

Department of Automatic Control

Night-time Vehicle Detection Based
on Observable Light Cues

Using Deep Learning

Celine Ivarsson

Jennifer Zacke

MSc Thesis
TFRT-6195
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Celine Ivarsson & Jennifer Zacke. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2023

Abstract

This thesis investigates the issue of computer vision-based detection of oncoming
cars during night-time, a critical road safety issue for automated high-beam assist.
We propose a holistic image classification approach that uses deep learning meth-
ods to detect light artifacts from an oncoming car’s headlights before the car is en-
tirely visible. We explore six different model architectures, including both convolu-
tional neural networks and transformer-based models. We train them using transfer
learning with both public and internal datasets using models pre-trained on Ima-
geNet. We evaluate the generalization ability of the models and find that they can
achieve up to 71% accuracy when trained on the public dataset and evaluated on
the class-balanced internal dataset. Our results show that both convolution-based
and transformer-based models have potential in performance for this task, with the
best models reaching up to 88% accuracy when trained with the full public dataset
and evaluated with the class-balanced public test set. Our research contributes to
the field by introducing an approach to detection of oncoming cars and comparing
different model architectures for this task.

3

Acknowledgments

We would like to express our deepest gratitude to our supervisors at Qualcomm,
Liam Fahlstad, Joar Karlgren Gustavsson, Mats Fridén, Simon Näsfeldt, and
Rickard Peterson, for their invaluable guidance and support throughout the project.
Their insightful feedback and support have been important to help us achieve our
goals. We are also grateful to our supervisor at Lund University, Pontus Giselsson,
for providing us with academic expertise and for encouragement and motivation
during the course of this master thesis. We also want to thank our examiner Bo
Bernhardsson.

In addition, we would like to extend our thanks to everyone in the Lund office
at Qualcomm for their assistance and cooperation during our work.

Celine Ivarsson & Jennifer Zacke
Lund, Sweden

5

Contents

1. Introduction 9
1.1 Motivation and Aim . 9
1.2 Research Questions . 11
1.3 Delimitations . 12

2. Classification Tools 13
2.1 Classification Models . 13

2.1.1 Activation Functions . 14
2.1.2 Loss Function . 15
2.1.3 Convolutional Neural Networks 15
2.1.4 Convolution-Based Networks 16
2.1.5 Transformers . 16
2.1.6 Transformer-Based Networks 17

2.2 Training . 18
2.2.1 Optimization Method . 18
2.2.2 Transfer Learning . 19
2.2.3 Hyperparameters . 20
2.2.4 Performance Optimization 20
2.2.5 Data Manipulation . 21
2.2.6 Model Evaluation . 21

3. The Light Detection Problem 24
3.1 Datasets . 24

3.1.1 Public dataset . 24
3.1.2 Internal Dataset . 25

4. Classification Solution Approach 29
4.1 Model Design . 29

4.1.1 Pre-Trained CNNs . 29
4.1.2 Pre-Trained Transformers 29
4.1.3 Classification Head . 30
4.1.4 Customized Vision Transformer 30

4.2 Experiment Design . 30

7

Contents

4.2.1 Dataset Split . 31
4.2.2 Data Pre-Processing . 32
4.2.3 Data Augmentation . 32
4.2.4 Training Processes . 32
4.2.5 Hyperparameters . 35

4.3 Resources . 35
5. Results 36

5.1 Balanced Test Sets . 36
5.2 Imbalanced Test Sets . 45

6. Future Work & Conclusion 49
6.1 Future Work . 49
6.2 Conclusion . 51

7. Appendix 52
Bibliography 56

8

1
Introduction

1.1 Motivation and Aim

Technology evolves at a rapid pace and brings significant advancements to the au-
tomotive industry, especially within advanced driver assistance systems (ADAS).
This has revolutionized the driving experience, with enhanced safety and efficiency
being the primary benefits. A company working to drive the transition toward the
future of cars is Qualcomm Technologies, which is a leading wireless technology
innovator. Major advancements are made in the company regarding driver assis-
tance technologies, including the products of its Snapdragon Ride Platform, which
is a car-to-cloud, connected ADAS infrastructure.

Modern cars with ADAS are equipped with many functions, including safety
systems, lane departure warnings, adaptive cruise control, and automatic emergency
braking. But, the current high beam assistance systems in modern cars share one
limitation; when driving at night, they turn off the high beams once the oncoming
car is visible. Humans process this information quicker and can detect the car from
its headlamps lighting up the road and its surroundings, or from only seeing parts of
the car before it is fully visible. An automatic system for turning off the high beams
can therefore be perceived as slow from a human perspective, and drivers often turn
off the high beams earlier in order not to glare at the oncoming driver [Oldenziel
et al., 2020].

Humans use multiple senses to predict things that are about to happen, for ex-
ample, sound and visual cues from oncoming cars. Previous experiences also con-
tribute to the process of what is happening around us. Machine learning models do
what they are trained to do, which is most often one specific task, and this makes
humans superior in performing more generalized tasks. Detecting oncoming cars in
the dark is therefore very intuitive for a human and something we do without further
thought but can be challenging for a computer.

Many computer vision algorithms rely on object detection, such as the YOLO
algorithm, and [Ewecker et al., 2022] investigated the possibility of detecting on-
coming cars during night-time before the car is visible. The authors presented an
algorithm pipeline that is capable of detecting approaching vehicles providently

9

Chapter 1. Introduction

during the night, almost 1.6 seconds before a conventional vehicle detection system.
It does so by detecting the light artifacts caused by the headlight of the oncoming
vehicle. [Ewecker et al., 2022] The dataset in [Ohnemus et al., 2021], Provident
Vehicle Detection at Night (PVDN), consisting of scenes of oncoming cars in the
dark, will be further used in this thesis project.

This thesis investigates the possibility to detect oncoming cars at night, before
the cars are visible, by observing visual cues; the light artifacts. The light artifacts
look different depending on factors such as road curvature and the surrounding en-
vironment. Typically, these artifacts appear along the horizontal centerline of the
images in the video clips of oncoming cars. We also noticed that the brightness of
that area in the image varies depending on the cars’ velocities and whether the de-
tecting car is turning or not. When a vehicle is visible in the image, a clear glare
can be seen and the brightness increases even more. Considering all of these fac-
tors, three different types of images can be differentiated. The first is when no car,
nor light artifact from a car, is visible. The second one is when a light artifact from
an approaching car can be seen, for example on the road or on surrounding trees.
The last category is when the car, or the headlamps of the car, are visible. These
three categories are quite similar, and the primary distinction between them lies in
the vertical center of the image, and instead of performing object detection on these
light artifacts to solve this problem, we will investigate how image classification
can be done using a holistic approach. The holistic approach in this context means
to consider the entire image rather than focusing on features or smaller areas.

Convolutional Neural Networks (CNNs) are performing well in the task of im-
age classification [Aggarwal, 2018], and are widely used in many applications such
as medical imaging, video analysis, and self-driving cars. A relatively new type of
network is the Transformer which is mostly used for natural language processing.
However, Vision Transformers (ViTs) have shown promising results in image clas-
sification [Dosovitskiy et al., 2021]. The main difference between a Convolutional
Neural Network and a Vision Transformer is the architectural building blocks and
how they process the data passing through the network. A CNN consists of a se-
ries of convolutional layers that extract features from the input data, whereas the
ViT uses the attention mechanism to process the image. In Vision Transformers, the
image is divided into smaller patches, where the network can learn the spatial rela-
tionships among the patches [O’Shea and Nash, 2015] [Dosovitskiy et al., 2021].

There are many networks provided on APIs such as Keras and Tensorflow Hub
that are pre-trained on large datasets for everyone to use. Pre-trained networks are
capable of transferring the, already learned, ability to other similar tasks. For exam-
ple, if a network is pre-trained on animals, the network can be adjusted to classify
dog breeds. In order to do that, the last output layer, or the ’classifier’ of the network,
is removed and some additional layers followed by a new output layer, appropriate
for the task, are attached. The remaining layers are used to extract high-level fea-
tures which should be general enough to be able to train another classifier. These
layers are called the backbone and the weights of the backbone are frozen as the

10

1.2 Research Questions

new classifier is trained. The new classifying head is fed with the features from the
backbone and trained to fit the new data containing dog breeds. This thesis will in-
vestigate whether this approach works for our task of classifying three categories
of oncoming cars during night-time. This will be done using both PVDN and an
internal dataset from the company.

The three categories mentioned above will be referred to as class 0, 1, and 2
and are presented in Table 1.1. We will investigate if early detection of vehicles
during night-time is possible, in order to turn off the high beams, using deep learning
methods suited for image classification.

Table 1.1 Categories used for labeling images in the dataset.

Category Description
0 No car nor light artifact
1 Light artifact from approaching car
2 Headlights from approaching car are visible

The work during this master’s thesis has been done in collaboration with Qual-
comm in Lund, a leading company in wireless technology. This thesis project was
conducted at the department responsible for designing functions for the advanced
driver assistance systems being developed by the company. The aim of this project
is to develop an algorithm that can serve as part of the foundation for the high beam
assist functionality and perhaps for other safety functions in the ADAS. The algo-
rithm will also serve as a proof of concept to demonstrate the feasibility of this
functionality. Hence, this project is of interest to the company and the future devel-
opment of self-driving cars.

1.2 Research Questions

The following questions will be investigated in this thesis.

• Which of the models; DenseNet, EfficientNet, NASNet, CaiT, and DeiT (see
Section 2.1.4 and Section 2.1.6), will give the best accuracy and F1 score for
class 1? (See Section 2.2.6)

• How does a transformer-based model perform compared to a convolutional-
based model for this task?

• Which transfer learning method generates the best model in terms of accuracy
and F1 score for class 1?

• To what extent can the public dataset, PVDN, be used to train the models for
image classification on the internal dataset (see Section 3.1.2)?

11

Chapter 1. Introduction

1.3 Delimitations

The scope of this project is delimited by the following factors.

• This thesis will only test a limited number of Convolutional Neural Networks
and Vision Transformers.

• The project will only evaluate the holistic approach to image classification.

• Other methods for light artifact detection will not be considered in this thesis.

• This thesis does not consider processing times or other factors, such as the
size of the network, that might affect the future system function.

• The thesis will focus on image classification using only images and not
videos. Videos as input data could be beneficial since looking at changes in
the light artifacts could make it easier to differentiate between static lights
and moving cars.

12

2
Classification Tools

This project aims to solve a holistic image classification task where the goal is to
predict oncoming vehicles by identifying light artifacts. The images are labeled with
one of the three classes; "No car nor light artifact", "Light artifact from approach-
ing car" and "Headlights from approaching car are visible". Image classification is
the task of labeling or classifying images depending on the content of the image
and is a fundamental task in computer vision and image processing. In supervised
learning, a parameterized model is trained using labeled images to map features
from the images to their corresponding labels. During training, the model’s param-
eters are updated and optimized to improve its performance on the given problem.
Once trained, the model can predict the labels of new images based on its learned
knowledge. There are many different types of neural network models suitable for
solving multi-class image classification problems, such as convolutional neural net-
works and attention-based transformer models. This chapter provides the necessary
theoretical background to understand the content of this thesis.

2.1 Classification Models

Artificial Neural Networks (ANNs) are computational models, often used for classi-
fication tasks, designed to work similarly to a human brain. ANNs contain an input
layer, one or more hidden layers of neurons (computational nodes), and an output
layer. The hidden layers extract patterns and are responsible for most of the internal
processing. The output layer of a neural network is responsible for producing the fi-
nal prediction or output of the network, which represents the result of the processing
performed by the neurons in the previous layers [Silva et al., 2017].

