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Abstract

In this master’s thesis, a novel unsupervised anomaly detection tool was developed
in collaboration with Sandvik Rock Processing to assist engineers and experts in
analyzing large amounts of sensor data from cone crushers used in the stone crush-
ing industry. The tool focuses on analyzing power, pressure, and CSS sensor data.
A crucial preprocessing step was implemented to algorithmically identify opera-
tion segments of sufficient length, differentiating between off, idle, continuous, and
discontinuous states based on power usage.

The Variational Autoencoder (VAE) employed a unique architecture with two
1D convolutions in the encoder and 1D transposed convolution in the decoder, uti-
lizing parallel kernel sizes of 2 and 15 to capture both short-term and long-term
patterns in the data. The decoder also incorporated a polynomial trend block to en-
hance the reconstruction. The VAE was trained on well-behaved operation segments
to identify anomalous behaviour through the reconstruction error metric, Mean Ab-
solute Percentage Error (MAPE). The anomaly detection tool achieved an F1 score
of 0.89, 0.75, and 0.92 for the different sensors when tested with labelled anomalies
provided by Sandvik.

Despite the challenge of limited labelled data, the tool successfully identifies
the worst operation segments and can be utilized for deriving useful operation met-
rics. The main benefit of implementing this tool in the context of Sandvik Rock
Processing’s operations is the significant acceleration of sensor data analysis and
the ability to highlight areas of concern for engineers and experts. Potential future
improvements include using a larger dataset for training, more rigorous testing of
hyperparameters, and better data collection to account for factors such as machine
models and expected operating pressure and power.

Keywords: Anomaly Detection, Variational Autoencoder (VAE), Unsupervised
Learning, Machine learning, AI
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1
Introduction

A surge of innovation in machine learning and AI has led many companies to imple-
ment some form of AI. According to research by McKinsey, AI adoption in compa-
nies has more than doubled between 2017 and 2022. In 2017, 20% of all companies
had some form of AI implementation, while in 2022, 50 % of all companies have
some form of AI implementation. Moreover, researchers discovered that compa-
nies, on average, increased their unique AI implementations from 1.9 in 2018 to 3.8
in 2022 [Chui et al., 2022]. An article in Forbes from 2021 claims that traditional
analytic tools have served a purpose but have several shortcomings that need to be
improved for today’s business environment [Drai, 2021].

Harvard business review 2021 published an article claiming that analytical ap-
proaches using predictive models have begun to displace merely descriptive meth-
ods. The report highlights how finding the proper context to analyze data is a diffi-
cult task made much easier using AI since AI systems can determine the relevance
of different facts. It is also claimed that AI-powered analytic tools can remove the
need for expertise to gain insight. It is also claimed that this will allow nontechnical
users to develop their analyses [Davenport and Fitts, 2021].

Sandvik Rock Processing Solutions is a part of the Sandvik group, a global en-
gineering group providing solutions for manufacturing, mining and infrastructure
industries. They are the world’s leading providers of machines for rock processing
industries, often selling to customers that work in either mining or construction.
Sandvik manufactures and sells parts as well as equipment. They also offer mainte-
nance and repair services and can help their customers improve the performance of
their machines. In this case, understanding the function of the machines when in use
by their customer is essential. When experts and engineers analyze a cone crusher’s
performance, the machine’s sensor data is studied as a part of the analysis. One
problem is that over many days or weeks of data, the task of analysis becomes very
time-consuming. The vast amount of data can also raise the probability of missing
important events that could be instructive in assessing the overall behaviour of the
machine. This is a problem machine learning is well suited to address as AI can
quickly go through large amounts of data and find strange and abnormal behaviour.
AI can then guide the experts and engineers, so they can quickly find the parts of the
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Chapter 1. Introduction

data that are most informative. Multiple sizes or models of Sandvik cone crushers
are employed worldwide. This variance in both model and application of the cone
crushers makes the construction of performance metrics difficult. During this the-
sis, a variational autoencoder is implemented for unsupervised anomaly detection.
Variational autoencoders have been successful in similar use cases and VAEs can
also be utilized in other downstream tasks.

1.1 Background

Sandvik manufactures multiple kinds of rock processing machines. During this the-
sis project, only data from cone crushers were treated. Cone crushers are crushers
that work by squeezing the rock between an eccentrically gyrating mantle mounted
to the main shaft and a concave hopper. Rocks enter the top of the crusher and are
crushed as they fall through the narrow opening at the bottom.

The narrow exit through which the crushed stones fall is called the closed side
setting, often called CSS [Sandvik, n.d.] The crushing occurs between the mantle
and the concave. A proprietary file format called ASRI contains stored data from
the cone crusher used in this thesis. The machine constantly reads multiple sensors;
the results are stored in the ASRI file. Only information from the cone crusher, not
the facility outside the machine, is collected. Data from three sensors were utilized,
Power, Pressure and CSS. The ASRI files store data at different sampling rates
depending on the data’s length. All data gathered for this project was generated the
week before it was retrieved.
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1.2 Scope And Delimitations

4 States
In this thesis, the machines are defined to be in one of 4 different states:

• Off

• Idle

• Discontinuous operation

• Continuous operation

Off is defined as when no power is given to the crusher. Idle is defined as when
the machine is powered and running but not crushing rocks. In this thesis, a dis-
continuous operation is when the machine crushes rocks for less than 20 minutes
before either becoming off or idle. A continuous operation is defined as longer than
20 minutes when the machine continuously crushes rocks. The distinction between
these four states is essential for two reasons. It is well known that cone crushers op-
erate best when operating continuously for extended periods instead of with many
starts and stops. Therefore, knowing how often the machines are in these four states
is helpful when analyzing the performance of the cone crusher. This distinction is
interesting because anomaly detection on continuous sections is a significantly eas-
ier problem than anomaly detection on all data. Since the ASRI file does not contain
information on which of these states the crusher is in, an algorithm must be imple-
mented to determine that.

1.2 Scope And Delimitations

This thesis aims to create a tool to parse long periods of sensor data effectively.
The intention is to do this by making an algorithm that distinguishes between the
four states the machine can be in off, idle, continuous operation and discontinuous
operation. Then a VAE will be trained for unsupervised anomaly detection on the
continuous operation segments. The following steps will be taken:

• Create an algorithm to determine the state of the crusher.

• Anomaly detection on continuous operations using a VAE.

• Present data to the engineers.

• Establish a good basis for future development in AI-facilitated data analysis.

Analysis and attempt to find anomalies will be exclusively on the continuous opera-
tions. Since there is an inherent instability, discontinuous operations are not indica-
tive of the performance of the crusher. A period of rock crushing will be segmented
into three sections:
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Chapter 1. Introduction

• Startup.

• Steady state.

• Shutdown.

The startup in the cone crusher is when rocks are introduced into the crusher. The
behaviour is unstable as the number of stones in the crusher constantly increases
during this period.

The steady state is when the crusher is crushing continuously; the feed of rocks
is now continuous and relatively stable. This is the state that Sandvik wants their
customer’s crushing processes to be in most of the time. The most optimal rock
crushing occurs during the steady state, and the machine operates as intended. The
rocks’ feed slows down in the shutdown period and eventually stops. The dwindling
feed leads to instability in the crusher’s performance and behaviour.

How long the startup and end periods last is based on the cone crusher’s model,
the environment, and the cone crusher’s application. Cone crushers are usually one
of many steps in rock processing. The setup and layout of the overall process sur-
rounding the crusher in question can affect the time it takes the machine to reach a
steady state.

If the crushing period is less than 20 minutes, very little of that time is spent in a
steady state. In this case, the process becomes more unpredictable, making it harder
to define anomalies.

The intention is to use a VAE for anomaly detection in continuous operations
and give general information about the operation time, which will be outlined in the
method section. Only the power, pressure and CSS sensors will be used to construct
the state algorithm and the anomaly detection.

Limiting the number of sensors provided more time to understand them and
their connections to one another. This, in turn, allowed more prudent and informed
choices, both in model construction and data preprocessing.

The state selection algorithm and the VAE were agnostic to the crushers’ model
and size. This was done due to time constraints and since it simplified data collec-
tion. There are numerous cone crusher models, and it was infeasible to gather the
data set to train a model with the understanding necessary to take that into account.
The state selection algorithm and the VAE are independent of the plant outside the
machine.
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1.3 Related Work

1.3 Related Work

Anomaly detection encompasses various methodologies, including classification,
distance-based, reconstruction, and clustering techniques [Schemmer et al., 2023,
p. 4]. In the context of this project, a reconstruction-based approach using a Vari-
ational Autoencoder (VAE) is employed. Classification methods, such as isola-
tion forests and support vector machines, aim to classify instances as normal
or anomalous based on predefined criteria. Distance-based methods, such as k-
Nearest Neighbors, measure the similarity between instances to identify anomalies.
Reconstruction-based techniques, including variational autoencoders and autoen-
coders, reconstruct the output from lower dimensional embedding to detect anoma-
lies. Clustering-based methods, such as K-means, Gaussian mixture models, and
density-based clustering algorithms (DBSCAN), group similar instances and iden-
tify instances that deviate from these groups.

The application of Variational Autoencoders (VAEs) to unsupervised anomaly
detection has emerged as a widely used technique in recent research. This approach
has been successfully applied to diverse problem domains, including medical imag-
ing, solder joints, and network intrusion detection. In medical imaging, VAEs have
been utilized to identify anomalous regions within medical images, aiding in the
diagnosis of diseases [Chatterjee et al., 2022; Baur et al., 2021; Zhou et al., 2020].
In the context of solder joints during mass production, VAEs have been employed
to detect faulty soldering, ensuring product quality [Ulger et al., 2021]. In network
intrusion detection, VAEs have been used to identify instances of network intrusion
attempts, helping to enhance the security of computer networks [Fährmann et al.,
2022; An and Cho, 2015].

This thesis focuses on the use of multivariate time series (MTS) data analy-
sis to leverage VAEs for anomaly detection. A notable contribution to this field
is the LSTM-VAE approach, which incorporates a VAE architecture with a Long
Short-Term Memory (LSTM) backbone for temporal modelling in anomaly detec-
tion [Park et al., 2018]. By integrating LSTM layers into the VAE, the LSTM-VAE
captures temporal behaviour effectively.

Another approach, called Omni-Anomaly, extends the concept of LSTM-VAE
by utilizing a stochastic decoder to derive reconstruction probabilities [Su et al.,
2019]. Unlike traditional reconstruction accuracy-based methods, Omni-Anomaly
leverages the reconstruction probabilities to assess the likelihood of data instances
being anomalous, providing a more nuanced measure of anomaly detection.

In addition, MST-VAE introduces a variational autoencoder with a multi-scale
kernel, enhancing the performance of anomaly detection in MTS data [Pham et al.,
2022]. The multi-scale kernel allows the VAE to capture complex temporal phe-
nomena by combining short and long-term temporal dependencies through the use
of different-sized kernels in the convolutional layers.

