

Department of Automatic Control

Energy-Efficient Fixed-Coefficient FIR Filters
for Millimeter-Wave Radios

Erik Lundell

Gustav Molin

MSc Thesis
TFRT-6199
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Erik Lundell & Gustav Molin. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2023

Abstract

With the introduction of millimeter-wave antenna arrays in 5G base-stations and
ever-increasing data volumes, the power consumption of the signal processing in
digital radio systems has increased over the last decade. This, combined with in-
creased cost and environmental awareness, has put focus on power optimization.
This thesis investigates different aspects of optimizing one important component of
digital radio systems, fixed-coefficient FIR filters.

The thesis initially investigates subblocks of the FIR filters separately. The cost
of fixed coefficient multiplication is found to be linearly dependent on the number
of signed digits in the coefficient set while additions are linearly dependent on the
number of summed bits.

The second part of the thesis considers complete filters. First, two common filter
architectures are compared and the direct form is found to be more efficient. Then,
a mixed-integer linear program is formulated that minimizes the number of signed
digits in the filter coefficients. This optimization is shown to be able to reduce the
number of signed digits with 20–30% compared to the median which translates
to a similar reduction in area and power. Furthermore, allowing the filter gain to
be flexible is found to reduce the optimal number signed digits additionally with
around 20%. For filter specifications where there are multiple solutions with the
same optimal number of signed digits, a ranking score based on other coefficient
features is suggested.

In the final part of the thesis, the optimal solutions from the second part are opti-
mized further. An algorithm for finding common sub-expressions in coefficient sets
is developed. Using these sub-expressions when implementing the filter is shown to
reduce both area and power consumption with 5–25%.

3

Acknowledgements

We would like to thank Olof Troeng, our supervisor at Ericsson who has supported
us extensively throughout the entire thesis, providing great feedback and insight. In
addition to Olof, there are many colleagues at Ericsson that have aided our thesis
with knowledge of the ASIC synthesis toolchain of which we would like to thank
Joakim Ahlgren, Hans Hagberg, Grzegorz Swiecanski, and Inayat Ullah in partic-
ular. Finally, we would like to thank our academic supervisor Bo Bernhardsson for
providing valuable feedback on the report.

5

Contents

1. Introduction 9
1.1 Goal and purpose . 10
1.2 Problem formulation . 10
1.3 Methodology . 10
1.4 Delimitations . 11
1.5 Outline . 11
1.6 Abbreviations and notation . 12

2. Background 13
2.1 Digital filters . 13
2.2 ASICs . 16
2.3 Hardware implementation of an FIR filter 21
2.4 FIR filter architectures . 23
2.5 Coefficient selection . 26

3. Initial Investigations 28
3.1 Experiment setup . 28
3.2 FIR filter subblocks . 28

4. Filter-level optimization 37
4.1 Direct and transposed form comparison 37
4.2 Coefficient optimization . 38

5. RTL-level Optimization 48
5.1 Sub-expression sharing . 48

6. Summary & Conclusions 54
6.1 Method critique . 56
6.2 Future work . 56

Bibliography 57

7

1
Introduction

Although radio signals are inherently analog, digital components have played an
important role in radio systems since at least the 1980s when the digital radio stan-
dard Global System for Mobile communications (GSM) was introduced. Rapidly
improving semiconductor technology made this entirely new way of constructing
radio systems possible. Since then, the field of Digital Signal Processing (DSP)
has grown massively in every aspect from algorithms to hardware implementation.
These digital systems can be built using flexible embedded microcontrollers. How-
ever, the highly specialized nature of DSP makes application-specific integrated
circuits (ASICs) and field-programmable gate arrays (FPGAs) viable choices for
achieving high performance at a low production cost. The high level of control of
these platforms has the added benefit of making detailed optimization possible.

Digital filters make up an integral part of any digital-analogue radio system.
One filter type with several useful properties is the finite impulse response (FIR)
filter. Such filters and many other DSP components contain many fixed-coefficient
multiplications and summations. As such, much research has gone into reducing
the power consumption, silicon area and delay of such operations. Since the fifth-
generation technology standard, 5G, has been rolled out in cellular networks, the
topic has been revitalized. Modern 5G base stations utilize radio waves with wave-
lengths in the millimeter range. Millimeter wave radios need many antennas oper-
ating in parallel, so-called antenna arrays, to get sufficient gain and to transmit mul-
tiple radio-beams simultaneously. Each antenna needs one DSP chain which means
that the number of filters and accordingly their power consumption scales with the
number of antennas. In addition to this, data volumes have increased steadily which
further increases the power consumption.

In addition to data throughput, the focus of optimization efforts has thus shifted
towards minimizing power consumption. Decreasing power consumption of course
decreases the cost of running the base station but also reduces the size and weight
of the equipment since less cooling is needed. Improving power consumption can
therefore reduce manufacturing and transportation costs as well as environmental
impact.

9

Chapter 1. Introduction

1.1 Goal and purpose

The goal of this thesis is to investigate how the implementation of fixed-coefficient
FIR filters in ASICs can be optimized to reduce power consumption. The thesis
determines areas with power-optimization potential and applies methods for utiliz-
ing this potential. Silicon area is also considered due to the link between area and
power. Secondly, the thesis strives to quantify the gain of such optimizations.

Since FIR filters are common components in DSP systems such optimizations
can have an impact on many applications. Reducing power consumption in ASICs
reduces both cost and environmental impact of the ASIC at runtime but also in
production, since excess power generates heat which requires installing heat sinks
for cooling. In extreme cases, reducing power consumption of FIR filters might even
be crucial to make a design feasible since the temperature of a circuit must be kept
below a certain threshold.

1.2 Problem formulation

The optimization effort can broadly be split into two main stages. First, the filter is
designed. The filter architecture is decided and the coefficients are chosen. At this
level, this thesis investigates

• Out of the direct form and transposed direct form, which FIR filter architec-
ture performs the best power and area-wise?

• How should the coefficients of a fixed-coefficient FIR filter be chosen to op-
timize power and area, given a certain filter specification?

• How does the clock frequency of an ASIC affect the power and area con-
sumption?

Then, the designed filter is implemented in RTL code where additional opti-
mization can be done. At this level, the thesis investigates

• Can manually implemented sub-expression sharing outperform the power and
area optimization performed by the ASIC synthesis toolchain and if so, with
how much?

• How is the manual RTL optimization affected by clock frequency?

1.3 Methodology

In the initial phase of this thesis, information about how to approach the problem
and which parameters to consider when optimizing ASICs in general and FIR fil-
ters in particular was gathered, both from academic literature and from Ericsson

10

1.4 Delimitations

internally. Then, an environment for synthesizing parameterized RTL code and esti-
mating its power consumption was created for prototyping manual implementations
and automated testing of many configurations.

Matlab was used to create batches of configurations with varying coefficients
and clock frequencies. The coefficients were chosen depending on what the exper-
iment aims to test. However, one main focus was the minimization of signed digits
through a mixed-integer linear program. These configurations were then synthe-
sized and their power consumption was estimated. Finally, the results were fed back
to Matlab for analysis.

In addition to these experiments, an algorithm was developed that determines
which solutions from the above linear program have good RTL-level-optimization
potential. These were implemented manually to compare with the results from the
automatic synthesis.

1.4 Delimitations

The filters considered in the thesis are limited to low-pass filters, though the conclu-
sions of this investigation should easily carry over to other filter types. Regarding the
architecture of the filters, only the two most common FIR realizations are consid-
ered, the direct form and the transposed direct form. Because of the work-intensive
nature of hand implementing the RTL level optimizations mentioned above, these
were only carried of for the most promising coefficient sets. One final limitation is
that due to technical limitations, the power estimations do not include glitch power.

1.5 Outline

The following chapter lays out a theoretical background for power optimizing FIR
filters. First, digital filters in general and FIR filters in particular are explained. Then,
a section follows with a description of ASICs and what to consider when optimizing
ASICs for power. Thirdly, these areas are combined and the implementation of FIR
filters in ASICs is discussed. The chapter finishes with a description of earlier work
on how to select efficient coefficients for FIR filters.

The work carried out in the thesis is then presented and discussed in three chap-
ters. Chapter 3 describes the initial work of the thesis. The experiment setup is
explained and the initial investigations of subblocks of FIR filters are presented.
Building on these results, in Chapter 4 optimizations on the filter design are ex-
plored. Two architectures for implementing FIR filters are compared and a strategy
for selecting power-efficient coefficients is developed. Finally, in Chapter 5, differ-
ent strategies for reducing the area and power even further when implementing the
filter in RTL code are explored. The main results of the thesis are summarized in
the concluding Chapter 6.

11

Chapter 1. Introduction

1.6 Abbreviations and notation

The following list explains the abbreviations most commonly used throughout the
thesis.

ASIC Application specific integrated chip

CMVM Constant matrix vector multiplication

CSD Canonical signed digits

DF Direct form

DTFT Discrete-time Fourier transform

FIR Finite impulse response

MCM Multiple constant multiplication

MILP Mixed-integer linear program

POT Powers of two

RTL Register transfer level

SCM Single constant multiplication

SOP Sum of products

SPT Signed powers of two

TF Transposed form

The area unit used throughout the thesis is µm2 which is meant to be interpreted
as square micrometers. Bit-shifts are denoted with the symbol “≪”. x≪ 3 should
thus be interpreted as x bit-shifted 3 bits to the left. A binary digit with a bar is used
to denote that the bit is to be subtracted from the binary number rather than added.
For example, 1001̄ = 8−1 = 7. This way of representing numbers is called signed
powers of two (SPT) representation or signed digits representation and is explained
more thoroughly in section 2.3.3. These terms are used interchangeably throughout
the thesis.

12

2
Background

2.1 Digital filters

2.1.1 The frequency domain of a discrete signal
To process continuous signals in digital systems, they first have to be sampled. If
a real-valued signal x is sampled at a constant time interval, producing a series
x[n], n ∈ Z, that is finitely summable, there exists a discrete-time Fourier transform
(DTFT)

X(e j2π f) = F (x[n]) =
∞

∑
n=−∞

x[n]e− j2π f n.

The DTFT is periodic with a period of one and is usually plotted symmetrically
around zero, for f =−0.5, . . . ,0.5. Additionally, there is a reverse formula

x[n] =
∫

X(e j2π f)e j2π f n d f ,

where the integration can be done over any interval of length 1. These transforms
reveal that x[n] in addition to the time domain can be analyzed in the frequency
domain, as a spectrum of complex oscillations with varying frequencies and am-
plitudes. One property of the DTFT is that since the transformation is linear, linear
operations stay linear after the transform. One notable example is the time shift
which has the transform

F (x[n−m]) =
∞

∑
n=−∞

x[n−m]e− j2π f n =
∞

∑
n′=−∞

x[n′]e− j2π f (n′+m)

= X(e j2π f)e− j2π f m, (2.1)

where the variable substitution n′ = n−m is used. Usually, the time shift is stated
in terms of the z-transform and the substitution z = e j2π f is used such that F (x[n−
m]) = X(z)z−m. The time-shift operator is the basic building block for digital filters
which will be described in the next section and be analyzed using DTFT.

2.1.2 Digital filters
Linear time-invariant (LTI)-filters operating on discrete signals are called digital
filters. The most general class, called Infinite Impulse Response (IIR) filters, are

13

Chapter 2. Background

defined by a difference equation

K−1

∑
k=0

aky[n− k] =
M−1

∑
m=0

bmx[n−m]

where y[n] is the output signal and x[n] is the input signal. M is the order of the
filter and ak and bm are coefficients that determine the effect of the filter. The output
is thus computed as a weighted sum of the input and earlier computed output val-
ues. Applying the DTFT on both sides of the equation, utilizing equation 2.1 and
inserting the substitution z = e j2π f yields

K−1

∑
k=0

akz−kY (z) =
M−1

∑
m=0

bmz−mX(z)

which can be rewritten in the common form

H(z) :=
Y (z)
X(z)

=
∑

M−1
m=0 bmz−m

∑
K−1
k=0 akz−k

.

H(z), called the transfer function, is a rational function in z and completely charac-
terizes the filter. Since it is complex-valued function, it is often separated into mag-
nitude, |H(z)| and angle, ∠H(z), the gain and phase shift at the complex frequency
z. Since IIR filters reuse previously calculated output values, they require feedback
in their implementation. This causes more complex implementations compared to
feed-forward filters but also, more importantly, means that IIR filters are not guar-
anteed to be stable. A finite input can have infinite gain and the filter might output
infinite oscillations after the input signal has reached zero. Because of this, a subset
of IIR filters where the denominator of H(z) is equal to one, called Finite Impulse
Response (FIR) filters, are often considered. FIR filters usually require higher or-
ders than IIR-filters to achieve similar performance but on the other hand do not
require feedback and are guaranteed to be stable. Additionally, they turn out to have
other useful properties.

