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Abstract

Synthetic data generation has emerged as a valuable technique for addressing data
scarcity and privacy concerns and improving machine learning algorithms. This
thesis focuses on progressing the field of synthetic data generation, which may
play a crucial role in AI-heavy industries such as telecommunications. Generative
Adversarial Networks successfully generate various types of synthetic data but fall
short when modelling the temporal patterns and conditional distributions of time
series data. State-of-the-art TimeGAN has shown promise, but there is potential for
refinement. We propose T2GAN, utilising TimeGAN’s novel framework of com-
bining unsupervised and supervised training and extending it using state-of-the-art
machine learning techniques, such as Transformers. Through experimental evalu-
ation, we quantify the effectiveness of T2GAN using various benchmark data sets
and find that the T2GAN model significantly surpasses the TimeGAN in both dis-
criminative and predictive capacities. Our results demonstrate a 38% enhancement
in similarity measures and a 55% reduction in relative prediction error when using
synthetic training data. Furthermore, the thesis presents a comprehensive litera-
ture study and analysis of generative models, detailing the potential of T2GAN in
various domains by enabling privacy-preserving data analysis, facilitating research
and development, and enhancing machine learning algorithms.
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1
Introduction

Data-centric Artificial Intelligence (AI) is a rapidly evolving field transforming
how we interact with technology. At the heart of this transformation is the ability to
collect, process, and analyse large amounts of data to make predictions, automate
tasks, and optimise decision-making in an agile way. The transition is necessary to
facilitate emerging technologies and will be the key to unlocking effective large-
scale AI systems [61].

As we continue to push the boundaries of what is possible with AI, many chal-
lenges are yet to be overcome before generalised and fully autonomous AI systems
are achievable. Machine learning is expected to replace traditional software engi-
neering progressively, starting and ending with data. One challenge is the need
for high-quality, diverse, and representative training data, essential for reliable
AI models [61]. Unfortunately, getting high-quality data is cumbersome, mainly
due to extensive data collection and preparation processes. Furthermore, true data-
centricity is hampered due to data proprietaries. As a result, progress is inefficient,
and growth occurs within silos, with function-specific models rather than gener-
alised innovations [4].

Enter synthetic data. Synthetic data generators are powerful tools that have the
potential to generate large amounts of data representative of the natural world,
mitigating data-centric adversaries such as data insufficiencies and privacy consid-
erations [22, 48, 65]. This can revolutionise how we develop and deploy AI models
by enabling us to train models on large and diverse synthetic data sets otherwise
unavailable in the real world.

Consequently, developing practical synthetic data generators that can enhance data
quality and enable interchangeable data sets has profound implications for research
and businesses. Simply put, it would allow companies unprecedented access to
arguably one of the world’s most valuable resources. By 2024, 60% of the data
used in AI is expected to be synthetic to supplement the limited original sources
and feed the large-scale AI model’s hunger for data [12].
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1.1 Related Work

For Ericsson and the Information and Communications Technology (ICT) industry,
synthetic data is an attractive research area [17]. The future of ICT is piloted by the
development of 5G and 6G, predestined to rely heavily on autonomous systems
and cloud-based operations, requiring a data-centric strategy. Access to data is
reportedly a significant barrier to AI and machine learning progress at Ericsson,
where synthetic data can mitigate these problems. Another issue, typical when
training deep neural networks, is data scarcity resulting in impractical algorithms
being unable to converge appropriately.

Previously, data generation has been confined to probabilistic models treating the
data as random variables and then sampling based on their modelled underlying
joint distribution. However, recent advancements in generative models, such as
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs),
show promising results as they offer greater flexibility and performance in repre-
senting the data. In addition, they can handle complex data types, including numer-
ical, deterministic, categorical and textual inputs, while capturing temporal depen-
dencies and potentially functioning as an anonymisation technique [64]. However,
although deep generative models have shown great potential, several shortcomings
must be addressed.

This thesis will explore novel contributions to synthetic data generation, mainly
using GANs, and detail their associated challenges. The focus will be moving from
tabular data to the more complex streaming setting with time series data. The goal
is to explore the current state-of-the-art methods and develop a practical synthetic
data generator tool as a proof of concept for future research.

1.1 Related Work

In synthetic data by machine learning, image synthesis using GANs (Nvidia’s
StyleGAN 3), text-to-image models (OpenAI’s DALL-E 2), and plain text gener-
ation using natural language processors (OpenAI’s GPT-4) have recently received
much attention. However, considerable efforts are also exploring the synthetic gen-
eration of tabular data using GANs. This thesis will take off from the current state-
of-the-art methods for generating tabular data presented by [46, 45, 64] and time
series data by [66] and extend their innovations to overcome some of the main
challenges, finally exploring the applicability for generating data in a streaming
setting [21]. Like much of the previous work, our model will employ a combina-
tion of the fundamental advancements made in GAN architecture since it was first
introduced in 2014 [22] but also include successful components from the modern
Transformer architecture [58].

Despite the efforts in generating synthetic data using GANs, there are still chal-
lenges to address. For example, one often desired feature when generating syn-
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Chapter 1. Introduction

thetic data that resembles the underlying distribution is maintaining the privacy
of the original data. So far, the privacy guarantees from most privacy-oriented
GAN frameworks must be more comprehensive for many healthcare, finance and
telecommunications applications. For example, some featured models in the litera-
ture achieve the most common privacy definitions [29, 36]. On the other hand, less
explored are guarantees beyond these standards. Still, the authors of [65] argue for
a different technique and privacy metric when generating data such as healthcare
records to cater to more rigid and interpretable privacy requirements.

1.2 Problem Formulation

The hypothesis is that it is possible to generate synthetic data suitable for training
accurate machine learning models capable of, e.g., detecting anomalies in cloud
servers. The project will primarily concern applications within ICT, but the ap-
proach is generic and applies to any industry.

Within telecom, a profound issue is that the data is highly proprietary, prohibiting
data-centric analysis and modelling across operators. Furthermore, the advance-
ment of 6G and its dependence on autonomous AI motivates cutting-edge tools for
synthetic data generation. The project aims to act as a proof of concept of to what
extent it is possible, in a general sense, to use GANs to generate synthetic data.

Additionally, the current methods for generating data using GANs often rely
on hand-crafted components or extensive pre-processing techniques, limiting the
model’s generality. To address this issue, we aim to develop a flexible and scalable
model to generate synthetic data directly from raw data without relying on hand-
crafted features or extensive pre-processing techniques. The goal is to produce a
flexible model for time series data capable of dealing with temporal dependencies,
high dimensionality and critical outliers.

Successfully developing such a tool may enable ICT providers to access and har-
ness a new domain of Mobile Network Operator (MNO) data – offering further
research- and business opportunities.

1.3 Scope and Delimitations

This research comprises two main parts aimed at advancing the field of synthetic
data generation, with a particular focus on time series data during experimentation.

The first part consists of an extensive literature study that explores state-of-the-art
synthetic data generators, focusing primarily on GANs for both tabular and time
series data. This investigation provides a foundation for understanding the current
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1.4 Individual Contributions

landscape of synthetic data generation techniques, their limitations, and potential
areas for improvement.

The second part of the research involves the experimentation and development of
an improved framework for generating synthetic data. This part of the research
aims to create a more robust and practical approach to synthetic time series gener-
ation by building upon the insights gained from the literature study and addressing
the limitations of existing methods.

In terms of scope, this research primarily focuses on developing and evaluating an
improved GAN-based framework for synthetic time series data generation. It does
not cover all possible synthetic data generation techniques or address other data
types, such as text or images. The experiments are also limited to the specific data
sets used for evaluation and comparison, and the results may vary when applied to
other data sets or domains.

Delimitations of this research include focusing on GANs as the primary method for
synthetic data generation instead other generative models, such as VAEs or Trans-
former architectures. Furthermore, the research is conducted within the context
of tabular and time series data. Thus, the developed framework may not directly
apply to other data types without modifications or additional considerations. Addi-
tionally, although thoroughly described in the literature study, the experimentation
does not directly test the privacy aspects of the synthetic data. Instead, it provides
some insights into the discussion regarding the privacy of synthetic time series
data.

Despite these delimitations, this research makes significant contributions to the
field of synthetic time series data generation, offering valuable insights and po-
tential directions for future work. By investigating state-of-the-art methods, de-
veloping an improved framework, and evaluating its performance, this research
demonstrates the potential of GAN-based techniques for generating realistic and
practical synthetic time series data.

1.4 Individual Contributions

Both authors have been deeply involved in all parts of the research, including lit-
erature review, model development, experimentation, and testing. Naturally, some
division of labour has occurred, such as leading different literature review areas.
Furthermore, we have followed an iterative and collaborative approach throughout
the model development process, ensuring efficient teamwork.

For instance, Esaias focused on developing the multi-GPU setup during the exper-
iment setup and preparing for implementing the T2GAN in PyTorch. Meanwhile,
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Chapter 1. Introduction

August examined various hypotheses and ideas using the existing TimeGAN
frameworks to learn the model.

During model development, we worked in parallel, individually exploring different
aspects of the framework or training unique models. Esaias focused on experiment-
ing with multi-head attention and transformer concepts, while August compared
the performance of different network architectures, including Long Short-Term
Memories (LSTMs), Gated Recurrent Units (GRUs), and Convolutional Neural
Networks (CNNs). This process identified the most suitable architecture for our
synthetic data generation model.

In addition, regular meetings and code reviews helped maintain consistency and a
shared understanding of the project, ensuring a seamless integration of our contri-
butions.
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2
Background

2.1 Leveraging Synthetic Data in 6G Communications

Telecommunications and information technology are evolving rapidly. Each new
generation, from 4G to 5G and now looking towards 6G, brings unique opportu-
nities and challenges [63]. During the 4G era, the advent of cloud-based artificial
intelligence facilitated complex data analysis and machine learning tasks on the
go. Dedicated hardware components handled specific network tasks, offering a
manageable yet inflexible system.

With the shift to 5G, core network functions began migrating from these fixed
components to a virtual cloud environment. Although this increased flexibility, it
simultaneously introduced management complexities. We foresee an even more
significant shift as we anticipate the advent of 6G. The network infrastructure is
expected to become entirely virtualised and distributed, providing impressive flex-
ibility and efficiency but vastly increasing system complexity.

This evolution towards more complex, distributed systems presents a significant
challenge for telecommunications actors. In such distributed systems, operators
host numerous services, making parts of the system or data inaccessible. As a
result, the industry must develop ways to autonomously collect, process, and la-
bel data from these widespread sources for efficient system maintenance, such as
anomaly detection.

Synthetic data generators could be a solution to these challenges. These tools oper-
ate between data owners and end users, providing a pipeline to model and conduct
system maintenance on proprietary data sources. Synthetic data is artificial data
generated by a model designed to have similar statistical properties as the original.
It is beneficial when real-world data is either unavailable or confidential.

Synthetic data can augment existing data sets where data is scarce, enabling robust
machine learning model training. Alternatively, when data confidentiality due to
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Chapter 2. Background

privacy concerns poses a problem, synthetic data can be shared and utilised with-
out revealing personal and directly identifiable information [42]. The increasing
demand for synthetic data across industries and the growing system complexities
in telecommunications underscores the importance of advancing synthetic data
generation techniques.

2.2 The Need for Privacy

For the ICT industry, efficient data-centric functions of 5G and 6G networks will be
essential to enable the full-scale transition. At Ericsson, privacy-preserving tech-
niques can be utilised in many different ways [16]. One immediate application is a
synthetic data generator tool that can be used in-house and with partners to share
sensitive data sets or extend insufficient ones. Data volumes are expected to in-
crease immensely over the coming years, requiring a scalable and adaptive data
pipeline. For example, consider operator data, which is often sensitive and cannot
be shared openly [63]. For instance, it can be location-aware and contain informa-
tion that can be directly linked to a user and is thus required to be obfuscated or
otherwise anonymised.

Anonymisation techniques aim at making it difficult to link the data to a spe-
cific individual [38]. However, it is insufficient to anonymise data, such as re-
placing customer names with customer IDs. In a prize challenge, Netflix manually
anonymised 100 million movie ratings using movie-id, customer-id and movie-
rating. Nevertheless, a research group [41] later proved it possible to uncover cus-
tomer records and other sensitive information using very little knowledge of a cus-
tomer. Therefore, the increasing demand for data-driven decision-making has led
to more sophisticated anonymisation techniques, ranging from data masking to ad-
vanced machine learning algorithms. However, every privacy-preserving method
comes with a trade-off between the risk of privacy violation and data usefulness
[15], and a future of democratised data needs more effective ways. The following
briefly introduces the most common anonymisation techniques for sensitive data
sets.

Consider a private user table D of multiple records, where each record is linked to a
user by a unique user ID. Furthermore, each record can have one of four attributes
[38]:

• Direct identifier: information that can directly identify a user (e.g. name,
email address or SSN).

• Quasi identifiers: can be linked via auxiliary information to reveal some-
one’s direct identifier or sensitive attribute (e.g. age, gender or geographic
location).

16



2.2 The Need for Privacy

• Sensitive attributes: personal information that should not be revealed (e.g.
salary, disease or political/religious views).

• Non-sensitive attribute: if the record is none of the above (e.g. height,
weight or eye colour).

An adversary can threaten to disclose information in three different ways [38]:
Identity disclosure, attribute disclosure and membership disclosure. As the name
suggests, identity disclosure is when an adversary can associate an individual with
a direct identifier. Attribute disclosure is when an individual is linked to a sensi-
tive attribute, and membership disclosure is when it is possible to deduce that an
individual is present/absent in the data set.

Table 2.1 Example of a sensitive data table.

Direct Identifier Quasi Identifiers Sensitive Attribute

ID Zip Code Age Net Income

1 23250 20 240,000
2 23750 27 320,000
3 22210 31 240,000
4 22152 48 710,000
5 22160 36 230,000
6 22252 50 370,000

Syntactic models of anonymity
Syntactic models of anonymity are privacy-preserving techniques that focus on
data structure and format. They transform data by removing or replacing identi-
fiers, generalising quasi-identifiers, and grouping records to protect privacy and
maintain overall correctness. However, these methods can sometimes reduce data
granularity and usefulness.

The first and most common anonymisation technique is replacing direct identi-
fiers with IDs. However, as shown by [41] in the Netflix prize challenge, such
methods are not enough to protect user privacy even against simple attacks. Most
syntactic models, therefore, also generalise the table records by grouping values
into categories. This preserves the correctness of the data and protects individu-
als by making the records indistinguishable, but it can significantly hamper data
usefulness.