A neuron is the part of an ANN that acts as the computational unit to extract
features. It takes an input vector and returns a single output value. The inputs are
individually weighted depending on the relevance of the input. The typical approach
involves introducing a bias term to determine the appropriate threshold for the out-
put, which will then activate the neuron and produce a trigger value.

The output from the neuron is

13

Chapter 2. Classification Tools

y = g(
n

∑
i=1

wixi −θ) (2.1)

where g(·) is the activation function, w is the weights, x is the input and θ is the bias
[Silva et al., 2017].

A feed-forward neural network is a type of neural network in which the flow of
information occurs in only one direction. Each layer receives its input from the layer
directly below and sends its output to the layer directly above. During the training
process, the network’s weights and biases are randomly initialized and then updated
iteratively using a supervised learning algorithm that adjusts the weights and biases
based on the difference between the predicted and actual output [Silva et al., 2017].

2.1.1 Activation Functions
Activation functions are applied to the output of the weighted sum plus bias and
decide the output of the neuron. The activation function is fundamental for the neu-
ral network and introduces non-linearity into the output of the neuron allowing the
neural network to learn more complex patterns [Nwankpa et al., 2018].

ReLU. ReLU stands for Rectified Linear Unit and is a commonly used, non-linear
activation function. The function returns the input value for all positive values, and
0 for all negative input values, see Equation 2.2. Due to the simplicity of the math-
ematical operation, it is computationally efficient and the function also addresses
the vanishing gradient problem, where the gradient can become so small during
backpropagation that it hinders effective learning [Nwankpa et al., 2018].

f (x) = max(0,x) (2.2)

GeLU. The Gaussian Error Linear Unit, or GeLU, is a high-performing activation
function similar to ReLU. Neuron inputs tend to follow a normal distribution which
is something GeLU takes advantage of by scaling the input with the cumulative
distribution function of the standard normal distribution. The output from the GeLU
function is calculated through

GeLU(x) = xΦ(x) (2.3)

where Φ(x) is the cumulative distribution function of Gaussian distribution
[Hendrycks and Gimpel, 2020].

Softmax. The softmax activation function maps the output of a network to a prob-
ability distribution over predicted classes and is therefore often used in the output
layer of neural networks for multi-class classification problems. The formula for the
softmax function is

σ(zi) =
ezi

∑
K
j=1 ez j

f or i = 1,2, . . . ,K (2.4)

14

2.1 Classification Models

where zi is the output value of the ith neuron in the output layer, e is the Euler’s
number, and K is the number of classes [Nwankpa et al., 2018].

2.1.2 Loss Function
A loss function is used to calculate the error rate of the current state in the network.
It is used as part of the optimization process when updating the weights during
training, to obtain a low loss in the model. A common loss function for multiple-
class problems is categorical cross-entropy, where the model output is a probability
over the classes for each image. Categorical cross-entropy is defined as:

Lcls =−
M

∑
c=1

yc log(pc) (2.5)

where M is the number of classes, yc is 1 if the prediction is correct and 0 other-
wise, and pc is the predicted probability that the observation belongs to class c. For
multi-class problems, the probability is usually computed with a softmax layer, as
in Equation 2.5, that converts the output to probabilities.

2.1.3 Convolutional Neural Networks
A Convolutional Neural Network is a type of Artificial Neural Network that is
specifically designed for image recognition tasks. Like many ANNs, CNNs con-
sist of neurons that perform computations. CNNs have a specific architecture that is
optimized for extracting features from images and consists of convolutional layers,
pooling layers, and fully-connected layers. The neurons within the layers in CNNs
are organized in three dimensions, the height, width, and depth of the input image.
[O’Shea and Nash, 2015]

Convolutional layers are a crucial part of CNNs and consist of a set of learnable
kernels. The kernels are small matrices that slide across the image. The dot product
of the kernel and image is computed for every spatial position. Each kernel gener-
ates an activation map, and stacking these maps along the depth dimension creates
the output volume of the convolutional layer [O’Shea and Nash, 2015].

Pooling layers are usually added immediately after convolutional layers and re-
duce the size of the feature maps and the computational complexity while retaining
the most important information. The downsampling is done using a sliding window
approach, where a small window of fixed size moves across the input tensor and
collects the values in that region using an operation such as max or average pooling.

Fully connected layers, also known as dense layers, are a type of neural network
layer where each neuron in the layer is connected to every neuron in the previous
layer. In other words, all the outputs from the previous layer are fed as inputs to
each neuron in the fully connected layer [Bezdan and Bacanin, 2019].

15

Chapter 2. Classification Tools

2.1.4 Convolution-Based Networks
Over the years, several CNN architectures have been proposed that show competi-
tive accuracy, efficiency, and scalability. DenseNet, EfficientNet, and NASNet, de-
scribed below, are popular CNN architectures that have demonstrated state-of-the-
art performance in various computer vision tasks.

DenseNet. DenseNet was first introduced in [Huang et al., 2017]. The paper pro-
poses a network where each layer is connected to every other layer in a feed-forward
manner to establish maximum information flow between the layers. Each layer takes
input from all preceding layers and passes its own feature maps to all following lay-
ers. With this approach, an L-layer network gets L(L+1)/2 connections instead of
just L. Dense connectivity requires fewer parameters than traditional convolution
networks since each layer receives the feature maps of all preceding layers as inputs
and improves the flow of information and gradients throughout the network, mak-
ing them easier to train. The dense connectivity also has a regularizing effect which
reduces overfitting when using smaller training sets.

EfficientNet. EfficientNet is a family of neural networks, designed to achieve
higher accuracy while reducing the number of parameters. The architecture was
first introduced in [Tan and Le, 2020] and is based on compound scaling which
uniformly scales the depth, width, and resolution using a compound coefficient. Ef-
ficientNet reaches high accuracies on ImageNet (84.3% top-1) and also transfers
well with standard transfer learning datasets such as CIFAR-100 and Flowers, with
accuracies of 91.7% and 98.8% respectively.

NASNet. Neural Architecture Search Network, NASNet, is a neural architecture
search approach that was first introduced in [Zoph et al., 2018]. NASNet is a ma-
chine learning algorithm that learns to design neural network architectures that per-
form well on a given task by trying out different architectures and evaluating their
performance. The algorithm consists of a controller network that learns to gener-
ate new architectures by sampling from a search space. This means that NASNet
automatically can discover architectures that are optimized for a given task.

2.1.5 Transformers
Transformers were introduced in [Vaswani et al., 2017], where the network archi-
tecture is entirely based on attention layers to compute representations of the input
and output. The attention mechanism allows for input parallelization and selective
focus on the different parts of the input sequence while processing it. A transformer
usually consists of an encoder part and a decoder part, where the encoder extracts
features from the input sequence, and the decoder produces an output sequence
from the features. An input sequence of symbol representations X = (x1, ..., xn) is
mapped to a sequence of continuous representations, Z = (z1, ..., zn), by the encoder
part. The decoder then generates an output sequence Y = (y1, ..., ym) from Z. Both
the encoder and decoder are built of multiple layers containing self-attention and

16

2.1 Classification Models

feed-forward sub-layers [Vaswani et al., 2017]. Transformers are mainly used for
natural language processing but have recently proven to also be effective for image
classification tasks, using the Vision Transformer (ViT) [Dosovitskiy et al., 2021].

Attention, Self-Attention & Multi-Head Attention. Attention is a method of map-
ping a query and a set of key-value pairs, to an output. Self-attention, which is a type
of attention, represents how the input sequence’s elements relate to one another, in-
stead of one sequence’s relevance to another. The input, consisting of the queries
and keys, is of dimension dk. The weighted sum is computed for the values which
become the output, where weight is computed by a compatibility function of the
query, and the key is assigned to each value. The dot product between the queries
and keys is then computed, these are divided by

√
dk, and a softmax function is

applied, in order to obtain the weights of the values. This type of attention is called
’Scaled Dot-Product Attention’ [Vaswani et al., 2017].

As mentioned, while processing the input sequence, attention is used to selec-
tively focus on the input’s different parts. The attention function is computed si-
multaneously on a set of queries that are packed together in a matrix Q (for queries)
with K, a matrix containing the keys, and V , a matrix with all values [Vaswani et al.,
2017]. The attention function is defined as

Attention(Q,K,V) = softmax(
QKT
√

dk
)V

and allows the model to learn where the important parts of the input are, in order
to generate the output [Vaswani et al., 2017].

Multi-head attention, which is a variation of self-attention, is when the attention
function is applied in parallel for all input values. The self-attention operation is
instead performed multiple times, each time with a different set of the learned query,
key, and value matrices, also known as ’heads’. The model can then improve the
ability to attend to different parts of the input sequence and also learn different
features from it in parallel [Vaswani et al., 2017].

2.1.6 Transformer-Based Networks
The breakthrough for Vision Transformers (ViTs) was in [Dosovitskiy et al., 2021].
The approach presented appeared as an alternative to the established CNNs and
outperformed them in accuracy and computational efficiency. Subsequently, re-
searchers have developed several ViTs, for example, CaiT and DeiT, customized
to address different requirements and tasks.

ViT. The Vision Transformer’s model architecture follows the original transformer
architecture in [Vaswani et al., 2017] as closely as possible due to its efficient im-
plementation and ease of deployment. It was adapted to handle 2D images instead
of text sequences as input and consists of only the encoder part of the transformer.
The output of the Vision Transformer is instead a class prediction from a classifier
head attached at the top [Dosovitskiy et al., 2021].

17

Chapter 2. Classification Tools

In order to adapt the original transformer to handle 2D images, the images have
to be pre-processed in several steps before it’s provided to the network. Firstly,
the input image is divided into a sequence of smaller, fixed-size ’patches’. The se-
quence is then flattened, where each patch is linearly embedded, with the size of
the projection dimension determined by a hyperparameter. The embedded patches
are then assigned a positional embedding. The resulting sequence is then ready to
be fed into the transformer network encoder, which consists of multiple alternat-
ing multi-head self-attention layers and Multi-Layer-Perceptron (MLP) blocks of
two GeLU-activated layers. Layer normalization is applied before each block and
there are residual connections after each block. The output from the encoder is then
classified through an MLP head [Dosovitskiy et al., 2021].

DeiT. DeiT, Data-Efficient Image Transformer, is an image transformer that was
first introduced in [Touvron et al., 2021a]. The model uses a distillation procedure to
minimize the amount of data required for training. Knowledge distillation is a train-
ing method where a student model learns from labels generated by a strong teacher
network. To help the model learn from the output from the teacher a distillation to-
ken is used. The token is added to the initial embeddings through self-attention to
minimize the loss from the distillation. By distilling knowledge from teachers, DeiT
can effectively extract features of the input image and generalize better to unseen
data.

CaiT. Class-Attention in Image Transformers, CaiT, is based on the idea that at-
tention should not just be applied to spatial features, but also to class informa-
tion and consists of two distinct processing stages; the self-attention stage and the
class-attention stage. The class-attention stage has two alternating layers: a multi-
head class-attention layer and a feed-forward network layer. The role of the class-
attention layer is to extract the information from the set of processed patches. The
method was evaluated by fine-tuning on small and large datasets, consisting of im-
ages from 10 to approximately 8000 classes, and the result showed excellent gener-
alization capabilities [Touvron et al., 2021b].