2.1.3 FIR filters
When discussing FIR filters, h̄ = {hk, k = 0 . . .M−1} is usually used to denote the
coefficients. The time domain equation for a FIR filter of order M is then

y[n] =
M−1

∑
k=0

hkx[n− k]

and the corresponding transfer function is

H(z) =
M−1

∑
k=0

hkz−k.

14

2.1 Digital filters

When designing FIR filter implementations, it is often useful to view the filter in
matrix form, allowing for convenient notation of different factorizations:

y[n] = H(z)x[n] =
[
h0 h1 . . . hM−1

]

1
z−1

...
z−(M−1)

x[n] =: h̄T z̄x[n]. (2.2)

A special class of FIR filters are symmetric filters where hk = hM−1−k. Remind-
ing ourselves that z= e j2π f , H(z) can be rewritten by factorizing out e− j2π

M−1
2 which

leaves pairs of complex exponentials e±n j2π f for some n:s. Because of the symmet-
ric coefficients these exponentials have the same coefficient and can be combined
using Eulers formula to the real-valued cosine function. The remaining complex
part of the transfer function is then only the factorized e− j2π

M−1
2 f and ∠H(z) is

easily determined to be −2π
M−1

2 f . A filter with such a ∠H(z) is said to have a
linear phase property and applies same amount of delay, called group delay, to each
sample. This means that the signal will not be distorted by the filter. Furthermore,
the magnitude of the transfer function |H(z)| is the absolute value of a sum of co-
sine functions. Since cosine is an even function, |H(z)| is also an even function, i.e.
symmetric around zero. Because of this, in this thesis |H(z)| will only be plotted for
f ∈ [0,0.5].

The exact details of this manipulation varies slightly depending on whether the
filter order is odd or symmetric. For odd-ordered symmetric FIR filters, referred
to as type I, there is an odd number of terms and they cannot be paired perfectly
two and two. The middle coefficient is left as a constant and the transfer function
becomes

H(ω) = e− jω M−1
2

M−1
2

∑
n=0

an cos(ωn) (2.3)

with

an =

{
h M−1

2
n = 0

2h M−1
2 −n n = 1 . . . M−1

2 .
(2.4)

Note that cos(ωn) = 1 for n = 0. Symmetric even-ordered filters are referred to as
type II and instead have the transfer function

HII(e j2π f) = e− j2π f M−1
2

M/2

∑
n=1

an cos(2π f (n− 1
2
)) (2.5)

where

an = 2hM/2−n n = 1 . . .M/2 (2.6)

15

Chapter 2. Background

Parameter Description

fp The highest frequency for which the gain must be
within the pass-band ripple.

fs The lowest frequency for which the gain must be
within the stop-band ripple.

δp The pass-band ripple, the maximum allowed
value of |H(z)/G−1| for f ∈ [0, fp]

δs The stop-band ripple, the maximum allowed
value of |H(z)/G| for f ∈ [fs,1]

G The static gain of the filter, |H(0)|.

Table 2.1 The parameters defining a low-pass filter specification.

The set ā = {an} will be referred to as the coefficient set throughout the thesis. Due
to the linear phase properties and how the coefficient symmetry can be utilized for
more efficient implementations, these are the FIR filter types that will be considered
in this thesis. This has the additional benefit that the set of feasible integer solutions,
and correspondingly the solution time, is reduced.

2.1.4 Filter specification
When designing a filter, it is of course not the specific coefficients that are of interest
but rather the filter properties. While this thesis focuses on low-pass filters, similar
terminology carries over for other kinds of filters. The primary parameters of a low-
pass filter are the pass-band and stop-band edge frequencies fp and fs which define
the cutoff. Furthermore, there is the pass-band and stop-band max-ripple, δp and δs
which constrain how much |H(z)|/G can deviate from 1 in the pass-band and 0 in
the stop-band respectively, where G is the final parameter, the static gain of the filter.
For convenience these parameters are listed in Table 2.1. A graphical depiction of
these parameters is shown in Figure 2.1.

In a DSP application, it is common to chain multiple filters of lower order to-
gether rather than applying one long filter. Because of this, instead of forcing each
filter to have a specific gain, the final gain can be adjusted after the filter chain with
a single multiplication. The gain can thus be viewed as a free parameter to be used
in the optimization rather than a design parameter.

2.2 ASICs

2.2.1 The design of an ASIC
Application Specific Integrated Circuits, ASICs, are designed to carry out one spe-
cific task. They can include both analogue and digital components, though fully
digital ASICs using CMOS technology are most common today. The same ASIC
design can be implemented using many different standard production processes,

16

2.2 ASICs

Figure 2.1 Illustration of the low-pass filter specification. The parameters are described in
Table 2.1

known as technology nodes, depending on the required size, speed and cost of the
ASIC, the smallest technology nodes today utilizing transistors as small as a few
nanometers. In addition to the technology node, modern ASICs are usually imple-
mented using standard libraries of predefined transistor structures called cells that
implement common logic gates such as NOT and OR. One library can include mul-
tiple cells that implement the same logic gate but differ in other properties. For
example, if a gate can be allowed to switch slowly, it can usually be implemented
with a cheaper or more power efficient cell.

The specialized nature of an ASIC enables heavy optimization and minimal
overhead cost per chip but also causes great inflexibility after the production of a
new ASIC has started, putting great demand on the ASIC design. Because of this, a
lot of effort goes into the design, and it is usually aided by a complex environment
of tools for automation, optimization, and verification. The design process is carried
out in steps, from more abstract definitions of logic down to the placement of the
actual gates. The logic is defined by a designer in a register transfer level (RTL) lan-
guage which is then compiled into a hardware implementation by a process called
synthesizing. The synthesis decides how to implement high level logic such as ad-
dition using different cells and architectures depending on different constraints and
optimization priorities.

To an extent these levels can be considered and optimized separately. For ex-
ample, in [Shahein, 2014] power optimization is split into choice of architectures
and algorithms, implementation in RTL code, and finally choice and placement of
gates. However, the architecture choice might be dependent on the optimization po-

17

Chapter 2. Background

Reg. Combinational logic Reg.

� �

Figure 2.2 The data flow of a clocked ASIC structure over one clock cycle. On the first
rising clock edge, the first register outputs the sample to be processed. As the clock cycle
progresses, the combinational logic performs calculations. The calculated value is finally
output to the second register which samples it on the next rising clock edge.

tential lower down in this hierarchy. This choice is complicated by the automated
synthesizing which, though it significantly simplifies the design process, also in-
troduces black-box effects where it can be unclear for the top-level designer what
optimizations are performed and ultimately what impact different choices have on
the final results. Even non-functional changes in the RTL code such as changing
variable names have been shown to have an impact on the synthesis results [Coward
et al., 2022]. This together with the fact that the area and power results are only
estimations adds a noise floor below which optimizations are pointless. Because of
the disconnect between design and result, the design process is usually an itera-
tive process where choices can be made based on feedback from earlier synthesis
results.

It is usually considered best-practice to write RTL code at behavior-level and
let the synthesis decide on the implementation. However, it has been shown that it
is possible to reduce the area of an ASIC with up to 71% while keeping it func-
tionally equivalent only by reformulating the RTL logic [Coward et al., 2022]. This
suggests that manually implementing optimized RTL can outperform the automatic
optimization of the synthesis.

2.2.2 The structure of an ASIC
The cells in an ASIC can be split into two categories: registers and combinational
logic. Registers store data and consist of multiple flip-flop cells that store one or
more bits. The combinational logic consists of logic gates. An ASIC that performs
synchronous data processing is fed a square clock signal alongside the data stream.
To make sure that the input to the combinational logic stays constant over one clock
period, a register smples the input value at every clock edge. The combinational
logic then calculates its output as the clock period progresses, reaches a result, and
outputs it to an output register. The structure of an ASIC can thus be viewed as a se-
ries of clocked registers with combinational logic in between. Figure 2.2 illustrates
this structure and the data flow during one clock pulse.

The different paths the data flows between registers are called data paths and

18

2.2 ASICs

the number of gates put in series for one data path is called logical depth. It is the
data path with the deepest logical depth, adjusted for the speed of the gates, that de-
termines the maximum clock frequency the ASIC can manage. The data path with
the deepest logical depth is thus called the critical path. If the critical depth does
not meet the timing constraint, the ASIC design needs to be altered. Sometimes, it
is enough to move the position of the next register earlier up in the logic, a strat-
egy called re-timing. If this is not possible, additional clocked registers need to be
inserted to store intermediate results which is referred to as pipelining.

2.2.3 Power consumption in ASICs
There are many factors that determine the power consumption of an ASIC. To begin
with, the ASIC can be constructed using different technology nodes with different
power characteristics. There are however scaling algorithms to translate from one
technology node to another which means that results from one node should carry
over to other nodes [Shahein, 2014]. Secondly, there is a fundamental trade-off be-
tween high clock frequency and minimizing area and power consumption, meaning
that a tight timing constraint can severely impact the room for optimization [Sha-
hein, 2014]. To meet timing, higher voltages might be needed as well as cell-types
that are faster at the expense of higher area and power consumption. The synthesis
can also choose to implement logical operations with structures that are more paral-
lelized, performing redundant calculations that increase area and power consump-
tion. As discussed above, if this is not enough, pipelining needs to be introduced,
costing registers and increasing the delay of the ASIC. Because of these effects the
silicon area and the power consumption grows exponentially at the shorter end of
feasible clock periods [Coward et al., 2022] while the data throughput only grows
linearly.

The power dissipation in an ASIC stems from multiple sources. These can
mainly be divided into two categories: static effects that draw power regardless
of whether the state of the transistor changes, and dynamic effects that occur at
a state change [Shahein, 2014]. Static power dissipation is caused by short cir-
cuits between source and drain at transistors that are below the threshold voltage
as well as dissipation in the diffusion and substrate layer of the transistor [Shahein,
2014]. These leakages are mainly affected by the cell choice. The dynamic power
is caused by charging and de-charging capacitances inside and outside the cell as
well as momentary short circuits at the switching moment. Out of these categories,
the dynamic power dissipation dominates. The power consumption of each cell is
thus approximately linearly related to the switching frequency of the cell which can
be divided into the clock frequency f and the switching activity α ∈ [0,1]. The
complete formula is [Demirsoy et al., 2002]

Pswitching = αCLV 2
DD f . (2.7)

where CL is the load capacitance and VDD is the voltage driving the cell. If all cells in
an ASIC are assumed to use the same voltage and toggle at approximately the same

19

Chapter 2. Background

In2
Out

In1 glitch

Figure 2.3 The creation of a glitch in a XOR-gate due to timing uncertainty. The inputs are
supposed to toggle simultaneously but do not, creating a pulse that will propagate through
the circuit and cause additional erroneous switching.

frequency, this means that the number of cells or the silicon area of the ASIC can be
viewed as proxy for power consumption. For more detailed analysis however, this
measure is too coarse and it has been shown that FIR designs with more adders can
be more efficient than those with fewer [Horrocks and Wongsuwan, 1999].

In addition to the fact that the toggle rate can vary between cells, there is an ad-
ditional effect where the inputs of a cell reach their correct value with a slight timing
offset. This causes the cell to toggle when it should not, creating a “glitch” which
is illustrated in Figure 2.3. When such glitches appear, they propagate through the
combinational logic until they reach a register. These propagating glitches are the
dominating cause of glitch power loss [Eriksson and Larsson-Edefors, 2004], sug-
gesting that the logic depth, is an important factor for power efficiency. Though
glitching is hard to estimate, there are studies suggesting that glitching accounts for
up to 70% of all switching activity in a circuit [Ye et al., 2017], meaning that the
effect can hardly be neglected. Glitching has been addressed in the context of FIR
filters by considering the average adder depth, defined as the average number of
chained adders in the multiplication implementation [Kumm et al., 2023]. Internal
bit-width [Shahein, 2014] and a logic depth index called the Glitch Path [Demirsoy
et al., 2002] has also been used as pseudo-metrics for glitching.

The importance of switching activity infers another aspect of evaluating power
consumption, namely the structure of the data that is processed. For example, a
small signal fluctuating around zero represented in two’s complement will cause a
lot of switching in the input. It is therefore important to consider what kind of data
to use for the power estimation, ideally choosing something representative for the
real-world use case of the ASIC.