K-anonymity is a privacy concept used to protect sensitive information in large data
sets and utilises the grouping technique mentioned above. The goal of k-anonymity
is to anonymise the direct and quasi-identifiers in a data set and divide the records
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Chapter 2. Background

into blocks, ensuring that there are at least k−1 other records in the data set with
similar or identical characteristics, such that they are indistinguishable [15]. In
other words, k-anonymity measures a data set’s "clustering" of matching records.

Table 2.2 Example of a 3-anonymous data table.

Direct Identifier Quasi Identifiers Sensitive Attribute

ID Zip Code Age Net Income

1 2**** 20-35 240,000
2 2**** 20-35 320,000
3 2**** 20-35 240,000

4 22*** 36-50 710,000
5 22*** 36-50 230,000
6 22*** 36-50 370,000

There are several weaknesses with k-anonymity pointed out by [33] [37], primarily
that it does not guarantee enough diversity of sensitive attributes within each block.
Instead, [33] proposes adding a constraint called l-diversity. l-diversity requires
that each equivalence class (block of records sharing the same quasi-identifier val-
ues) in the anonymised data set contains at least l distinct values for the sensitive
attribute. This constraint aims to prevent attribute disclosure by ensuring suffi-
cient diversity in sensitive information within each group, making it harder for an
attacker to confidently infer an individual’s sensitive attribute based on their quasi-
identifier values. Note that Table 2.2 is 3-anonymous but only 2-diverse since there
are a minimum of 2 distinct sensitive values for each group of k records (two sen-
sitive attributes are identical, Net income = 240,000 for individual 1 and 3). An
example of a 3-anonymous and 3-diverse table is illustrated in Table 2.3, which is
3-diverse because each group of records sharing the same quasi-identifier values
contains at least 3 distinct sensitive attribute values. This increased diversity in
Table 2.3 makes it more difficult for an attacker to infer an individual’s sensitive
information based on their quasi-identifiers. In addition, it is possible to further
protect the data by adding a t-closeness constraint, which ensures that the distribu-
tion of sensitive values in a data set is similar to the distribution of sensitive values
in the underlying population bounded by a threshold t.

The literature proposes variants of the methods above that do not damage the data
utility as k− and l-diversity depending on the application [62, 2, 54]. One example
is the Anatomy anonymisation method [62], which similarly divides the data into
blocks. However, instead of generalising the quasi-identifiers, it randomly shuffles
the sensitive attributes, yielding equivalent privacy guarantees as l-diversity.
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2.2 The Need for Privacy

Table 2.3 Example of a 3-anonymous, 3-diverse data table.

Direct Identifier Quasi Identifiers Sensitive Attribute

ID Zip Code Age Net Income

1 2**** 20-40 240,000
2 2**** 20-40 320,000
5 2**** 20-40 230,000

3 22*** 30-50 240,000
4 22*** 30-50 710,000
6 22*** 30-50 370,000

Differential privacy
Differential privacy is a mathematical definition used to design algorithms that
preserve privacy in data analysis [15]. Differential privacy aims to allow data sci-
entists to extract useful information from sensitive data while hiding individual
identities and minimising the risk of re-identification. Another way to put it is it
provides individuals with a similar degree of privacy as if their information were
deleted from the data set. This is done by ensuring it is impossible to infer whether
a single individual was included by running statistical functions on the data set.
Note that an individual’s contribution to a data set depends on the size of the data
set. Thus, differential privacy is a formal mechanism of how much random pertur-
bation must be added to the query result to produce equivalent privacy.

The strength of differential privacy is that it assumes that an attacker knows all
records in the data set except one and yet restricts an attacker from violating the
privacy of that individual. It is also a formal mechanism for adding noise to the
query results. Finally, it is composable, where in the case of differential privacy,
multiple queries can be performed on the same data set while still maintaining the
confidentiality of the individuals in the data set. This allows for more flexible and
efficient use of the data without sacrificing privacy.

Let’s consider an example to get a better sense of the applications. Again, consider
a private table (see Table 2.4) of multiple records, where each record is linked to an
individual by an ID. The sensitive attribute is, in this case, "disease status", which
is a categorical value where 0 = healthy and 1 = diseased. The quasi-identifiers
are zip code and age, which are discrete values.

We can use differential privacy to add noise to the data before releasing informa-
tion about the population (see Table 2.5). For example, we could add Laplace noise
to perturb the disease status. Laplace noise samples from the Laplace distribution,
which is heavy-tailed and can yield both positive and negative values [19]. The
amount of noise is determined by the scale parameter b, where a smaller value
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Chapter 2. Background

Table 2.4 Raw data containing sensitive information.

Individual Zip Code Age Disease Status

1 90210 25 1
2 12345 32 0
3 56789 40 1
...

...
...

...
100 11111 29 0

results in more perturbation and, thus, better privacy protection.

Table 2.5 Differentially private data.

Individual DP Zip Code Age DP Disease Status

1 90210 25 0
2 12345 32 1
3 56789 40 1
...

...
...

...
100 11111 29 1

The column disease status is altered by some level of noise determined by the
privacy budget, i.e., the level of desired privacy protection. It is worth noting that
there are other ways to add noise, and they can differ significantly in effectiveness
depending on the situation. Consider an example where we sell lemonade and have
three potential buyers willing to pay 1C, 1C, and 3.01C, respectively. As a seller,
if we price at 1C, the revenue becomes 3C, pricing at 1.01C the revenue drops
to 1.01C, pricing at 3.01C the revenue increases to 3.01C and finally, pricing at
3.02C the revenue drops to 0C. In this case, choosing how to price is non-private
since it will be reasonably easy to deduce whether, e.g., the "rich person" is in
the data set. Therefore, adding noise does not seem practical if changes to the
sensitive attribute (willingness to pay) have these effects. The lemonade example
demonstrates the need for understanding the data and the goal of the analysis when
employing differentially private methods.

Furthermore, perturbing the data can obscure or even change the underlying rela-
tionships between features, potentially impacting the performance of, e.g., a ma-
chine learning model. For example, if there is a positive correlation between age
and disease in Table 2.5, depending on the number of samples and the represen-
tation of different age groups, adding noise could make the relationship less clear,
leading to incorrect decisions and predictions. Therefore, like with the syntactic
methods, it is essential to consider the trade-off between privacy and data utility
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2.3 Data Formats and their Characteristics

when using differential privacy.

Anonymisation through generative models
While syntactic methods have apparent drawbacks, quickly damaging data useful-
ness, differential privacy is often applied when we do not see the raw data and
instead query a particular algorithm or analysis. Therefore, it is interesting to in-
vestigate other methods of anonymisation. In many cases, the most meaningful
aspect of privacy is assessing the identifiability between the original data and the
generated synthetic data. For this purpose, the literature suggests various genera-
tive models, which will be more thoroughly described in section 2.4, such as the
VAE and GAN.

The recent developments in GANs have successfully generated highly realistic im-
ages [30] and other types of data, such as tabular data and time series [64, 20] or
variations fulfilling differential privacy constraints [56, 29]. However, if assessing
identifiability is the objective, these methods do not guarantee privacy. Although
there is no general framework for this in the literature, [65] proposes a novel ap-
proach by introducing "Identifiability" and mathematically defining it as a metric
when assessing the privacy level of synthetic patient data using a unique GAN
architecture.

2.3 Data Formats and their Characteristics

Data comes in many shapes and forms, with varying approaches and synthesising
techniques. This thesis will focus on the following data types: tabular data and time
series data. These data types can also be considered in an offline or online setting.

Tabular data
Tabular data is organised in rows and columns and can contain all the data types
above. The columns represent different data features; each row is a single record of
multiple features. Tabular is a straightforward way of storing and analysing data,
but synthesising tabular data is not trivial. One issue with generating tabular data
is the semantic integrity within records. While synthesised data might catch each
column’s underlying distribution and correlation, synthetic values might be im-
possible. For example, generating a medical record of a patient with a cholesterol
level of 60 mg/dL (normal) and labelling them as diabetic would be semantically
incorrect [45]. Another issue is that each feature can be continuous, discrete, cate-
gorical, textual, and temporally dependent.

Time series data
Time series data refers to data with temporal dependencies and a relationship be-
tween data points. The challenge with time series data is capturing temporal pat-
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Chapter 2. Background

terns such as auto-correlation and periodicity. Examples of time series data are
stock prices and weather data. Note that time series data often come in a tabular
format. Nevertheless, we distinguish between tabular and time series data since
they are processed differently when synthesised using GANs, which is more thor-
oughly described in Section 2.9.

2.4 The History of Synthetic Data Generators

The advent of synthetic data generation has spurred the development of various
techniques, each with its unique approach. Beginning in the 1950s, von Neumann
introduced the Markov Chain Monte Carlo (MCMC) methods [50], which gener-
ated synthetic data by sampling from an unknown or known distribution. Around
the same time, Sklar introduced copula methods to model the relationship be-
tween variables, separated from the variables’ marginal distributions [10]. A cop-
ula is a mathematical function which connects several variables’ joint distribution
with their marginal distribution and generates synthetic data by sampling from the
marginal distributions and combining the samples.

In the 1980s, Pearl pioneered the next breakthrough introducing Bayesian net-
works [47]. It is a graphical approach where the idea is to find a directed acyclic
graph of several variables, where edges between nodes represent dependence be-
tween variables. By utilising the directed acyclic graph, it is possible to construct
a conditional probability table for each variable. Synthetic data can then be gener-
ated by first selecting a starting variable, sampling a value for the variable using its
marginal distribution, and finally, using the directed edge to propagate the sample
to the other nodes in the graph and sample a new value at each node based on its
conditional probability table.

Simultaneously, in the 80s, Boltzmann machines entered the scene and were the
first approach utilising artificial neural networks [27]. A Boltzmann machine is a
network of binary nodes where each node is either "on" or "off", with learnable,
weighted edges connecting the nodes. Each node represents a variable and the
edge between their interaction. The goal is to learn the weights for the machine to
generate synthetic samples.

In 2013 Kingma et al. introduced the variational autoencoder [31], which uses a
deep learning approach. The general idea is to train one neural network to map
input data to a lower dimensional latent space and one neural network that aims to
reproduce the input data from the latent space. If successful, it is possible to sample
from this latent space to generate new synthetic samples. The VAE is detailed in
Section 2.6. Goodfellow et al. introduced the GAN in 2014 [22], letting two neural
networks compete against each other. The generator receives noise as input and
tries to produce realistic images that can fool the discriminator. Simultaneously, the
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discriminator receives fake images alternated with real ones to determine whether
they are real. See Section 2.7 for more details on the GAN architecture.

This thesis will only consider GANs since it is the most promising generation
technique presented in the literature related to our purpose. However, before div-
ing into the machine learning-based synthetic data generators, it is important to
understand the relevant Artificial Neural Networks (ANNs) introduced in the next
section.

2.5 Artificial Neural Networks

ANNs are computational models inspired by the structure and function of biologi-
cal neurons [1]. The design simulates how the human brain processes information
by forming complex networks of nodes, or artificial neurons, so the network can
learn and make predictions based on data inputs. ANNs are composed of multiple
layers, each containing multiple artificial neurons. The network processes inputs
through the layers, finally outputting from the output layer (see Figure 2.1). The
learning process in ANNs occurs by adjusting weights associated with each con-
nection between the artificial neurons. The weights are updated based on the differ-
ence between the actual and desired output by minimising a specific loss function.
By repeating the process multiple times, using different data inputs, the network
learns progressively to produce accurate outputs based on the inputs. There are sev-
eral types of ANNs, including feed forward networks, convolutional networks, and
recurrent networks - each type designed for a specific problem and data structure,
such as image recognition, speech recognition, or natural language processing.

A single artificial neuron in an ANN is represented mathematically as:

y = f (
n

∑
i=1

wixi +b)

where y is the output of the neuron, f is the activation function, wi is the weight
of the i:th input, xi is the i:th input, and b is the bias. The activation function f
determines the neuron’s output based on the weighted sum of inputs and biases.
The most common choices are sigmoid, hyperbolic tangent (tanh), Rectified Linear
Unit (ReLU) and leaky ReLU (see Figure 2.2).

Training an ANN aims to find the optimal weights and biases that minimise a loss
function between the actual and predicted outputs. The loss function can be any
suitable function, such as the mean squared error (MSE) or the cross-entropy loss,
that quantifies the difference between the actual and predicted output. For instance

MSE =
1
N

N

∑
n=1

(yn− ŷn)
2
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Figure 2.1 A fully connected artificial neural network with three hidden layers.

where yn is the observed value and ŷn is the predicted value. Once the loss function
is defined, the minimisation problem takes the form:

min
W

L(W;x,y)

where W is the vector of weights in the network, x is the input data and y is
the target or label for the data. L(W;x,y) is the loss function that measures the
difference between the prediction of the network and the true target. The goal is to
find the W values that minimise the loss.

The optimisation process involves techniques such as SGD (stochastic gradient
descent) or Adam (Adaptive moment estimation) optimiser. The gradients of the
loss function are computed during the training process, and the weights are ad-
justed iteratively based on the gradients. Backpropagation efficiently computes the
gradients by propagating the errors backwards through the network, starting from
the output layer towards the input layer. Training is executed in batches, i.e., a
subset of the training data. The batch size determines the number of samples used
in each iteration that compute gradients and update weights. Using batches gives
more efficient computation and resource utilisation, and the choice of batch size
depends on factors like available memory and the trade-off between computation
time and convergence speed. The optimisation iterates over multiple epochs, each
epoch being a complete pass of the training dataset. By employing optimisation
techniques, training with batches, iterating over epochs, and utilising backpropa-
gation, the ANN learns to optimise its weights to minimise loss.
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Figure 2.2 Four common activation functions.

In addition, an ANN depends on several hyperparameters that must be defined
before training. Hyperparameters are tuneable parameters, such as the number of
hidden layers, the number of nodes in a layer, the learning rate and batch size,
which can significantly impact the network performance. They are crucial to ob-
tain a model that generalises well. A common problem for neural networks is over-
fitting, where the networks learn the training data too well. It often occurs when
the network is overly complex, e.g., with too many parameters. There are multi-
ple regularisation techniques available to avoid overfitting. Some examples are L1
and L2 regularisation, early stopping or dropout. L1 and L2 regularisation adds a
penalty term to the loss function discouraging large weights commonly associated
with overfitting. Early stopping sets aside a validation set and involves monitor-
ing the validation error, stopping the training when it no longer improves signif-
icantly. Dropout is a regularisation technique where random nodes are ignored
during training, reducing the dependence on single neurons.

