
MASTER’S THESIS 2023

Improvements to Planar
Convex Hull Algorithms
Björn Magnusson, Erik Amirell Eklöf

ISSN 1650-2884 LU-
CS-EX: 2023-35

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY





EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-35

Improvements to Planar Convex Hull 
Algorithms

Förbättringar av algoritmer för konvext 
hölje i två dimensioner

Björn Magnusson, Erik Amirell Eklöf





Improvements to Planar Convex Hull
Algorithms

(through Theoretical and Empirical Analysis)

Björn Magnusson
bjorn.in.magnusson@gmail.com

Erik Amirell Eklöf
erik.amirell.eklof@gmail.com

June 27, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Michael Doggett, michael.doggett@cs.lth.se

mailto:bjorn.in.magnusson@gmail.com
mailto:erik.amirell.eklof@gmail.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:michael.doggett@cs.lth.se




Abstract

The task of computing the convex hull given a set of points in the plane is a
well known problem for which there are many algorithms with various perfor-
mance related trade offs. In this thesis we aim to gain a better understanding of
how existing algorithms perform in different circumstances.

We have concluded that for most densely distributed inputs, QuickHull is
the fastest algorithm. We have also empirically evaluated different variants of
QuickHull, as well as special cases where QuickHull performs poorly compared
to other algorithms.

Furthermore we present a novel convex hull algorithm that combines the best
aspects of Chan’s algorithm and the divide and conquer algorithm by Bentley and
Shamos.

Keywords: Algorithms, Computational Geometry, Convex Hull, Performance, Quick-
Hull
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Chapter 1

Introduction

The convex hull (CH) problem is the task of computing the convex hull of a set of input
points. One can visualize it in the following way: Imagine a bunch of darts on a dartboard.
Place a stretched rubber band around the darts. The shape of the rubber band will be the
convex hull of the darts. An example of the convex hull of a set of points is found in Figure 1.1.

Figure 1.1: Convex hull of a set of points. The convex hull is spanned
by some of the input points, marked in red.

The convex hull problem can be applied in different areas including image registration
[16] [26], medicine [21] and terrain mapping [25]. Additionally, computing the convex hull
can be used for other problems in computational geometry such as Delaunay triangulations
and Voronoi diagrams [5], and speeding up the smallest enclosing circle problem [23].

There are several different algorithms to compute the convex hull for a set of points in the
plane. We have aimed to get a better understanding of how these algorithms compare to each
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1. Introduction

other in terms of execution time. This is interesting from both a practical and a theoretical
viewpoint. Having algorithms that execute fast in practice means that computation becomes
cheaper, both in terms of electricity and time, and can make it attainable to solve larger
problem instances. Theoretically understanding what makes an algorithm fast and the limits
of the algorithms can help us identify bottlenecks and how to improve algorithms further.

In this thesis we have implemented versions of some well known convex hull algorithms.
We have put special attention to the QuickHull algorithm, and tried many different variants
of implementing it. We evaluate our implementations against each other and against existing
implementations in the CGAL and Qhull libraries. Time measurements and other statistics
were collected on different types of inputs in order to find out which algorithms perform
best in different circumstances.

Furthermore we present a new convex hull algorithm that we call Refined Chan, which is
based on an algorithm by Chan with a combination of refinements mentioned in the original
paper [7]. This specific combination has not, to our knowledge, been studied before and our
novel theoretical analysis shows that Refined Chan combines time complexities of Chan’s
algorithm and the divide and conquer algorithm by Bentley and Shamos [6]. Additionally,
Refined Chan is simple to understand and analyze.

Finally we analyze how to generate worst case floating point inputs for the QuickHull
algorithm, with respect to precision which is generally the limiting factor. The construc-
tion is based on existing ideas for how to make QuickHull run slowly, but we have made
improvements and identified some pitfalls that need to be avoided to make the construction
actually work as intended in practice. We also show an improved upper bound on how deep
QuickHull can recurse on floating point inputs.

In our thesis we have answered the following research questions:

• Given some properties and structure of the input points, which planar convex hull
algorithm is the least time consuming?

• Can we construct an easy to understand planar convex hull algorithm which has good
time complexity both on average and in the worst case?

• How can we construct worst case inputs for the QuickHull algorithm, and how close
are these to the theoretical limits?

In chapter 2 we cover some background material about the convex hull problem and
existing algorithms to solve it. Chapter 3 introduces and analyzes the novel algorithm Refined
Chan. Chapter 4 compares different variants of the QuickHull algorithm. In chapter 5 we
discuss how to create worst case inputs for QuickHull. Finally, in chapter 6 we empirically
evaluate our algorithms and follow up with a conclusion in chapter 7.

1.1 Contribution Statement
The authors have worked quite independently on different parts of this thesis, but naturally
shared and discussed ideas with each other. Björn Magnusson has leaned towards the theoret-
ical side, authoring and inventing the results related to Refined Chan and worst case inputs
for QuickHull captured in chapters 3 and 5. Erik Amirell Eklöf has leaned towards the prac-
tical side, authoring and inventing the results related to variants of QuickHull captured in
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1.1 Contribution Statement

chapter 4. Chapter 2 was authored by Björn Magnusson, with the exception of the part re-
lated to QuickHull. The evaluations in chapter 6 were a joint effort by the authors, with the
exception of chapters 6.3 and 6.4 being authored by Erik and Björn respectively. Chapters 1
and 7 are a joint contribution of both authors.
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Chapter 2

Background

In this chapter we introduce the convex hull problem and how it is commonly solved. We
begin with a theoretical perspective in section 2.1, defining the problem and covering some
of the most well known algorithms. In section 2.3 and onwards we dive deeper into some
of these algorithms and how one would implement them. Our main focus will be on Chan’s
algorithm [7], Bentley and Shamos divide and conquer algorithm [6], and the QuickHull
algorithm [11].

2.1 The Convex Hull Problem
The convex hull of a set of points CH(P) is the smallest convex set that contains the set of
points P [20, p. 97]. A set S is convex if for all points p, q ∈ S, the line segment between p
and q is fully contained in S.

For dimensions greater than 2, CH(P) will be a polytope with vertices in P, but for the
2 dimensional, planar case the CH is always a convex polygon [20, p. 97-104]. We call the
points in P that are vertices of CH(P) convex hull vertices.

Generally we will think of the task of computing the planar CH as receiving n 2D input
points, and returning the h convex hull vertices in counter clockwise order starting with
the lexicographically smallest point, as displayed in figure 2.1. We know n before execution
but h is unknown until the output has been calculated. Some algorithms will have time
complexities that depend on h and are usually called output-sensitive, whilst others only
depend on n.

Interest in convex hull algorithms began in the early 70s with Graham and Jarvis pre-
senting one algorithm each in 1972 and 1973 respectively [10] [14]. Graham scan runs in
O(n log n) time and performs an angular sort and then a linear filtering to solve the problem.
Jarvis march has time complexity O(nh) and incrementally finds each vertex on the convex
hull. It resembles a selection sort [5] [20].

11



2. Background

P

CH algorithm

H[1]

H[2]
H[3]

H[4]

H[5]

Figure 2.1: Expected behavior of a Convex Hull algorithm, getting
n = 10 points as input in a list P, and returning h = 5 convex
hull vertices in a list H in counter clockwise order starting with the
smallest point.

Since h ≤ n is a tight bound on h, Graham scan is clearly better for worst case perfor-
mance. One can also show that Graham scan is worst case optimal since the task of sorting n
numbers can be reduced to planar convex hull , and sorting n numbers is Ω(n log n) under
most models of computation [20, p. 100] [19]. For many practical inputs however, h is much
smaller than n is, which could make Jarvis march a viable option.

This gap between time complexities was closed in 1986 by Kirkpatrick and Seidel when
they presented an O(n log h) algorithm which is theoretically fast both when h is small and
large [15]. Their algorithm is a Divide and Conquer style algorithm with a twist they call
"Marriage before conquest". Kirkpatrick and Seidel also proved that O(n log h) is worst case
optimal if complexity is measured in both n and h. One problem with their algorithm is that
it is tedious to implement and actual performance is quite poor [17] [9].

In 1996 Chan invented a new O(n log h) convex hull algorithm which is much simpler to
implement [7]. It combines Graham scan and a variant of Jarvis march with a clever grouping
trick to guess how large the output size is, aborting and trying a larger size upon failure. At
the end of his paper, Chan mentions some possible refinements that might help performance
in practice.

Another interesting convex hull algorithm is the divide and conquer algorithm by Bentley
and Shamos from 1978 [6]. We call this algorithm MergeHull, because it resembles the Merge-
Sort algorithm [5] [20] in the way that it splits the data into small sets and then recursively
joins the solutions together until the convex hull of the complete set is obtained. MergeHull
matches Graham scan’s O(n log n) worst case performance. What is particularly interesting
about MergeHull is that it achieves O(n) expected time on many randomized inputs, which
is a better bound than the O(n log h) bound would be on these inputs.

Monotone Chain is an O(n log n) algorithm of practical interest. It was invented by An-
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2.1 The Convex Hull Problem

drew in 1979 [3], and is similar to Graham Scan but has a simpler preprocessing step [9].
We have also investigated the QuickHull algorithm, which was initially proven by Scott

Greenfield in 1990 [11]. QuickHull is a divide and conquer algorithm that in some ways
resembles the QuickSort algorithm for sorting. QuickHull initially finds two points that are
guaranteed to be on the convex hull, such as those with maximum and minimum x coordinate,
and splits the remaining points into two sets depending on which side of the line between the
first two hull points the point is on. The algorithm then proceeds with a divide and conquer
phase. Given two points HL and HR that are known to be on the convex hull and a set of
points P that are all oriented to the left of the line from HL to HR.

1. Find the point HM in P that is furthest from the line HL to HR, and mark this point
as being on the convex hull.

2. Divide P into three subsets using the triangle formed by the points HL, HM , and HR:
those inside the triangle (which are now known to not be part of the convex hull),
those to the left of the line from HL to HM , and those to the right of the line from HR
to HM . We will refer to these sets as PT , PL, and PR respectively.

3. If PL is not empty, recurse using PL as P and HL & HM as the two hull points.

4. If PR is not empty, recurse using PR as P and HM & HR as the two hull points.

Generally one would expect QuickHull to run in O(n log h) time, if the sets PL and PR
are equal in size. If a lot of points are removed because they are in PT , QuickHull can have
O(n) behavior. In the worst case, QuickHull runs in O(nd) time where d is the depth that it
recurses to. Clearly d < h, but we discuss this in more detail in chapter 5.

2.1.1 Definition of Truly Sublinear Inputs
To formalize the properties of inputs where h is small compared to n we define truly sublinear
inputs, inspired by Bentley and Shamos [6]. A truly sublinear input to the convex hull prob-
lem is an input generated by sampling n points independently from a random distribution
such that the expected number of convex hull vertices is O(np) where p < 1 is a real number.

A consequence of this definition is that if we select some subset of k points from a truly
sublinear input without looking at the coordinate values of the input, we can model this
subset as a truly sublinear input of size k.

Many natural random distributions fulfill the truly sublinear property.

• Circle: If points are sampled independently uniformly at random inside a circle, the
expected number of hull points is h ∈ O(n1/3). [6] [9]

• Polygon: If points are sampled independently uniformly at random inside a convex
polygon with r corners, the expected number of hull points is h ∈ O(r log n). [6] [9]

• Gaussian: If points are sampled independently from a normal distribution in 2 dimen-
sions, the expected number of hull points is h ∈ O(

√
log n). [6] [9]

• Independent coordinates: If points are sampled such that the x and y coordinates are
independent from each other, the expected number of hull points is h ∈ O(log n) [6].
For example, one could use this bound on an axis aligned square, yielding the same
bound as the Polygon bound.

13



2. Background

2.2 On notation
In our pseudo code we make use of lists. These are 1-indexed, thus if A is a list, the first
element is denoted A[1], and the last element is denoted A[|A|], with |A| denoting the number
of elements in A. We will also use the notation A[i . . . j] to denote the sub-list of elements
A[i] through A[ j], with both endpoints included. We consider this sub-list to reference the
same memory as the outer list, so that constructing a sub-list can be done in constant time
with no copying of elements, and so that modifications of elements in the sub-list also affect
elements in the outer list.

We will at times refer to points as being smaller/larger than other points. We perform
this comparison lexicographically, meaning that point a is smaller than point b if either a’s
X coordinate is smaller than b’s X coordinate, or both X coordinates are the same and a’s Y
coordinate is smaller than b’s Y coordinate.

2.3 Geometric Helper Functions
We begin by introducing two small helper functions which perform the actual geometric
computations. The side of line test checks which side of a line a point is located, and is a very
common abstraction to use for convex hull algorithms.

The better hull point test takes care of cases where points are collinear (3 or more points
on a line) by comparing distances. Most convex hull algorithms use some kind of variation
of this test.

2.3.1 Side of Line Test

Essentially a side of line test answers the question:

If l is a directed line from point a to point b, on what side of l does point c lie?