In addition to the dynamic and static power categories, it is common to split
the power analysis of an ASIC design into the power drawn by the registers and the
power drawn by the combinatorial logic. Ideally, a design should minimize the num-
ber of flip-flops, spending its power at the combinational logic which performs the
actual calculations. However, since the synthesis can choose between cell-types and
implementation structures depending on the timing constraint, this balance is not
straight forward. Even though one design can meet timing, introducing a pipeline
stage can enable the synthesis to select cheaper cells, producing a net-positive result.
The positive effect is further amplified since pipelines restrict glitches.

20

2.3 Hardware implementation of an FIR filter

2.3 Hardware implementation of an FIR filter

As seen in Section 2.1.3, the essence of an FIR filter is a weighted sum, consisting
of fixed coefficient multiplication and additions. How these operations are imple-
mented in hardware depends on how numbers and coefficients are represented.

2.3.1 Fixed binary point
Though the signals in radio systems are continuous, a digital signal is of course
always discrete, a quantized version of the original signal. In higher-level program-
ming where precision and dynamic range is of importance, a continuous variable
is usually represented with a floating-point number where the decimal point can
shift depending on how much information is needed to represent the mantissa. In
fast applications however, the fixed-point representation is preferred. The number
of fractional bits F is set and the total magnitude b of the binary number is

b =
B

∑
k=1

2−k+(B−F)bk, (2.8)

where bk ∈ {0,1} is the bit-value at index k, sorted from most significant bit to
least significant bit. B is the total number of bits in the number, the bit-width. The
position of the binary point corresponds to the common factor 2B−F . The number
of fractional bits can therefore be regarded as an arbitrary scaling factor and all
operations on fixed-point binary numbers can be performed equivalently to inte-
ger operations. This can be interpreted as multiplying the operation input with 2F

and dividing again after performing the operation. Regarding power consumption,
a higher bit-width increases computation complexity and thus power.

2.3.2 Two’s complement
Another key aspect of number representation is how to represent negative numbers.
A simple choice is the signed magnitude representation where an extra bit is in-
troduced to keep track of the sign of the number. This simple approach, however,
requires explicit logic to keep track of the signed bit and additionally introduces
two representations for 0, one positive and one negative. Instead, the two’s comple-
ment representation is usually favored and is the representation used in this thesis.
In two’s complement, all numbers are represented as

x2′s = (2N + x)(mod 2N)

for x ∈ [−2(N−1),2(N−1)−1]. As with the signed magnitude representation, a single
bit, in this case the MSB, determines the sign of the number. However, addition-
ally, the representation can handle addition, subtraction, and multiplication without

21

Chapter 2. Background

CMVM

(a) Constant matrix vector multiplication

SCM

(b) Single constant multiplication

MCM

(c) Multiple constant multiplications

SOP

(d) Sum of products

Figure 2.4 Taxonomy of different multiply-sum operations.

adding extra logic, for example

x2′s + y2′s = (2N + x)(mod 2N)+(2N + y)(mod 2N) = (2(N+1)+ x+ y)(mod 2N)

= (2N + x+ y)(mod 2N) = (x+ y)2′s.

Since integer multiplication can be regarded as repeated addition, this result
carries over to multiplication as well. Furthermore, the two’s complement represen-
tation allows for simple conversion from X to −X by inverting the positive number
and adding a one, discarding any overflowing bits from the result. Subtraction in
two’s complement is thus performed as

X−Y = X +(¬Y +1). (2.9)

Accordingly, subtraction can be regarded as a slightly more expensive operation
than addition which is relevant in the context of power optimization.

2.3.3 Fixed coefficient multiplication and addition
Finding efficient hardware-implementations of multiplying inputs with fixed coef-
ficients and outputting sums of the products is a well studied problem. The most
general form of this problem, with multiple outputs and inputs, is the constant ma-
trix vector multiplication (CMVM) problem. Algorithms such as [Gustafsson et
al., 2004] exist that produce optimized CMVM implementations. However, often
sub-problems such as single constant multiplications (SCM) or Multiple Constant
Multiplications (MCM) are considered separately to improve algorithm efficiency.
A taxonomy of the problem and the sub-problems, inspired by [Aksoy et al., 2014],
is shown in Figure 2.4. The basic principle of fixed coefficient multiplication is
realizing the operation as a sum of multiple bit-shifted copies of the inputs. Such
structures are known as shift-adder trees. Usually multiplication with a negative
number is computed as a positive multiplication which is then inverted using two’s
complement.

For example, a single multiplication with 7x can be implemented as x≪ 2+
x≪ 1+ x. Such coefficient representation, following the binary number is known

22

2.4 FIR filter architectures

as the powers of two (POT) representation. However, by allowing subtractions as
well as additions the number of terms in the fixed coefficient multiplication can be
reduced. For example, 7x can also be computed such as x≪ 3− x, requiring one
less addition. This coefficient representation is known as the signed powers of two
(SPT), or signed digit, representation. The following notation is used:

7 = 1001̄SPT.

The SPT representation is not unique but can be constrained to get uniqueness.
One common constraint is not allowing two non-zero signed bits next to each other,
known as the canonic signed digit form (CSD), but others such as minimal signed
digit exist [Shahein, 2014]. In addition to uniqueness, these constraints guarantee
the representation to contain the fewest number of non-zero bits. They do not, how-
ever, guarantee the most efficient way of implementing the multiplication. For ex-
ample, since subtractions are more expensive, implementing 3 as 11 is more efficient
than implementing it as 101̄.

Furthermore, it is important to note that the coefficient space represented by N
SPT on the CSD form is not of the same size as the space represented by N POT.
While N POT can represent numbers of magnitude 1

2 (2
N−2), N CSD can represent

numbers of magnitude {
2
3 (2

N−1) N is even
2
3 (2

N−1/2) N is odd.

Another optimization strategy is common sub-expression elimination (CSE),
reusing partial results, as shown in Figure 2.5. As seen in the figure, CSE reduces
the number of additions but increases the logical depth. The strategy works with
both POT and SPT coefficient representation, though POT in general offers more
potential for CSE due to only using two tokens (0,1) compared to three tokens in
SPT (0,1,−1). Due to SPT benefitting from using fewer terms and POT benefitting
from increased CSE, there is no consensus on which representation is to be preferred
[Shahein et al., 2012]. However, there has been efforts to increase the potential for
CSE in SPT coefficient sets by searching directly in the sub-expression space [Yu
and Yong Ching, 2007] rather than applying CSE to given coefficients. Because
the number of signed digits in this thesis proved to be a better predictor of the
coefficient implementation cost, it has been used as the primary index of coefficient
complexity.

2.4 FIR filter architectures

There are many architectures for implementing FIR filters, essentially correspond-
ing to different factorization of the FIR difference equation, equation 2.2. Out of
these, the direct form (DF) and the transposed direct form (TDF) are the two most

23

Chapter 2. Background

x

≪ 2 ≪ 5 ≪ 7

129x36x

165x

(a) No sub-expression sharing.

x

≪ 2

5x

≪ 5

165x

(b) The sub-expression “101” is
reused, saving one addition.

Figure 2.5 An example of sub-expression sharing.

common and will be the ones considered in this thesis. Other architectures in-
clude hybrid forms which are a middle-ground between DF and TDF [Aksoy et al.,
2014], and parallel forms which utilize a polyphase structure to increase throughput
[Chung and Parhi, 2002][Månsson, 2021].

In general, the hardware implementation cost of a FIR filter can be split into
three sub-blocks: the registers used for delaying the inputs (structural delays, SD),
the adders in the fixed coefficient multiplication (multiplication adders, MA) and
the adders used for summing up the result (structural adders, SA). In addition to
these components, additional registers might be needed for pipelining to meet tim-
ing constraints, further increasing the cost of the implementation.

x[n]
z−1 z−1 · · · z−1

h[0] h[1] h[M−1]

· · ·
y[n]

Figure 2.6 A FIR filter of order M, implemented in the direct form.

2.4.1 The direct form
The direct form delays the input first, corresponding to multiplying x[n] with z̄ first
in equation 2.2. This creates the structure shown in Figure 2.6. The structure con-
sists of a structural delay line which enters into an array of single multiplications.
The products are then added with an adder tree. For symmetric FIR filters, a trivial
optimization can be made where the coefficient pairs are added before the multipli-
cations, halving the number of multiplications needed.

24

2.4 FIR filter architectures

The cost of the delay line for a DF implementation is directly determined by the
input bit-width and the filter order. For a filter of order M and input bit-width Bin,
the number of flip-flops needed is

NDF
SD = (M+1)Bin, (2.10)

assuming the filter has registers on it’s input and output. The cost of the multiplica-
tions and the adder tree can be estimated from the models in Chapter 3.

The SCM array and adder tree can also be optimized together as a sum-of-
products operation, possibly offering better solutions than optimizing each subblock
independently. Optimizing sums of products is in general a hard problem, though
there are algorithms to find optimized shift-adder-trees, including pipelining, such
as RPAG-CMM [Kumm et al., 2017]. Including pipelining drastically increases the
complexity of the problem since the improvements in combinational area and possi-
bly cheaper cells need to be balanced against the additional delay and cost of insert-
ing more registers. In this thesis, our own heuristic algorithm will be used to find
optimized implementations of given coefficients without considering pipelining.

x[n]
· · ·

h[M−1] h[1] h[0]

z−1 z−1 · · · z−1
y[n]

Figure 2.7 A FIR filter of order M, implemented in the transposed direct form.

2.4.2 The transposed form
The transformed direct form instead first multiplies x with the coefficients h̄. The
corresponding structure is shown in Figure 2.7. The initial operation of multiplying
a single input with many constant coefficients is a multiple constant multiplication
block. After the MCM, the many outputs are delayed and summed accordingly. An
optimization for symmetric FIR filter similar to the one in the DF architecture is
possible where each multiplication is used twice.

The main advantage of the transposed form is the potential for optimizing the
shift-adder tree in the MCM block. Several algorithms exist for this such as H-
cub [Voronenko and Püschel, 2007] which can produce good results in acceptable
time for relevant-sized problems and will be used in this thesis. However, timing
constraints can, as with the SOP block of the direct form, require pipelining in the
MCM-block, again increasing the optimization complexity. Another advantage of
transposed form is that the logical depth is smaller than for the direct form due to
having no adder tree. This reduces the number of times a glitch can propagate and
thus the power that is wasted on glitching.

25

Chapter 2. Background

On the other hand, the transposed form has a drawback where the structural
delays store the samples after multiplication and summing, which increases the
required number of flip-flops and makes it dependent on the chosen coefficients.
Assuming for notation simplicity that the coefficients are integer, the number of
flip-flops needed is

NTDF
SD = (M+1)Bin +

M

∑
k=1

(⌈log2

k

∑
i=1
|hM−i|⌉), (2.11)

which is much greater than the number of flip-flops needed by the direct form.
Furthermore, the total cost of the structural adders follows a similar trend and has
been shown to dominate the power consumption of the TDF for filters of order
36 and higher [Ye et al., 2017]. The number of bits that need to be added by the
structural adders is, based on [Ye et al., 2017],

NTDF
SA = MBin +

M

∑
k=1

(⌈log2

k

∑
i=1
|hM−i|⌉− lM−i), (2.12)

where li is the final bit-shift of the coefficient hi, i.e., the number of times 2 divides
hi. Additionally, the structural additions need to be implemented one-by-one and
cannot be structured in an adder tree which reduces optimization potential compared
to the direct form.

2.5 Coefficient selection

The problem of selecting fixed-point binary coefficients for hardware-implemented
FIR filters has been studied since at least the late 70s. The linearity of the trans-
fer function and its constraints in terms of the filter coefficients makes the prob-
lem suitable for linear programming. Early formulations such as [Lim and Parker,
1983] and [Lu, 2001] used linear programming to improve the filter performance
compared to quantized continuous coefficients. Later developments focused on re-
ducing the computation complexity, either by constraining the number of POT or
SPT and minimizing frequency ripples or, vice versa, minimizing the number of
POT or SPT in a filter fulfilling a certain specification. A mixed-integer linear pro-
gram for minimizing the number of signed digits was formulated in [Gustafsson
et al., 2001].

In parallel to the research on choosing filter coefficients, research has been done
on how to implement efficient multiplication with constant coefficients using shift-
adder graphs as discussed above in Subsection 2.3.3. Further optimization efforts
have incorporated this research into the filter design problem, creating algorithms
that minimize the number of adders or the adder depth such as [Dong and Yu, 2011].
As the optimization tools have developed, the problem formulations have grown
more fine-grained, the last few years targeting minimizing the number of gates and

26

2.5 Coefficient selection

flip-flops in the implementation, for example [Kumm et al., 2023], [Garcia et al.,
2022], [Aksoy et al., 2011]. A more extensive list of algorithms minimizing the
implementation complexity of FIR filters can be found in [Aksoy et al., 2014].

