions from (−ϵ, ϵ)2 to X and R, respectively.

Proof. We apply Lyapunov-Schmidt reduction to the problem and obtain V,W, χ and h as in the

Theorem 3. Since F (0, µ, λ) = 0 for all µ and λ, it follows χ(0, λ, µ) = 0. We then define g : V → R

by

g(ξ, µ, λ) =

∫ 1

0

Dξh[tξ, µ, λ]x0dt.

Since g(0, µ0, λ0) = 0 and Dµg(0, µ0, λ0) = D2
ξ,µh[0, µ0, λ0](x0) ̸= 0, we can apply the Implicit

Function Theorem to g(ξ, µ, λ) = 0. Therefore, there exists an ϵ > 0 and a real-analytic map

µ : (−ϵ, ϵ)× (λ0 − ϵ, λ0 + ϵ) → R such that µ(0, λ0) = µ0 and g(sx0, µ(s, λ), λ) = 0 for all s ∈ (−ϵ, ϵ)

and λ ∈ (λ0 − ϵ, λ0 + ϵ). Moreover, note that

g(sx0, µ, λ) =


h(sxo, µ, λ)

s
if s ̸= 0,

Dξh(0, µ, λ) if s = 0,

and therefore h(sx0, µ(s, λ), λ) = 0 for (s, λ) ∈ (−ϵ, ϵ)× (λ0− ϵ, λ0+ ϵ). Furthermore, it follows that

F (χ(s, λ), µ(s, λ), λ) = 0,

where χ(s, λ) := χ(s, µ(λ), λ). The formulas for χ and µ stated in the proposition follow from the

Taylor expansions of both instances where the Implicit Function Theorem is used.
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Corollary 7. Assuming the same conditions as stated in Proposition 6, and further, that there

exists a continuous curve of parameters S := {(µ(t), λ(t)) : t ∈ (−δ, δ)}, satisfying the following four

properties.

(i) (µ(0), λ(0)) = (µ0, λ0);

(ii) For all t ∈ (−δ, δ), DxF [0, µ(t), λ(t)] is a Fredholm operator of index zero with one-dimensional

kernel spanned by x0 ∈ X;

(iii) For all t ∈ (−δ, δ), DxµF [0, µ(t), λ(t)](x0) ̸∈ ran(DxF [0, µ0, λ0]) (transversality condition)

(iv) The mapping t→ DxµF [0, µ(t), λ(t)](x0) is continuous.

Then, there exists ϵ > 0 and a curve (χ(s, λ), µ(s, λ), λ) where χ(s, λ) = sx0+O
(
s2 + s(λ− λ0)

)
and µ(s, λ) = µ0 +O (s+ (λ− λ0)) such that F (χ(s, λ);µ(s, λ), λ) = 0 for s, (λ− λ0) ∈ (−ϵ, ϵ).

Moreover, for every fixed λ(t) ∈ (λ0−ϵ, λ0+ϵ), the curve (χ(s, λ(t)), µ(s, λ(t)) is the same as the

curve obtained by applying Crandall-Rabinowitz at the point (0, µ(t), λ(t)). In addition, there exists

a neighbourhood of (0, µ0, λ0) where these are the only non-trivial solutions not contained in S.

This statement follows from applying Theorem 4 at every point along the parameter curve while

keeping λ fixed, and then shrinking the neighbourhoods so that the uniqueness from Proposition 6

implies that the new solutions are the same as those obtained from Proposition 6.

2.3 Hilbert transform

In water wave theory, it is common to use the Hilbert transform to restate the problem. We will

state the results used throughout this thesis without proof. For a detailed discussion, we refer to

[35].

Before introducing the Hilbert transform, we recall the notion of a Hölder space.

Definition 5 (Hölder space). Let U ⊂ Rn be an open set, α ∈ (0, 1) and f : U → R. Then the

Hölder seminorm of f is defined by

[f ]Cα(U) := sup
x,y∈U
x ̸=y

|f(x)− f(y)|
|x− y|α

.

14



Furthermore, if k is a non-negative integer, then the Hölder space Ck+α(U) is the space of functions

f ∈ Ck(U), satisfying

||f ||Ck+α(U) :=
∑
|α|≤k

||Dαf ||C(U) +
∑
|α|=k

[Dαf ]Cα(U) <∞.

For more on Hölder spaces, we refer to Section 5.1 in [26]. Next, we define the Hilbert transform

on the span of {exp(inx)}n∈Z by

H(exp(inx)) =


−i sign (inx) exp(inx), if n ̸= 0

0, if n = 0

Let f be a 2π periodic, real-valued Hölder function, then

f(x) =
∑
n∈Z

f̂(n) exp(inx) = f̂(0) +

∞∑
n=1

f̂(n) exp(inx) +

∞∑
n=1

f̂(n) exp(inx)

= f̂(0) + 2ℜ

( ∞∑
n=1

f̂(n) exp(inx)

)
.

Notice f can be seen as the real part of the boundary value of a holomorphic function hD → C,

given by

h(z) = f̂(0) + 2

∞∑
n=1

f̂(n)zn.

Moreover, a short computation reveals

ℑ (h(exp(ix))) = Hf(x).

Next, we note the Periodic Hilbert transform has a singular integral representation of the form

H(f)(t) =
1

π
p.v.

∫ π

−π

f(x)

tan((t− x)/2)
dx,

where p.v. denote the Cauchy principal value. This can be shown by writing out the Fourier series

coefficients and switching the order of summation and integration.
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Next, we state Privalov’s theorem, originally proven in [50]. We refer to Chapter 8, Section 13

of [5] for a proof in English.

Theorem 8 (Privalov’s theorem). Let α ∈ (0, 1) and

Cα
2π(R) := {f ∈ Cα(R) : f is 2π periodic}.

Then H : Cα
2π(R) → Cα

2π(R) is a bounded linear operator.
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3 Water wave problem

In this section, we formulate the water wave problem. We introduce Euler’s equations of motion

and two-dimensional steady waves. Afterwards, in the second subsection, we formulate the free

boundary problem we will consider throughout the thesis. In the third subsection, we prove the

existence of a conformal map between the half-plane and the water domain. Finally, in the fourth

subsection, we derive a modified version of the Babenko equation for the case of constant vorticity

and no capillarity.

3.1 Two-dimensional steady water waves

Euler’s equations. Let D be a simply connected, time-dependent domain in R3. Define the

velocity vector u⃗ : D → R3, the pressure P : D → R, the density ρ and the gravitational constant g.

Then the Euler equations are given by

∂u⃗

∂t
+ (u⃗ · ∇)u⃗+

∇P
ρ

− ge⃗y = 0 in D, (3a)

∂ρ

∂t
+∇ · (ρu⃗) = 0 in D, (3b)

∇ · u⃗ = 0 in D, (3c)

where ∇ denotes the spatial derivatives. We assume the density constant. In Cartesian coordinates,

we consider gravity acting along the y-axis in the negative direction.

Two-dimensional water waves. We assume there is no fluid motion in the z-axis, that is

u⃗ = (u1, u2, 0) in D

and that flow is constant in the z-direction, as in

u⃗(x, y, z1) = u⃗(x, y, z2),

for all z1, z2 such that (x, y, z1) and (x, y, z2) are in D. Similarly, we assume that the pressure

remains constant in the z-direction. Under these assumptions, our problem is independent of z and
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(a) Part of a three-dimensional domain. (b) Part of a two-dimensional domain.

Figure 1: Examples of three and two-dimensional domains.
.

we can consider a two-dimensional problem. See Figure 1 for examples of two and three-dimensional

domains.

Steady water waves. We assume the wave is travelling with constant speed c along the x-axis

in the positive direction. We perform the change of variables

(x, y; t) → (x̃, y; t),

where x̃ = x− ct and define ũ(x̃, y; t) := u⃗(x− ct, y; t). Furthermore, we assume ũ can be expressed

as a function of (x̃, y), meaning there exists v such that

ũ(x̃, y, t) = v⃗(x̃, y),

for all t ∈ (0,∞). Similarly, we assume the pressure can be expressed as a function of (x̃, y). Then

(v⃗ · ∇x,y)v⃗ −
∂v⃗

∂t
= (v⃗ · ∇x̃,y − ce⃗x̃)v⃗.

Defining w⃗ = v⃗ − ce⃗x̃, it follows that

(w⃗ · ∇x̃,y)w⃗ =
∂u⃗

∂t
+ (u⃗ · ∇x,y)u⃗.
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Now, we can simplify the Euler equations (3) into the time-independent problem

(w⃗ · ∇)w⃗ +
∇P
ρ

− ge⃗y = 0 in D, (4a)

∇ · w⃗ = 0 in D, (4b)

where the derivatives are with respect to the spatial coordinates x̃ and y.

3.2 Free boundary problem

Let D ⊂ R2 be a simply connected domain bounded from above by a free surface S, periodic in

the x direction with period 2π/k and symmetric with respect to the vertical lines below the crest

and the trough. Mathematically, we can write this as

S := {(x(t), y(t)) : t ∈ R} (5)

with x(t) and y(t) satisfying

−x(−t) = x(t) = x(t− 2π

k
) +

2π

k
and y(−t) = y(t) = y(t+

2π

k
).

If w⃗ = (u, v, 0), then (4) becomes

ρ(uux + vuy) = −Px in D, (6a)

ρ(uvx + vvy) = −Py − gρ in D, (6b)

ux + vy = 0 in D. (6c)

Since we are interested in periodic and symmetric solutions, we also make the assumptions

u(−x, y) = u(x, y) = u(x+
2π

k
, y), −v(−x, y) = v(x, y) = v(x+

2π

k
, y)

By using Equation (6c), we can define a stream function ψ, which satisfies ψy = u and −ψx = v.

