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Popular Summary

Through the Looking Glass: Beyond Physics

Plants, viruses, “the birds and the bees” all function due to sophisticated bio-molecular
machinery, whose cumulative and simultaneous action results in what we call life.

Miraculously, an organism’s DNA, or RNA, contains the blueprints for all the little bits
and pieces of bio-molecular machinery necessary to sustain life. If we could read such
blueprints, we could determine an organism’s ancestry, create treatment schemes for
hereditary diseases, or even identify an organism’s mode of infection and consequently
deduce ways to stop its spread. These blueprints are written in a language that consists
of four letters separated from one another by approximately a third of a nanometer.
However, this presents a problem as reading such tightly spaced “letters” requires a
level of precision that is unattainable, per the inescapable laws of physics, which state
that in a microscope, the resolution is limited by the wavelength of light observed and
the numerical aperture of the lens system; this is known as Abbe’s diffraction limit.

Scientists have worked around the aforementioned problem by using next-generation
sequencing (NGS) to determine the genes present in a sample. Such a process is
quite expensive and time-consuming. Furthermore, the generated DNA sequences
are short snippets of the sequenced gene. Hence, a tremendous amount of processing
power is needed to piece these snippets together. Generally, this results in imperfect
genome reconstructions, which may stall and even prevent the development of life-saving
treatments. Thus, complementary methods are crucial in further improving genome
reconstructions. One such method is optical gene mapping, where pictures of the gene
labeled using fluorescent proteins at commonly appearing DNA regions provide a map
for the final genome assembly. However, the Abbe diffraction limit prevents a detailed
skeleton, as the light sources in the optical maps blend, resulting in the individual
sources being indistinguishable from one another.

Fortunately, novel solutions that aim to defy the Abbe diffraction limit have been
proposed. Among these solutions, the alternating descent conjugate gradient method,
ADCG for short, has proven to be a state-of-the-art tool for resolving single-molecule
images containing fluorescent dots. Using ADCG, highly detailed maps can be created
in which the light sources, or fluorophores, are localized with precision in the tens
of nanometers. These maps can then be used to rapidly identify and characterize
bacterial strains in an economical and automatable manner, allowing scientists to react
to mutations, consequently saving lives.

A typical single-molecule image consists of a DNA segment that has been chemically
labeled and imaged using a microscope. Unfortunately for such images, Professor
Abbes’ law seemingly holds, as finding the individual segments–—which are shaped
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like dots–—seems impossible. Alas, ADCG proposes a relatively simple solution. First,
it assumes that the image comprises the minimum number of dots possible; in the
context of information theory, this makes its predictions “sharp.” Consequently, ADCG
sequentially constructs synthetic fluorescent dots and moves them within the image
until it effectively reconstructs the original image. This is done by minimizing the
difference between the real and ADCG-generated images.

Using ADCG, the molecular motion of life can be captured and viewed at “super-
resolution” that surpasses the laws of physics, which lends itself to assisting and, at
times, replacing NGS and other sequencing methods as a fast and cheap alternative.
Hence, developing an updated software library featuring additional functionalities in a
modern computing language will expedite scientific discovery in molecular biology and
nano-biophysics.
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1 Introduction

Outside of the Planckian realm, space-time can be considered continuous. However, our
analytical tools capture and quantize input signals, resulting in the loss of information.
Consequently, the detector may obscure a simple question such as, ’How many sources
are present in a single input signal?’. Such questions are known as “inverse problems,”
and at times, the laws of physics obfuscate the answer to such questions.

One such field in which inverse problems commonly occur is that of single-molecule
imaging (SMI), where molecules are chemically stained and subsequently imaged under
a microscope—thereby allowing the creation of optical DNA maps that aim to serve as
a barcode of sorts, as the chemicals bind to specific molecules, such as short DNA or
RNA sequences. However, the resulting images are diffraction-limited for sufficiently
close molecules, and the fluorescent stains are optically indistinguishable. To resolve
these molecules, an assumption, based on the principle of parsimony, is made: the input
signal is simple, with low information content.[7] Under ideal conditions, this imposes
sufficiently many constraints to super-resolve (SR) such images. In a computational
implementation, the alternating descent conditional gradient method (ADCG) has
proven itself to be the state-of-the-art 2D SR-technique in an analysis done by Sage et
al.[6]. Despite these results, ADCG has yet to be utilized to map DNA optically.

Additionally, Sage et al. did not utilize pre-processing and post-processing techniques in
their analysis. These methods greatly aid in modeling complex point spread functions
(PSF) or analyzing high-emitter-density data, generally at the expense of robustness.[6]

Nevertheless, post-processing steps such as those proposed by Jeffet et al [4] that leverage
the intrinsic photo-bleaching of chemical stains over time to enhance localization, do
not impact the algorithm’s robustness. Similarly, post-processing the data to link single
molecules temporally in the form of kymographs, which trace the motion over time
of the molecules, as proposed by Jaqaman et al.[3] would exclude unlikely candidates
thereby improving the localization without impacting the robustness of the localization
algorithm.

While the ADCG, particle tracking, and pre-processing algorithms exist individually,
they are mostly outdated scripts and lack a cohesive and robust package in a standard
computing language. Therefore, to benefit the optical DNA mapping community,
a Python class was developed. This class uses ADCG to localize fluorescent dots
and contains modules for de-noising, the production of kymographs, and further lo-
calization routines that leverage photo-bleaching. The class uses the NLopt and

scipy.Optimize libraries, which allows for swapping out any of the ADCG sub-
routines in favor of an appropriate optimization algorithm contained in said libraries
without loss of functionality.