2.2 Training

2.2.1 Optimization Method
During the training process, the network’s weights and biases are randomly ini-
tialized and then updated iteratively using a supervised learning algorithm called
backpropagation. Gradient descent is an optimization algorithm that uses backprop-
agation, and adjusts the weights and biases based on the difference between the
predicted and actual output, with the goal of minimizing the error or loss function.
The optimization process involves calculating the gradient of the loss function with
respect to each weight and bias and using this gradient to update the corresponding
parameter values. By iteratively adjusting the weights using the optimization algo-

18

2.2 Training

rithm, the network aims to minimize the loss, which in turn improves the accuracy.
Deep learning models generally consist of millions of parameters which raises the
need for an optimization method that is able to efficiently train the model.[Lu, 2022]

Optimizers use various techniques to update the weights. A common technique
that helps optimizers retain speed during the optimization process is called mo-
mentum. Momentum incorporates past gradients into the weight-updating process
which helps the process retain speed.

Adam, Adaptive Moment Optimization, is a commonly used optimization
method that uses “signal-to-noise” normalization and also smoothes the first-order
gradient to get momentum to the weight update [Aggarwal, 2018].

2.2.2 Transfer Learning
Pre-trained networks that are already performing well in certain tasks can be used
to create new networks to perform other similar tasks. Transfer learning enables
existing knowledge from a model trained on data from one domain, to be reused for
new tasks with data from another similar domain. A network that can distinguish
between different animals can also be suitable for classifying dog breeds. To do
so, the final layer, or layers, are removed and a new untrained head is attached.
This head can consist of only one dense layer for the new classes, or a few more
layers such as fully connected, drop out, batch normalization, and pooling layers.
The base model (pre-trained model) then works as a feature-extractor for the new
classifying head. This method is particularly effective when a model is trained on
a large dataset, and the knowledge from this model can be transferred when using
a smaller dataset [Sarkar et al., 2018]. This method of network training is called
transfer learning and can be used in many different ways, for example with feature-
extraction and fine-tuning mentioned below.

A way of optimizing a pre-trained network for a new task is to start with feature-
extraction, and to train the head of the network until it converges. The second step is
to fine-tune the network carefully so it doesn’t overtrain, which will be further de-
scribed below. Improvements can be achieved when the model’s pre-trained weights
are adapted to the new data [Keras, 2023].

Feature-Extraction. One way of conducting transfer learning is to ’freeze’ the
weights of the base model, i.e. the pre-trained model, and only train the classifying
head. In other words, the weights of the base are unchanged and the classifying head
uses the output features from the base as input [Sarkar et al., 2018]. In this report,
we will refer to this method as feature-extraction.

Fine-Tuning. A pre-trained network can also be fine-tuned, which means ‘un-
freezing’ some, or all, of the base model’s layers and re-training them together with
the head [Sarkar et al., 2018]. The network is then usually trained with a low learn-
ing rate to adapt the pre-trained weights to the new task. In other words, the pre-
trained weights are used as a starting point, and the network is re-trained on the new
dataset, updating the weights to fit the new task.

19

Chapter 2. Classification Tools

2.2.3 Hyperparameters
Hyperparameters are the different settings of the model that are not learned from
the data, as opposed to the regular parameters (weights). These are set before the
training process and control the behavior and performance of the model. Some of
the hyperparameters of the models in this paper include batch size, learning rate,
number of epochs, and, for the transformer models, patch size.

2.2.4 Performance Optimization
During the training process of machine learning models, the optimization algorithm
adjusts the weights in the model in order to minimize the loss function which takes
steps toward finding the optimal set of weights. If the learning rate is too large, the
algorithm may not be able to find the optimal set of weights and if the learning rate
is too small the algorithm may take too long to converge. Therefore, the learning
rate needs to be carefully chosen to ensure that the algorithm efficiently finds a
good solution. Employing a learning rate scheduler is a method for optimizing and
adapting the learning rate as the training process advances. The purpose of learning
rate schedulers is to help the model to find the optimal set of parameters faster and
to prevent overfitting [Ghayoumi, 2022].

Step Decay Learning Rate. A step decay learning rate scheduler changes the
learning rate in discrete steps at specific epochs during the training. By starting
with a high learning rate and reducing the learning rate in steps, the model can
more efficiently reach optimal solutions and potentially avoid local minima.

Cosine Annealing. Cosine annealing is a learning rate scheduler that starts with a
high learning rate and gradually decreases until it reaches a minimum value. At this
point, the learning rate starts to increase again, following a cosine function, until
it reaches the maximum value. The learning rate will oscillate between two values
and is calculated through the formula:

ηt = ηmin +
1
2
(ηmax −ηmin)(1+ cos(

Tcur

Ti
π)) (2.6)

where ηt is the learning rate at iteration t, ηmin is the minimum learning rate and
ηmax is the maximum learning rate. Tcur is the current iteration within the current
restart period, 2Ti is the number of iterations in the current restart period and cos is
the cosine function. By alternating between high and low learning rates, the model
can avoid getting stuck in local minima [Loshchilov and Hutter, 2017].

Early Stopping. A way to prevent overfitting when training neural networks is
to use early stopping. During training, there might be a point where the validation
loss stops improving and the model starts to overfit to the training dataset. To pre-
vent overfitting, early stopping is used to stop the training process before the model
starts overfitting by monitoring the validation accuracy or loss and stop the training
process if the model has not improved for a specified number of epochs.

20

2.2 Training

2.2.5 Data Manipulation
The amount and the quality of data are one of the biggest impeding factors when
working with neural networks. Machine learning models need large amounts of data
to learn the underlying patterns of the dataset and to make accurate predictions of
unseen data [Yang et al., 2022]. Below are a few different methods that we have used
for compensating for too few training samples or class imbalances in the dataset.

Augmentation. Image augmentation has become a necessary part of the success
of neural network models for image classification. Augmentation is modifications
of the input samples to obtain a larger distribution within the dataset by creating
synthetic data. This will in turn lead to better generalization for the model, preven-
tion of overfitting, and a larger training sample group. Various transformations are
applied to the original data, in this case, augmentation is done on the images. When
working with images, flipping, rotating, cropping, and adjusting contrast and blur
are some of the basic techniques [Yang et al., 2022].

Class Weights. It is important to train the model with an equally balanced dataset,
which means providing it with approximately the same number of samples from
each category. If the dataset is imbalanced, the training model will spend too much
time on the majority classes, and too little on the minority classes. This will in
turn lead to the model not learning enough from the samples from the minority
classes [Developers, n.d.] When working with an imbalanced dataset, one can weigh
the loss function during training. This then tells the model to pay more attention
to input samples of underrepresented classes [TensorFlow 2.0 API Docs n.d.] To
counteract the imbalanced class distribution, we will use class weighting, which
involves assigning a higher weight to the loss function for under-represented classes.

Selection. Another way of regulating imbalance within the dataset is to downsam-
ple and remove samples, from the over-represented classes. However, downsam-
pling means decreasing the amount of data in the dataset. Alternatively, upsampling
can be performed by duplicating samples from the under-represented classes, but in
this report, we only perform downsampling.

2.2.6 Model Evaluation
In this section, we describe the evaluation metrics used to assess the performance
of the models, both when evaluated using the full test set and the downsampled test
set.

Class Specific Performance. Precision, recall, and F1 score are class-specific met-
rics that should be considered in conjunction when evaluating a model’s class-
specific performance, see [Powers, 2020]. They give indications of how a model
is performing on each class in the dataset.

Precision indicates what fraction of the positive predictions for one specific class
are correct. It is defined as the number of true positive predictions divided by the

21

Chapter 2. Classification Tools

total number of positive predictions made by the model. The equation for precision
for class c is

Precisionc =
T Pc

T Pc +FPc
(2.7)

where T Pc refers to the number of positive instances that were correctly classified
by the model for class c, and false positives FPc refer to the number of negative
instances that were incorrectly classified as positive for class c. Generally, high
precision indicates that the model is good at identifying the positive class correctly
and that the rate of false positives is low.

Recall, also known as sensitivity, indicates how many of all positive values are
predicted positive. It measures the ability of a classification model to correctly iden-
tify positive samples and is of use when it is important to not miss any positive
samples and is defined as

Recallc =
T Pc

T Pc +FNc
(2.8)

where FNc is the number of positive instances that were incorrectly classified as
negative for class c.

Class-specific F1 is a trade-off between precision and recall and is defined as
the harmonic mean of precision and recall. It can be calculated through

F1c =
2PrecisionRecall

Precision+Recall
=

2T Pc

2T Pc +FPc +FNc
(2.9)

and is useful when the cost of false positives and false negatives is equal.

General Metrics. Classification accuracy is defined as the number of correct pre-
dictions divided by the total number of predictions. It measures the percentage of
correct predictions made by the model, with all classes included. Accuracy is de-
fined as

Accuracy =
T P+T N

T P+T N +FP+FN
(2.10)

where T P is the true positives, T N the true negatives, FP the false positives, and
FN the false negatives [Powers, 2020].

The confusion matrix is a matrix that displays the number of occurrences of the
actual and predicted classifications. In this paper, the actual categories will be shown
in the rows, and the predicted categories in the columns. The correctly classified
instances will appear on the diagonal, from the top left corner to the bottom right
corner. An example of a confusion matrix for the three classes used in this paper is
presented in Table 2.1 where it can be seen that one image of category 0 is falsely
predicted as category 2.

When evaluating using the full, imbalanced test sets, weighted average F1 score
and confusion matrices are used. The weighted average F1 score is an evaluation
metric that takes both the F1 score of each class and the proportion of the classes

22

2.2 Training

Table 2.1 Example of a confusion matrix for the three classes used in this thesis.

Predicted
category 0 category 1 category 2

A
ct

ua
l category 0 8 0 1

category 1 2 6 1
category 2 0 2 7

Table 2.2 Calculation of weighted average F1 score

Category
Class Specific

F1 score Support
Support

Proportion
Weighted Average

F1 score
0 0.93 1464 0.376 (0.93 * 0.376) +
1 0.69 420 0.108 (0.69 * 0.108) +
2 0.95 2010 0.516 (0.95 * 0.51)

Total - 3894 1.0 ≈ 0.91

into account. This means that the F1 score of the classes with more samples will be
given more weight and the classes with fewer samples less weight. A calculation of
the weighted average F1 score of the classes used in this paper can be seen in Table
2.2.

23

3
The Light Detection Problem

Our project aimed to find an optimized model for detection of light artifacts from
oncoming cars during night-time. In the process of model optimization, we explored
many areas of a machine learning workflow. We started by modifying and adapting
a public dataset, PVDN, described in Section 3.1.1, for our project’s specific task, as
well as creating an entirely new internal dataset. A significant portion of the project
focused on data retrieval, preparation, processing, and analysis. To run experiments,
we implemented an end-to-end pipeline, which included data retrieval and process-
ing, model creation, training, and evaluation. To achieve this, we relied heavily on
Tensorflow, Keras, and Tensorflow Hub for machine learning functionality, as well
as OpenCV for image processing.

3.1 Datasets

Two different datasets were used in this paper; one public (PVDN) and one internal.
Both datasets contain images of oncoming cars during night-time from the data
collecting car’s ego perspective.

A third dataset, ImageNet, has been used to pre-train the models in the project’s
experiments. ImageNet is a large database containing around 14 million manually
annotated images with more than 20000 categories.

Since the main goal of this project was to optimize the models for the internal
dataset, the public dataset, PVDN, was used to fine-tune the pre-trained models
before further fine-tuning them with the internal dataset.