Though there has been a lot of research on this subject, there is still room for
exploration. A lot of the research focus has been on FPGA implementations, results
that might not carry over to an ASIC context. For example, though many articles
concern the transposed form due to the optimization potential in MCM blocks, it
has been demonstrated that for ASICs, the transposed form occupies more area and
consumes more power than direct form filters [Aksoy et al., 2014]. Furthermore,
as the required clock frequency increases, the maximum feasible logical depth de-
creases, offsetting the gain of optimization techniques such as sub-expression shar-
ing. Finally, there are practical concerns when synthesizing RTL code such as which
cells and implementations are chosen by the synthesis tool in different situations.
For example, the gate-level optimization in [Aksoy et al., 2011] assumes that all ad-
ditions are implemented using a ripple-carry adder which is efficient area-wise but
has a high logic depth. Accordingly, the implementations have high time delays,
around 9 ns. This thesis therefore empirically evaluates optimizations in a realistic
synthesis environment.

27

3
Initial Investigations

3.1 Experiment setup

In the initial stage of the thesis, an environment for synthesizing and estimating the
power consumption of many parameterized ASICs automatically was developed.
Examples of parameters are the choice of coefficients, the clock period, and the
input bit-width.

The RTL code is written in SystemVerilog and verified using Cadance’s Incisive.
The environment performs the synthesis using a tool chain from Synopsys, most
importantly the RTL compiler DC Ultra. To reduce overhead time, the ASIC IPs
contain a top-level module that instantiates multiple instances of the same submod-
ule with different parameters to be synthesized at the same time. Module-boundary
optimization was turned off to avoid this influencing the results of the synthesis.
In addition to an ASIC design, the synthesis produces a number of reports which
include a report of the silicon area, rounded to the closest square micrometer. After
synthesis, the environment estimates the power consumption from a simulation at
gate level done in Incisive. Incisive records the switching activity in the ASIC when
stimulated by a test signal. This data is then fed to Synopsys’ tool PrimeTime which
finally produces average power estimates for different power dissipation sources in
both the registers and the combinational logic. Because the combinational logic is
the target of most optimizations in this thesis, “power” will refer to combinational
dynamic power unless stated otherwise.

The test signal used for the power estimation was chosen to be uniform white
noise of full amplitude as a worst-case scenario with the maximum amount of
switching and since the characteristics of typical data was unknown. The input bit-
width was 12 bits for all experiments.

3.2 FIR filter subblocks

To verify optimization metrics, to test the optimization capabilities of the synthesis
tool, and to gather data for modelling, subblocks of FIR filters were initially inves-
tigated individually. The subblocks that were tested were single constant multipli-
cations, multiple constant multiplications, adder trees and manual implementations

28

3.2 FIR filter subblocks

of sums of products. Since register sizes are more directly determined by the input
bit-width, coefficient set and filter architecture, the focus was on the combinational
logic. Therefore, the structural delay subblocks were not investigated.

3.2.1 Single constant multiplication
The SCM subblock used in direct form filters was tested by synthesizing single
multiplications with all coefficients between −1024 and 1024 at a clock period of 2
nanoseconds. The area and power results are compared to the number of signed dig-
its in Figure 3.1. The figure shows that there is a clear correlation for both area and
power. Each signed digit costs circa 3.6 µm2 in area and 4.2 µW in power. Addition-
ally, the figure shows that negative coefficients were in general more expensive than
positive, being on average 0.96 µm2 larger and consuming 1.6 µW more power. This
constant offset can be explained by the handling of negative numbers in the two’s
complement representation, requiring an extra inversion and addition.

While the number of signed digits predicts the coefficient cost well, there is still
a rather large variation within coefficients with the same number of signed digits.
A secondary feature to consider is the coefficient width, defined as the difference
between the index of the first and last non-zero SPT bit. For example, the coefficient
15 = 1001̄0CSD has a coefficient width of four. Wider coefficients need to compute
more bits and should therefore be more expensive. Figure 3.2 shows two heatmaps
with coefficient width on the x-axis and area on the y-axis. The left plot shows data
for all positive coefficients with three signed digits and the right plot shows the data
for four signed digits. While the trend is not as obvious as with signed digits, the
coefficient indeed correlates positively with the coefficient width. For power, the
results showed no correlation with the coefficient width.

The size of single multiplications will vary with the timing constraint and the
total logical depth. However, the empirical results described above can serve as a
model for estimating the area and power required for single multiplications. For
coefficients outside the tested range, a linear model can be applied. A simple model
would be to only include the number of signed digits and sign of the coefficient c in
a linear regression model,

ŷSPT(c) = θ0 +θ1SPT(c)+θ2sign(c)+ e, (3.1)

where the error e is assumed to be normally distributed and where sign(c) takes
the value 0 for negative coefficients and 1 for positive. However, the model can be
extended. If subtractions are more expensive than additions, negative signed digits
should be more expensive than positive and should be included separately. Further,
as discussed above, the coefficient width should be included:

ŷfull(c) = θ0 +θ1SPT+(c)+θ2SPT−(c)+θ3width(c)+θ4sign(c)+ e. (3.2)

The parameters of these models, fitted for both area and power, are presented in
Table 3.1. The full models show an improvement over the SPT models, increasing

29

Chapter 3. Initial Investigations

Model R2 RMSE θ0 θ1 θ2 θ3 θ4

Area [µm2], SPT 0.898 1.17 -1.77 3.59 -0.96 – –
Area [µm2], full 0.936 0.924 −2.97 2.76 3.417 0.33 −0.53
Power [µW], SPT 0.875 1.56 2.01 4.22 -1.61 – –
Power [µW], full 0.919 1.25 -3.29 3.24 4.22 0.32 -0.95

Table 3.1 Results of the SCM linear regression models given by Equation 3.1 in the SPT
case and Equation 3.2 in the full case. It can be seen that area and power grows with the num-
ber of signed digits and coefficient width. The results also indicate that negative coefficients
are more expensive and that a negative signed digit is more expensive than a positive signed
digit. The reasons for this are discussed in Section 3.2.1.

1 2 3 4 5 6

Signed digits [—]

0

5

10

15

20

A
re

a
[μ

m
2]

Combinational area for single multiplications

Coefficients 1...1024
Coefficients -1024...-1

1 2 3 4 5 6

Signed digits [—]

0

5

10

15

20

25

Po
w

er
 [μ

W
]

Dynamic power for single multiplications

Coefficients 1...1024
Coefficients -1024...-1

Figure 3.1 Area and power consumption results for single constant multiplications, com-
pared to the number of signed digits in the coefficients. The relation is clearly linear and the
parameters of a linear model is presented in table 3.1.

the R2 value from 0.898 to 0.936 for area and from 0.875 to 0.919 for power. The
full model also confirms that the cost of negative signed digits are more expensive,
costing more than 24% in area, and 30% more in power. Finally, it can be noted that
the impact of bit-width is rather small compared to the impact of signed digits. This
makes sense when considering that a signed digit adds an addition or subtraction
while the coefficient width affects the cost of implementing the operations slightly.

3.2.2 Multiple constant multiplications
The MCM subblock was tested similarly to the SCM subblock. Two hundred mul-
tiple constant multiplications with randomized coefficient sets with varying number
of signed digits were synthesized. Twelve signed, possibly zero, coefficients with
a maximum magnitude of 2047 were used. In addition to synthesizing the MCM
blocks with a clock period of both 2 nanoseconds, they were also synthesized at 10

30

3.2 FIR filter subblocks

5 6 7 8 9 10 11
Coefficient width [—]

12

11

10

9

8

7

6

C
oe

ff
ic

ie
nt

 A
re

a
[μ

m
2]

Area - coefficient width heatmap

0

0

0

0

0

3

0

0

0

9

14

6

15

0

0

7

16

10

12

9

0

0

13

5

11

4

0

2

14

5

9

3

0

5

10

11

2

8

0

1

4

1

6

1

1

023

23 17

0

5

10

15

20

(a) Three signed digits.
Pearson correlation coefficient ρ = 0.56

6 7 8 9 10 11 12
Coefficient width [—]

15

14

13

12

11

10

9

8

C
oe

ff
ic

ie
nt

 A
re

a
[μ

m
2]

Area - coefficient width heatmap

0

0

0

0

0

0

0

0

0

0

0

0

4

10

22

0

0

1

13

35

10

20

5

0

0

11

20

9

21

2

0

1

15

41

2

13

3

0

4

6

31

12

2

5

0

0

0

0

0

0

0

0

0

0

57 45

0

10

20

30

40

50

(b) Four signed digits.
Pearson correlation coefficient ρ = 0.53

Figure 3.2 Two heatmaps of the area and coefficient width for coefficients with 3 and 4
signed digits respectively. The number in each cell indicates the number of coefficients with
the corresponding area and coefficient width. The results indicate a postive correlation and
the coefficient width is therefore included in the full SCM model of Equation 3.2.

nanoseconds to test the synthesis sub-expression-sharing optimization with a neg-
ligible timing constraint. The results were then compared to the predictions from
the above full SCM model to estimate the gain of performing multiple constant
multiplications on one input rather than single multiplications on many inputs. This
gain achieved by the synthesis tool was then compared to the percentage of adders
saved using the Hcub algorithm in [Voronenko and Püschel, 2007] as a measure of
theoretical gain.

Figure 3.3 shows the area and power per sample results compared to the total
number of signed digits in the coefficient set. Since the power is linearly dependent
on the clock frequency, as shown in equation 2.7, the power results are divided with
the clock frequency to get comparable results for different clock periods, called
power per sample rate, or simply adjusted power. As with the SCM block, there is a
clear correlation between area and power and the number of signed digits. A linear
regression gives a cost of each SPT of circa 3.4 µm2 at 2 ns, which is similar to the
result from the SCM SPT model, 3.6 µm2. The adjusted power cost is also similar
but slightly higher, 9.1 µW/Gsps compared to 8.4 µW/Gsps.

Comparing the clock frequencies, the area is on average 10.3% smaller at 10 ns.
For the adjusted power however, the improvement is only 4.5%. Additionally, the
synthesis reports show that the combinational logic of the 10 ns MCMs is done
when there is about 6 ns left of the clock cycle. While it is clear that some additional
optimizations are done at the lower clock frequency, this suggests that the timing
constraint is not a limiting factor on the optimization at 2 ns for these rather simple

31

Chapter 3. Initial Investigations

0 10 20 30 40

Signed digits [—]

0

20

40

60

80

100

A
re

a
[μ

m
2]

Combinational area for multiple multiplications

2 ns
10 ns

0 10 20 30 40

Signed digits [—]

0

50

100

150

200

250

300

Po
w

er
 p

er
 sa

m
pl

e
ra

te
 [μ

W
/G

sp
s]

Dynamic power for multiple multiplications

2 ns
10 ns

Figure 3.3 Area and power consumption per sample rate for multiple constant multipli-
cations, compared to the number of signed digits in the coefficient set. As with the single
multiplications in figure 3.1, the trend is linear. The lower clock frequency shows some im-
provement over the higher clock frequency, though only on average 10.3% with regards to
area and 4.5% with regards to power.

operations.
Figure 3.4 compares the area and power of the MCM blocks to the sum of

applying the above SCM model on all coefficients. This is done for the 2 ns results to
get a fair comparison. The figure shows that MCM is better in terms of area for most
cases, though only on average 7.6%. For power, the MCM results are worse than
the SCM model. This indicates that there is less optimization than what could be
expected. Considering only area where there were some savings, the improvement
is still much less than the reduction of adders by the Hcub algorithm, clearly shown
in the histogram in Figure 3.5. On average, the MCM structure produced by Hcub
reduced the number of adders with 38.6% which should translate to similar area
gains. This can be to the average area reduction of 7.6%.

In conclusion, the MCM structure does not seem to offer any benefit over per-
forming multiple single multiplications. Why this happens, however, is unclear and
could be both due to a lack of sub-expression sharing or sub-expression sharing
not actually being beneficial in this scenario due to for example timing constraints.
However, since the 10 ns results were not significantly better and did not use the
entire clock period, it seems unlikely that the clock frequency is the constraining
factor.