Notice that ψ is not unique and is defined up to an additive constant.
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The vorticity describes how much a fluid particle rotates around a point. It is defined as the curl

of the velocity vector, ω⃗ = ∇× w⃗. In the two-dimensional case, we can express it as (0, 0, ω), where

ω = vx − uy = −△ψ in D. (7)

Throughout this thesis, we will assume ω to be constant.

Kinematic boundary condition. The kinematic boundary condition states that each fluid

particle that is on the boundary remains on the boundary. On the surface S, it can be expressed in

any of the following manners

uyt − vxt = 0 on S, (8a)

ψyyt + ψxxt = 0 on S, (8b)

where the subscript t denotes the derivative with respect to t.

Equation (8) implies ψ is constant on S. We choose the constant mentioned in the discussion

after (6) so that ψ is equal to zero on S.

There are two cases commonly considered in the literature, finitely deep and infinitely deep water

waves. These cases lead to two alternative kinematic boundary conditions,

v = 0 at y = −h, (9a)

(u, v)− (−ωy − c, 0) → (0, 0) as y → −∞. (9b)

The case (9a) corresponds to D having a flat bottom at y = −h. The infinite depth case (9b) is a

normalization of (9a) for large h and states that at great depths, the fluid motion is only horizontal.

We note that for every constant C, the pair (u, v) = (−ωy−C, 0) is a solution to the Euler equations.

We choose to set the constant equal to the wave speed since when ω = 0, this corresponds to there

being no fluid motion at the infinite bottom. Unless otherwise stated, we will consider (9b).

Dynamic boundary condition. Assuming no air motion, the dynamic boundary condition
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states that pressure must remain constant across the fluid’s boundary and can be expressed as follows

P = const− Tκ on S, (10)

where T denotes the coefficient of surface tension and

κ =
xtytt − ytxtt

(x2t + y2t )
3
2

on S

stands for the curvature. Using the vector calculus identity

(u · ∇)u =
1

2
∇|u|2 + (∇× u)× u = 0,

we can express the first two equations of (6) as

∂

∂x

(
1

2
|∇ψ|2 + ωψ +

P

ρ
+ gy

)
= 0 in D, (11a)

∂

∂y

(
1

2
|∇ψ|2 + ωψ +

P

ρ
+ gy

)
= 0 in D. (11b)

Integrating (11) yields

1

2
|∇ψ|2 + ωψ + gy +

P

ρ
= const in D. (12)

Now (10) and (12) give

1

2
|∇ψ|2 + ωψ + gy − Tκ = b on S, (13)

where b represents the Bernoulli constant, which is a fixed value encompassing both the pressure

and the integration constant.

Nondimensional variables. We now make the change of variables

x→ kx, y → ky, ψ → k

c
ψ.
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and introduce dimensionless parameters

Ω =
ω

ck
, τ =

Tk

ρc2
, G =

g

kc2
, B =

b

c2ρ
.

In the non-dimensional variables, equations (7), (8), (9b) and (13) become

△ψ = −Ω in D, (14a)

ψ = 0 on S, (14b)

∇ψ − (0,−Ωy − 1) → (0, 0) as y → −∞, (14c)

1

2
|∇ψ|2 +Gy − τκ = B on S. (14d)

The problem (14) can be seen illustrated on the right-hand side of Figure 3. By setting the pressure

such that the expression within the parentheses of (11) becomes zero, we can transition from a

solution of (14) to a solution of the Euler equations.

3.3 Conformal map from the lower half plane

We recall that a map between two open subsets of C is conformal if and only if it is biholomorphic.

Define the lower complex half-plane by

H− := {α+ iβ : α, β ∈ R;β < 0}.

Lemma 9. Let S be as in (5), and D be a simply connected, 2π periodic domain that’s bounded

from above by S. Then there exists a conformal map z between the lower complex half-plane H− and

D satisfying the following properties.

(i) z extends continuously to {β = 0} and maps {β = 0} to S;

(ii) x(α+ iβ)− α and y(α+ iβ) are 2π periodic functions of α;

(iii) z(α+ iβ)− (α+ iβ) → 0 as β → −∞.

where x(α+ iβ) and y(α+ iβ) are the real and imaginary parts of z(α+ iβ), respectively.
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We note that our argument is inspired by a proof in the appendix of [13]. Moreover, we note Theorem

2.6 and Corollary 2.7 of [49], originally proven by Carathéodory [9], ensure the existence, uniqueness

and extension to the boundary of the map Φ3 below.

Proof. Define

Hc := {x+ iy : x, y ∈ R; y < c},

Hper
c := {x+ iy : x, y ∈ R;−π ≤ x ≤ π, y < c},

Dper := {x+ iy : x, y ∈ D;−π ≤ x ≤ π}.

Now, fix d to be a real constant large enough such that D∪S ⊂ Hd. Afterwards, define the conformal

maps Φ1 : D → Hper
0 and Φ2 : D → Hper

d by

Φ1(ζ) := i log ζ;

Φ2(ζ) := i log(ζ) + id,

where log denotes the principal branch of the logarithm. Note that the boundary of Φ−1
2 (Dper)

is contained in D, is symmetric over the real-axis and intersects it at a positive number a and a

negative number b. Moreover, note that both Φ1 and Φ2 map the negative real axis to the set

where x = −π and the positive real axis to the set where x = π. Let Φ3 : D → Φ−1
2 (Dper) be the

conformal map with homeomorphic extension to the boundary, satisfying Φ3(0) = 0, Φ3(1) = a and

Φ3(−1) = b. The uniqueness, coupled with Φ−1
2 (Dper) being symmetric imply Φ3(z) = Φ3(z) and

therefore Φ3 maps [−1, 1] to a subset of [−1, 1]. Define the conformal map z0 : Hper
0 → Dper, which

has a homeomorphic extension to the boundary, by

z0(α+ iβ) := Φ2 ◦ Φ−1
3 ◦ Φ−1

1 (α+ iβ).

We note there is an illustration of this map in Figure 2. Moreover, the construction ensures that

the subset of Hper
0 where x = π gets mapped to the subset of Dper where x = π and similarly for

the subsets where x = −π. By a similar argument, for all k ∈ Z, we can construct conformal maps
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Figure 2: Illustration of the proof of Lemma 9.

zk : Hper
0 + 2kπ → Dper + 2kπ. We then define z : H− → D by

z(α+ iβ) := zk(α+ iβ), for α ∈
(
(2k − 1)π, (2k + 1)π

]
.

It follows that (ii) is satisfied, since for all k ∈ Z, the subsets {(2k + 1)π + iβ : β < 0} get mapped

to {(2k + 1)π + iβ :} ∩D. It remains to show z is holomorphic on the sets {(2k + 1)π + iβ : β < 0}

for all k ∈ Z. Let ℓ be one of these lines, and consider a domain Dℓ satisfying ℓ ⊂ Dℓ ⊂ D. Let T

be a triangle contained in Dℓ, then there are three cases to consider.

� If T does not intersect with ℓ, it follows that
∮
T
zd(α+ iβ) = 0;

� If T has one edge on ℓ, then we can approximate T with triangles that do not intersect ℓ and

use uniform continuity on compact subsets to obtain
∮
T
zd(α+ iβ) = 0;

� If T intersects ℓ not at an edge, we can add integrals along line segments in opposite directions

and split the integral over T into the integral over two or three triangles of the previous two

cases. The number of triangles depends on whether T intersects ℓ at a vertex or not.

By Morera’s theorem, it follows that z is holomorphic on ℓ. Since ℓ was an arbitrary line of the form

{(2k + 1)π + iβ : β < 0}, it follows z is holomorphic on D.

See Figure 3 for an illustration of this map. We also note that z is holomorphic on H− and therefore

x and y satisfy the Cauchy-Riemann equations

xα = yβ and xβ = −yα.
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Figure 3: Conformal map between the half plane and D.

In the new coordinates, we can rewrite (14) as

|zα|−2 △α,βψ = −Ω in H−, (15a)

ψ = 0 on β = 0, (15b)

∇ψ − (0,−Ωβ − 1) → (0, 0) as β → −∞, (15c)

1

2

ψ2
β

|zα|2
+Gy − τκ = B on β = 0. (15d)

This problem can be seen illustrated on the left-hand side of Figure 3.

Next, we will state a result concerning the analyticity of the free surface S and analytic extensions

of the stream function ψ. Constantin and Escher [11] derived the primary result on the analyticity

of the free surface, assuming a fluid devoid of stagnation points and with a surface that can be

represented as a graph. Notably, their analysis permits the vorticity to be a real analytic function.

With the additional assumption of the vorticity being affine, Aasen and Varholm (Theorem 2.5 in

[1]) were able to prove to lower one of the assumptions to the fluid having no stagnation points on

the boundary. Our proof is a modification of that in [1], using a local argument to allow for the
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possibility of the surface S not being the graph of a function.

Proposition 10. Let z be the conformal map obtained in Lemma 9 and ψ be a solution of (15).

Assume the free surface S is a C1 curve and that zα has no zeros on the set {β = 0}. Then the

following three properties hold.

(i) The free surface S is real analytic;

(ii) The map z has a complex analytic extension to an open neighbourhood of H− ∪ {β = 0};

(iii) The stream function ψ has a real analytic extension that satisfies △ψ = −Ω to an open

neighbourhood of H− ∪ {β = 0}.

Proof. (i) Let p be an arbitrary point on S. Then there exists an open set U contained in D, such

that p ∈ ∂U ∩S and S ∩U can be represented as either (x, η(x)) or (η(y), y) for some function

η. Applying Theorem 2 of [34] with u as the stream function and g as the dynamic boundary

condition yields that ∂U ∩ S is analytic. Since p was an arbitrary point, it follows that S is

real analytic.