Time-VAE is a VAE used for interpretable lower-dimensional encoding. It in-
corporates time-series modelling components to introduce temporal structure and
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Chapter 1. Introduction

enhance the interpretability of reconstructions [Desai et al., 2021]. It employs sea-
sonal blocks, level blocks, scale blocks, and a residual block. The seasonal block
forces the output to be a polynomial approximation by applying a Vandemonde ma-
trix multiplication. The level block adds the same value at all time points, while
the scale block multiplies all values at all times. The scale, level, and trend blocks
are used in combination, and convolutional layers are employed for the residual
component in reconstructions where you can track the latent codes’ effect on the
construction of the time series.
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2
Basic AI Concepts

Artificial Intelligence (AI) refers to the development of computational systems ca-
pable of performing tasks that typically require human intelligence. It encompasses
various sub-fields, including deep learning. Deep neural networks (DNNs) are arti-
ficial neural networks consisting of multiple layers of interconnected nodes called
neurons. Neurons within a layer are interconnected, and each neuron receives in-
puts from the neurons in the previous layer. A set of learnable weights and biases
transform these inputs, and each neuron applies an activation function to determine
its output. How the weights and biases transform the input varies based on the type
of layer used. The weights and biases are adjusted based on the training data to
generalize to data outside the training set during training [Alla et al., 2019, pp. 3–
6].

2.1 Activation Functions

Activation functions are mathematical operations applied to the weighted sum of
inputs in a neural network’s neuron. They introduce non-linearity to the network,
enabling it to model complex relationships between inputs and outputs. In other
words, activation functions determine the output of a neuron based on the weighted
sum of its inputs. In a neural network, each neuron receives inputs from the previous
layer, multiplies them by corresponding weights, and sums them up. This weighted
sum is then passed through an activation function, determining the neuron’s output
[Alla et al., 2019, pp. 6–7].

ReLU
The rectified linear unit (ReLU) activation function is the only activation function
used in this project. ReLU is one of the most commonly used activation functions
and is defined as,

ReLU(x) = max(0,x).
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Chapter 2. Basic AI Concepts

As seen by the definition of ReLU, it leaves positive values the same while setting all
negative values to 0. ReLU introduces non-linearity into the network while remain-
ing very computationally effective compared to its alternatives [Alla et al., 2019,
pp. 6–7]. Since ReLU also introduces sparsity to the network by effectively remov-
ing the negative outputs. This sparsity property encourages the network to focus on
relevant and informative features by suppressing less useful or redundant ones. It
can lead to more efficient representations and better generalization [Kiranyaz et al.,
2021, pp. 2–3].

2.2 Layers

Fully Connected Layer
A fully connected layer is a layer in a neural network where every neuron is con-
nected to every neuron in the previous layer. Mathematically, let’s consider a fully
connected layer with n neurons. Suppose the previous layer, called the input layer,
has m neurons. Each neuron in the fully connected layer receives inputs from all
m neurons in the input layer with associated weights. The weighted sum of these
inputs is computed as,

z j =
m

∑
k=0

w(k, j) xk +b j.

Here, z j represents the weighted sum of inputs for the j-th neuron in the fully con-
nected layer, w(k, j) denotes the weight connecting the k-th neuron in the input layer
to the j-th neuron in the fully connected layer, xk represents the output of the k-th
neuron in the input layer and b j is the bias term for the j-th neuron [Alla et al.,
2019, pp. 5–6].

Convolutional 1D Layer
In a convolutional 1D layer, the convolution operation involves sliding a set of filters
over the input data to capture local patterns and dependencies. In addition to the
weights associated with each filter, biases are introduced further to enhance the
flexibility and representational power of the layer. Mathematically, let’s consider a
convolutional 1D layer with n filters. Each filter has a width (kernel size) of K and
is associated with a set of weights wi and a bias term bi. The convolution takes
place with a stride of S. The convolution operation for a single filter at position j is
defined as,

z j =

(
K−1

∑
k=0

x(( j·S)+k) w( j,k)

)
+b j.

Here x represents the input sequence, x j+k denotes the ( j + k)-th element of the
input sequence, and w j,k represents the weight associated with the k-th element
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2.2 Layers

of the filter. z j represents the weighted sum of inputs for the j-th neuron in the
convolutional 1D layer, b j is the bias term associated with the j-th filter [Kiranyaz
et al., 2021, pp. 6–7].

This equation shifts the kernel across the input sequence with a step size of S. At
each position, the convolution operation is performed by element-wise multiplying
the kernel with the corresponding elements of the input sequence within the kernel
window, summing the results, and adding the bias term to obtain the output value z j.
Strides more significant than one reduce the output size of the layer. This is useful
for reducing the spatial dimension of the data and the number of computations in
the following layers. Kernel size is the filter’s width, dramatically impacting what
kind of patterns the layer can capture. A smaller kernel lets the network focus on
capturing short-range dependencies and specific local features. A larger kernel size
captures the input data’s broader context and global dependencies. The choice of
kernel size is a trade-off between local and global information [Pham et al., 2022,
pp. 3–5, 7, 11]. Using the formulation for the convolutional 1D layer with an input
of length I then, the output length is the following,

O =
I−K

S
+1.

With a stride of 1, it might seem intuitive that the output should be the same as the
input, but that is not the case [Dumoulin and Visin, 2016, p. 15]. The difference in
input and output size with a stride of 1 is,

I−O = K−1.

This can be adjusted by adding zeros at the beginning and end of the input and then
shifting the convolution to account for it,

z j =

(
K−1

∑
k=0

x(( j·S)+k−K−1
2 ) w( j,k)

)
+b j.

In this equation, xk is the k-th element in the padded array. An example of this type
of 1D convolution can be seen in the figure in the Appendix.
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Chapter 2. Basic AI Concepts

Transposed convolutional 1D Layer
The transposed 1D convolution layer can be viewed as the inverse of the convo-
lutional 1D layer. It can up-sample and reconstruct the input data from a lower-
resolution representation. The operations in a transposed convolution are similar to
that in a 1D convolution, but things like stride have a different meaning. In trans-
posed 1D convolution, the stride decides the number of zeros to pad between the
original elements of x in the padded array x̂. Below is an example of the padded
array x̂,

__
__

___
___

___
____ _________________

Figure 2.1 A diagram of the padding in transposed convolutional layers.

This padded array then undergoes normal convolution,

z j =

(
K−1

∑
k=0

x̂( j+k) w( j,k)

)
+b j.

Here x̂ represents the padded input sequence, x̂ j+k denotes the ( j+k)-th element of
the padded input sequence, and w( j,k) represents the weight associated with the k-th
element of the filter. z j represents the weighted sum of inputs for the j-th neuron
in the convolutional 1D layer, b j is the bias term associated with the j-th filter
[Dumoulin and Visin, 2016, pp. 20–22][Zeiler et al., 2010, pp. 2–3]. An example of
this type of 1D transposed convolution can be seen in the figure in the Appendix.

Reshaping and Flattening Layers
Reshaping and flattening are commonly employed operations in deep neural net-
works that do not change the content of the data or the number of elements in the
tensor but only its dimensionality. Reshaping refers to rearranging a tensor’s di-
mensions while preserving the total number of elements. The reshaping operation
involves specifying a target shape for the tensor, which defines the new arrangement
of its dimensions. The target shape must be compatible with the original shape,
meaning the total number of elements in the tensor remains constant. The data can
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2.3 Updating Network Weights

be transformed from one format to another by reshaping tensors, enabling compati-
bility with subsequent layers or operations. Flattening is a specific form of reshaping
that collapses the dimension of the tensor. Flattening is often applied when transi-
tioning from convolutional layers, which typically operate on spatially structured
data, to fully connected layers, which require one-dimensional input.

2.3 Updating Network Weights

The loss function quantifies the discrepancy between the predicted outputs of a
neural network and the desired or ground truth outputs associated with the given
input data. Mathematically, let’s denote the input data as X and the corresponding
desired outputs as Y. A deep neural network aims to approximate the actual under-
lying mapping between X and Y. The neural network computes a set of predicted
outputs, denoted as Ŷ, based on the input data and the current parameters of the net-
work.The loss function, denoted as L (Y, Ŷ), measures the dissimilarity between
the predicted outputs Ŷ and the desired outputs Y. This discrepancy indicates the
network’s ability to capture the underlying patterns and generalize to unseen data.
The ultimate objective during training is to minimize this loss function, thereby im-
proving the network’s predictive capabilities. The choice of a suitable loss function
depends on the nature of the task. The loss function is used to quantify the error
between the output and the correct output. A problem is how to adjust the network
parameters best to minimize future errors. Most DNNs use backpropagation and a
method based on stochastic gradient descent (SGD) for this [Kingma and Ba, 2014,
p. 1].

Backpropagation
Backpropagation refers to computing gradients in a deep neural network, which is
vital for updating the network’s parameters. It is based on the calculus chain rule
and efficiently computes the gradients by propagating the error backwards from
the output layer to the input layer. To explain backpropagation, consider a deep
neural network with multiple layers. Each layer consists of nodes, also known as
neurons, interconnected by weighted edges. The network takes an input vector X
and passes it forward through the layers to generate predicted outputs Ŷ. During
the forward pass, intermediate values, known as activations, are computed at each
layer. The objective of backpropagation is to determine the impact of each weight
on the overall loss function L (Y, Ŷ). Starting at the output layer, the gradients of
the loss function are computed with respect to the activations and weights. These
gradients quantify the sensitivity of the loss function to changes in activations and
weights. The gradients are then propagated backwards through the layers, using
the chain rule, to compute the gradients at each layer. At each layer, the gradients
are multiplied by the local gradients of the activation function, which captures the
derivative of the activation function with respect to its inputs. This process continues
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Chapter 2. Basic AI Concepts

until the gradients are computed for all layers, providing the necessary information
to update the network’s parameters using an optimization algorithm [Goodfellow
et al., 2016, pp. 197–205].

Optimization Algorithms
Stochastic Gradient Descent (SGD) is a simple optimization algorithm operating
on the principle of gradient descent, but it is applied to smaller subsets of the data
known as mini-batches. The key idea behind SGD is to update the model’s param-
eters by taking small steps toward the steepest descent of the loss function with
respect to the parameters, thereby finding minima in the loss function.

The primary justification for using SGD in deep learning is its computational ef-
ficiency. Training deep neural networks involves many parameters and a large quan-
tity of training data. Computing the gradient of the loss function with respect to all
the training examples at once can be computationally expensive. SGD addresses this
challenge by approximating the gradient using a randomly selected mini-batch of
training examples. This approximation allows for faster computation of parameter
updates and facilitates efficient parameter space exploration during training.

θ ← θ −η∇Lθ (Y, Ŷ)

Here θ represents the parameters of the model, η is the learning rate, Lθ (Y, Ŷ) is
the loss function and ∇Lθ (Y, Ŷ) is the gradient of the loss function with respect
to the parameters θ . SGD allows the model to gradually converge towards a set of
parameters that minimize the loss function by iteratively updating the parameters
based on the gradients estimated from mini-batches.

