

Department of Automatic Control

Optimizing First-Order Method Parameters
via Differentiation

of the Performance Estimation Problem

Anton Åkerman

MSc Thesis
TFRT-6204
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Anton Åkerman. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2023

Abstract

This thesis treats the problem of finding optimal parameters for first-order opti-
mization methods. In part, we use the Performance Estimation Problem (PEP), a
framework for convergence analysis of first-order optimization methods. The fun-
damental idea of the PEP is to formulate the problem of finding the worst-case
convergence rate of a first-order optimization algorithm, as an optimization prob-
lem. We also use recent methods for differentiating convex optimization problems.
The goal is to explore the use of gradient-based methods for finding optimal pa-
rameters of first-order optimization methods, within the context of the Performance
Estimation Problem. By differentiating the PEP, we can find gradients which can be
used in an attempt to search for optimal method parameters.

We consider the state space representation of first-order methods, which include
many well-known first-order operator splitting methods. We propose a gradient-
based algorithm for optimizing first-order method parameters, based on the differ-
entiation algorithm from [Agrawal et al., 2020] and the PEP representations from
[Upadhyaya et al., 2023], and show decent results. This is a heuristic approach to a
non-convex optimization problem, but it works well for the Douglas–Rachford and
Davis–Yin operator splitting methods. The results seem to agree with the theoreti-
cally optimal parameters for the Douglas–Rachford method, and the obtained con-
vergence rates for the Davis–Yin method are better than the ones found in [Upad-
hyaya et al., 2023], using fixed parameters. The presented results, concern only
those two methods, but the proposed algorithm is general. Based on some limited
testing, this problem seems sensitive to numerical inaccuracy, and as a consequence,
our approach using more exact gradients seems to outperform the built-in solver
from SCIPY, which uses approximate gradients, terminating faster with compara-
ble (or better) accuracy.

3

Acknowledgements

This thesis would not be possible without my supervisor, Pontus Giselsson. I would
also like to thank all the people who brightened my days during my time writing
this.

5

Contents

1. Introduction 9
2. Prerequisites 12
3. State space formulation of first-order optimization algorithms 17

3.1 State space formulation . 17
3.2 Examples . 19
3.3 The fixed-point encoding property 21
3.4 Parameterization of first-order methods 22
3.5 General parameterization for lifting 1 24

4. The performance estimation problem 27
4.1 PEP outline . 27
4.2 State space formulation of the PEP 28
4.3 Initial formulation . 30
4.4 Convexity constraints . 31
4.5 The PEP formulation of a few algorithms 34

5. Differentiating a convex optimization problem 36
5.1 Conic programming . 36
5.2 Solution mapping for convex optimization problems 38
5.3 Self-dual embedding . 38
5.4 Differentiating the residual mapping 40
5.5 Normalized residual mapping 41
5.6 Full solution mapping . 42
5.7 Differentiating the conic projection 43
5.8 Projection onto the set of positive semidefinite matrices 44

6. Differentiation of the PEP and line search 46
6.1 Conic reformulation of the performance estimation problem . . . 46
6.2 Differentiating the PEP . 48
6.3 Differentiation of the Q matrix 49
6.4 Pseudocode for differentiating the PEP 51

7

Contents

7. Implementation and Results 53
7.1 Implementation of gradient-based optimization 53
7.2 Numerical results . 54

8. Conclusions 61
Bibliography 63

8

1
Introduction

First-order optimization methods are fundamental for large-scale optimization.
Compared to second-order methods, the computational cost scales well with the
problem size and they are relatively simple to implement. But for a method to be
practical, it is also critical to understand the convergence properties, both in order
to know for which problems it is suitable and for which set of method parameters
it performs well. The goal of this project is to investigate gradient-based methods
for optimizing first-order method parameters. For that purpose, we combine two re-
cent developments in the field of convex optimization: The worst-case convergence
for first-order methods is firstly formulated as a semidefinite program via the Per-
formance Estimation Problem (PEP). Secondly, we find accurate gradients, using
a method for differentiating optimization problems, proposed by [Agrawal et al.,
2020].