3.1.1 Public dataset
The public dataset PVDN (Provident Vehicle Detection at Night) consists of 59,746
grayscale images with a resolution of 1280x960, obtained from 346 different se-
quences from a rural environment during night-time. On average, the sequences
contain 167 images each and all sequences contain at least one oncoming vehicle.
The dataset is divided into two subsets, where the onboard camera of the test car
captured images with two different exposure times, "Day" (short exposure time)

24

3.1 Datasets

and "Night" (long exposure time). Both subsets are divided into train, validation,
and test subsets [Ohnemus et al., 2021].

Since there are 7 different categories in the original annotations, all images have
been re-annotated with labels matching our categories; 0: "no car nor light artifacts",
1: "light artifacts from a car" and 2: "car or direct light from a car". The dataset has
been modified to fit our task and some sequences and images have been removed
due to inadequate distribution within the sequence with an over-representation of
images labeled with categories 0 and 2. Images from all three classes from the
subset "Night" can be seen in Figure 3.1

Due to the low exposure time used for the subset "Day", the images are dark
and contain fewer details. The images in the subset "Night" are more similar to the
internal dataset and therefore, the images from "Day" needed to be heavily modified
when used, for example adjusting the brightness. This is further described in Sec-
tion 4.2.2, but the results from these modifications can be seen in Figure 3.2. The
models were evaluated using both subsets separately, as well as together, to better
understand the models’ ability to classify images with different characteristics.

The public dataset has been divided into two datasets called PVDN-s, consist-
ing of the images from the subset "Night", and PVDN-l consisting of images from
both subsets, "Day" and "Night". The distributions of the classes, sets, subsets, and
sequences can be seen in Table 3.1 and in Figure 3.3.

Figure 3.1 Images from PVDN "Night" with classes 0, 1, and 2 (from left to right).

3.1.2 Internal Dataset
The primary objective of this project is to create a model with strong generalization
abilities, that is performing well on unseen data and most importantly, on the com-
pany’s internal data. In order to adapt the model for the company’s internal data and
evaluate whether the model is performing well in these settings, a new dataset was
created. To ensure that the sequences chosen for the internal dataset are appropri-
ate for the task of detecting oncoming cars, sequences recorded during the night and
with at least one oncoming car were selected. We were also looking for surroundings
with no or few streetlights since the main purpose of the algorithm implemented in

25

Chapter 3. The Light Detection Problem

Figure 3.2 Images from PVDN "Day" with classes 0, 1, and 2 (from left to right),
before and after increasing the brightness and contrast. In the darker images at the
top, it might be hard to visually see any light artifact from the oncoming car.

Figure 3.3 A class distribution comparison between PVDN-s, PVDN-l, and the
internal dataset.

this project is to turn off the car’s high beams. The selected sequences of images
then had to be annotated according to our set categories; 0 (no car nor light arti-

26

3.1 Datasets

Table 3.1 A summary of all images in the PVDN dataset.

Set Subset # of sequences # of 0s # of 1s # of 2s # of images
Day 100 5161 1484 8915 15560

Train Night 123 7456 2898 11394 21748
Total 223 12617 4382 20309 37308
Day 13 981 443 990 2414

Validation Night 21 1394 439 1787 3620
Total 34 2375 882 2777 6034
Day 16 731 307 1651 2689

Test Night 23 1464 420 2010 3894
Total 39 2195 727 3661 6583

Total 296 17187 5991 26747 49925

fact), 1 (light artifact from a car), and 2 (car or direct light from a car). The final
dataset consisted of 40 sequences and 25241 images. On average, the sequences in
the internal dataset contain 631 images, which is a significantly greater number of
images per sequence than in PVDN. The original images were very dark compared
to PVDN "Night", and required a lot of adjustments before they were suitable for
training. One of the modifications made was increasing the brightness and contrast,
and the result from this can be seen in Figure 3.4. The aspect ratio of the images of
the internal dataset was 19:9, which also is quite different from PVDN’s 4:3.

Table 3.2 The internal dataset’s distribution of images and classes.

Set # of sequences # of 0s # of 1s # of 2s # of images
Train 19 8072 1315 2822 12209
Validation 10 4519 772 1113 6404
Test 11 4995 494 1139 6628
Total 40 17586 2581 5074 25241

Each sequence only existed in one of the train, validation, and test sets. This was
because of the small changes between each frame in the sequences, which would
lead to a ’cheating’ effect if a model had been trained on a very similar image that
it is predicting. The distribution of sequences, subsets, and classes can be seen in
Table 3.2. A comparison between PVDN and the internal dataset in terms of class
distribution can be seen in Figure 3.3.

Annotation Process. When creating the internal dataset, many images had to be
annotated according to the three classes used. To speed up the process, the images
that were not yet annotated were fed through a trained model to create predictions
or pre-annotations. This was done with a model that was fine-tuned with the PVDN
dataset and had achieved a high enough performance (in this case 83% in test
accuracy). Afterward, the pre-annotations were manually checked and modified by

27

Chapter 3. The Light Detection Problem

Figure 3.4 Images from the internal dataset with classes 0, 1, and 2 (from left to
right), before and after increasing the brightness and contrast. In the left-hand image,
no car nor light artifact can be seen. The middle picture shows light artifacts from
the oncoming car on the roadside barriers and then the car appears in the image to
the right.

us. To make this pre-annotation process as objective and non-biased as possible,
the method was controlled by comparing annotations done when using the pre-
annotation as a base with annotations done on the same data by people unaware of
the predictions. The difference in result between the two methods was negligible,
therefore we consider the pre-annotation method to be legitimate.

28

4
Classification Solution
Approach

In this chapter, we will provide a detailed explanation of the models and the training
processes used.

4.1 Model Design

The experiments were conducted using six different models, five pre-trained on the
ImageNet dataset and one vision transformer with no pre-trained weights. The pre-
trained CNNs; DenseNet, EfficientNet, and NASNetMobile were fetched through
the Keras Applications API [Chollet et al., 2015–2021], and the transformer models,
CaiT and DeiT, were downloaded from [TensorFlow Hub Authors, 2018–2023].
We also developed a custom vision transformer by testing and combining various
architectural designs.

4.1.1 Pre-Trained CNNs
The smallest possible architectures were chosen for both NASNet and DenseNet
with 5.3M parameters for NASNet Mobile and 8.1M for DenseNet 121, see Table
4.1. This was due to the size of the dataset and the complexity of the designated task
for the model, for example, the number of classes. For comparison, EfficientNet B3
was chosen with a total number of parameters of 12.3M, see Table 4.1. The input
size for NASNet mobile had to be 224x224 instead of 480x360 like DenseNet and
EfficientNet, because of Tensorflow version 2.6.0 bugs.

4.1.2 Pre-Trained Transformers
For DeiT and CaiT, the smallest available architectures, ’tiny’ and ’xxs’ respec-
tively, were picked for the same reasons mentioned above. The DeiT ’tiny’ archi-
tecture has a patch size of 16x16 and the input size is 224x224. The patch size
chosen is the smallest available but instead entails higher computational cost and

29

Chapter 4. Classification Solution Approach

possibly better results [Dosovitskiy et al., 2021]. The input size of CaiT ’xxs’ is
384x384 [Touvron et al., 2021b].

Below is a table of all pre-trained models used in the experiments.

Table 4.1 All pre-trained models. The parameters are without the added
head’s/classifier’s parameters. Reference name refers to the specific name assigned
to each model in the report, which is used throughout the report to refer to each
model.

Model Ref. name # of Params Input size (x, y)
DenseNet121 DenseNet 8.1M 480, 360
EfficientNetB3 EfficientNet 12.3M 480, 360
NASNetMobile NASNet 5.3M 224, 224
DeiT Tiny Distilled DeiT 5.5M 224, 224
CaiT Xxs24 CaiT 12.0M 384, 384

4.1.3 Classification Head
To perform feature-extraction on all pre-trained models, the last dense layer of the
model was removed and a classification head was attached at the top. A combination
of dense layers, drop out layers, pooling layers, and batch normalization layers were
used depending on the model. Common for all classification heads was the last
dense layer containing three nodes for the three classes to be predicted.

4.1.4 Customized Vision Transformer
A Vision Transformer was created with custom architecture to fit this particular
task. The best architectures were found by manually tuning the number of layers
and heads, size of projection dimension, patch size, input size, and drop out factor.
The hyperparameters, such as learning rate, were also extensively tested to find
the optimal training setting for the models. The top three models’ architectures are
shown below in Table 4.2.

4.2 Experiment Design

The experiment pipeline consists of fetching the dataset information (sequences
and labels), sorting and selecting the data, loading and pre-processing the images
(resize, brightness, multi-channel, etc), loading or creating the model, training the
model, and evaluating with the test data. Only the model, training of said model,
and dataset were changed between experiments. During the experiments, both the
internal and the public datasets were used, and the goal was not to compare them
against one another but to improve the model’s generalization ability. Three datasets
were used for training and evaluating the models; PVDN-s, PVDN-l, and the inter-
nal dataset.

30

4.2 Experiment Design

Table 4.2 Three Vision Transformers’ custom architectures, referred to as ViT 1,
2, and 3. Proj. dim. is the projection dimension. Cosine(ηmax, ηmin, Ti) is the cosine
annealing settings with ηmax and ηmin as learning rate max & min, and Ti is the
maximum number of iterations/epochs of the cosine period. Scheduler(ηmax, ηmin,
startepochs) is the learning rate scheduler, with ηmin and ηmax as learning rate min &
max, and startepochs is the number of epochs with the maximum learning rate.

ViT 1 2 3
of layers 5 5 12
of heads 4 4 4
Proj. dim. 20 100 140
Input size (480, 360) (480, 360) (480, 360)
Patch size (60,80) (60,80) (32, 32)
Learning rate Cosine(1e-5, 1e-9, 50) Scheduler(1e-5, 1e-9, 3) 1e-5

4.2.1 Dataset Split
The models were trained on three different datasets; a subset of images only from
PVDN "Night" called PVDN-s, a subset of images from both PVDN subsets ("Day"
and "Night") called PVDN-l, and the internal dataset. PVDN-s only consists of the
"Night" set, whose images are more similar to the internal images than the "Day"
set. PVDN-l contains images from both "Day" and "Night" sets, which means that
there is a difference in image qualities, details, and illumination within the sub-
set. The reason for training on both of these training sets was that even though the
internal images are more similar to "Night", it might increase the models’ general-
ization ability to train with a larger set of images. As mentioned in Section 2.5.5,
having a large dataset with a broad variety of data often improves performance. The
brightness of the images in the internal dataset had to be increased in order to match
PVDN’s images.

The internal dataset was split into three subsets; train, validation, and test, with
19, 10, and 11 video clips respectively. The split was done so that each set got a fair
amount of samples from class 1, as this is the critical class. As mentioned earlier,
the PVDN dataset was already split when downloaded.

Due to the imbalance of the number of images of each class in the datasets,
the validation set in all three datasets, PVDN-s, PVDN-l, and the internal dataset
had to be truncated to match the number of samples of class 1. We decided to keep
all images in the training set, and instead weigh the classes during training to get
more diverse training data. The evaluation was done with two different test sets, one
truncated to balance the number of images of the classes, and one with all images.
When comparing the class-specific performance of models, the balanced test set is
used. In contrast, the full test set is used for comparing the overall performance of
models.

The models’ performances were then evaluated on test sets from the three
datasets PVDN-s, PVDN-l, and the internal dataset.