Adaptive Moment Estimation (ADAM) is an extension of SGD that incorpo-
rates adaptive learning rates and momentum to enhance the optimization process
further. It aims to address some of the limitations of SGD, such as the sensitivity to
the choice of learning rate and slow convergence in some cases. The main idea be-
hind ADAM is to maintain adaptive learning rates for each parameter based on the
first and second moments of the gradients. The ADAM optimizer uses exponential
moving averages of the gradient and its squared value to estimate these moments.
This adaptation automatically allows ADAM to adjust the learning rates for differ-
ent parameters during training.
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2.4 Learning Paradigms

m← β1 ·m+(1−β1) ·∇Lθ (Y, Ŷ)

v← β2 · v+(1−β2) · (∇Lθ (Y, Ŷ))2

m̂← m
1−β t

1

v̂← v
1−β t

2

θ ← θ −η · m̂√
v̂+ ε

β1 and β2 are hyperparameters controlling the exponential decay rates of the mov-
ing averages. Here m and v are the first and second-moment estimates, respectively,
and m̂ and v̂ are bias-corrected moment estimates to account for the fact that the
estimates are biased towards zero at the beginning of training. t is an index repre-
senting the timestep, and ε is a very small constant increasing numerical stability
and avoiding division by 0. The adaptive learning rates help handle different scales
of gradients across parameters, and the momentum term allows the optimizer to ac-
celerate convergence by accumulating past gradients. The adaptive learning rates
are achieved through the computation of the moving averages m and v, which are
used to estimate the first and second moments of the gradients. These estimates are
then bias-corrected using the terms m̂ and v̂. The parameters are then updated by
scaling the gradients with the adaptive learning rate m̂√

v̂+ε
.[Kingma and Ba, 2014,

pp. 1–3]

2.4 Learning Paradigms

Three types of learning paradigms exist supervised, unsupervised, and semi-
supervised.

Supervised Learning
Supervised learning is a type of machine learning where the algorithm learns from
labelled examples to make predictions or classify new, unseen data. In the context
of deep neural networks, supervised learning involves training a model using input-
output pairs, where the inputs are the features or attributes of the data, and the
outputs are the corresponding labels or target values.

In supervised learning, the training dataset consists of N labelled examples, de-
noted as (xI ,yi), where xi represents the input features and yi represents the corre-
sponding label or target value. The goal is to teach a function f (x) that maps the
input features to the correct output labels [Russell, 2010, pp. 528–531].
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Unsupervised Learning
Unsupervised learning is a type of machine learning where the algorithm learns pat-
terns or structures in the input data without explicit labels or target values. In unsu-
pervised learning, the goal is to discover inherent structures, relationships, or repre-
sentations within the data [Russell, 2010, pp. 528–529][Freund and Haussler, 1991,
p. 1]. In deep neural networks, unsupervised learning is often used for clustering,
dimensionality reduction, or generative modelling tasks. Some standard unsuper-
vised learning algorithms include autoencoders, clustering algorithms like k-means
or Gaussian mixture models, and generative adversarial networks (GANs). Unlike
supervised learning, unsupervised learning does not rely on explicit labels or target
values during training. Instead, it focuses on finding patterns or organizing the data
to capture meaningful information without specific guidance.

Semi-supervised Learning
Semi-supervised learning is a combination of supervised and unsupervised learn-
ing. In semi-supervised learning, the algorithm is trained on a dataset containing
labelled and unlabeled examples. The availability of a limited number of labelled
examples and a more extensive set of unlabeled examples allows the algorithm to
leverage the labelled data for supervised learning while benefiting from the addi-
tional information in the unlabeled data. In semi-supervised learning, the training
dataset consists of N examples, denoted as (xI ,yi) for the labelled examples and
(x j) for the unlabeled examples. The goal is to teach a function f (x) that can gener-
alize well to labelled and unlabeled examples. Semi-supervised learning algorithms
typically incorporate the unsupervised learning aspect to learn valuable representa-
tions or structures from unlabeled data. These representations can then improve the
model’s performance on the labelled data. One common approach in deep learning
is to pre-train a model using unsupervised learning (e.g., autoencoders or generative
models) and then fine-tune it using the labelled data.

2.5 Feature Scaling

Feature scaling transforms data to ensure it has specific properties, often to facilitate
further analysis or improve the performance of machine learning algorithms. These
transformations are typically reversible, provided that information about the scaling
process is retained.

Min-Max Scaling
Min-max scaling adjusts the data to fit within the range [0,1]. This scaling is per-
formed using the following equation,

x′ =
x−min(x)

max(x)−min(x)
.
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To reverse the transformation, the minimum and maximum values of the original
data (min(x) and max(x)) must be saved,

x = x′(max(x)−min(x))+min(x).

Z-Score Scaling
Z-score scaling is a transformation that standardizes the data by centring it around
the mean (µ) and scaling it based on the standard deviation (σ ). After applying this
transformation, the mean of the scaled data becomes 0, and the standard deviation
becomes 1,

x′ =
x−µ

σ
.

Here, µ represents the mean of the original data, and σ denotes its standard devia-
tion. To invert the transformation, the mean and standard deviation values must be
retained,

x = x′σ +µ.

2.6 Reconstruction Metrics

There are numerous metrics for calculating the difference between a tensor and its
reconstruction. In this report, the focus is on three such metrics. For the explanation
of these metrics, the following notation will be used:

• xi denotes the true value of the ith element.

• x̂i represents the predicted value of the ith element.

• n is the number of elements.

Mean Absolute Error
Mean Absolute Error (MAE) measures the average absolute difference between
predicted and true values [De Myttenaere et al., 2016, p. 4]. The formula for MAE
can be expressed as,

MAE =
1
n

n

∑
i=1
|xi− x̂i|.

Mean Squared Error
Mean Squared Error (MSE) calculates the mean square difference between pre-
dicted and true values [Goodfellow et al., 2016, p. 105]. The formula for MSE is
given by,
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MSE =
1
n

n

∑
i=1

(xi− x̂i)
2.

Mean Absolute Percentage Error
Mean Absolute Percentage Error (MAPE) quantifies the percentage difference be-
tween predicted and true values [De Myttenaere et al., 2016, p. 4]. The formula for
MAPE can be expressed as,

MAPE = 100%× 1
n

n

∑
i=1

∣∣∣∣xi− x̂i

xi

∣∣∣∣ .
2.7 Fβ Score

In binary classification tasks such as anomaly detection, the Fβ score is a family of
metrics used to evaluate the precision of a set of predictions. To define this metric,
some other related terms must first be explained.

Prediction Types
For binary classification tasks, all predictions fall into one of the following cate-
gories:

• True Positives (TP)

• True Negatives (TN)

• False Positives (FP)

• False Negatives (FN)

In anomaly detection, TP represents correctly predicted anomalies, while TN
refers to non-anomalies accurately identified as non-anomalies. FP occurs when
a non-anomaly is mistakenly predicted as an anomaly, and FN occurs when an
anomaly is wrongly predicted as a non-anomaly.

Recall
The recall is a metric that quantifies the proportion of actual anomalies correctly
identified by the classifier. It is defined as,

Recall =
T P

T P+FN
.
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Precision
Precision is a metric that measures how many elements classified as anomalies are
true anomalies. It is defined as,

Precision =
T P

T P+FP
.

Fβ Score
The Fβ score balances recall and precision and is defined as,

Fβ =
(
1+β

2) Precision ·Recall
(β 2 ·Precision)+Recall

.

Here, β is a constant that allows the metric to apply preferential weight to either
Precision or Recall, depending on whether false negatives or false positives have
more severe consequences. In this thesis, this metric will be used for the specific
case β = 1, which assigns equal importance to both precision and recall [Rijsbergen
C.J., 1995][Goodfellow et al., 2016, pp. 411–412],

F1 = 2
Precision ·Recall

Precision+Recall
.

2.8 AUC-ROC Curve

One of the most popular and widely used evaluation metrics for classification mod-
els is the area under the receiver operating characteristic curve, abbreviated as AUC-
ROC. This section explains the AUC-ROC curve, its properties, and its uses in eval-
uating classification models.

Receiver Operating Characteristic Curve
The Receiver Operating Characteristic (ROC) curve is a graphical representation of
the performance of a binary classification model, displaying the trade-off between
the true positive rate (sensitivity) and the false positive rate (1-specificity) for dif-
ferent classification thresholds. The true positive rate (TPR) and false positive rate
(FPR) are defined as follows,

TPR =
True Positives (TP)

True Positives (TP)+False Negatives (FN)

FPR =
False Positives (FP)

False Positives (FP)+True Negatives (TN)
.

The ROC curve is obtained by varying the classification threshold and plotting the
TPR against the FPR. A perfect classifier would have a curve that passes through
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the top-left corner of the graph, indicating a TPR of 1 and an FPR of 0. A random
classifier, on the other hand, would have a diagonal line from the bottom-left corner
to the top-right corner, representing a random guess.

Area Under the Curve (AUC)
The area under the ROC curve, known as the AUC, is a single scalar value that
summarizes the overall performance of the classification model across all possible
thresholds. The AUC ranges from 0 to 1, where a value of 1 represents a perfect
classifier, and a value of 0.5 corresponds to a random classifier. The AUC can be
interpreted as the probability that a randomly chosen positive instance will have a
higher predicted probability than a randomly chosen negative instance. The AUC
has several desirable properties that make it a popular choice for evaluating classi-
fication models:

1. Invariance to class distribution: The AUC is not affected by the propor-
tion of positive and negative instances in the dataset, making it suitable for
imbalanced datasets.

2. Invariance to classification threshold: The AUC considers the classifier’s
performance across all possible thresholds, comprehensively evaluating the
model’s performance.

3. Rank-based metric: The AUC is a rank-based metric, which means it only
considers the order of the predicted probabilities, not their absolute values.
This property makes the AUC robust to predicted probabilities’ scale changes.

Computing the AUC-ROC
Several methods exist to compute the AUC, such as the trapezoidal rule and the
Mann-Whitney U statistic. One popular method is the trapezoidal rule, which ap-
proximates the area under the curve by dividing it into several trapezoids and sum-
ming their areas. Given a set of FPR and TPR pairs (FPRi,T PRi) sorted by ascend-
ing FPR values, the AUC can be calculated as follows,

AUC =
n−1

∑
i=1

(FPRi+1−FPRi)(TPRi+1 +TPRi)

2
.

Here n is the number of FPR and TPR pairs. AUC-ROC provides a comprehensive
assessment of the model’s performance across all classification thresholds and is
robust to changes in class distribution and predicted probability scale.
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3
Variational Autoencoder

The Variational Autoencoder (VAE) is a type of artificial neural network that was
first introduced in 2014 by Diederik P. Kingma and Max Welling in their paper
"Auto-Encoding Variational Bayes" [Kingma and Welling, 2013]. At the time, it
represented a significant advancement in deep learning. The VAE quickly gained
popularity in the machine learning community due to its ability to learn meaningful
representations of complex data, such as images and audio. In particular, it has been
used for image generation, retrieval, and manipulation tasks. Recently the VAE has
been used for time series. There has been much recent work for anomaly detection in
time series using semi-supervised or unsupervised learning and VAE architectures.