The Performance Estimation Problem
The origin of the Performance Estimation Problem is [Drori and Teboulle, 2013],
where the PEP framework for finding upper bounds on the worst-case convergence
rate for a first-order method, is presented. The idea is to formulate the worst-case
convergence as an optimization problem that can ultimately be reformulated into a
semidefinite program. Through a series of following papers, the PEP framework has
been developed further. An important contribution is an article on the interpolation
of convex functions, [Taylor et al., 2016]. They give clear conditions for when the
obtained convergence rate via the PEP is exact. Later, [Ryu et al., 2020] present a
PEP framework for finding optimal parameters of first-order methods and use this
to derive new tight contraction factors for the Douglas–Rachford operator splitting
method. The PEP formulation used in our thesis is based on the state space formula-
tion of first-order methods, a formulation that was first presented in [Lessard et al.,
2016] and then extended in [Upadhyaya et al., 2023], where a generalized approach
for finding linear and sublinear convergence rates for general quadratic Lyapunov
functions, is introduced. The power of the performance estimation problem lies in
the fact that it gives tight bounds on convergence rates, even in cases where the

9

Chapter 1. Introduction

best-known analytical bounds are far from exact, all at the cost of solving relatively
small semidefinite programs.

Differentiating convex optimization problems
The PEP approach will be combined with methods for differentiating conic pro-
grams. The basis is a generalization of the KKT conditions called the self-dual em-
bedding, which can serve both as an optimality guarantee for a proposed solution
and as proof of infeasibility. The use of differentiation to iteratively improve ap-
proximate solutions of the self-dual embedding was first proposed in [Busseti et al.,
2018], with the purpose of improving solvers for conic optimization. As a follow-
up, [Agrawal et al., 2020] showed that this could be extended to the differentiation
of conic optimization problems if combined with the implicit function theorem.

Goal
The Performance Estimation Problem defines some function, P(θ), describing the
worst-case convergence rate for some optimization method, which depends on the
method parameters, θ . This function is defined implicitly, via an optimization prob-
lem. We will make an attempt at finding the optimal parameters and convergence
rates

min
θ
P(θ). (1.1)

For this purpose, efficient solvers often rely on gradients. Therefore, we differenti-
ate the PEP, using an altered version of the algorithm developed in[Agrawal et al.,
2020], in order to find gradients of the function P(θ). This problem of selecting op-
timal parameters has been studied also in [Ryu et al., 2020], where a derivative-free
solver is used, and the problem is separated as

min
λ ,γ
P(λ ,γ) = min

γ

(
min

λ

P(λ ,γ)
)
. (1.2)

This works well for methods with two parameters, but the time complexity is
exponential in the number of parameters. Hopefully, gradient-based methods can
give decent results also for higher dimensional problems, where this derivative-free
method would not work. In this thesis, some three-parameter methods are tested as
well, with good results, but problems with higher dimensions than so were not in-
cluded in the report, due to limited time. This is a heuristic approach to the problem
of optimizing method parameters, but the results seem decent, given sensible initial
parameter choices and simple first-order methods.

Outline
The structure of the report will be as follows: Firstly, in chapter 3, the state space
formulation of first-order methods will be summarized and the methods to be in-
vestigated are introduced. We will furthermore describe the conditions for the fixed

10

Chapter 1. Introduction

point encoding property, i.e the guarantee that fixed points of an algorithm corre-
spond to solutions for any given convex problem and vice versa. In the last section
of the chapter, we give a small result on the possible structure of first-order methods
with the fixed-point encoding property.

The formulation of the PEP we will use is described in chapter 4, where we
describe a simplified PEP outline and then move on to the formulation of the PEP
problem to be used in the report.

The differentiation of convex optimization problems is detailed in chapter 5,
where we will summarize the methods introduced by [Agrawal et al., 2020].

In chapter 6, the previous theory is combined. We show how to differentiate the
PEP problem specified in the previous chapter, for general state space representable
methods. This is followed by some details concerning the implementation.