(ii) Follows from applying Theorem 2.2 on page 299 in [39].

(iii) Since △ψ + Ω = 0 in D and ψ = 0 on the real analytic curve S, we can apply Theorem A in

[42] to yield the claim.

3.4 A modified Babenko equation

In this subsection, we will derive a modified version of the Babenko equation, as in [23] or [24].

Assume τ = 0 and let z be the conformal map from Lemma 9. Consider the holomorphic function

(x+ iy)(α+ iβ)− (α+ iβ), it follows from the discussion in Section 2.3 that

x(α+ i0)− α = H(y)(α+ i0), (16)

which implies

z(α+ i0) = α+ (i+H)(y)(α+ i0). (17)
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Similarly, we define ϕ as ϕ = ψ + Ωy2

2 + y. Then ϕ is a harmonic function. Let φ be the harmonic

conjugate of −ϕ, in the sense that φ + iϕ is a holomorphic function on H−. Then it follows from

the discussion in Section 2.3 that

(φ+ iϕ)(α+ 0i) = (H+ i)ϕ(α+ 0i). (18)

Notice that (15b) implies

ϕα = Ωyyα + yα on β = 0. (19)

By taking Hilbert transforms of both sides of (19) and by (18), we obtain

φα = ΩH(yyα) +Hyα. (20)

Provided zα ̸= 0 on {β = 0}, we can rewrite (15d) as

1

2
ψ2
β = (B −Gy)

(
(1 +Hyα)2 + y2α

)
on β = 0. (21)

Next, we use the Cauchy-Riemann equations to compute

ψβ = ϕβ − Ωyyβ − yβ

= φα − Ωyxα − xα in H−.

(22)

Therefore, we can plug the expression obtained for ψβ in (22) in (21), yielding

1

2
(φα − Ωyxα − xα)

2 = (B −Gy)
(
(1 +Hyα)2 + y2α

)
on β = 0. (23)

Finally, differentiating (20) and (16) with respect to α and plugging the obtained expressions for φα

and xα in (23) yields

1

2
(1 + Ω(y + yHyα −H(yyα)))

2 = (B −Gy)((1 +Hyα)2 + y2α) on β = 0. (24)
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A smooth solution of (24) generates a solution of (14), provided that z(α + i0) is injective and

satisfies zα(α+ i0) ̸= 0 for all α ∈ R.

This formulation using the Hilbert transform comes originally from [4], in which Babenko derived

a similar equation for the zero vorticity case, which was studied in [6] and [7], among others. We

also note a similar equation was derived in [12] for the finite depth case.
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4 Previous work

In this section, we present some of the earlier results that were mentioned in the introduction.

In Section 4.1, we discuss solutions found by Crapper [17] for the case of pure capillary waves (no

gravity) over an irrotational flow. In Section 4.2, we provide a concise overview of the solutions

discovered by Hur & Wheeler [30] for the rotational case in the absence of gravity and surface

tension. Finally, in Section 4.3, we give a summary of how Hur & Wheeler [31] used an implicit

function theorem to find nearby solutions for small but nonzero gravity.

4.1 Pure capillary waves over an irrotational flow

In this subsection, we will assume zero gravity and vorticity. The solutions discussed here were

initially derived by Crapper [17], although the following exposition follows [30].

Let z, x, y, α and β be as in Lemma 9 and the preceding discussion. Define

ψ = −β. (25)

It is a straightforward computation to verify this choice of ψ satisfies the first three equations of

(15). We note that

|∇x,yψ|2 =
ψ2
β

|zα|2
on β = 0 (26)

and thus (14d) becomes

1

2|zα|2
− τκ = B on β = 0. (27)

It is now a matter of a direct computation to verify that for each non-negative constant A, the map

z(α+ i0;A) := α− 4iA
exp(−iα)

1 +A exp(−iα)
(28)

is a solution of (27). The corresponding surface tension and Bernoulli constant are given by

τ =
1 +A2

1−A2
, B =

1

2
. (29)
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Figure 4: Streamlines of Crapper waves for laminar flow, touching waves, and breaking waves. Along
with a plot of the surface of a non-physical solution.

Note that for A > Amax ≈ 0.4546700164520109, the solutions intersect themselves, and thus they

are not physically realistic. At the point Amax, the surface of the wave touches without the fluid

being double valued. This is illustrated in Figure 4.

We also note the conformal extension of (28) for A ∈ [0, Amax] is given by

z(α+ iβ;A) := α+ iβ − 4iA
exp(−i(α+ iβ))

1 +A exp(−i(α+ iβ))
. (30)

It is worth noting that Kinnersley [36] discovered finite depth analogues of these solutions.

4.2 Rotational flows without gravity

In this subsection, we will assume surface tension and gravitational forces to be zero. Under these

assumptions, Dyachenko & Hur [24] and [23], as well as Hur & Vanden-Broeck [29], found numerical

evidence of solutions with the same wave profile as Crapper’s solutions. This was then rigorously

justified by Hur & Wheeler [30]. We will give an overview of how to derive these solutions.

We will assume the conformal mapping z to the half plane is the same as in (30) and try to
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identify the corresponding stream function. Notice that we can express the stream function in the

form ψ = − 1
2Ωy

2 − y − f , where f satisfies

△f = 0 in D (31a)

f = −1

2
Ωy2 − y on S (31b)

∇f → (0, 0) as y → −∞. (31c)

Then we express f as a function of ζ = exp(−i(α+ iβ)), taking values in the complex unit disc and

mapping S to the boundary of the complex unit disc. After that, we apply Poisson integral formula

for a function satisfying (31b) and evaluate the integral using residue calculus. This will lead to the

stream function

ψ(α, β;A) := −β − 1

2
Ωy2 − 4Ω

A2 − 1
ℜ
(
(1− 2A2)ζ2 + 1

(ζ + 1
A )2

)
. (32)

The corresponding values of the vorticity and the Bernoulli constant are given by

Ω(A) :=
1−A2

1− 3A2
, B(A) :=

1

2
(
1 +A2

1− 3A2
)2. (33)

We plot the flow generated by Hur & Wheeler’s solutions in Figures 5 and 6.

4.3 Rotational flows with gravity

In this subsection, we will assume surface tension to be zero. Using an implicit function argument,

Hur & Wheeler [31] were able to show the existence of overhanging and touching waves for small

gravity.

Recall the equation derived in Section 3.4,

1

2
(1 + Ω(y + yHyα −H(yyα)))

2 = (B −Gy)((1 +Hyα)2 + y2α) on β = 0. (34)

As done in [31], we introduce ζ : C → C

ζ = exp(−i(α+ iβ)),
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Figure 5: Streamplots in the α, β plane of Hur & Wheeler’s explicit solution for the cases A =
0.05, 0.2, 0.35, Amax. The critical layers correspond to the points where the horizontal velocity of the
fluid vanishes. Points at which the velocity of the fluid vanishes are called stagnation points. The
heteroclinic orbit denotes a path that joins two stagnation points.
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Figure 6: Streamplots in the x, y plane of Hur & Wheeler’s explicit solution for the cases A =
0.05, 0.2, 0.35, Amax.
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which maps the lower half of the complex plane to the inside of the unit disc and the real axis to

the complex unit circle. Now define w : D → C to be such that

z(ζ) = i log ζ + w(ζ). (35)

Plugging this decomposition of z in (34) yields

B −Gy =
1

2

(1 + Ω(ℑw +Q(w)))2

|1− iζwζ |2
for |ζ| = 1 (36)

where

Q(w(ζ)) := − ζ

2πi

∫
|ζ′|=1

(
ℑ(w(ζ)− w(ζ ′))

ζ − ζ ′

)2

dζ ′ for |ζ| = 1. (37)

The commutator formula,

yHyα −H(yyα) =
1

8π

∫ 2π

0

(y(α)− y(α′))2

sin2((α− α′)/2)
dα′ (38)

is used to obtain (36). We refer to Section 3 of [6] for a proof of (38).

Now we are ready to formulate the operator form of the problem. Define the following spaces

X := {w ∈ C3+a(D,C) : w is holomorphic in D and w(ζ) = −w(ζ)} (39)

Y := {f ∈ C2+a(∂D,R) : f(ζ) = f(ζ)} (40)

and the subset

U := {w ∈ X : 1− iζwζ(ζ) ̸= 0 for |ζ| = 1}. (41)

Let G : U × R2 → Y be the operator defined by

G(w;G, a) := 1

2

(1 + Ω(a)(ℑw +Q(w)))
2

|1− iζwζ |2
+Gℑw −B(a) for |ζ| = 1, (42)

where

Ω(a) :=
1− a

1− 3a
and B(a) :=

1

2

(
1 + a

1− 3a

)2

.
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We note Theorem 8 and Lemma 3.6 of [6] ensure the operator above maps U to Y .

Notice that G(w;G, a) = 0 implies w,G,Ω(a) and B(a) satisfy (36), which means

z(α+ iβ) = i log ζ + w(ζ), where ζ = exp(−i(α+ iβ))

is the conformal map described in Section 3.3 that solves the water wave problem. We now define

w(a)(ζ) := − 4i
√
aζ

1 +
√
aζ
. (43)

In fact, (43) is the decomposition of (30) in the form (35), meaning the family (43) has overhanging

waves. It is a long but straightforward calculation, using residue calculus to verify

G(w(a); 0, a) = 0, for a > 0.

Using the Implicit Function Theorem, Hur &Wheeler were able to construct solutions for nonzero

gravity. We note that the version stated here differs slightly from Theorem 3 of [31]. This is due to

which formulation of the Implicit Function Theorem is used.

