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Abstract 

Given the importance of copper prices to investors, governments, and policymakers, this 

paper investigates short-term price predictability using VAR and XGBoost models. All 

models are trained with historical data from November 2021 to December 2022 and using 

MSE, RMSE and MAE for evaluating the model performance. The results show that the 

XGBoost model outperforms VAR models, implying that machine learning models are more 

robust than traditional statistical models. However, specific scenarios with a lag of 1to predict 

one day ahead(h=1day) show similar performance between XGBoost and VAR, indicating 

that traditional statistical models can still be competitive in certain situations. Therefore, it is 

critical not to dismiss traditional statistical models entirely, as they provide benefits in terms 

of interpretability and computational simplicity. Moreover, we also find that the selection of 

lag values for models is demonstrated to be empirical, with different lag values resulting in 

varying model performance. Thus, practitioners are encouraged to experiment with different 

lag settings in order to find the best model for their specific tasks and dataset sizes. 
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1. Introduction 

Copper is one of the most important minerals in the world, and it is widely traded as a 

commodity (Donchian, 1960; Choi and Hammoudeh, 2010). The price of copper plays an 

essential role in various aspects of the economy (Elshkaki et al., 2016; Liu et al., 2017; 

Mikesell, 1979). Therefore, many businesses and governments are affected by copper price 

fluctuations and seek to analyse and understand copper price behaviour to make better 

decisions and choose better policies (Buncic and Moretto, 2015; Alquist et al., 2019; Liu et 

al., 2022).  

From the investor’s perspective, copper is one of the most traded commodities on the major 

futures trading exchanges such as the London Metal Exchange (LME), the New York 

Commodity Exchange (NYMEX), and the Shanghai Futures Exchange (SHEF) (Sánchez 

Lasheras et al., 2015). Therefore, accurate copper price forecasts are a crucial point for 

developing successful investment strategies (Díaz et al., 2020). For traders and investors in 

particular, copper price forecasting over the short term is vital. 

There are numerous factors that influence copper prices. In brief, it can be grouped into two 

categories: exogenous and endogenous factors (Goldstein and Yang, 2019). According to 

Guzmán and Silva (2017), all variables related to the copper market are considered 

endogenous, whereas macroeconomic and financial variables are considered exogenous. 

Endogenous factors such as physical demand can determine price in the short term, while 

physical supply determines price in the long term (Guzmán and Silva, 2017). Additionally, 

different trading markets can have an impact on each other (Li and Zhang, 2013). For 

example, LME future copper has a greater impact on SHFE copper, and vice versa (Hua and 

Chen, 2007). Exogenous factors such as the global economic outlook, geopolitical factors, 

technological factors, and exchange and interest rates can all have an impact on the copper 

price (Méndez et al., 2019; Vochozka et al., 2021). 

Driven by forces of different nature, copper price is highly volatile and accurately forecasting 

copper price is difficult (Wang et al., 2019). Numerous efforts have been made to provide 

insight into behaviour of copper prices. Some researchers have used econometric and 

statistical methods for forecasting copper price. Buncic and Moretto (2015) forecasted 

monthly copper returns using Autoregressive-Moving-Average (ARMA) models. Similarly, 

Kriechbaumer et al. (2014) explored a combined approach wavelet-autoregressive integrated 

moving average (ARIMA), forecasting monthly prices of copper and other metals. Li and Li 
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(2015) employed generalized autoregressive conditional heteroscedastic (GARCH) models to 

forecast the volatility of copper futures of LME. 

Furthermore, the complexity and nonlinear behaviour of copper prices have convinced 

researchers to use machine learning methods into their forecasting models to deal with the 

chaotic movements of copper prices. Their ability to learn complex patterns and relationships 

from large amounts of data makes them well-suited for long-term and mid-term load 

forecasting tasks (Baek, 2019). Therefore, advanced machine learning methods such as 

artificial neural networks (ANNs) and hybrid methods outperform most traditional models, 

particularly for long-term prediction (Wang et al., 2019). For instance, Lasheras et al. (2015) 

claimed that the ANN model predicted copper prices more accurately than the ARIMA 

model, with lower mean forecast error and variance for a 2-year prediction. Wang et al. 

(2019) provide a hybrid predictive technique that combines a complex network with 

traditional ANNs and discover that the hybrid method outperforms traditional ANNs methods 

when forecasting copper prices over a one-year period. Similarly, Liu et al. (2020) proposed a 

hybrid decision learning method for forecasting copper and other metals. They combine the 

variational mode decomposition (VMD) technique with long short-term memory network 

(LSTM) methods. In their study, they found that the VMD-LSTM model outperformed 

traditional ARIMA models as well as other benchmark models for one-year predictions. 

However, for short-term forecasting, a simple machine learning method such as random 

forest can also perform well.  Liu et al. (2017) used a decision tree model to forecast copper 

prices over various time horizons and predictor sets. They concluded that short-term forecast 

models are often more accurate than long-term forecast models. Similarly, Díaz et al. (2020) 

used random forests and gradient boosting regression trees to forecast copper prices over 

various time horizons. Finally, they indicate that the random walk model can forecast daily 

copper prices with the greatest accuracy. 