Our focus in this report is twofold. Firstly we investigate the use of gradient-
based methods for finding parameters that minimize the convergence rate obtained
through the PEP. For this purpose, the methods from [Agrawal et al., 2020] are used,
with some adaptations necessary for this specific problem.

Secondly, we use this to find seemingly optimal parameters for the Douglas–
Rachford and Davis–Yin methods, both in cases where the optimal parameters are
known analytically and in some cases where they are not. The numerical results
are summarized in section 7. A natural comparison is the use of built-in opti-
mization methods, which often rely on a second-order, quasi-Newton method, like
BFGS, as mentioned in [Ryu et al., 2020], with gradients obtained through a fi-
nite difference approximation. The main first-order methods we investigate are the
Douglas-Rachford operator splitting method and the Davis-Yin three-operator split-
ting method. The method we propose seems computationally efficient and relatively
accurate, for the relatively simple examples which are tested.

11

2
Prerequisites

We start by introducing some important notation, definitions and theorems used in
later chapters. For further reading, we refer to [Boyd and Vandenberghe, 2011] and
[Parikh, 2014].

Throughout we will consider convex functions, f :H→R, from a Hilbert space
H to the set of extended real numbers, R=R∪{∞}. For all purposes in this thesis,
we will investigate functions f : Rn→ R.

DEFINITION 2.1
The domain of f :H→ R is defined as

dom f = {x | f (x)< ∞}. (2.1)

DEFINITION 2.2
The function f :H→ R is said to be convex if

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y) ∀x,y ∈H and λ ∈ [0,1], (2.2)

with the interpretation that the inequality always holds if the right-hand side is infi-
nite.

DEFINITION 2.3
A convex function, f :H→R, for which the domain is non-empty, is called proper,
and if the set

{(x,r) ∈H×R | f (x)≤ r} (2.3)

is closed for all r ∈ R, f is said to be closed convex.

12

Chapter 2. Prerequisites

DEFINITION 2.4
The subdifferential of a function, f :H→ R, at a point x ∈H is defined as

∂ f (x) = {s ∈H | f (y)≥ f (x)+ ⟨s,y− x⟩ ∀y ∈H}. (2.4)

If f is differentiable at x ∈H, then ∂ f (x) = {∇ f (x)}.

REMARK 2.5 For a proper, closed convex function f :H→ R, Fermat’s rule says
that x ∈ H minimizes f if and only if 0 ∈ ∂ f (x). This follows from the definition
since

0 ∈ ∂ f (x) ⇐⇒ f (y)≥ f (x)+0 ∀y ∈H. (2.5)

The concepts of strongly convex and smooth functions will be used extensively
throughout this thesis

DEFINITION 2.6
A convex function, f : dom f → R, is said to be σ -strongly convex if for some
σ > 0, the function f (x)− σ

2 ||x||
2 is convex.

DEFINITION 2.7
A function f : dom f → R is said to be β -smooth if it is differentiable and the
gradient is Lipschitz continuous with Lipschitz constant β , i.e

||∇ f (y)−∇ f (x)||2 ≤ β ||y− x||2 (2.6)

Throughout, we will denote the set of σ -strongly convex, β -smooth functionsFσ ,β ,
where we say that σ = 0 or β = ∞ for functions which are not strongly convex
nor smooth respectively. Oftentimes, the relevant quantity is the condition number,
κ = β

σ
, since the problem of finding x that minimizes f ∈ Fσ ,β is equivalent to

finding x which minimizes the normalized function: f
σ
∈ F1,κ .

DEFINITION 2.8
A set S⊂H is a cone if for each x ∈ S also λx ∈ S for all λ ≥ 0.

DEFINITION 2.9
The dual cone of a set K is denoted K∗ and is defined as

K∗ = {y ∈H | ⟨x,y⟩ ≥ 0, ∀x ∈ K}. (2.7)

A cone, K, which is equal to its dual cone, K∗ is called self-dual.