Theorem 11 (Hur & Wheeler,[31]). For each a0 ∈ (0, 14 ) there exists ϵ > 0 and a real-analytic

operator

W : (−ϵ, ϵ)× (a0 − ϵ, a0 + ϵ) → U

such that W (0, a) = w(a) and

G(W (G, a);G, a) = 0.

Moreover, there exists δ > 0 such that for all (a,G) ∈ (−ϵ, ϵ)×(a0−ϵ, a0+ϵ) the following statements

are equivalent.

(i) G(w;G, a) = 0 and ||w − w(a)||X < δ;

(ii) w =W (G, a).

We refer to Theorem 3 of [31] for a proof. Note that Theorem 11 does not hold at a = 0 due to

the Fréchet derivative of (42) not being invertible.
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Figure 7: Illustration of Theorem 11. The neighbourhood where there exists uniqueness of solutions
is depicted in faded red.

Hur & Wheeler employ Theorem 11 to prove the existence of overhanging waves and of touching

waves for small but nonzero gravity.
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5 Continuous curve of solutions with fixed gravity

This section aims to demonstrate the existence of a continuous curve of gravity waves connecting

laminar flow and touching waves. We start by stating our results in the first subsection. Subse-

quently, in the second subsection, we establish a uniform version of Theorem 11.

Throughout this section, we assume there are no effects from surface tension. Additionally, we

define X,Y, U,G and w(a) to be as in (39),(41), (42) and (43), respectively.

5.1 Statement of results

We will prove a uniform version of Theorem 11 in the second subsection, but before that, let us

state the theorem.

Theorem 12 (Main Theorem). For every γ ∈ (0, 18 ), there exists ϵ > 0 and a continuous operator

W : S → U , where S is the set defined as

S =

{
(G, a) ∈ (−ϵ, ϵ)× (−∞,

1

4
− γ] : a ≥ G̃−1(G)

}
.

Here, G̃−1 is a continuous bijective map between two one-dimensional neighbourhoods of 0 such that

G̃(0) = 0. The operator satisfies the following three conditions.

(i) W (0, a) = w(a);

(ii) W (G, G̃−1(G)) is a constant function of ζ;

(iii) G(W (G, a);G, a) = 0.

Moreover, there exists a constant δ > 0 such that for any (G, a) ∈ S and any non-constant function

w of ζ, the following are equivalent:

(i) G(w;G, a) = 0 and ||w − w(a)||X < δ;

(ii) w =W (G, a).

Finally, the operator W is real-analytic on the set

{
(G, a) ∈ (−ϵ, ϵ)× (−∞,

1

4
− γ] : a > G̃−1(G)

}
.
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Theorem 12 implies the following two results.

Theorem 13. For every sufficiently small ϵ > 0 and G ∈ (−ϵ, ϵ) fixed, there exists a continuous

curve of solutions of (14) between a laminar flow and a touching wave.

Corollary 14 (Breaking Waves). For every sufficiently small ϵ > 0 and G ∈ (−ϵ, ϵ) fixed, there

exists a solution of (14) whose profile is vertical at a point but never overhanging.

We note Theorem 13 is the first to establish the existence of such a curve of solutions and

Corollary 14 is the first to rigorously establish the existence of breaking waves with gravity.

5.2 Proof of Main Theorem

In the following section, we provide a summary of the proof. Firstly, we use compactness to

establish a version of Theorem 12 for compact subsets of (0, 14 ). Then, we compute constant solutions

and redefine the operator to obtain trivial solutions for the operator problem for any choice of

parameters. Subsequently, we find a curve of parameters such that the Fréchet Derivative of the

operator at every point along the curve has the same kernel as at the point (0, 0). Next, we use a

local bifurcation result to construct solutions near the point (0, 0). Finally, we connect the different

curves of solutions.

Lemma 15. For all λ ∈ (0, 18 ) there exist ϵ > 0 and a real-analytic operator

W : (−ϵ, ϵ)× [λ, 14 − λ] → U

such that W (0, a) = w(a) and

G(W (G, a);G, a) = 0.

Moreover, there exists δ > 0 such that for all (G, a) ∈ (−ϵ, ϵ) × [λ, 14 − λ] the following statements

are equivalent.

(i) G(w;G, a) = 0 and ||w − w(a)||X < δ;

(ii) w =W (G, a).
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Proof. We start by applying Theorem 11 to each a ∈ [λ, 14 − λ], yielding an ϵa and a δa satisfying

the conditions in the theorem. Afterwards, we cover [λ, 14 − λ] with open sets, as below.

[
λ, 14 − λ

]
⊂

⋃
a∈[λ,

1
4−λ]

(
a− ϵa, a+ ϵa

)
.

By the Heine-Borel Theorem, we can take a finite subcover, meaning

[
λ, 14 − λ

]
⊂

n⋃
k=1

(
ak − ϵak

, ak + ϵak

)
.

Afterwards, we define

δ := min
k=1,..,n

δak
.

Let

W k : (−ϵak
, ϵak

)× (ak − ϵak
, ak + ϵak

) → U (44)

be the operator obtained from applying Theorem 11 to ak. The operator (44) satisfies

||W k(G, a)− w(a)||X < δak
for |a− ak| < ϵak

and |G| < ϵak
.

Since W k is continuous, we can choose ϵ̃ak
such that

||W k(G, a)− w(a)||X < δ, for |a− ak| < ϵ̃ak
and |G| < ϵak

.

Then, we define

ϵ := min
k=1,..,n

ϵ̃ak
.

Next, we define the operator W : (−ϵ, ϵ)× [λ, 14 − λ] → U by

W (G, a) :=W k(G, a) if |a− ak| < ϵak
, k = 1, ..., n. (45)

Let a satisfy |a− aj | < ϵaj and |a− ak| < ϵak
for some j and k and G satisfy |G| < ϵ. Then (G, a)
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Figure 8: Illustration of Lemma 15.The neighbourhood where there exists uniqueness of solutions is
depicted in faded red.

is in the domain of both W j and W k. Since

||W i(G, a)− w(a)||X < δ for i = j, k,

it follows from the uniqueness of Theorem 11 that W j(G, a) = W k(G, a), and therefore W is well

defined.

We turn our attention now to the bifurcation point, starting by computing the partial Fréchet

derivative at (w(0), 0, 0),

DwG[w(0); 0, 0]v = ℑ(v − ζvζ) = −ℑ
( ∞∑

n=0

(n− 1)vnζ
n
)
, (46)

which is not invertible. Note that due to the symmetry assumption on X, it follows that the

coefficients vn are purely imaginary. In fact, it follows from (46) that the kernel and the complement

of the range of DwG[w(0); 0, 0] are both one-dimensional. The kernel is spanned by iζ, and the

complement of its range is spanned by ℜ(ζ).

The next step is to look for constant solutions of G(w;G, a) = 0, which correspond to laminar

flow solutions of (14).
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Lemma 16. There exists a real-analytic operator d : R× (−∞, 1/3) → {iR : R ∈ R} such that

G(d(G, a);G, a) = 0 and d(0, 0) = 0

for (G, a) ∈ R × (−∞, 1/3). Moreover, there exist open neighbourhoods of zero V, T ⊂ R and a

bijective analytic map G̃ : V → T , with the property that

kerDxG
[
d(G̃(a), a); G̃(a), a

]
= ⟨iζ⟩X

for a ∈ V and G̃(0) = 0

Proof. Let c be a fixed constant. A computation shows that

G(ic;G, a) = 1

2
(1 + Ω(a)c)2 +Gc−B(a).

Thus G(ic;G, a) = 0 if and only if

c = −Ω(a) +G

Ω(a)2
± 1

Ω(a)2

√
G2 + 2Ω(a)G+ 2B(a)Ω(a)2. (47)

Evaluating this expression at a = G = 0, we find that when the sign before the square root is

positive, c = 0. We define the operator d : R× (−∞, 1/3) → {iR : R ∈ R} by

d(G, a) = i

(
− Ω(a) +G

Ω(a)2
+

1

Ω(a)2

√
G2 + 2Ω(a)G+ 2B(a)Ω(a)2

)
. (48)

Note that the operator d(G, a) defined in (48) is real-analytic over the domain where it is defined.

We turn our focus to the second part of the lemma and compute the Fréchet derivative of (42)

at (d(G, a);G, a).

DxG[d(G, a);G, a]v = ℑ
((

(1 + Ω(a)d̃(G, a))Ω(a) +G
)
v − (1 + Ω(a)d̃(G, a))2ζvζ

)
, (49)

where d̃(G, a) = ℑ(d(G, a)). By plugging in v = iζ in (49) and equating it to zero, we find that iζ
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spans the kernel of DxG[d(G, a);G, a] if and only if

(1 + Ω(a)d̃(G, a))Ω(a) +G− (1 + Ω(a)d̃(G, a))2 = 0. (50)

We note that in a neighbourhood of (0, 0), (48) can be described in the following way,

d̃(G, a) = 4a(1 +O(a+G)). (51)

Therefore, we can compute the partial derivative with respect to G of the left-hand side of (50)

evaluated at (G, a) = (0, 0) to be equal to 1. By the analytic version of the Implicit Function

Theorem, there exist neighbourhoods V ⊂ R and T ⊂ R containing zero and a map G̃ : V → T such

that the pairing (G̃(a), a) satisfies (50).

Now define K : U × R× (−∞, 1/3) → Y by

K(v;G, a) = G(id(G, a) + v;G, a). (52)

Notice that K(0;G, a) = 0 for all G and a, and

K(v,G, a) = 0 ⇐⇒ G(v + id(G, a), G, a) = 0.