The VAE aims to reconstruct input data while learning a compact representa-
tion. These models are based on the concept of variational inference, and they have
to balance the trade-off between the reconstruction’s accuracy and the encoding’s
compactness. VAEs have three components, the encoder, decoder and encoding. The
encoder and decoder are both deep neural networks that perform different tasks. To
understand VAEs, some other concepts first need to be explained.

There is an observation x, a multivariate time series, which is the input to the
VAE. In this context, the latent space, z, is the encoding of the VAE. z has a lower
dimension then x and is a stochastic variable.

When making a VAE or any other encoding architecture, the goal is to make
an encoder that takes the data from an observation x to an encoding z of lower
dimensions and a decoder that reconstructs x from the lower dimensional encoding.
This intuitively makes sense when considering that many signals have redundancies
and repeatable patterns that could perfectly describe the content of a signal with less
information.
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3.1 Variational Inference

Variational inference is a technique for approximating a distribution by a variational
distribution. The decoder is a neural network pθ (x|z), where θ represents the pa-
rameters of the decoding network. It takes input from the latent space to the space
of observations. Since the latent space is probabilistic, the mapping is also prob-
abilistic. Since that would make the ideal encoder, knowing pθ (z|x) is equivalent
to solving the problem. When attempting to do this, problems emerge, and a tech-
nique called variational inference is employed. Variational inference is a technique
to approximate complex probability distributions, such as the posterior distribution
of latent variables given observed data. In the context of VAEs, there is a generative
model with latent variables z and observed variables x. The true posterior distribu-
tion pθ (z|x) can be described by the following expression,

pθ (z|x) =
pθ (x|z)pθ (z)

pθ (x)
.

Here pθ (z) is the prior distribution for the latent space that samples from the latent
space are from. pθ (x) is the marginal likelihood. The problem is that pθ (z|x) is
often intractable due to the high-dimensional integration required to compute the
marginal likelihood,

pθ (x) =
∫

pθ (x|z)pθ (z)dz.

To avoid this, a variational distribution is introduced qφ (z|x), which is a simpler,
tractable distribution that can optimize to be as close as possible to the true posterior
pθ (z|x). Meaning that the following assumption is employed,

qφ (z|x)≈ pθ (z|x).

Here qφ (z|x) is the encoding network, where φ represents the parameters of the
encoding network. The encoder maps the input x to a lower-dimensional represen-
tation, z. Combing the encoder and decoder, the VAE can map an observation to a
latent variable z and that latent variable is then mapped to an approximation of x, x̂,

x
qφ (z|x)−−−−→ z

pθ (x|z)−−−−→ x̂.

VAE training aims to minimize the difference between the input data, x, and its re-
construction, x̂, while ensuring that the encoding, z, is a compact data representation.
Both the encoder and decoder are jointly trained using a type of stochastic gradient
descent [Kingma and Welling, 2013, pp. 1–3][Bishop, 2006, pp. 462–463][Ganguly
and Earp, 2021, pp. 1–2].
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3.2 Kullback–Leibler Divergence

The Kullback–Leibler (KL) divergence measures the divergence or dissimilarity
between two probability distributions. The KL divergence for two probability dis-
tributions P and Q of a continuous random variable x following way,

DKL (P||Q) :=
∫
R

p(x) log
(

p(x)
q(x)

)
dx.

Here, p and q are the probability densities of the distributions P and Q. The KL
divergence can be interpreted as the average difference between the logarithm of the
true probability P and the logarithm of the approximating probability Q, weighted
by the true probability P. This measure is asymmetric, meaning that DKL(P ∥ Q) is
generally not equal to DKL(Q ∥ P). The KL divergence also has the property,

DKL (P||Q) =
∫
R

p(x) log
(

p(x)
q(x)

)
dx≥ 0.

For all probability distributions, P and Q. [Bishop, 2006, pp. 55–56]

3.3 Reparameterization Trick

Adjustments must be made to train VAEs with stochastic gradient descent (SGD)
during backpropagation because z is a random variable. The trick involves trans-
forming a random variable, z, into a deterministic transformation of another random
variable, ε , and a set of parameters, µ and σ . The idea behind the reparameteriza-
tion trick is to separate the stochastic component of the model from the deterministic
component. In VAEs, the encoding distribution, qφ (z|x), is typically assumed to be
a Gaussian distribution with mean µφ (x) and standard deviation σφ (x). Without the
reparameterization trick, an overview of the VAE looks like the following.

Encoder Decoder
Latent variable

Figure 3.1 A diagram of the overview of a VAE.

In the original formulation, sampling from this distribution and computing the gra-
dient with respect to the parameters, φ , would make the optimization process in-
tractable. The reparameterization trick solves this issue by transforming the random
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variable z into a deterministic transformation of another random variable ε , where
ε is sampled from a standard normal distribution,

z = µφ (x)+σφ (x)⊙ ε.

Here ⊙ denotes element-wise multiplication. This transformation allows for the
computation of gradients with respect to the parameters, φ , using standard back-
propagation. The reparameterization trick enables using gradient-based optimiza-
tion methods, such as stochastic gradient descent, to optimize the VAE objective
[Kingma and Welling, 2013, pp. 4–5]. An overview of the VAE with the reparame-
terization trick is like the following.

×

+ z

Encoder Decoder

Figure 3.2 A diagram of the overview of a VAE, reparameterized.

3.4 ELBO

The evidence lower bound (ELBO) is the lower bound of the marginal log-
likelihood of the observed data,

log(pθ (x))≥ ELBO.

This means that maximizing the ELBO corresponds to maximizing the likelihood
of the data. To arrive at an expression for ELBO, KL divergence is performed on
approximate posterior qφ (z|x) and the true posterior pθ (z|x) leading to the following
expression,
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DKL
(
qφ (z|x)||pθ (z|x)

)
= Eqφ

[
log
(

qφ (z|x)
pθ (z|x)

)]
= Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z|x))]
= Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+Eqφ
[log(pθ (x)))]

= Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+
∫

qφ (z|x) log(pθ (x))dz

= Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+ log(pθ (x))
∫

qφ (z|x)dz

= Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+ log(pθ (x)).

This leads to this expression for KL divergence of the true and approximate
posterior,

DKL
(
qφ (z|x)||pθ (z|x)

)
=Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+ log(pθ (x)).

This expression can be rewritten to isolate the marginal log-likelihood of the ob-
served data,

log(pθ (x)) =−Eqφ

[
log(qφ (z|x))

]
−Eqφ

[log(pθ (z,x)))]+DKL
(
qφ (z|x)||pθ (z|x)

)
.

Since DKL
(
qφ (z|x)||pθ (z|x)

)
is greater or equal to 0, the expression can be rewritten

as an inequality and then simplified,

log(pθ (x))≥−Eqφ

[
log(qφ (z|x))

]
+Eqφ

[log(pθ (z,x)))]

=−Eqφ

[
log(qφ (z|x))

]
+Eqφ

[log(pθ (x|z)))]+Eqφ
[log(pθ (z)))]

= Eqφ
[log(pθ (x|z))]−Eqφ

[
log
(

qφ (z|x)
pθ (z)

)]
= Eqφ

[log(pθ (x|z))]−DKL
(
qφ (z|x)||pθ (z)

)
.

This inequality for the marginal log-likelihood is ELBO. Since maximizing the
right-hand side of the expression maximizes the marginal log-likelihood [Ganguly
and Earp, 2021, pp. 3–7].

ELBO = Eqφ
[log(pθ (x|z))]−DKL

(
qφ (z|x)||pθ (z)

)
.
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3.5 Loss Function

Since maximizing ELBO is maximizing the likelihood of the data. That means that
minimizing negative ELBO also maximizes the likelihood of the data. The loss
function for the VAE is defined as,

L =−ELBO =−Eqφ
[log(pθ (x|z))]+DKL

(
qφ (z|x)||pθ (z)

)
.

This loss formulation is useful since it minimizes the reconstruction error while
minimizing the error between the priors and the actual distribution. This has led to
the distinction between the reconstruction loss and the KL loss,

L =−Eqφ
[log(pθ (x|z))]︸ ︷︷ ︸

LRecon

+DKL
(
qφ (z|x)||pθ (z)

)︸ ︷︷ ︸
LKL

.

KL Loss Simplification
The expression for the KL loss can be simplified further by using multivariate nor-
mal distributions with diagonal covariates as the priors for the latent space pθ (z),

pθ (z) = N (0, I)

qφ (z|x) = N (µ, Σ)

Where Σ = diag(σ2
1 , ...,σ

2
n ).

Using this, the expression for the KL divergence can be simplified,

LKL =
∫

qφ (z|x) log
1

(2π)n/2|Σ|1/2 exp
(
− 1

2 (z−µ)T Σ−1(z−µ)
)

1
(2π)n/2 exp

(
− 1

2 zT z
) dz

=
∫

qφ (z|x)
(
−1

2
log |Σ|− 1

2
(z−µ)T

Σ
−1(z−µ)+

1
2

zT z
)

dz

=−1
2

log |Σ|
∫

qφ (z|x)dz− 1
2

∫
qφ (z|x)(z−µ)T

Σ
−1(z−µ)dz+

1
2

∫
qφ (z|x)zT zdz.

This expression will be broken into smaller expressions to be solved. The first inte-
gral is equal to 1 since qφ (z|x) is a probability density function,∫

qφ (z|x)dz = 1.

For the second integral, the fact that the expectation of a quadratic form is given by:∫
qφ (z|x)zT zdz = Eqφ (z|x)[z

T z] = µ
T

µ +Tr(Σ).

With these results, the KL divergence formula can be rewritten,
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LKL =−1
2

log |Σ|− 1
2

n+
1
2
(µT

µ +Tr(Σ)).

Then one final simplification [Ganguly and Earp, 2021, pp. 3–7],

LKL =
1
2

n

∑
i

(
σ

2
i +µ

2
i − log(σ2

i )−1
)
.

Reconstruction Loss Simplification
Using the reparameterization trick, the latent variable z can be expressed as,

z = µ(x)+σ(x) · ε.

Here ε ∼N (0, I) is a random variable sampled from a standard normal distribution.
Now, the reconstructed output of the decoder can be expressed as,

x̂ = pθ (x|z) = pθ (x|µ(x)+σ(x) · ε).

The decoder’s output is deterministic and follows a Gaussian distribution with mean
x̂= pθ (x|µ(x)+σ(x) ·ε) and fixed variance σ2. The log-likelihood of the input data
x under this Gaussian distribution is given by,

log pθ (x|z) =−
1

2σ2 ∥x− x̂∥2− D
2

log(2πσ
2).

Here D is the dimensionality of the input data [Bishop, 2006, pp. 93]. Using the
reparameterization trick can be used to rewrite the reconstruction error term,

LRecon =−Eq(z|x) [log p(x|z)] =−Eε∼N (0, I) [log(pθ (x|µ(x)+σ(x) · ε))]

=
1

2σ2Eε∼N (0, I)

[
∥x− x̂∥2 +

D
2

log(2πσ
2)

]
.