This basic query can be used to implement most convex hull algorithms. In Figure 2.2 the
expected return value for different inputs to a side of line test is displayed. The gold standard
for implementing a side of line test is by performing a cross product check. One computes
the signed area spanned by △abc and checks the sign of the area. This technique was first
proposed by AKL and Toussiant [2]. What is neat about computing the cross product is that
it avoids division, as opposed to computing slopes or angles.

The pseudo code for the side of line test is found in Algorithm 1. Note that in the argu-
ment list we write a → b to help us remember that the function looks at the directed line
from a to b. This is just syntactic highlighting, the function still takes 3 points as arguments.

14



2.4 Merge Function

a

b

ON

ON
LEFT

RIGHT

Figure 2.2: Illustration of result of SideOfLine for different choices
of c (red)

Algorithm 1: Geometric helper functions

1: function SideOfLine(a→ b, c) ▷ Points given in Cartesian coordinates as a = (ax, ay) etc.
2: S ← (bx − ax)(cy − ay) − (by − ay)(cx − ax)
3: if S = 0 then
4: return ON
5: else if S > 0 then
6: return LEFT
7: else
8: return RIGHT
9: end if

10: end function
11:
12: function BetterHullPoint(a→ b, c)
13: return SideOfLine(a→ b, c) = RIGHT OR
14: (SideOfLine(a→ b, c) = ON AND dist(a, b) < dist(a, c))
15: end function

2.3.2 Better Hull Point Test
In order to correctly select hull points that are collinear it is also useful to look at actual
distances. BetterHullPoint() in Algorithm 1 takes care of this logic by selecting the point
that is further away if they are collinear. Essentially it answers the question:

If we are building the convex hull in counter clockwise order and a was the most
recently selected vertex, should c replace b as the next candidate vertex?

Figure 2.3 shows the expected return value of a better hull point test. The function Dist(a, b)
in Algorithm 1 is some distance metric, for example Manhattan or Euclidean distance.

2.4 Merge Function
The merge function merges a set of k convex hulls H1, . . .Hk into one combined convex hull
H∗. If there are in total n =

∑k
i=1 |Hi | points in the input and h = |H∗| points in the output it

15



2. Background

Hull being built

a

bFalse

TrueTrue

False

False

Figure 2.3: Illustration of result of BetterHullPoint(a, b, c) for
different choices of c (red)

runs in O(n + k · h) time. Additionally the merge function takes an integer parameter H∗max
specifying a maximal size of H∗. If h > H∗max merge aborts and returns incomplete in
O(n+k ·H∗max) time. This means that the time complexity of merge is O(n+k ·min(h,H∗max)).

The idea of the algorithm is to incrementally find new points on the convex hull, similar
to Jarvis march. However, instead of comparing all points and picking the best one according
to the better hull point test, it is sufficient to only consider the tangents to the input hulls.
This means that the cost per added hull point is k instead of n since there is one tangent to
each Hi . Keeping track of the tangents to each Hi can be done with pointers that slide around
the hulls, adding just an overall O(n) cost to the algorithm. The idea for this implementation
is taken from Chan’s paper, but with the use of refinement idea 5 by E. Welzl. [7].

Note that when we say tangent we generally mean the right hand tangent, that is, the line
through a given point that touches a given hull from the right side.

Merge starts with initializing the tangent pointers to the smallest point on each hull. This
can be thought of as representing the tangents from an imaginary point infinitely far away in
the (ϵ , 1) direction, with ϵ > 0 being a sufficiently small number. We then add the smallest
point P from all Hi as the first point in H∗. After this we repeatedly update the pointers to
represent tangents from P and then select a new P and add it to H∗ by comparing the tangent
points. Figure 2.4 shows the initial steps, while Figure 2.5 shows how the Merge function finds
a new hull vertex Pn by comparing the tangents from the previous hull vertex P.

The pseudo code can be found in Algorithm 2. We assume that each Hi can be accessed
circularly. I.e. the lists loop around so that Hi[|Hi | + 1] = Hi[1]. In practice this would be
handled by modulo checking the indices, but that would make the pseudo code less concise.
Note that if k is a constant, Merge has time complexity O(n) since h ≤ n.

2.4.1 Correctness
Let us start with assuming that the while loop on line 7 correctly identifies the index T [i] to
the tangent point for each input hull Hi .

In this case, Algorithm 2 is essentially performing a Jarvis march [14] but to find the next
hull point only considers the tangent points from P to each Hi . This is sufficient because in

16



2.4 Merge Function

P P

Figure 2.4: Illustration of Merge starting with vertical tangents (blue
squares) and selecting leftmost point P. Tangents are then updated
to the right figure by iterating forwards on each hull.

Pn

Hull being built

P

Figure 2.5: Illustration of Merge finding next hull point Pn by com-
paring tangents to each hull (blue squares) from P.

Jarvis march we always add the point maximizing the angle from P, breaking ties on distance,
and this is exactly what we do when computing the tangent on each hull.

What remains to prove is that we correctly identify the tangent points. We will split the
logic into two cases. Either P lies on the border of Hi or outside of it.

If P is outside of Hi we have a situation like in Figure 2.6. What is important is that the
old value of Hi[T [i]] is visible from P, because l is a right tangent, and P is not to the left
(above) of l because in that case Hi[T [i]] would have been picked instead of P on line 17 in
Algorithm 2. This means that line 7 starts with a visible vertex T c

i of Hi , and is thus doing
right turns until finding the tangent. An edge case is if the right tangent from P touches a
side of Hi , in which case the vertex that is further away from P will be selected, which is also
the desired behavior in the Jarvis March.

If P is on the border of Hi it needs to be a vertex of Hi because if it was on an edge it
would not be a vertex of H∗. In this case line 8 will iterate exactly one step forward finding
the next vertex on Hi , or if |Hi | = 1 it will not do anything.

17



2. Background

Algorithm 2: Merge function

1: function Merge([H1,H2, . . .Hk], H∗max)
2: T ← [1, 1, . . . , 1] ▷ Size k. Hi[T [i]] represents the current tangent to Hi
3: P ← Smallest point of all Hi[1] ▷ P is always the point most recently added to H∗.
4: H∗ ← [P]
5: for h = 1 . . .H∗max do
6: for i = 1 . . . k do
7: while true do ▷ Update the tangent to Hi
8: T c

i ← Hi[T [i]] ▷ Current tangent point
9: T n

i ← Hi[T [i] + 1] ▷ Next tangent point
10: if BetterHullPoint(P → T c

i ,T
n
i ) then

11: T [i]← T [i] + 1
12: else
13: break
14: end if
15: end while
16: end for
17: Pn ← Best point of all Hi[T [i]] according to BetterHullPoint(P → _, _)
18: if Pn = H∗[1] then
19: return H∗
20: else
21: P ← Pn

22: H∗ ← H∗ ∪ P
23: end if
24: end for
25: return INCOMPLETE
26: end function

2.4.2 Time Complexity
We start by noting that at the end of execution T [i] ≤ 2 · |Hi |. This is motivated by the fact
that as we are building H∗, the visible parts of Hi will rotate one revolution around Hi . This
means that the pointer keeping track of the right tangent on Hi must have completed less
than two revolutions.

This implies that the innermost while loop of line 7 in Algorithm 2 will loop at most 2 ·n
times aggregated over all i and all loops of h. The loops on lines 6 and 17 introduces an extra
O(k ·min(h,H∗max)) overhead, which yields the total time complexity O(n+k ·min(h,H∗max)).

2.5 MergeHull
MergeHull is straightforward to implement using the Merge function of Algorithm 2. Essen-
tially we use the fact that we can merge two convex hulls in linear time. The version presented
here is slightly different from the original, since Bentley and Shamos use a different way of
combining two hulls in linear time [6].

In Algorithm 3 we present both a recursive and iterative implementation. The recursive
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2.5 MergeHull

P

New Hi[T [i]]Hi

Old Hi[T [i]] l

Figure 2.6: Illustration of Merge finding the correct tangent when
HullPoint is outside of Hi .

implementation is more natural and straightforward, whilst the iterative implementation is
presented for its similarities to the Refined Chan algorithm that is introduced in Chapter 3.

Algorithm 3: MergeHull Implementationes

1: function MergeHullRec(P) ▷ A list of n points
2: if n = 1 then
3: return P
4: else
5: H1 ← MergeHullRec(P[1 . . . ⌈ n2⌉]) ▷ First half of P
6: H2 ← MergeHullRec(P[⌈ n2⌉ + 1 . . . n]) ▷ Second half of P
7: return Merge([H1,H2],∞)
8: end if
9: end function

10: function MergeHullIterative(P) ▷ A list of n points
11: Ĥ ← A list of n hulls, one for each point in P
12: for i = 1 . . . ⌈log n⌉ do
13: Ĥ ←Merge hulls from Ĥ pairwise into half as many hulls ▷ Rounded up if odd
14: end for
15: return Ĥ[1] ▷ Ĥ only contains one element
16: end function

It is important that the partitions of P are computed in constant time on line 5 and 6.
This can be achieved by passing pointers to the endpoints of the array segments. Both imple-
mentations clearly generate the correct answer because they just merge all input points into
one hull and return it. The reason that we loop exactly k = ⌈log n⌉ times until |Ĥ | = 1 on
line 12 is motivated by the fact that 2k−1 < n ≤ 2k so we need to loop more than k − 1 times
but k is sufficient.

2.5.1 Worst Case Time Complexity
The Recursive implementation of Algorithm 3 is clearly O(n log n) in the worst case because
at most a linear amount of work is spent in the Merge step and the recursion depth is log n.
Formally this can be proven using the Master Theorem [8, p. 103].

Likewise the iterative implementation of Algorithm 3 loops log n times and runs in linear
time for each iteration giving O(n log n) time complexity.
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2.5.2 Average Case Time Complexity
If T (n) represents the expected time to run the recursive implementation of Algorithm 3 for
a truly sublinear input of size n we see that we make two calls to truly sublinear inputs of
half the size taking in expectation T (⌈ n2⌉) time each and to merge the results we need O(np)
time in expectation. If we assume n is a power of 2 this yields the following equation:

T (n) = 2T (n/2) + O(np); T (1) = O(1); p < 1

Which has the solution T (n) = O(n) according to the Master Theorem [8, p. 103]. For n
that is not a power of 2 it can be rounded up to a power of 2 (at most doubling it) and O(n)
still holds.

We exclude the proof for the iterative implementation, because it is essentially covered
by the proof in section 3.2.

2.6 Chan’s Algorithm
Chan’s algorithm [7] uses a grouping trick where one picks a number m and guesses that
h ≤ m. If this is the case we form groups of size m and merge them, in O(n log m) time.
Picking m on the format m = 22t

for integers t yields an overall time complexity O(n log h).
The pseudo code is found in Algorithm 4. Chan’s original version uses a Merge function
that binary searches to find tangents. The approach taken by us in Algorithm 2 is however
mentioned as an improvement, essentially removing a log n factor from line 7.

Algorithm 4: Chan’s algorithm

1: function Chan(P) ▷ A list of n points
2: for t = 1, 2 . . . do
3: m← 22t

4: Partition P into subsets P1,P2 . . . ,P⌈ n
m ⌉

of size ≤ m
5: Hi ← CH(Pi) for all 1 ≤ i ≤ ⌈ n

m⌉ using any O(n log n) CH algorithm.
6: H∗max = m
7: if Merge([H1, . . . ,H⌈ n

m ⌉
],H∗max) ̸= INCOMPLETE then ▷ Check if h ≤ H∗MAX

8: return Merge([H1, . . . ,H⌈ n
m ⌉

],H∗max)
9: end if

10: end for
11: end function

2.6.1 Time Complexity
We see that when m ≥ h line 6 in Algorithm 4 will compute the correct hull and return it. So
the for loop will iterate until t = ⌈log log h⌉. For each iteration, line 5 takes ⌈ n

m⌉O(m log m) =
O(n log m) time, and line 7 takes O(n + ⌈ n

m⌉m) = O(n) time. If m > n the analysis does not
hold since we can’t replace ⌈ n

m⌉ with n
m , but in this case have already obtained the final hull

on line 5.
For some constant C, the total time spent will be bounded by:
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2.6 Chan’s Algorithm

⌈log log h⌉∑
t=1

C · n log m =
⌈log log h⌉∑

t=1

C · n · 2t = C · n
⌈log log h⌉∑

t=1

2t < C · n · 2⌈log log h⌉+1 < 4C · n · log h

Which shows that Chan’s algorithm runs in O(n log h).

2.6.2 Refinements
Chan mentions some refinement ideas at the end of his paper [7]. Relevant for our future
analysis are the ideas named Idea 2,3 and 5. Idea 5 relates to replacing a binary search for
sweeping pointers in the merge function, and is already incorporated in Algorithm 2.

Idea 2 is to tweak the value of H∗max on line 6. Chan mentions picking m
log m which would

reduce the cost of line 5 to O(n) if one didn’t already use Idea 5.
Idea 3 is to reuse the computed hulls H1, . . . from previous steps in the iteration. One

would merge the previous hulls pairwise until reaching the new desired hull size, this would
essentially correspond to what Iterative MergeHull does.
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Chapter 3

Refined Chan

In this section we present a novel algorithm that we will call Refined Chan’s algorithm, along
with theoretical limits for the time complexity.