31

Chapter 4. Classification Solution Approach

4.2.2 Data Pre-Processing
To ensure that our models can be effectively fine-tuned with pre-trained weights,
it was necessary to match the input size and channels of our dataset to those used
during pre-training. This involved resizing and converting all images from their
original grayscale format to three-channel images, with values replicated across all
three channels. In addition, for the two transformer models, the pixel values were
normalized to a range between -1 and 1 to further align the input with the pre-trained
models’ data. Pixel values and image size for each model can be seen in Table 4.3.
Additionally, the brightness of the images from the internal dataset and from the
subset "Day" in PVDN was increased. As mentioned in Section 3.1, examples of
images before and after brightness increase can be seen in Figure 3.2 for the PVDN
subset "Day" and Figure 3.4 for the internal dataset. This was accomplished by
applying a constant multiplication factor to the pixel value with a constant followed
by truncation of any values outside of the pixel range. Different constants were used
for the two datasets and the constants were chosen to match the subset "Night". Our
approach was not solely based on visual inspection, but also involved predicting
sequences with various constants and models, selecting the parameter that leads to
the highest accuracy.

Table 4.3 All models and their corresponding pixel value range and image sizes
that were used in the study.

Model Pixel values Input size (x, y)
DenseNet [0, 255] 480, 360
EfficientNet [0, 255] 480, 360
NASNet [0, 255] 224, 224
DeiT [-1, 1] 224, 224
CaiT [-1, 1] 384, 384

4.2.3 Data Augmentation
Data augmentation was used as a layer in all model architectures. We developed a
customized layer utilizing Keras Layers, that was designed for our datasets’ images’
properties. It contained transformations for contrast, brightness, and Gaussian blur.
The adjustments were applied using a random distribution, which means that the
function can skip augmentation entirely, or augment with one augmentation feature,
two features, or all features. As the augmentation is part of the models’ architecture,
all samples from all sets (train, validation, and test) passing through the model will
be augmented.

4.2.4 Training Processes
The processes consists of two main training methods; feature-extraction from a pre-
trained model (FE) and fine-tuning a pre-trained model (FT). The steps taken during

32

4.2 Experiment Design

the training processes were combinations of these two in different orders and ap-
plied to the datasets used. Two training processes for creating an optimized model
for the PVDN dataset were tested and evaluated in parallel, FT and FE-FT. After
this, the internal dataset was used to further fine-tune the resulting models trained
on PVDN. The steps of each process can be seen below. Table 4.4 shows a summary
of all processes and their datasets, and Figure 4.1 shows a flowchart of the steps of
each process. The models’ performances were evaluated after each step with the test
sets mentioned in Section 4.2.1.

During all fine-tuning steps in the processes, all layers of the models were re-
trained, instead of just unfreezing a few of the last layers. This was done because of
the number of models we trained and for efficiency reasons. Only retraining some
of the last layers could be tested as future work based on this project.

Since ImageNet and our datasets contain data from such different domains, we
will not have a process only consisting of FE steps. If a backbone trained on a dataset
from a related domain was used, the processes’ steps could have been different.

Process FT (PVDN). A model that is pre-trained on the ImageNet dataset was
fine-tuned on the PVDN dataset, both PVDN-s and PVDN-l. The hyperparameters
for this step varied depending on the model that was being fine-tuned. This was
done on all pre-trained models mentioned in Section 4.1.

Process FT (Internal). This process is connected to the previous one, where the
resulting model from FT (PVDN) was fine-tuned with the internal dataset. Only the
models trained on PVDN-l was used for this process. The reason for this is that
the accuracies from the models trained on PVDN-l exceeded the ones trained on
PVDN-s. Here, the hyperparameters were once again changed to keep the structure
of the weights and to not overtrain on the new dataset. This process is also referred
to as Int-FT throughout this report.

Process FE-FT (PVDN). The process of feature-extraction and fine-tuning is as
follows:

1. Feature-extraction from pre-trained model using the PVDN dataset

2. Fine-tuning the resulting model from step 1. with PVDN dataset

Feature-extraction with PVDN datasets (PVDN-s and PVDN-l) was first performed
on a pre-trained model. The classifier head’s architecture and the hyperparameters
varied depending on the model. The next step was to take this model, with the
trained head, and fine-tune it on the same dataset. As mentioned in Section 2.2.2, it
might be beneficial to train the head first, and then unfreeze the base model’s layers
and train the model again. To validate this, we evaluated both methods, only fine-
tuning and feature-extraction then fine-tuning, to see whether training the classifier
head first makes any difference.

33

Chapter 4. Classification Solution Approach

Process FE-FT (Internal). As in process Int-FT, this process builds upon the pre-
viously generated model from FE-FT (PVDN), trained on PVDN-l, and will be re-
ferred to as Int-FE-FT. The model was fine-tuned again with the internal dataset and
the hyperparameters were also modified to preserve the structure of the pre-trained
weights and not overtrain when fine-tuning. The training process in Int-FT is identi-
cal to Int-FE-FT, but the base model that is fine-tuned is not identical in the different
approaches.

Table 4.4 The training processes, their reference name (Ref.), and the respective
training datasets. ’Train’ refers to the training dataset during the experiments in this
project, and ’PT mod.’ is the pre-trained model the process is based on. ’Train PT
mod.’ is the dataset that the pre-trained model that is being feature-extracted or fine-
tuned is trained on.

Process Ref. Train PT mod. Train PT mod.
FT (PVDN) FT PVDN - ImageNet
FT Int-FT Internal FT (PVDN) PVDN
FE-FT (PVDN) FE-FT PVDN - ImageNet
FE-FT Int-FE-FT Internal FE-FT (PVDN) PVDN

Figure 4.1 The different paths for training the models. On the left-hand side, the
first two blocks represent FE-FT with PVDN, with the Int-FE-FT block located at
the bottom. FT with PVDN is represented on the right-hand side with Int-FT at the
bottom. The majority of all models generated were evaluated with PVDN and the
internal dataset, which can be seen in the middle block ’Eval’.

34

4.3 Resources

4.2.5 Hyperparameters
The hyperparameters chosen for the training experiments varied depending on the
model and method. For example, some models required a higher learning rate,
whilst other models were very sensitive to the learning rate. To control the learn-
ing rate, cosine annealing, and a step decay scheduler were used during most of
the trainings. The final hyperparameters for all trainings were decided on along the
way, during the development of the models. The number of epochs was set to 100,
with early stopping using 10 to 15 epochs in patience, and the batch size was set
to 32. These were common for all training sessions, except for the last step of each
process, the final fine-tuning, where the number of epochs was decreased to 20.

4.3 Resources

The end-to-end pipeline was conducted in Visual Studios Code using Python and
Shell. The implementation was done using frameworks such as TensorFlow, Keras,
TensorFlow Hub, Open CV, and Numpy. An internal computation cluster with sev-
eral CPUs and GPUs was used for the model trainings.

35

5
Results

This chapter presents the results of the models, evaluated using both the downsam-
pled, balanced, datasets and the full datasets.

5.1 Balanced Test Sets

When training the models with the dataset PVDN-l, using the FE-FT process of
feature-extraction and then fine-tuning, the best-performing model according to the
test accuracy and F1 score was DenseNet. It achieved an accuracy of 88.10% and
0.83 in F1 score for class 1 when evaluating with the test set from PVDN-s. Effi-
cientNet followed with an accuracy of 85.79% and an F1 score of 0.81. All models’
results for the processes, FE, FT, FE-FT, using the training set from PVDN-l and
the test set from PVDN-s can be seen in Figure ??.

Figure 5.1 Performances of models trained on the training set from PVDN-l with
different training processes, FT and FE-FT. The results are from evaluating with the
test set from PVDN-s, where the F1 score is for class 1 and the accuracy is for all
classes.

The results in Figure ?? show that the convolutional networks perform well for
the task when trained on the training set from PVDN-l. When only focusing on FE-

36

5.1 Balanced Test Sets

FT results, all convolutional neural networks perform better than the transformer-
based networks, both in terms of accuracy and F1 score. The FE-FT also seems to be
the better process for the convolutional-based networks. The opposite applies to the
transformer networks, where it’s beneficial to not pre-train the head in advance, and
only fine-tune the models. One reason might be that the trained head gets overfitted
to the train data due to being trained twice, and the model then performs poorly
on the test data. A transformer usually requires a large amount of data to perform
well and PVDN might not be large enough for a transformer network to learn from
[Dosovitskiy et al., 2021].

The same evaluation, as in Figure ??, was done for the models fine-tuned with
the internal dataset i.e. the processes Int-FE-FT and INT-FT. The two processes,
Int-FT and INT-FE-FT, are compared in Figure 5.2. EfficientNet trained on a model
with Int-FE-FT process achieved the best F1 score for class 1, 0.66, and the best
accuracy, 76.72%. The evaluation was done with the balanced test set from the
internal dataset.

Figure 5.2 Results from models fine-tuned using the internal dataset with different
training processes, Int-FT and Int-FE-FT. The F1 score is for class 1, and the accu-
racy is for all classes. The models were evaluated with the internal test set.

The models trained with Int-FE-FT and Int-FT showed less variation in F1
scores than those shown in Figure 5.1, trained on the train set from PVDN-l and
evaluated with the test set from PVDN-s. The range of the F1 scores for the models
trained with the internal dataset was 0.17, whereas for PVDN, the range of the F1
scores was 0.31. It seemed like the performance of the pre-trained models, the FT
and FE-FT models, had little impact on the performance of the models fine-tuned
with the internal dataset, as the transformer models did not perform as poorly com-
pared to the convolutional networks as they did when trained on the PVDN dataset.
One potential explanation for this could be that the transformer models were more
generalized and better at predicting unseen data than the convolutional. This is also
implicated in Table 5.2, where the CaiT model trained on PVDN-l got an accuracy

37

Chapter 5. Results

of 70.92% when evaluated with the internal test set. This is only approximately 3.5
percentage points lower than the one trained on the internal dataset.

To compare the performance difference between training on PVDN and the in-
ternal dataset, we evaluated all models solely trained on PVDN-l using the internal
test set. The resulting F1 score for class 1 and overall accuracy when using PVDN-l
with FT and FE-FT, and internal with Int-FT and Int-FE-FT are shown in Figure
5.3.

Figure 5.3 Performances of fine-tuned models trained on PVDN-l and the internal
dataset using FT, FE-FT, Int-FT, and Int-FE-FT processes, evaluated on the internal
test set. The F1 score is for class 1, and the accuracy is calculated for all classes.

Figure 5.4 presents the results of training the models using the FE-FT process
and evaluating them when trained using different training datasets. The accuracy
and F1 score for class 1 are displayed for all models. The test set from PVDN-s
was used to evaluate the models trained on both PVDN-s and PVDN-l datasets,
whereas the internal test set was used for evaluating the models trained on the inter-
nal dataset. It can be seen that all models, except DeiT, improve when training on
the larger dataset, PVDN-l.