Finding the proper network structure and fine-tuning hyperparameters can be diffi-
cult. The "black-box" nature of ANNs exacerbates the challenge. The inner work-
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ings of an ANN are not easily accessible nor interpretable, making it difficult to
understand how the network arrived at a particular decision or prediction. This lack
of interpretability can limit stakeholders’ trust in the predictions made by the net-
work. It can make it challenging to use the network in specific applications, such
as healthcare or finance, where interpretability and transparency are crucial. Addi-
tionally, the black-box nature of ANNs makes diagnosing and debugging the net-
work challenging when errors occur. Despite these limitations, ANNs have proven
to be powerful models for many applications due to their ability to learn complex
patterns when large amounts of data are available.

Convolutional neural networks
CNNs are a category of ANNs, capable of processing data with grid-like structures,
such as images [24]. The overall architecture is similar to ANNs, but in contrast,
each neuron only connects to a small input region. The usual building stones of
a CNN are convolutional layers, pooling layers and fully connected layers. Con-
volutional layers can operate in one dimension, two dimensions, and subsequently
in the time dimension. See Figure 2.3 for an example of a 2D convolution. For
example, this network could classify images of handwritten digits between 1−9,
where the image size is 28x28.

Feature
maps
16@6x6

Feature
maps
16@24x24

Inputs
1@28x28

Convolution
5x5 kernel

Max-pooling
4x4 kernel

Hidden
units
576

Outputs
9

Flatten Fully
connected

Figure 2.3 Illustration of a 2D convolutional neural network.

There are different versions of pooling layers, such as max pooling and average
pooling. Max pooling returns the maximum value of a region, whereas average
pooling returns the average of the same; see fig 2.4 for details.

Figure 2.5 details a convolution filter operation where the trainable parameters are
the ones in the filter.

The basic idea is to extract local features with the convolutional layers and reduce
spatial dimension and feature resolution with pooling layers. Then, the network
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Figure 2.4 Max and average pooling in 2D.
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Figure 2.5 One 2D convolutional filter operation.

gradually extracts higher-level feature representation by stacking several convo-
lutional and pooling layers [24]. After reducing spatial dimension sufficiently, a
fully connected layer is typically used to perform classification or regression. Fi-
nally, the fully connected layer processes the output of the previous layers and
produces the final prediction. The training procedure is the same as with an ANN,
i.e., minimising a loss function that measures the difference between the predicted
and actual values and then updating the weights accordingly. Concluding, the abil-
ity of CNNs to automatically learn and extract complex and relevant features from
images has made them popular in image classification and object recognition tasks.

Recurrent neural networks
Recurrent Neural Networks (RNNs) are a class of neural networks capable of pro-
cessing sequential data, such as time series data. Unlike feed forward neural net-
works, RNNs can take variable length inputs and produce variable length outputs.

The critical feature of RNNs is the ability to utilise a hidden state updated at each
time step with new input. The hidden state enables the network to maintain a record
of previous inputs and their influence on the current output. Unfortunately, tradi-
tional RNNs suffer from the vanishing gradient problem, i.e., gradients become
very small as they propagate back through time, resulting in poor performance
on long sequences. LSTMs [28] and GRUs [13] were developed to mitigate this,
introducing unique gating mechanisms, allowing the network to learn and forget
information over time selectively. In addition, the mechanisms prevent the gradi-
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ents from vanishing or exploding over long sequences, allowing the network to
capture long-term dependencies better.

LSTMs use a memory cell and two states: the current hidden state ht and the pre-
vious hidden state ht−1. There are two cell states: the current ct and the previous
ct−1. The memory cell stores the current state, which regulates the cell’s informa-
tion. The architecture is detailed in Figure 2.6 and the computations in an LSTM
can be described by the following equations:

ft = σ(Wf · [ht−1,xt ]+b f )

it = σ(Wi · [ht−1,xt ]+bi)

c̃t = tanh(Wc · [ht−1,xt ]+bc)

ct = it · c̃t + ft · ct−1

ot = σ(Wo · [ht−1,xt ]+bo)

ht = ot ⊙ tanh(ct)

where xt is the input at time step t, σ is the sigmoid activation function, ⊙ denotes
element-wise multiplication, and W and b are the weight matrices and bias vectors,
respectively, to be learned during training.

In addition to the mentioned states, LSTMs can be stacked to form deep networks.
When stacking LSTMs, the output hidden state ht of one LSTM serves as the input
hidden state ht−1 of the next LSTM. Similarly, the output cell state ct of one LSTM
serves as the input cell state ct−1 of the next LSTM. This stacking process allows
LSTMs to learn hierarchical representations and capture intricate dependencies in
temporal data.

GRUs use a simpler architecture compared to LSTMs, involving three main com-
ponents: the current input xt , the current hidden state ht , and the previous hidden
state ht−1. GRUs utilise two gates: the update and reset gates. The update gate
determines how much of the previous hidden state to retain, while the reset gate
controls the influence of the new input on updating the hidden state. The architec-
ture of GRUs is depicted in Figure 2.7.

The computations in a GRU can be described by the following equations:
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Figure 2.6 Architecture of an LSTM.

zt = σ(Wz · [ht−1,xt ]+bz)

rt = σ(Wr · [ht−1,xt ]+br)

h̃t = tanh(Wh · [rt ⊙ht−1,xt ]+bh)

ht = (1− zt)⊙ht−1 + zt ⊙ h̃t

where xt is the input at time step t, σ is the sigmoid activation function, ⊙ denotes
element-wise multiplication, and W and b are the weight matrices and bias vectors,
respectively, to be learned during training.

In addition to the mentioned states, GRUs can also be stacked to form deep net-
works. When stacking GRUs, the output hidden state ht of one GRU serves as the
input hidden state ht−1 of the next GRU. The process of stacking GRUs is similar
to that of stacking LSTMs, allowing the model to learn hierarchical representations
and capture complex dependencies in the data.

LSTMs and GRUs have succeeded in various applications, including natural lan-
guage processing, speech recognition, and image captioning, and reportedly out-
perform vanilla RNNs in multiple benchmark tasks [14]. In addition, they are ben-
eficial for processing long sequences and handling dependencies over time, hence
their popularity in many deep-learning models.
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Figure 2.7 Architecture of a GRU.

Transformer neural network
Despite their effectiveness, LSTMs and GRUs still have limitations, especially
when processing very long sequences, where they can be computationally ex-
pensive. Introduced in 2017 by Vaswani et al. [58], the Transformer is a neural
network architecture that mitigates these problems by relying exclusively on self-
attention mechanisms, eliminating the need for recurrent connections. As a result,
the Transformer architecture outperforms RNN-based models in various natural
language processing tasks, including language translation, understanding, and gen-
eration [49]. The critical element is the Transformer’s self-attention mechanism,
introduced in 2015 by Bahdanau et al. [6], which allows it to focus solely on the
input sequence’s relevant parts, thus making it more efficient at processing long
sequences and capturing long-term dependencies.

The architecture consists of an encoder-decoder structure, where multiple layers
of self-attention and position-wise feed forward neural networks make up the en-
coder and decoder parts. The self-attention mechanism allows the model to focus
on and capture dependencies between relevant input parts. The position-wise feed
forward neural networks process each token in the sequence separately and in par-
allel, in contrast to standard neural networks that operate on the sequence as a
whole. Additionally, the architecture uses residual connections and layer normali-
sation to improve stability and performance. Furthermore, the model incorporates
a positional encoding step to help the model differentiate between the position of
tokens in the sequence. Since the self-attention itself only considers dependencies
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between tokens and not their relative positions, this step is crucial. It assigns a
unique vector to each token based on the token’s position in the sequence, which,
combined with the token’s embedding vector, forms the input vector for the model.

Embedding Layer

+Positional Encoding

Attention Layer

Add & Norm

Position-wise FFN

Add & Norm

Embedding Layer

+ Positional Encoding

Attention Layer

Add & Norm

Attention Layer

Add & Norm

Position-wise FFN

Add & Norm

FC

Encoder

Decoder

Sources Targets

Figure 2.8 Transformer architecture.

The self-attention mechanism computes a weighted sum of the input values, where
the weights are given by the dot product of a query vector Qi and a key vector Ki.
Specifically, for a given position i in the input sequence, the self-attention mech-
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anism computes the dot product of the query vector, a function of the position i,
with the key vectors, functions of all the positions in the sequence. The resulting
dot product is then scaled and passed through a softmax function to obtain a set of
weights to compute a weighted sum of the value vectors, which are functions of
all sequence positions.

Formally, the self-attention mechanism is defined as follows. Given an input se-
quence of length N, the self-attention mechanism computes the query, key, and
value vectors as follows:

Qi =WQxi

Ki =WKxi

Vi =WV xi

where xi is the embedding vector of position i in the sequence, and WQ, WK , and
WV are learned weight matrices that transform xi into the query, key, and value
vectors, respectively. The self-attention mechanism then computes the attention
weights between position i and j as follows:

αi j = softmax

(
QiKT

j√
dk

)

where dk is the dimensionality of the key vectors, whose division improves stability
during training. Finally, the self-attention mechanism computes the weighted sum
of the value vectors, Vj, using the attention weights, αi j, as follows:

yi = ∑
j

αi jVj.

The resulting output vector, yi, is then fed into a feed forward neural network to
obtain the final output of the self-attention layer.

The attention mechanism, however, is not restricted to usage within the Trans-
former architecture. It has shown success in time series classification due to its
ability to focus selectively on the most informative instances within each time se-
ries.

An extension of self-attention is multi-headed attention, which enables the network
to focus on multiple parts of sequences simultaneously by splitting the sequences
and then employing the self-attention mechanism separately for each split part.
Concatenating these and passing them through a linear layer yields the output.
Consequently, multi-head attention is multiple parallel self-attention mechanisms
working together, where the number of heads specifies the number of mechanisms.
Concluding, self-attention focuses on a single input sequence, allowing a network
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to attend to different parts of that sequence. In contrast, multi-head attention allows
the network to attend to multiple parts simultaneously.

Lastly, the Transformer architecture utilises layer normalisation. Initially intro-
duced by [5], layer normalisation is a technique similar to batch normalisation but
specially designed for sequential inputs and RNNs. It aims to mitigate the issue
of internal covariate shift that occurs within the hidden layers of a deep neural
network, i.e., the change in the distribution of the hidden layer activations during
training, making it difficult for the layers to adapt to these changes, slowing down
the training process and requiring lower learning rates. The operation is defined
as:

LN(x) = γ
x−µx

σx
+β (2.1)

where x is the input vector, µx and σx are the mean and standard deviation of x
computed for each sequential element along the feature dimension, respectively,
and γ and β are learnable scale and shift parameters.

2.6 Variational Autoencoder

The VAE is a neural network architecture introduced by Kingma et al. in 2013
[31]. The architecture consists of an encoder and decoder part, where the encoder
takes input data and maps it to a lower dimensional latent space, corresponding
to parameters of a variational distribution (see Figure 2.9). On the other hand, the
decoder part gets a sample from the variational distribution and tries to reconstruct
the original input data. The choice of latent distribution is free and may be chosen
depending on the circumstances. The reconstruction error is formed with a regu-
larisation term, using backpropagation to learn as a standard neural network. The
regularisation term is a KL-divergence term, i.e., a Kullback-Leibler-divergence
term, a statistical difference between the latent and target distribution. It enforces
continuity and completeness in the model. Continuity means that the model attains
a closeness property, i.e., samples close to each other in the latent space should be
similar when decoded. If, for instance, the VAE trains on images, two samples
close to each other in the latent space should generate closely resembled images.
Completeness means that any samples from the distribution should result in mean-
ingful data when decoded, essentially removing any “gaps”.

VAEs have been successful in generating synthetic data and are more straight-
forward to train than, e.g., GANs, but in turn, offer less flexibility. Furthermore,
GANs have the favourable property of never seeing original data during training.
However, it is difficult to compare the performance of VAEs and GANs when gen-
erating synthetic data since it depends on the application [34].
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Figure 2.9 A fully connected Variational Autoencoder.

2.7 Generative Adversarial Nets

GANs are a class of neural network architectures that have significantly impacted
machine learning since Ian Goodfellow and his colleagues at the University of
Montreal introduced them in 2014 [22]. They have proven to be a flexible and
powerful tool for generating new, synthetic samples that resemble real-world data.
The unique architecture works by training two competing neural networks, a gen-
erator and a discriminator, in a two-player game. The generator aims to produce
realistic synthetic data that can fool the discriminator, while the discriminator aims
to distinguish between natural and synthetic data. During training, the generator
updates its parameters to produce better and better synthetic samples. Simultane-
ously, the discriminator updates its parameters to become more and more effective
at detecting synthetic data. This competition between the generator and discrimi-
nator continues until the generator reaches a point where it produces synthetic data
indistinguishable from actual data, as determined by the discriminator.

GANs can formally be defined as a min-max two-player game. Let G be the gen-
erator network and D be the discriminator network. The generator takes a random
noise vector z from a prior distribution pz and produces a synthetic data sample
G(z). The discriminator takes either a real data sample x from the actual data dis-
tribution pdata or a synthetic sample G(z) from the generator and outputs a scalar
D(x) or D(G(z)) representing the probability that the input is a real sample. The
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objective function of the GAN becomes the min-max optimisation problem:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.2)

where the expectation is taken over the distributions pdata and pz. The discrimina-
tor D trains to maximize this objective, while the generator G trains to minimize
it. The result is a game-theoretic equilibrium where the generator produces indis-
tinguishable samples from real samples, as determined by the discriminator.

zin xfake
G(z)

generator

pz(z)
latent noise

xreal
pdata(x)

x Real?
D(x)

discriminator

Figure 2.10 Generative adversarial net.

Conditional GAN
Conditional GAN (CGAN) extend the basic GAN framework to a conditional
model [40]. In a CGAN, the generator and discriminator receive additional in-
put as a conditional vector y, which can be any auxiliary information such as class
labels or data from a different modality. The objective function becomes:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))].

The conditioning allows them to generate diverse and class-conditional outputs,
such as images of specific objects, faces with specific attributes, and audio with
specific properties. In practice, it is done by feeding y as an additional input layer
to the generator and the discriminator. In the generator, y and the input noise pz
are combined in a joint hidden representation.