3.2.3 Adder trees
A subblock consisting of summing eight inputs of different bit-lengths and offset by
bit-shifts was implemented to simulate the structural adders of the direct form filter
architecture. One hundred randomized such blocks were synthesized at a period of
2 nanoseconds. The area and power results were then compared to the total number
of summed bits in the adder tree. The results together with a linear fit are shown in

32

3.2 FIR filter subblocks

0 20 40 60 80 100 120

SCM Area model [μm2]

0

20

40

60

80

100

120

A
re

a
[μ

m
2]

MCM area compared to SCM model

Synthesized area
SCM area model

0 50 100 150

SCM Power model [μW]

0

50

100

150

Po
w

er
 [μ

W
]

MCM power compared to SCM model

Estimated power
SCM power model

Figure 3.4 The results of the MCM operations (blue markers), synthesized at 2 ns, com-
pared to the full SCM model from Section 3.2.1 (red line). While the area results show some
gain from MCM compared to many SCM, the power results are worse.

0 20 40 60

MCM gain compared to many SCM [%]

0

20

40

60

80

C
ou

nt
 [—

]

Empirical MCM gain compared to theoretical gain

MCM area reduction [%]
Hcub adder reduction [%]

Figure 3.5 A histogram of the percentage of the area saved by MCM in Figure 3.4, and the
percentage of adders saved by the Hcub algorithm for the same coefficient sets. Under the
assumption that area is proportional to the number of adders, these histograms should overlap
approximately if an optimized MCM structure is utilized in the implementation. They do not,
indicating either that such a structure is not used or that the area is not proportional to the
number of adders. Most likely, an MCM structure is not used.

33

Chapter 3. Initial Investigations

Figure 3.6. The linear regression model fits the data very well, achieving a R2 value
of 0.986 for area and 0.959 for power. The slope of the area model is 0.28 µm2 per
additional bit in the adder tree. For the power, the slope is 0.33 µW. Comparing this
to the impact of signed digits in Table 3.1, each summed bit is about 10-20 times
cheaper than a signed digit. This is reasonable since one signed digit essentially
adds one addition which includes 10-20 bits. Still, it is clear that there is some
optimization potential in selecting coefficients with a lower width, especially since
a lower width also was shown to reduce the multiplication cost in Subsection 3.2.1.

80 100 120 140 160 180 200

Number of summed bits [—]

20

25

30

35

40

45

50

55

A
re

a
[μ

m
2]

Combinational Area for adder trees

Synthesized area
Linear fit

80 100 120 140 160 180 200

Number of summed bits [—]

20

30

40

50

60

Po
w

er
 [μ

W
]

Dynamic power for adder trees

Estimated power
Linear fit

Figure 3.6 The area and power results for an 8-input adder tree synthesized at 2 ns, com-
pared to the number of summed bits. The red line is a linear fit to the data with the slope
0.28 µm2 for area and 0.33 µW for power.

3.2.4 Manual sum of products
Since the MCM block showed little evidence of optimizing many multiplications
together using sub-expression sharing, the investigations of the SOP subblock fo-
cused on determining the potential of outperforming RTL code that is written on
a behavioral level by writing RTL code that manually implements sub-expression
sharing. A minimal example, selected to have good sub-expression-sharing poten-
tial, was implemented both on a behavioral level and with the sub-expressions im-
plemented manually. In this way, the automatic optimization can be compared to

34

3.2 FIR filter subblocks

manual optimization. The following coefficients were chosen:

3+5 ·210 = 5123 = 1010000000101̄CSD

3+5 ·29 = 2563 = 101000000101̄CSD

3+5 ·28 = 1283 = 10100000101̄CSD

3+5 ·27 = 643 = 1010000101̄CSD

3+5 ·26 = 323 = 101000101̄CSD

3+5 ·25 = 163 = 10100101̄CSD,

forming the sum of products y = ∑
5
k=0

(
3+5 ·2(5+k)

)
xk. If the inputs are simply

shifted and summed using the CSD representation, 23 additions and subtractions
are needed. However, 10 additions can be saved by utilizing the common sub-
expressions 101CSD and 101̄CSD. The SOP is then implemented as

xsum =
5

∑
k=0

xk, xshift =
5

∑
k=0

(xk≪ (5+ k)) ,

y = (xsum≪ 2)− xsum +(xshift≪ 2)+ xshift. (3.3)

Table 3.2 provides the area results for three different implementations, synthesized
at 2 ns and 4 ns respectively. Power estimates are not included since the experiment
was intended as a proof of concept and the area results were convincing enough.
Manual sub-expressions is implemented in accordance with (3.3). The Linear
Combination implementation performs the sum of products in the most straight-
forward way as

y = 163x0 +323x1 +643x2 +1283x3 +2563x4 +5123x5.

The Shift & Add implementation utilizes the CSD representation of the coeffi-
cients, adding and subtracting shifted version of the input as

y =(x0≪ 7)+(x0≪ 5)+(x0≪ 2)− x0

+ . . .+(x5≪ 12)+(x5≪ 10)+(x5≪ 2)− x5.

The results of the Linear Combination and Shift & Add implementations are
identical, indicating that Shift & Add is how the SOP is implemented automatically,
or at least that the different implementations are analyzed and optimized in the same
way. In contrast, the manual sub-expression implementation has a 25% lower area
at 2 ns and 37% at 4 ns. These improvements can be compared to the 10 additions
saved compared to 23 initial additions, an improvement of 43%. While the results
are not quite as good, they still show that it is possible to outperform the automatic
synthesis and the results are convincing enough that it seems feasible also when the
example is not handpicked. Additionally, the number of saved additions should be
some indication of which coefficient sets have good potential when implemented
manually.

35

Chapter 3. Initial Investigations

Minimal example

Implementation Comb. area, 2 ns Comb. area, 4 ns

Linear Combination 79 µm2 75 µm2

Shift & Add 79 µm2 75 µm2

Manual Sub-expressions 59 µm2 47 µm2

Table 3.2 Table of results of combinational area for different implementations of minimal
example. While the Shift & Add implementation results are to those of the Linear Combina-
tion implementation, the optimized manual sub-expression implementation performs signifi-
cantly better. Since the experiment was only meant as a proof-of-concept, no power estimates
were made.

36

4
Filter-level optimization

In this chapter, optimization of full filters is considered, building on the theory and
the results from the previous chapter, as well as synthesis results. First, the direct
form is compared to the transposed form. Then, a mixed-integer linear progam that
minimizes the number of signed digits in the coefficient set is formulated and eval-
uated for five filter specifications. Finally, a criterion is suggested for selecting be-
tween solutions with the same number of signed digits.

4.1 Direct and transposed form comparison

As mentioned above, the transposed form architecture is more expensive in terms
of structural delays while allowing for better optimized multiplication by increased
sub-expression sharing potential. However, in Section 3.2.2, little benefit was ob-
served from the MCM optimization of the synthesis tool. To compare the two ar-
chitectures, a symmetric filter of order 25 with the unique coefficients

c̄ = {256,192,57,−36,−41,0,22,10,−7,−8,0,4,1}

was implemented in both transposed and direct form and synthesized at 4 ns to
reduce the impact of the timing constraint. Using Hcub [Voronenko and Püschel,
2007], the number of additions can be reduced from 10 to 7 by utilizing sub-
expression sharing. To make sure that sub-expression sharing was utilized, the shift-
adder tree produced by Hcub was additionally implemented manually.

The results, shown in Table 4.1, show that the direct form outperforms the trans-
posed form in every aspect. The greater number of flip-flops needed for the trans-
posed form is expected and can be calculated using equation 2.10 and 2.11. The
larger number of flip-flop then of course carries over to a greater register area and
power consumption. More surprisingly, the combinational area was not lower for
the transposed form. The explicit implementation was somewhat better than the au-
tomatic implementation, although not near the 30% theoretical reduction. Still, it
was 18% larger and consumed 12% more energy than the direct-form implemen-
tation. This is partly explained by the results in Section 3.2.2 showing the limited
gain of utilizing MCM optimization but also that the structural adders make up a
significant part of the combinational logic. Using the SCM data from the previous

37

Chapter 4. Filter-level optimization

Filter type Comb. area Comb. power Reg. bits Reg. area Reg. power

TF 131 79 506 197 69
Manual TF 127 76 506 197 69
DF 108 71 324 109 41

Best ratio 1.18 1.12 1.57 1.81 1.68

Table 4.1 Comparison between direct and transposed form for one S1a coefficient set syn-
thesized at 4 ns. The area results are given in square micrometers and the power results are
given in microwatts. The results show that the direct form (DF) outperforms the transposed
form (TF) in every aspect. It is surprising that the combinatorial area was not lower for the
transposed form.

section, the multiplications needed for the filter can be estimated to need 47 µm2,
less than half of the total combinational area. The rest of the logic consists of struc-
tural adders which can be better optimized in the direct form. As mentioned in the
theory, the direct filter architecture performs the additions with an (optimized) adder
tree while the transposed performs the additions one-by-one. It should be noted that
the lack of glitching in the power estimations could work in favor of the direct form,
due to the potentially shorter logical paths of the transposed architecture. Still, the
transposed filter architecture appears unlikely to ever outperform the direct form in
our synthesis environment. Further investigations will therefore focus on the direct
form.

4.2 Coefficient optimization

The optimization strategy consists of two parts. First, a Mixed-Integer Linear Pro-
gram is applied that minimizes the number of signed digits for a filter that fits a
low-pass specification following Section 2.1.4. Then, if there are multiple optimal
solutions with the same number of signed digits, a secondary heuristic selection
criteria is used to determine the final candidate.

4.2.1 Minimizing the number of signed digits in the coefficient
set

The MILP is formulated for symmetric type I or type II FIR filters with N unique
coefficients of bit-width B. All coefficient bits are fractional, corresponding to set-
ting F = B in Equation 2.8. As pointed out in Subsection 2.3.1, this only scales the
coefficients with a certain factor and is ultimately an arbitrary choice. The optimized
vector consists of integer SPT bits bn,i, continuous help variables that measure the
magnitude of the SPT bits, bmag

n,i and the continuous gain, G. The gain can either
be set to a fixed value, usually 1, or constrained to a range. The frequency domain
constraints are defined by sampling the absolute value of equation 2.3 for type I
and equation 2.5 for type II at K frequencies. These frequencies can be selected

38

4.2 Coefficient optimization

Name Range Indices Description

bn,i {−1,0,1} n = 1 . . .N, i = 1 . . .B SPT bits.
bmag

n,i [0,1] n = 1 . . .N, i = 1 . . .B Magnitude of the SPT bits.
G [Gmin,Gmax] or 1 – The static gain of the filter.
fk Fp = [0, fp],Fs = [fs,0.5] k = 1 . . .K Sampled frequencies.

Table 4.2 A description of the variables used in the MILP. N is the number of unique
coefficients, B is the bit-width of the coefficients, and K is the number of points where the
transfer function is sampled.

arbitrarily but were chosen to be evenly spaced in the pass band and stop band. The
term of this function with index n, sampled at frequency f , will be referred to as
c(f ,n) in the MILP formulation. Following [Gustafsson et al., 2001], a canonical
signed digit constraint is applied to reduce the feasible space and avoid degenerate
solutions. A description of the variables used in the MILP is given in Table 4.2 and
the full optimization problem is formulated as following:

minimize
N

∑
n=1

B

∑
i=1

bmag
n,i

subject to
N

∑
n=1

c(fk,n)
B

∑
i=1

2−ibn,i ≤ G(1+δp) fk ∈ Fp

N

∑
n=1

c(fk,n)
B

∑
i=1

2−ibn,i ≥ G(1−δp) fk ∈ Fp

N

∑
n=1

c(fk,n)
B

∑
i=1

2−ibn,i ≤ Gδs fk ∈ Fs

N

∑
n=1

c(fk,n)
B

∑
i=1

2−ibn,i ≥−Gδs fk ∈ Fs

bmag
n,i ≥ bn,i

bmag
n,i ≥−bn,i

bmag
n,m +bmag

n,m+1 ≤ 1 m = 1 . . .B−1

Gmin ≤ G≤ Gmax

Using modern optimization software, this MILP can be solved in reasonable
time, often a couple of seconds, for the problem sizes considered in this thesis.
Additionally, the optimization software can be configured to save a number of the
best solutions. In this way, the search space can be explored more thoroughly and
multiple good candidates can be found. However, due to the flexible gain, there will
be some degenerate solutions differing only by factors of two. These are essentially

39

Chapter 4. Filter-level optimization

equivalent since a multiplying with a factor of two can be achieved with a bit-shift
that is free implementation-wise. Because of this, such solutions are filtered out
after the MILP is solved. The coefficient sets that are accepted are also divided such
that there is no common factor of 2 in the set.