Figures 5.5 and 5.6 show the results of the highest-performing models. The
models have been evaluated using PVDN-s and the internal test set, however, they
were trained using different training processes and datasets. According to Figure
5.6, the models trained on PVDN (FT and FE-FT) showed a similar F1 result for
predicting classes 0 and 2, and the difference between them lies in the F1 score for
class 1. The difference in F1 score for class 1 is a significant factor that accounts
for the variation in accuracy between the models, with higher F1 scores leading to
greater accuracy and vice versa. When examining the plot on the right-hand side of
Figure 5.6, which displays the results of models evaluated on the internal test set,
it can be seen that the F1 score for class 1 remains consistent across all models.
However, the F1 scores for categories 0 and 2 are lower for the NASNet and DeiT
models, leading to a decrease in accuracy compared to when they were trained on

38

5.1 Balanced Test Sets

Figure 5.4 Comparison of the models’ performances when training on different
datasets with the FE-FT and Int-FE-FT processes, and evaluating with the respective
test set. The light green bar is for the models trained and evaluated with small PVDN
(PVDN-s). The dark green bar, in the middle, is for the models trained on the larger
PVDN (PVDN-l) and evaluated with the test set from PVDN-s. The pink bar shows
the result from the models being trained and evaluated with the internal dataset.

Figure 5.5 Comparison of accuracy, F1-score for category 1, precision for cate-
gory 1, and recall for category 1. The results shown in the figure correspond to the
process generating the highest accuracy for each model evaluated with PVDN-s and
the internal test set.

the PVDN dataset. However, the two datasets, PVDN, and the internal dataset are
different both when it comes to the number of images, the number of sequences, and
the images’ properties. This might be a reason for the difference in performance
between the models trained and evaluated on PVDN and the models trained and
evaluated on the internal dataset.

An unexpected result is that the models trained and evaluated on the internal
dataset are better at predicting class 2 than class 0, even though there is an over-
representation of images with class 0 in the dataset. When visually inspecting the

39

Chapter 5. Results

Figure 5.6 Comparison of accuracy and F1-score. The results shown in the figure
correspond to the process generating the highest accuracy for each model evaluated
with PVDN-s and the internal test dataset.

images from both datasets, we noticed that the indirect and direct light from the
oncoming car’s headlights in the images from the PVDN subset "Night" is spreading
more and affects a larger area in the image. In the internal dataset and in the PVDN
subset "Day", the glare is, in many cases, contained in a small area which might lead
to difficulties for the models to distinguish between the classes in these datasets.

Table 5.1 and 5.2 show the performance of the top 10 performing models in
terms of accuracy, evaluated on both the balanced PVDN-s test set and the balanced
internal test set.

Table 5.1 Top 10 performing models, based on their accuracy on the test set from
PVDN-s, trained using different methods and displaying their corresponding accu-
racy and performance metrics.

Model Process Train Acc. F1 Prec. Recall
DenseNet FE-FT PVDN-l 0.881 0.87 0.83 0.8
DenseNet FT PVDN-l 0.862 0.87 0.81 0.75
EfficientNet FT PVDN-l 0.86 0.87 0.8 0.74
EfficientNet FE-FT PVDN-l 0.858 0.83 0.81 0.79
DenseNet FE-FT PVDN-s 0.854 0.84 0.78 0.73
EfficientNet FE-FT PVDN-s 0.852 0.87 0.76 0.67
EfficientNet FT PVDN-s 0.833 0.84 0.76 0.68
NasNet FE-FT PVDN-l 0.825 0.8 0.74 0.69
DenseNet FT PVDN-s 0.822 0.83 0.73 0.65
CaiT FT PVDN-l 0.818 0.9 0.71 0.59

The results for the top 3 performing ViTs with custom architectures (not pre-
trained on any dataset) are shown in Table 5.3. These models were only trained and
evaluated with PVDN-s.

40

5.1 Balanced Test Sets

Table 5.2 Top 10 performing models, based on their accuracy on the internal test
set, trained using different methods and displaying their corresponding accuracy and
performance metrics

Model Process Train Acc. F1 Prec. Recall
EfficientNet Int-FE-FT Int 0.767 0.78 0.62 0.52
DenseNet Int-FT Int 0.758 0.84 0.58 0.44
CaiT Int-FE-FT Int 0.744 0.78 0.61 0.51
CaiT Int-FT Int 0.742 0.82 0.55 0.41
EfficientNet Int-FT Int 0.734 0.72 0.56 0.46
DenseNet Int-FE-FT Int 0.731 0.85 0.52 0.37
CaiT FE-FT PVDN-l 0.709 0.67 0.58 0.51
CaiT FT PVDN-l 0.698 0.72 0.52 0.41
DenseNet FT PVDN-s 0.696 0.84 0.66 0.54
CaiT FT PVDN-s 0.688 0.56 0.59 0.63

Table 5.3 Accuracy and F1 score for all classes, 0, 1, and 2. The ViTs have an
architecture created by us, and these are the top 3 performing models in terms of test
accuracy.

ViT Accuracy F1 - class 0 F1 - class 1 F1 - class 2
1 0.621 0.61 0.46 0.75
2 0.611 0.63 0.37 0.77
3 0.601 0.64 0.38 0.7

NASNet and DeiT achieved lower performance compared to most of the other
models tested. It’s worth noting that they had the smallest image input size,
224x224, which may have led to a loss of important details in the images. This
is supported by the correlation observed in Figure 5.7, which suggests a possible
relationship between image input size and performance. However, further data is
required to draw a definitive conclusion about this correlation. Additionally, the rel-
atively low number of parameters in their architectures, 5.3 million and 5.5 million
respectively, could have contributed to their lower performance. For context, this is
approximately 3 million parameters fewer than the DenseNet, which achieved high
performance on the same task. However, our analysis did not find a clear correlation
between the number of parameters and performance, as shown in Figure 5.8.

While the internal dataset used for fine-tuning and testing contains a large num-
ber of images, it has a limited number of sequences. This means that many images
in the dataset are quite similar, and may not provide sufficient diversity for the
models’ training. This lack of diversity might explain why the transformer models
performed better when fine-tuned on the internal dataset. The attention mechanism
in the transformer models enables them to focus on different aspects of the images,
which might help capture variations between similar images in the dataset.

The results indicate that both EfficientNet and DenseNet are viable models for

41

Chapter 5. Results

Figure 5.7 Accuracy for the processes FT and FE-FT to the left and INT-FT and
INT-FE-FT to the right, plotted against the models’ input size. The input size is
calculated through the number of pixels in the x-plane multiplied by the number of
pixels in the y-plane.

Figure 5.8 Accuracy for the processes FT, FE-FT, INT-FT, and INT-FE-FT plotted
against the model parameters in millions. The models included for FT and FE-FT are
trained with PVDN-l and tested with PVDN-s. For Int-FT and Int-FE-FT, the models
were evaluated with the test set from the internal dataset.

this task. However, CaiT and DeiT also demonstrated strong performance when
fine-tuned on the internal dataset, suggesting their potential suitability for this task.
Since the models DeiT and NASNet did not achieve as good results as the models
with larger input sizes, we believe that all models could benefit from using input

42

5.1 Balanced Test Sets

images with higher resolutions.
The confusion matrices of the best-performing models, which are displayed in

Figure 5.5, can be found in Table 5.4 and Table 5.5. Table 5.4 shows the confusion
matrices obtained using the public test set, PVDN-s, while Table 5.5 shows the
confusion matrices obtained from the internal test set evaluation.

Table 5.4 Confusion matrices of the best performing models evaluated using the
downsampled test set PVDN-s, based on the process and training dataset resulting in
the highest weighted average F1 score.

Model Process Train set Confusion Matrix
Test set: PVDN-s

DenseNet FE-FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 383 29 8

1 50 334 36
2 5 22 393

EfficientNet FE-FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 388 26 6

1 67 331 22
2 14 44 362

NASNet FE-FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 362 46 12

1 91 288 41
2 6 25 389

CaiT FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 379 19 22

1 95 249 76
2 8 10 402

DeiT FE-FT PVDN-s

Predicted
0 1 2

A
ct

ua
l 0 393 22 5

1 217 161 42
2 29 19 372

The confusion matrices in Table 5.4 show that the balanced PVDN-s test set

43

Chapter 5. Results

Table 5.5 Confusion matrices of the best performing models evaluated using the
downsampled internal test set, based on the process and training dataset resulting in
the highest weighted average F1 score.

Model Process Train set Confusion Matrix
Test set: Internal

DenseNet Int-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 435 32 27

1 127 217 150
2 13 10 471

EfficientNet Int-FE-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 410 62 22

1 87 258 149
2 13 12 469

NASNet Int-FE-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 306 101 87

1 88 245 161
2 56 28 410

CaiT Int-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 437 34 23

1 160 202 132
2 24 10 460

DeiT Int-FE-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 353 60 81

1 147 192 155
2 49 24 421

exhibits an over-representation of images labeled as category 1 being predicted as
category 0. The opposite is true for the convolutional neural networks when evalu-
ating the balanced internal test set where more images of category 1 are classed as
category 2. The internal images are darker than the images in the test set PVDN-
s, images from the subset "Night", and the brightness and contrast of the internal
images were therefore increased. Too much contrast and brightness might lead to
smaller visual differences between images of category 1 and category 2 and could

44

5.2 Imbalanced Test Sets

be one reason why more images of category 1 are classed as category 2 for the
internal dataset.

5.2 Imbalanced Test Sets

To compare the overall performance of models, the models have been evaluated
using the full, imbalanced, test sets. The result of the highest performing models in
terms of weighted average of the F1 scores are presented in Table 5.6 and 5.7 using
the PVDN-s test set and the internal test set respectively. The models have been
trained using different training processes. The corresponding confusion matrices
can be seen in Table 5.8 and 5.9.

Table 5.6 Weighted average F1 score for the best-performing process and train set
for each model. The result is for evaluation with the PVDN-s test set.

Model Process Train set F1 - weighted average
Test set: PVDN-s

DenseNet FE-FT PVDN-l 0.91
EfficientNet FT PVDN-l 0.90
NASNet FE-FT PVDN-s 0.88
CaiT FT PVDN-l 0.89
DeiT FT PVDN-l 0.86

Table 5.7 Weighted average F1 score for the best-performing process and train set
for each model. The result is for evaluation with the internal test set.

Model Process Train set F1 - weighted average
Test set: Int

DenseNet Int-FT Internal 0.88
EfficientNet Int-FE-FT Internal 0.85
NASNet Int-FE-FT Internal 0.72
CaiT Int-FT Internal 0.87
DeiT FT/Int-FT PVDN-l/Internal 0.79

The weighted average F1 scores of the top performing models, presented in Ta-
ble 5.6 and 5.7, indicate that DenseNet is a highly effective deep learning model,
with average weighted F1 scores of 0.91 and 0.88 respectively, that performs well
for the task. Notably, the weighted average F1 score of DenseNet when evaluating
using the internal dataset is only slightly lower than the score when evaluating using
the PVDN test set, even though the internal dataset contains very few sequences. In
contrast, NASNet, trained using Int-FE-FT, achieved the lowest score of 0.72 on the
internal test set, and its performance was notably worse than when evaluated on the
PVDN test set, with a decrease of 0.16 in the F1 score. This suggests that the 19

45

Chapter 5. Results

Table 5.8 Confusion matrices of the best performing models evaluated using the
full test set PVDN-s, based on the process and training dataset resulting in the highest
weighted average F1 score.