Deep convolutional GAN
Deep Convolutional GAN (DCGAN) is a GAN architecture for generating high-
resolution images. The architecture employs convolutional layers instead of fully
connected layers in both the generator and discriminator (see Figure 2.3 for an il-
lustration of an ANN with convolutional layers). The DCGAN can then exploit the
spatial structure in image data, leading to high-quality synthetic images. Motivated
by recent findings in convolutional neural nets, the authors suggest eliminating
connected layers on top of convolutional features and using Batch Normalisation
for some layers to stabilise learning. As a result, DCGANs are better suited for
generating complex, high-quality images, including realistic photographs, faces,
and even entire scenes.
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Wasserstein GAN
The Wasserstein GAN (WGAN) is a modification of the GAN architecture which
improves training stability and mitigates other frequently occurring problems with
GANs, such as mode collapse [3]. Mode collapse occurs when the generator be-
comes too confident in its output, generating samples from a minimal set of modes
instead of from the complete target distribution, even though samples from missing
modes exist in the training data [52].

In addition, it introduces a new distance for the loss function, the Earth Mover’s
distance (EM), i.e., the Wasserstein-1 distance, which enhances convergence ca-
pabilities. The EM distance estimates the distance between the actual and the gen-
erated distribution and consequently provides a more meaningful loss metric, re-
placing the traditional discriminator with a critic. The critic assigns high scores to
samples it believes are real and vice versa. This differs from the original discrimi-
nator, which outputs a probability of a given sample being real. Another advantage
of WGAN is the ability to train the critic until optimality, thanks to the continuity
and differentiability of the EM distance. Training the critic to optimality is what
cures the mode collapse problem. Note that the Wasserstein distance is central
in most state-of-the-art GANs (and will be used later). Thus, we provide the full
derivation.

The EM distance is defined as

W (Pr,Pg) = inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ [∥x− y∥], (2.3)

where Π(Pr,Pg) is the set of joint distributions γ(x,y) such as their marginal dis-
tributions are respectively Pr and Pg. An intuitive interpretation is that γ(x,y) rep-
resents the amount of mass that needs to be moved from x to y to transform dis-
tribution Pr to Pg. Hence, the EM distance represents the cost of obtaining this
optimally.

Since the infimum of equation 2.3 is intractable, [3] suggests using the
Kantorovich-Rubinstein duality [59]:

W (Pr,Pθ ) = sup
∥ f∥L≤1

Ex∼Pr [ f (x)]−Ex∼Pθ
[ f (x)],

where the supremum is over all 1-Lipschitz functions f : X→R. Replacing ∥ f∥L≤
1 with ∥ f∥L ≤ K gives

W (Pr,Pθ ) =
1
K

sup
∥ f∥L≤K

Ex∼Pr [ f (x)]−Ex∼Pθ
[ f (x)].
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Let { fw}w∈W be a family of K-Lipschitz functions. Then, instead, consider the
problem

max
w∈W

Ex∼Pr [ fw(x)]−Ez∼p(z)[ fw(gθ (z)].

Utilising this with the standard GAN optimisation problem and standard notation
yields the final min-max problem

min
G

max
D

Ex∼p(x)[D(x)]−Ez∼p(z)[D(G(z))],

where D is the discriminator and G the generator. Note the similarity with the orig-
inal min-max problem, equation 2.2. To enforce Lipschitz-continuity, the article
suggests using weight clipping, i.e., restricting weights to lie within the compact
space [−c,c] for some small constant c. However, this is a terrible way of enforc-
ing such continuity as it can lead to further problems. Clipping weights restrict the
model and make it harder to train an optimal model. We refer to the original paper
[3] for detail and full proof.

Improved W-gan
In 2017, [25] improved the WGAN by forming a WGAN with gradient penalty
(Wasserstein GAN with Gradient Penalty (WGAN-GP)). It tended to some issues
with the WGAN, particularly enforcing Lipschitz continuity by weight clipping.
The article proposes an alternative approach, using a gradient penalty for the critic.
This cured many issues, such as improved training stability, showing promising
results for many GAN architectures.

A differentiable function f is 1-Lipschitz if and only if ∥∇ f∥2 ≤ 1, i.e., the gra-
dients’ norm is less or equal to one. Consequently, the paper suggests directly
constraining the norm of the gradient of the critic. However, since it is intractable
to constrain the gradient norm everywhere, the authors introduce a softer version
of the constraint, penalising the gradient norm for a set of random samples, x̃∼ px̃,
instead. Here, px̃ is a distribution obtained when sampling uniformly along straight
lines between samples from the data distribution Pr and the generator distribution
Pg. This is motivated by the proposition that an optimal critic contains straight lines
with gradient norm 1 connecting samples coupled from the data distribution and
the generator distribution, proven in the article. Hence, the new objective function
takes the form

Ez∼p(z)[D(G(z))]−Ex∼p(x)[D(x)]︸ ︷︷ ︸
Original critic loss

+λEx̃∼px̃ [(∥∇x̃D(x̃)∥2−1)2]︸ ︷︷ ︸
Gradient penalty

.

The article uses λ = 10 with good results. We refer to the article [25] for full proof
and detail.
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Further work in the literature tries to improve the approximation of Wasserstein
distance [39]. At the same time, some argue that despite the improvements, WGAN
does not achieve a meaningful approximation of the Wasserstein distance [53]. One
suggested improvement is c-transform WGAN which replaces the Kantorovich-
Rubenstein duality with a weak duality formula to improve mini-batch approxi-
mation (please see [39] for details on the c-transform). However, [53] argue math-
ematically and empirically that WGAN loss is not a meaningful approximation
of the Wasserstein distance despite all efforts. Instead, they attribute the success
of WGANs precisely to the failure of approximating the Wasserstein distance and
that the Wasserstein distance is not a desirable loss function for deep generative
models and high-dimensional data. Also, a large-scale study [35] comparing GAN
loss functions showed that GANs are very sensitive to their hyperparameter setup
and that no single loss function consistently outperforms the others. In particular,
given the proper hyperparameter configuration, the vanilla GAN could achieve a
comparable or better performance than WGAN-GP.

2.8 GANs for Tabular Data

As stated, GANs have evolved from their original application within image and
text generation to tabular domain due to their great flexibility in modelling data
distributions compared to traditional statistics. Given a table Treal , the generator’s
task in a GAN is learning the underlying distribution of each column in table Treal
to generate synthetic data samples, eventually resulting in a table Tf ake. Like most
models, the GAN framework requires dividing the data into a training and a test
set. The GAN is trained using the training samples and evaluated using the test
samples. Performance is measured based on the generator’s capability to model
the underlying distributions and navigate the challenges with real-world data. If the
objective also is privacy protection, a metric for such guarantees and data utility is
required [8].

As stated in Section 2.3, tabular data often contains a combination of numerical
(discrete or continuous), categorical and textual values. Furthermore, each feature
a column represents can be non-Gaussian and multi-modally distributed. On the
other hand, the imbalance problem is common for categorical features, i.e., an im-
balanced representation of categories, which can lead to mode collapse and poor
training for small classes. Furthermore, if categories are sparsely one-hot encoded,
the discriminator may learn to recognise real versus synthetic data based on the
rarity of certain categories instead of the real data’s actual characteristics. In other
words, the discriminator might associate rare categories with fake data simply be-
cause they appear infrequently in the data set.

The literature proposes several clever GAN architectures to deal with the com-
plexity of real-world data. TableGAN [45] deals with the tabular data format.
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The CTGAN [64] enhances the TableGAN by improving the non-Gaussian and
multimodal capabilities. Finally, the Private Aggregation of Teacher Ensemble
GAN (PATE-GAN) [29] generates differentially private synthetic data, while the
Anonymization through Data Synthesis GAN (ADSGAN) [65] introduces an ar-
chitecture for generating private synthetic data beyond the differential privacy
guarantee.

TableGAN
Designed to model the complex statistical properties of tabular data, the Table-
GAN [45], introduced in 2018, can handle all types of table data while considering
privacy and information leakage. The model has controllable parameters to deter-
mine the privacy level. The completely synthesised output table does not disclose
actual records. However, increasing the privacy level decreases model compatibil-
ity, meaning that machine learning algorithms trained on the synthetic table will
be less effective. The model adopts the DCGAN architecture but includes an ad-
ditional neural network called classifier (C). The classifier C tries to predict the
synthetic records’ labels which proved helpful in maintaining the consistency of
values in the generated records. For instance, a record with gender = "Male" and
disease = "Uterine Cancer" can be prevented as the classifier learns consistency
and semantics from the original table.

CTGAN
Invented in 2019, the CTGAN includes mode-specific normalisation to overcome
the non-Gaussian and multimodal distribution, a conditional generator, training-
by-sampling to deal with imbalanced discrete columns, and finally, a fully-
connected network structure. Previous models, such as TableGAN [45], use min-
max normalisation to [−1,1] for continuous values, while the CTGAN uses the
variational Gaussian mixture model (VGM) [7]. To overcome the class-imbalance
problem associated with categorical values, the CTGAN builds upon a conditional
generator (similar to the conditional architecture described in Section 2.7). The
class imbalance occurs when training data is randomly sampled during training,
and small classes are insufficiently represented, resulting in a poorly trained gen-
erator. Instead, training-by-sampling aims to resample categorical values evenly
during training and recover the (not-resampled) real data during the test. The con-
ditional generator inputs random noise and a condition vector. It then generates
output, forced to mimic the specified condition. Furthermore, the model trains us-
ing the WGAN loss with gradient penalty, as described in [3]. Finally, the critic
evaluates the output of the conditional generator measured by the difference be-
tween the learned and actual conditional distribution.
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ADSGAN
The ADSGAN builds upon the Conditional GAN framework [40] (see Section
2.7) where the generator and discriminator are fed a conditional vector as input to
condition the generator on some particular information. However, the ADSGAN
optimises a conditioning set for each individual in the table and generates com-
ponents based on these, compared to the Conditional GAN where the condition
vector is predetermined, e.g., as data labels. This approach ensures that no com-
bination of features could disclose an individual’s identity. Moreover, it permits
going beyond the differential privacy metric and instead introduce another metric,
identifiability, based on the probability of re-identification given the combination
of all data on any individual.

Identifiability as a privacy metric is specifically beneficial when sharing data sets.
It poses the question of what is "different enough" from the original data to de-
identify the original observations of individuals. The ADSGAN guarantees that
two observations are different enough because they are "different" individuals and
mathematically defines it as a difference in distance between original and syn-
thetic observations. In particular, the distance is a weighted Euclidean distance.
For example, consider the two features "male/female" and "cancer/non-cancer"
patients. Now, if there are 50% males and females, respectively, and only 1% can-
cer patients, the distance between male/female patients should be closer than the
distance between cancer/non-cancer patients; hence, the weighted distance.

By this motivation, ε-identifiability implies that there are less than ε ratio observa-
tions from the original data set (D) in the generated synthetic data set (D̂) that are
“not different enough” from the original observations. First, define a measurement
ri as the minimum weighted distance between an observation xi and the other origi-
nal observations inD and, similarly, r̂i as the minimum weighted distance between
an observation xi and the generated observations in D̂. Mathematically, using ri and
r̂i, we can define ε-identifiability as follows.

Definition 2.8.1 (ε-identifiability). D̂ is ε-identifiable from D if

I(D,D̂) = 1
N
[I(r̂i < ri)]< ε

where I represents the identity function and

ri = min
x j∈D/xi

∥∥w · (xi−x j)
∥∥ (2.4)

r̂i = min
x̂ j∈D̂

∥∥w · (xi− x̂ j)
∥∥ . (2.5)

Now, 1−ε is the proportion of de-identified individuals in the synthetic data where
0-identifiability implies a perfectly anonymous data set and 1-identifiability as a
perfectly identifiable data set.
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2.9 GANs for Time Series Data

Time series data is prevalent in various fields, such as finance, medicine, and en-
gineering. Its analysis aims to capture the temporal dependencies by finding the
conditional distribution p(xt |x1:t−1) given a sequence x1:t = (x1 . . .xt). Depend-
ing on the application, time series modelling is commonly associated with auto-
regressive techniques through statistical, state-space or state-of-the-art deep learn-
ing models. The aim is to represent the distribution of sequences as a product of
conditional probabilities, where each term corresponds to the probability of ob-
serving the next data point given previous observations. Mathematically, this is
expressed as ∏

T
t=1 p(xt |x1:t−1) and is essentially a deterministic approach in con-

trast to generative models which aims to sample new sequences without external
conditioning randomly. Early attempts of employing the GAN architecture for gen-
erating time series data try to model the distribution of the entire sequence p(x1:t)
directly without relying on the auto-regressive structure. However, [66] argues that
this does not sufficiently capture the step-wise temporal dependencies and pro-
poses a mechanism to combine the GAN research field with auto-regressive-based
machine learning advancements resulting in the TimeGAN.

Due to the extra dimension in time, time series data pose unique challenges for
generative models. While tabular data is modelled as a two-dimensional table, time
series data is modelled in three dimensions with a 2D table for each time step.
Usually, time series data sets come in a two-dimensional format, where each row
corresponds to a sample in time, like the S&P 500 prices in Table 2.6 from Yahoo
Finance.

Table 2.6 Daily S&P 500 prices and trade volume. The dashed area represents the sliding
windows of the data.

Date Open High Low Close Volume (’000)

09 Mar 2023 3,998.66 4,017.81 3,908.70 3,918.32 4,445,260
08 Mar 2023 3,987.55 4,000.41 3,969.76 3,992.01 3,535,570
07 Mar 2023 4,048.26 4,050.00 3,980.31 3,986.37 3,922,500
06 Mar 2023 4,055.15 4,078.49 4,044.61 4,048.42 4,000,870
03 Mar 2023 3,998.02 4,048.29 3,995.17 4,045.64 4,084,730
02 Mar 2023 3,938.68 3,990.84 3,928.16 3,981.35 4,244,900
01 Mar 2023 3,963.34 3,971.73 3,939.05 3,951.39 4,249,480
28 Feb 2023 3,977.19 3,997.50 3,968.98 3,970.15 5,043,400
27 Feb 2023 3,992.36 4,018.05 3,973.55 3,982.24 3,836,950

It is possible to achieve the 3D structure by sampling the data using a sliding
window. This way, it is possible to create k sequences of time series data of length
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l and dimension n. More specifically, if the S&P 500 data set contains 9 rows with
5 features of data (time-column is excluded), using a window length of, e.g., 7
and step size 1, the resulting data cube has shape (3,(7,5)). If, on the other hand,
the data set consists of, e.g., multiple patient records of time series, the data can
instead be reshaped into three dimensions directly.