4.2.2 Secondary heuristic coefficient criteria
If there are multiple solutions remaining, one feasible strategy might be to just syn-
thesize all candidates. Another strategy is to apply a secondary ranking calculated
from some features of the coefficient sets. In this thesis, four such features are con-
sidered:

• Number of zeros, Nz. Due to how the symmetry of the filter coefficients are
utilized in direct form, each zero-valued coefficient saves one extra addition.

• Dynamic range, DR= log2(|cmax/cmin|) where cmax and cmin are the non-zero
coefficients with the largest and smallest amplitude. A low dynamic range
should allow the adder tree to be more compressed.

• Fraction of all signed digits in the coefficient set that are negative, SPT−. As
discussed in Chapter 3, negative signed digits are more expensive to imple-
ment.

• Sum of the coefficient bit-widths B. As discussed in Chapter 3, adding fewer
bits produces a simpler adder tree. The number of bits to be added in the
direct form filter is determined by the bit-width of the coefficients.

After these features are calculated, they are min-max normalized, producing N̂z,
D̂R, ˆSPT− and B̂. They are then combined in a weighted sum to produce the final
score r:

r =−θ0N̂z +θ1D̂R+θ2 ˆSPT−.+θ3B̂ (4.1)

Due to lack of data to do a proper fit of this model, in this thesis all θ were set
to 1. This heuristic ranking can be compared to the empirical SCM model which
estimates the cost of the multiplication only.

4.2.3 Results
This section presents the results from applying the coefficient optimization on the
specifications given in Table 2.1. K = 50 frequency points were used for the fre-
quency constraints and B = 12 was used as the input bit-width. The optimization
was performed both with the gain fixed to one and with the gain constrained to the
range [1/16,2]. The number of coefficients and the filter type varied between the
specifications.

40

4.2 Coefficient optimization

Name fp, fs δp,δs Found in

S1a 0.15, 0.25 0.00645, 0.00645 [Kumm et al., 2023]
Y1 0.15, 0.25 0.0316, 0.0316 [Ye et al., 2017]
A 0.075, 0.1125 0.01, 0.01 [Shahein et al., 2012], [Aktan et al., 2008]
E 0.25, 0.4 0.001 0.001 –
G 0.15, 0.35 0.01, 0.0009 –

Table 4.3 Investigated filter specifications.

As an initial illustrating example, filter specification S1a will be investigated
more thoroughly. Using the parameters in [Kumm et al., 2023], with 13 unique co-
efficients, a coefficient bit-width of 9 and flexible gain, 6207 unique solutions could
be found. The distribution of the number of signed digits can be found in Figure
4.1 and shows that the median is 30 while the optimal solution has 21 signed dig-
its, an improvement of 30%. Furthermore, the distribution shows the importance of
choosing the coefficients carefully as the number of good solutions is vastly smaller
than number of average solutions. The specification could be met using only 12
unique coefficients. However, the optimal solution then required 41 signed digits,
essentially doubling the complexity of the multiplication logic while only saving
two registers and one addition.

Rather, it is beneficial to allow the MILP greater flexibility if possible. For ex-
ample, not allowing flexible gain increases the optimal solution from 21 signed
digits up to 28. Additionally, the allowed coefficient bit-width was increased from
9 to 13. The total number of solutions found then had to be capped at 10000 and
the number of good solutions (best and second best with regards to signed digits)
increased from 2 to 65. The amplitude of the transfer function, normalized by the
gain, of four of these good solutions is plotted in Figure 4.2, demonstrating that
the proposed MILP produces correct solutions. Furthermore, Figure 4.3 shows the
corresponding unique coefficient set and shows that, except in magnitude, the good
solutions are almost identical.

Out of all solutions, a selection was synthesized at 2 ns and 4 ns. The area and
dynamic combinational power consumption is shown in Figure 4.4, clearly showing
the linear impact of reducing the number of signed digits. Compared to the worst
candidate with one less coefficient but 41 SPT, the savings are up to 50% for 2 ns
for both power and area. Comparing the best results with a solution closer to the
median, with 29 SPT, the reduction is 25.8% for area and 26.0% for power at 2 ns
and 24.7% and 22.7% respectively at 4 ns. While not as extreme, this is still a con-
siderable improvement. A linear regression on the area shows that the cost per SPT
at 6.2 µm2 is almost twice of what was measured for the SCM and MCM blocks.
This could indicate that reducing SPT also reduces the cost of the adder tree. Fi-
nally, the worst choice for 21 signed digits was worse than the best choice for 22
signed digits, illustrating the need for a secondary selection criteria to achieve the
final circa 5% of optimization potential.

41

Chapter 4. Filter-level optimization

Signed digit distribution of S1a solutions

20 25 30 35

Signed digits [—]

0

200

400

600

800

1000

1200

1400

C
ou

nt
 [—

]

Figure 4.1 The distribution of signed digit solutions with a coefficient bit-width of 9 for
the filter specification S1a.

0 0.1 0.2 0.3 0.4 0.5

Normalized frequency

-100

-80

-60

-40

-20

0

N
or

m
al

iz
ed

 g
ai

n
[d

B
]

Filter transfer functions

Figure 4.2 The amplitude of the transfer function of four of the solutions to filter specifi-
cation S1a. All amplitudes are normalized by the filter gain.

42

4.2 Coefficient optimization

0 2 4 6 8 10 12 14

Coefficient index

-500

0

500

1000

1500

2000

2500

M
ag

ni
tu

de

Filter coefficients

(a) Full magnitude

0 2 4 6 8 10 12 14

Coefficient index

-0.2

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Filter coefficients

(b) Normalized magnitude

Figure 4.3 The unique coefficients of the filters shown in Figure 4.2. With normalized
magnitudes there is significant overlap of the curves as the variation in coefficient magnitude
between the filters are very small.

20 25 30 35 40 45

Signed digits [—]

100

150

200

250

300

A
re

a
[μ

m
2]

Combinational area for S1a filters

13 coefficients, 2 ns
13 coefficients, 4 ns
12 coefficients, 2 ns
12 coefficients 4 ns

20 25 30 35 40 45

Signed digits [—]

200

300

400

500

600

700

Po
w

er
/d

at
a

th
ro

ug
hp

ut
 [μ

W
/G

sp
s]

Dynamic power for S1a filters

13 coefficients, 2 ns
13 coefficients, 4 ns
12 coefficients, 2 ns
12 coefficients 4 ns

Figure 4.4 Illustration of the area SPT dependency for filter specification S1a. Compared
to the median, the optimal signed digit solution provides an approximate 25% reduction in
area and power.

43

Chapter 4. Filter-level optimization

Name Order Opt. SPT Opt. SPT, unit gain No. Opt. SPT No. Opt. SPT+1.

S1a 23 21 28 2 63
Y1 38 26 31 8 147
A 43 33 37 1 148
E 24 24 24 1 36
G 15 15 Infeasible 1 6

Table 4.4 Table of results for the different filter specifications. No. Opt. SPT refers to the
number of optimal signed digit solutions with flexible gain and No. Opt. SPT+1 refers to the
number of second-to-optimal solutions.

Next, the optimization of all specifications is discussed. Table 4.4 shows the
optimal number of signed digits for all specifications for both flexible and unit gain,
together with the required filter order and how many unique optimal and second-
to-optimal solutions could be found. The results show that on average, allowing
flexible gain decreases the optimal number of signed digits with 20%, which is in
the same order of magnitude as performing the SPT optimization at all. For the G
specification, unit gain could not be achieved with the same order as the flexible
gain, further increasing the benefit of flexible gain. Finally, the number of unique
solutions increases significantly when increasing the number of signed digits with
only one. This larger solution space could contain candidates that outperform the
optimal solutions due to other factors than the number of signed digits.

Due to the clear demonstration of SPT impact for S1a and the effort of synthe-
sizing, only the optimal and a random selection of second-to-optimal solutions were
synthesized for the other specifications. All selected solutions were synthesized at
2 ns and 4 ns. The resulting area and power per sample rate is shown and compared
to the number of signed digits in Figure 4.5. The linear dependency of area and
power on signed digits still holds between filter specifications, meaning that chang-
ing the number of coefficients (without changing the number of signed digits) does
not appear to have a significant impact on the cost of the combinational logic. the

The timing constraint has a significant impact on the results. The area at four
nanoseconds is smaller than the area at two nanoseconds but not that much smaller
that it compensates for the halved data throughput. If the area is adjusted similarly
to the power, it is on average is 56% larger per sample rate. For the adjusted power,
however, the consumption is on average 19% lower at the lower timing constraint.
This suggests that parallelizing the FIR filter is a viable option for power optimiza-
tion, at the cost of increased area.

For register area and adjusted power, the cost instead mostly depends on the
number of coefficients. Figure 4.6 shows that, as expected, both the area and power
of the registers grows linearly with the number of unique coefficients, costing about
7.9 µm2 or 38 µW/Gsps per coefficient at 2 ns. Comparing this with the signed digit
cost of 7.2 µm2 and 16 µW/Gsps means that to gain from adding one unique coef-
ficient, only about 3 SPT need to be saved. This is significantly less than the actual

44

4.2 Coefficient optimization

15 20 25 30 35

Signed digits [—]

0

50

100

150

200

250

A
re

a
[μ

m
2]

Area results all specifications

A 2ns
A 4ns
E
Y1
S1a
G

15 20 25 30 35

Signed digits [—]

0

100

200

300

400

500

600

Po
w

er
 p

er
 sa

m
pl

e
ra

te
 [μ

W
/G

sp
s]

Power results all specifications

A 2ns
A 4ns
E
Y1
S1a
G

Figure 4.5 Area and power per sample rate for all filter specifications. Even with varying
number of coefficients, the cost of the combinational logic can be considered linearly depen-
dent on the number of signed digits.

10 15 20

Number of unique coefficients

0

50

100

150

200

A
re

a
[μ

m
2]

Register area all specifications

A 2ns
A 4ns
E
Y1
S1a
G

10 15 20

Number of unique coefficients [—]

0

200

400

600

800

Po
w

er
 p

er
 sa

m
pl

e
ra

te
 [μ

W
/G

sp
s]

Register power all specifications

A 2ns
A 4ns
E
Y1
S1a
G

Figure 4.6 Register area and power compared to the number of unique coefficients in the
filter.

saving of 20 SPT in the S1a example. Regarding the timing constraint, it does not
appear to affect neither area nor power of the registers significantly. Doubling the
clock period doubles the adjusted area while the power per sample stays the same
due to the halved switching activity.

Lastly, the results of Figure 4.5 show that while there is a spread between solu-
tions with the same number of signed digits, selecting the best of the optimal SPT
solutions always gives the best performance. The histograms in Figure 4.7 confirm
this, showing the area and power distribution of solutions relative to the best solu-
tion for the specification. The figure includes some results for degenerate solutions
which explains why the numbers do not align with Table 4.4. For three out of five
filter specifications there was only one unique optimal solution. For the other two,
S1a and Y1, equation 4.1 was used to calculate a ranking score. In addition to this,

45

Chapter 4. Filter-level optimization

a second ranking was calculated from applying the SCM model from Section 3.2.1
to the coefficients.

Figure 4.8 shows these rankings together with the difference in area and power.
For S1a, there are only two unique solutions, though there is also a variation of
1 µm2 and 2 µW in the results for the coefficient sets that differ only by a factor
of two which should be essentially equivalent. The heuristic ranking manages to
separate these and determine which solution is better. The SCM model does not
perform well at all. The results are similar for Y1a with eight unique solutions. The
heuristic model can not rank the solutions in order but manages to rake out bad
candidates. The SCM model, on the other hand, is hardly better than random.

The bad results of the SCM model can be explained by multiple factors. To
begin with, as pointed out earlier, the multiplication only makes up about half of
the combinational logic and can not be the only logic considered when ranking the
solutions at this level of detail. Furthermore, the synthesis area results are rounded
to the closest square-micro meter which introduces noise that becomes significant
when considering differences in area that are at square-micro meter level. Finally,
the implementation of the multiplication is heavily dependent on the logic depth
which limits the accuracy of using earlier synthesis results. The heuristic ranking
rather provides some measure of logic complexity which seems to better determine
which solution is better. While not perfect, the heuristic criterion can be used to
either reduce the number of candidates to be synthesized or to find a best-effort
coefficient set that will likely be one of the best candidates. Applying a best-effort
strategy is further motivated by the fact that the results at this stage of the ASIC
design are still estimations. Selecting between candidates that only differ a couple
of µm2 can be viewed to be within the margin of error of these estimations.

Finally, it should be noted that the size of the data set considered in this investi-
gation is quite small, meaning that the results cannot be considered to be particularly
conclusive.