Although many econometric and artificial intelligence models have been used to forecast 

copper prices specially for the long-term prediction, little attention has been paid to 

predicting copper prices with a relatively small data set over a short period. With increasing 

financial speculation such as hedge funding in the futures markets (Guzmán and Silva, 2017; 

Yung and Liu, 2009), it is even more important to forecast short-term price movements rather 

than long-term trends (Lukac, et al., 1988; Gilbert, 2010). For traders, forecasting the price of 

tomorrow would be more important than knowing the price one year later. Obtaining an 

approximate accurate estimate of the copper price for the next few days allows traders to 
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make informed decisions (such as identifying potential entry and exit points) that correspond 

to real-time market conditions (Gilbert, 2010). Thus, they can effectively manage the hedging 

strategies and risk management accordingly. Several studies have previously investigated the 

area of immediate prediction. Ni et al. (2022) investigated the use of Recurrent Neural 

Network (RNN) models to forecast copper prices over one-day, two-day, and three-day 

forecasting horizons. Consequently, our research will also concentrate on evaluating the 

performance of our models within these specific one-day, two-day, and three-day forecasting 

period as well. 

Furthermore, the decision to use a relatively small dataset is based on pragmatic reasoning. 

First, the goal of the task is to provide service for traders with short-term predictions, a 

smaller dataset may contain more up-to-date information than a 10-year dataset (Díaz et al., 

2020). Indeed, a smaller dataset may be more appealing because it can help to reduce noise 

and improve model accuracy (Díaz et al., 2020). Older and larger datasets, on the other hand, 

may contain a large number of data points that are no longer relevant or representative of the 

current situation, which can be unfavourable in these types of tasks. 

From this regard, advanced machine learning methods such as ANNs, which are powerful 

computational tools, would not be appropriate methods for dealing with small datasets since 

they are easily prone to overfitting (Karimipour et al., 2019). This paper aims to forecast the 

copper price over a short time horizon using traditional time series methods namely Vector 

Autoregression (VAR) and classical ensemble methods namely eXtreme Gradient Boosting 

(XGBoost) on a small dataset. Both methods have been shown that work well with small 

datasets and are less prone to overfitting (Liang et al., 2020; Fujita et al., 2007; Lütkepohl, 

2005). Another advantage of using the VAR model is that it can provide optimal lags. A few 

studies have used lag features in conjunction with machine learning models to forecast 

copper prices (Daz, Hansen, and Cabrera, 2020). Lag selection is an important aspect of VAR 

model specification (Brüggemann and Lütkepohl, 2000). These lag features are then 

incorporated into the framework of the XGBoost model, improving its predictive capability. 

In addition, we include an autoregressive (AR) model as a benchmark for comparison with 

the VAR and XGBoost models. It acts as a reference point, allowing us to quantify and 

communicate the progress and effectiveness of more complex models in predicting copper 

price dynamics. 

The research questions are as follows:  
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RQ1: How do the various lags in the VAR and XGBoost models impact prediction accuracy 

over different time horizons? 

RQ2: Does VAR underperform compared to XGBoost in terms of short-term prediction? 

2. Time series forecasting methods  

2.1 VAR model 

VAR models have a long tradition as tools for multivariate time series (Lütkepohl, 2009; 

Johansen, 1995). Being linear models, they are relatively easy to work with both in theory 

and practice. Although the computations are relatively straightforward compared to other AI 

methods right now, they were sufficient before powerful computers were widely distributed 

around the world (Lütkepohl, 2009). In VAR models, each variable is a linear function of its 

own past lags and the past lags of the other variable. The advantage of the VAR model is that 

it can capture interdependencies between multiple time series (Ramyar and Kianfar, 2017). 

This is particularly important considering the dependence of the copper price on previous 

day's prices, which can be identified and analysed in our case using a vector autoregressive 

model. The VAR model can capture temporal dependencies and provides insights into how 

past prices influence future copper price movements by incorporating lagged variables and 

capturing the dynamic relationships between them.  A major characteristic of the variables 

estimated by a VAR model is stationarity. Trends in time series dataset can be a big challenge 

in accurately predicting future values of a time series, especially if the trend is non-linear or 

changes direction over time (Stock and Watson, 1988). 

All these properties make VAR models particularly useful in explaining the dynamic 

behaviour of financial and economic time series for forecasting, and it often offers a very rich 

structure that facilitates capturing more features of the data (Zivot and Wang, 2006; Kadiyala 

and Karlsson, 1997; Kaura and Rajput, 2021). Therefore, VAR models are commonly used in 

macroeconomic analysis and forecasting to analyse the relationships between multiple 

variables over time ((Johansen, 1995; Ramyar and Kianfar, 2017b).  

VAR models have been widely used in the commodity market to forecast prices (Akram, 

2009; Collier and Goderis, 2012; Kaura and Rajput, 2021), particularly for crude oil. For 

instance, Park and Ratti (2008) used the VAR model to study oil price shocks in relation to 

stock markets. Wei et al. (2011) investigated the volatility of West Texas Intermediate (WTI) 

and Brent crude oil prices using generalized autoregressive conditional heteroskedasticity 

(GARCH) models. Recently, Ramyar and Kianfar (2017) forecast crude oil by comparing 
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ANN and VAR models, considering the exhaustible nature of crude oil and the impact of 

monetary policy. 

Given a variety of examples from other fields, VAR shows its capacity to capture the 

relationships between multiple time series variables. However, there are relatively few 

studies that have used VAR specifically for copper price prediction. In fact, in comparison to 

other models, the VAR model is more adaptable since it can be generalized to include any 

number of variables and has fewer assumptions (Zivot and Wang, 2006). Therefore, forecasts 

from VAR models are quite flexible because they can be made conditional on the potential 

future paths of specified variables in the model (Zivot and Wang, 2006). Additionally, the 

VAR model also shows its ability to capture short-term dynamics of co-integrated systems 

(Park and Ratti 2008; Salazar and Weale, 1999). 