Model Process Train set Confusion Matrix
Test set: PVDN-s

DenseNet FE-FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 1322 100 42

1 50 334 36
2 19 108 1883

EfficientNet FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 1360 80 24

1 96 309 15
2 84 107 1819

NASNet FE-FT PVDN-s

Predicted
0 1 2

A
ct

ua
l 0 1301 121 42

1 107 271 42
2 65 126 1819

CaiT FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 1306 58 100

1 95 249 76
2 64 42 1904

DeiT FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 1344 56 64

1 165 205 50
2 106 79 1825

sequences in the internal training set may not be sufficient for NASNet. The trans-
former model CaiT, trained using the Int-FT process, performed second best when
evaluating on the internal test set, and achieved only a 0.01 lower weighted average
F1 score than the best model, DenseNet. When evaluating CaiT, trained with the
process Int-FE-FT, on the PVDN-s test set, the model achieved a higher weighted
F1 score than when evaluating on the internal test set, this is shown in Table 7.2 in
the Appendix. This suggests that CaiT may have the ability to generalize well and

46

5.2 Imbalanced Test Sets

Table 5.9 Confusion matrices of the best performing models evaluated using the
full internal test set, based on the process and training dataset resulting in the highest
weighted average F1 score.

Model Process Train set Confusion Matrix
Test set: Internal

DenseNet Int-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 4496 251 248

1 127 217 150
2 28 21 1090

EfficientNet Int-FE-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 4208 582 205

1 87 258 149
2 30 27 1082

NASNet Int-FE-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 3347 924 724

1 88 245 161
2 117 64 958

CaiT Int-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 4476 295 224

1 160 202 132
2 46 29 1064

DeiT Int-FT Internal

Predicted
0 1 2

A
ct

ua
l 0 3952 779 264

1 142 276 76
2 126 176 837

DeiT FT PVDN-l

Predicted
0 1 2

A
ct

ua
l 0 4051 793 151

1 138 284 72
2 255 188 696

47

Chapter 5. Results

perform effectively even with a smaller training set. The performance of the DeiT
model did not improve when fine-tuned with the internal dataset, as evidenced by
the fact that its weighted average F1 score on the internal test set remained the
same as when it was only trained on the external dataset, PVDN. DeiT trained with
PVDN-l is the model that correctly predicted the highest number of images of cat-
egory 1 and is second best at correctly predicting class 1 when trained with the
internal dataset. However, this model had a high number of falsely predicted im-
ages of categories 0 and 2, predicted as category 1. The second best model when
evaluating the downsampled internal test set was EfficientNet, which was also the
second best at correctly predicting images of category 1 when using the full inter-
nal test set. However, the confusion matrix shows that the model falsely predicted
many images of category 0 as category 1, which is one reason for achieving only
the third-best weighted average F1 score. These findings highlight the importance
of evaluating using both a balanced test set and the full test sets, in order to get a
comprehensive understanding of model performance.

48

6
Future Work & Conclusion

This chapter suggests possible directions for future work and summarizes the main
findings.

6.1 Future Work

When designing a neural network model a common challenge is to ensure that the
model learns from relevant data and not overfits on specific details. One potential
issue that can contribute to overfitting is if the model learns to classify based on
information that is not actually relevant to the classification task. In our case, one
such issue might be that the model learns to classify based on the state of the own
car’s high beam. For example, it might learn that there is usually no other car present
when the own car’s high beam is turned on and the surrounding is illuminated.
However, this is not a valid factor since the task is to automatically turn off the
high beam and should not depend on the driver’s action. During the developing
phase, we noticed that the models incorrectly predicted the presence of a car, or
light artifacts from a car, in scenes where there was no such object or artifact when
the high beam was turned off. In other words, the model was detecting the presence
of a car due to the absence of the high beam, even though there was no actual car or
artifact present in the scene. By alternating when the high beam is turned off when
collecting new data, the impact of this bias could be reduced. This would lead to
data with images of all classes both with the high beam on and off, which would
help minimize the influence of the high beam. Another way to reduce the effect of
whether the surrounding is illuminated or not is to use an object detection method
or a segmentation method that only focuses on a small part of the image.

The augmentation layer, mentioned in Section 4.2.3, was part of all models’
architectures and was therefore applied on all sets; train, validation, and test. This
means that when predicting an input image, the image will be augmented with the
same probability as for an input from the train set. Augmenting the validation and
test set is not ideal, and should only be done for the training set to diversify the data
and the result might have been affected by this.

49

Chapter 6. Future Work & Conclusion

Since there was no annotated internal data for this project, annotations had to
be done by us. Due to time constraints, only a selected number of sequences were
chosen for the internal dataset. Figure 5.4 indicates that a larger dataset, PVDN-l,
results in better model performance compared to a smaller dataset, PVDN-s. Based
on this observation, we believe that more annotated data from a larger amount of
sequences would lead to improvements in the models’ performances. To expand on
this project, collecting and annotating more data would be a crucial part of devel-
oping an algorithm with reliable results.

One important consideration when expanding the dataset in the future is the
number of classes. Determining whether to turn off or keep the high beam on might
be easier with additional classes that describe the situation. For example, the two
classes where a car, or light artifact from a car, is present could be further divided
into classes that describe if the high beam should be turned off or not.

Using a sliding average when deactivating the high beam or using a probability
threshold for the images predicted as class 1 are alternative solutions to determine
if the high beam should be kept on or not.

To reach the models’ full potential, a hyperparameter grid search should be per-
formed on the models. The values chosen for hyperparameters such as learning
rate, batch size, and the number of epochs can greatly affect the performance of
the model. By testing the model with various combinations of hyperparameters the
model can reach its full potential, resulting in better accuracy and generalization. We
were, unfortunately, unable to do this due to constraints in both time and computer
resources. We noticed that some hyperparameters had a more significant impact on
the transformer models compared to the convolutional neural networks. Based on
this, we believe that a hyperparameter grid search would benefit the performance of
transformers and lead to improved results.

Several hyperparameters, as well as architectural structures such as the classifi-
cation head, for the models, were determined based on insights obtained from the
training process and its results. Many of these decisions were made along the way
as more information became available during the trainings. Some of the training
sessions took over a day to run, it was therefore difficult to plan ahead of time.
Even though we had access to a number of GPUs, the computational resource was
a limiting factor in this project. Another restriction due to constraints in both time
and computer resources is the number of models we were able to train and the input
image size of each model. Increasing the image size could lead to higher model
performance as it allows the model to capture more detailed information, as men-
tioned earlier. This is something that should be considered for future work, as well
as exploring more models.

The datasets consist of sequences extracted from a video clip, and a way of tak-
ing advantage of this would be to explore the efficacy of models taking a sequence
as input data. A model like this could be classifying sequences by detecting dif-
ferences between the images within the sequence. Manually annotating the internal
dataset was a challenging task when examining the images individually. Annota-

50

6.2 Conclusion

tions were instead made by looking at multiple frames, hence using models that
take a sequence as an input, such as 3D Convolutional Neural Networks and Video
Vision Transformers, might be a suitable solution for this task.

6.2 Conclusion

The primary goal of this thesis was to investigate the possibility to detect oncom-
ing vehicles during night-time before they become visible. This has been done
by evaluating three pre-trained convolutional neural networks and two pre-trained
vision transformers by training them using one public dataset and one internal
dataset. We utilized two different transfer learning techniques, fine-tuning, and
feature-extraction combined with fine-tuning, to leverage the knowledge from the
pre-trained models. Consequently, we conducted two training processes for each
dataset.

Among the models we evaluated, DenseNet trained using feature-extraction
and fine-tuning yielded the best results when evaluated on the balanced public
dataset, PVDN-s, with an accuracy of 88.1%. DenseNet trained using only fine-
tuning, and EfficientNet trained using feature-extraction and fine-tuning were the
top-performing models when evaluated on the balanced internal test set with ac-
curacies of 75.78% and 76.72% respectively. Interestingly, the vision transformer,
CaiT, achieved an accuracy of 70.92% when predicting the balanced internal test
set and being trained solely on the public dataset. When evaluating the imbalanced
test sets, DenseNet was the top-performing model for both the public and the inter-
nal test sets, with a weighted average F1 score of 0.91 and 0.88 respectively. CaiT
achieved the second-best weighted average F1 score, 0.87, when evaluating the full
internal test set.

Overall, our project findings demonstrate that different models, both
transformer-based and convolution-based models, are capable of detecting cars
during night-time before they become visible, by training them using a holistic
image classification approach to detect the light artifacts from the cars’ headlights.

51

7
Appendix

Table 7.1 Results from all model trainings. ’Acc.’ is the test accuracy and ’Prec.’
is the precision of class 1. The F1 score and recall are also calculated for class 1.

Process Model Train Test Acc. Prec. F1 Recall
DenseNet FE PVDN-s PVDN-s 0.655 0.63 0.38 0.27
DenseNet FE PVDN-l PVDN-s 0.658 0.57 0.55 0.53
DenseNet FE PVDN-l PVDN-l 0.62 0.54 0.44 0.37
EfficientNet FE PVDN-s PVDN-s 0.709 0.66 0.52 0.43
EfficientNet FE PVDN-l PVDN-s 0.66 0.66 0.33 0.22
EfficientNet FE PVDN-l PVDN-l 0.63 0.58 0.32 0.22
NasNet FE PVDN-s PVDN-s 0.618 0.61 0.36 0.26
NasNet FE PVDN-l PVDN-s 0.614 0.55 0.40 0.31
NasNet FE PVDN-l PVDN-l 0.605 0.56 0.36 0.27
DeiT FE PVDN-s PVDN-s 0.649 0.63 0.40 0.29
DeiT FE PVDN-l PVDN-s 0.624 0.63 0.38 0.27
DeiT FE PVDN-l PVDN-l 0.607 0.59 0.30 0.20
CaiT FE PVDN-s PVDN-s 0.617 0.56 0.32 0.23
CaiT FE PVDN-l PVDN-s 0.607 0.55 0.34 0.25
CaiT FE PVDN-l PVDN-l 0.589 0.56 0.32 0.22
DenseNet FE-FT PVDN-s PVDN-s 0.854 0.84 0.78 0.73
DenseNet FE-FT PVDN-s Int 0.659 0.74 0.49 0.37
DenseNet FE-FT PVDN-l PVDN-s 0.881 0.87 0.83 0.80
DenseNet FE-FT PVDN-l PVDN-l 0.812 0.83 0.71 0.62
DenseNet FE-FT PVDN-l Int 0.664 0.71 0.57 0.47
EfficientNet FE-FT PVDN-s PVDN-s 0.852 0.87 0.76 0.67
EfficientNet FE-FT PVDN-s Int 0.563 0.61 0.52 0.46
EfficientNet FE-FT PVDN-l PVDN-s 0.858 0.83 0.81 0.79
EfficientNet FE-FT PVDN-l PVDN-l 0.796 0.77 0.69 0.62
EfficientNet FE-FT PVDN-l Int 0.624 0.70 0.52 0.41
NasNet FE-FT PVDN-s PVDN-s 0.815 0.83 0.72 0.65