Since the intention is to minimize the loss, function constants are not important, so
the expression can be rewritten without constants,

LRecon =
1

2σ2Eε∼N (0, I)
[
∥x− x̂∥2] .

Using the definition of x̂ the expression can be rewritten,

LRecon =
1

2σ2Eε∼N (0, I)
[
∥x− pθ (x|µ(x)+σ(x) · ε)∥2] .

The expected value is approximated by Monte Carlo sampling,

LRecon ≈
1

2Nσ2

N

∑
i=0
∥x− pθ (x|µ(x)+σ(x) · εi)∥2.
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Here all εi are random samples from N (0, I) [Andrieu et al., 2003]. The special
case of N = 1 is used, which drastically simplifies the expression,

LRecon ≈
1

2σ2 ∥x− pθ (x|µ(x)+σ(x) · ε)∥2 =
1

2σ2 ∥x− x̂∥2.

Here ε is a single sample from the distribution N (0, I). For this project, the fixed
variance σ2 can be assumed to be 1. This is because the input data is normalized
using z-score scaling. With the fixed variance set to 1, the expression can be written
as,

LRecon ≈
1
2
∥x− x̂∥2.

Final Loss Expression
Using the simplified expressions for the reconstruction loss and the KL loss and
inserting them back into the expression for the loss gives the following expression,

L =
1
2
∥x− x̂∥2︸ ︷︷ ︸
LRecon

+
1
2

n

∑
i

(
σ

2
i +µ

2
i − log(σ2

i )−1
)

︸ ︷︷ ︸
LKL

.

This expression for the loss makes it even more clear that the reconstruction loss
punishes bad reconstruction accuracy while the KL loss punishes the encoder if it
produces µ and σ too far from the normal distribution.
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3.6 β -VAE

A β -VAE variant of the traditional VAE incorporates an additional hyperparameter
called "beta" (β ) to control the trade-off between the expressiveness of the learned
latent space and the reconstruction accuracy. The previous formulation of the total
loss could be broken into reconstruction loss and KL loss,

L = LRecon +LKL.

The adjusted loss function with β is as follows,

L = LRecon +β ·LKL.

Higher values for β facilitate better disentanglement, generalization continuity and
smoothness in the latent space. These desirable traits, in turn, lead to a more ex-
pressive latent space. With this implementation, it is possible to force manifold
disentanglement for values of β larger than one. Values of β that are less than one
lead to better reconstruction accuracy[Higgins et al., 2017][Burgess et al., 2018].
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4
Data

This section will explore the format and dimension of the data processed by the
model. The algorithms used to distinguish between the four states in the crusher
will also be explained. The definition of an anomaly employed in this project will
also be explained in detail.

4.1 Data Format

The monitoring system records successive observations that are equally spaced over
time. Anomaly detection takes place for individual continuous operations. A con-
tinuous operation can be denoted as,

X = {x1, ...,xN}, X ∈ RN×3.

Here N is the length of the continuous operation, three features are observed, Power,
Pressure and CSS, for the length of continuous operation.

Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Power xPower
0 xPower

1 · · · · · · · · · · · · xPower
N

Pressure xPressure
0 xPressure

1 · · · · · · · · · · · · xPressure
N

CSS xCSS
0 xCSS

1 · · · · · · · · · · · · xCSS
N

This input has some issues since the studied continuous operations are of different
lengths. A sliding window with step size one is applied to the data to account for
this. The data after the sliding window has been applied to it is of the following
dimensions,

XWindowed ∈ R(N−W+1)×W×3.

Here W is the size of the applied window. The data is constructed of N-W+1 stacked
windows with three features. The shape of the data is illustrated in the following
diagram,
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Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

x0 x1 x2 · · · · · · · · · · · · XW−1
x1 x2 x3 · · · · · · · · · · · · XW
x2 x3 x4 · · · · · · · · · · · · XW+1
x3 x4 x5 · · · · · · · · · · · · XW+2
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

xN−W+1 xN−W+2 xN−W+3 · · · · · · · · · · · · XN

Where xt for any valid index t,

xt = {xPower
t ,xPressure

t ,xCSS
t }.

This reformatting of the data standardizes the input dimensions for the VAE. The
VAE can be trained on separate windows of size W during training. The rolling
window transformation is fully reversible, so the data can first be transformed, then
inference can be applied to the windows then the transformation can be reversed.
As seen in the table above, there are duplicates for many of the time steps xt . Since
the VAE reconstructs each window separately, this will be different in the recon-
struction. The reconstruction will have the same dimension,

X̂Windowed ∈ R(N−W+1)×W×3

Here X̂Windowed is the windowed reconstructed produced by the VAE. An example
showing the shape of the format of the reconstructed data,

Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

x0
0 x0

1 x0
2 · · · · · · · · · · · · x0

W

x1
1 x1

2 x1
3 · · · · · · · · · · · · x1

W+1

x2
2 x2

3 x2
4 · · · · · · · · · · · · x2

W+2

x3
3 x3

4 x3
5 · · · · · · · · · · · · x3

W+3

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

xN
N−W+1 xN

N−W+2 xN
N−W+3 · · · · · · · · · · · · XN

N

as seen above, x0 gets only one approximation x0
0. An element xt can have between

1 and W approximations. The inverse transform was implemented such that the
element xt is the average of all approximations of xt .
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4.2 Data Flow

Each ASRI file contains data from the last week of operation. In this project, the data
from the ASRI file is retrieved and stored in a CSV file using a program from Sand-
vik. The CSV file is then passed into the state algorithm that distinguishes which of
the four states it is in. All four states are used to calculate operation metrics, but only
the continuous operation segments are passed for anomaly detection. The operation
metrics and the anomalies detected are then passed together as a summary. Below
is a diagram of the data flow in this project.

ASRI FILE CSV FILE
State selection

algorithm

Data summary
script

SANDVIK
PROGRAM

Discontinuous
operation
segments

IdleOff
Continuous

operation
segments

Operation metrics script

Anomaly Detection

Anomalies

Operation metrics

Data summary

Figure 4.1 A diagram showing the data flow of the project.
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4.3 Anomalies

In the context of this thesis, the focus is anomaly detection for sensor data obtained
from cone crushers used for rock crushing provided by the company Sandvik. A
continuous operation is defined as when the machine crushes rocks continuously
for longer than 20 minutes. As the objects to be classified are of different lengths,
a binary classification approach utilizes windows to handle this variability. Within
the scope of this study, an anomaly is defined as,

"A continuous operation which behaves in a manner so different from
a correctly operating machine that an expert or engineer would want
to be notified of the operation."

It is important to note that this definition does not necessarily imply rarity, as
instances may arise where all or the majority of continuous crushing operations
exhibit anomalous behaviour due to consistent mismanagement of the machinery.
There are many ways to define an anomaly; even so, the definition of anomaly em-
ployed in this thesis deviates from the norm. A definition of an anomaly that more
closely resembles how it is commonly used is [Aggarwal and Aggarwal, 2017],

"An anomaly is an observation which deviates so much from the other
observations as to arouse suspicions that a different mechanism gener-
ated it."

Additionally, the approach in this thesis departs from the standard definition in that
it classifies entire operations as anomalous or non-anomalous. In contrast, other
anomaly detection methods typically identify local temporal anomalies. The differ-
ences in our definition and scope make comparisons with other anomaly detection
algorithms challenging. To evaluate our anomaly detection method, the reconstruc-
tion accuracy of the VAE is compared with other VAEs with similar-sized latent
spaces. Performance is assessed on labelled data by calculating the F1 score, recall,
precision, the Receiver Operating Characteristic (ROC) curve, and the Area Under
the Curve (AUC-ROC) value.

Anomaly Score
The VAE architecture inherently learns a compressed and continuous latent space
representation that captures the underlying structure and patterns within the input
data. By training the VAE solely on well-behaved operation instances, the latent
space is likely to primarily encode the system’s normal behaviour. As a result, any
deviations or anomalies introduced during testing can be detected by quantifying
the reconstruction error. Well-behaved operation instances typically exhibit a cer-
tain noise level or variability due to various factors such as measurement errors or
environmental conditions. Training a VAE exclusively on such instances allows it
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to learn a representation accommodating this inherent noise and variability. Con-
sequently, when faced with anomalies that deviate significantly from the learned
normal behaviour, the VAE is likely to produce higher reconstruction errors, ef-
fectively indicating the presence of anomalies. The metric for reconstruction error
chosen is Mean Absolute Percentage Error (MAPE).

MAPE was chosen as the reconstruction error metric because it is a scale-
invariant metric that assesses the accuracy of the VAE’s reconstruction independent
of the magnitude or scale of the data. This characteristic is crucial when dealing
with datasets collected from multiple machines of different models, as the measure-
ments and features of interest may differ significantly in scale. By utilizing MAPE,
the reconstruction error is evaluated relative to the actual values, allowing for mean-
ingful comparison and assessment of anomalies across different machines. MAPE
offers a uniform framework to assess the reconstruction accuracy of the VAE. This
consistency is essential for accurately detecting anomalies and comparing the re-
construction performance across the entire dataset.

In this thesis’s definition of anomaly detection, an anomaly threshold was incor-
porated as a crucial component. This threshold serves as a reference value, where
MAPE above this threshold indicates the presence of an anomaly. A normaliza-
tion approach was adopted to enhance the interpretability of the threshold values.
Specifically, the respective thresholds divided the MAPE values, resulting in a ratio.
Any ratio exceeding one is considered an anomaly, while ratios below 1 indicate the
absence of an anomaly. The MAPE error and the anomaly thresholds for the three
features can be expressed in the following way,

MAPE =
[
EPower EPressure ECSS

]
Threshold =

[
tPower tPressure tCSS

]
.

Using this, the notation for the anomaly score (AnomalyScore) is as following,

AnomalyScore =
[

EPower
tPower

EPressure
tPressure

ECSS
tCSS

]
.

This normalization procedure aids in establishing a clear and intuitive understand-
ing of the anomaly detection outcomes based on the relative deviation from the
established thresholds.
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VAE Architecture

The VAE consists of an encoder and a decoder, which are distinct deep neural
networks trained in conjunction. The encoder maps the input data onto a lower-
dimensional latent space representation through convolution operations and a fully
connected layer. The decoder then reconstructs the data from the sampled latent
space utilizing transposed convolution and a polynomial trend block in parallel
[Oreshkin et al., 2019][Desai et al., 2021]. The encoder’s convolution and the de-
coder’s transposed convolution comprise two parallel sets of kernels with different
sizes, one longer (15) and one shorter (2). Employing different kernel sizes com-
puted in parallel enables the model to capture features spanning different scales,
with large kernel sizes responsible for detecting global patterns and smaller ones
for discerning local nuances [Pham et al., 2022, pp. 3–5, 7, 11].

5.1 Encoder

The encoder, comprised of convolutional layers followed by a stochastic latent
space representation, efficiently captures input data’s short-term and long-term fea-
tures. The encoder’s output contains the mean (mu) and the logarithm of the vari-
ance (logvar) of the latent space distribution, in addition to a sample drawn from the
distribution itself.