TimeGAN
TimeGAN is a framework capable of generating synthetic time series data, achiev-
ing state-of-the-art performance when introduced in 2019 [66]. The approach pro-
posed by the authors involves a unique combination of supervised and unsuper-
vised training compressed in a latent space representation to reduce the dimen-
sionality of the data simplifying the problem for adversarial training. The authors
motivate the latent representation by the characteristics of time series data, where
lower-dimensional variation factors significantly influence the temporal dynamics
of complex systems. See Figure 2.11 for the architecture.

Therefore, the TimeGAN performs dimensionality reduction through an embed-
ding function, mapping the high-dimensional input data to a lower-dimensional
space, similar to the encoder in a VAE. The adversarial training utilises the reduced
dimensional representation allowing the generator and discriminator network to
operate and produce output in the "simpler" latent space. Furthermore, it is argued
that a generator relying solely on the binary feedback from the discriminator in
adversarial training may not be sufficient to capture the step-wise conditional dis-
tribution in time series data, despite being auto-regressive. Therefore, the authors
introduce a supervised loss to specialise the generator to learn the conditional dis-
tributions. Finally, a recovery function transforms the embedded representation to
its original form, much like the decoder in a VAE.

TimeGAN’s training process unfolds in three key stages: pre-training the embed-
ding and recovery functions, pre-training the supervisor function, and joint training
of all networks (including the generator and discriminator).

1. The first stage focuses on learning the embedding and recovery functions.
This step establishes connections between feature and latent spaces, enhanc-
ing the adversarial component’s ability to grasp the data’s temporal dynam-
ics via lower-dimensional representations.

More formally, let X be the real feature space, with xt ∈ X representing
the real features at time t. Let H be the latent feature space, with ht ∈ H
representing the latent features at time t. The embedding function, denoted
as E, maps real features to latent features:

E : X →H, ht = E(ht−1,xt)
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Figure 2.11 Block scheme of TimeGAN architecture.

implemented using a recurrent neural network (RNN) such as an LSTM or
GRU. The recovery function, denoted as R, maps latent features back to real
features:

R :H→X , x̂t = R(ht)

implemented using another RNN. The goal in the first stage is to learn the
embedding function E and the recovery function R by minimising the re-
construction loss:

LR = Ex1:T∼p

[
∑

t
∥xt − x̂t∥2

]

2. In the second stage, the supervisor function is trained to generate subsequent
sequences using the latent representation of real data for guidance.

Again, letH be the latent space, with ht ∈H representing the latent features
up to time t and ht−1 representing the latent features up to time t−1. The Su-
pervisor network, denoted as S, aims to learn the mapping to the subsequent
features:

S :H→H, ĥt = S(ht−1)

The goal of the second stage is to train the supervisor function S using the
latent representation of real data ht as supervision and prepare it for its role
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in the generative process, minimising the loss:

min
S

∑
t
∥ht − ĥt∥2

also implemented using an RNN.

3. The third and final stage involves joint training of all networks, culminating
in adversarial training, concurrently minimising the Unsupervised, Super-
vised, and Reconstruction losses (Figure 2.11).

Using the pre-trained embedding and recovery functions, it is now possible
to reconstruct x̂1:T from the latent representation h1:T . Moreover, the super-
visor function S is pre-trained on the mapping from the subsequent features
to the next latent features. Let zt ∈ Z be the noise vector at time t. The gen-
erator G is responsible for generating the fake embedded features as follows:

G : Z×H→H, ĥt = G(ht−1,zt)

The generation process is two-fold. First, the generator produces unsuper-
vised samples. Additionally, the generator is provided with the previous em-
bedded features and produces supervised samples, allowing for a gradient to
be computed on a loss capturing the discrepancy of the actual and estimated
conditional distributions p(H|Ht−1) and p̂(H|Ht−1) in a supervised fashion.

The discriminator network D is tasked with distinguishing between real and
fake samples for both the supervised and unsupervised generation process:

D :H→ [0,1], D(ht) = yt , D(ĥt) = ŷt

where yt denotes the predicted labels for real features and ŷt for fake fea-
tures. Additionally, the embedded, recovery and supervisor functions are
continually trained. Consequently, joint training involves minimizing the re-
construction, supervised and unsupervised loss:

LR = Ex1:T∼p

[
∑

t
∥xt − x̂t∥2

]
LS = Eh1:T∼p

[
∑

t
∥ht −G(ht−1,zt)∥2

]
LU = Ex1:T∼p

[
∑

t
logyt

]
+Ex̂1:T∼p̂

[
∑

t
log(1− ŷt)

]

Now, let θe, θr, θg, θd denote the parameters of the embedding, recovery, genera-
tor, and discriminator networks respectively. The training procedure can be divided
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into two main optimisation problems. The first problem involves training the com-
ponents θe, and θr on the supervised and reconstruction loss

min
θe,θr

(λLS +LR)

where λ ≥ 0 is a balancing hyperparameter. Including LS is important since it
conditions the embedding process to facilitate learning of temporal relationships.
Furthermore, the adversarial training is set up as:

min
θg

(ηLS +max
θd
LU )

where η ≥ 0 is a another balancing hyperparameter. In addition to the unsupervised
min-max game of the adversarial training, the generator is trained to iterate across
time via LS.

2.10 Evaluation Metrics for Synthetic Data Generation

With numerous methods to generate synthetic data, evaluation metrics naturally
play a vital part in comparing methods. For example, they allow quantifying the
quality of the data or assessing how well it represents the actual distribution and
underlying process. Hence, evaluating metrics may significantly impact the result
and model selection. However, several evaluation metrics exist, each with advan-
tages and limitations. Therefore, it is common to divide evaluation metrics into
three classes; visual, statistical and machine learning-based [8].

Note that there are other evaluation methods perhaps more commonly associated
with GAN evaluation than those listed below, such as the Inception Score (IS) [51],
the Fréchet Inception Distance (FID) [26], and the Perceptual Length (PL) [30].
However, these use pre-trained image classification networks, such as the inception
network, to extract features from the generated images and compare them with the
features of the real data. As a result, these tests are most appropriate for evaluating
synthetic image data and may not be as applicable for evaluating other data types.

Visual evaluation
Visual inspection is necessary to assess the performance of a GAN, as it provides
information that quantitative metrics can’t cover by visually comparing distribu-
tions, cumulative sums, and column correlation [8]. For example, distribution plots
provide a sanity check on whether the model generates statistical properties but
does not reveal hidden relationships. Likewise, the cumulative sum of each column
can visually indicate similarities between distributions and provide comprehen-
sion for categorical values but does not reveal any relationships between columns.
Finally, comparing the synthetic and real data correlation tables can show if the
generator correctly models the relationships between columns.
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Statistical metrics
Statistical metrics compare the distribution of each numerical column in the syn-
thetic data set to the original. One of the most commonly used tests for continu-
ous columns is the Kolmogorov-Smirnov (KS) test. It is a non-parametric method
for comparing two continuous distributions. It assesses the similarity between the
original and synthetic distribution using a two-sample KS test and the empirical
CDF. The metric measures the maximum distance between the observed and ex-
pected CDF values. The Chi-squared (CS) test for discrete columns compares real
and synthetic values distributions, resulting in the p-value, i.e., the probability that
the two samples come from the same distribution.

Additional statistical methods to assess the quality of synthetic samples include
Principal Component Analysis (PCA) [9] and t-distributed Stochastic Neighbour
Embedding (t-SNE) [57], dimensionality reduction techniques that visualise high-
dimensional data in a lower-dimensional space. PCA identifies the principal com-
ponents of the data, i.e., linear combinations of the original variables that explain
the most variation in the data. In synthetic data quality assessment, PCA can be
used to compare the distributions of the synthetic data to the original data to assess
whether the synthetic data captures the same patterns and relationships as in the
original data.

The t-SNE identifies clusters and subclusters in high-dimensional data. It maps
each data point to a lower dimensional space, such that close points in the original
data are close in the lower dimensional space and vice versa for faraway points.
Contrary to PCA, t-SNE compares the clustering structure of the synthetic data and
that of the original data. Hence, t-SNE depicts local relationships better, while PCA
captures global patterns. Note that the dimensionality reduction following the PCA
and t-SNE analysis allows for visual evaluation of the synthetic representation in
2D or 3D, depending on the number of components.

Machine learning-based metrics
Machine learning-based metrics are standard when evaluating the performance of
a synthetic data generator. The concept revolves around generating data with equal
efficacy as the original data. There are two common ways to evaluate the usefulness
of synthetic data. One of the most popular metrics when evaluating GANs is the
detection metrics. They attempt to measure the quality of the synthetic data by
training a binary classifier to differentiate between them. For example, the area
under the ROC curve (AUC) is a typical detection metric, which measures the
classifier’s ability to distinguish real from synthetic samples. In the context of time
series data, in [66], they train an additional discriminator, akin to the one used in
adversarial training, to distinguish between the real and synthetic samples. This
discriminator employs an LSTM to capture the temporal dependency.

46



2.10 Evaluation Metrics for Synthetic Data Generation

Another popular metric is the machine learning efficacy, which measures synthetic
data’s impact on a downstream machine learning model. In other words, the ma-
chine learning model should achieve similar performance when trained on syn-
thetic data compared to original data and improve when trained on an extended set
by combining the two. For example, the accuracy of a supervised learning model
trained on synthetic data can be one measure of the machine learning efficacy [8].
For time series data, in [66], they train an "off the shelf" predictive model using an
LSTM to measure the downstream effect of the synthetic data.

Although machine learning-based metrics are practical for assessing the usability
of the data, it is important to challenge these metrics when evaluating the model.
For instance, the detection metric depends on the choice of the classifier and is it-
self a model selection process. For example, high-dimensional data can pose sim-
ilar challenges to the classifier [44] and the data generator. Thus, combining these
metrics with visual and statistical evaluation is recommended [55].
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Methodology

3.1 Literature Study

The literature study investigates the potential of GANs for generating synthetic
data while preserving privacy. The research area, explicitly using machine learn-
ing models, is relatively immature; thus, the project’s scope mandates an extensive
literature review to achieve this objective. In particular, it covers the background
of synthetic data and its applications in the Information and Communication Tech-
nology (ICT) sector, as well as various GAN architectures and synthetic data gen-
erators. The focus lies on understanding different synthetic data generators and
GAN architectures, such as VAEs, Deep Convolutional GAN (DCGAN), Wasser-
stein GAN (WGAN), WGAN-GP, and Conditional GAN. Following are GANs
designed explicitly for tabular data generation, including TableGAN, CTGAN,
CopulaGAN, and ADSGAN, as well as time series data, including TimeGAN and
evaluation metrics for all the above methods.

Several extensive surveys have been published comparing GAN frameworks for
generating tabular data [8, 45, 64], and there are contributions investigating the
privacy aspect of synthetic data from GANs and ways to control privacy levels.
However, it is clear from the research that there is a significant difference between
the State-of-the-art (SOTA) models for tabular data and time series data. The re-
search on synthetic time series data is more immature and dispersed. Therefore,
our contributions and experiments will focus on the time series methods to further
shed light on the advantages and drawbacks of TimeGAN and possible improve-
ments.

3.2 Experiment Setup

After thoroughly understanding the literature, the research proceeds with several
experiments to implement different GAN models using the PyTorch framework
from the Torch library. The choice of PyTorch for this research stems from its
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inherent advantages in terms of interpretability and ease of use and has recently
evolved into the preferred framework for research. Furthermore, it offers all the
features this project aims to utilise, such as distributed data parallelism to scale the
training process to multiple GPUs for faster training. For training, we use a virtual
machine with 40 cores, 9 NVIDIA GeForce GTX 1080 GPUs and 251 GB of disk
memory, allowing for large data volumes and cloud-based training, with Jupyter
Lab as the IDE.

Data sets
The data sets for model development are selected to represent various data charac-
teristics and complexities, ensuring a comprehensive examination of the models’
performance. These data sets encompass various temporal and non-temporal data,
periodic and aperiodic trends, and correlated and high-dimensional features. The
diverse selection is crucial in assessing the GAN models’ adaptability and perfor-
mance across distinct data types, providing insights into their strengths and lim-
itations. Furthermore, including smaller and larger data sets allows us to analyse
the scalability of the models and evaluate their efficiency in handling different data
volumes. Finally, the data sets are well suited for benchmarking against existing
models, facilitating model development. Please see Table 3.1 for an overview.

In the context of this research, we have opted not to split the data into separate
training and testing sets when training the GANs. The primary goal of implement-
ing GANs in this study is to generate synthetic data that closely replicates the
original data rather than predicting or classifying unseen instances. Consequently,
concerns about overfitting are less relevant in this case, as our objective is to cap-
ture the data distribution as accurately as possible.

To demonstrate the generalisability of the final model, we use the same model
setup across all data sets, encompassing diverse characteristics and complexities.
This approach allows us to showcase the models’ adaptability and performance in
generating synthetic data from different sources without compromising the fidelity
of the generated data to the original distributions. However, as a final test set, no
model development is conducted on a data set from Ericsson to demonstrate model
generalisability further. The Ericsson data consists of six features from a server at
Ericsson: CPU utilisation, interrupts per second, load average over 15 minutes,
load average over 5 minutes, load average over 1 minute and memory utilisation.
To further evaluate the model, we also incorporate a data set with labelled outliers
to assess to which extent it is possible to use the synthetic data to train an outlier
detection model. The data used for this is the number of taxi passengers in New
York, presented hourly.
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Table 3.1 Overview of data sets.

Data set # Features # Observations Characteristics

Tabular data
MVN 10 1000 Multivariate Gaussian

Abalone [18] 8 4177
Mixed feature types and
correlation

Time series data
Sines 5 10000 Mixed periodicity

Stocks [23] 6 3685
Aperiodic, and highly
correlated features

Energy [11] 26 19735
High dimension, correlation
and periodicity

Ericsson [60] 6 1440 Correlation and periodicity
Taxi [32] 2 5160 Labelled outliers

Implementing existing models for tabular data
The initial experiments aim to better understand synthetic tabular data generation
using existing GANs and some models’ unique techniques. The experiments are
primarily for learning and involve various GAN models, including WGAN for nu-
merical and mixed numerical-categorical data, DCGAN with Wasserstein distance,
Conditional GAN, and CTGAN on both simulated and Abalone data. All models
are implemented from scratch using the PyTorch library and our framework for the
multi-GPU set-up to get hands-on experience with coding the different GAN archi-
tectures. To understand and compare performance, the model evaluation involves
comparing real and synthetic data based on:

• Distribution across feature: Histogram plots for real and synthetic data for
each feature to assess the model’s ability to replicate the data distribution.