Refined Chan combines the time complexities of Chan’s algorithm and MergeHull, giving
an O(n log h) worst case time complexity and an O(n) expected time complexity on truly
sublinear inputs.

The pseudo code is found in Algorithm 5. It clearly returns the correct solution because
whenever it returns it will return the result of merging all the input points into a hull.

Algorithm 5: RefinedChan

1: function RefinedChan(P) ▷ A list of n points
2: Ĥ ← A list of n hulls, one for each point in P
3: for i = 1 . . . ⌈log n⌉ do
4: Ĥ ←Merge hulls from Ĥ pairwise into half as many hulls ▷ Rounded up if odd
5: if i = 2t for some integer t > 0 then
6: H∗max =

2i

i
7: if Merge(Ĥ,H∗max) ̸= INCOMPLETE then ▷ Check if h ≤ H∗MAX
8: return Merge(Ĥ,H∗max)
9: end if

10: end if
11: end for
12: return Ĥ[1] ▷ Ĥ only contains one element
13: end function

We can see that without lines 5-11 in Algorithm 5 we have exactly the iterative imple-
mentation of MergeHull in Algorithm 3. Lines 6-10 of Refined Chan correspond to the same
lines in Chan’s Algorithm found in Algorithm 4. Whenever i = 2t , Ĥ will contain convex
hulls representing at most m = 2i = 22t

input points each. This means that we are effectively
reusing the computed hulls from previous steps (smaller t) which corresponds to what Chan
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presents as improvement Idea 3 [7]. Furthermore we have changed H∗max to m
log m on line 6,

corresponding to Idea 2.
Even though the ideas used to create Refined Chan are not original for this thesis, to our

knowledge we are the first to pick this particular combination of improvements and analyze
them. Particularly the fact that Refined Chan (or any variant of Chan’s algorithm) has the
same expected time complexity as MergeHull is, to our knowledge, novel.

We present proofs of Refined Chan worst case time complexity O(n log h) in section 3.1
and expected time complexity O(n) on truly sublinear inputs in section 3.2.

3.1 Worst Case Time Complexity
We will prove that Refined Chan has a worst case time complexity of O(n log h). We will do
this by proving that each loop of i takes at most O(n) time, and that i loops at most until
O(log h).

Note that since 2i < 2n we have that ⌈ n
2i ⌉ <

n
2i +1 < 3 n

2i . This means that for the purpose
of time complexity we can replace ⌈ n

2i ⌉ with n
2i .

On line 4 we merge ⌈ n
2i ⌉ pairs of convex hulls, each hull containing at most 2i−1 points.

These calls take O(2i + 2 · 2i) = O(2i) time each. In total we do ⌈ n
2i ⌉ calls so the total amount

of work is O(n) per loop.
On lines 5-11 we sometimes merge ⌈ n

2i ⌉ hulls containing at most n points in total. We
abort if the resulting hull has more than H∗max =

2i

i vertices. This takes O(n + ⌈ n
2i ⌉ ·

2i

i ) =
O(n + n

i ) = O(n) time in total.
We have shown that each loop of i takes O(n) time. We now claim that i will loop at most

until 4 · log h or a constant (for small values of h).
Since there must be an even power of 2 between 2 log h and 4 log h, when i assumes this

value, we get that H∗max =
2i

i ≥
h2

i ≥ h since h ≥ 4 log h ≥ i when h ≥ 16. This means that
for this i, line 9 will return the hull H∗. For h < 16 we see that when i = 8 we have 28

8 = 32
so in these cases i will loop at most 8 times.

Thus the worst case time complexity of Refined Chan O(n log h).

3.2 Average Case Time Analysis
In the previous section we showed that each loop of i takes at most O(n) time, which is not
a tight bound in the average case. The idea for this section is to improve the bound to a
geometrically decreasing sum which in turn sums to O(n) instead of O(n log h). The analysis
assumes that the input is truly sublinear.

On line 4 we have ⌈ n
2i ⌉ pairs of convex hulls that we will merge. Each hull represents at

most 2i−1 points so its expected size is O(2(i−1)p). Each merged hull represents at most 2i

points so its expected size is O(2ip). The expected running time of each merge is therefore
O(2 ·2(i−1)p+2 ·2ip) = O(2ip), and since we merge ⌈ n

2i ⌉ pairs it has an expected running time
of ⌈ n

2i ⌉O(2ip) = O( n
2i(1−p) ).

Summed over all loops of i this is O(n) since it is a decreasing geometric sum. This analysis
would cover the iterative implementation of MergeHull in Algorithm 3.
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Lines 5-10 are only executed when i = 2t for integers t = 0, 1, . . .. It merges ⌈ n
2i ⌉ hulls

of expected size O(2ip), additionally aborting if the output is larger than 2i

i . Thus it takes an
expected time O( n

2i 2ip + n
2i

2i

i ). The first term is the same as for line 4 and must thus have
at most a linear contribution summed over all i. The second term is equal to O( n

2t ), which
clearly is O(n) when summed over all t.

In conclusion we have shown that summed over all loops of i, the expected accumulated
running time of both line 4 and lines 5-11 is expected to be linear, so the expected running
time of refined Chan is O(n) on truly sublinear inputs.

3.3 Simplified Variant
The presented algorithm 5 can be simplified somewhat. The key insight is that even though
it is formally achieved by adding refinements to Chan’s algorithm, what we obtain is the
MergeHull algorithm with an extra step that checks if h is small and in that case breaks early.
This step can be made simpler.

If we only care about getting worst case time complexity of O(n log h), the simplified
version in algorithm 6 achieves this, because it still takes O(n) time in every loop of i and i
loops until at most ⌈log h⌉.

Algorithm 6: Simplified variant of Refined Chan that achieves
O(n log h) time complexity

1: function SimplerRefinedChan(P) ▷ A list of n points
2: Ĥ ← A list of n hulls, one for each point in P
3: for i = 1 . . . ⌈log n⌉ do
4: Ĥ ←Merge hulls from Ĥ pairwise into half as many hulls ▷ Rounded up if odd
5: H∗max = 2i

6: if Merge(Ĥ,H∗max) ̸= INCOMPLETE then ▷ Check if h ≤ H∗MAX
7: return Merge(Ĥ,H∗max)
8: end if
9: end for

10: return Ĥ[1] ▷ Ĥ only contains one element
11: end function

If we also want O(n) expected time complexity on truly sublinear inputs, we can reduce
H∗MAX to 2ip for some p < 1 and make a similar argument as is section 3.2. In this case i will
loop until at most

⌈ log h
p

⌉
.
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Chapter 4

QuickHull

In this chapter we will discuss the different implementation strategies for QuickHull that we
have tested, and potential advantages and disadvantages of these.

For all implementations of QuickHull, we chose to represent sets of points using arrays
of contiguously allocated memory.

4.1 Partitioning Strategies
There are several occasions in the QuickHull algorithm where a set of points need to be
divided into two or three disjoint subsets. In order to implement QuickHull withO(1) extra
memory, we implement this division into disjoint subsets by partitioning the points such
that each subset occupies a contiguous range of the original memory. Partitioning refers to
the operation of moving points so that all points satisfying a predicate are moved to the start
of the array.

By partitioning the points such that those in PR appear before the point HM , which in
turn appears before the points in PL, the points that are on the convex hull will at the end of
the algorithm be ordered counter clockwise along the hull.

We have tested four different approaches for partitioning points:

i First partition the points to extract those to the left of the line from HM → HR, then
partition the remaining points to extract those to the left of the line HL to HM .

ii First partition the points by comparing their X-coordinate with that of HM . After this,
partition the points to the left of HM to extract those to the left of the line HL → HM ,
and likewise for the points to the right of HM with the line HR → HM .

iii Partition the points in a single scan by swapping points that should be in PR to the
beginning and points that should be in PL to the end.
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iv During the initial phase, sort the points above and below the initial line (separately) by
X-coordinate, with the points above being sorted in the opposite order to those below.
This way, points will always be partitioned according to whether their X-coordinate
is less than that of HM and approach ii can be used without the first partitioning step.

See algorithms 7 through 10 for pseudo code for the different partitioning strategies. The
function Partition(A, P) partitions the list A according to the predicate P (modifying A).
The function returns a sub-list of A containing the elements where the predicate was true
(which references the same memory as A so that modifications of elements in the returned
list affect the elements in A).

Algorithm 7: Partition Strategy i

1: function PartitionPoints(P, HL, HR, HM)
2: Swap(P[|P|],P[IndexOf(P,HM)]) ▷ Temporarily moves HM to the end.
3: PR ← Partition(P[1 . . . |P| − 1], p 7→ LeftOfLine(HM → HR, p))
4: Swap(P[|P|],P[|PR| + 1]) ▷Moves HM so that it’s in between PR and PL
5: PL ← Partition(P[|PR| + 2 . . . |P|], p 7→ LeftOfLine(HL → HM , p))
6: return PL, PR
7: end function

Algorithm 8: Partition Strategy ii

1: function PartitionPoints(P, HL, HR, HM)
2: Swap(P[|P|],P[IndexOf(P,HM)]) ▷ Temporarily moves HM to the end.
3: if HL < HR then
4: PRX ← Partition(P[1 . . . |P| − 1], p 7→ p.x > HM .x) ▷ Upper hull
5: else
6: PRX ← Partition(P[1 . . . |P| − 1], p 7→ p.x < HM .x) ▷ Lower hull
7: end if
8: PR ← Partition(PRX , p 7→ LeftOfLine(HM → HR, p))
9: Swap(P[|P|],P[|PRX | + 1]) ▷Moves HM so that it’s in between PR and PL

10: PL ← Partition(P[|PRX | + 2 . . . |P|], p 7→ LeftOfLine(HL → HM , p))
11: return PL, PR
12: end function

Comparing options i and ii, we can see that for both options, the first of partitioning
involves all |P| points, whereas the remaining partition operations involve |P| − |PL| points
for option i and |P| points for option ii. This means that option i may perform better due to
not having to read as many points during its second partition operation. Option i, however,
potentially requires more side of line comparisons than option ii. For option i the number of
side of line comparisons is |PL|+2·(|PR|+|PT |) compared to |PL|+|PR|+|PT | for option ii. Since
side of line comparisons require two multiplications these could be more computationally
expensive than the X-coordinate comparisons performed during the first partition of option
ii. Option iii could perform better than i and ii because of only needing to traverse the list
of points once, at the cost of more complicated branching logic and swapping both towards
the start and end of the points array, instead of only towards the start.
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Algorithm 9: Partition Strategy iii

1: function PartitionPoints(P, HL, HR, HM)
2: Swap(P[|P|],P[IndexOf(P,HM)]) ▷ Temporarily moves HM to the end.
3: RNext ← 1
4: LNext ← |P| − 2
5: i ← 1
6: while i ≤ LNext do
7: if LeftOfLine(HM → HR,P[i]) then
8: Swap(P[RNext], P[i])
9: RNext ← RNext + 1

10: i ← i + 1
11: else if LeftOfLine(HL → HM ,P[i]) then
12: Swap(P[LNext], P[i])
13: LNext ← LNext − 1
14: else
15: i ← i + 1
16: end if
17: end while
18: Swap(P[|P|],P[LNext + 1]) ▷Moves HM so that it’s in between PR and PL
19: PL ← P[LNext + 2 . . . |P|]
20: PR ← P[1 . . .RNext − 1]
21: return PL, PR
22: end function

Algorithm 10: Partition Strategy iv

1: function PartitionPoints(P, HL, HR, HM) ▷ P has already been sorted by X-coordinate
2: NRX ← IndexOf(P, HM)
3: PR ← Partition(P[1 . . . NRX − 1], p 7→ LeftOfLine(HM → HR, p))
4: PL ← Partition(P[NRX + 1 . . . |P|], p 7→ LeftOfLine(HL → HM , p))
5: return PL, PR
6: end function

Option iv could potentially perform better than the other two due to only having to
iterate through the points once, at the cost of initially having to sort all points. On data sets
where points are somewhat evenly distributed, such as on our square and disk data sets, a large
amount of points are likely to be removed during the first few levels of QuickHull. On data
sets such as these, sorting all points initially may not give any performance benefit because
many of the points that are sorted may be removed very quickly and thus not contribute to
the reduced number of memory accesses during later partitioning operations. Because of this
we have also tested a hybrid approach where partitioning strategy i is used until a certain
depth is reached, at which point the remaining points for that sub problem are sorted and
deeper levels of recursion use partitioning strategy iv.
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4.2 Removal of Points

In the pseudo code points that are determined to not be part of the convex hull are added
to the set called NotOnHull and finally removed at the end of the algorithm. In order to
achieve O(1) memory complexity, our implementations do not store this set and instead
assign points a special value in order to represent that they are not part of the convex hull.
For floating point implementations we use NaN and for integer implementations we use the
smallest possible representable value.