Lemma 17. There exist ϵ > 0 and a continuous operator v : S̃ → U , where S̃ is defined as

S̃ :=
{
(G, a) ∈ (−ϵ, ϵ)× R : G̃−1(G) ≤ a < G̃−1(G+ ϵ)

}
,

such that v(G, a) satisfies the equation

K(v(G, a);G, a) = 0,

for (G, a) ∈ S̃. Moreover, v(G, a) is of the form

v(G, a) = CG

(
a− G̃−1(G)

) 1
2

iζ +O(a− G̃−1(G)), (53)
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where CG is a positive constant that depends continuously on G.

Furthermore, there exists δ > 0 such that v(G, a) is the only nontrivial solution of K
(
v,G, a

)
= 0

satisfying ||v||X < δ.

Finally, the operator v is real-analytic on the set

{
(G, a) ∈ (−ϵ, ϵ)× R : G̃−1(G) < a < G̃−1(G+ ϵ)

}
.

Proof. By Lemma 16 and considering a Fourier series expansion of v in (49), the following three

properties hold.

(i) K(0;G, a) = 0, for all G, a ∈ R× (−∞, 13 );

(ii) kerDvK
(
0; G̃(a0), a0)

)
= ⟨iζ⟩X , for all a0 ∈ V ;

(iii) ranDvK
(
0; G̃(a0), a0

)
= Y ⊖ ⟨ℜ(ζ)⟩Y , for all a0 ∈ V ;

where Y ⊖ ⟨ℜ(ζ)⟩Y denotes the orthogonal complement of ⟨ℜ(ζ)⟩Y in Y . Next, we compute the

mixed derivative

D2
vaK

(
0; G̃(a0), a0

)
(iζ) =

(
− 2 +O(a0)

)
ℜζ. (54)

This expression needs to be nonzero in order to satisfy the transversality condition. To achieve this,

we redefine V if necessary. Then, we can apply Corollary 7 to obtain real analytic operators

ṽ : (−ϵ̃, ϵ̃)2 → U and ã : (−ϵ̃, ϵ̃)2 → R, (55)

such that

K̃
(
ṽ(s,G), G, ã(s,G)

)
= 0, for all |s|, |G| < ϵ̃,

ṽ(s,G) = siζ+O(s2+sG) and ã(0, G) = G̃−1(G). Moreover, the maps agree with the maps obtained

by applying Theorem 4 at the point (0, G̃−1(G)) with G ∈ (−ϵ, ϵ) fixed, and therefore we can use
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Proposition 5. We proceed with computing the second-order linearization in v at (0, G̃(a0), a0),

D2
vvK(0, G̃(a0), a0)(u)

2 = Ω(a0)Qww(d(G, a))(u)
2 − 4Ω(a0)ℑ(u)ℑ(ζuζ) + 4

(
ℑ(ζuζ)

)2
−ℑ(i|uζ |2),

(56)

where we use Qw(d(G, a))(u) = 0. Evaluating (56) at u = iζ reveals

D2
vvK(0, G̃(a0), a0)(iζ)

2 = Ω(a0)− 4Ω(a0)ℜ(ζ)2 + 4ℜ(ζ)2 − 1, (57)

where we used Qw(d(G, a))(v) = 0 and Qww(d(G, a))(iζ)
2 = 1. Note that (57) has zero projection

on ⟨ℜ(ζ)⟩Y and therefore, by Proposition 5, ∂
∂s ã(0, G̃(a0)) = 0. Subsequently, we compute the

third-order linearization in v at (0, G̃(a0), a0),

D3
vvvK(0, G̃(a0), a0)(u)

3 = 3Ω(a0)
2(ℑu)Qww(u)

2 − 6Ω(a0)Qww(u)
2ℑ(ζuζ)− 6Ω(a0)

2(ℑu)2ℑ(ζuζ)

+ 3Ω(a0)ℑ(u)
(
8
(
ℑ(ζuζ)

)2
− 2ℑ(i|uζ |2)

)
(58)

− 24
(
ℑ(ζuζ)

)3
+ 12ℑ(ζuζ)ℑ(i|uζ |2).

Evaluating (58) at u = iζ reveals

D3
vvvK(0, G̃(a0), a0)(iζ)

3 = 3
(
Ω(a0)− 2

)2ℜζ − 6(Ω(a0)− 2)2(ℜζ)3,

which has nonzero projection on ⟨ℜ(ζ)⟩Y . Applying Proposition 5 yields ∂2

∂s2 ã(0, G̃(a0)) =
(Ω(a0)−2)2

2+O(a0)
.

We, again, possibly, redefine V to ensure ∂2

∂s2 ã(0, G̃(a0)) > 0, for all a0 ∈ V (recall Ω(0) = 1). Since

∂2

∂s2 ã(0, G̃(a0)) > 0, it follows that we can choose an ϵ such that the real analytic operator ã(·, G̃(a0))

is injective on the set [0, ϵ). We define v : (−ϵ, ϵ)× [a0, a0 + ϵ) → U by

v(G, a) := ṽ
(
ã−1(s,G)

)
.

The formula in (53) follows directly from the definition above.

We are now ready to prove Theorem 12. The proof is illustrated in Figure 9.
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Figure 9: Connection of solution curves. The faded blue illustrates the neighbourhood where there
exists uniqueness of non-trivial solutions, which was obtained in Lemma 17.

Proof of Theorem 12. Let γ > 0 be given. Let v, ϵ1, δ1 and S̃ be as described in Lemma 17. Next,

we note that for small and positive a, (43) can be expressed as

w(a) = − 4i
√
aζ

1 +
√
aζ

= −4i
√
aζ +O(a). (59)

Therefore, we can choose a positive and small enough λ such that ||w(λ)||X < δ1
2 , ||d(0, λ)||X < δ1

2 ,

λ < ϵ1 and λ < γ. We then apply Lemma 15 for such a λ, which yields ϵ2, δ2 and Wλ as in the

Lemma. We then define

δ := min(δ1, δ2).

We choose ϵ̃1 and ϵ̃2 to be small enough such that

||v(G, a)− d(G, a)||X < δ for |G| < ϵ̃1
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and

||Wλ(G, a)− w(a)||X < δ for |G| < ϵ̃2.

We then define

ϵ := min(ϵ̃1, ϵ̃2)

and

S :=

{
(G, a) ∈ (−ϵ, ϵ)× (−∞, 1√

2
− γ] : a ≥ G̃−1(G)

}
.

Let W : S → U be defined by

W (G, a) :=


Wλ(G, a) if a > λ

v(G, a) + d(G, a) if (G, a) ∈ S̃ ∩ S.
(60)

Next, we show (60) is well-defined. Let (G, a) ∈ S̃ and a > λ, then

K
(
Wλ(G, a)− d(G, a), G, a

)
= 0

and

||Wλ(G, a)− d(G, a)||X <
δ(µ)

2
+
δ(µ)

2
≤ δ(µ).

By Lemma 17, the solutions coincide, meaning (60) is well-defined.
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6 Critical Layers

In this section, we analyze the behaviour of critical layers at points where the wave is vertical.

We consider both the cases of overhanging and breaking waves. This analysis is done using Taylor

expansions at the point where the wave is vertical.

Definition 6. Critical layers are defined as the set of points in the (x, y) plane where the horizontal

velocity

u = ψy =
ψαyα + ψβxα

|zα|2
(61)

vanishes.

Even though the critical layers are defined in the (x, y) plane, the existence of the conformal map

proved in Lemma 9 implies that angles are preserved under the map. A numerical computation of

the critical layers can be seen plotted in Figures 10 and 11.

Figure 10: Streamlines in the (α, β) plane for Hur & Wheeler’s breaking wave. We refer to the
Caption of Figure 5 for an explanation of the terms in the Figure.

6.1 General results

In the following Proposition, we state our results regarding the behaviour of a critical layer at a

point on the surface where the tangent is vertical but which is not a stagnation point. Notably, the

results hold for a general water wave and not just the ones we constructed.
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Proposition 18. Let z denote the conformal map to the half plane of a solution to (15) with τ = 0

and assume the same conditions as in Proposition 10. Let z denote the conformal map to the

half plane of a solution to (15) with τ = 0 and assume the same conditions as in Proposition 10.

Additionally, assume αcrit to be a point in the (α, β) plane at which the wave is vertical.

(i) If the function x(α+ i0) has a local extremum at αcrit and G > 0, there exist no critical layers

from the water touching the point αcrit (but they exist from outside the water);

(ii) If the function x(α + i0) has a local extremum at αcrit and G < 0, there exist critical layers

from the water touching the point αcrit (but they do not exist from outside the water);

(iii) If the function x(α+ i0) does not have a local extremum at αcrit and G ̸= 0, there exist critical

layers from the water touching the point αcrit (and from outside the water as well).

Proof. Without loss of generality, assume the wave is travelling in the positive x direction. Let αcrit

denote the point at which the wave is vertical. It follows that

xα(αcrit, 0) = 0

and the smallest positive integer k, such that ∂k

∂αk x(αcrit, 0) does not vanish, must be odd if the wave

is a breaking wave and even if the wave overhangs at the point. Moreover

∂k

∂αk
x(αcrit, 0) > 0 (62)

if k is odd. It follows from (61) that

ψy = 0 ⇐⇒ ψαyα + ψβxα = 0. (63)

Let U be the open set from Proposition 10 where ψ has a real-analytic extension and define F :

U → R by

F (α, β) = ψα(α, β)yα(α, β) + ψβ(α, β)xα(α, β). (64)

Equation (63) implies (α, β) belongs to the critical layer if and only if F (α, β) = 0. Since F (αcrit, 0) =
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0, we want to use Taylor expansions of (64) near the point (αcrit, 0) to figure out the local behaviour

of the critical layers.