In conclusion, although advanced machine learning methods have gained prevalence and 

VAR models have been criticized for their inability to capture non-linear relationships (Wang 

et al., 2019), we believe that VAR models are still considered as a competitive method for 

forecasting the copper price, especially with datasets such as relatively small.  

2.2 XGBoost model 

XGBoost is an advanced Gradient Boosting system that was proposed by Chen and He 

(2015). XGBoost is a tree ensemble model-based algorithm that employs a set of 

classification and regression trees (CART). The advantage of an ensemble of trees is that it 

can capture nonlinear relationships between variables and handle complex interactions 

between features. Furthermore, by employing multiple trees, the algorithm can reduce the 

risk of overfitting. Therefore, XGBoost has become a popular and effective machine learning 

algorithm by leveraging both normalization and ensemble techniques, with applications in a 

wide range of industries.  

XGBoost has been extensively used in the financial market. For instance, Basak et al. (2019) 

used random forest and XGBoost to forecast trends in US and Indian stocks. Chatzis et al. 

(2018) use XGBoost and Deep Learning to improve classification accuracy while providing a 

robust method for developing a global systemic early warning tool that is more efficient and 

risk-sensitive than existing ones, while Wang and Guo (2020b) forecast stock market 

volatility in time series data using a mixed model of ARIMA and XGBoost.  

Indeed, XGBoost models have gained popularity in the commodity market. Jabeur, Mefteh-

Wali, and Viviani (2021) show that using XGBoost in conjunction with the SHapley Additive 
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exPlanations (SHAP) approach can significantly improve gold price forecasting performance.  

Recently, Deng et al. (2023) used Multiple Timeframes eXtreme Gradient Boosting 

(MTXGBoost) to predict the price of crude oil futures. The experimental findings indicate 

that MTXGBoost could generate a good profit with minimal trading risk. 

However, application of XGBoost in the copper industry is very limited, especially in terms 

of copper price forecasting. Given the outstanding performance of XGBoost in price 

prediction, we believe that it is a suitable method to predict copper prices. Additionally, 

XGBoost is appropriate for structured data, which makes it a suitable choice for time series 

data. The algorithm is also designed to work with tabular data, where each row represents a 

single observation, and the columns represent different features or variables.  

Finally, we can use the optimal lag determined by the VAR model to feed the appropriate 

lagged features into the XGBoost model, resulting in more efficient training and predictions. 

3. Methodology 

The global copper market is predominantly traded on three major commodity markets: the 

London Metal Exchange (LME), the Commodity Exchange (COMEX), and the Shanghai 

Futures Exchange (SHFE). In this paper, we chose the LME as the target market for price 

prediction due to its significant trading volume and influence on price discovery (Watkins 

and McAleer, 2004). 

3.1 Data collection 

Copper price highly depends on both exogenous and endogenous factors. Furthermore, 

Guzmán and Silva (2017) suggest that incorporating both factors is more effective for 

modelling and forecasting purposes, providing a more comprehensive understanding of price 

dynamics. 

All the variables we've chosen for this paper have received extensive studies and are 

considered to have a significant impact on copper price. Table 1 shows the variables we 

involve in this study. For the endogenous factors, we chose copper future price and spot price 

from LME, copper future price from COMEX, and copper future price and spot price from 

SHFE (García and Kristjanpoller, 2019). We considered several exogenous factors which 

have been used by other studies. It includes the prices of gold and silver from COMEX in the 

mental market, crude oil from NYMEX in the energy market, currency rates (EUR-USD, 
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USD-CNY), and indexes (NDAQ and S&P 500) (Liu et al., 2017; García and Kristjanpoller, 

2019; Luo et al., 2022). Finally, we have a total of 12 variables. 

Endogenous factors Exogenous factors  

LME Data Copper Data from 

COMEX & SHFE 

Metal 

Industry Data 

Energy 

Market 

Currency 

rate 

Stock 

market 

index 

LME- Future 

Copper price  

COMEX- Future Copper 

price  

COMEX-GOLD NYMEX-Oil 

  

EUR-USD NDAQ Index 

LME -Copper 

Spot price 

SHFE- Future Copper price   COMEX-

SILVER 

USD-CNY S&P 500 Index 

  Copper -Spot price in 

China  

      

Table 1: Categories of variables 

As we stated before, the aim of this paper is to predict the copper price using relatively small 

dataset for servicing trading strategies. According to Guzmán and Silva (2017), the effect of 

financial speculation on commodity prices may exist only during specific periods of time and 

may not be permanent over time. Additionally, Daz et al. (2020) argue that a longer dataset 

may contain more noise and irrelevant information, which can interfere with the distillation 

of useful information from the input data. Therefore, a relatively small dataset might be more 

appropriate for our task as it can help to reduce noise and increase the model's accuracy for a 

short-term prediction (Díaz et al., 2020).  

Finally, the relevant data was provided by a data service WIND and 12 sets of daily frequency 

data covering the years 2021.11.30–2023.12.30 including a total of 273 daily observations were 

collected. The specific data information is shown in Table 2.  