Another approach would be to instead mark points that are determined to be on the
convex hull, for example by appending these to a list that is passed as a parameter to the
recursive function (see the pseudo code in algorithm 11). Most of our implementations use the
previous approach (marking points that are not on the convex hull). Note that this approach
does not allow for O(1) memory complexity because of the list labeled Result in algorithm
11. This approach is also more difficult to parallelize by running the two recursive calls to
QuickHullDAC in parallel. This is because both invocations of QuickHullDAC need to
append points to the list of results, and in order for these points to be ordered by their
position in the convex hull all hull points found by the first recursive call need to be appended
before points from the second recursive call.

Algorithm 11: Depth First QuickHull (marking points on the convex
hull)

1: function DepthFirstQuickHull(Pin)
2: PHull ← []
3: HL← the lexicographically smallest point in Pin
4: HR← the lexicographically largest point in Pin
5: Pin ← Pin \ {HL,HR}

6: Pbelow← Partition(Pin, p 7→ RightOfLine(HL → HR, p))
7: Append HL to the end of PHull
8: DivideAndConquer(Pbelow, HR, HL, PHull)
9: Append HR to the end of PHull

10: DivideAndConquer(Pin \ Pbelow, HL, HR, PHull)
11: return PHull
12: end function
13: function DivideAndConquer(P, HL, HR, PHull)
14: if P ̸= ∅ then
15: HM ← the point in P furthest from the line HL → HR
16: PL, PR← PartitionPoints(P, HL, HR, HM)
17: DivideAndConquer(PL, HL, HM , PHull)
18: Append HM to the end of PHull
19: DivideAndConquer(PR, HM , HR, PHull)
20: end if
21: end function
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Algorithm 12: Depth First QuickHull

1: function DepthFirstQuickHull(Pin)
2: HL← the lexicographically smallest point in Pin
3: HR← the lexicographically largest point in Pin
4: Swap(Pin[1], Pin[IndexOf(Pin,HL)]) ▷Moves HL to its correct location at the start of

P
5: Pbelow← Partition(Pin[2 . . . |Pin|], p 7→ RightOfLine(HL → HR, p))
6: Swap(Pin[|Pbelow| + 2], Pin[IndexOf(Pin,HR)]) ▷Moves HR to its correct location at

the first index among points above the line
7: Pabove ← Pin[|Pbelow| + 3 . . . |Pin|]
8: DivideAndConquer(Pbelow, HR, HL)
9: DivideAndConquer(Pabove, HL, HR)

10: Remove points from P that have been marked as not on the convex hull
11: return P
12: end function
13: function DivideAndConquer(P, HL, HR)
14: if P ̸= ∅ then
15: HM ← the point in P furthest from the line HL → HR
16: PL, PR← PartitionPoints(P, HL, HR, HM)
17: Mark all points in P \ (PL ∪ PR ∪ {HM}) as not on the convex hull
18: DivideAndConquer(PL, HL, HM)
19: DivideAndConquer(PR, HM , HR)
20: end if
21: end function

4.3 Merged Distance & Orientation Tests
In the article “Quicker than QuickHull” [13] the authors present an approach for reducing
the amount of computation needed by merging the orientation calculations performed in
step 2 with the furthest point calculations performed at the next recursion depth in step 1.
This is done by, when partitioning points into subsets PL and PR, keeping track of the point
with the largest cross product among those partitioned into PL and PR respectively. These
two points are the new hull points (HM) at the next recursion depth, and can then be passed
down instead of being computed in step 1.

4.4 Breadth First QuickHull
Our implementations can be largely divided into two groups depending on whether they
process recursion in a depth-first manner or a breadth-first manner. The implementations
discussed up until this point are depth-first implementations since they process subsets of
points by immediately recursing to these subsets. Breadth-first implementations maintain
two lists of intervals at the current and next depth respectively, with each interval encoding
the parameters HL, HR and P described above. These implementations process all intervals
at the current depth using the steps outlined above, but append subdivided intervals to the

31



4. QuickHull

list for the next depth in steps 3 and 4 instead of immediately processing these recursively.
See the pseudo code below for more details.

Algorithm 13: Breadth First QuickHull

1: function BreadthFirstQuickHull(Pin)
2: HL← the lexicographically smallest point in Pin
3: HR← the lexicographically largest point in Pin
4: Swap(Pin[1], Pin[IndexOf(Pin,HL)]) ▷Moves HL to its correct location at the start of

P
5: Pbelow← Partition(Pin[2 . . . |Pin|], p 7→ RightOfLine(HL → HR, p))
6: Swap(Pin[|Pbelow| + 2], Pin[IndexOf(Pin,HR)]) ▷Moves HR to its correct location at

the first index among points above the line
7: Pabove ← Pin[|Pbelow| + 3 . . . |Pin|]
8: ICurrent ← ∅

9: if Pbelow ̸= ∅ then
10: Add (Pbelow,HR,HL) to ICurrent
11: end if
12: if Pabove ̸= ∅ then
13: Add (Pabove,HL,HR) to ICurrent
14: end if
15: while ICurrent ̸= ∅ do
16: INext ← ∅

17: for all (P,HL,HR) in ICurrent do
18: M ← the point in P furthest from the line L → R
19: PL, PR← PartitionPoints(P, HL, HR, HM)
20: Mark all points in P \ (PL ∪ PR ∪ {HM}) as not on the convex hull
21: if PL ̸= ∅ then
22: Add (PL,HL,HM) to INext
23: end if
24: if PR ̸= ∅ then
25: Add (PR,HM ,HR) to INext
26: end if
27: end for
28: ICurrent ← INext
29: Optionally, remove points from Pin that have been marked as not on the convex hull

and update bounds in ICurrent
30: end while
31: Remove points from Pin that have been marked as not on the convex hull
32: return Pin
33: end function

4.4.1 Periodic Removal of Points
In our depth first implementations, points that are not on the hull are removed at the end by
partitioning points that have not been set to the special value. In our breadth first implemen-
tations we have also tested whether it is beneficial to periodically remove points determined
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to not be on the hull before advancing to the next depth (effectively at line 27 in algorithm
13). We have tested performing this removal of points at every iteration, when a certain num-
ber of iterations have passed since the last removal, or when the total amount of points that
could be removed exceeds a certain threshold.

The supposed performance benefit of removing points periodically would come from
better cache utilization during later iterations, since points that are marked as not being on
the hull would otherwise fragment the memory regions that later iterations need to work
on and potentially pollute cache lines at the edges of intervals of points that are still being
considered.

4.5 Parallelization
We have investigated two approaches to parallelization of QuickHull. One for parallelizing
depth first QuickHull, and one for parallelizing breadth first QuickHull.

The parallelization of depth first QuickHull works by simply running the two recursions
in the divide and conquer phase (steps 3 and 4) in parallel.

This method of parallelization is very simple to implement, but may suffer from poor
load balancing in certain situations, especially at low recursion depths. This is because at
low recursion depths the input points will not have been divided into enough separate sub
problems for many threads to be able to work in parallel. Unevenly distributed points could
also cause poor load balancing if there are significantly more points on one side of a new hull
point than the other, since this could mean that threads handling points on one side of the
new hull point get significantly more work than threads on the other side.

The parallelization of breadth first QuickHull is more complicated, and loosely based
on the method presented in the article “Finding Convex Hulls Using QuickHull on the GPU” by
Stanley Tzeng and John D. Owens [24]. The algorithm makes use of established parallel algo-
rithms for sorting and computing the prefix sum and prefix maximum of an array. Sorting
can for example be performed in parallel using the “Bitonic Sort” algorithm originally in-
troduced by Ken Batcher in 1968 [4]. Prefix sum and prefix maximum can be performed in
parallel using an algorithm introduced by W. Daniel Hillis and Guy L. Steele in 1986 [12].
Our implementation uses the Thread Building Blocks library from Intel for these algorithms.

The initial phase of the algorithm is similar to the sequential breadth first QuickHull,
but utilizing parallel algorithms for finding the lexicographically smallest and largest points
as well as partitioning the points depending on whether they are above or below the initial
line. During the initial stage, we also sort the points by X-coordinate using a parallel sorting
algorithm. The points are sorted in ascending order below and descending order above, in
the same way as described in partitioning strategy iv (on page 28).

Following the initial phase, the handling of intervals differs from the sequential algorithm
by inverting the mapping between intervals to the points they contain. I.e. for each point,
we track which interval contains that point, instead of for each interval tracking which set of
points that interval contains. We will use P[i] to refer to the point at index i and Ilo[i], Ihi[i]
to refer to the index of the first point and last point respectively in the interval that contains
point i. As in the sequential algorithm, points within the same interval are stored sequentially
in memory which means that Ilo and Ihi will be monotonic increasing and constant for points
in the same interval.
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Iterating through the list of active intervals (performed by the loop on line 17 in the
sequential algorithm on page 32) is broken up into several stages, each of which is performed
in parallel and completed fully before the next stage starts.

1. For each point, compute the distance to the line between the two hull points from the
interval containing that point. Let D[i] be the distance computed for point i.

2. Compute the prefix maximum of the tuple (Ilo[i],D[i], i):

M[i] = max{(Ilo[1],D[1], 1), . . . , (Ilo[i],D[i], i)}

Tuples are compared lexicographically which, due to the monotonic behavior of Ilo,
means that the index of the point furthest from the line of the interval containing
point i is given by the third element of M[Ihi[i]]. We will refer to this index as Phull[i].

3. For each point:

(a) Compare the point’s index i to Phull[i] to determine if the point is to the left or
right of the new hull point for its interval. Since the points are initially sorted
by their X-coordinate all points on the same side of the new hull point will also
have indices on the same side of Phull[i].

(b) Determine the point’s orientation relative to the line between the new hull point
and the left or the right hull point of the interval containing the point (depending
on the point’s side of the new hull point).

(c) If the point is outside the line, either set Ihi[i]← Phull[i]−1 or Ilo[i]← Phull[i]+
1 depending on the point’s side of the new hull point.

(d) If the point is not outside the line, set it to a special value marking it as not part
of the convex hull.

4. (optionally) Remove points marked as not being on the convex hull.

Removal of points marked as not on the convex hull is performed at the end of the al-
gorithm using a parallel stable partition operation. This can also be done periodically, in
which case the indices in Ilo and Ihi also need to be updated. For Ilo the new values would
be I ′lo[i] = Ilo[i] −

∑i−1
j=1 remove( j) where remove( j) is 1 if the point with index j will be

removed and 0 otherwise (and similarly for Ihi). This update can be performed in parallel by
computing the prefix sum S[i] =

∑i−1
j=1 remove( j) in parallel.

Points that are determined to be on the convex hull stay in the points array, and have
Ihi[i] = Ilo[i] = i to mark that they are a hull point. These points, along with points marked
as not being on the hull, we set D[i] = − inf in step 1 and don’t perform any processing
in step 3. Because of this, periodically removing points marked as not on the hull has the
advantage of reducing the amount of wasted calculations in step 2 and parallelism in step 3,
in addition to the potentially reduced memory fragmentation like in the sequential version.

34



Chapter 5

Worst case inputs for QuickHull

In this section we explore how to generate worst case inputs for QuickHull. The idea is to
make QuickHull recurse as deep as possible, yielding a time complexity of Ω(nd) where d is
the depth of the recursion, and we place n − d points where the recursion ends.

One way to achieve deep recursion is explained in a stack overflow thread on the issue,
https://stackoverflow.com/a/14457421, as of May 18, 2023. The presented approach
by the user "John", posted January 22, 2013, is to put points on a circle and in every step one
would bisect the current arc and place a point there. Formally one would generate a sequence
of points P = [P0,P1, . . .] where Pi = (1, θi), θi = π

2i in polar coordinate form. For simplicity
of analysis we will also add the point P−1 = (1, 0) to P.

As visualized in Figure 5.1, QuickHull would for this input always have P−1 as HR and at
recursion depth i have Pi as HL. In every recursive step Pi+1 would maximize the distance to
the line, and all remaining points would end up in the same recursive call.

P−1

HR

P0

HL

P1

HM ,HL

P2

HM

θ0
θ1
θ2

Figure 5.1: Illustration of worst case input for QuickHull as de-
scribed by a stack overflow thread. The first recursive step is shown
in red and the next in blue.
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5. Worst case inputs for QuickHull

Assuming computers have perfect floating point arithmetic this approach will be suffi-
cient to achieve any desired depth, thus meaning that QuickHull would run in Ω(n2) time.
Practically however, numbers on computers are represented with a maximal size and amount
of precision, which means that there is a bound on how small coordinates we can represent.

We will assume that QuickHull is implemented using 64-bit double precision numbers,
using 1 sign bit, 11 exponent bits and 52 precision bits according to the IEEE 754 standard
[1, §3.6]. We also assume that the points are represented with Cartesian coordinates, and
not polar coordinates. To our knowledge there is no CH algorithm doing computations
exclusively in polar coordinates.