Multiple convolutional operations with diverse filter numbers (80) and kernel
sizes (2) are utilized for the short-term features. Each convolutional layer is fol-
lowed by a ReLU activation function with the same padding that preserves the input
shape. The convolutional kernels also undergo regularization with L2 weight decay.
Analogously, for the long-term characteristics, a separate set of convolutional oper-
ations with an equal number of filters and padding but with a larger kernel size of
15, is employed.

The short-term and long-term feature information is integrated through an
element-wise average operation performed between the two output tensors, yielding
a fused representation which is then flattened into a one-dimensional tensor.
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Subsequently, two fully connected layers, mu and logvar, are applied to the flat-
tened representation within the stochastic latent space. The mu layer represents the
mean of the latent distribution, whereas the logvar layer signifies the logarithm of
the variance. The logarithm of the variance, used for numerical stability purposes,
replaces the standard deviation. Both layers utilize an activation function of None.
During the training phase, the Sampling layer takes the output tensors from the mu
and logvar layers and produces a sample, serving as the stochastic latent represen-
tation. The encoder architecture is depicted in the following diagram:

1D Convolution Short 1D Convolution Long

1d Convolution long1d Convolution short

Average

Flatten

× +

z

Figure 5.1 A diagram of the encoder architecture with each layer’s input and output data
shape.

5.2 Decoder

The decoder encompasses a series of transposed convolutional layers, fully con-
nected layers, and a trend polynomial block. It processes the input tensor, repre-
senting the latent space, through a trend polynomial block and a combination of
transposed convolution and fully connected layers. The processes are then merged
through element-wise addition. The transposed convolution process mirrors that of
the encoder, with two sets of transposed convolution blocks composed of different
kernel sizes (2 for the shorter ones, 15 for the longer ones).

The decoder aims to reconstruct the original input data from the sampled latent
vector. It first integrates trend information via a polynomial trend generation layer.
Simultaneously, it applies a fully connected layer followed by a reshaping operation.
The decoder executes deconvolutional layers in the reverse sequence compared to
the encoder to re-establish the original feature dimensionality. Trend information is

42



5.2 Decoder

integrated into decoding through an element-wise summation operation between the
deconvolutional outputs and the trend tensor. The decoder architecture is illustrated
in the diagram below:

1D Transposed
Convolution Short

1D Transposed
Convolution Long

1D Transposed
Convolution Long

1D Transposed
Convolution Short

Fully Connected

Reshaping

Trend Polynomial
Block

Add

Reconstruction

Figure 5.2 A diagram of the decoder architecture with the data shape of the input and
output for each layer.

Polynomial Trend Block
The polynomial trend block is a set of layers meant to emulate polynomial approx-
imation. First, the input data is passed through two fully connected layers and then
one reshaping layer. These operations give the polynomial coefficients. The coeffi-
cients are then multiplied with a Vandermonde matrix. These operations force the
block to calculate a set of coefficients to give the desired result for the polynomial.
3rd-degree polynomials were used in this case [Oreshkin et al., 2019].
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Methodology

6.1 Establishing Anomaly Thresholds

The study engaged two domain experts from Sandvik to determine the thresholds
for anomaly detection. The experts were presented with operation instances and
asked to classify them as either anomalies or not using the definition of an anomaly
in the context of this thesis outlined in section (4.3),

"A continuous operation which behaves in a manner so different from
a correctly operating machine that an expert or engineer would want
to be notified of the operation."

This subjective classification approach incorporated the experts’ domain knowledge
and intuition. By involving multiple experts, the study aimed to capture diverse per-
spectives and enhance the reliability of the labelling process. Another aim of la-
belling the data this way was to mirror the way analysis on sensor data takes place
since both experts had access to all the tools and information they usually have
when evaluating the performance of a machine based on the sensor data. The la-
belled dataset was used to evaluate various threshold values to establish the anomaly
threshold. The F1 score was chosen as the performance metric to balance minimiz-
ing false negatives and false positives. The F1 score considers precision and recall,
making it suitable for evaluating the model’s ability to detect anomalies effectively.
The threshold value that yielded the highest F1 score was selected as the anomaly
threshold for the subsequent anomaly detection system.

Furthermore, an additional set of labelled data was collected using a similar
approach to evaluate the performance of the anomaly detection system. This dataset,
independently labelled by the domain experts, served as a benchmark for assessing
the system’s effectiveness when using the established anomaly threshold.
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6.2 Anomaly Detection Mechanism

The anomaly detection mechanism combines everything that has been described
so far. Below is a figure showing the different operations in the anomaly detection
mechanism.

Data windowing

Continuous
Operations

Z-Score Normalization

Normalized
Data

VAE

Scaled
Reconstructed

Data

Windowed Data

Inverse z-Score
Normalization

Mean Absolute
Percentage Error

(MAPE)

Reconstructed
Data

MAPE

Division by Anomaly
Thresholds

Anomaly Score

Figure 6.1 A diagram of the anomaly detection mechanism.

Firstly, the data is divided into smaller segments or windows to effectively capture
local patterns and dependencies. Following windowing, a z-score normalization is
applied to each windowed segment. This normalization process standardizes the
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data by subtracting and dividing the mean by the standard deviation, ensuring that
the data is scaled to zero mean and unit variance.

During the z-score normalization, the mean and standard deviation of the data
are recorded and saved for later use. The normalized windowed data is then passed
through the VAE model, consisting of an encoder and decoder network. The encoder
network maps the input data to a latent representation, while the decoder network
reconstructs the input from the latent space. The VAE model is trained on well-
behaved time series data to learn the underlying structure and features.

Following the VAE reconstruction, an inverse z-score normalization is applied
to the reconstructed data using the mean and standard deviation values saved during
the normalization stage. This process restores the reconstructed data to its origi-
nal scale. To quantify the discrepancy between the original and reconstructed data,
the Mean Absolute Percentage Error (MAPE) is computed. The MAPE calcula-
tion compares the original windowed data and the reconstructed rescaled data.
The MAPE values are divided by a pre-defined anomaly threshold to determine
the anomaly score. An anomaly score greater than 1 indicates the presence of an
anomaly in the corresponding windowed segment.

6.3 VAE Training

The Variational Autoencoder (VAE) training process utilized the TensorFlow frame-
work in Python. The ADAM optimization algorithm, which combines adaptive gra-
dient methods with momentum, was employed to update the model’s weights. This
algorithm has demonstrated effectiveness in optimizing neural networks.

The VAE architecture was trained using the Evidence Lower Bound (ELBO)
loss function. The ELBO loss incorporates a reconstruction loss and a regularization
term to balance fidelity to the input data and encourage the learning of meaningful
latent representations. A beta hyperparameter of 2 was chosen for the regularization
term to control the trade-off between the reconstruction loss and the regularization
effect.

The available data was divided into a training set, accounting for 80% of the
data, and a validation set comprising the remaining 20%. This data split facilitated
the evaluation of the model’s performance during training and supported hyperpa-
rameter tuning. Overfitting was mitigated by monitoring the model’s performance
on the validation set.

Two callback functions were employed during training to monitor and enhance
the training process. The EarlyStopping callback function assessed the loss metric
and halted the training if no significant improvement was observed after a speci-
fied number of epochs. This approach prevented further training when the model’s
performance reached a plateau, optimizing computational resources. The ReduceL-
ROnPlateau callback function dynamically adjusted the learning rate if the loss met-
ric ceased improving after a specific number of epochs, promoting more efficient
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convergence.
The training process spanned 50 epochs, as further increasing the number of

epochs did not lead to better convergence. The input data was shuffled before each
epoch to enhance the model’s generalization. This random shuffling was applied
solely in the batch dimension, preserving the order of the features and the time
dimension.

The training progress was monitored by setting the verbose flag to True, en-
abling the output of training updates during each epoch. This provided real-time vis-
ibility into the training process, facilitating assessment and potential troubleshoot-
ing.

Training Paradigm
The VAE was trained on a curated data set free of anomalous behaviour to learn how
to represent normally operating machine behaviour accurately. This also leads to the
VAE not learning the representations for anomalous data, increasing the error in re-
construction for anomalies. This is a desired property as it will help in the detection
of anomalies. It is not obvious if this type of training constitutes unsupervised or
semi-supervised learning.

In unsupervised learning, the goal is to extract meaningful patterns, structures,
or representations from unlabelled data without any explicit information about the
classes or anomalies in the dataset. The learning process relies solely on the inherent
structure and distribution of the data to capture its underlying characteristics.

While the training process lacks explicit labelling or supervision, there are as-
pects that align with the principles of semi-supervised learning. Semi-supervised
learning involves utilizing both labelled and unlabeled data to train a model. Al-
though no explicit anomaly labels are provided, the dataset is curated to contain
well-behaving data exclusively. This curation process can be seen as a form of weak
supervision, where the absence of anomalies implicitly labels the data as normal.

The training of the Variational Autoencoder (VAE) using only well-behaving
data can be seen as the unsupervised component of the approach. The VAE is trained
to model the underlying distribution of the well-behaving data and generate accurate
reconstructions. The absence of explicit anomaly labels during training aligns with
the unsupervised learning paradigm.

Reconstruction accuracy as an anomaly score can be seen as introducing a level
of supervision into the approach. By assuming anomalies will result in higher re-
construction errors, the approach implicitly leverages the distinction between well-
behaving and poorly-behaving data. This assumption could be construed as partial
supervision since it utilizes knowledge about the nature of anomalies to guide the
anomaly detection process.

Since the learning in this thesis doesn’t fully conform to the assumptions of
semi-supervised or unsupervised learning, there is a good case for calling it either.
During this thesis, the approach will be referred to as using unsupervised learning.
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This will mitigate the misunderstanding that there were any labelled anomalies in
the training data.

6.4 State Algorithm

The state algorithm aims to determine which of the four possible states: Off, Idle,
Continuous or Discontinuous the machine is in at any time. A more detailed de-
scription of these states is in section (1.1). The algorithm only looks at the power
sensor since the other sensors might be non-zero when the machine is not getting
power due to measurement errors and noise.