In this thesis, the mathematical formalism of super-resolution and its explicit for-
mulation in ADCG using the optimal SMI-specific sub-routines are described and
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characterized. Initially, a brief theoretical framework of single-molecule fluorescence
is introduced alongside the functions to be optimized using ADCG. Subsequently,
ADCG is described in terms of a modeling approach, and the pre-processing and post-
processing methods used to improve fluorophore localizations are explained. Thereafter,
the performance of ADCG and its time scaling as a function of input signal param-
eters are presented on synthetic and experimental data sets used to create optical
DNA maps. Finally, a quantitative description of the algorithm parameters is presented.

2 Theory

2.1 Single Molecule Fluorescence

To characterize the input signals, it is imperative first to describe the physical phe-
nomenon that generates these signals. Commonly, organic dye molecules, or fluo-
rophores, are used for SMI, where the dye is chemically attached to the molecule of
interest. These dye molecules have a continuous energy structure due to the interactions
between the dye and its solvent. When the electrons from the lowest sub-level of the
ground state are photo-excited up to the excited singlet band, de-excitation primarily
occurs using either one of two methods, shown in figure 1. The first is phosphorescence,
where the electron crosses over from the excited singlet state to the adjacent triplet
state that is present in all organic dye molecules. The second is the radiative decay,
or fluorescence, generally from the lowest sub-level of the excited state. Decay to the
lowest sub-level of the excited state occurs due to internal conversion or vibrational
relaxation. Hence, organic dyes exhibit what is known as a ’Stokes shift,’ where the
emitted photon is at lower energy relative to the absorbed photon. However, transitions
from higher sub-levels may occur, which results in shorter wavelengths of the fluorescent
photons. Nonetheless, it is extremely likely that the excited electrons will undergo
some relaxation process within the excited energy band before radiatively decaying.[9]
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Figure 1: The vibrational energy levels of a dye where S is the ground state, S∗ is
the excited singlet state, T is the triplet state.[9]

The process of exciting the dye can result in the photobleaching of the fluorophore,
which occurs due to the breaking of bonds over time, or covalent modification of the
fluorophore that eventually results in the fluorophore being unable to fluoresce. This
presents an added problem when it comes to creating super-resolution images and
kymographs as the signals can ’die’ out, in a stochastic manner.

2.2 Diffraction Limited Images

According to the Abbe diffraction limit, the shortest distance at which two objects are
distinguishable in the image generated by a microscope, also known as the maximal
resolution, d, of optical images is [5]

d =
λ

2NA
, (2.1)

where λ is the emission wavelength of the fluorophore, and NA is the numerical aperture
of an imaging microscope, which describes the maximal angle of light that the imaging
lens can capture. Hence, maximizing resolution involves using short wavelengths and
lenses of high numerical apertures. However, since the fluorophores are attached to
biological structures, reducing the wavelength to resolve nanometer-spaced fluorophores
is not viable as it would rapidly destroy the samples. Consequently, biological images
are diffraction-limited, and as such, super-resolution algorithms aim to remove the blur
induced by diffraction in addition to the effects of pixelization and noise.[7]
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Point Spread Function

Since most of the changes to the input signals arise from the imaging system, it is
important to characterize the process through which these effects occur.

Figure 2: The intensity of a 2D Gaussian PSF as a function of space.

When imaging a single-point source, the resulting image is altered due to photon
dispersion and the microscope’s blurring of the source location. Mathematically, this
blurring can be represented as the imaging system’s point spread function (PSF), as
shown in Figure 2.
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Figure 3: (a) A single frame from the 3 LS data set[2], which consists of simulated
helicoidal tubes. (b) A single frame from the 1 HD data set[2], which consists of
simulated tubulins of various diameters.

The convolution of the PSF and the sum of Dirac delta functions at the positions of the
emitters results in an image, as shown in figure 3. If the point sources are separated by
a distance less than d, the sources become indistinguishable in the resultant image, as
shown in figure 3 (b). Mathematically, a convolution is a linear operator and an image
is simply a function. Therefore, the image is the noisy measurement of a few weighted
sources [1]

y(s) =
M∑
i=1

ωiψ(p, ri) + ν, (2.2)

where y is the image at pixel p, ri is the spatial position of the point-source, ωi is the
intensity of the ith source during the exposure time, M is the total number of sources,
ψ is the PSF and ν is the additive background noise.

If the number of “empty” pixels is greater than twice the number of sources, and the
PSF satisfies the conditions detailed in [7], then a unique total intensity exists.1

1These conditions are positivity, independence, and forming a T-system, but are of no practical
consequence to ADCG as the PSF used, a Gaussian, intrinsically satisfies them.
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3 Method

From equation 2.2, it is possible to roughly infer that reconstructing a noise-free super-
resolution image would amount to deconvolving the PSF of the imaging system used
and subsequently estimating the intensities of the point sources.

3.1 Single Molecule Imaging as a Sparse Inverse Problem

By considering the fluorophores in a multi-emitter single-molecule image as point
sources, the task of finding the number of sources, their position, and intensities present
in an image can be formulated as a sparse inverse problem. The task of deducing the
position and number of sources requires estimating the intensities of the fluorophores,
which necessitates a mathematical formulation of their total intensity, µ, as [1]

µ =
M∑
i=1

ωiδ(ri), (3.3)

where ωi is the intensity of the ith fluorophore once the mean background noise has
been subtracted, and δ(ri) is a Dirac delta function centered at the position of the
fluorophore, thereby satisfying the assumption that the fluorophore is a point source
of light. However, labeling each pixel as an emitter can artificially decrease the loss.
Therefore, the ADCG algorithm imposes a constraint on the maximal intensity, τ ,
which ensures sparsity in the number of fluorophores. Hence, τ controls the number of
fluorophores that can exist in a single image and is, as such, greater than zero.