No. Data name Unit Data 

type 

Data 

frequency 

Time span Data 

sources 

Missin

g 

value 

(%) 

1  LME Future Copper USD/ 

MT 

Price Daily 2021.11.30 

~2022.12.30 

Wind   

2  LME Spot Copper USD/ 

MT 

Price Daily 2021.11.30 

~2022.12.30 

Wind   

3 EUR-USD   Currency Daily 2021.11.30 

~2022.12.30 

Wind   

4 USD-CNY   Currency Daily 2021.11.30 

~2022.12.30 

Wind 5% 
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5 NDAQ Index   Index Daily 2021.11.30 

~2022.12.30 

Wind 3% 

6 S&P 500 Index   Index Daily 2021.11.30 

~2022.12.30 

Wind   

7 NYMEX-Oil USD/bbl Price Daily 2021.11.30 

~2022.12.30 

Wind 3% 

8 COMEX-GOLD USD/ 

Oz 

Price Daily 2021.11.30 

~2022.12.30 

Wind 9% 

9 COMEX-SILVER USD/ 

Oz 

Price Daily 2021.11.30 

~2022.12.30 

Wind 13% 

10 COMEX Future 

Copper price 

USD/lb Price Daily 2021.11.30 

~2022.12.30 

Wind 7% 

11 SHFE Future 

Copper price 

CNY/ 

MT 

Price Daily 2021.11.30 

~2022.12.30 

Wind 6% 

12 Copper Spot price in 

China  

CNY/ 

MT 

Price Daily 2021.11.30 

~2022.12.30 

Wind 6% 

Table 2: Raw data information 

3.2 Missing value  

Table 2 also shows that the dataset has missing values. Overall, the percentage of missing 

values is small. COMEX silver has the highest percentage (13%), followed by COMEX gold 

(9%). The NASDAQ index, NYMEX crude oil, and COMEX copper inventory have the 

lowest (3%). To address this issue, we used a linear interpolation which is commonly used 

for dealing with missing values in high-frequency data in the economic field (Kohn and 

Ansley, 1986; Horváth et al., 2020).  

3.3 Data correlation 

First, we confirmed that there is a correlation between the price of copper and each of the 

other variables we chose. As shown in Table 3, copper prices from other future markets have 

a strong positive correlation with LME future copper prices. The correlation coefficients for 

these variables exceed 0.9, with p-values smaller than 0.001. Additionally, silver and gold 

from the mental market also show a similarly strong positive correlation. The crude oil from 

the NYMEX has the weakest positive correlation of the variables chosen.  However, the 

currency pair USD-CNY shows a significant negative correlation with the LME future copper 

price. 

No.  Variables   Correlation coefficient t-statistic p-value 

1 COMEX Copper price 0.998 285.05 2.20E-16 
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2  LME Copper Spot price  0.996 180.71 2.20E-16 

3 SHFE Copper price 0.932 42.463 2.20E-16 

4 Copper Spot price in China  0.927 40.691 2.20E-16 

5 COMEX-SILVER 0.874 29.571 2.20E-16 

6 COMEX-GOLD 0.872 29.269 2.20E-16 

7 EUR-USD 0.869 28.933 2.20E-16 

8 S&P 500 Index 0.759 19.186 2.20E-16 

9 NDAQ Index 0.710 16.58 2.20E-16 

10 NYMEX-Crude Oil 0.294 5.066 7.52E-07 

11 USD-CNY -0.847 -26.272 2.20E-16 

Table 3: Correlation analysis of variables 

3.4 Train and Test Dataset 

Before building models, we need to divide the data into two sets: the training set and the test 

set. The training set is used to develop models, pre-process predictors, and investigate 

relationships between predictors and responses, while the test set is used to determine the 

performance of the predictor model combination.  

Time series data differs from other types of data in that it is organized chronologically, and 

the observations are dependent on previous observations (Cortez, 2010). The temporal order 

of observations is important in time series data, and there may be correlations or patterns that 

exist over time. Instead, as illustrated in Figure 1, we use the 12 months of data (253 

observations) starting from November 30th, 2021, and ending on November 30th, 2022, as 

our training set. Additionally, we use the remaining one month of data (20 observations), 

ranging from December 1st, 2022, to December 30th, 2022, as our test dataset. The decision 

was made along with the goal of our task—a short-term forecasting. In this regard, we 

consider our choice to be very practical, efficient, and sufficient. 
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Figure 1: training and test dataset 

3.5 Data transformation 

However, one of the challenges of time series analysis and forecasting is dealing with trends 

in the data. Trends can be a significant obstacle in accurately predicting future values of a 

time series, especially if the trend is non-linear or changes direction over time (Stock and 

Watson, 1988). Time series data, such as the variables in this study, exhibits non-stationarity 

at certain levels, as illustrated in Figure 2. All the variables show strong trends. 

Therefore, detrending the data is necessary before making certain statistical inferences to 

estimate its model. A common approach is to remove the trend from the time series by 

differencing the data or using methods such as exponential smoothing or the Box-Jenkins 

method. In this study, we use log differencing to remove the trend from our data and get 

stationary. 
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Figure 2: The actual values of copper price from Nov 2021 to Dec 2022 

Log difference is a method for making a series of non-constant mean and variance stationary.  

It is a mathematical transformation applied to a time series to remove its trend and make it 

stationary. It is commonly used in econometrics and time series analysis to model the 

behaviour of variables that display trend and seasonality.  

The log difference operation transforms the original time series into a new series that 

represents the percentage change between each pair of consecutive observations. Figure 3 

shows logged variables of copper price from LME and COMEX. Taking the log difference 

helps to eliminate the effect of the trend by normalizing changes in the level of the time series 
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with respect to the previous value. This makes it easier to use the VAR model to model the 

resulting stationary time series. The remaining factors are listed in Appendix A. 