The algorithm first isolates the segments of the run time that are where the ma-
chine is crushing stones. This is done by first setting all the values below or equal
to 10 kW to zeros since none of the studied machines operate on less power. Then
min-max scaling is applied to make the algorithm robust to different machines with
different scales to the magnitude of power used. After this, the algorithm finds all
segments where the value is more significant or equal to threshold1, which is the
threshold that distinguishes between crushing and non-crushing. Then the algorithm
applies two thresholds threshold2 and threshold3. threshold2 is the crushing seg-
ment length considered. Any segment shorter than that will be removed. threshold3
is the minimum allowed distance between segments, and any two crushing segments
closer than it will be combined into one segment. This is done to account for brief
spikes of lower power values that are comparable to idle power. The pseudo-code
for the part of the algorithm that distinguishes crushing and non-crushing can be
seen below,

Require: f s: Sampling frequency
Require: thresh1, thresh2, thresh3: Threshold values
Require: p,T : Power and Time arrays

{Set all values below 10 to 0 since no machine has less power}
p[p≤ 10.0]← 0.0
{min-max normalization to make the algorithm robust for different machine mod-
els}
p← p/max(p)
ind← indices where p≥ thresh1
crushing← [ ]
start← None
prevEnd← None
{Loops over all indices and creates an array containing the start and end of all
crushing segments. It rejects all segments that are too short and combines the
segments where the break in between is short enough to be assumed error.}
for i in range(length(ind)) do

if start is None then
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start← ind[i]
else if ind[i]> ind[i−1]+1 then

if ind[i−1]− start+1≥ thresh2 then
if (prevEnd is not None) & (start - prevEnd - 1≤ thresh3) then

{Combine segments by extending the previous segment}
crushing[end][1]← ind[i−1]

else
{Add a new segment as a separate segment}
crushing.append([start, ind[i−1]])
prevEnd← ind[i−1]

end if
start← ind[i]

end if
end if

end for
if (start is not None) & (ind[end]− start+1≥ thresh2) then

if (prevEnd is not None) and (start−prevEnd−1≤ thresh3) then
{Combine the last segment with the previous segment}
crushing[end][1]← ind[end]

else
{Add the last segment as a separate segment}
crushing.append([start, ind[end]])

end if
end if

Once all of the segments where the crushing takes place have been established,
the algorithm then distinguishes between continuous and discontinuous operations
based on the length of the operation. threshold4 is the length needed for a crushing
operation to be continuous. The non-crushing segments are then found as the seg-
ments that are not crushing. The non-rushing segments with values above threshold5
are deemed idle, and those below it are considered off. This threshold is necessary
as the machine can be off, but due to some small error in the sensor, it can register
non-zero power. The pseudo-code for the final part of the state algorithm is below,
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Require: thresh4, thresh5 : Threshold values
Require: p, crushing: Power and crushing segment arrays

cont← crushing[(crushing[:,1]− crushing[:,0])≥ thresh4, :]
disc← crushing[(crushing[:,1]− crushing[:,0])< thresh4, :]
for segment in crushing do

ind← ind+ list(range(segment[0], segment[1]+1))
end for
notCrushing← all indices from arange(p.shape[0]) not in ind
offInd← notCrushing[where p[notCrushing]≤ thresh5]
idleInd← notCrushing[where p[notCrushing] > thresh5]
offNIdle← [ ]
for ind in [offInd, idleInd] do

I← (indecies where ind[1 :] ̸= ind[:−1]+1)+1
I← [0, I, ind.shape[0]−1]
segment← ind[I]
segment← stack([segment[:−1],segment[:−1]+diff (I)−1])
segment[end,end]← segment[end,end]+1
offNIdle.append(segment)

end for
off← offNIdle[0]
idle← offNIdle[1]

The five thresholds discussed in this section were selected based on discussions
with experts at Sandvik. The figure shows an example of the algorithm’s ability to
distinguish between off, idle, discontinuous and continuous operations can be found
in the appendix.
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Results and Discussion

7.1 Reconstruction accuracy

To evaluate the performance of the proposed Variational Autoencoder (VAE) for
unsupervised anomaly detection in multivariate time series, a comparison was con-
ducted against two alternative models: Time-VAE and MST-VAE. The reconstruc-
tion errors were measured using three distinct metrics: Mean Absolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (MSE). Ta-
ble 7.1 provides a comprehensive overview of the reconstruction error comparisons,

Table 7.1 Reconstruction error on the Sandvik dataset.

VAE comparison

Model Sensor Error metrics
MAPE MAE MSE

The
VAE

Power 1.65% 2.08 8.92
Pressure 1.56% 0.02 5.55×10−4

CSS 0.12% 0.04 3.85×10−3

Time-
VAE

Power 2.7% 4.17 33.25
Pressure 3.48% 0.07 9.02×10−3

CSS 1.05% 0.24 2.22×10−1

MST-
VAE

Power 23.4% 32.4 1.4×103

Pressure 32.5% 0.47 0.43
CSS 55.1% 23.6 8.1×102

The table shows that the VAE achieved competitive performance across all the sen-
sor types evaluated, demonstrating its effectiveness in capturing the underlying pat-
terns and accurately reconstructing the multivariate time series data. Specifically,
when considering the MAPE metric, the VAE achieved an average error of 1.65%
for the Power sensor, 1.56% for the Pressure sensor, and 0.12% for the CSS sensor.
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The corresponding MAE values were 2.08, 0.02, and 0.04, while the MSE values
were 8.92, 5.55×10−4, and 3.85×10−3, respectively.

Comparatively, the Time-VAE exhibited slightly higher reconstruction errors
across all the sensor types, indicating a relatively lower precision in capturing the
nuances of the time series data. The MST-VAE notably demonstrated considerably
higher errors, particularly for the Power and CSS sensors, with MAPE values of
23.4% and 55.1%, respectively.

While the reconstruction error comparisons provide insights into the quality of
the reconstructed data, it is essential to note that the primary objective of this study
is unsupervised anomaly detection rather than direct model comparison. Hence,
further analysis is required to evaluate the effectiveness of each model in detecting
anomalies within the company’s operational data.

7.2 Anomaly Detection in Sandvik Data

A comprehensive evaluation of the proposed Variational Autoencoder (VAE) for
unsupervised anomaly detection in multivariate time series was conducted using
dedicated anomaly detection metrics. This assessment aimed to determine the ef-
ficacy of the VAE in detecting anomalies within Sandvik’s operational data. The
following table presents the results of the anomaly detection metrics comparison
for the VAE.

Table 7.2 Anomaly detection metrics for the VAE on the labelled Sandvik dataset.

Anomaly Detection

Model Sensor Anomaly detection metrics
F1 Recall Precision

VAE
Power 0.89 0.89 0.89
Pressure 0.75 0.75 0.75
CSS 0.92 0.92 0.92

The table demonstrates that the VAE exhibited promising performance in detect-
ing anomalies within the company’s operational data. The F1 score, a widely used
metric that combines precision and recall, yielded consistently high values for all
sensor types. Specifically, the VAE achieved an F1 score of 0.89 for the Power sen-
sor, 0.75 for the Pressure sensor, and 0.92 for the CSS sensor. These results indicate
the VAE’s ability to identify and classify sensor data anomalies effectively.

Moreover, the recall metric, which quantifies the proportion of true anomalies
correctly detected by the model, exhibited excellent performance across all sensor
types, with values matching the corresponding F1 scores. This indicates the VAE’s
capability to capture a significant portion of the anomalies present in the operational
data.
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Additionally, the precision metric, representing the accuracy of anomaly detec-
tion, mirrored the F1 scores and recall values, further highlighting the robustness of
the VAE in minimizing false positive detections.

It is important to note that the anomaly detection evaluation was conducted
based on the defined criterion of considering an entire operation as an anomaly. This
choice was made for practical reasons, limiting the direct comparison of anomaly
detection performance with other models that consider smaller parts of an operation
as anomalies.

In summary, the results obtained from the evaluation of anomaly detection met-
rics confirm the effectiveness of the VAE in identifying anomalies within the multi-
variate time series data. The high F1 scores, recall values, and precision demonstrate
the VAE’s ability to reliably detect anomalies, thereby providing valuable insights
for monitoring and maintaining the operational integrity of the company’s systems.

7.3 AUC-ROC Curve

The proposed anomaly detection mechanism will be analyzed using ROC curves
and the area under the curve (AUC). Below is a graph showing the ROC for the
three features Power, Pressure and CSS.
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(a) Power, AUC = 0.87

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Receiver Operating Characteristic (ROC) Curve

ROC curve (area =  0.85)

(b) Pressure, AUC = 0.85
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Figure 7.1 The ROC curve for Power, Pressure and CSS

The ROC-AUC results for the three features are illustrated in Figure 7.1. For Power,
the AUC is found to be 0.87 (see Figure 7.1a). For pressure, the AUC is slightly
lower, at 0.85, as shown in Figure 7.1b. Lastly, for the CSS feature, the AUC stands
at 0.83 (see Figure 7.1c). These values indicate that the VAE model performs well in
detecting anomalies for all three features, with the best performance for the power
feature and the lowest, yet still suitable, for the CSS. A more detailed analysis of
anomaly detection can be conducted by examining the true positive rate (TPR), false
positive rate (FPR), and thresholds used for classification. The TPR and FPR values
for various thresholds reveal the trade-off between sensitivity and specificity that
the model must balance for effective anomaly detection.
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Power
For the Power, the ROC curve shows a good trade-off between TPR and FPR for
the power feature as the threshold increases. The model achieves high TPR values
(above 0.81) while maintaining low FPR values (under 0.3). The ROC curve starts
from a convex shape and then transitions toward a more straight line as the threshold
increases, reflecting consistent detection performance across a wide range of thresh-
olds. This indicates a well-trained model that discriminates between anomalies and
well-behaved data points.

Pressure
For the pressure, the ROC curve is predominantly convex. This suggests that while
the classifier may not be as efficient in detecting anomalies as the power feature,
it still provides a commendable separation between the two classes. However, the
FPR could experience a significant increase for higher TPR values. The ROC curve
highlights that the model can achieve high TPR values (0.91 or higher) but at the
cost of moderately increased FPR values (around 0.56). This might lead to more
false positive cases but still signifies adequate detection capability.

CSS
The CSS exhibits slightly different behaviour in its ROC curve. While the model
can achieve a TPR value of 1.0, it does so with a significantly higher FPR value of
0.91. This elevated FPR suggests that the model could be more prone to producing
false alarms for the CSS feature compared to the other two features. Despite this, the
performance of anomaly detection remains satisfactory for practical applications.

7.4 Anomaly score

Before presenting examples of different anomaly scores and their corresponding
machine behaviours, it is essential to highlight the underlying concept behind the
anomaly score calculation. In this thesis, the anomaly score is derived from the re-
construction’s Mean Absolute Percentage Error (MAPE) and is further normalized
by the anomaly threshold. Any value above 1 indicates an anomaly, while any value
below 1 denotes a non-anomalous instance. However, it is worth exploring whether
the anomaly score can provide insights beyond binary classifications, shedding light
on the severity of detected anomalies.

A set of example images with varying anomaly scores will be presented to
investigate the potential relationship between anomaly scores and the severity of
anomalies. These images capture instances where the machine behaviour visibly
deteriorates as the anomaly score increases. By visually examining these examples,
valuable insights can be gained into the behaviour patterns exhibited by the ma-
chine and determine whether there is a correlation between higher anomaly scores
and more severe anomalies.
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(a) (b) (c)

(d) (e)

Figure 7.2 (a) Power sensor for operation with anomaly score 0.62 (b) Power sensor for
operation with anomaly score 1.32 (c) Power sensor for operation with anomaly score 2.92
(d) Power sensor for operation with anomaly score 3.68 (e) Power sensor for operation with
anomaly score 7.38

The presented example images showcase the observed machine behaviours corre-
sponding to different anomaly scores. As the anomaly score increases, it becomes
evident that the machine’s performance visibly worsens, characterized by higher
variations and increasingly irregular behaviours. These anomalies manifest as de-
viations from the expected normal operations, indicating a higher severity in the
machine’s abnormal functioning.