To evaluate the difference between the image and the super-resolution image produced
by the ADCG algorithm, a convex loss function, ℓ, is used. In this thesis, ℓ is the
Euclidean norm, as the images can be expressed as vectors. Thus, the sparse inverse
problem can be formulated as the following optimization problem

minimize
p ∈ n

√√√√ n∑
j=1

(
ȳ
(j)
sr − (ȳ(j) − ν)

)2
= ℓ,

s.t. |µ| ≤ τ

(3.4)

where j is the pixel index of the flattened image, n is the total number of pixels, ℓ is
the loss function, ysr is the super-resolution reconstruction of the image created by
ADCG and ȳ(j) is the intensity of the experimental image at pixel j. This problem can
be solved using ADCG.
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3.2 Alternating Descent Conditional Gradient Method

Given equation 2.2, the noise is assumed to be statistically identical across all pixels.
As such, the mean noise is determined by roughly segmenting areas containing the
fluorophores and excluding them from the calculation; the specific methods used for
each data set are detailed in appendix C sections 1 and 2. Following that, the mean
noise was subtracted from each image within the dataset. Furthermore, the localization
PSF used was created using equations 3.7 and 3.8, and the images were converted to a
floating point format. A rough summary of the ADCG algorithm used in this thesis, a
visual representation of which is shown in figure 5, is detailed in appendix B section 1,
and its steps are referenced in the following explanation below.

To solve the problem presented in equation 3.4, ADCG initially grids the image into a
G×G grid, where G is the total number of desired grid points. The resulting gridded
image, Ω, contains more grid points relative to the total number of pixels, such that
ADCG can localize the fluorophores at a sub-pixel accuracy. An arbitrary image is
generated, and the loss is computed, as detailed in step 1.(a), according to equation 3.4.
Subsequently, in step 1.(b), ADCG computes the gradient of ℓ, equation 3.4, across the
gridded image,

∇ℓ = ȳ
(s)
sr − (ȳ(s) − ν)√∑n

s=1(ȳ
(s)
sr − (ȳ(s) − ν))2

(3.5)

where s is the grid point index. In the grid representation, the image becomes a function
of the grid point g and the spatial position of the fluorophore on the grid, rg. Then
the point in the gridded image, g∗s , that minimizes the directional derivative of the
unweighted projection of the pixelated PSF onto the grid, ΨG, along ∇ℓ is computed,

arg min
g∗s∈Ω

⟨ΨG,∇ℓ⟩ = Ψh T
G · ∇ℓ · Ψw G (3.6)

where ⟨...⟩ represents the inner product, h denotes the PSF component along the height
of the image, and w denotes the PSF component along the image’s width. In effect,
the point g∗s that satisfies equation 3.6 corresponds to the brightest point in the image
space Ω. In this thesis, ΨG is chosen to be a 1D Gaussian, as it intrinsically satisfies
the conditions detailed in Schiebinger et al., which ensures a unique total intensity
exists, and the PSF can be resolved at arbitrary separations from 2M + 1 observations.
However, this assumes that there are at least 2M background pixels.[7]

The PSF is generated according to,

Ψa G(g) =
1√
2πσa

e
− (ga−sg,a)2

2σ2
a (3.7)

where a is an arbitrary component of the PSF, ga is the grid coordinates along the
component axis, sg,a is the current location, grid-wise, and σa is the standard deviation of
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the arbitrary Gaussian component, which in the case of diffraction-limited fluorophores
can be approximated as,

σa =
d√

2 ln(2)
(3.8)

where d is the maximal resolution shown in equation 2.1. Assuming the imaging system
is free of astigmatism, the uneven blurring of the fluorophore in the image. Then, the
image’s standard deviation along the height, σh, and width, σw, are equal. Thus, the
2D PSF is generated by, Ψh T

G · Ψw G and denoted as ΨG.

Subsequently, the PSF, shown in figure 2, is moved around the local neighborhood of
rs to find the optimal position in the Ω, shown in figure 4. This is achieved by solving
the left-hand side of equation 3.6 and corresponds to step 1.(c) in the rough summary.
Once its position is set, the local descent routine is used, where the intensities of all
localized PSFs are scaled to match the peaks, seen in figure 4. This process is repeated
kL times within each iteration of ADCG, with G, τ , ϵ, and kL values chosen for the
specific data set used, as described in section 3 of this thesis.

Figure 4: The intensity of an AF647 stained DNA segment as a function of space. By
moving PSFs over this space, optimal locations that minimize a loss function can be
found.

To calculate the weights of the current ith proposed PSF location, step 1(d).ii, the
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weights of the current set of PSFs, {Ψ(i)
G |i > 0}, are computed[1]

arg min ℓ

(
M∑

ri∈Sn

µ({r})Ψ(ri)− y

)
,

s.t. |µ| > 0, |µ(Sn)| ≤ τ

µ(Sc
n) = 0

(3.9)

where µ({r})Ψ(ri) is the super-resolution image of a fluorophore localized at the set r
of all the emitter positions, y is the unflattened experimental image, Sn is the set of all
PSF localizations, and Sc

n is all other pixels.2 This process is simply scaling all of the
fluorophore intensities in the super-resolved image to better match that of the original
image while ensuring that the total intensity remains below τ . If any fluorophore
is found to emit below a threshold, γ, it is removed from the super-resolved image,
corresponding to step 1.(d).iii.