Figure 3: The log difference of copper price (LME and COMEX) 

Furthermore, we use the Augmented Dickey-Fuller (ADF) test to validate our dataset; since 

the p-value for all variables (p-value = 0.01) is less than the chosen significance level (e.g., 

0.05), there is sufficient evidence to reject the null hypothesis of non-stationarity. Therefore, 

based on the ADF test, we can conclude that all data is stationary.  

4. Empirical results  

The goal of this paper is to forecast copper prices in the short-term using a relatively small 

dataset, with a focus on very brief intervals to cater to traders and speculators. As we 

mentioned before, the prediction horizons are recommended by Ni et al. (2022), we will 

prediction copper prices with our models over one-day(h=1day), two-day (h=2 day), and 

three-day (h=3 day) forecasting horizons.  

Furthermore, in order to compare the predictive technique, a metric to represent the 

forecasting performance is needed. We use three popular predictability indicators in this 

study: the mean squared error (MSE), the mean absolute error (MAE), and the root mean 

squared error (RMSE). The following are the mathematical expressions for these three 

performance criteria: 
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𝑀𝑆𝐸 =  
1

𝑁
∑

𝑁

𝑖=1

(𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑡𝑟𝑢𝑒 − 𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑝𝑟𝑒𝑑) ^2 

𝑀𝐴𝐸 =  
1

𝑁
∑

𝑁

𝑖=1

|𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑡𝑟𝑢𝑒 − 𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑝𝑟𝑒𝑑| 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑

𝑁

𝑖=1

(𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑡𝑟𝑢𝑒 − 𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑝𝑟𝑒𝑑) ^2 

where N stands for the total number of observations in the copper price database; 𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑡𝑟𝑢𝑒 

true and 𝑦𝑐𝑜𝑝𝑝𝑒𝑟_𝑝𝑟𝑒𝑑 are the actual and forecasted copper prices. The smaller the values of 

MSE, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸, the better the predictive performance of the model being evaluated.  

The upcoming section will be structured as follows: initially, we will examine the effects of 

different orders on individual models, starting with AR, VAR, and XGBoost, to understand 

how the order influences each model's performance. Following that, we will conduct a model 

comparison analysis to see how the performance of each model varies across different 

prediction horizons. 

4.1 AR model results 

In alignment with previous studies that involving benchmark models for model comparison 

and evaluation (Hu, Ni, and Wen, 2020; Li and Li, 2015; Garca and Kristjanpoller, 2019), we 

introduce an AR model as our benchmark for this paper. Indeed, we also believe that the 

historical copper prices are likely to have a great impact on the copper price (Liu et al., 2017). 

Thus, we begin by looking at the two fundamental orders of autoregression: AR (1) and AR 

(2). Additionally, the purpose of using these two simple models as a benchmark is to evaluate 

the performance of more complexity models later in our case. 

The prediction performances of the AR (1) and AR (2) with multiple steps ahead is shown in 

Table 4. Overall, AR (1) has better performance than AR (2). Particularly, when AR (1) 

predicts one day ahead has the smallest MSE value (0.00092). Similarly, for the two and 

three day forecast horizon, AR (1) still outperforms AR (2) in terms of MAE, MSE and 

RMSE. It indicates that the LME future copper's own most recent lagged variables have a big 

impact on price forecasting (Hu, Ni, and Wen, 2020). However, as the prediction horizon gets 

longer, both the AR (1) and AR (2) models perform poorly. 
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As we discussed before, the copper price can be greatly influenced not only by its own lagged 

data but also by other variables as the prediction horizon increases (Liu et al., 2017). From 

this regard, it indicates that the AR model has limited capability to capture a little bit of a 

long-term pattern due to its limited flexibility. 

 AR (1) AR (2) 

 Error criteria 

Horizon MAE_LAG1 MSE_LAG1 RMSE_LAG1 MAE_LAG2 MSE_LAG2 RMSE_LAG2 

h =1day 0.009566 0.000092 0.009566 0.010363 0.000107 0.010363 

h = 2 day 0.011728 0.000142 0.011926 0.013494 0.000192 0.013853 

h =3 day 0.012061 0.000149 0.012198 0.013259 0.000182 0.013507 

Table 4: Prediction performances of AR (1) and AR (2) models for 1,2 and 3 days ahead forecasts 

Since AR models only consider the lagged values of a variable for prediction, they ignore 

other variables that might have an impact on the variable of interest over the time. 

Particularly in complex and dynamic systems such as commodity markets, this lack of 

flexibility may have a negative impact on accuracy and predictive power. Therefore, we 

move to a VAR model that is more adaptable and can handle more variables. 

4.2 VAR model results 

4.2.1 Lag length selection 

It is particularly important to consider the dependence of the copper oil price on previous 

day's prices, which can be identified and analysed using a vector autoregressive model 

(Ramyar and Kianfar, 2017). Thus, in order to develop an effective prediction model, we 

have to identify the appropriate order. 

Lag selection is one of the important aspects of VAR model specification (Brüggemann and 

Lütkepohl, 2000). In practical applications, we generally choose a maximum number of lags, 

𝑃𝑚𝑎𝑥 and evaluate the performance with  𝑝 = 1,2, . . . , 𝑝𝑚𝑎𝑥. 

The model VAR(p) that minimizes a certain lag selection criterion is then the most suitable 

one to use. The following are the most typical lag selection criteria: 

● Akaike information criterion (AIC)  

● Schwarz criterion (SC)  

● Hannan-Quinn (HQ) 

● Final prediction error (FPE) 
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The AIC and SC tests are the most commonly used in practice; however, it is difficult to say 

which is the best (Lütkepohl, 2005). The size of the sample affects the choice of lags required 

for accurate estimation (Liew et., al 2004). AIC tends to select more complex models than 

other model selection criteria, while SC tends to select simpler models than other model 

selection criteria. This can lead to underfitting and poor model performance, particularly 

when the sample size is large.  