By leveraging these example images, it is reasonable to argue that the anomaly
score can provide valuable information beyond a simple binary classification of
anomalies. The increasing irregularities and variations observed in machine be-
haviours as the anomaly score rises a correlation between the anomaly score and
the severity of anomalies. Consequently, the anomaly score can indicate the degree
of deviation from normal operations, enabling identifying and assessing anomalies
based on their severity. When experts at Sandvik were given these examples, they
also agreed that the anomaly score examples with higher anomaly scores were ex-
hibiting more strange behaviour.

The fact that higher anomaly scores indicate worse performance is of great prac-
tical significance. Since it can point experts and engineers to the most strange be-
haviour in the sensor data, assessing the severity of anomalies is crucial for effective
anomaly management.

7.5 Additional Analysis

In this thesis, the anomaly score introduced is one such metric that could be useful.
During the project, sensor data were examined, and technicians were interviewed.
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Based on this, trends and patterns have been identified that could be a good starting
point for constructing valuable metrics and heuristics. Due to time restraints and a
lack of data, the assumptions listed below have yet to be fully verified, but further
analysis of these relationships could be a good starting point for establishing future
performance metrics. The list of patterns below will be briefly discussed in this
section:

• Power and pressure relationship

• Variance

• Deviation from baseline

• Magnitude of deviation in CSS

Power and pressure relationship
The magnitude of Power and pressure are linked. During regular operation, Power
and pressure are determined mainly by the cone crusher’s resistance when crush-
ing rocks. This leads to a linear correlation between Power and pressure. The con-
stant determining the linear relationship between Power and pressure differs for
different crusher models and operating conditions. When the linear relationship no
longer holds during crushing, it indicates anomalous behaviour observed by experts
at Sandvik.

Variance
High variance is a good indication of faulty behaviour. When crushing rocks with
a cone crusher, the machine operates optimally when external conditions are stable.
The stone crushers operate best when the feed of rocks is constant, and the machines
are sufficiently fed with rocks. When the feed rate and the type of material fed
to the machine vary, the power and pressure signal increase variance. No specific
threshold values have been identified, as the importance of variance may be relative
to the context and specific machine.

Deviation from baseline
During this project, the anomaly detection algorithm operated without taking the
model of the machine into account and the difference in scale was mitigated us-
ing normalization. This was due to limited data and many different cone crusher
models. When experts analyzed the sensor data, they were observed to compare the
Power and pressure magnitude to the baseline for the cone crusher model being ana-
lyzed. Each machine has a designated baseline, determined during the design of the
cone crusher model, that it is intended to operate around. Cone crushers with power
or pressure readings either far above or far below the baseline usually displayed
indications of faulty operation.
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Magnitude of deviation in CSS
The CSS changed slowly during normal operations as the cone crusher mantle was
incrementally worn down. When the CSS varied much more than one millimetre
quickly, it indicated that the gap where the stones exited the crusher was enlarged
by causes other than wear and tear. One example is if a large and uncrushable object
enters the stone crusher, it can forcefully activate the hydraulic dump valve when
the mantle comes in contact with the uncrushable object and cannot compress it.
Another example is when the operator intentionally makes the gap larger for some
reason, such as dislodging an uncrushable object stuck in the machine or changing
to the size of the produced stones.
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8
Conclusions And Future
Work

8.1 Improvements, Limitations and Future Work

There are many ways to improve the project. For instance, improvements can surely
be made with more data and more elaborate performance metrics.

In this work, anomalies were defined at the level of entire operations rather than
smaller temporal segments. This choice may limit the ability to directly compare the
anomaly detection performance with models considering more fine-grained anoma-
lies. Future research should explore alternative approaches to defining and detect-
ing anomalies at different levels of granularity, allowing for more detailed anal-
ysis and comparison with other models. A limited amount of labelled anomalies
guided this choice, but with a large data set of labelled anomalies, semi-supervised
or supervised approaches could be applied. Anomaly detection on smaller temporal
segments would allow for easier comparisons to state-of-the-art anomaly detection
algorithms to assess the strengths and limitations of the proposed VAE-based ap-
proach and further validate its effectiveness.

More elaborate performance metrics would make incorporating domain knowl-
edge into anomaly detection methods easier. It would be worthwhile to explore
ways to incorporate domain knowledge and expert insights into the anomaly detec-
tion process, leveraging domain-specific information to enhance the accuracy and
robustness of the model. In constructing the model, normalization was used to ac-
count for the different magnitudes of power and pressure in different cone crushers.
If individual baselines for power and pressure were incorporated for each crusher
type, it would improve the model’s performance.

Investigate more advanced neural network architectures, such as Transformer-
based models or Graph Neural Networks, to capture complex temporal and contex-
tual dependencies in the multivariate time series data. In recent years transformer-
based architectures have established themselves and produced excellent results in
many domains. One of the limits of transformer-based architectures is the sheer
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amount of data needed to train them effectively. With the data I had access to, this
type of architecture would not be feasible. However, since Sandvik cone crushers
are worldwide, the data could be aggregated to make this approach viable.

When analyzing models, the more metrics used, the better. Additional metrics
in the performance analysis, like the RP-AUC and the reverse percentile distance,
would also have been a helpful way to analyse the model’s performance further.
These metrics were not a part of the thesis due to time constraints.

Skewed Anomaly Dataset
Sandvik collected a set of ASRI files for use in the project. Though they contained
more operation data, only a week of operations was taken from each ASRI file. A
subset of the ASRI files was marked carefully by domain experts as well-behaved
machines. Due to the nature of the task, the VAE was trained exclusively on well-
behaving data from these ASRI files. Since these ASRI files were used in the train-
ing of the VAE, they were not used for anomaly detection.

Training the anomaly detection model on the same data set used for training
and validation would have resulted in overfitting. Overfitting occurs when a model
becomes too specialized in capturing patterns from the training data, making it less
capable of generalizing to new and unseen data. In anomaly detection, overfitting
would limit the model’s ability to detect anomalies in real-world scenarios effec-
tively.

During the project, experts at Sandvik labelled a set of operations anomalous.
This labelling process involved introducing the operations to the experts who as-
sessed their anomalousness based on their domain knowledge. One data set was
used to set the anomaly threshold by selecting the threshold that achieved the best
F1 score, a measure that balances precision and recall. This threshold was validated
by testing its performance on a separate data set.

It is important to note that the anomaly detection dataset used for setting the
threshold and validating the anomaly detection algorithm exhibited an abundance of
anomalous operations. This inflation of anomalies was a direct consequence of ex-
cluding the well-behaved data that was used exclusively for the training of the VAE.
Therefore, the resulting dataset does not necessarily reflect the actual frequency of
anomalous behaviour. When there is an inflation in the number of anomalies in the
dataset, it can negatively impact the accuracy of the F1 score as a metric for evalu-
ating the anomaly detection algorithm. In the case of an inflated number of anoma-
lies, the algorithm may be biased towards classifying more instances as anomalies,
resulting in a higher recall. This is because the algorithm is more likely to label
instances as anomalies, given the abundance of anomalies in the dataset. However,
this increased recall may come at the expense of precision, as the algorithm may
produce more false positives. However, since the anomaly detection had high re-
call and precision and could generalize for anomaly scores above one, the model is
tracking Sandvik’s notion of an anomaly. To mitigate these limitations, future work
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should focus on collecting a larger-scale dataset with a more balanced represen-
tation of well-behaved instances and anomalous behaviours. This would enable the
VAE to be trained in a broader range of well-behaving data while ensuring sufficient
data to accurately represent the frequency of anomalous behaviour.

8.2 Conclusions

In conclusion, this thesis encountered challenges stemming from the development
of performance metrics and limitations in the available data. However, these chal-
lenges were addressed by applying unsupervised learning techniques and adopting
a solvable anomaly definition, ultimately providing value to Sandvik. The inclusion
of a state algorithm in the preprocessing stage significantly contributed to the suc-
cess of the anomaly detection process by narrowing the focus to relevant intervals
in the data. It is important to note that the limited data availability and the constraint
of training the VAE solely on well-behaved data resulted in a skewed dataset with a
disproportionate number of anomalies. This imbalance may have impacted the re-
sults’ reliability and generalizability, particularly regarding the F1 score, recall, and
precision metrics. However, the robust performance of the method in terms of the
ROC-AUC metric lends greater credibility to the obtained results.

The ROC-AUC metric’s ability to handle imbalanced class distributions is par-
ticularly advantageous for evaluating models trained on datasets where anomalies
are significantly rarer than normal. The ROC-AUC metric comprehensively eval-
uates the model’s capacity to distinguish between the two classes, regardless of
their imbalance, by considering various classification thresholds. Consequently, the
trustworthiness of the results is reinforced. Furthermore, the observation that the
generated anomaly scores correlate with the severity of the anomalies suggests that
the anomaly detection approach extends beyond binary classification. This indi-
cates that the method has the potential to provide engineers with valuable insights
into anomalous instances within the sensor data. Moreover, even for machines ex-
hibiting consistently poor performance, the method remains effective in identifying
the most severe anomalies specific to each circumstance.

In summary, this method demonstrates its ability to identify and notify engineers
of anomalous instances in sensor data, showcasing its practical utility for anomaly
detection in industrial settings. Integrating the ROC-AUC metric and the correlation
between anomaly scores and severity substantiate the method’s reliability and po-
tential to extend beyond binary classification. As a result, this work presents a good
foundation for future advancements in unsupervised anomaly detection in multi-
variate time series data for industrial applications.
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A
1D Convolution
Visualization

Following is a visualization of 1D convolution with stride 2, input size 5 and kernel
size 3:

Step 1:

Step 2:

Step 3:

Padding:

Figure A.1 Visualization of 1D convolution. Blue represents the input array, the dark grey
represents 0. The orange is the sliding filter, and light grey is the not yet assigned element in
the output. The green is the assigned elements in the output
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B
1D Transposed Convolution
Visualization

Following is a visualization of 1D transposed convolution with stride 2, input size
2 and kernel size 3;

Padding:

Step 1:

Step 2:

Step 3:

Figure B.1 Visualization of 1D convolution. Blue represents the input array, the dark grey
represents 0. The orange is the sliding filter, and light grey is the not yet assigned element in
the output. The green is the assigned elements in the output
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C
State Algorithm
Visualization

Below is an example of how the state algorithm segments the sensor data.

2016-03-16
20:06:56

2016-03-16
20:56:56

2016-03-16
21:46:56

2016-03-16
22:36:57

2016-03-16 
 23:26:57

2016-03-17
00:16:58

Figure C.1 Sensor data segmented by the state algorithm. The blue segments are the contin-
uous operations, and the red segments are the discontinuous operations. The yellow segments
are the idle segments, and the purple segments are the off segments.
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