52

Chapter 7. Appendix

NasNet FE-FT PVDN-s Int 0.484 0.65 0.39 0.28
NasNet FE-FT PVDN-l PVDN-s 0.825 0.80 0.74 0.69
NasNet FE-FT PVDN-l PVDN-l 0.74 0.75 0.60 0.49
NasNet FE-FT PVDN-l Int 0.501 0.66 0.34 0.23
DeiT FE-FT PVDN-s PVDN-s 0.768 0.79 0.63 0.52
DeiT FE-FT PVDN-s Int 0.624 0.50 0.58 0.68
DeiT FE-FT PVDN-l PVDN-s 0.735 0.80 0.52 0.38
DeiT FE-FT PVDN-l PVDN-l 0.689 0.75 0.40 0.28
DeiT FE-FT PVDN-l Int 0.605 0.55 0.51 0.47
CaiT FE-FT PVDN-s PVDN-s 0.765 0.87 0.58 0.44
CaiT FE-FT PVDN-s Int 0.687 0.61 0.57 0.54
CaiT FE-FT PVDN-l PVDN-s 0.806 0.87 0.70 0.58
CaiT FE-FT PVDN-l PVDN-l 0.731 0.86 0.53 0.38
CaiT FE-FT PVDN-l Int 0.709 0.67 0.58 0.51
DenseNet FT PVDN-s PVDN-s 0.822 0.83 0.73 0.65
DenseNet FT PVDN-s Int 0.696 0.84 0.66 0.54
DenseNet FT PVDN-l PVDN-s 0.862 0.87 0.81 0.75
DenseNet FT PVDN-l PVDN-l 0.816 0.84 0.73 0.64
DenseNet FT PVDN-l Int 0.659 0.56 0.64 0.73
EfficientNet FT PVDN-s PVDN-s 0.833 0.84 0.76 0.68
EfficientNet FT PVDN-s Int 0.601 0.75 0.45 0.32
EfficientNet FT PVDN-l PVDN-s 0.86 0.87 0.80 0.74
EfficientNet FT PVDN-l PVDN-l 0.791 0.80 0.68 0.60
EfficientNet FT PVDN-l Int 0.653 0.70 0.64 0.59
NasNet FT PVDN-s PVDN-s 0.752 0.80 0.62 0.51
NasNet FT PVDN-s Int 0.546 0.48 0.42 0.38
NasNet FT PVDN-l PVDN-s 0.756 0.74 0.62 0.54
NasNet FT PVDN-l PVDN-l 0.716 0.72 0.56 0.45
NasNet FT PVDN-l Int 0.627 0.60 0.58 0.56
DeiT FT PVDN-s PVDN-s 0.737 0.80 0.56 0.43
DeiT FT PVDN-s Int 0.564 0.45 0.55 0.71
DeiT FT PVDN-l PVDN-s 0.775 0.84 0.62 0.49
DeiT FT PVDN-l PVDN-l 0.715 0.81 0.49 0.35
DeiT FT PVDN-l Int 0.651 0.61 0.59 0.57
CaiT FT PVDN-s PVDN-s 0.787 0.81 0.65 0.54
CaiT FT PVDN-s Int 0.688 0.56 0.59 0.63
CaiT FT PVDN-l PVDN-s 0.818 0.90 0.71 0.59
CaiT FT PVDN-l PVDN-l 0.746 0.84 0.56 0.43
CaiT FT PVDN-l Int 0.698 0.72 0.52 0.41
DenseNet Int-FE-FT Int Int 0.731 0.85 0.52 0.37
EfficientNet Int-FE-FT Int Int 0.767 0.78 0.62 0.52
NasNet Int-FE-FT Int Int 0.648 0.66 0.56 0.50
DeiT Int-FE-FT Int Int 0.652 0.70 0.50 0.39

53

Chapter 7. Appendix

CaiT Int-FE-FT Int Int 0.744 0.78 0.61 0.51
DenseNet Int-FT Int Int 0.758 0.84 0.58 0.44
EfficientNet Int-FT Int Int 0.734 0.72 0.56 0.46
NasNet Int-FT Int Int 0.633 0.59 0.45 0.36
DeiT Int-FT Int Int 0.675 0.61 0.58 0.56
CaiT Int-FT Int Int 0.742 0.82 0.55 0.41

Table 7.2 Results from the model trainings when evaluating with the imbalanced
test sets from PVDN-s and internal.

Model Process Train set Weighted F1 Weighted F1
(PVDN) (Internal)

DenseNet FE PVDN-s 0.78
DenseNet FE PVDN-l 0.75
DenseNet FE PVDN-l 0.75
EfficientNet FE PVDN-s 0.81
EfficientNet FE PVDN-l 0.81
EfficientNet FE PVDN-l 0.81
NasNet FE PVDN-s 0.75
NasNet FE PVDN-l 0.74
NasNet FE PVDN-l 0.74
CaiT FE PVDN-l 0.74
CaiT FE PVDN-l 0.74
CaiT FE PVDN-s 0.73
DeiT FE PVDN-s 0.75
DeiT FE PVDN-l 0.74
DeiT FE PVDN-l 0.74
DenseNet FE-FT PVDN-s 0.9 0.81
DenseNet FE-FT PVDN-l 0.91 0.76
EfficientNet FE-FT PVDN-l 0.89 0.83
EfficientNet FE-FT PVDN-s 0.9 0.77
NasNet FE-FT PVDN-l 0.88 0.75
NasNet FE-FT PVDN-s 0.88 0.66
CaiT FE-FT PVDN-l 0.88 0.82
CaiT FE-FT PVDN-s 0.86 0.76
DeiT FE-FT PVDN-l 0.84 0.72
DeiT FE-FT PVDN-s 0.85 0.67
DenseNet FT PVDN-s 0.87 0.81
DenseNet FT PVDN-l 0.9 0.77
EfficientNet FT PVDN-s 0.89 0.82
EfficientNet FT PVDN-l 0.9 0.8

54

Chapter 7. Appendix

NasNet FT PVDN-l 0.84 0.7
NasNet FT PVDN-s 0.83 0.56
CaiT FT PVDN-l 0.89 0.85
CaiT FT PVDN-s 0.87 0.73
DeiT FT PVDN-l 0.86 0.79
DeiT FT PVDN-s 0.83 0.6
DenseNet Int-FE-FT Internal 0.79 0.86
EfficientNet Int-FE-FT Internal 0.35 0.85
NasNet Int-FE-FT Internal 0.35 0.72
CaiT Int-FE-FT Internal 0.87 0.84
DeiT Int-FE-FT Internal 0.82 0.76
DenseNet Int-FT Internal 0.79 0.88
EfficientNet Int-FT Internal 0.06 0.81
NasNet Int-FT Internal 0.02 0.71
CaiT Int-FT Internal 0.83 0.87
DeiT Int-FT Internal 0.85 0.79

55

Bibliography

Aggarwal, C. C. (2018). Neural Networks and Deep Learning (A Textbook). 1st ed.
Springer International Publishing.

Bezdan, T. and N. Bacanin (2019). “Convolutional neural network layers and archi-
tectures”, pp. 445–451. DOI: 10.15308/Sinteza-2019-445-451.

Chollet, F. et al. (2015–2021). Keras documentation: keras applications. https:
//keras.io/api/applications/. Accessed: March 24, 2023.

Developers, G. (n.d.). Sampling and splitting data for machine learning. https://
developers.google.com/machine-learning/data-prep/construct/
sampling-splitting. Accessed on March 24, 2023.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby
(2021). An image is worth 16x16 words: transformers for image recognition at
scale. arXiv: 2010.11929 [cs.CV].

Ewecker, L., E. Asan, L. Ohnemus, and S. Saralajew (2022). Provident vehicle de-
tection at night for advanced driver assistance systems. arXiv: 2107.11302
[cs.CV].

Ghayoumi, M. (2022). Deep Learning in Practice. 1st. [cited 2023 Mar 12]. CRC
Press, Taylor and Francis Group.

Hendrycks, D. and K. Gimpel (2020). Gaussian error linear units (gelus). URL:
https://arxiv.org/abs/1606.08415.

Huang, G., Z. Liu, L. van der Maaten, and K. Q. Weinberger (2017). “Densely
connected convolutional networks”, pp. 2261–2269. DOI: 10 . 1109 / CVPR .
2017.243.

Keras (2023). Transfer learning & fine-tuning. https://keras.io/guides/
transfer_learning/. [Accessed on 24th March 2023].

Loshchilov, I. and F. Hutter (2017). Sgdr: stochastic gradient descent with warm
restarts. arXiv: 1608.03983 [cs.LG].

Lu, J. (2022). “Gradient descent, stochastic optimization, and other tales”. ArXiv
abs/2205.00832.

56

Bibliography

Nwankpa, C., W. Ijomah, A. Gachagan, and S. Marshall (2018). “Activation func-
tions: comparison of trends in practice and research for deep learning”.

O’Shea, K. and R. Nash (2015). “An introduction to convolutional neural net-
works”.

Ohnemus, L., L. Ewecker, E. Asan, S. Roos, S. Isele, J. Ketterer, L. Müller, and S.
Saralajew (2021). Provident vehicle detection at night: the pvdn dataset. arXiv:
2012.15376 [cs.CV].

Oldenziel, E., L. Ohnemus, and S. Saralajew (2020). “Provident detection of vehi-
cles at night”. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 472–479.
DOI: 10.1109/IV47402.2020.9304752.

Powers, D. M. W. (2020). Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. arXiv: 2010.16061 [cs.LG].

Sarkar, D., R. Bali, and T. Ghosh (2018). Hands-On Transfer Learning with Python:
Implement advanced deep learning and neural network models using Tensor-
Flow and Keras. Packt Publishing.

Silva, I. da, D. Hernane Spatti, R. Andrade Flauzino, L. Liboni, and S. dos Reis
Alves (2017). Artificial Neural Networks. A Practical Course. 1st. Springer In-
ternational Publishing.

Tan, M. and Q. V. Le (2020). Efficientnet: rethinking model scaling for convolu-
tional neural networks. arXiv: 1905.11946 [cs.LG].

TensorFlow 2.0 API Docs (n.d.). https://www.tensorflow.org/versions/
r2.0/api_docs/python/tf/keras/Model\#fit. Accessed on March 24,
2023.

TensorFlow Hub Authors (2018–2023). Tensorflow hub. https://tfhub.dev/.
Accessed: March 24, 2023.

Touvron, H., M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou (2021a).
Training data-efficient image transformers & distillation through attention.
arXiv: 2012.12877 [cs.CV].

Touvron, H., M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou (2021b). Going
deeper with image transformers. arXiv: 2103.17239 [cs.CV].

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin (2017). Attention is all you need. arXiv: 1706.03762
[cs.CL].

Yang, S., W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen (2022). Image data
augmentation for deep learning: a survey. arXiv: 2204.08610 [cs.CV].

Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le (2018). “Learning transferable
architectures for scalable image recognition”, pp. 8697–8710. DOI: 10.1109/
CVPR.2018.00907.

57

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
May 2023
Document Number
TFRT-6195

Author(s)

Celine Ivarsson
Jennifer Zacke

Supervisor
Liam Fahlstad, Qualcomm
Joar Karlgren Gustavsson, Qualcomm
Mats Fridén, Qualcomm
Simon Näsfeldt, Qualcomm
Rickard Peterson, Qualcomm
Pontus Giselsson, Dept. of Automatic Control, Lund
University, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Night-time Vehicle Detection Based on Observable Light Cues Using Deep Learning
Abstract

This thesis investigates the issue of computer vision-based detection of oncoming cars during night-
time, a critical road safety issue for automated high-beam assist. We propose a holistic image
classification approach that uses deep learning methods to detect light artifacts from an oncoming
car’s headlights before the car is entirely visible. We explore six different model architectures,
including both convolutional neural networks and transformer-based models. We train them using
transfer learning with both public and internal datasets using models pre-trained on ImageNet.
We evaluate the generalization ability of the models and find that they can achieve up to 71%
accuracy when trained on the public dataset and evaluated on the class-balanced internal dataset. Our
results show that both convolution-based and transformer-based models have potential in
performance for this task, with the best models reaching up to 88% accuracy when trained with the
full public dataset and evaluated with the class-balanced public test set. Our research contributes to
the field by introducing an approach to detection of oncoming cars and comparing different model
architectures for this task.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-57

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Tom sida