• Conditional distribution across categories: Histogram plots of real and
synthetic data for categories conditioned on a specific feature to accurately
evaluate the model’s capability to link categories with the associated feature.

• Feature correlation: Correlation matrices of real and synthetic data to eval-
uate the model’s effectiveness in capturing the relationships between fea-
tures.

Implementing existing models for time series data
Following this, we examine the TimeGAN for time series data. The TimeGAN re-
quires an extensive translation from TensorFlow to PyTorch. Therefore, the initial
experiments aim to replicate the result from the original TimeGAN paper with our
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PyTorch model rather than the original TensorFlow version. Early experiments
with the TimeGAN architecture reveal limitations when trained using simulated
data. Important observations include:

• Complex architecture: The model involves many "moving parts" with mul-
tiple losses and minimisation problems to solve. In addition, the combina-
tion of embedded, supervised and unsupervised training makes the model
difficult to interpret and debug.

• Unstable training: When tested on different simulated datasets, the model
often exhibits mode collapse, making it impractical to use without modifi-
cation on new data sets.

• Replicate results: It is difficult to replicate some of the results presented in
the paper. For instance, some deviations between the suggested setup in the
paper and the published code make comparing results tricky.

3.3 T2GAN

This section presents the T2GAN architecture. It builds upon the TimeGAN frame-
work presented in Section 2.9 but also incorporates fundamental techniques from
successful GANs and other SOTA machine learning architectures, such as the
Transformer. We will detail the enhancements to the TimeGAN architecture, in-
cluding the Wasserstein distance with gradient penalty, temporal convolutional
layers, and the Transformer concepts of positional encoding, multi-head attention
and layer normalisation. A full model overview is available in Appendix 6.1.

Key Concepts
Recall the fundamental principles of the TimeGAN architecture:

• Embedding: TimeGAN utilises an embedding function for dimensional-
ity reduction, mapping high-dimensional input data to a lower-dimensional
space, similar to a VAE’s encoder.

• Adversarial Training: The generator and discriminator networks operate
in this lower-dimensional latent space, allowing for simplified output pro-
duction.

• Supervised Loss: To better capture step-wise conditional distributions in
time series data, the TimeGAN introduces a supervised loss, specialising
the generator in learning conditional distributions.
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• Recovery: A recovery function transforms the embedded representation
back to its original form, much like a VAE’s decoder.

The T2GAN operates via the same fundamental principles but with a different
architecture configuration, illustrated in Figure 3.1.
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Figure 3.1 Block scheme of T2GAN architecture. PE stands for positional encoding, and
MHA for multi-head attention. Grayed-out modules are unchanged compared to TimeGAN,
and red modules are updated.

The aim is to develop improvements based on the most promising techniques re-
vealed by the literature study in successful GANs and other SOTA generative ma-
chine learning architectures. The following list summarises the key improvements:

• WGAN-GP: Wasserstein distance with gradient penalty as loss function
demonstrates improved model stability, preventing mode collapse.

• Temporal Convolutions: SOTA GANs for both tabular and time series data
successfully employ convolutional elements to represent the data in a higher
dimensional space to capture complex dynamics. In the time series setting,
this is done via temporal 1D convolutions.

• Positional Encoding: Positional encoding can provide neural networks with
additional information about the relative positions of data points in a se-
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quence. By injecting this as input, the model is better equipped to recognise
and preserve temporal relationships, leading to a more coherent representa-
tion of the generated time series data.

• Multi-head attention: Attention mechanisms have successfully mod-
elled long-range dependencies and captured global context in sequence-to-
sequence tasks, playing an instrumental role in the Transformer architecture.
Utilising multi-head attention in decoder networks (such as the recovery
function) allows them to learn diverse aspects of the input representation.

• Layer normalisation: Layer normalisation can stabilise training by oper-
ating independently on each instance in a batch by normalising along the
feature dimension, in contrast to batch normalisation, which computes the
mean and variance along the batch dimension. Adding layer normalisation
aims to mitigate the issues of internal covariate shift, which can lead to slow
convergence and improve the overall training stability.

A note on Transformers. The Transformer architecture has recently gained im-
mense popularity and is the basis of the most complex sequential generative mod-
els, such as the GPT models. Thus, it is natural to consider the Transformer ar-
chitecture when generating time series data. As introduced in [58], the typical
Transformer consists of two parts: one encoder and one decoder, where the latter
is trained in a supervised manner. For instance, replacing the embedding and re-
covery functions with a Transformer encoder-decoder architecture would be pos-
sible. However, due to the supervised and unsupervised training components in
the TimeGAN, without a fairly extensive redesign, this approach would not be
customised to be directly incorporated into the TimeGAN model.

Instead, we choose to utilise the critical properties of the Transformer directly,
which are its positional encoding, multi-head attention mechanism and layer nor-
malisation, into the existing architecture, keeping the overall TimeGAN frame-
work intact.

Wasserstein distance with gradient penalty
In the original TimeGAN paper, the unsupervised loss is computed using Bi-
nary cross-entropy with logits (BCE) loss, i.e., combining a Sigmoid layer and
the BCE Loss. The first improvement is incorporating the Wasserstein distance in
the unsupervised loss and enforcing the necessary Lipschitz constraint with gra-
dient penalty to ensure acceptable approximation. The Wasserstein distance with
gradient penalty addresses some of the critical issues faced by traditional GANs,
particularly regarding training stability, mode collapse and vanishing gradients.
Based on the success of the WGAN-GP for tabular data, the TimeGAN model
could benefit from incorporating the Wasserstein distance with gradient penalty

53



Chapter 3. Methodology

in its architecture, leading to more stable and robust training. This is done by re-
placing the existing BCE loss with the Wasserstein distance. However, we found
a summation of the two losses added further stability, combining the best of both
worlds. Recall the Wasserstein distance with gradient penalty:

LW = Ez∼p(z)[D(G(z))]−Ex∼p(x)[D(x)]︸ ︷︷ ︸
Critic loss

+λEx̃∼px̃ [(∥∇x̃D(x̃)∥2−1)2]︸ ︷︷ ︸
Gradient penalty Lgp

.

Now, to combine the BCE loss with the Wasserstein distance for the critic and the
generator, we add the Wasserstein distance to the unsupervised loss:

LU = Ex1:T∼p

[
∑

t
logyt

]
+Ex̂1:T∼p̂

[
∑

t
log(1− ŷt)

]
+LW

The gradient penalty term operates as follows:

1. A set of random samples x̃ is generated by interpolating between real data
samples x ∼ p(x) and generated data samples G(z), where z ∼ p(z). This
interpolation is done by drawing a random number α uniformly between 0
and 1 and then computing x̃ = αx+(1−α)G(z).

2. The gradient of the critic function D(x̃) with respect to the random samples
x̃ is computed: ∇x̃D(x̃).

3. The gradient norm, denoted by ||∇x̃D(x̃)||2, is computed, measuring how
large the gradients are for the random samples.

4. The gradient penalty term is calculated as the squared difference between
the gradient norm and 1, (||∇x̃D(x̃)||2− 1)2. This term penalises the critic
function when the gradient norm differs from 1, which is the desired Lips-
chitz constraint.

5. The gradient penalty term is then incorporated into the critic’s loss
function with a penalty coefficient, denoted by λ (e.g., λ = 10):
λEx̃∼px̃(x̃)[(∥∇x̃D(x̃)∥2−1)2], where px̃(x̃) = α p(x)+(1−α)p(z).

These enhancements aim to better model the underlying data distribution and im-
prove training stability.

Temporal convolution
As a next improvement, we opt for a 1D convolution architecture in the embedding
function, replacing the GRU layers with 1D convolution. This idea originates from
[43] and is further discussed in [66] as a potential embedding function. The choice
is motivated by the ability of 1D convolutions to capture temporal dependencies
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in time series data and resonates well with the success of convolutional layers in
Tabular GANs. Additionally, we find replacing the GRU layers in the supervisor
function with 1D convolutions to yield significantly better results. However, the
recovery, generator and discriminator networks still operate best with GRU layers
as the autoregressive element.

1D convolution operates by sliding the kernel along the time axis of the input data,
computing the dot product between the filter weights and the input at each position.
The output of a layer with input size (N,Cin,Lin) is defined as:

out(N,Cout j) = bias(Cout j)+
Cin−1

∑
k=0

weight(Cout j ,k)⋆ input(N,k)

where ⋆ is the valid cross-correlation operator, N is the batch size, C denotes the
number of channels, Lin is the length of the signal sequence. We use a kernel of
size 5, stride of 1 and dilation of 1. We then choose padding such that Lout = Lin
to keep a consistent sequence length:

Lout =

⌊
Lin +2×padding−dilation× (kernel size−1)

stride

⌋
+1.

The 1D convolutions aim to better detect various features and short-term patterns
in the data by learning appropriate filter weights, producing a well-suited latent
space for adversarial training. Moreover, aligned with the TimeGAN approach,
we use a deep architecture, stacking multiple 1D convolution layers to enable the
model to learn hierarchical features, where higher layers capture more abstract and
complex temporal structures. This hierarchical feature learning ability is crucial in
modelling the intricate dependencies in time series data. Additionally, adding batch
normalisation and ReLU activation functions between the layers contributes to
increased stability during training and encourages the model to learn richer feature
representations.

Positional encoding
In the T2GAN architecture, we incorporate a fixed positional encoding as an ad-
ditional input to enhance the model’s awareness of sequential information. In the
Transformer architecture, positional encoding was necessary due to the absence
of sequential information in the self-attention mechanism. However, in the case of
T2GAN, the addition of positional encoding serves a different purpose.

Time series data in the TimeGAN architecture is processed using a sliding window
approach, which generates sequences of a fixed length at each step. However, this
approach results in significant overlap between successive sequences. To illustrate,
if we slide a window of size 24 ahead by a single unit, there will be 23 identical
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data points out of 24 between two adjacent sequences. On the other hand, using a
larger step size drastically reduces the number of observations, which is not ideal.

This inherent overlap introduces a potential pitfall in model training. The recurrent
similarity in the data could prompt the model to overemphasise recurring features
since the same patterns appear many times across different sequences, leading to
learning redundant information and potentially missing unique patterns.

In T2GAN, we address this by giving each sequence a positional encoding. The
idea is that the positional encoding act as a regulariser, mitigating the potential
problem with overlapping sequences and allowing the model to learn a more di-
verse set of features.

Multi-head attention-based
Introduced in [6] and further discussed in [66], a multi-head attention mechanism
in the recovery function could improve the recovery of complex temporal depen-
dencies. Analogous to the Transformer, the multi-head attention in the recovery
function operates by projecting the input sequence into query, key, and value ma-
trices using the different linear transformations:

Q = XWQ,

K = XWK ,

V = XWV ,

where X is the input data, and WQ, WK , and WV are learnable weight matrices. Next,
the compatibility scores between the query and key pairs are computed via the
scaled dot-product for each head to weight the value vectors, effectively capturing
the relevant context from the input sequence:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V

where dk is the dimension of the key vectors. The multi-head attention mechanism
computes the attention function multiple times in parallel (with different learned
linear projections) to allow the model to learn diverse aspects of the input rep-
resentation. The individual attention outputs are then concatenated and projected
using a linear transformation:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

where h is the number of attention heads, and W O is a learnable weight matrix.

Layer normalisation
As a successful normalisation technique in RNNs [5], and other sequence-based
methods such as the Transformer [58], normalising the input across the feature
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dimension to have zero mean and unit variance speeds up and stabilises training.
In T2GAN, we apply layer normalisation operation in all networks, see equation
2.1.

3.4 Model Training

Training involves parameterising the combination of embedding, recovery, gener-
ator, and discriminator networks. First, we create N sequences of time series data
of length T and dimension d, resulting in data set D, using a sliding window of
length T = 24 and step size 1.

During training, the embedding network first learns the mapping from feature
space X and latent spaceH. Consequently, the recovery network learns to reverse
this mapping. Next, the generator creates synthetic latent codes using random noise
sampled from a Wiener process Z . The discriminator then tries to distinguish be-
tween real latent codes obtained from the embedding function and synthetic latent
codes generated by the generator.

A gradient penalty is computed and added to the Wasserstein distance to ensure
Lipschitz continuity via a combination of real and synthetic latent codes. Again,
the resulting losses are the reconstruction loss for data recovery, the unsupervised
loss for discrimination between real and synthetic latent codes, the supervised loss
for realistic latent code generation and the gradient penalty loss for discriminator
smoothness.

We employ the same optimisation process as described in Section 2.9, [66]. Let
θe, θr, θg, θd denote the parameters of the embedding, recovery, generator, and
discriminator networks respectively. The training procedure is divided into two
main optimisation problems. The first problem involves training the components
θe, and θr on the supervised and reconstruction loss

min
θe,θr

(LS +LR).