Subsequently, in step 1.(d).iv, the positions of all PSFs are re-evaluated using equation
3.6. This is possible, as the image is locally differentiable, meaning that the PSF can
be smoothly moved. If no PSFs were removed prior and the difference between the
positions on the grid is below a threshold, β, the algorithm stops. However, if the PSFs
were moved, then the weights are locally re-computed[1]

minimize ℓ

(
M∑
i=1

ωiψ(ri)− y

)
.

s.t.
M∑
i=1

ωi ≤ τ

ri ∈ Ω

(3.10)

As before, the ith fluorophore for which ωi ≤ γ is removed from the super-resolution
image. Within each iteration of ADCG, the local descent optimization is run k times
unless the threshold set by β is met.

In each iteration of ADCG, an additional localization point is added or removed from
the super-resolution image ysr. The process stops when the criterion below is met[1]

τ |⟨ΨG(rn),∇ℓn⟩| − ⟨ysrn ,∇ℓn⟩ < ϵ, (3.11)

where rn is the optimized localization of the nth iteration of the ADCG algorithm. This
step corresponds to 1(d).i, but can only be used after the first optimal weight has been
computed. Intuitively, equation 3.11 is satisfied when the nth PSF localization can
contain the maximal intensity of the image and have a loss which is sub-ϵ, where ϵ is a
user-defined threshold. The result would look something like step 7 of figure 5, where
the PSFs are scaled to match the intensity of the dot at the location of the dot and

2For the method used to solve this equation, refer to appendix A.
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have no noise.

Figure 5: An artistic representation of the ADCG algorithm superimposed atop a
frame from the 3 LS data set. Initially, the image is gridded, and the brightest pixel is
used as the starting point for NLOpt , from which all subsequent weights are scaled.
The process is then repeated for the remaining fluorophores.

3.3 Temporal Molecule Tracking

The final fluorophore localizations across each frame are static. However, for temporally
linked data sets, tracking the PSFs through time can create optical bar codes or
filter noise-induced localizations. The linked fluorophores generate a kymograph, an
image that represents the transverse motion of the fluorophores as a function of time.
However, identifying single molecules temporally, in the realm of SMI, necessitates the
consideration of the fluorophores’ inherent flickering. Furthermore, due to imperfect
replication of the imaging systems’ PSF, ADCG is not guaranteed to resolve sufficiently
close fluorophores, resulting in an effect similar to flickering. Hence, a simple nearest-
neighbor distance map is inaccurate. The temporal tracking algorithm used for the
AF647 stained DNA sequences, adapted from the general algorithm detailed by Jaqaman
et al.[3], is iterated thrice, front-to-back over the data, to optimize the bounded adaptive
search radii, denoted by ζ. A rough summary of the algorithm used in this thesis,
consisting of two parts, is presented in appendix B section 2, and its steps are referenced
in the following explanation below.
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Track Segmentation

Conceptually, the fluorophores were assigned “tracks” and temporally reassigned to
these tracks in each subsequent frame unless they have photobleached. In the first
step, for each frame, a matrix, shown in figure C.1 of appendix C section 2, of size
(Mt +Mt+1)× (Mt+1 +Mt) is constructed which is conceptually divided up into four
segments. Thereafter, in steps 2 and 3, the center of mass in frames t and t+ 1 are
computed, and a particle-to-track dictionary is created, which initially contains a
one-to-one particle assignment.

Subsequently, in step 4, a Kalman filter is used to predict the future location of the
particles from one frame to the next, and the squared distance between the prediction
and the location in the next frame, t+ 1, is computed. Thereafter, in step 4.(a), the
bounded adaptive particle search radius, ζp, is computed according to

ζp = max

({
3σ

(t)
i

}
,

{
1

2
∆x

})
, (3.12)

where σ
(t)
i is the standard deviation of each optimal particle assignment, ∆x is the

vector containing the distance between particle i and its nearest neighbor, and i is its
index. Additionally, if the particle from frame t was assigned a track prior, its nearest
neighbor distance was computed as the mean of past frames.

After that, tracks whose Kalman distance exceeds ζ2 are pruned from the particle-
to-track dictionary, and the remaining tracks’ Kalman distances are inserted into the
top left Mt ×Mt+1 section of the matrix, corresponding to step 4.(b). In each time
frame, the bottom rightMt+1×Mt+1 section is filled with the smallest squared distance,
corresponding to step 5 in appendix B section 2.1.
The top right Mt ×Mt and bottom left Mt+1 ×Mt+1 sections are filled along their
diagonal with a maximal link value, ε, which during the first step of the initial iteration,
t = 1, is set as the 80th percentile of all potential assignment costs. In subsequent time
frames, ε becomes the maximal distance of the optimal solution set times an arbitrary
scaling parameter slightly larger than 1.

Thereafter, in step 7, once the cost matrix has been fully constructed, it is inserted
into a linear assignment problem (LAP) solver, where each row can be assigned to a
single column at most. Each row in the top left section represents a fluorophore at
time t, and each column represents a fluorophore at time t+1. Thus, the column index
gets assigned the track number of their row assignment index. That is, fluorophores at
t+ 1 get placed in the track of their assigned fluorophore from time t. For fluorophores
at time t assigned to columns in the top left, their track is said to have ended, and
for fluorophores at time t + 1 that are assigned to rows in the bottom right, their
tracks are said to have started. This amounts to adding the column index to the track
list, {Tl|l > 0}, alongside a new track Tl+1, thereby updating the particle to track
assignment matrix. Thus, in the end, each particle in every time frame is assigned to a
track.
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Track Optimization

Once the l tracks are generated, the flickering and thermal motion of the fluorophores
may give rise to disjoint or globally suboptimal assignments. Hence, the tracks should
be re-optimized using the intensity, temporal track length, and individual track drift
over time; a rough summary is presented in appendix B section 2.2, and its steps are
referenced in the following explanation below.