Notice that ψ is constant on {β = 0}, and therefore

∂j

∂αj
ψ(αcrit, 0) = 0, for all j ∈ Z+. (65)

Next, we rewrite (15d) as

ψβ = ±
√
2(x2α + y2α)(B −Gy) on {β = 0} (66)

for later use. Given all the alpha derivatives of ψ vanish at the critical point, exploring alternative

branches of (66) results in the partial derivatives of F at the critical point differing only in sign.

Consequently, we can consider the positive branch of equation (66) without any loss of generality.

We proceed to compute the partial derivatives of F at the point (αcrit, 0). Starting by

∂j

∂αj
F (α, β) =

j∑
l=0

(
j

l

)(
∂lψα

∂αl

∂j−lyα
∂αj−l

+
∂lψβ

∂αl

∂j−lxα
∂αj−l

)
, for all j ∈ Z+.

Using (65) and ∂j

∂αj x = 0 for j < k to evaluate the expression above at (αcrit, 0) yields

∂j

∂αj
F (αcrit, 0) =


0, if j < k − 1,

ψβ
∂kx
∂αk , if j = k − 1.

(67)

Next, we compute the derivatives with respect to β

∂j

∂βj
F (α, β) =

j∑
l=0

(
j

l

)(
∂lψα

∂βl

∂j−lyα
∂βj−l

+
∂lψβ

∂βl

∂j−lxα
∂βj−l

)
. (68)
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Plugging in (αcrit, 0) for j = 1 above yields

∂

∂β
F (αcrit, 0) = ψαβyα − ψβyαα

=

(√
2(B −Gy)yαα − Gy2α√

2(B −Gy)

)
yα −

√
2(B −Gy)yαyαα

= − Gy3α√
2(B −Gy)

.

(69)

We utilized equation (66) above to calculate the derivatives of ψβ . Additionally, we assume
√
y2α = yα

because symmetry implies the existence of a critical point where yα is positive and another where

it is negative. The Taylor expansion of F at the point (αcrit, 0) is then

(
− Gy3α√

2(B −Gy)

)∣∣∣∣∣
α=αcrit

β +

(√
2(B −Gy)yα

∂kx

∂αk

) ∣∣∣∣∣
α=αcrit

(α− αcrit)
k−1

=O
(
|α− αcrit|k + |β|2 + |(α− αcrit)β|

)
.

(70)

When k is odd, (70) has the form

−C1Gβ + C2(α− αcrit)
k−1 = O

(
|α− αcrit|k + |β|2 + |(α− αcrit)β|

)
, (71)

where C1 and C2 denote positive constants that depend on G. It follows from applying the Implicit

Function Theorem to (71) that solutions of F (α, β) = 0 in a neighbourhood of (αcrit, 0) have the

form

β =
C2

C1G
(α− αcrit)

k−1 +O(|α− αcrit|k). (72)

Since the exponent k − 1 is even, statements (i) and (ii) follow. When k is even, (70) has the form

C3Gβ + C4(α− αcrit)
k−1 = O

(
|α− αcrit|k + |β|2 + |(α− αcrit)β|

)
, (73)

where C3 and C4 denote constants that depend on G. It follows from applying the Implicit Function
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Figure 11: Streamlines in the (x, y) plane for Hur & Wheeler’s breaking wave. We refer to the
Caption of Figure 5 for an explanation of the terms in the Figure.

Theorem to (73) that solutions of F (α, β) = 0 in a neighbourhood of (αcrit, 0) have the form

β =
C4

C3G
(α− αcrit)

k−1 +O(|α− αcrit|k). (74)

Since the exponent k − 1 is odd, statement (iii) follows.

6.2 Hur & Wheeler’s zero gravity solutions

Throughout this subsection, we assume G = 0. Recall the zero gravity solutions from Section

4.2. For these solutions, we can compute the parameters for which the solution is a breaking or

overhanging wave explicitly. Since xα(α, 0, A) = 0 corresponds to the wave profile being vertical,

the computation is as follows,

xα(α, 0;A) = ℜ

(
(1−A exp (−iα))2

(1 +A exp (−iα))2

)
=

(A2 − 1− 2A sinα)(A2 − 1 + 2A sinα)

(A2 + 2A cosα+ 1)2
. (75)

Recall that Amax denotes the value of a for which the surface profile of the solutions touches at a

point without the fluid being double valued. For A ∈ (
√
2−1, Amax], the expression above undergoes

a sign change. When A =
√
2 − 1, the expression vanishes at α = (2n + 1)π2 for n ∈ Z, but there

is no sign change. This means that the solution corresponding to A =
√
2 − 1 is a breaking wave.
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Furthermore, notice that

xα(α, 0; a) = 0 ⇐⇒ α = arcsin
(
(A2 − 1)/(2A)

)
or π − arcsin

(
(A2 − 1)/(2A)

)
,

for A ∈ [
√
2− 1, Amax]. We define

αcrit,1(A) = arcsin
(
(A2 − 1)/(2A)

)
for A ∈ [

√
2− 1, Amax] (76)

and

αcrit,2(A) = π − arcsin
(
(A2 − 1)/(2A)

)
for A ∈ [

√
2− 1, Amax],

where we consider the principal branch of the arcsin function. We pause to remark that the symmetry

and periodicity assumptions on the fluid and surface imply that different branches of the arcsin

function correspond to points that are either related by symmetry and/or periodicity. Below we

write αcrit when a computation would be true for both αcrit,1 and αcrit,2.

We now investigate the behaviour of the critical layers in Hur & Wheeler’s zero gravity solutions.

Starting by noting that there exists a neighbourhood of the critical point at which we can express

the surface curve as (𭟋(y), y). Moreover, we note

𭟋
(
y(α)

)
= x(α), (77)

for α in a neighbourhood of αcrit. Differentiating both sides of (77) and evaluating at α = αcrit

yields

𭟋′
(
y
(
αcrit(A)

))
yα
(
αcrit(A)

)
= xα

(
αcrit(A)

)
. (78)

It follows from (78) that 𭟋′
(
y
(
αcrit(A)

))
= 0, since xα

(
αcrit(A)

)
= 0 and yα

(
αcrit(A)

)
̸= 0 for all

A ∈ [
√
2− 1, Amax]. Taking the derivatives on both sides of (78) and evaluating at α = αcrit gives

𭟋′′
(
y
(
αcrit(A)

))
yα
(
αcrit(A)

)2
+𭟋′

(
y
(
αcrit(A)

))
yαα
(
αcrit(A)

)
= xαα

(
αcrit(A)

)
. (79)
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Since the first derivative of 𭟋 at the point vanishes, it follows that

𭟋′′
(
y
(
αcrit(A)

))
=
xαα

(
αcrit(A)

)
yα
(
αcrit(A)

)2 .
We note that

xαα(α) =− 4A

(
A cos(α)

(
1 +A2 + 2A cos(α)

)
cos(α)

(
A2 − 1 + 2A sin(α)

)
(1 +A2 + 2A cos(α))

3

−
sin(α)

(
A2 − 1− 2A sin(α)

(
A2 − 1 + 2A sin(α)

))
(1 +A2 + 2A cos(α))

3

)
,

which evaluated at αcrit,1(A) becomes

(
−A5 +A

)√−A4+6A2−1
A2 +A6 − 7A4 + 7A2 − 1

(−A5 − 6A3 −A)
√

−A4+6A2−1
A2 +A6 − 9A4 − 9A2 + 1

,

which is nonzero for A ∈ (
√
2− 1, Amax] and zero for A =

√
2− 1. Note that a similar computation

can be done for αcrit,2(A). This implies that the same is true for (79). We proceed by differentiating

both sides of (79) and evaluating at A =
√
2− 1 and α = αcrit, yielding

𭟋′′′
(
y
(
αcrit(A)

))
yα
(
αcrit(A)

)3
= xααα

(
αcrit(A)

)
, (80)

where above, we used that 𭟋′
(
y
(
αcrit(A)

))
= 0 = 𭟋′′

(
y
(
αcrit(A)

))
. It follows from (80) that

𭟋′′′
(
y
(
αcrit(A)

))
=
xααα

(
αcrit(A)

)
yα
(
αcrit(A)

)3 ,
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when A =
√
2− 1. Moreover, note that

xααα(α) =
8A

(1 +A2 + 2A cos(α))
4

((
A5 cos(α)

2
+ 4A4 cos(α)

3
+
(
4 cos(α)

4
+ 2 cos(α)

2
)
A3

+
(
4 cos(α)

3 − cos(α)
)
A2 +

(
5 cos(α)

2 − 6
)
A− cos(α)

)
A sin(α)

(
A2 − 1 + 2A sin(α)

)
+
A sin (α)

(
1 +A2 + 2A cos (α)

) (
A2 − 6A cos (α) + 1

)
cos (α)

(
A2 − 1 + 2A sin (α)

)
2

+
A4 cos (α)

2
− 2A3 cos(α)

2
+ 3A3 + 2A cos(α)

2 − 3A− cos (α)

2

)
,

which evaluated at A =
√
2− 1 and αcrit,1(

√
2− 1) = αcrit,2(

√
2− 1) = π

2 becomes

−
6
(√

2− 1
)3(√

2− 2
)4 ,

which is nonzero.

Next, we state a result concerning the local behaviour of critical layers of a certain class of

breaking and overhanging waves, which include the solutions constructed by Hur & Wheeler.

Proposition 19. Let z denote the conformal map to the half plane of a solution to (15) with

τ = G = 0 and assume the same conditions as in Proposition 10. Let z denote the conformal map to

the half plane of a solution to (15) with τ = 0 and assume the same conditions as in Proposition 10.

Additionally, assume there exists a point zcrit = (xcrit, ycrit) at which the wave is vertical and that

there exists a neighbourhood of said point where the surface profile of the wave can be represented as

(𭟋(y), y).