46

4.2 Coefficient optimization

100 102 104 106 108 110 112

Area relative best [%]

0

5

10

15

20

25

C
ou

nt
 [—

]

Area distribution best and second best SPT, 2ns

Best SPT
2ns best SPT

100 102 104 106 108 110 112

Area relative best [%]

0

5

10

15

20

25

C
ou

nt
 [—

]

Area distribution best and second best SPT, 4ns

Best SPT
2ns best SPT

100 102 104 106 108 110 112

Power relative best [%]

0

5

10

15

20

25

C
ou

nt
 [—

]

Power distribution best and second best SPT, 2ns

Best SPT
2ns best SPT

100 102 104 106 108 110 112

Power relative best [%]

0

5

10

15

20

25

C
ou

nt
 [—

]

Power distribution best and second best SPT, 4ns

Best SPT
2ns best SPT

Figure 4.7 Relative distribution of best and next best candidates for all filter specifications.

0 0.2 0.4 0.6 0.8 1

Normalized ranking score [—]

0

1

2

3

4

5

6

"
 A

re
a

[μ
m

2]

Heuristic ranking

S1a
Y1

0 0.2 0.4 0.6 0.8 1

Normalized ranking score [—]

0

2

4

6

8

10

12

"
 P

ow
er

 [μ
W

]

Heuristic ranking

S1a
Y1

0 0.2 0.4 0.6 0.8 1

Normalized SCM model area [—]

0

1

2

3

4

5

6

"
 A

re
a

[μ
m

2]

SCM model ranking

S1a
Y1

0 0.2 0.4 0.6 0.8 1

Normalized SCM model power [—]

0

2

4

6

8

10

12

"
 P

ow
er

 [μ
W

]

SCM model rankning

S1a
Y1

Figure 4.8 Ranking of optimal solutions to the S1a and Y1 specifications using the heuristic
criteria and SCM model.

47

5
RTL-level Optimization

The previous chapter managed to find good coefficient set candidates, though it
was hard to decide which set, out of multiple candidates with the same number of
signed digits, would give better results. A better strategy for this could be to use the
candidate with the best potential of optimizing the filter at the RTL level, further
reducing the cost of the optimized coefficients. In this chapter one such technique,
manual sub-expression sharing, is explored.

5.1 Sub-expression sharing

Section 3.2.4 showed that it is possible to outperform the synthesis tool with manual
sub-expression sharing in sum of products operations. In this section, this method
is generalized and applied to realistic coefficient sets. A greedy algorithm is devel-
oped that for a given coefficient set finds up to three common non-overlapping sub-
expressions which can be used to implement sub-expression sharing that minimizes
the number of additions needed by the sum of products (SOP) operation. Note that
since the algorithm is greedy, it does not guarantee the solution to be optimal. After
the sub-expressions are known, the number of adders needed for the SOP can be cal-
culated and the optimization potential can be estimated. By applying the algorithm
on a set of good candidates, these can be ranked based on the number of adders
rather than the number of signed digits or the heuristic criterion of Section 4.2.2. A
candidate with a suboptimal number of signed digits might for example outperform
a candidate with fewer signed digits if it has good sub-expression-sharing potential
that is utilized.

The algorithm is then tested and evaluated at the candidates of the specifica-
tions generated in Chapter 4. The best sub-expression solutions are implemented
explicitly, synthesized and compared to the automatic synthesis results.

5.1.1 Description of the sub-expression extraction algorithm
At an overview level, the algorithm extracts many combinations of non-overlapping
sub-expressions from the set of coefficients and chooses the combination with the
most sub-expression occurrences, translating to the fewest adders in the imple-
mentation. The algorithm works in three stages. In the first stage, a list so with

48

5.1 Sub-expression sharing

sub-expressions found in the coefficient set (in canonical signed digit representa-
tion) is generated. The search space of potential sub-expressions sp is restricted
to the canonical signed digit representation of odd integers between 3 and 75, i.e.
{±101̄,±101,±1001̄, . . . ,±10101̄01̄}. In the second stage, a second list, Si, of pairs
of non-overlapping sub-expressions in so that exist in at least one coefficient is pro-
duced. Finally, after the pairs of sub-expressions have been found there is a third
step where all coefficients containing neither of the two previous sub-expressions
are scanned for any remaining sub-expressions. The most frequently occurring sub-
expression, or none if no more sub-expressions exist, is selected. Once all triplets
of sub-expressions are found, the number of sub-expression occurrences can be
counted and the best triplet is selected. A more detailed algorithmic description can
be found in Algorithm 1.

The problem of finding sub-expressions to reduce the number of adders in SOPs
could probably be solved optimally in a reasonable time, considering all possi-
ble sub-expressions and searching for more than three sub-expressions. However,
for the purpose of this thesis, this algorithm was considered good enough to show
whether it is possible to optimize the filter on the RTL level. Additionally, more
sub-expressions requires more complex manual implementations.

5.1.2 Results
The sub-expression extraction algorithm was run on all solutions to the specifica-
tions in Table 4.3 found in Chapter 4. Manual implementations of the found sub-
expressions were then synthesized at both 2 ns and 4 ns. Both the coefficient set
with the fewest number of adders after optimization and the coefficient set with the
optimal number of signed digits were implemented. The area and power results for
these implementations, referred to as Subexp. and Best SPT, as well as the best
automatic results, Synth., can be found in the tables 5.1, 5.2, 5.3, 5.4 and 5.5.

For both S1a and Y1, the best coefficient sets found by Algorithm 1 also hap-
pened to be one of the solutions with the fewest signed digits. The manual sub-
expression implementation were therefore chosen as another of the best signed
digit solutions. The results for these specifications indicate that given two sets of
coefficients with the same number of signed digits, the coefficient set with more
sub-expressions will perform better when manually implemented. However, both
manual implementations outperformed the behavior-level synthesis.

The best sub-expression solutions of specifications A and E both have one more
signed digit than the best signed digit solution. For these specifications there is no
clear trend in which solution is better as the sub-expression implementation of A
perform slightly better at 2 ns but slightly worse at 4 ns, while the best signed digit
solution of E outperforms the sub-expression solution at both clock periods.

Specification G is the most extreme investigated case in terms of difference in
number of signed digits between the optimal signed digit solution with 15 signed
digits and the best sub-expression solution with 18 signed digits. It is also the spec-

49

Chapter 5. RTL-level Optimization

Algorithm 1 Greedy sub-expression extraction algorithm

• Step 1. Extract all potentially overlapping sub-expressions.
for all hi do ▷ h: Coefficients.

for all sp, j do ▷ sp: Potential sub-expressions.
if sp, j ∈ P(hi) then ▷ P(hi): Set of all subsets of hi.

so← [so,sp, j] ▷ so: (Potentially) Overlapping sub-expressions.
end if

end for
end for

• Step 2. Form combinations of two non-overlapping sub-expressions.
for all so,i do

Si← so,i ▷ S: Non-overlapping sub-expressions-matrix.
for all h j do

for all so,k such that k ̸= i do
if so,k ∈ P(h j \ so,i) then

Si← [Si,so,k]
break

end if
end for

end for
end for

• Step 3. Look for sub-expressions in those coefficients that do not contain current
combination of sub-expressions.
for all Si do

for all h j such that h j ∩Si = /0 do
for all so,k /∈ Si do

if so,k ∈ P(h j) then
Si← [Si,so,k]

end if
end for

end for
end for
Sort S, extract corresponding occurrences of sub-expressions into N
return S,N

50

5.1 Sub-expression sharing

Filter specification S1a

Period Implem. Comb. area Rel. area Comb. power Rel. power Rel. adders

Synth. 138 µm2 1 169 µW 1 1
2 ns Subexp. 119 µm2 0.86 146 µW 0.86 0.87

Best SPT 132 µm2 0.96 165 µW 0.98 0.90

Synth. 107 µm2 1 68 µW 1 1
4 ns Subexp. 98 µm2 0.92 61 µW 0.90 0.87

Best SPT 102 µm2 0.95 65 µW 0.96 0.90

Table 5.1 Table of results for different filter implementations following the specification
S1a. Synth. refers to the behavior-level implementation, Subexp. refers to to the manual im-
plementation of the coefficient set with the fewest number of adders after optimization, and
Best SPT refers to a manual implementation of a coefficient set with the optimal number of
signed digits.

Filter specification Y1

Period Implem. Comb. area Rel. area Comb. power Rel. power Rel. adders

Synth. 181 µm2 1 216 µW 1 1
2 ns Subexp. 152 µm2 0.84 190 µW 0.88 0.83

Best SPT 164 µm2 0.91 204 µW 0.94 0.86

Synth. 134 µm2 1 82 µW 1 1
4 ns Subexp. 117 µm2 0.87 74 µW 0.90 0.83

Best SPT 122 µm2 0.91 78 µW 0.95 0.86

Table 5.2 Table of results for different filter implementations following the specification
Y1. The implementations are explained in the caption of Table 5.1.

Filter specification A

Period Implem. Comb. area Rel. area Comb. power Rel. power Rel. adders

Synth. 229 µm2 1 270 µW 1 1
2 ns Subexp. 186 µm2 0.81 224 µW 0.83 0.85

Best SPT 191 µm2 0.83 234 µW 0.87 0.87

Synth. 195 µm2 1 114 µW 1 1
4 ns Subexp. 177 µm2 0.91 115 µW 1.01 0.85

Best SPT 166 µm2 0.85 103 µW 0.90 0.87

Table 5.3 Table of results for different filter implementations following the specification A.
The implementations are explained in the caption of Table 5.1.

51

Chapter 5. RTL-level Optimization

Filter specification E

Period Implem. Comb. area Rel. area Comb. power Rel. power Rel. adders

Synth. 164 µm2 1 197 µW 1 1
2 ns Subexp. 141 µm2 0.86 177 µW 0.90 0.83

Best SPT 122 µm2 0.74 157 µW 0.80 0.87

Synth. 124 µm2 1 79 µW 1 1
4 ns Subexp. 115 µm2 0.93 72 µW 0.91 0.83

Best SPT 92 µm2 0.74 57 µW 0.72 0.87

Table 5.4 Table of results for different filter implementations following the specification E.
The implementations are explained in the caption of Table 5.1.

Filter specification G

Period Implem. Comb. area Rel. area Comb. power Rel. power Rel. adders

Synth. 95 µm2 1 119 µW 1 1
2 ns Subexp. 90 µm2 0.95 114 µW 0.96 0.91

Best SPT 90 µm2 0.95 114 µW 0.96 0.95

Synth. 75 µm2 1 49 µW 1 1
4 ns Subexp. 75 µm2 1 46 µW 0.94 0.91

Best SPT 76 µm2 1.01 49 µW 1 0.95

Table 5.5 Table of results for different filter implementations following the specification G.
The implementations are explained in the caption of Table 5.1.

ification with the lowest number of optimal signed digits and so the relative differ-
ence thus becomes even bigger. With the results of previous specifications in mind
it might be expected that the best signed digit solution would outperform the best
sub-expression solution. However, this is not the case. Both manual implementa-
tions perform very similarly, with a slight reduction in area and power over the
behavior-level implementation at 2 ns and similar area at 4 ns. Power-wise the best
sub-expression solution performs slightly better than the other two implementations
at 4 ns.

The mean absolute difference between the relative area and power at 2 ns and
the relative additions for all specifications were 4.3% with a standard deviation of
3.3%. Ten filters from five specifications are not enough to make general statements
about the potential of using relative adders to estimate the area and power gains of
manual sub-expression sharing in sets of coefficient. However, these results indicate
that relative adders could prove to be a decent metric for general savings given more
data. The relative-addition metric will always assume the best sub-expression solu-

52

5.1 Sub-expression sharing

tion to perform better than all other solutions and will thus never be able to predict
cases such as specification E where the optimal signed digit solution significantly
outperforms its best sub-expression solution.

It can be concluded that while the performance improvement varies from 28%
down to 5%, additional optimization can often be performed on the RTL level to
decrease area and power after the best coefficients have been selected. Almost all
manual implementations were better than the automatic synthesis. Finally, for all
specifications except E, the relative performance improvements of the manual im-
plementations were higher at 2 ns than at 4 ns which is somewhat surprising, since
the minimal SOP subblock example in Section 3.2.4 had the reverse relationship
with a significantly higher relative gain at 4 ns. The shorter clock period should
make the increased logic depth from reusing sub-expressions less beneficial. How-
ever, due to the black-box optimization of the synthesis toolchain the structure of the
synthesized results are not completely known and it could be that manual implemen-
tations does not actually increase logic depth over behavior-level implementations.