We will start by getting an upper bound on the depth of the recursion. After that we will
improve the approach from the stack overflow thread. Finally we will address some problems
by presenting a more numerically stable approach. Our analysis in this chapter easily extends
to floating point numbers with lower or higher size and precision.

5.1 Upper Bound on Recursion Depth
Overmars and van Leeuven showed that the area spanned by a recursive call C in QuickHull
is at least 2 times the sum of the areas spanned by the two calls that C recurses into. They
used this to prove that QuickHull has O(n) expected time complexity on inputs with points
selected uniformly at random from a convex region. [18]

The argument that areas are divided by 2 was later used by Gamby and Katjainen to put
an upper bound on the recursion depth of QuickHull. This was done for integer coordinate
inputs. [9]

We begin by improving Overmars and van Leeuvens bound to a factor of 4 instead of
2, and will then use this to show an upper bound on the recursion depth of QuickHull for
floating point inputs.

Note that whenever QuickHull identifies a vertex v of the convex hull, it is because v
was the maximal point in some direction, like maximal/minimal x coordinate or maximum
distance to some line. Consider figure 5.2. It shows a recursive call on QuickHull for points
HL and HR. We will also associate an imaginary point Q with the call, which is placed so that
HL was maximal in the direction perpendicular to HLQ and HR was maximal in the direction
perpendicular to HRQ. This means that all points P sent to the recursive call are inside the
triangle T = △HLHRQ. QuickHull finds the point HM ∈ P with maximal distance to HLHR,
and recurses into TL and TR as seen in the figure.

If the height from Q to QLQR is some proportion x of the total height h from Q to HLHR
we see that

Area(TL) + Area(TR) =
|QLQR|(1 − x) · h

2
=

x|HLHR|(1 − x) · h
2

= x(1 − x) · Area(T )

Since x(1− x) has maximal value 1
4 when x = 1

2 , we can conclude that the area of the two
recursive calls is at most 1

4 of the area of the original call. This also means that the largest
area of the two recursive calls is at most 1

4 of the original call.
We also have that Area(T ) ≥ Area(TM) ≥ Area(TL) + Area(TR), which means that we

can bound the areas of TM similarly. If Ad = Area(TM) in a recursive call at depth d, we have
that A0 ≥ 4d−1Ad
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HL

HR

Q

HM

h
QL

QRx · h

TL
TM

TR

T

Figure 5.2: Illustration of QuickHull recursion step. The call for
HL,HR contains points in T = △HLHRQ. QuickHull finds the
points HM with maximal distance to HLHR, and recurses into TL
and TR. The height from Q to HLHR is h, and the height from Q to
QLQR is x · h

Since both A0 and Ad are areas that are computed by QuickHull when a point HM is
identified both of these numbers need to be representable floating points numbers, we see
that 4d−1 ≤ MAX DOUBLE

MIN DOUBLE = 2211
= 4210

meaning d ≤ 210 + 1 = 1025. Generally, if the floating
point architecture has b exponent bits, our upper bound is 2b−1 + 1.

5.2 Improving Achievable Depth
The approach from Stack Overflow clearly cannot achieve a very deep recursion because the
points will be of the form (cos(θ), sin(θ)) in cartesian coordinates for very small θ. This
converges towards (1, 0). At around depth 27 when θ27 = 2−27, the x coordinate cos(θ)) ≈
1− θ22 will be badly affected by precision and indistinguishable from 1 since doubles have 53
bits of precision.

We will start by fixing this issue, and then improve the depth of the recursion by scaling
the input and splitting the arc using a golden ratio trick instead of in 2 equal parts.

5.2.1 Shifting and Scaling
The issue that the x-coordinate of Pi as affected by precision issues can be solved by shifting
the circle left so that it is centered around (−1, 0) and thus the points generated will converge
towards (0, 0). This means that as the points get closer to each other their absolute values
also decrease, meaning that doubles can still differentiate between them.

If the program generating the input also has bounds on precision, one would not be able
to accurately calculate the x-coordinate naively on the format cos(θ) − 1. The x-coordinate
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5. Worst case inputs for QuickHull

can instead, for small values of θ, be replaced with the second term in its Taylor series giving
the expression 1 − θ22 − 1 = − θ22 .

We can now scale everything with a radius r =
√

MAX DOUBLE of the circle so that
the area of the initial triangle is close to MAX DOUBLE, and generate points until the area
is close to MIN DOUBLE. This would yield an input that causes QuickHull to recurse to a
depth of d = 678.

One way to put this approach into context with the upper bound of 210 is that the area
of △P−1Pi−1Pi ≈ θ

3
i , so the area is reduced by a factor of 8 for each recursion, which means

that we are achieving log8 4 = 2
3 of the upper bound on depth.

5.2.2 Golden Ratio Trick
We can improve the depth by noting that if we were to put Pi+1 slightly off center, we can
recurse into the larger part as long as we avoid placing any points in the area that would
be further from PiP−1 than Pi+1 is. By doing this we do not split the arc in half each time,
because we always use a little bit more than half the arc length for subsequent calls.

P−1P0

P1 P2

θ0
θ1

θ2

Figure 5.3: Illustration of not splitting the arc evenly. The red curve
marks where we don’t allow any points to be placed since P1 should
be the furthest point from P0P−1. Importantly θ2 < θ0 − θ1 means
that P2 is outside the red region.

We can find the limit of this strategy by assuming that θi = πxi for some factor x that
we want to maximize. We now see that θi+1 = xθi and θi+2 = x2θi . Pi+1 will be further from
PiP−1 than Pi+2 is if θi+2 < θi − θi+1 =⇒ x2 < 1 − x =⇒ x < 1

ϕ
≈ 0.61803 if we

only consider positive x. This means that in the limit of this construction we are dividing
the angle with the golden ratio in every step.

Rounding down to x = 0.618 we have a little bit of margin which means that precision
will not be an issue when comparing the distances of Pi+1 and Pi+2 to PiP−1. Using this
factor we were able to generate an input with d = 976. We also see that since x3 ≈ 0.236
we are quite close to dividing the area by 4 in every step. More exactly we are achieving
− logx3 4 ≈ 0.96 of the upper bound on depth.
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5.2.3 Numerical Issues
The two described approaches yielding depth 670 and 978 does have some numerical issues.
To illustrate, if we have an input without scaling or the Golden ratio trick, QuickHull will
begin by identifying P0 = (−2, 0) and P−1 = (0, 0) as the leftmost and rightmost points.
It will then find P1 = (−1, 1) as the point maximizing the distance to P0P−1. For the next
recursive call QuickHull needs to know which side of the line P1P−1 each remaining point
is on. If Pi = (−θ2i , θi) then SideOfLine(P−1,P1,Pi) will compute S = −1 · θi − 1 · (−θ2i ) =
θ2i − θi , whilst SideOfLine(P1,Pi,P−1) will compute S = (1− θ2i ) · −1− (θi −1) ·1 = θ2i − θi .
For a small θi , the first calculation still works fine whilst the second one will not due to 1−θ2i
being very close to 1. This means that the answer that QuickHull generates and how deep
it recurses depends on internal implementation details and rounding errors. Specifically it
matters which permutation of points that QuickHull calls Side Of Line with.

Generally we can think of this issue as being caused by the fact that the line from P1 to
P−1 is very close to some point Pi compared to the distance between P1 and P−1. Avoiding
this situation for any three points in the input is not possible because we will need to have
some points very close to each other and others much further away, but if we are careful we
can construct the input so that QuickHull doesn’t look at these combinations of points.

5.3 Numerically Stable Approach
To create an input that does not have the issues mentioned in section 5.2.3 we will instead
of always recursing into the right arc, alternatively recurse into the left and right arcs. This
way we do not run into this issue because as seen in figure 5.4 each line PiPi+1 is relatively
far from the origin where the points are converging to.

We still want the points to converge towards the origin, so to do this we will imagine a
unit circle with center in (0,−1) and angles measured from the y-axis. We will now generate
points on the following format: P = [P0,P1, . . .] where Pi is on the circle with angle θi =
π
2 (−x)i measured from the y-axis. This way the points will converge towards the top of the
circle.

Clearly x = 0.5 works, because every Pi+2 will bisect the arc of PiPi+1 since θi+2 =
θi+θi+1

2 .
However, as for the golden ratio trick we would like x to be as large as possible while not

changing how QuickHull recurses. We can start by noting that Pi will alternatively be on the
left and right side of the origin. If we assume Pi is to the left (meaning θi > 0) we see that
Pi+2 needs to be further from PiPi+1 than all remaining points. Moving clockwise from Pi+2
the next point will be Pi+4 giving the sufficient condition that Pi+2 is further from PiPi+1
than Pi+4 is. Algebraically this becomes θi − θi+2 > θi+4 − θi+1 =⇒ 1 − x2 > x4 + x =⇒
x < 0.56984 . . . if we only consider positive x.

We will round down to x = 0.5698 giving a little bit of margin for precision in the
computations. Using this factor (and again scaling the circle to radius

√
MAX DOUBLE we

were able to generate an input with d = 834. We also see that x3 ≈ 0.185 so the approach is
not as close to dividing the area by 4 in each step as the golden ratio trick is. More exactly it
achieves − logx3 4 ≈ 0.82 of the upper bound on depth.
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P0

P1

P2
P3P4 P5

θ0

θ2
−θ3

Figure 5.4: Illustration of numerically stable approach to worst case
QuickHull inputs. The line P0P1 that QuickHull will start by con-
sidering is not very close to any points. The red curve marks where
we don’t allow any points to be placed since P2 should be the fur-
thest point from P0P1. Importantly θ0 − θ2 > θ4 − θ1 means that P4
is outside the red region.
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Chapter 6

Evaluation

In this chapter we will empirically evaluate our findings from chapters 3, 4, and 5. We cover
how the experiments have been performed in section 6.1, and the different kinds of inputs we
are using in section 6.2. In section 6.3 we compare different variants of the QuickHull algo-
rithm, and in section 6.4 we consider how Refined Chan compares to Chan’s algorithm and
MergeHull. Finally in section 6.5 we compare our best implementations with library code and
answer the question of which convex hull algorithm is the fastest in different circumstances.

6.1 Experimental Setup
In order to evaluate the performance of planar convex hull algorithms we created our own
framework for testing and evaluating. All algorithms were implemented in C++ and compiled
with the GCC compiler version 11.2.0 and 12.2.1. The implementations were thoroughly
tested to spot potential bugs.

All implementations use 64-bit double-precision floating-point numbers to represent
coordinates, and points are stored in Array-of-Structure layout, i.e. with X and Y coordinates
interleaved.

Our framework passes data by reference to the algorithms, meaning that they could be
implemented in-place by modifying the input array to return the output. In general all algo-
rithms were implemented with as little copying as possible, making temporary arrays in the
cases that the algorithms couldn’t be implemented completely in-place.

Performance was measured on two different systems, the first of which has an Intel Core
i7-1065G7 processor, and the second of which is a POWER8 TN71-BP012 computer with 10
cores and 80 hardware threads [22].

Our framework uses std::chrono::high_resolution_clock to accurately measure time. Be-
fore running an algorithm we read the input into memory as a continuous array, and we
define computation time as the time it takes for the algorithm to return the result after
running it. The loading time is excluded to remove noise from measurements. All of our im-
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plementations, as well as CGAL use this framework for measuring time. For Qhull, we used
the measurements that are output by the qhull program labeled as “CPU seconds to compute
hull (after input)”.

In addition to measuring time we also measured memory usage and instruction counts.
On the Intel computer this was done with Intel’s “Performance Counter Monitor” (PCM)
library, using the following counters:

• Instructions Retired: This counter measures the total number of instructions com-
pleted.

• M.C. Read and M.C. Written: These counters measure memory traffic between the
L3 cache and DRAM. This means that a high number for this measurement could be
because the implementation performs many memory accesses, or because it has poor
cache performance.

• L3 Hits/Misses: This counter measures the total number of L3 cache hits and misses.

• Bad Speculation: This measures the fraction of pipeline slots wasted due to incorrect
speculations, which may be caused by a high amount of mispredicted branches.

The source code for our implementations can be found in our Github repository: https:
//github.com/Eae02/convex-hull-exjobb/tree/main/src/implementations

6.2 Data Sets
The algorithms were evaluated on different types of inputs. We believe that these inputs
should capture both the variety of inputs that one might want to use a planar convex hull
algorithm for, and also capture how the performance of convex hull algorithms vary with
different types of inputs.

6.2.1 Randomly Generated Data Sets
We have four sets of randomly generated data. The data sets were generated with 1 million
input points for all tables presented in this chapter. These data sets have also been used to
plot graphs, where they vary in size from 100 to 10 million input points.

Circle: This data set consists of points placed uniformly at random on the circumference
of a circle. For n input points we also expect n output points, perhaps with the loss of a few
points that are excluded due to precision limitations. This input could translate to a user
running CH on an input that already is or almost is a convex hull.