Furthermore, the adversarial training is set up as follows:

min
θg

(LS +max
θd

[LU +Lgp])

In addition to the unsupervised min-max game of the adversarial training, the gen-
erator is trained to iterate across time via LS. The training procedure alternates
between these two optimisation problems, allowing the generator to learn tempo-
ral dynamics from the supervised loss while refining its output based on the dis-
criminator’s feedback through adversarial training. The pseudo-code for training
is outlined in Algorithm 1.
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Algorithm 1 Pseudo code for the T2GAN algorithm
1: Input: λ = 10,D, batch size nmb, learning rate γ=0.001
2: Initialize: θe,θr,θg,θd
3: while Not converged do
4: (1) Map between Feature Space and Latent Space

5: Sample x1,1:Tn , . . . ,xnmb,1:Tnmb

i.i.d∼ D
6: for n = 1, . . . ,nmb, t = 1, . . . ,Tn do
7: hn,t = e(hn,t−1,xn,t)
8: x̃n,t = r(hn,t)
9:

10: (2) Generate Synthetic Latent Codes

11: Sample z1,1:Tn , . . . ,znmb,1:Tnmb

i.i.d.∼ Z
12: for n = 1, . . . ,nmb, t = 1, . . . ,Tn do
13: ĥn,t = g(ĥn,t−1,zn,t)
14:
15: (3) Distinguish between Real and Synthetic Codes
16: for n = 1, . . . ,nmb, t = 1, . . . ,Tn do
17: yn,t = d(

←−
h n,t ,

−→
h n,t)

18: ŷn,t = d(
←̂−
h n,t ,

−̂→
h n,t)

19:
20: (4) Compute Gradient Penalty
21: for n = 1, . . . ,nmb, t = 1, . . . ,Tn do
22: Sample α ∼U [0,1]
23: h̃n,t = αĥn,t +(1−α)hn,t
24: gpn,t = (∥∇h̃n,t

d(h̃)∥2−1)2

25:
26: (5) Compute Reconstruction, Unsupervised, Supervised, and Gradient Penalty Losses
27: LR = 1

nmb
∑

nmb
n=1

[
∑t ∥xn,t − x̃n,t∥2

]
28: LU = 1

nmb
∑

nmb
n=1

[
[∑t logyn,t ]+ [∑t log(1− ŷn,t)]+ [ 1

t ∑t yn,t ]+ [ 1
t ∑t ŷn,t ]

]
29: LS =

1
nmb

∑
nmb
n=1

[
∑t
∥∥hn,t −g(hn,t−1,zn,t)

∥∥
2

]
30: Lgp =

1
nmb

∑
nmb
n=1

[
1
t ∑t

∥∥gpn,t
∥∥

2

]
31:
32: (6) Update θe,θr,θg,θd via Stochastic Gradient Descent (SGD)
33: θe = θe− γ∇θe − [LS +LR]
34: θr = θr− γ∇θr − [LS +LR]
35: θg = θg− γ∇θg − [LS +LU ]
36: θd = θd + γ∇θd − [LU +λLgp]
37: end while
38:
39: (7) Synthetic Data Generation

40: (7.1) Sample z1,1:Tn , . . . .zN,1:TN
i.i.d.∼ Z

41:
42: (7.2) Generate synthetic latent codes
43: for n = 1, . . . ,N, t = 1, . . . ,Tn do
44: ĥn,t = g(ĥn,t−1,zn,t)
45:
46: (7.3) Mapping to the feature space
47: for n = 1, . . . ,N, t = 1, . . . ,Tn do
48: x̂1:Tn = r(hn,t)
49:
50: Output: D̂ = {x̂1:Tn}

N
n=1

58
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After training, the generator creates synthetic latent codes by sampling from the
latent space distribution. These synthetic latent codes are then mapped to the fea-
ture space using the recovery network, producing the final synthetic time series
data. The output of the T2GAN algorithm is a set of realistic synthetic time series
data.

3.5 Model Evaluation

To evaluate the performance of T2GAN against the original version, we establish
a comparable model evaluation process with nuanced metrics that offer deeper
insights into the model’s proficiency.

• PCA and t-SNE: In the first visual test, we employ PCA and t-SNE as di-
mensionality reduction techniques to visualise and contrast the model’s abil-
ity to capture local and global data patterns effectively. This approach helps
visually assess the generated data’s quality and compare it with TimeGAN.

• Feature correlation: The second visual test involves presenting the correla-
tion matrices of real and synthetic data to gauge the model’s capability to ac-
curately capture intricate relationships between features. This test highlights
any discrepancies in the correlations between the original and generated data
sets.

• Discriminative score: The third test is a detection metric to benchmark
T2GAN against TimeGAN. The metric measure how well an off-the-shelf
LSTM classifier can distinguish between real and synthetic samples. This
is measured using the classification error and is presented as a score
|accuracy− 0.5|, where a score of 0 implies the samples are indistinguish-
able.

• Predictive score: The fourth test is a machine-learning efficacy metric
to test the synthetic data in a downstream prediction task and benchmark
T2GAN against TimeGAN. This metric measures the synthetic data’s use-
fulness for a prediction task using an off-the-shelf LSTM. This is measured
using the mean absolute error (MAE), where a score of 0 implies perfect
prediction.

• Outlier detection: The final test assesses the synthetic data’s usefulness in
training an outlier detection method, Isolation Forest. Using the anomaly la-
belled Taxi data, T2GAN generates a synthetic version of a clean segment
without outliers. Then, two distinct Isolation Forest models fit the data us-
ing the original and synthetic renditions of the clean data. Finally, the two
Isolation Forest models predict outliers in a labelled test set of original data

59



Chapter 3. Methodology

containing multiple outliers. In the Taxi data, examples of anomaly events
are New York City Marathon, snow storms or other special occasions affect-
ing the taxi travel pattern. The difference in performance indicates T2GAN’s
effectiveness for a downstream anomaly detection task.
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4
Results

4.1 Experiments on Time Series Data

Tab. 4.1 presents the discriminative and predictive scores for the T2GAN and
TimeGAN models across various data sets (Sines, Stocks, Energy, and Ericsson).
The T2GAN consistently outperforms TimeGAN regarding discriminative scores.
Furthermore, the predictive scores for both models are similar on Stocks, while the
T2GAN achieves a lower predictive score on the Energy data set. On average, the
T2GAN demonstrates a 38% performance increase in discriminative scores and
a reduction of relative prediction error by a factor of 2.21 when using synthetic
training data. The predictive score when using original data for training is also dis-
played, in particular, note that for three of the four data sets, the T2GAN achieves
93−98% efficacy.

Table 4.1 Discriminative and Predictive score on different data sets (Bold indicates best
performance).

Metric Model Sines Stocks Energy Ericsson
Discriminative T2GAN .290± .103 .076± .034 .327± .023 .241± .014
Score TimeGAN .492± .005 .147± .025 .451± .011 .368± .039
(Lower the better)

Predictive T2GAN .326± .002 .039± .000 .024± .002 .110± .002
Score TimeGAN .387± .004 .039± .000 .040± .002 .135± .004

(Lower the better) Original Data .318± .000 .037± .000 .009± .000 .102± .001

Table 4.2 summarises the results of the outlier detection analysis on the Taxi data
using Isolation Forest. The metrics considered in this evaluation include precision,
recall, and F1-score. Comparing the original data to the synthetic data generated
by T2GAN, we observe that the synthetic data achieve slightly lower scores than
the original data but still reach a ~85% efficacy compared to the original for outlier
prediction tasks.
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Table 4.2 Outlier detection metrics using Isolation Forest. The values are presented as
mean ± 95% confidence intervals.

Metric Original Data T2GAN

Precision .595± .034 .474± .049
Recall .483± .026 .429± .033
F1-score .532± .004 .448± .023

Figure 4.1 showcases the PCA visualisations of original and synthetic data gener-
ated by T2GAN and TimeGAN models for the Sines, Stocks, Energy, and Erics-
son data sets. The first and second columns depict T2GAN, whereas the third and
fourth columns represent TimeGAN. Blue markers denote original data, and or-
ange markers indicate synthetic data. In general, T2GAN captures the underlying
structure of the original data more closely, especially for the Stocks, Energy and
Ericsson data sets. In particular, T2GAN has a more consistent and precise overlap
between the original and synthetic data sets using PCA and t-SNE.

Figure 4.2 showcases the t-SNE visualisations of original and synthetic data gen-
erated by the T2GAN and TimeGAN models for the Sines, Stocks, Energy, and
Ericsson data sets. The first column depicts T2GAN, whereas the second column
represents TimeGAN. Blue markers denote original data, and orange markers in-
dicate synthetic data. Note that T2GAN generates data with notably better overlap
with the original data in the t-SNE visualisation, particularly for the Sines and
Stocks data sets. Therefore, T2GAN captures the local structure of the original
data more closely across all data sets.

Figure 4.3 displays the correlation matrices for the original and synthetic data
across the Sines, Stocks, Energy, and Ericsson data sets. The first column is the
correlation matrix of the actual data. The next two columns represent the corre-
lation for synthetic data from T2GAN and TimeGAN. T2GAN produces almost
identical correlation matrices to the original data. While both models synthesise
good correlation structures, T2GAN consistently outperforms TimeGAN, espe-
cially for the Sines data, with almost identical correlation matrices.

We present a source-of-gain analysis to understand the contributions of each im-
provement introduced in the T2GAN model. This analysis evaluates the model’s
performance with and without specific components: WGAN-GP, temporal convo-
lution, multi-head attention and positional encoding using the discriminative and
predictive scores for evaluation. The results of the analysis are presented in Table
4.3.
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Table 4.3 Source-of-Gain Analysis (via Discriminative and Predictive scores). MHA
stands for multi-head attention, and PE for positional encoding.

Metric Method Sines Stocks Energy Ericsson
T2GAN .290± .103 .076± .034 .327± .023 .241± .014

Discriminative w/o WGAN-GP .295± .081 .146± .030 .314± .037 .366± .013
Score w/o Temp. Conv. .408± .041 .227± .025 .393± .004 .319± .013
(Lower the better) w/o MHA + PE .494± .010 .298± .038 .486± .007 .309± .054

T2GAN .326± .002 .039± .000 .024± .002 .110± .002
Predictive w/o WGAN-GP .349± .001 .039± .000 .025± .001 .115± .006
Score w/o Temp. Conv. .370± .001 .069± .003 .029± .001 .167± .004
(Lower the better) w/o MHA + PE .348± .005 .044± .002 .074± .006 .131± .008

4.2 Sources of Gain

Table 4.3 shows that T2GAN performs best across all data sets. It is worth not-
ing that the inclusion of the different components all contributes significantly to
increased performance. Removing the WGAN-GP component results in slightly
worse performance in the Sines, Stocks, and Ericsson data sets. Furthermore, the
absence of temporal convolution significantly decreases performance across all
data sets, indicating the importance of this component in capturing the conditional
distribution. Finally, the model without the Transformer components shows the
most substantial decline in performance for all data sets, emphasising the critical
role of the multi-head attention and positional encoding mechanism in generat-
ing realistic synthetic data. Furthermore, we observe that the additions in T2GAN
predominantly influence the discriminative scores, with smaller changes to the pre-
dictive scores.
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Figure 4.1 PCA visualisations for Sines, Stocks, Energy, and Ericsson data sets in rows.
Columns represent models: 1st for T2GAN, 2nd for TimeGAN. Blue represents original
data, and red represents synthetic data. For ideal synthetic data, a high degree of overlap
between the blue and red markers is desired.
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Figure 4.2 t-SNE visualisations for Sines, Stocks, Energy, and Ericsson data sets in rows.
Columns represent models: 1st for T2GAN and 2nd for TimeGAN. Blue represents original
data, and red represents synthetic data. For ideal synthetic data, a high degree of overlap
between the blue and red markers is desired.
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Figure 4.3 Correlation matrix with rows representing Sines, Stocks, Energy, and Ericsson
datasets. Columns show the computed correlation between original and synthetic data from
T2GAN and TimeGAN.
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5
Conclusion

In the context of synthetic tabular data, the literature study reveals that the existing
methods, presented in Section 2.8, perform remarkably well for many types of
tabular data sets. In addition, these methods also address common issues, such
as mode collapse, class imbalance and training instability. However, while these
methods are successful, it is also clear that moving on to time series data requires
additional tools. The nature of the time series data poses unique problems with the
added temporal dimension.

There are several successful techniques from tabular GANs that this thesis has
shown successful for time series generation, such as the Wasserstein distance, con-
volution and Transformer architectures. Furthermore, there are several promising
techniques this thesis does not explore further in the time series domain, such as

• Mode-specific normalisation: to combat multimodal distributions.

• Incorporating a classifier: enhancing semantics within samples.

• Conditional generator: allowing the generation of well-dispersed samples
even from imbalanced data sets.

It is interesting how well these translate to time series data, especially considering
data with categorical, textual or static features. T2GAN is already well-equipped
to handle categorical inputs via one-hot encoding. However, the above concepts
could become essential if applied to high dimensional or unbalanced data, such
as log files where textual data must be converted to classes. Moreover, the model
framework translates to static features; however, for a full breakdown of the math-
ematical definitions with static features, we refer to the original TimeGAN paper
[66].
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5.1 Performance Evaluation of T2GAN

The following discussion highlights the implications of the improvements made to
the TimeGAN architecture and their impact on the model’s performance.

Wasserstein distance with gradient penalty
The first objective is to enhance training stability by incorporating the Wasser-
stein distance with gradient penalty into the T2GAN model. Replacing the Binary
cross-entropy loss in the adversarial training with the Wasserstein distance should
mitigate mode collapse and increase training stability.

The experiments reveal increasing performance when adding the Wasserstein dis-
tance to the loss. The model delivers the best results when employing the Wasser-
stein distance in combination with the BCE loss. The takeaway is that the Wasser-
stein distance with gradient penalty helps mitigate vanishing gradients compared
to only using the BCE loss, thus stabilising training and avoiding mode collapse.

Temporal convolutions
The second improvement introduced to the TimeGAN model is incorporating tem-
poral convolutional layers. The rationale behind this addition lies in the comple-
mentary strengths of GRUs and temporal convolutions. While GRUs excel at cap-
turing long-range dependencies due to their ability to update hidden states and re-
member or forget information over extended periods, temporal convolutions may
be better suited for encoding tasks focusing on short-term patterns through its slid-
ing kernels. By integrating temporal convolutions in the embedding function, the
TimeGAN model can more effectively capture complex dynamics in time series
data and translate them into the latent space. In addition, this approach aligns with
state-of-the-art neural networks in tabular and time series domains, which have
successfully employed convolutional elements to enhance their performance.

Upon analysing the results of the T2GAN model with the temporal convolutional
layers in the embedding function, there is a significant performance increase, sug-
gesting the 1D convolution is suitable to capture the underlying data structure.
Furthermore, this motivates testing the 1D convolution in the other "encoder-like"
functions, such as in the generative process. Employing the 1D convolution in the
supervisor function, i.e., in the supervised generation process, the performance in-
creases further. However, the original GRU network yields the best performance
of the unsupervised generator network.

The takeaway is that 1D convolutions capture and encode the latent space’s tem-
poral dependencies and cross-sectional dynamics. However, they are not suited to
the unsupervised generation process, where we must generate the entire sequence
simultaneously, meaning that some longer-term representation is necessary. On the
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other hand, the recurrent nets excel at capturing long-range dependencies in time
series data, making them particularly suitable for unsupervised generative tasks,
where the ambition is to generate the entire sequence at once. Then, the 1D convo-
lutional supervisor function adds further short-term structure by operating on the
unsupervised samples. This synergy between the two components allows for more
accurate and diverse synthetic time series generation.