Initially, in step 1, a 3l × 3l matrix that is conceptually segmented into nine different
sections is created; see Jaqaman et al.[3] figure 1c for a schematic illustration. Thereafter,
the squared distance of the start or end of track segment I and the midpoint of track
segment J , δ2IJ , are computed and inserted into the upper left l × l section. The
potential assignment costs corresponding to steps 3-4 are defined as

mIJ =


δ2IJ

AJ (t−1)
AI(t)+AJ (t)

, if AJ (t−1)
AI(t)+AJ (t)

> 1

δ2IJ

(
AI(t)+AJ (t)

AJ (t−1)

)2

, if AJ (t−1)
AI(t)+AJ (t)

< 1
(3.13)

where A is the intensity of a track segment at a given time.

sIJ =


δ2IJ

AJ (t)
AI(t−1)+AJ (t−1)

, if AJ (t)
AI(t−1)+AJ (t−1)

> 1

δ2IJ

(
AI(t−1)+AJ (t−1)

AJ (t)

)2

, if AJ (t)
AI(t−1)+AJ (t−1)

< 1
(3.14)

Equations 3.13 and 3.14 represent the merging and splitting costs, respectively. The
rejection costs of merging and splitting, respectively, are

m′
J =


δ̄J

2 AJ (t)
AJ (t−1)

, if AJ (t)
AJ (t−1)

> 1

δ̄J
2

(
AJ (t−1)
AJ (t)

)2

, if AJ (t−1)
AJ (t)

< 1
(3.15)

where δ̄J
2
is the average frame-to-frame displacement in track segment J.

s′J =


δ̄J

2AJ (t−1)
AJ (t)

, if AJ (t−1)
AJ (t)

> 1

δ̄J
2

(
AJ (t)

AJ (t−1)

)2

, if AJ (t−1)
AJ (t)

< 1
(3.16)

For steps 2-6, the top left l × l section is filled with δ2IJ , the top central l × l section is
filled with mIJ and the top right l × l section is filled with ε′ along its diagonal, where
ε′ is the 90th percentile of all potential assignment costs. The central left l × l section
is filled with sIJ , the central most l × l section is set to 0, and the central left l × l
section is filled with s′J . The bottom left l× l section is filled with ε′ along its diagonal,
and the bottom central l × l section is filled with m′

J .

Subsequently, in step 7, the costs for track linking associated with a separation distance
that exceeds the bounded adaptive track search radius,zetaT = max (ζs, ζe), are removed.
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The track end and start search thresholds are computed by

ζs =

max
(
3σl

I

√
δt, 1

2
∆XS

)
, if δt < tp

max
(
3σl

Iδt)
1
10 , 1

2
∆XS

)
if δt > tp

(3.17)

where tp is a user-defined time gap that scales the search radius, XS is a vector
containing the position of all the starts of the tracks, σl

I is the standard deviation of
frame-to-frame displacements in track segment I, and l is its index.

ζe =

max
(
3σl

I

√
δt, 1

2
∆XE

)
, if δt < tp

max
(
(3σl

Iδt)
1
10 , 1

2
∆XE

)
if δt > tp

(3.18)

where XE is the vector containing the positions of all the ends of the tracks. Sub-
sequently, tracks whose beginning and end have a temporal separation of less than
∆t units of time are removed. Then, the bottom left l × l section is filled with the
minimum δ2IJ cost. Finally, the 3l × 3l matrix is inserted into a LAP solver, and its
assignments yield the optimal track configurations.

The track segmentation and subsequent optimization described above constitute a
single iteration’s “front” half. The bounded adaptive search radii are re-used and
updated in the current iterations’ subsequent “back” half, where t0 = tf .
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4 Optimization routines, data sets, and parameter

selection

Given the myriad of convex and non-convex optimization methods, each having its
strengths and weaknesses, a simplistic testing routine was performed in which various
non-linear and linear optimization methods were compared to one another. The non-
linear optimization methods were implemented using the NLopt python library, and

the linear methods using the scipy.Optimize python library.

4.1 Single Molecule Localization Microscopy Challenge Data
Sets

The “Bundled Tubes Long Sequence” (BTLS) dataset and the “Bundled Tubes High
Density” (BTHD) dataset from the 2013 Grand Challenge Localization Microscopy[2, 6]

were downloaded alongside their ground-truth files. These data sets were generated
using an emitter wavelength of 723 nm, an NA of 1.4, and a pixel size in the image
plane of 100 nm. Subsequently, the relevant sub-routines were combined using threshold
parameters that yielded similar localization accuracies. The testing was performed
with a grid mesh size of 1000×1000, γ = 0, and τ = 3×105. For the BTLS dataset,
ADCG was run for a maximum of 30 iterations, whereas for the BTHD set, ADCG was
run for 1000 iterations, as the total number of fluorophores was much greater in the
latter. The latter data set was used as a visual confirmation of the ability of ADCG to
localize a high density of fluorophores accurately. However, this thesis will present no
analysis, as the AF647 data is relatively dense.

4.2 Artificial Data sets

Once the best cost-to-performance routines were deduced, further testing was per-
formed regarding the algorithm’s performance as the input parameters scale; specifically,
the time scaling as a function of the fluorophore density, the number of pixels, and
grid points were evaluated. The former two were performed on the SMLM training
datasets using a grid mesh of 5000×5000, a maximal ADCG iteration of 20, with an
ϵ of 7×10−5 and a maximal IP iteration of 200. The latter was performed using an
artificially generated square image containing a single Gaussian PSF centrally localized
in the image, with a σ equal to 1% of the image height over a 5000×5000 grid. The
computational time was the mean wall time spent optimizing the image over five runs,
and the test was performed by restarting the kernel each time without any special care
to the background processes running on the host machine.
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4.3 AF647 Stained DNA Molecules

The data comes from an unpublished set of Optical DNA mapping experiments per-
formed by Jonathan Jeffet at the NanoBioPhotonix Lab at Tel-Aviv University. In
the experiment, DNA molecules of bacterial plasmid vectors were stained and inserted
into an Irys chip containing 45 nanometer (nm) nanochannels. The data contains a
YOYO-1 stained channel and an AF647 channel, which are hyperstacked in a .tiff file.
Each field-of-view has 500 frames of 40 millisecond (ms) exposure per frame with a
pixel size of 117 nm in the sample plane.