However, in terms of economic theory, it often suggests that economic processes are 

dynamic, it usually cannot be of much help regarding the length of those dynamic processes. 

Hence, the choice of the lag length in the VAR model is often an empirical issue (Scott 

Hacker and Hatemi-J, 2008; Pickup, 2014; Liew et al., 2004). 

To choose the lag (p) of the model we use the VARselect () command from R studio to look 

at the best possible lag under different criteria. We set lag.max = 10 as suggested by Ni et al. 

(2022), who discovered that after 10 lags, partial autocorrelation rapidly decreases and 

becomes relatively low. The lag selection show as follows: 

Selected lag lengths under different criteria 

AIC(n)   HQ(n)   SC(n) FPE(n)  

2 1 1 2 

Table 5: Selected lag lengths under different criteria 

Table 5 shows that different criteria select different lag lengths. HQ and SC select a lag 

length of 1, AIC and FPE select a lag length of 2. We should consider the practical and 

logical implications of using that lag before selecting any recommended lag. A lag of 2 

means that the current predictions will be based on the previous 2 days of data, whereas a lag 

of 1 means that the current predictions will be based on the previous 1 days of data. The 

earlier we can make a prediction; the more time a company can make informed decisions 

based on that prediction. Such orders of 2 and 1 are all reasonable and acceptable in this case. 

Therefore, we train the VAR model using all the recommended lags with different time 

horizons and analyse how the various lags affect the predictions. 

4.2.2 Results with optimal lags 

VAR (1) stands for Vector Autoregression of order 1. Each variable in a VAR (1) model is 

regressed on its own lagged values as well as the lagged values of the other variables in the 

system. VAR (2), on the other hand, stands for Vector Autoregression of order 2. A VAR (2) 

model regresses the current values of each variable on its own lagged values as well as the 
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lagged values of all variables in the system up to lag 2. This enables VAR (2) to capture more 

complex interdependencies and feedback effects between variables. 

The prediction performances of the VAR (1) and VAR (2) with multiple steps ahead is shown 

in Table 6.  For the one day forecast horizon, the MSE for the two forecasting models under 

evaluation, i.e., VAR (1) and VAR (2), are 0.000009 and 0.000073 respectively.  Comparing 

these values, we observe that VAR (1) models provide significantly more accurate forecasts 

than the VAR (2) model. We obtain similar results when comparing the models using the 

RMSE. In this case, the RMSE produced by the VAR (1) model is 0.003004, whereas the 

RMSE produced by the VAR (2) model is 0.008520. These results indicate the VAR (1) 

model's superior performance when predicting one day ahead. Turning to the MAE metrics, it 

shows similar results. 

  VAR (1) model 

Lag order (HQ & SC) =1 

VAR (2) model 

Lag order (AIC&FPE) =2 

  Error criteria 

Horizon MAE MSE RMSE MAE MSE RMSE 

h =1day 0.003004 0.000009 0.003004 0.008520 0.000073 0.008520 

h = 2 day 0.008986 0.000117 0.010795 0.009945 0.000101 0.010046 

h =3 day 0.010447 0.000137 0.011716 0.010748 0.000118 0.010870 

Table 6: Prediction performances of VAR (1) and VAR (2) models for 1,2 and 3 days ahead forecasts 

The outcomes for the two and three day forecast horizons, however, differ from the one day 

ahead forecast. When the horizons are extended, the model's performance has changed due to 

the different lag orders in our case. In general, the value of MSE, RMSE and MAE are 

getting bigger. To better see the impact of the different order of lags on the model 

performance at different forecast horizons, we make a plot to visualize the criteria. Figure 4 

shows how the performance metrics vary across the one, two and three-day forecast horizons.  

We found that the MSE and RMSE for the two-day and three-day ahead forecasts using VAR 

(2) are lower compared to VAR (1). On the other hand, the MAE for the two-day and three-

day ahead forecasts using VAR (2) is higher compared to VAR (1). For example, with the 

VAR (1) model, MSE = 0.000117 for h = 2, MSE = 0.000137 for h = 3, and with VAR (2) 

model, MSE gets smaller than VAR (1) with h=2 and h=3(MSE=0.000101, MSE =0.000118 

respectively). Contrast to RMSE, the values of MAE for the VAR (1) model are slightly 

smaller than VAR (2) for both forecasting horizons. For instance, MAE =0.008986 for h=1 in 

VAR (1) while MAE= 0.009945 in VAR (2) model. 
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Figure 4: The MSE, RMSE, and MAE trends of the VAR model 

Overall, as the task is to forecast the price, we pay more attention to MSE and RMSE. The 

lower RMSE, MSE indicate better model performance in terms of accuracy and precision. 

Furthermore, it suggests that the VAR (1) model works well for one-day forecasting, whereas 

the VAR (2) model performs better for longer time horizons than the VAR (1) model. In this 

case, the VAR (2) model with additional lagged variables is more robust. However, it is 
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difficult to say which lag is better, it mainly depends on the aim of the task. Anyway, we will 

see how the lagged variables will impact the prediction in XGBoost. 