(i) If 𭟋′′(ycrit) = 0 and 𭟋′′′(ycrit) ̸= 0, then the critical layers intersect the surface and form a

corner from both inside and outside the water.

(ii) If 𭟋′′(ycrit) ̸= 0, then the critical layers intersect the surface from both inside and outside the

water.

Proof. Differentiating the kinematic boundary condition (14b) twice and evaluating it at y = ycrit
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yields

ψyy

(
zcrit

)
+ 2ψyx

(
zcrit

)
𭟋′(ycrit)+ ψxx

(
zcrit

)
𭟋′(ycrit))2 + ψx

(
zcrit

)
𭟋′′(ycrit) = 0, (81)

since 𭟋′(ycrit) = 0, it follows that

ψyy

(
zcrit

)
= −ψx

(
zcrit

)
𭟋′′(ycrit)). (82)

Notice that since ψx

(
zcrit

)
̸= 0, it follows the right-hand side of the equation above does not vanish

in case (ii) but vanishes in case (i). We proceed with squaring and then differentiating the dynamic

boundary condition (14d), and evaluating it at y = ycrit, resulting in

2

(
ψx

(
zcrit

)(
ψxy

(
zcrit

)
+ ψxx

(
zcrit

)
𭟋′(ycrit))

+ ψy

(
zcrit

)(
ψyy

(
zcrit

)
+ ψyx

(
zcrit

)
𭟋′(ycrit))) = 0.

(83)

Since ψy

(
zcrit

)
= 0 = 𭟋′(ycrit), it follows that ψxy

(
zcrit

)
= 0. Subsequently, we differentiate (81)

with respect to y and evaluate it at y = ycrit, yielding

ψyyy

(
zcrit

)
+ ψx

(
zcrit

)
𭟋′′′(ycrit) = 0.

We note that above, we used that 𭟋′(ycrit) = 0 = ψyx

(
zcrit

)
. It then follows ψyyy

(
zcrit

)
=

−ψx

(
zcrit

)
𭟋′′′(ycrit). Afterwards, we differentiate the Poisson equation (14a) with respect to y

and evaluate it at y = ycrit, resulting in

ψyyy

(
zcrit

)
+ ψxxy

(
zcrit

)
= 0,

which implies ψxxy

(
zcrit

)
= −ψyyy

(
zcrit

)
.
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In case (i), the Taylor expansion of ψy at y = ycrit is

ψyyy

(
zcrit

) ((
(y − ycrit)

2
)
−
(
x−𭟋

(
ycrit

))2)
=O

(
|(x− F (ycrit), y − ycrit(acrit))|3

)
.

Afterwards, we apply the non-analytic version of the Implicit Function Theorem to the equation

above with respect to the variable (y − ycrit)
2
, yielding

(y − ycrit)
2
=
(
x−𭟋

(
ycrit

))2
+O

(
|(x− F (ycrit), y − ycrit(acrit))|3

)
.

The last equation implies (i). On the other hand, in case (ii), the Taylor expansion of ψy at y = ycrit

is

− ψx

(
zcrit

)
𭟋′′(ycrit)) (y − ycrit(acrit)) = O

(
|(x− F (ycrit), y − ycrit(acrit))|2

)
.

We can then apply the analytic version of the Implicit Function Theorem to the equation above,

yielding that there exists a neighbourhood of zcrit and an analytic function ι, such that the pair

(x, y) satisfying ψy = 0 is given by (x, ι(x)) in said neighbourhood. Statement (ii) now follows.
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7 Finite depth

In this Section, we consider the case of a fluid bounded from below by a flat bottom. In the

first Subsection, we go over the formulation and derive an analogous equation to (34) for the finite

depth case. In the second Subsection, we discuss Hur & Wheeler’s argument [31] for the existence

of overhanging and touching waves for large finite depth. Finally, in the third Subsection, we extend

our argument from Section 5 to construct a continuous curve of solutions from laminar flow to a

touching wave for the finite depth case.

7.1 Formulation

In this section, we consider (9a) instead of (9b). Under this assumption, the same argument as

in Section 3.2 leads to

△ψ = −Ω in D, (84a)

ψ = 0 on S, (84b)

ψ = k on y = −h, (84c)

1

2
|∇ψ|2 +Gy − τκ = B on S, (84d)

where k denotes an a priori unknown constant and D is 2π periodic domain that is bounded from

above by S and from below by {y = −h}.

For any d > 0, we define the strip

Sd := {α+ iβ ∈ C; 0 > β > −d}.

A similar result to Lemma 9 holds for a finitely deep domain. Namely, that for a given domain D

as above, there exists a unique constant d and conformal map z between Sd and D satisfying the

following three conditions.

(i) The continuous extension of z maps Sd ∪ {β = 0} to D ∪ S continuously;

(ii) x(α+ i0)− α and y(α+ i0) are 2π periodic;
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(iii) The continuous extension of z maps Sd ∪ {β = −d} to D ∪ {y = −h} continuously;

where x(α + iβ) and y(α + iβ) denote the real and imaginary part of z(α + iβ). For a proof, we

refer to Appendix A of [13].

Next, we define the periodic Hilbert transform on a strip.

Definition 7 (Periodic Hilbert transform on a strip). We define the periodic Hilbert transform on

Sd, Hd : L2
2π → L2

2π by its action on the orthonormal basis {exp(inx)}n∈Z, as follows

Hd(exp(inx)) =


−i coth (nd) exp(inx), if n ̸= 0

0, if n = 0

where coth denotes the hyperbolic cotangent.

Remark. A singular integral formula for the periodic Hilbert transform on a strip was recently

derived in the Appendix of [12] under a stronger regularity assumption. Let f ∈ C1+α
2π , then

(Hd(f))(x) =
1

2π
p.v.

∫ π

−π

gd(x− y)f(y)dy,

where gd : R \ 2πZ is given by

gd(x) = −x
d
+
π

d
coth

πx

2d
+
π

d

∑
k∈Z

2 sinh(πx/d)

cosh(πx/d)− cosh(2π2k/d)
.

Moreover, note that

||Hd(f)−H(f)||C1+α
2π,◦

≤ 2π sup
y∈[−π,π]\0

|gd(y)− cot(
y

2
)| · ||f ||C1+α

2π,◦
. (85)

Using equations (A.11) and (A.12) of [12], we obtain the following estimate.

|gd(y)− cot(
y

2
)| = |

∞∑
n=1

4

exp(2nd)− 1
sin(ny)|

≤ 4

∞∑
n=1

1

exp(2nd)− 1
→ 0
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as d→ ∞ independently of y for all y ∈ [−π, π] \ 0. It follows that Hd converges to H as d→ ∞ in

the strong operator topology.

A similar argument as in Section 3.4 leads to a finite version of a modified Babenko equation,

1

2
(1 + Ω(y + yHdyα −Hd(yyα)))

2 = (B −Gy)((1 +Hdyα)
2 + y2α) on β = 0. (86)

We refer to [24] for a thorough derivation of (86). Next, we introduce the annulus

Ad := {ζ ∈ D : |ζ| > exp(−d)}

and define w : Ad → C to be such that

z(ζ) = i log ζ + w(ζ). (87)

This decomposition transforms (86) into

(B −Gℑ(w)) = 1

2

(
1 + Ω(ℑw +Qd(w)

)2
|1− iζwζ |2

for |ζ| = 1,

where

Qd(w(ζ)) := ℑ(w)Hd (ℑ(−iζwζ))−Hd (ℑwℑ(−iζwζ)) for |ζ| = 1,

is the commutator operator for the periodic Hilbert transform on a strip. Note that when f is

defined on the unit circle, we perform the following slight abuse of notation

Hd(f) = Hd (f ◦ exp(i·)) .

In this case, the function f can be seen as the real part outer boundary value of a function holo-

morphic on an annulus.
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7.2 Overhanging and Touching waves

In this subsection, we provide a more detailed explanation of Hur & Wheeler’s proof, which es-

tablishes the existence of finite depth overhanging and touching waves. This proof is discussed in

Section 5 of [31].

We define the Banach spaces

X := {w ∈ C3+a(∂D,R) : w(ζ) = w(ζ)},

Y := {w ∈ C2+a(∂D,R) : w(ζ) = w(ζ)}.

We pause to note that in the infinite depth case, the counterpart of X (39) is defined in terms

of holomorphic functions on the disc. However, in the finite depth case, the functions would be

holomorphic on an annulus that would change as the parameter d changes. To handle this issue,

we instead consider a space defined in terms of real-valued functions on the unit circle. For a given

w ∈ X and constant d, we can extend w to a function w̃ that is harmonic on Ad and satisfies the

following conditions

(i) w̃ = w on ∂D;

(ii) w̃ is constant on the inner boundary of Ad. Moreover, the constant is chosen so that the mean

over the inner circle of Ad is equal to the mean over the outer circle of Ad.

We can then use w̃ and its harmonic conjugate to define a holomorphic function on Ad. We then

introduce the map E : X×(0,∞] → Y that maps a pair (w, d) to the function that’s holomorphic on

Ad, whose imaginary part satisfies (i) and (ii) when d ∈ (0,∞) or to the function that’s holomorphic

on D, whose imaginary part satisfies (i) when d = ∞. We then define the subset

V := {w ∈ X : 1− iζ
∂E(w,∞)

∂ζ
̸= 0}

and the operator F : V × R× (−∞, 1/3)× R → Y

F(w,G, a, l) =
1

2

(
1 + Ω(a)

(
w +Q

1
l2
(
E(w, 1

l2 )
)))2

|1− iζ∂ζE(w, 1
l2 )|2

− (B(a)−Gw) for |ζ| = 1 (88)
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where

Q
1
l2 =


Q

1
l2 if l ̸= 0,

Q if l = 0

and Q denotes the operator defined in (37).