The parameters used in analyzing experimental data sets were determined by calculat-
ing the desired theoretical localization precision, the expected number of fluorophores
in each frame, and the sum of the entire image array. Without such information, an
initial optimization was performed on the first five images within a dataset to determine
sensible parameter values roughly. The default values for the code is an ϵ = 1× 10−5,
τ = 2× 105, β = 1× 10−7, γ = 0, and a maximal number of IP iterations of 200.

Using the default set of parameters, the AF647 stained DNA sequences were analyzed
with a mesh grid of 5500, thereby allowing a theoretical localization precision of 5
nm. Additionally, since the vector contains 37 TCAG repeats, the maximal number
of ADCG iterations was set to 50. Prior to each image being analyzed, the YOYO-1
stack was used to segment the DNA strand from the background, and the difference
between the two stacks’ backgrounds was used to calculate the mean noise. The PSF
localizations were normalized relative to the center of mass of the DNA sequence,
determined by the length of the YOYO-1 stack, and subsequently linked.
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5 Results

Based on the testing performed, the chosen routines were LD MMA[8] for the non-linear
optimization subroutines and interior-point (IP) for the linear optimization subroutines
as they were the most cost-effective, in terms of their accuracy relative to the needed
computational time.

5.1 Single Molecule Localization Microscopy Challenge (SMLM)

The SMLM data sets consist of fluorescent dots at various densities. From the entire
set, two sets are presented here: the BTLS and BTHD data sets. The BTLS data
set is an artificially generated data set representing bundles of 8 tubes that are 30
nm in diameter at low fluorophore density, and the BTHD data set is its high-density
counterpart. A sample of the BTLS data set is shown in figure 6 (a). Both data sets
are generated using a Gaussian PSF, with a pixel size of 100 nm in the sample plane.

Localization

Inserting the image in figure 6 (a) into the ADCG algorithm produces the image in figure
6 (b), which has an average localization error of 8.11 nm for a mesh grid of 500×500.
When using finer meshes of 1000×1000 and 5000×5000, an average localization error
of 6.80 nm and 6.82 nm are obtained, respectively. For reference, a single fluorophore
represents a single α/β-tubulin heterodimer that is approximately 8 nm long. Thus
indicating that ADCG is capable of accurately and precisely localizing the dots, even
though the PSF used is not the same as the one used to generate the artificial dots.
Furthermore, the variance in the localization between individual runs of the same
images was on the order of 10−27, pointing to the excellent robustness provided by the
ADCG algorithm.

16



Figure 6: (a) A single frame from the Bundled Tubes Long Sequence data set
consists of bundles of 8 tubes of 30 nm in diameter. (b) The fluorophore localizations
produced using the ADCG algorithm (predicted localizations shown in green, and the
true positions in red).

However, these results are potentially misleading, as the BTLS data set was artificially
generated with Gaussian noise, in addition to the signal-to-noise ratio being quite high.

Performance & Scaling

Naturally, as the search space within the image increases with respect to either the
number of points the algorithm needs to consider or the number of objects to be
localized, the optimization time should increase.

Figure 7: The average optimization time of an image from the BTLS data set: (a) as
a function of fluorophore density. (b) as a function of the grid density.

In the absence of any fluorophores, the optimization time is non-zero, as one iteration
of ADCG is necessary to deduce this matter. Furthermore, it is clear from figure 7
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that increasing the number of grid points is a more expensive task than handling high
fluorophore densities.

Intensity Analysis

To determine ADCG’s robustness to noise, an analysis of its predicted localizations’
signal-to-noise ratio (SNR) is necessary, which is done by segmenting the background
and plasmid. In the absence of emitters, the background intensity is expected to be
distinct from the normalized intensity of the emitters. Hence, a radius of 2σ, the average
standard deviation of nearest neighbors across 50 frames, is used as a segmentation
threshold. Additionally, the normalized intensity proposed by ADCG should match
that of the normalized intensity of the image.

The background intensity, as shown in figure 8, is centered around zero, while the
estimated intensity and predicted ADCG intensity line up fairly well, while remaining
distinct from the noise.

Figure 8: A normalized intensity histogram for a collection of 50 images from the
BTLS dataset.

5.2 Artificial Data Sets

By increasing the total number of pixels present in a single image, the local optimization
routine would have to be appropriately expanded as the number of candidate points
increases due to the increased information content. Further gridding increases the
parameter space to be searched, and therefore, the optimization time is expected to
increase, which is clearly shown in figure 9.
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Figure 9: The average computational time as a function of the total number of pixels
present in an image.

The computational time is the wall time spent optimizing the image, averaged over
five runs. Even though the number of grid points used remains the same, it is clear
that the computational time increases. The increase in time may be attributed to the
increase in the standard deviation of the PSF used to generate the images, consequently
increasing the number of candidate localization points.

5.3 AF647 Stained DNA Sequence

While ADCG performs tremendously well in regards to the artificial training data sets,
the true test lies in the analysis of experimental data. The raw image of an AF647
stained DNA sequence is shown in figure 10, and the task of localizing all the dots’
positions is difficult, as upon visual inspection, their positions are obfuscated by the
noise present in the image.