Square: This data set consists of points placed uniformly at random within a randomly
rotated square. The reason that we rotate the square is so that algorithms that use points
with maximal/minimal x/y coordinates do not gain an unfair advantage/disadvantage. For n
input points we expect h ≈ 8

3 loge n [6] output points. This input could translate to a use
case where the number of hull points is quite low. An example is seen in figure 6.1.

Disk: This data set consists of points placed uniformly at random within a circle. For n
input points we expect h ∈ O(n 1

3 ) [6] output points.
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6.2 Data Sets

Figure 6.1: A square data set with 1000 random points.

MergeHull killer: This data set consists of the circle data set surrounded by a triangle.
This data set is handcrafted to penalize the MergeHull algorithm, because MergeHull will
run in roughly O(n log n) whilst h is very small. An example is seen in figure 6.2.

Figure 6.2: A MergeHull killer input with 100 points, consisting of
a circle surrounded by a triangle.

6.2.2 Medical Data Set
This data set is based on a medical research article [21] where convex hull computations were
used to evaluate the similarity of different patient data sets.

Our data set was generated by reproducing the steps taken in the study and saving the
convex hull computations that they perform. Each input point represents a combination of
two different medical measurements in an ICU patient. An example is seen in figure 6.3, but
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other inputs contain other combinations of measurements. The inputs are generated from
two different clinical data sets of different sizes, which leads to us having two medical data
sets. The first data set consists of 1000 inputs having n = 11839 input points each and an
average of h ≈ 9.73 hull points per input. The second data set consists of 1000 inputs having
n = 13037 input points each and an average of h ≈ 9.94 hull points per input. We call these
data sets Medical A and Medical B respectively.
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Figure 6.3: One of the inputs in the medical data set, showing only
1000 of 11839 points.

Due to patient data protection rules we are not allowed to share the actual data sets, but
we have recorded the steps necessary to reproduce them in our GitHub repo.

6.2.3 QuickHull Killer
This data set contains one input, generated from the construction in chapter 5. It contains
1 million input points and has 836 hull points. It causes QuickHull to recurse 834 times, a
visualization of the input is seen in figure 6.4.

6.3 QuickHull
In order to better understand how QuickHull performs on different test cases, we have an-
alyzed how many points remain at different recursion depths, as well as what percentage of
the execution time is spent at different depths. Execution time at different recursion depths
was measured with the Linux perf command, with a sample rate of 59999 Hz. For both
measurements QuickHull with partitioning strategy iii was run on the 10 large test cases in
each of the randomized data sets.
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Figure 6.4: The first 8 points generated in QuickHull killer input.
The points converge to the origin at the top of the circle, alternating
between the left and right halves of the arc.

Figure 6.5: Points remaining and percentage of execution time at
different recursion depths.

Figure 6.5 shows the results of these measurements. Solid lines show the number of points
remaining, and dashed lines show the percentage of the program’s execution time that is spent
at that depth or greater. Depth 0 refers to the first recursion depth in the divide and conquer
phase of the algorithm, and does not include time spent finding the first two hull points and
partitioning points according to the line between them.

From the figure we can see that the number of points remaining, as well as the time
percentage, falls very quickly as recursion depth increases on the square and disk data sets.
For our data, there were no cases where QuickHull reached a depth greater than 6 on square
and 9 on disk. On circle, however, the number of points remaining does not fall by more
than 10% until depth 16, after which it falls more rapidly. Given that a QuickHull which
always splits points in half during the divide and conquer stage would reach roughly depth
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log2 106 ≈ 20, it makes sense that the major decrease in points remaining happens at depths
16 - 24.

Since the recursion is much deeper on circle cases compared to the disk and square cases,
the divide and conquer phase is expected to take more time in relation to the initial phase.
Indeed, on the circle cases depth 0 (the entire divide and conquer phase) takes up 89.50%
of total execution time, whereas the same measurement for square and disk is 16.59% and
39.36% respectively. Because of this, prepossessing which aims to improve performance dur-
ing the divide and conquer phase by spending more time in the initial phase may be more
effective on the circle cases.

6.3.1 Partition Strategies
These results were collected by running our implementation of depth first QuickHull on the
Intel computer, using the different partitioning strategies listed in section 4.1 on the 10 large
test cases in each group. For each of the 10 test cases, the implementation was run 5 times
with the process being completely restarted in between runs. The values presented are the
average of the 50 runs for that data set. For the hybrid strategy, points were sorted at depth
3. “Q.T.Q.” refers to the optimization presented in the paper “Quicker than QuickHull” that
finds the furthest point for the next recursion depth at the same time as partitioning points.

Table 6.1: Results on square and disk data sets.

Data
Partitioning
Strategy

Compute
Time (ms)

Instructions
Retired

M.C. Bytes
Read

M.C. Bytes
Written

Square

i (no X-partition) 14.55 1.06 × 108 9.77 × 107 3.02 × 107

ii (partition by X) 16.78 1.06 × 108 1.22 × 108 4.85 × 107

iii (single scan) 13.54 1.01 × 108 8.66 × 107 2.87 × 107

iv (sort initially) 88.18 2.59 × 108 1.73 × 108 1.15 × 108

Hybrid i and iv 14.56 1.08 × 108 7.88 × 107 3.02 × 107

Q.T.Q. 12.65 1.01 × 108 5.70 × 107 2.99 × 107

Disk

i (no X-partition) 21.12 1.32 × 108 8.72 × 107 4.22 × 107

ii (partition by X) 26.53 1.30 × 108 8.81 × 107 4.61 × 107

iii (single scan) 20.99 1.30 × 108 7.47 × 107 3.34 × 107

iv (sort initially) 94.68 2.74 × 108 1.64 × 108 1.06 × 108

Hybrid i and iv 22.87 1.40 × 108 1.02 × 108 5.01 × 107

Q.T.Q. 20.51 1.17 × 108 6.31 × 107 3.40 × 107

On the square and disk data sets we can see that the version with the “Quicker than
QuickHull”-optimization performs the best, while versions without the optimization us-
ing partitioning strategies i and iii are only somewhat slower. The implementation labeled
“Q.T.Q.” uses a partitioning strategy similar to that of iii, and could be implemented with
other partitioning strategies as well. We chose to evaluate this optimization with strategy iii
since this performed best in cases without the optimization.

In section 4.1 we discussed the difference in theoretical number of memory accesses
needed by approaches i, ii, and iii. The memory traffic statistics appear to align with this,
since ii shows heavier memory traffic than i while iii is slightly lighter. This may explain the
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difference in performance between options i and ii. The number of instructions retired is
also slightly higher for option ii than i, which also seems reasonable since option ii performs
more iterations in order to potentially reduce the amount of more expensive instructions per-
formed by the line orientation tests, but the instructions retired statistic does not account
for different instructions being more expensive than others.

As for option iv (initially sorting all points), we can see that the number of instructions
retired and the memory traffic is significantly higher than any of the other options. As dis-
cussed in section 4.1, on data sets where many points can be removed at the first few levels it
could be the case that sorting all points initially requires much more work than what is saved
by not needing to rearrange points across the new hull point during the divide and conquer
stage. This also seems to align with our experimental results, since it appears that option iv
is performing significantly more work than the other options. Also note that the hybrid ap-
proach performs similarly to strategies i, ii, and iii, which also suggests that the large amount
of points removed during early stages is related to sorting initially performing significantly
worse.

Table 6.2: Results on circle data set.

Partitioning
Strategy

Compute
Time (ms)

Instructions
Retired

M.C. Read
(MiB)

M.C. Writ-
ten (MiB)

i (no X-partition) 180.48 9.26 × 108 1.61 × 108 8.63 × 107

ii (partition by X) 157.48 1.01 × 109 1.84 × 108 1.01 × 108

iii (single scan) 198.86 1.02 × 109 1.66 × 108 9.26 × 107

iv (sort initially) 139.43 8.83 × 108 1.65 × 108 7.89 × 107

Hybrid i and iv 148.53 8.97 × 108 1.35 × 108 7.26 × 107

Q.T.Q. 210.66 8.71 × 108 1.47 × 108 9.32 × 107

From table 6.2 we can see that the behavior on the circle data set differs significantly
from that of the square and disk data sets. Here, initially sorting all points performs better
than any other option. This could be because, as described in the previous section, the greater
recursion depth means that preprocessing which reduces time spent in the divide and conquer
phase is more worthwhile on circle cases.

The reason why sorting initially did not perform well on square and disk cases could be
because a large number of points are filtered out at low recursion depths, meaning that a
significant amount of work would be spent sorting points that are quickly removed. The
idea behind the hybrid approach that sorts at a certain recursion depth was to improve the
performance of the sorting-based approach on disk and square cases, by sorting points af-
ter a significant number of them have been removed. While this hybrid approach performs
significantly better than sorting all points initially, it did not perform as well as not sorting
at all. Figure 6.6 shows execution time as a function of which depth to perform sorting at.
From this figure we can see that on circle cases it is best to sort as early as possible, whereas
on disk and square sorting should be done late, although the only significant improvement
in performance appears between depths 0 to 3.

Another interesting result for the circle cases is that partitioning strategy ii (partitioning
by X) performs better than i and iii while the opposite was true for disk and square. We can
also see that the “Quicker than QuickHull” optimization makes QuickHull perform worse
on circle cases. Strategy ii performing better than i and iii could mean that reducing the
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Figure 6.6: Performance of hybrid between strategies i and iv as a
function of the depth at which to sort.

number of side-of-line tests at the cost of performing more iterations through the points is
worthwhile on circle cases but not on disk and square.

Some of the performance behavior of these implementations may be related to differ-
ences in how branches are laid out. For Q.T.Q. and partitioning strategy iii, the combination
of multiple passes through the points into one comes at the cost of more complicated and
nested branching, whereas strategy ii performs more passes through the data but with less
complicated branching. Table 6.3 shows the fraction of pipeline slots wasted due to incor-
rect speculation for different data sets and implementations of QuickHull. We can see from
the table that the Q.T.Q. optimization and partitioning strategy iii have a generally higher
rate of wasted pipeline slots on all data sets compared to partitioning strategy i. Partitioning
strategy ii (partitioning by X) has a relatively high rate of wasted pipeline slots on square and
disk while having a relatively low rate on circle, which matches the performance results.

Also note that the average fraction of wasted pipeline slots increases from square to disk
to circle, especially when sorting based implementations (iv and hybrid) are not included
in the average. This would suggest that poor speculation increases as the recursion depth
increases and the divide and conquer phase consumes a larger percentage of the total execu-
tion time. The results for sorting based implementations could then be explained by these
causing improved pipeline speculation in the divide and conquer phase at the cost of more
work, and poor speculation in the initial phase. Furthermore, the poor performance of the
Q.T.Q. optimization and partitioning strategy iii on circle cases could in part be because of
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bad speculation being high enough to affect execution time only on circle cases.

Table 6.3: Fraction of pipeline slots wasted due to incorrect specu-
lation (measured on Intel computer).

Implementation Square Disk Circle
i (no X-partition) 0.259 0.386 0.485
ii (partition by X) 0.315 0.457 0.402
iii (single scan) 0.276 0.424 0.536
iv (sort initially) 0.460 0.479 0.355
Hybrid i and iv 0.263 0.380 0.384
Q.T.Q. 0.354 0.452 0.495
Average 0.321 0.430 0.443
Average (excl. sort) 0.301 0.430 0.479

We have also performed similar performance measurements on the POWER computer,
the results of which are presented in table 6.4. The relative performance of different parti-
tioning strategies is mostly the same on POWER as on the Intel computer, with two main
differences. The first being that the Q.T.Q. optimization appears to not perform very well
on POWER, and the second difference being that partition strategy ii performs worse than
i on the circle cases, which is opposite from on the Intel computer.

Table 6.4: Compute times for depth first QuickHull on POWER

Implementation
Medical
data A (ms)

Medical
data B (ms)

Square (ms) Disk (ms) Circle (ms)

i (no X-partition) 12.29 12.54 33.93 48.79 417.00
ii (partition by X) 12.35 12.61 36.55 62.85 430.04
iii (single scan) 12.29 12.53 33.01 49.08 454.20
iv (sort initially) 13.23 13.57 192.50 206.84 348.89
Hybrid i and iv 12.31 12.56 35.05 52.48 366.04
Q.T.Q. — — 73.73 83.04 466.85

6.3.2 Breadth First QuickHull
Table 6.5 shows results for different partitioning strategies used with breadth first QuickHull.
These measurements were made on the Intel computer in a similar way to the measurements
in the previous section. For all measurements in this table a breadth first QuickHull which
compacts points by removing those determined to not be on the convex hull was used. The
results are generally similar to that of depth first QuickHull in terms of differences in memory
traffic and compute times.