The operator F is real-analytic in the first three variables. Recall (85) and the discussion following

it, we can then differentiate the Fourier series of gd(y)− cot(y2 ) termwise with respect to d, yielding

∞∑
n=1

16

(exp(2n/l2)− 1)2
n

l3
exp(2n/l2) sin(ny).

Note that for fixed l, the series above converges uniformly, meaning H 1
l2

is partial Fréchet differen-

tiable with respect to l (note that H does not depend on l). Moreover, observe that as l → 0, the

series above converges to zero. Similarly, we can take higher-order derivatives of the Fourier series

of gd(y)− cot(y2 ) term-wise with respect to l and the series obtained will converge uniformly due to

the exponent on the denominator. Furthermore, as l → 0, the series obtained will converge to zero.

From this argument, it follows that H 1
l2

is smooth with respect to l. In turn, this implies F is a

smooth operator.

Let U and G be as in (41) and (42), respectively. Then for a function v ∈ U , G(v,G, a) coincides

with F(ℑv,G, a, 0), except the latter one is written in terms of the boundary data. In particular,

this implies

F(ℑ(w(a)), 0, a, 0) = 0,

where w(a) is defined as in (43) but in terms of boundary values. The partial Fréchet derivative of

F can be computed to be

DxF [w,G, a, 0]v =
1 + Ω(a)(w +Q(E(w,∞))

|1− iζ∂ζE(w,∞)|2
Ω(a)(v +Qw(E(w,∞))E(v,∞)

− (1 + Ω(a)(w +Q(E(w,∞)))2

|1− iζ∂ζE(w,∞)|4
ℑ
(
(1− iζ∂ζE(w,∞))ζ∂ζE(v,∞)

)
+Gv.

Which resembles the Fréchet derivative of the operator for the infinite depth case. See the discussion

following Theorem 3 in [31]. In fact, we have thatDxF [ℑ(w(a)), 0, a, 0] coincides withDxG[w(a), 0, a]

written in terms of the imaginary part of w(a) restricted to the unit circle. This implies that
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DxF [ℑ(w(a)), 0, a, 0] is an isomorphism. By the non-analytic version of Theorem 2, the following

result now holds.

Theorem 20. For each a0 ∈ (0, 14 ) there exists ϵ > 0 and a smooth operator

W : (−ϵ, ϵ)× (a0 − ϵ, a0 + ϵ)× (−ϵ, ϵ) → V

such that W (0, a, 0) = ℑ(w(a)) and

F(W (G, a, l);G, a, l) = 0.

Moreover, there exists δ > 0 such that for all (G, a, l) ∈ (−ϵ, ϵ)×(a0−ϵ, a0+ϵ)×(−ϵ, ϵ), the following

statements are equivalent.

(i) F(w;G, a, l) = 0 and ||w −ℑ(w(a))||X < δ;

(ii) w =W (G, a, l).

Theorem 20 implies the following results.

Theorem 21. For all a ∈ (acrit, amax), there exists an ϵ > 0, such that for all G ∈ (−ϵ, ϵ) and some

finite h, there exists a solution of (84) with Ω = Ω(a) and B = B(a) whose profile is overhanging.

Theorem 22. There exists an ϵ > 0, such that for all G ∈ (−ϵ, ϵ) and some finite h, there exists a

solution of (84) whose profile intersects itself tangentially, enclosing a small bubble of air.

7.3 Continuous curve of solutions for finite depth

In this subsection, we extend our results from Section 5 to the finite depth case. We will highlight

the differences and refer to Section 5 when the details are similar.

It follows from the discussion preceding Theorem 20 that a similar argument to the one in Lemma

15 yields the following Lemma.

Lemma 23. For all λ ∈ (0, 18 ) there exist ϵ > 0 and a real-analytic operator

W : (−ϵ, ϵ)× [λ, 14 − λ]× (−ϵ, ϵ) → V
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such that W (0, a, 0) = ℑ(w(a)) and

F(W (G, a, l);G, a, l) = 0.

Moreover, there exists δ > 0 such that for all (G, a, l) ∈ (−ϵ, ϵ) × [λ, 14 − λ] × (−ϵ, ϵ) the following

statements are equivalent.

(i) G(w;G, a, l) = 0 and ||w −ℑ(w(a))||X < δ;

(ii) w =W (G, a, l).

Let d̃ denote a constant. Then

F(d̃, G, a, l) =
1

2
(1 + Ω(a)d̃)2 +Gd̃−B(a) (89)

and

DxF [d̃, G, a, l](v) = ℑ
((

(1 + Ω(a)d̃)Ω(a) +G
)
E(v,

1

l2
)− (1 + Ω(a)d̃)2ζ∂ζE(v,

1

l2
)

)
for |ζ| = 1.

(90)

The symmetry assumption placed on X implies that the coefficients of the Fourier series of E(v, 1
l2 )

are imaginary. We can then employ a method analogous to the proof of Lemma 16 to demonstrate

a corresponding result. The first statement of the Lemma below follows from choosing d̃ so that the

right-hand side of (89) is equal to zero. The second statement follows from inserting d̃ in (90) and

choosing G̃ so that the resulting expression has its kernel spanned by ℜ(ζ). The choice of d̃ does

not depend on l, however the map G̃ depends smoothly on l. This can be seen in the Fourier series

expansion of E(v, 1
l2 ) (see (A.2) and the discussion following it in [12]).

Lemma 24. There exists a smooth operator d̃ : R× (−∞, 1/3) → {t : t ∈ R} such that

F(d̃(G, a);G, a, l) = 0 and d̃(0, 0) = 0

for (G, a) ∈ R × (−∞, 1/3). Moreover, there exist open neighbourhoods V ⊂ R2, T ⊂ R containing
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zero and a smooth map G̃ : V → T , such that

kerDxG
[
d̃(G̃(a, l), a); G̃(a, l), a, l

]
= ⟨ℜ(ζ)⟩X

for a ∈ V and G̃(0, 0) = 0.

We note that

Q
1
l2
w [d̃, l](ℜ(ζ)) = 0

and

Q
1
l2
ww[d̃, l](ℜ(ζ))2 = coth 2

l2 + (1−ℜ(ζ2))(coth 1
l2 − coth 2

l2 ).

Using non-analytic analogues of the bifurcation theorems used in the proof of Lemma 17, the fol-

lowing result can be obtained.

Lemma 25. There exist ϵ > 0 and a smooth operator v : S̃ → U , where S̃ is defined as

S̃ :=
{
(G, a, l) ∈ R× (−ϵ, ϵ)× (−ϵ, ϵ) : G̃(a, l) ≤ G < G̃(a+ ϵ, l + ϵ)

}

such that v(G, a, l) satisfies the equation

F
(
v(G, a, l) + d̃(G, a);G, a, l

)
= 0

for (G, a, l) ∈ S̃. Moreover, v(G, a, l) is of the form

v(G, a, l) = CG,l(a− G̃−1(G))
1
2ℜζ +O((a− G̃−1(G)) + l),

where CG,l is a positive constant that depends continuously on G and l. Furthermore, there exists

δ > 0 such that v(G, a, l) + d̃(G, a) is the only nontrivial solution of F
(
v,G, a, l

)
= 0, satisfying

||v||X < δ.

We note that in a proof of the Lemma above, one has to consider a version of Proposition 6 and

Corollary 7 with an additional parameter.

64



We can repeat the same argument as in the latter part of Section 5.2 to yield a generalization of

Theorem 12.

Theorem 26. For all γ ∈ (0, 18 ) there exists ϵ > 0 and a smooth operator

W : S → U,

where

S :=

{
(G, a, l) ∈ (−ϵ, ϵ)× (−ϵ, 14 − γ]× (−ϵ, ϵ) : G ≥ G̃(a, l)

}
.

Here, G̃ is as in Lemma 24. The operator satisfies the following three conditions.

1. W (0, a, l) = ℑ(w(a));

2. W (G̃(a, l), a, l) is a constant function of ζ;

3. F(W (G, a, l);G, a, l) = 0.

Moreover, there exists δ > 0 such that for all (G, a, l) ∈ S̃, the following statements are equivalent.

(i) G(w;G, a, l) = 0 and ||w −ℑ(w(a))||X < δ;

(ii) w =W (G, a, l).

Theorem 26 implies the following two results.

Theorem 27. For every sufficiently small ϵ > 0, G ∈ (−ϵ, ϵ) and some finite h, there exists a

continuous curve of solutions of (84) between a laminar flow and a touching wave.

Corollary 28 (Finite depth breaking waves). For every sufficiently small ϵ > 0, G ∈ (−ϵ, ϵ) and

some finite h, there exists a solution of (84) whose profile is vertical at a point but never overhanging.
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[15] D. Córdoba, A. Enciso, and N. Grubic. On the existence of stationary splash singularities for

the Euler equations. Adv. Math., 288:922–941, 2016.

[16] A. D. D. Craik. The origins of water wave theory. Annual Review of Fluid Mechanics, 36(1):1–

28, 2004.

[17] G. Crapper. An exact solution for progressive capillary waves of arbitrary amplitude. Journal

of Fluid Mechanics, 2(6):532–540, 1957.

[18] D. G. Crowdy. Exact solutions for steadily travelling water waves with submerged point vortices.

Journal of Fluid Mechanics, 954:A47, 2023.

[19] E.N. Dancer. Global solution branches for positive mappings. Arch. Rational Mech. Anal.,

52:181–192, 1973.

[20] O. Darrigol. The spirited horse, the engineer, and the mathematician: Water waves in

nineteenth-century hydrodynamics. Archive for History of Exact Sciences, 58:21–95, 11 2003.

[21] P. de Boeck. Existence of capillary-gravity waves that are perturbations of crapper’s waves,

2014.
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