Figure 10: A single frame of an AF647 stained DNA sequence.

Figure 11: The fluorophore localization positions of an AF647 stained DNA sequence
using ADCG.

When applying ADCG to every frame of an AF647 stained DNA sequence video using
a 5000 × 5000 grid size, each frame takes roughly 7 seconds. As shown in figure 11,
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using the ADCG algorithm, the resulting localizations appear rather accurate. Better
yet, the degree of accuracy becomes more apparent when an entire sequence of points
is shown in the form of a kymograph in figure 12.

Figure 12: A 50 frame Kymograph of an AF647 stained DNA sequence movie.

Figure 13: The proposed fluorophore localization across 50 frames.

Upon careful examination of the kymograph depicted in figure 13, it is apparent that
the localizations, depicted as white crosses, could accurately generate tracks over time.
Nonetheless, non-additive noise, which is not considered in equation 2.2, results in
some noise being mislabeled as fluorescence, as illustrated in figure 11. The temporal
molecule tracking routine addresses this issue by establishing links over time between
fluorophores, effectively filtering out noise and retaining only the localizations assigned
to tracks. Appendix 2 displays this in figure C.2.

Figure 14: A DNA barcode overlayed on the AF647 labeled DNA sequence’s raw
kymograph that generated it. The DNA barcode was generated using the temporal
tracking algorithm, which filtered out short tracks and provided the track’s mean
positions.
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Figure 15: The optical DNA barcode generated as described in figure 14, by itself.

The generated tracks suffer from an average localization error of 300 nm due to thermal
fluctuations. However, averaging the fluorophore’s position over time, as detailed in
Jeffet et al., reduces the average thermal fluctuation localization error to approximately
150 nm, resulting in the optical barcode shown in figure 15. The barcode generated
roughly matches the experimental data, as shown in figure 14, with the barcode po-
sitions aligning with the fluorescent tracks of the kymograph. However, it is entirely
possible that some of the tracks seen in figure 12 are, in fact, noise, as quantitative
analysis is not possible using the AF647 stained DNA sequence dataset beyond the
following intensity analysis as the actual positions are unknown.

5.4 Intensity Analysis

Clearly, the localization performance on experimental data sets is worse as the SNR
is lower when compared to the synthetic data sets. However, using the same method
detailed in section 5.1, visualizing the efficiency at which ADCG avoids labeling noise
is possible. As shown in figure 16, while the distance between the noise intensity and
the PSF localizations is not as considerable as on the synthetic data set, there is still a
distinct separation between the two, in addition to the predicted localizations intensity
roughly matching the expected intensity obtained from segmenting the image.

Figure 16: A normalized intensity histogram for a collection of 50 images from the
NBP dataset.
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6 Conclusions

In conclusion, ADCG’s localization on synthetic datasets is on the order of nanome-
ters due to its high SNR. However, when working with experimental datasets that
are typically noisier, the localization accuracy is on the order of tens of nanometers.
Additionally, thermal fluctuations introduce uncertainties on the order of hundreds of
nanometers for temporally linked data sets.

The reduction in accuracy on experimental datasets is likely a consequence of equation
2.2 being an inappropriate representation of the noise within the imaging system.
Thus, the exact ν values required to localize all fluorophores present in an image while
suppressing false labeling are highly sensitive in the model proposed in equation 2.2.
Most likely, the CCD used introduces noise in a manner related to the intensity within
each pixel. Furthermore, the confinement of the DNA sequences within nano-channels
introduces surface effects to the emissions of the fluorophores; while unlikely, it is pos-
sible that the solvents in which the sequences are suspended lead to anisotropic emission.

Consequently, it is thought that the most significant barrier to accurate localization
is due to the mischaracterization of the noise present in the image as purely additive.
As such, further research into the effects of pre-processing methods that increase the
signal-to-noise ratio and effectively eliminate non-additive noise sources would likely
yield improvements in the localization accuracy and precision of ADCG. Alternatively,
experimental research and parametrization of the imaging systems will likely provide
the relevant modifications to equation 2.2, which could vastly improve the localization.
Furthermore, using a synthetic temporally linked dataset would allow the parametriza-
tion of the temporal linking routines’ accuracy in eliminating the non-additive noise,
which is unquantified beyond an intensity analysis in this thesis.
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Appendix A

Optimizing Weights Using the

Primal Dual Interior Point Method

The PSFs are computed separately in h and w and subsequently multiplied with one
another to obtain the full PSF, with the fluorophore localization corresponding to
average of the Gaussian. The PSF vectors are collected into an array and subsequently,
their current weight is computed

Kh = Ψ({th})T ×Ψ({th}), (0.1)

Kw = Ψ({tw})T ×Ψ({tw}). (0.2)

The diagonal of these arrays corresponds to the intensity squared of the current PSF
localizations and the total intensity of the PSFs,

K = Kx ⊙Ky (0.3)

where ⊙ represents an element-wise multiplication operator. Similarly, the total
intensity of the image at the location of the PSFs, µ(y), is

µ(y) =
∑
j∈J

(ψ({tw})Ti,n × yij)⊙ ψ({th})Tj,n, (0.4)

where n is the number of PSFs, j is the vertical pixel index within the image, and i is
the horizontal pixel index in the image. This is formulated as an optimization problem,
where the function to be minimized is,

fmin =
1

4n
τprop ·K × 1

2n
τprop −

1

2n
τprop · µ(y) (0.5)

Where τprop is a vector containing newly proposed τ values that would better match
the total intensity in the system.
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Appendix B

Algorithm Outlines

1 ADCG Algorithm

Iterate k times, where k > M .

1. Grid the image such that the gridded image, Ω, contains a larger number of grid
points relative to the total number of pixels.