Table 6.6 shows results for different ways of compacting points by removing those marked
as not on the convex hull (as described in section 4.4.1). The compaction strategy “Always”
means that at the end of every iteration (before the algorithm proceeds to the next depth)
points that are determined not to be on the hull are removed. “At end” means that points
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Table 6.5: Partitioning results for breadth first QuickHull

Data
Partitioning
Strategy

Compute
Time (ms)

Instructions
Retired

M.C. Read
(MiB)

M.C. Writ-
ten (MiB)

i (no X-partition) 15.03 8.74 × 107 75.97 18.51
ii (partition by X) 16.86 8.58 × 107 82.02 30.59Square
iii (single scan) 14.58 8.77 × 107 70.38 19.12
i (no X-partition) 22.36 1.08 × 108 92.07 42.56
ii (partition by X) 27.95 1.05 × 108 93.43 50.30Disk
iii (single scan) 22.99 1.09 × 108 83.44 38.05
i (no X-partition) 219.42 1.05 × 109 478.33 349.94
ii (partition by X) 190.54 1.09 × 109 479.25 339.93Circle
iii (single scan) 245.28 1.13 × 109 471.71 364.84

Table 6.6: Results for different compaction strategies for breadth
first QuickHull

Compaction
Strategy

Compute
Time (ms)

Instructions
Retired

M.C. Read
(MiB)

M.C. Writ-
ten (MiB)

L3 Hits L3 Misses

Always 15.27 8.66 × 107 82.90 21.54 1.40×104 1.12×104

At end 16.71 9.62 × 107 92.46 31.78 1.24×104 2.15×104

Depth > 1 16.76 9.93 × 107 96.17 32.46 1.38×104 2.86×104

Sq
ua

re

Marked > 10 16.80 1.11 × 108 101.09 32.40 3.63×104 3.74×104

Always 22.47 1.07 × 108 92.62 41.80 1.49×104 1.27×104

At end 23.88 1.19 × 108 108.17 50.82 1.68×104 2.72×104

Depth > 1 23.37 1.13 × 108 99.58 46.08 1.39×104 2.07×104D
is

k

Marked > 10 24.02 1.18 × 108 107.35 51.25 1.76×104 2.30×104

Always 223.04 1.05 × 109 524.71 379.33 1.61×105 1.87×105

At end 218.34 1.02 × 109 538.79 362.92 1.52×105 1.86×105

Depth > 1 224.56 1.05 × 109 514.19 369.88 1.62×105 1.87×105

C
ir

cl
e

Marked > 10 221.19 1.04 × 109 557.83 374.33 1.68×105 2.15×105

determined not to be on the convex hull stay in memory until the end of the algorithm where
they are filtered out in the same way as in the depth first implementations. “Depth > 1” and
“Marked > 10” mean that points are filtered out if the respective condition is satisfied.

The results show that on the data sets square and disk, where many points can be removed,
it is beneficial to remove points at every iteration. Comparing the memory traffic and L3
hit/miss measurements between “Always” and “At end” on these two data sets, the L3 hits are
lower while memory traffic and L3 misses are higher for the “At end” strategy. This would
suggest that always removing points that are determined to not be on the hull leads to better
cache utilization, possibly because ranges of memory being worked on in later iterations then
becomes less fragmented.

On the circle data set it will never be possible to remove any points. Therefore the pro-
cessing that is needed when attempting to remove points, such as for updating interval in-
dices, is entirely wasted.

From testing various thresholds for removal of points based on depth and number of
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points marked, it appears that removing points periodically depending on these conditions
is not beneficial on any of the test cases we have used. Instead it is better to remove points
at every iteration, or only remove points at the very end. Figure 6.7 shows calculation time
for different depth thresholds (on the left) and different thresholds for the number of points
marked as not on the hull (on the right). For the square and disk data sets the performance
does not change depending on the threshold, except for when the threshold is 0 which cor-
responds to removing points at every iteration. For circle cases, however, the performance
generally becomes worse as the threshold for removing points is increased.

Figure 6.7: Calculation time for breadth first QuickHull as a func-
tion of thresholds at which to start compacting points.

The performance of different partitioning strategies and compaction was also measured
on POWER, the results of which can be seen in table 6.4, with similar results as on the Intel
computer.

Table 6.7: Compute times for breadth first QuickHull on POWER

Compaction Implementation Square (ms) Disk (ms) Circle (ms)

Always
Compact

i (no X-partition) 31.52 46.77 471.28
ii (partition by X) 34.32 60.96 466.52
iii (single scan) 30.47 47.38 508.30

Compact
at End

i (no X-partition) 35.12 50.07 443.31
ii (partition by X) 38.14 64.11 455.89
iii (single scan) 33.58 49.67 472.03

6.3.3 Fastest QuickHull
Table 6.8 and figure 6.8 show the best performing implementations for sequential depth first
and breadth first QuickHull on different data sets. On the Intel computer, we can see that the
best implementations of depth first QuickHull perform better than breadth first QuickHull
on all data sets. On POWER however, breadth first QuickHull performs better on the square
and disk data sets. Breadth first QuickHull not performing better on the circle data set on
any of the machines could indicate that the primary advantage of breadth first QuickHull is
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Table 6.8: Best overall results for QuickHull

Square Disk Circle
Depth
First
(Intel)

Best Time 12.65 ms 20.51 ms 139.43 ms

Best Version
Q.T.Q. & Partition-
ing iii (single scan)

Q.T.Q. & Partition-
ing iii (single scan)

Sort Initially

Breadth
First
(Intel)

Best Time 14.58 ms 22.36 ms 186.74 ms

Best Version
Always Compact &
Partitioning iii (sin-
gle scan)

Always Compact &
Partitioning i (no X-
partition)

Compact at End &
Partitioning ii (par-
tition by X)

Depth
First
(Power)

Best Time 33.01 ms 48.79 ms 348.89 ms

Best Version
Partitioning iii (sin-
gle scan)

Partitioning i (no X-
partition)

Sort Initially

Breadth
First
(Power)

Best Time 30.47 ms 46.77 ms 443.31 ms

Best Version
Always Compact &
Partitioning iii (sin-
gle scan)

Always Compact &
Partitioning i (no X-
partition)

Compact at End &
Partitioning i (no X-
partition)

the ability to compact the points array periodically by removing points determined to not be
on the convex hull. Since the POWER computer has 128 byte cache lines whereas the Intel
computer has 64 byte cache lines, the advantage gained from the reduced fragmentation of
active points may be greater on POWER, which could explain why breadth first QuickHull
performs better than depth first on POWER but not on the Intel computer.

6.3.4 Parallel QuickHull
In order to evaluate the degree of parallelism in our parallel implementations of QuickHull,
we have run these implementations on the POWER computer with a varying number of
threads. The measurements were performed on the randomly generated data sets with n =
1000000. 5 runs were performed for each test case and thread count, and the values presented
are the average of all 50 runs for that data set. The number of threads was limited by running
the process with the command taskset –cpu-list 0-n.

Figure 6.9 shows the performance of parallel depth first QuickHull, with partition strat-
egy i (no X-partition). As discussed in section 4.5 (page 33) this implementation starts a new
thread for one of the recursive calls in the divide and conquer phase. From the figure we can
see that this method of parallelization does not seem very effective on the square and disk
data sets, where the only significant performance improvement appears when increasing the
thread count from 1 to 2 (for the disk data set) and from 8 to 9. However, parallelization on
the circle data set appears to work well. This result could be explained by most of the work
on the square and disk data sets being performed at low recursion depths, where work has
not yet been split up into enough threads to allow for a large amount of parallelization.

The figure also shows the performance of some sequential implementations on the cir-
cle data set. One interesting thing to note here is that while sequential QuickHull generally
performs worse than Monotone Chain on the circle cases, this parallel implementation of
QuickHull performs better in our measurements with 4 or more threads. Since Monotone
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Figure 6.8: Bar charts showing the best overall results for QuickHull

Chain does not provide a similar simple approach to parallelization, the potential for par-
allelization could be an advantage of using QuickHull even on data sets where sequential
QuickHull performs poorly.

Figure 6.10 shows the performance of parallel breadth first QuickHull. There are several
interesting differences between these results and those for depth first QuickHull. Firstly,
this parallel implementation performs much worse than depth first on all test data. This is
especially true on circle cases, where performance generally degrades as the number of threads
increases. Note that there are clear spikes in running time when the number of threads is
increased past a multiple of 8, but that performance generally improves between these spikes.
Since the POWER computer has 8 threads per core, this would suggest that the worsening
performance is due to poor utilization of multiple cores.

In contrast to the behavior on circle cases, the performance for disk and square cases
generally improves as the number of threads increases. Also for these cases there are slight
spikes in performance when the thread count is increased past a multiple of 8, however the
performance gained by the extra parallelism appears to be greater than the overhead of using
another core, once all parallelism on the core is available. The reason for the better utiliza-
tion of multiple cores on disk and square cases is likely that the initial phase of QuickHull
consumes a larger percentage of the total execution time, and this phase makes better use
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Figure 6.9: Running time of parallel depth first QuickHull on
POWER as a function of thread count

of multiple cores. The time for the initial phase is shown in figure 6.11, where we can see
that the initial phase does not have the same spiky behavior as the total running time on
circle cases, and that the initial phase represents a large part of the running time for disk and
square. These measurements were captured from circle inputs, but the time for the initial
phase on other inputs is very similar.

While the performance on disk and square cases never reaches that of the sequential
or depth first parallel implementations, the running time does improve as the amount of
parallelism is increased. This would suggest that the breadth first implementation does not
have the same problem with load balancing that the depth first implementation had in these
cases.

Table 6.9 shows the timings from parallel implementations of QuickHull at specific thread
counts, as well as timings from the best performing sequential implementations. These mea-
surements are from the same set of measurements shown in figures 6.9 and 6.10 and previous
tables for sequential implementations.
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Figure 6.10: Running time of parallel breadth first QuickHull on
POWER as a function of thread count

Table 6.9: Running time of various QuickHull implementations on
POWER

Square (ms) Disk (ms) Circle (ms)

Pa
ra

lle
lQ

ui
ck

H
ul

l

D
ep

th
fir

st 1 thread 35.74 52.63 450.68

4 threads 34.97 44.74 198.93
10 threads 30.96 39.58 124.74
80 threads 30.89 38.83 58.53

Br
ea

dt
h

fir
st 1 thread 431.54 456.79 1318.46

4 threads 228.49 272.68 992.95
10 threads 140.42 188.26 1037.40
80 threads 74.86 152.17 1691.96

Se
qu

en
ti

al Monotone
Chain

233.00 233.16 212.15

QuickHull
(single-scan)

33.05 49.07 454.87

QuickHull
(sort by X)

192.48 205.76 351.74
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Figure 6.11: Running time of parallel breadth first QuickHull, with
time for the initial phase.

6.4 Chan, Refined Chan and MergeHull
In chapters 2 and 3 of this thesis we introduced MergeHull in algorithm 3, Chan’s algorithm
in algorithm 4 and Refined Chan in algorithm 5. Refined Chan combines the worst case time
complexity O(n log h) from Chan’s algorithm with the average case time complexity O(n) on
truly sublinear inputs from MergeHull.

In figures 6.12, 6.13, and 6.14 we can see how our implementations of these algorithms
compare to each other in terms of execution time per input point on different data sets.

In figure 6.12 we see that Refined Chan performs similarly to MergeHull on both the
square and disk data set with O(n) performance as is expected. On the disk input, Chan’s
algorithm can be seen having distinct increments in compute time which can be explained
by the fact that when t loops one more step on line 2 in algorithm 4 lots of additional com-
putations are introduced.

A similar pattern is seen in figure 6.13 but since the circle input is not truly sublinear
and since h = n, the algorithms will run in θ(n log n) time. Chan’s algorithm has a distinct
increment in compute time around n = 65536 = 224

which is explained by the fact that this
is the point where t has to loop until t = 5 instead of t = 4.

So far Refined Chan just seems like a slower version of MergeHull. In figure 6.14 we see
the difference between O(n log n) and O(n log h) behavior. MergeHull runs in Θ(n log n) on
the MergeHull killer inputs, because almost all partial hulls that it merges with will be of the
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Figure 6.12: Computation time for Chan, MergeHull and Refined
Chan on Square and Disk data sets of varying size.
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Figure 6.13: Computation time for Chan, MergeHull and Refined
Chan on Circle data set of varying size.

same size as the number of points they represent. The other two algorithms run in O(n log h)
which is just O(n) since h = 3.

In order to speed up these algorithms, we added some intuitive optimizations. Firstly,
instead of starting with hulls of size 1 and merging into larger hulls, we start with hulls
of size 256 that we compute with the Monotone Chain algorithm, and start running the
algorithm from there. This would, for a recursive algorithm, correspond to ending recursion
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Figure 6.14: Computation time for Chan, MergeHull and Refined
Chan on MergeHull killer data set of varying size.

early and solving the base case with another algorithm. Secondly, instead of merging hulls
pairwise, we merge 3 hulls at a time. This would, again for a recursive algorithm, correspond
to splitting the problem in 3 equally sized instances instead of 2. This way the merge step
is more expensive but recursion is not as deep, or the number of iterations is lower for an
iterative algorithm.

Combining these two optimizations to Refined Chan made it roughly 2 times faster on
the square, disk, and circle data sets. Graphs showing this are found in Appendix A. We
will use these optimizations for Refined Chan in the comparisons in section 6.5, since we are
comparing it to other algorithms that have been tuned. However, as it will turn out Refined
Chan is not a contender for the overall fastest algorithm, so spending a lot of time to carefully
tune it was deemed unnecessary.