4.3 XGBoost model results 

4.3.1 Tuning Parameters in XGBoost 

Before executing XGBoost, several parameters need to be initialized to define the model, 

which are referred to as hyperparameters. These hyperparameters help address the bias-

variance trade-off by balancing the model complexity and predictive ability. The following is 

a detailed explanation of the XGBoost parameters adapted from the documentation 

(https://xgboost.readthedocs.io/en/stable/). 

objective: we selected “reg:squarederror”, which means that XGBoost will use the mean 

squared error (MSE) as the loss function. The objective is to minimize the MSE during model 

training to improve the accuracy of the predictions. 

max_depth: This parameter sets the maximum depth of each decision tree in the XGBoost 

model. A deeper tree can capture more complex patterns in the data but may also overfit. You 

can experiment with different values to find the optimal depth for your dataset. 

learning_rate: This parameter controls the step size that the XGBoost algorithm takes at 

each iteration. A lower learning rate can result in a more accurate model but may also require 

more iterations to converge.  

gamma: This parameter is used to control the complexity of the model and can be used to 

avoid overfitting. A higher value of gamma results in fewer splits and a more conservative 

model, while a lower value of gamma leads to more splits and a more complex model. 

subsample: This parameter controls the fraction of observations that are randomly sampled 

for each tree. A lower subsample can reduce overfitting but may also result in a less accurate 

model. It can experiment with different values to find the optimal subsample rate for your 

dataset. 

colsample_bytree: This parameter determines how many features are randomly sampled for 

each tree. Lowering the colsample_bytree can reduce overfitting but may result in a less 

accurate model. It can experiment with various values to determine the best colsample_bytree 

rate for your dataset. 
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Grid SearchCV was used to tune the hyperparameters in this paper. This method volves 

specifying a grid of hyperparameter values to explore, and then training and evaluating the 

model using each combination of hyperparameters in the grid. The optimal value was found: 

colsample_bytree: 1; gamma: 0.0; learning_rate: 0.05; max_depth: 1; n_estimators: 150. 

4.3.2 Parameter Tuning Results  

Using lag variables as inputs is a common technique in both time series analysis and machine 

learning to capture temporal dependencies and incorporate historical information into 

predictive models (Čeperić, Žiković and Čeperić, 2017; Herrera et al., 2019; Antipov and 

Pokryshevskaya, 2020; Li, Shang and Wang, 2019). Since we can not affirm which lag has 

better performance in the VAR model, we will test both lags in XGBoost. We denote 

XGBoost in the order of one (XGBoost (1)) and the order of two (XGBoost (2)). 

Table 5 shows the prediction performances of the XGBoost (1)) and XGBoost (2) with 

multiple steps ahead. Overall, we can see that XGBoost (1) had better performance than 

XGBoost (2).  The MSE for the XGBoost for the one-day forecast horizon and two-day 

forecast horizon is 0.00000286 and 0.00000287, respectively. Comparing these two values, 

XGBoost (1) is slightly better than XGBoost (2). When comparing the models using the 

RMSE and MAE, we get similar results. The smallest MSE, MAE and RMSE given by 

XGBoost (1) are predicted two days ahead. The MSE produced by the XGBoost (1) model is 

0.00000218, whereas the MSE produced by the XGBoost (2) model is 0.00000276. These 

results show that the XGBoost (1) model outperforms other models when predicting two days 

ahead in terms of accuracy. Although the MSE of the XGBoost (2) model for h=2 day is 

greater than that of the XGBoost (1) model for h=2 day, XGBoost (2) model for h=2 day still 

outperforms h=1 and h = 3 days. 

 XGBoost (1) model-optimal  

Lag order (HQ & SC) =1 

XGBoost (2) model-optimal  

Lag order (AIC&FPE) =2 

 Error criteria 

Horizon MAE MSE RMSE MAE MSE RMSE 

h =1day  0.001691 0.00000286 0.001691          0.001694     0.00000287    0.001694  

h = 2 day 0.001457 0.00000218 0.001475          0.001661     0.00000276    0.001661  

h =3 day 0.002421 0.00000776 0.002785          0.002660     0.00000907    0.003012  

Table 5:  Prediction performances of XGBoost models for 1,2 and 3 days ahead forecasts 

Furthermore, we plot the results in Figure 5 to better see the trend with different lags. The 'U' 

shape of the line for MAE, MSE, and RMSE indicates that prediction performance increases 
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and then decreases as the horizons extend in general. In this case, the XGBoost (1) model 

with additional lagged variables is more robust. However, as more lagged variables are 

added, the model is found to be prone to overfitting.  

 

 

 

Figure 5: The MSE, RMSE, and MAE trends of the XGBoost model 
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to fit the noise in the training data, especially since the dataset is relatively small in our case. 

As a result, the model may struggle to generalize to additional lag data points. In this sense, 

different from the VAR model, VAR (2) has more robust performance than VAR (1), 

whereas the XGBoost model with one order performs better than two orders. 

4.4 Models Comparison  

Finally, we can compare three models: AR, VAR, and XGBoost.  AR and VAR models are 

traditional time series models, while XGBoost is a machine learning method.  Since the 

purpose of this paper is to forecast the cooper price, we are primarily concerned with 

prediction accuracy. Therefore, we choose MSE to evaluate the model performance 

specifically. The lower the MSE, the better the model's predictive accuracy. Figure 6 shows 

the MSE values for the three models, allowing for a visual comparison of their performances. 

The model with the lowest MSE is considered the most accurate in predicting copper prices. 

We can immediately recognize that the XGBoost model outperforms the VAR and AR 

models in terms of prediction accuracy for forecasting copper prices with the lowest MSE. 