(a) Calculate the loss at the current iteration of ADCG,

ℓ =

√∑n
j=1

(
ȳ
(j)
sr − (ȳ(j) − ν)

)2
.

(b) Determine the starting point on which to build the PSF according to equation
3.6.

(c) Optimize the position of the PSF using the non-linear optimization python
software library, NLOpt .

(d) Perform local descent, iterating kL times, as detailed below,

i. Check if the stopping condition in equation 3.11 is satisfied.

ii. Compute the optimal weights for the current set of PSFs by solving equa-
tion 3.9 using the interior point solver contained in scipy.Optimize .

iii. Prune any PSF that has an intensity equal to or less than zero.

iv. Perform coordinate descent using NLOpt to solve equation 3.6.

2. Generate the image according to equation 2.2, where ν = 0, at the locations, {s},
and intensities, {ω}, given by ADCG.
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2 Temporal Tracking Algorithm

2.1 Track Segmentation

Define an upper and lower bound for the adaptive particle search radius ζp. Iterate over
the data three times, front to back, to ensure the adaptive pruning is representative of
the data points. For each iteration of the three iterations, loop tf − 1 times, where tf
is the last time point. Each loop iterates over the current and subsequent frame.

1. Create an Mt +Mt+1 ×Mt +Mt+1 cost matrix.

2. Compute the center of mass of the DNA sequence using the YOYO-1a stack in
the t and t+ 1 frame and subtract all the positions in the corresponding frame.

3. Create a particle-to-track look-up dictionary.

4. Apply a Kalman filter to frame t and compute the element-wise squared distance
between frames t and t+ 1.

(a) Compute the maximal search radius according to equation 3.12 and prune
values that exceed it.

(b) Insert this Mt ×Mt+1 matrix into the cost matrix.

5. Insert the minimal proposed link distance into the lower rightMt+1×Mt+1 matrix
to create a square matrix.

6. Fill the diagonal of the upper right Mt ×Mt+1 and lower left Mt+1 ×Mt sections
of the cost matrix with 1.x · ε where ε is the maximal accepted link cost and 1.x
is an arbitrary scaling parameter slightly larger than 1.

7. Solve the cost matrix using a sparse linear-assignment-problem (LAP) solver,
such as the scipy.Optimize.linear sum assignment function.

8. Depending on the cost matrix output, assign particles from t+ 1 to tracks,

(a) For optimal links belonging to the upper left section, assign the particles
from frame t+ 1 to the track associated with the linked particle from frame
t.

(b) For optimal links belonging to the upper right section, the particle from the
t+ 1 frame is linked to nothing and the track is removed from the look-up
dictionary.

(c) For optimal links belonging to the lower left section, the particle from the
t + 1 frame is assigned to a new track, which is updated or added to the
look-up dictionary.

aOne of the dyes used to label the DNA. Refer to section 4.3 for more information.
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2.2 Optimization

As a part of the three front-to-back iterations,

1. Create an 3l×3l cost matrix, conceptually segmented into 9 different l× l sections.

2. Compute the tip-to-tip squared distances of the tracks and insert them into the
upper left l × l section.

3. Compute the merging and splitting costs according to equations 3.13 and 3.14,
and insert them into the upper central l × l section and the middle left l × l
section, respectively.

4. Compute the rejection costs for merging and splitting according to equations 3.15
and 3.16, and insert them into the bottom central l × l section and the middle
right l × l section.

5. Compute the 90th percentile of all potential assignment costs, ε′, and fill the
diagonal of the upper right and lower left l × l sections.

6. Set the central most section to 0, and the lower right section is set to the minimal
potential cost, as before.

7. Compute the search radius at the start and end of the tracks, according to
equations 3.17 and 3.18 respectively.

(a) Exclude costs that exceed the search radius.

(b) Exclude values which exceed a user defined temporal search radius ∆t.

8. Depending on the cost matrix output, merge and split tracks,

(a) For optimal links belonging to the upper left section, assign the track ends
to the corresponding track start thereby creating on track..

(b) For optimal links belonging to the upper central section, the end of a track
I merges with a midpoint of track J .

(c) For optimal links belonging to the middle left section, the start of a track J
splits from a midpoint of track I.
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Appendix C

Datasets

1 2013 Grand Challenge Localization Microscopy

1.1 Noise Filtering

The segmentation of the images to deduce the mean noise in the image involved
segmenting a single image manually and taking its mean, after which the ADCG
routine was run over the entire data set and using the emitter localizations, the image
was reconstructed according to equation 2.2 with ν being 0. Thereafter, the super-
resolution images were subtracted from the experimental images, and the resulting
images were used to calculate the mean noise across the entire data set.

2 AF647 Stained DNA Sequences

For more information regarding the process in which the data was created, read
DOI:10.1021/acsnano.6b05398

2.1 Noise Filtering

For the noise parametrization, the YOYO-1 hyper stack was used to deduce the location
of the entire DNA molecule by use of a canny filter. Subsequently, the edges were filled
and set to zero in the AF647 stack. Finally, the mean noise was calculated for the
single frame.
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2.2 Temporal Localization Sketch

Figure C.1: An artistic representation of the temporal tracking method detailed by
Jaqaman et al. across four frames. Where the black dots represent the particle-to-
particle assignment from one frame to the next, the blue dots represent the start of a
new track, the purple dots represent the end of a track, and the red line represents the
center of mass of the image.

By using the temporal linking algorithm on the AF647 stained DNA dataset, tracks are
generated from the kymograph, as shown in figure C.2, which eliminates short tracks
and false localizations induced by noise.
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Figure C.2: A 50 frame sample of an AF647 stained DNA sequence that has had its
fluorophores assigned to tracks.
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