53

6
Summary & Conclusions

This thesis has investigated different aspects of implementing power-efficient fixed-
coefficient FIR filters in ASICs. Multiple strategies have been found to reduce the
power consumption while adhering to a filter specification.

Investigating MCM and SCM filter blocks showed that each signed digit had
a linear impact on the multiplication cost of around 3.5 µm2 and 4.2 µW, show-
ing significant optimization potential. For the single multiplications, the costs of all
coefficients between −1024 and 1024 were measured at 2 ns and a model for esti-
mating the cost of coefficients outside this range was developed. This model was
used to compare the gain from performing MCM compared to many SCM, show-
ing an area decrease of only 8%, which was significantly lower than the theoretical
adder reduction which was 39%. The power consumption of the MCM was worse
than the power consumption of many SCM. Additionally, the area and power of
an adder-tree was shown to be linearly dependent on the number of summed bits,
though only with 0.28 µm2 and 0.33 µW per bit. Therefore, reducing the number of
signed digits was selected to be the main optimization goal when selecting coeffi-
cients. Finally, by implementing an example of explicit sub-expression sharing in a
sum-of-products block, it was shown that it is possible to outperform the automatic
synthesis.

Next, the optimization of the filter design was considered. When comparing ar-
chitectures, the transposed form was found to perform significantly worse than the
direct form, mainly due to the almost double number of flip-flops which was not
compensated by optimized combinational logic. On the contrary, both the combina-
tional area and power was worse for the transposed form. This was partly due to the
small gain from utilizing MCM as mentioned above but also due to about half of the
logic consisting of the structural adders, which in the direct form can be optimized
together in an adder tree.

For selecting the coefficients, a mixed-integer linear program was formulated
to minimize the number of signed digits for a low-pass filter specification. For one
filter specification where all possible solutions could be found, the optimal solu-
tion had 30% fewer signed digits than the median. Additionally, it was found that it
is important to, within reason, give the problem flexibility. Allowing flexible gain,
compared to forcing the gain to be one, decreased the optimal number of signed
digits with on average 26%, and in one case made the problem feasible with fewer

54

Chapter 6. Summary & Conclusions

coefficients. Furthermore, in one case using one more coefficient than what was
needed for the problem to be feasible reduced the number of signed digits with
almost half. However, even with this flexibility the optimization only found one
unique solution with the optimal number of signed digits for three of the five inves-
tigated specifications.

When the optimal and some of second-to-optimal solutions were synthesized,
the number of signed digits was confirmed to have a linear impact of the cost, even
for different filter orders ranging from 15 to 43. The combinational cost of adding
coefficients can thus be considered to be negligible. Of course, more coefficients
instead increases the register cost. However, this cost was comparable to the cost
of a few signed digits, confirming that increasing the number of coefficients can be
worth it if the number of signed digits decreases.

When comparing synthesis results at different clock periods, the additional op-
timization possible at 4 nanoseconds compared to 2 nanoseconds increased the fre-
quency adjusted area with 56% while the adjusted power was decreased by 19%.
This suggests that a parallelized filter structure running at half clock frequency
could be more power efficient, at the cost of requiring more area.

For specifications that had multiple optimal solutions, a secondary heuristic cri-
terion was developed to select the best solution from these candidates. This criterion
was compared to a model based on data from earlier synthesized single multiplica-
tions. While the model did not manage to rank the solutions, the criterion showed
some potential but ultimately, there was not enough data to draw a conclusion.

Instead, it seems promising to base the choice of the best candidate on its sub-
expression-sharing potential. In the final part of the thesis, potential improvements
at the RTL level were investigated to further optimize the best candidates. Most
importantly, the potential for sub-expression sharing was investigated and an al-
gorithm was developed for reducing the number of adders in the SOP sub-block.
Good candidates from this algorithm were then hand-implemented and compared
to the behaviour-level implementation. For each specification two solutions were
manually implemented with sub-expressions: the best sub-expression solution given
by the algorithm, and the optimal signed digit solution. The area and power gains
of these manually implemented solutions varied between 5% and 28%. However,
only one of the specifications with a subtoptimal signed digit solution as its best
sub-expression solution had that solution perform better than the optimal signed
digit solution with manually implemented sub-expressions. In conclusion, explicit
sub-expression sharing can decrease area and power but it is generally not worth
implementing suboptimal solutions over optimal solutions despite their greater sub-
expression-sharing potential.

55

Chapter 6. Summary & Conclusions

6.1 Method critique

The empirical results in this thesis are based on a specific synthesis environment
with internal black-box optimization, which limits the level of control for optimiza-
tion and makes it hard to determine the exact cause and effect of certain results. This
both affects the general applicability of the empirical results and introduces noise
in the results. Specifically, the selection of slower, energy efficient cells versus fast,
leakier cells was found to be hard to control while potentially impacting the results
drastically. Because of this, the finer optimizations such as the secondary criterion
and manual sub-expression sharing should be applied carefully.

Finally, to be able to produce results that take the logical depth into account,
the power estimation needs to take glitching into account which was not possible
in this thesis. Because of this, the area and power results for a specific IP were
always linearly dependent when comparing parameters for the same IP. The power
estimation was therefore only interesting when comparing two different IPs or two
different clock periods.

6.2 Future work

Assuming a straight-forward filter implementation with no pipelining registers, the
developed strategy for selecting coefficients is probably close to ideal, at least within
the noise introduced by the black-box optimization. However, as the development
of digital-analog technology continues, the clock frequency requirements of radio
ASICs can be expected to increase, further increasing the impact of the timing con-
straint. Future optimization efforts therefore need to put focus on pipelining and
possibly architectures for parallelizing the filter.

Furthermore, there are known optimization methods not discussed in this thesis
allow approximations of the filter output. For example, applying internal truncation
before an adder tree would both reduce the size and power as shown in the thesis as
well as improve timing, since fewer bits need to be computed. However, an investi-
gation into the potential gain of this technique, as well as the characteristics of the
noise, is needed.

56

Bibliography

Aksoy, L., E. Costa, P. Flores, and J. Monteiro (2011). “Design of low-power multi-
ple constant multiplications using low-complexity minimum depth operations.”
Proceedings of the 21st Edition of the Great Lakes Symposium: Great Lakes
Symposium on VLSI, pp. 79–84.

Aksoy, L., P. Flores, and J. Monteiro (2014). “A tutorial on multiplierless design
of FIR filters: algorithms and architectures.” Circuits, Systems, and Signal Pro-
cessing 33:6, pp. 1689–1719.

Aktan, M., A. Yurdakul, and G. Dundar (2008). “An algorithm for the design of
low-power hardware-efficient FIR filters.” IEEE Transactions on Circuits and
Systems I: Regular Papers 55:6, pp. 1536–1545.

Chung, J.-G. and K. K. Parhi (2002). “Frequency spectrum based low-area low-
power parallel FIR filter design.” EURASIP Journal on Applied Signal Process-
ing 2002:3, pp. 944–953.

Coward, S., G. A. Constantinides, and T. Drane (2022). “Automatic datapath opti-
mization using e-graphs.” 2022 IEEE 29th Symposium on Computer Arithmetic
(ARITH), pp. 43–50.

Demirsoy, S., A. Dempster, and I. Kale (2002). “Power analysis of multiplier
blocks.” 2002 IEEE International Symposium on Circuits and Systems (ISCAS)
1.

Dong, S. and Y. Yu (2011). “Design of linear phase FIR filters with high probability
of achieving minimum number of adders.” IEEE Transactions on Circuits and
Systems I: Regular Papers 58:1, pp. 126–136.

Eriksson, H. and P. Larsson-Edefors (2004). “Glitch-conscious low-power design
of arithmetic circuits.” 2004 IEEE International Symposium on Circuits and
Systems (ISCAS) 2.

Garcia, R., A. Volkova, and M. Kumm (2022). “Truncated multiple constant multi-
plication with minimal number of full adders.” 2022 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pp. 263–267.

57

Bibliography

Gustafsson, O., H. Ohlsson, and L. Wanhammar (2004). “Low-complexity con-
stant coefficient matrix multiplication using a minimum spanning tree ap-
proach.” Proceedings of the 6th Nordic Signal Processing Symposium (NOR-
SIG), pp. 141–144.

Gustafsson, O., H. Johansson, and L. Wanhammar (2001). An MILP approach for
the design of linear-phase FIR filters with minimum number of signed-power-
of-two terms. LiTH-ISY-R: 2390. Linköping University.

Horrocks, D. H. and Y. Wongsuwan (1999). “Reduced complexity primitive op-
erator FIR filters for low power dissipation”. In: Proc. European Conference
Circuit Theory and Design, pp. 273–276.

Kumm, M., M. Hardieck, and P. Zipf (2017). “Optimization of constant matrix mul-
tiplication with low power and high throughput.” IEEE Transactions on Com-
puters 66:12, pp. 2072–2080.

Kumm, M., A. Volkova, and S. Filip (2023). “Design of optimal multiplierless FIR
filters with minimal number of adders.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 42:2, pp. 658–671.

Lim, Y. and S. Parker (1983). “FIR filter design over a discrete powers-of-two coef-
ficient space”. IEEE Transactions on Acoustics, Speech, and Signal Processing
31:3, pp. 583–591.

Lu, W.-S. (2001). “Design of FIR filters with discrete coefficients: a semidefinite
programming relaxation approach.” 2001 IEEE International Symposium on
Circuits and Systems (ISCAS) 2, p. 297.

Månsson, J. (2021). Adder Minimization and Retiming in Parallel FIR-Filters. MSc
thesis. Linköping University.

Shahein, A. (2014). Power Optimization Methodologies for Digital FIR Decimation
Filters. PhD thesis. University of Freiburg.

Shahein, A., Q. Zhang, N. Lotze, and Y. Manoli (2012). “A novel hybrid monotonic
local search algorithm for FIR filter coefficients optimization.” IEEE Transac-
tions on Circuits and Systems I: Regular Papers 59:3, pp. 616–627.

Voronenko, Y. and M. Püschel (2007). “Multiplierless multiple constant multiplica-
tion.” ACM Transactions on Algorithms 3:2.

Ye, W. B., X. Lou, and Y. J. Yu (2017). “Design of low-power multiplierless linear-
phase FIR filters.” IEEE Access 5, pp. 23466–23472.

Yu, Y. J. and L. Yong Ching (2007). “Design of linear phase FIR filters in subex-
pression space using mixed integer linear programming.” IEEE Transactions on
Circuits and Systems I: Regular Papers 54:10, pp. 2330–2338.

58

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2023
Document Number
TFRT-6199

Author(s)

Erik Lundell
Gustav Molin

Supervisor
Olof Troeng, Ericsson, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden
Emma Tegling, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Energy-Efficient Fixed-Coefficient FIR Filters for Millimeter-Wave Radios
Abstract

With the introduction of millimeter-wave antenna arrays in 5G base-stations and ever-increasing data
volumes, the power consumption of the signal processing in digital radio systems has increased over
the last decade. This, combined with increased cost and environmental awareness, has put focus on
power optimization. This thesis investigates different aspects of optimizing one important component
of digital radio systems, fixed-coefficient FIR filters.
 The thesis initially investigates subblocks of the FIR filters separately. The cost of fixed coefficient
multiplication is found to be linearly dependent on the number of signed digits in the coefficient set
while additions are linearly dependent on the number of summed bits.
 The second part of the thesis considers complete filters. First, two common filter architectures are
compared and the direct form is found to be more efficient. Then, a mixed-integer linear program is
formulated that minimizes the number of signed digits in the filter coefficients. This optimization is
shown to be able to reduce the number of signed digits with 20–30% compared to the median which
translates to a similar reduction in area and power. Furthermore, allowing the filter gain to be flexible
is found to reduce the optimal number signed digits additionally with around 20%. For filter
specifications where there are multiple solutions with the same optimal number of signed digits, a
ranking score based on other coefficient features is suggested.
 In the final part of the thesis, the optimal solutions from the second part are optimized further. An
algorithm for finding common sub-expressions in coefficient sets is developed. Using these sub-
expressions when implementing the filter is shown to reduce both area and power consumption with
5–25%.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-58

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Introduction
	Goal and purpose
	Problem formulation
	Methodology
	Delimitations
	Outline
	Abbreviations and notation

	Background
	Digital filters
	ASICs
	Hardware implementation of an FIR filter
	FIR filter architectures
	Coefficient selection

	Initial Investigations
	Experiment setup
	FIR filter subblocks

	Filter-level optimization
	Direct and transposed form comparison
	Coefficient optimization

	RTL-level Optimization
	Sub-expression sharing

	Summary & Conclusions
	Method critique
	Future work

	Bibliography