Transformer components
Finally, incorporating Transformer components, such as positional encoding,
multi-head attention, and layer normalisation, constitute the final improvements
in the T2GAN model. Layer normalisation is known to enhance the performance
of recurrent networks, and we show that positional encoding improves perfor-
mance for all networks (excluding the discriminator). The multi-head attention
with positional encoding mechanism is the most significant enhancement among
these three components. It is one of the primary bottlenecks of the previous model
and significantly increases performance when included in the "decoding" recov-
ery function. More specifically, the multi-head attention mechanism contributes
to increased realism by accurately reconstructing the generated samples from the
latent space, resulting in superior performance across all evaluation metrics. Fur-
thermore, positional encoding demonstrates its effectiveness in regularising over-
lapping sequences. Even though all networks already include auto-regressive com-
ponents and should not have to rely strictly on these additions, we demonstrate that
by adding the additional information of positional encoding and attention layers,
T2GAN can better navigate the complex time series domain.

Evaluation metrics
Interpreting the evaluation metrics for the T2GAN model requires understanding
that metrics, such as the Discriminative and Predictive scores, are highly dependent
on the data sets. Therefore, it is not feasible to directly compare the values across
data sets. Instead, in this section, we discuss model evaluation’s general challenges
and limitations and provide specific examples and findings related to each data set
to help interpret the evaluation metrics better.

The model is evaluated with respect to the given data set. For instance, in the
case of sinusoids, the model achieves a rather disappointing discriminative score
of 0.290, meaning the classifier achieves 79% accuracy (50% would imply it is
guessing). Intuitively, generating sinusoids should be a "simple" problem. How-
ever, this also implies that the classification task is relatively easy, as minor dis-
crepancies between the real and synthetic data are very noticeable. The challenge
when evaluating each data set lies in understanding this balance.

Similarly, the model struggles to generate perfect values for data sets containing
constant or partially constant features, such as in the Energy data. Instead, it tends
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to add some noise (although very small), which the classifier can potentially detect
fairly easily. This behaviour is not necessarily a bug but rather a feature, as the
TimeGAN is not designed to reconstruct real signals from noise perfectly. For
example, Stock data is notoriously difficult to model, and the results of the Stock
data resonate well with these observations. In this case, the TimeGAN achieves a
low discriminative score, and the predictive performance for the LSTM trained on
real and synthetic data is very similar.

Furthermore, the outlier detection test using the Isolation Forest algorithm pro-
vides insight into the performance of the T2GAN model, particularly in generating
synthetic data that captures the original data’s outlier behaviour while maintaining
overall data structure and patterns. Interestingly, the model trained on synthetic
data has higher recall but lower precision than the original data. These results indi-
cate that the synthetic data generated by the T2GAN model produces a smoother
representation of class boundaries between normal and anomalous instances. Con-
sequently, the model trained on synthetic data is better equipped to detect outliers
near the decision boundary, yielding a higher recall, but simultaneously becomes
oversensitive, resulting in too many predicted outliers and a lower precision.

One potential concern with the Taxi outlier data set is its distinct periodicity, which
may have implications for the synthetic data and outlier test. For example, as
stated, T2GAN is trained using sequences of length T = 24 and may struggle to
reconstruct longer-term periodicity in the taxi data, which has a clear period of 24
hours. Therefore, if the synthetic data does not accurately reflect the periodicity
or other temporal patterns, the outlier patterns may be diluted, leading to subop-
timal performance in the outlier detection task. Specifically, the Isolation Forest
algorithm relies on the underlying data distribution to distinguish between normal
and anomalous points. If the periodicity is poorly reflected, it could explain the
increased sensitivity to outliers, leading to false-positives detections and reduced
precision.

Despite these challenges and limitations, T2GAN can generate highly realistic
time-series samples. This is evidenced by the highly similar PCA and t-SNE vi-
sualisations in Figure 4.1 of real and synthetic data across all data sets, indicating
that the model effectively captures the underlying patterns and dynamics of the
data.

Privacy preservation in T2GAN
In the context of time series data, privacy preservation may be crucial for ensuring
the confidentiality of sensitive information, making them inaccessible or difficult
to access during model development. In such cases, anonymisation through a gen-
erative model could offer unique opportunities.

In time series data, privacy can be viewed from two perspectives: protecting the
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underlying signal and preserving the individual sample’s privacy. This section dis-
cusses the privacy-preserving ability of T2GAN and explores potential approaches
to ensure privacy in time series data generation.

When considering time series data, the privacy of the underlying signal refers to
preserving the overall patterns, trends, or dynamics within the data without re-
vealing sensitive information about the specific data source. In contrast, individual
sample privacy focuses on protecting the privacy of each sample sequence within
the time series (e.g., a patient record) or the points within the sequences, ensuring
that the generated synthetic data does not directly expose any sensitive information
about the individual or entities that the data represents.

For the underlying signal, the TimeGAN model generates synthetic data that effec-
tively captures the patterns and dynamics without directly copying the input data,
providing some level of privacy. However, this method may not be well suited if
the signals are especially sensitive. Although additional measures can be taken to
protect privacy while maintaining data utility, such as distorting the signal in a
controlled manner similar to the noise distortion in the ADSGAN [65], this sce-
nario prohibits most modelling tasks by design since modelling a signal ultimately
reveals its properties.

In the case of individual sample privacy, the TimeGAN model generates synthetic
data that is not a direct copy of the original data points. However, to ensure and de-
fine private samples, it is essential to establish a privacy metric or utilise a privacy-
preserving framework such as differential privacy or ε-identifiability defined in
Definition 2.8.1 [15, 65]. By incorporating differential privacy constraints into the
generative model, it should be possible to control data utility and privacy preserva-
tion, even for time series. Another approach is to modify T2GAN to hedge against
specific adversarial attacks. For instance, if certain outliers are sensitive, the model
can be tuned to avoid reconstructing such sensitive elements.

Ultimately, depending on the application, there may be simpler methods of pro-
tecting the private elements of time series data. We acknowledge that fully under-
standing the privacy implications of synthetic data generated by T2GAN requires
further research and discussions regarding specific use cases. Instead, this thesis
demonstrates that T2GAN can generate synthetic data completely from noise with-
out seeing the original data and is a first step towards private synthetic time series.

5.2 Findings

This study explores various GAN frameworks for synthetic data generation, en-
hances the TimeGAN model and discusses the implications for synthetic time se-
ries generation. The following points summarise the key findings and contributions
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of our research:

1. Existing methods for synthetic tabular data perform well for many data types
and address common issues such as mode collapse, class imbalance, and
training instability. However, these methods require additional tools when
applied to time series data due to the temporal dimension. Techniques from
tabular GANs, such as mode-specific normalisation, incorporating a classi-
fier, and a conditional generator, have not been explored further in the time
series domain. However, these techniques have the potential for temporal
data, especially when dealing with categories or static features, and will
likely play an essential role in extending the TimeGAN to other sequential
data, such as log files.

2. TimeGAN’s design intentionally divides the raw time series into more mi-
nor, i.i.d, subsequences, to facilitate better learning of underlying patterns
and dependencies in the data while modelling time dependencies. However,
this approach limits the output to the 3D format where sequence samples
lack order. As a result, the current model does not support the complete
modelling and synthesis of time series with very long sequences (e.g., in-
putting a 1000x6 Stock data set, training with sequence length T = 1000,
and outputting a synthetic 1000x6 series since it would imply that the model
only trains on 1 sample). Nevertheless, even though trained on shorter se-
quences, the generator is technically capable of outputting longer sequences
simply by adjusting the shape of the input noise. Our observations are that
the output sequence only preserves temporal dynamics up to the sequence
length used for training. If the data contains long-term dynamics such as
periodicity or trends, they may not be present in the synthetic samples.

3. Incorporating the Wasserstein distance with gradient penalty into the
T2GAN model enhances training stability. It mitigates mode collapse but
does not significantly increase performance for the evaluation metrics.

4. Temporal convolutional layers in the T2GAN model effectively capture and
encode temporal dependencies and cross-sectional dynamics in the latent
space. The unsupervised generator, however, requires recurrent nets, which
excel at capturing long-range dependencies in time series data.

5. Transformer components, such as positional encoding, multi-head atten-
tion, and layer normalisation, significantly improve the performance of the
T2GAN model. The multi-head attention mechanism, in particular, is crucial
in accurately reconstructing generated samples.

6. The model evaluation metrics are highly dependent on the data sets used,
influencing the interpretation of a model’s performance. While T2GAN
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demonstrates its ability to generate highly realistic time series samples, as
evidenced by the similarity between PCA and t-SNE visualisations of real
and synthetic data across all data sets, it is essential to consider the nuances
of each data set when assessing the overall performance and applicability
of the model in various contexts. Additionally, we show that the synthetic
data performs reasonably well in its current state but is not on par with the
original data in a downstream anomaly detection task.

7. Further research is necessary to fully understand the privacy implications of
using synthetic time series data as a private source. We conclude that the data
is synthesised completely from noise without seeing the original data. The
individual samples may behave similarly to the original source but never as
a direct copy.

While the improvements to the TimeGAN model have led to enhanced perfor-
mance and more accurate representations of the time series data, it is essential to
acknowledge that these enhancements also introduce increased model complexity
to an already complex model. For example, incorporating the Wasserstein distance,
temporal convolutional layers, and Transformer components adds to the computa-
tional cost, resulting in a longer training time. The main contributor to this increase
is the gradient penalty computation, which requires temporarily disabling a GPU
acceleration library utilised by PyTorch when computing the discriminator gra-
dients. Furthermore, the TimeGAN framework training process involves training
multiple networks individually and jointly, minimising three loss functions with a
partly entangled parameter space. Consequently, the hyperparameter space is also
complex. Although it certainly can be optimised further, it has to generalise well
to different data sets.

A comprehensive ablation study is needed to assess these additions’ contributions
and significance. This will allow for a better balance between model complexity
and performance and facilitate a deeper understanding of the essential components
required for optimal results. Such analysis could also uncover potential redundan-
cies or inefficiencies within the T2GAN model to address in future architecture
iterations.

5.3 Future Work

• Adaptation to textual data: Investigate applying the T2GAN model to log
files where textual data needs converting into classes. This process can lead
to high-dimensional and imbalanced data sets, making it an exciting area for
exploration and further model improvements.
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• Semantics enhancement: Building upon the success of incorporating clas-
sifiers in tabular GANs, future work could incorporate a classifier within the
T2GAN model to enhance the semantics within generated samples, espe-
cially when working with high dimensional data, such as log files, as main-
taining consistency across the feature dim become increasingly complex.

• Online learning: Extend the T2GAN model to handle streaming sources, al-
lowing it to adapt to changing patterns and trends in real time. This would re-
quire the model to continuously update its knowledge, leading to better per-
formance and relevance for various applications. In this context, T2GAN’s
design of generating shorter sequences may be especially appropriate. How-
ever, it would necessitate the additional functionality of remembering and
integrating previous sequences to ensure the continuity and coherence of the
generated time series data.

• Learning from longer sequence lengths: Further exploration into develop-
ing the TimeGAN model to support longer sequences, allowing it to better
handle and synthesise time series with very long dependencies or period-
icities. This could involve refining the model’s architecture or training ap-
proach to capture long-term dynamics more effectively.

• Scalability: Assess the scalability of the T2GAN model for large-scale, real-
time streaming data applications. This would involve optimising the model’s
architecture and training process to ensure efficient processing and genera-
tion of synthetic time series data under real-world conditions.

These areas for future work can help advance the TimeGAN model’s capabilities,
making it more versatile and applicable to a broader range of time series data, such
as log files and streaming data challenges.
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6.1 Appendix 1. Model Overview

Algorithm 2 Embedder Network

1: Input: x i.i.d∼ D, Output: h ∈H
2: Compute Positional Encoding Matrix pe:
3: pos← [0, . . . ,N−1]T ,
4: pe(pos,2i)← sin(pos/10000

2i
d ),

5: pe(pos,2i+1)← cos(pos/10000
2i
d )

6:
7: Infuse input with positional encoding
8: x← x+ pe
9:

10: Temporal ConvLayer:
11: for i = 1, . . .nlayers do
12: x← Conv1D(x)
13: x← batch_norm(x)
14: x← ReLU(x)
15:
16: x← layer_norm(x)
17: x← fc_out(x)
18: return sigmoid(x)
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Algorithm 3 Supervisor Network
1: Input: h∼H, Output: h ∈H
2: Compute Positional Encoding Matrix pe:
3: pos← [0, . . . ,N−1]T ,
4: pe(pos,2i)← sin(pos/10000

2i
d ),

5: pe(pos,2i+1)← cos(pos/10000
2i
d )

6:
7: Infuse input with positional encoding
8: h← h+ pe
9:

10: Temporal ConvLayer:
11: for i = 1, . . .nlayers do
12: h← Conv1D(h)
13: h← batch_norm(h)
14: h← ReLU(h)
15:
16: h← layer_norm(h)
17: h← fc_out(h)
18: return h

Algorithm 4 Recovery Network
1: Input: h∼H, Output: x ∈X
2: Compute Positional Encoding Matrix pe:
3: pos← [0, . . . ,N−1]T ,
4: pe(pos,2i)← sin(pos/10000

2i
d ),

5: pe(pos,2i+1)← cos(pos/10000
2i
d )

6:
7: Infuse input with positional encoding
8: h_pe← h+ pe
9:

10: Compute Multi-head attention:
11: Q = fc_q(h)
12: K = fc_k(h)
13: V = fc_v(h)

14: α = softmax
(

QKT
√

d

)
15: y = αV
16: h = fc(y)
17: h← layer_norm(h+h_pe)
18: for i = 1, . . .nlayers do
19: h← GRU(h)
20: h← fc_out(h)
21: return sigmoid(h)
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Algorithm 5 Generator Network

1: Input: z i.i.d∼ Z, Output: h ∈H
2: for i = 1, . . .nlayers do
3: z← GRU(z)
4: z← layer_norm(z)
5: z← fc_out(z)
6: return sigmoid(z)

Algorithm 6 Discriminator Network
1: Input: h∼H, Output: y ∈ [0,1]
2: h← GRU_bidirectional(h)
3: h← layer_norm(h)
4: h← fc_out(h)
5: return h
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both discriminative and predictive capacities. Our results demonstrate a 38% enhancement in 
similarity measures and a 55% reduction in relative prediction error when using synthetic training 
data. Furthermore, the thesis presents a comprehensive literature study and analysis of generative 
models, detailing the potential of T2GAN in various domains by enabling privacy-preserving data 
analysis, facilitating research and development, and enhancing machine learning algorithms. 
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