The AR model has the worst performance of the three. These findings support previous 

studies showing that machine learning models outperform traditional time series models at 

predicting commodity price (Ramyar and Kianfar, 2017; Sánchez Lasheras et al., 2015; Hu, 

Ni and Wen, 2020). For instance, Sánchez Lasheras et al. (2015) found that when forecasting 

the COMEX copper spot price, artificial neural network models outperformed traditional 

ARIMA models. Similarly, Ramyar and Kianfar (2017) showed that a neural network model 

outperformed a VAR model in predicting crude oil prices. Both studies show that the 

machine learning model’s ability to capture nonlinearity and handle dynamic relationships 

between various factors allowed it to generate more accurate and reliable forecasts than 

traditional time series models. 

Indeed, machine learning methods are not always guaranteed to perform well for every time 

series forecasting task. The effectiveness of a particular method is often determined by the 

characteristics of the data and the specific problem being addressed. In some cases, studies 

have shown that using neural networks to forecast specific time series over an extended 

period of time may result in poorer performance than traditional models such as ARIMA 

models (Khashei and Bijari, 2010). In our case, we can see a deterioration in the MSE of 

XGBoost as the forecasting horizon increases, moving from 0.00000286 (h=1) to 0.00000776 

(h=2) in XGBoost (1). This indicates that XGBoost faces challenges in maintaining accurate 
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predictions over longer horizons, resulting in less precise forecasts as the forecasting horizon 

increases. 

 

 

Figure 6: The MSE trends of the AR, VAR and XGBoost model 
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analysis will not be performed as a black box for the final user of the forecasting system, we 

recommend the use of time series models, such as VAR models, even though  for the long 

prediction period, as has been observed in our data, their forecast error would be larger than 

for XGBoost but always lower than the AR model.  Here, the benchmark AR model performs 

the worst, indicating its limitations in capturing the dynamics of the copper price data. 

However, it gives a baseline to showcase the improvements achieved by more advanced 

models.  

In sum, the findings indicate that the XGBoost model, by incorporating lagged values as 

features, outperforms other models in capturing complex relationships and patterns in copper 

price time series data in this case. Additionally, the VAR model shows its ability to capture 

short-term predictive power. However, it falls short of capturing the data's non-linear features 

and complex relationships. Hence, when compared to the XGBoost model, its predictive 

accuracy may be limited. Based on these results, it can be concluded that the XGBoost model 

has the lowest MSE, indicating superior performance in predicting copper prices than VAR 

model. This emphasizes the significance of including lagged variables as features and 

leveraging the XGBoost algorithm's flexibility to capture non-linear patterns and 

dependencies within the data. 

5. Conclusion  

Copper is a widely traded commodity with significant implications for a wide range of 

industries. Given its importance, accurately forecasting the future price of copper can be 

beneficial for market participants such as policymakers, shareholders, or traders looking to 

optimize their investment strategies or make informed policy decisions (Wang et al., 2019; 

Zhang et al., 2021b). We focused on short-term predictions, as they have been shown to be 

more accurate compared to long-term forecasts according to previous research (Díaz et al., 

2020; Liu et al., 2017). This study attempts to forecast the copper price in a short term in 

order to provide a reference for traders and speculators when making trading decisions.  

To achieve this, we employed classical time series models (VAR and AR), and a classical 

machine learning model (XGBoost) to capture the complex dynamics of the copper price. By 

incorporating both endogenous and exogenous variables in our models and applying log-

differencing to eliminate trend effects, we aimed to gain a comprehensive understanding of 

the factors impacting copper price dynamics.  
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Using daily data from November 2021 to December 2022, our empirical results show that the 

XGBoost with lagged features outperforms the VAR model for short term prediction and can 

capture long term features in general. In terms of prediction accuracy as measured by the 

MSE metric, the MSE values obtained by XGBoost models to predict multiple steps ahead 

(h=1, 2 and 3 days) were found to be significantly lower than those obtained by the 

traditional time series models. The RMSE and MAE yield similar results in our case. These 

findings are consistent with most studies that compare traditional time series models to 

machine learning models (e.g., Dehghani and Bogdanovic, 2018; García and Kristjanpoller, 

2019; Sánchez Lasheras et al., 2015).  

In addition, it is worth noting that when forecasting one day ahead, the VAR (1) model and 

the XGBoost (1) model demonstrate very similar performance. It indicates the VAR model's 

comparable prediction power for a specific task in this scenario, such as short-term 

prediction. Furthermore, the VAR model is easier to interpret than most advanced machine 

learning models. Based on these classical models, researchers can gain the insights from the 

easily interpretable coefficients of them as a starting point to build more complex models, 

such as the optimal lags chosen by the VAR model in this case. 

Furthermore, it should be emphasized that selecting lags based on different criteria is a very 

practical decision. In our case, HQ and SC select a lag length of 1, AIC and FPE select a lag 

length of 2. We find that the VAR (1) model works well for one-day forecasting, whereas the 

VAR (2) model performs better for longer time horizons than the VAR (1) model. However, 

different lags have different performance in the XGBoost model. XGBoost (1) has better 

performance than XGBoost (2). Therefore, the choice of the lag length is often an empirical 

issue. It emphasizes the importance of selecting optimal lags and meticulously planning the 

task's objectives and model training.  

This study also attempts to combine the strengths of the VAR model's lag order 

determination and the XGBoost model's ability to learn from informative features can 

significantly enhance the accuracy and predictive power of copper price forecasting. This 

approach has the potential to provide valuable support to commodity exchange market 

participants, including traders and policymakers, in making informed decisions. We can 

capitalize on the complementary advantages of both models by leveraging the optimal lagged 

values derived from the VAR model, paving the way for more effective and reliable 

forecasting in the dynamic world of commodity trading. 
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