6.5 Overall Comparisons
In order to gain an understanding of which convex hull algorithm is the fastest in different
scenarios, we compare QuickHull with Refined Chan and Monotone Chain. Furthermore in
order to put our results into context of the industry standard, we include implementations
from the libraries CGAL and Qhull.

From CGAL we are using their implementations of Graham Scan [10], and Akl and Tous-
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saints’s algorithm [2], since initial testing showed that these were generally the best perform-
ing implementations in the library. The latter algorithm is roughly equivalent to executing
QuickHull to a depth of 2, and then running Graham Scan. We were able to import the
CGAL source code directly into our project and run it under the same conditions as our
own code, with the exception that CGAL writes output to a new array in memory whilst our
algorithms are allowed to modify the input array.

Qhull was installed as a binary program and run separately. It reported back the com-
putation time excluding input handling, so it should be measured on the same terms as the
other implementations.

Since the difference between some of our QuickHull variants is quite small (mainly those
that do not do any initial sorting), we have selected a subset of them as representatives. Depth
first QuickHull with partitioning strategy iv (initial sort) represents QuickHull variants that
perform a sorting step, and is therefore having O(n log n) behavior. Depth first QuickHull
with partitioning strategy iii (single scan) represents QuickHull variants that do not perform
a sorting step and most closely follows the pseudo code as introduced by Greenfield [11].

Algorithms that have been evaluated, but are not included in this analysis to remove clut-
ter, are the following. The divide and conquer algorithm by Preparata and Hong [19], because
it was generally slow. Chan’s algorithm [7] and MergeHull [6], because their performance was
comparable to Refined Chan. Jarvis march [14] because it is too slow as soon as h is not
extremely small.
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Figure 6.15: Computation time for various algorithms on Square and
Disk inputs on the POWER computer.

In figure 6.15 we see how these algorithms compare to each other on the Square and
Disk data sets on the POWER computer. It is clear that the single scan QuickHull variant
performs very well on these inputs with relatively few hull points. Like before Quicker Than
QuickHull is similar to single scan, but slower. The Θ(n log n) algorithms Monotone Chain,
Graham Scan and QuickHull with initial sort do not perform as well. Qhull has the same
behavior as single scan QuickHull, but the constant factor is very bad. Akl Touissant also
does well, especially on the square data set. This can be explained by the fact that it is pruning
away points in a quadrilateral which is a good fit in this case. Refined Chan outperforms the
Θ(n log n) algorithms but is not close to the performance of single scan QuickHull.

In figure 6.16 we see how these algorithms compare to each other on the Circle data set.
In this case the Θ(n log n) algorithms perform well, with Monotone chain a clear winner. Akl
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Figure 6.16: Computation time for various algorithms on Circle in-
put on the POWER computer.

Toussaint still performs well, being on par with Graham scan.

Table 6.10: Computation times (µs per point) on POWER, overall
comparison.

Implementation Medical A Medical B Square Disk Circle
QuickHull
killer

CGAL Akl Tous-
saint

0.069 0.066 0.055 0.126 0.290 60.3

CGAL Graham 0.171 0.174 0.221 0.228 0.276 0.214
Q.T.Q. iii (single
scan)

0.068 0.068 0.074 0.083 0.467 6.62

Depth QuickHull
iv (sort initially)

0.110 0.110 0.192 0.207 0.349 5.53

Depth QuickHull
iii (single scan)

0.030 0.030 0.033 0.049 0.454 7.71

Refined Chan
(Optimized)

0.169 0.171 0.164 0.167 0.750 0.071

Monotone Chain 0.186 0.189 0.234 0.235 0.213 0.105
Qhull 0.223 0.219 0.208 0.248 — —
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Table 6.11: Computation times (µs per point) on the Intel computer,
overall comparison.

Implementation Medical A Medical B Square Disk Circle
QuickHull
killer

CGAL Akl Tous-
saint

0.030 0.028 0.026 0.065 0.136 0.710

CGAL Graham 0.084 0.085 0.108 0.104 0.131 0.051
Q.T.Q. iii (single
scan)

0.012 0.012 0.013 0.022 0.218 2.390

Depth QuickHull
iv (sort initially)

0.049 0.047 0.094 0.105 0.145 2.366

Depth QuickHull
iii (single scan)

0.013 0.013 0.015 0.024 0.208 2.778

Refined Chan
(Optimized)

0.070 0.070 0.073 0.073 0.323 0.016

Monotone Chain 0.087 0.086 0.120 0.118 0.105 0.030
Qhull 0.071 0.073 0.088 0.113 2.685 —

In Table 6.10 we see how the algorithms compare on the POWER computer also on the
Medical and QuickHull Killer inputs. We see that the behavior of the algorithms on the Med-
ical data sets is quite similar to the behavior on the square and disk data sets. The QuickHull
killer input shows how the QuickHull variants are exposed to this type of input. They are
almost 100 times slower than the other algorithms. Qhull is not able to run on this input,
stating that there are numerical issues. One notable outlier is the AKL Toussaint algorithm
from CGAL which is running very slow on the QuickHull killer input, almost 1000 times
slower than other algorithms. We will discuss this further on.

In Table 6.11 we see the same results but on the Intel laptop. Some notable differences to
the POWER measurements is that Quicker Than QuickHull is now faster than Depth first
QuickHull on all data sets except circle, and that AKL Toussaint is less of an outlier on the
QuickHull killer input, even though it is still quite slow.

We can see that generally the single scan QuickHull variant is the fastest, except on cir-
cular inputs. There is some discrepancy between the Intel and POWER results for how the
variants of QuickHull compare to each other, but generally the Depth first QuickHull variant
will perform well.

For the Circle data set we see how Monotone Chain clearly is the winner. One explana-
tion is that for the circle input the algorithms need to sort all the points to find the output.
Algorithms like QuickHull, Akl Toussaint, and Refined Chan that filter out points that are
not on the hull are penalized by this because they are not able to remove any points in these
steps.

The QuickHull killer input shows how even if QuickHull is generally a good choice and
a fast algorithm, it is possible to force it to be very slow. As for the AKL Toussaint algorithm,
it runs extremely slow on the POWER computer, but also slower than expected on the Intel
computer. We do not have a clear explanation for this, as AKL Toussaints algorithm should
run in O(n log n) time and not be much slower than Graham scan since it only performs
an additional filtering step. We have identified that the filtering step is what is taking a
majority of the execution time, specifically performing a linear number of side of line tests.
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6. Evaluation

So for some reason some of the side of line tests become very slow in CGALs AKL Toussaint
algorithm, but we are uncertain of exactly why.
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Chapter 7

Conclusion

In this thesis we have analyzed the convex hull problem in the plane from both theoretical
and practical viewpoints, with the aim of gaining a better understanding of which algorithms
perform well in different circumstances.

We had three main research questions connected to our thesis, and believe we have been
able to answer all of them to a satisfactory extent.

Experimental results show that in real world applications QuickHull is probably the
fastest convex hull algorithm, but for some extreme applications one might want to use a
sorting based algorithm like Monotone Chain. Among the QuickHull variants we have tested
the single scan partitioning strategy appears to be generally fastest. Although there are cases
where other partitioning strategies are faster, the difference between QuickHull variants that
do not perform initial sorting is quite small, especially in comparison to other algorithms
tested (with the exception of very special inputs).

In chapter 5 we have presented an upper bound on how deep QuickHull can recurse on
floating point inputs, along with two constructions that achieve 0.96 and 0.82 of this depth.
The former has some numerical issues whilst the other is what we call the "QuickHull killer"
because it causes QuickHull to run very slowly. A way to avoid this would be to use some
kind of hybrid algorithm, that falls back to a safer algorithm at some recursion depth, similar
to the use of QuickSort in the Introsort algorithm. This would be a good idea if it is crucial
that the algorithm can’t run for too long.

In chapter 3 we showed how one can make a refined variant of Chan’s algorithm that runs
in O(n) expected time on truly sublinear inputs. This could be validated with experimental
results. Even though a similar theoretical running time as Refined Chan can be achieved by
just implementing both Chan and MergeHull and running them at the same time, we believe
that having a contained algorithm like Refined Chan to do this is nice. We also presented
a simplified version of Refined Chan, which we believe is one of the shortest and easiest to
understand convex hull algorithm with time complexity O(n log h).
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7. Conclusion

7.1 Future Work
Throughout this project we have identified several areas of convex hull algorithms that fell
outside the scope of this thesis, but that would be interesting to investigate and compare
with the results found here.

One such area is convex hull in greater than two dimensions. In this thesis we have only
examined planar convex hull algorithms, but various algorithms that we have discussed (such
as QuickHull) can be expanded to more than two dimensions. It would be interesting to
evaluate how these algorithms, and other algorithms, perform in more than two dimensions.
Considering convex hull in three dimensions would also present more practical applications,
such as computing the convex hull of 3D-meshes used in 3D-graphics applications and com-
puting two dimensional Voronoi diagrams by reduction to three dimensional convex hull.

Regarding QuickHull, it would be interesting to further investigate why the results at
times differ on POWER, especially for the “Quicker than QuickHull”-implementation.

Regarding QuickHull worst case inputs we proved an upper bound on the depth that
QuickHull can recurse to for floating point inputs. We then showed a construction that
assumes roughly 0.82 of this bound. It remains unknown to us if it is possible to make a
construction that is closer to the bound than this.

In this thesis we have only investigated implementations where coordinates are repre-
sented using 64-bit double-precision floating point numbers. It would also be interesting to
evaluate other formats, such as integers and 32-bit floating point. For 32-bit floating point
it would be interesting to compare how much the performance improves in relation to pre-
cision losses. For integer formats it would be interesting to investigate how the performance
changes between different number of bits per coordinate, and also investigate to what degree
low bit width integer formats could be used in applications such as image processing.
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Appendix A

Performance of Refined Chan with and with-
out optimizations
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Figure A.1: Computation time for Refined Chan with and without
basic optimizations on Square data set of varying size.
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A. Performance of Refined Chan with and without optimizations
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Figure A.2: Computation time for Refined Chan with and without
basic optimizations on Disk data set of varying size.
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Figure A.3: Computation time for Refined Chan with and without
basic optimizations on Circle data set of varying size.
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Bygg en hage så snabbt som möjligt

POPULÄRVETENSKAPLIG SAMMANFATTNING Björn Magnusson, Erik Amirell Eklöf

Att räkna ut ett konvext hölje kan användas för att jämföra hur mycket två mängder
mätdata överlappar eller matcha ihop två 3D-bilder på en hjärna. I vårt arbete har vi
undersökt hur man ska göra algoritmerna som räknar ut konvext hölje så snabba som
möjligt.

Vi har undersökt algoritmer som räknar ut kon-
vext hölje. Man kan tänka på det som att man vill
bygga en så liten hage som möjligt runt ett antal
blommor. Kanske vill man skydda dem från att
bli uppätna?

Konvexa höljen kan till exempel användas för
att uppskatta hur stort område en ny sjukdom har
spridits till eller hur lika två grupper patienter är.

Bilden nedan illustrerar beräkningen av det
konvexa höljet av ett antal punkter. I fallet med
blommor skulle punkterna i den vänstra bilden
representera blommor sedda ovanifrån. Dessa
punkter matas sedan in i en algoritm för konvext
hölje som genererar hagen i den högra bilden.

Algoritm för
konvext hölje

Det finns många algoritmer för att beräkna kon-
vext hölje, som fungerar olika bra i olika samman-
hang. Till exempel beroende på hur punkterna är
fördelade och vilken sorts dator som används.

För att kunna räkna ut konvexa höljen snabbare
och effektivare har vi undersökt vilken algoritm
som blir snabbast och i vilka sammanhang. På så
sätt kan konvexa höljen av stora mängder punkter
beräknas snabbare och med mindre elförbrukning.

Vi har kommit fram till att algoritmen Quick-
Hull nästan alltid är snabbast. QuickHull hittar
en punkt som är på det konvexa höljet, och delar
sedan problemet i två halvor med punkterna som
ska vara till höger och vänster om punkten. Detta
gör även att QuickHull kan parallelliseras och bli
snabbare på en dator med många kärnor.

QuickHull har dock svagheter. Om punkterna
är fördelade så att det konvexa höljet måste bestå
av väldigt många punkter kan den ibland bli
långsam. Detta kan till exempel inträffa om punk-
terna ligger på en cirkel. I detta fall har vi iden-
tifierat en annan algoritm som presterar bättre
än QuickHull. Denna algoritm börjar med att
sortera alla punkter. Oftast tar detta onödigt lång
tid, men det visar sig att sorteringen lönar sig för
punkter på en cirkel.

Vi har också kommit på en ny algoritm som
parar ihop punkterna till större och större höl-
jen (hagar), och ibland prövar att sätta ihop alla
höljen till ett stort. Den är inte lika snabb som
QuickHull, men är lätt att förstå sig på och har
inte svagheter på samma sätt.
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