13

Chapter 2. Prerequisites

DEFINITION 2.10
We define the proximal operator as

proxγ f (x) = argmin
z

(
f (z)+

1
2γ
||z− x||22,

)
(2.8)

for each x ∈H and where γ > 0.

For a proper, closed convex function, the proximal operator is always well-defined
and unique. In that case it can alway be written in terms of the subdifferential

0 ∈ ∂

(
f (z)+

1
2γ
∥z− x∥2

)
⇐⇒ 0 ∈ ∂ f (z)+

1
γ
(z− x)

⇐⇒ x− z
γ
∈ ∂ f (z). (2.9)

Proximal operators, along with gradients, are building blocks of the first-order meth-
ods we will consider.

THEOREM 2.11—MOREAU’S IDENTITY

Let f :H→ R be a proper closed convex function and let the dual function of f ,
f ∗, be defined as

f ∗(s) = sup
x

sT x− f (x). (2.10)

Then the Moreau identity states that

prox f (z)+prox f ∗(z) = z (2.11)

This holds in particular if f is the indicator function of a closed convex set C ∈H

f :H→ R= ιC(x) =

{
0 if x ∈C
∞ otherwise

(2.12)

ι∗C(x) = ι−C∗ , where C∗ is the dual cone of C.

PROPOSITION 2.12
The proximal operator of an indicator function for a closed convex set, C ∈ H, is
equivalent to orthogonal projection onto C, proxιC

(z) = ΠC(z).

Proof. This follows from the definition of the proximal operator (2.8) since

proxγ(ιC)
(z) = argmin

x
ιC(x)+

1
2γ
∥z− x∥2 = argmin

x∈C

1
2γ
∥z− x∥2 = ΠC(z).

(2.13)
2

14

Chapter 2. Prerequisites

It follows as a consequence of the Moreau identity that

ΠC(z)+Π−C∗(z) = z ⇐⇒ Π−C∗(z) = z−ΠC(z), (2.14)

which will be used later. Moreover, it is worth noting that the orthogonal projection
onto a closed convex set is Lipschitz continuous with Lipschitz constant 1.

The set of square real-valued matrices forms a vector space with the inner prod-
uct

⟨A,B⟩= Tr(AT B), (2.15)

where Tr(·) denotes the trace of a matrix. This is equivalent to the sum of the
coordinate-wise multiplication

Tr(AT B) = ∑
i, j

Ai jBi j = vec(A)T vec(B). (2.16)

The notation vec(A) is used to represent reshaping the matrix A ∈ Rn×n into a col-
umn vector vec(A) ∈ Rn2

.

PROPOSITION 2.13
The set of symmetric positive semidefinite (PSD) matrices, that we denote by Sn, is
a cone.

Proof. A symmetric matrix is PSD if and only if all eigenvalues are non-negative.
If A has non-negative eigenvalues, so will λA, for each non-negative value of λ . 2

PROPOSITION 2.14
The cone of PSD matrices is self-dual. A proof of this statement can be read in
[Boyd and Vandenberghe, 2011].

DEFINITION 2.15
A real square matrix, A ∈ Rn×n is said to be skew-symmetric if AT =−A.

PROPOSITION 2.16
Let A ∈ Rn×n be skew symmetric. Then the quadratic expression uT Au is zero, for
any vector u ∈ Rn.

Proof. Since A is skew-symmetric and uT Au is a scalar, we find that

uT Au =
(
uT Au

)T
=−uT Au. (2.17)

2

This proves that uT Au is zero.

15

Chapter 2. Prerequisites

The Kroenecker product between A ∈ Rm×n and B ∈ Rp×q, denoted by ⊗, is
defined as

A⊗B =

a11B a12B . . . an1B
a21B a22B . . . an1B

...
...

. . .
...

am1B am2B . . . amnB

 ∈ Rmp×nq. (2.18)

The Hadamard product for A,B ∈ Rm×n, ◦, is defined as

A◦B =

a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

...
...

. . .
...

am1bm1 am2bm2 . . . amnbmn

 (2.19)

We use Ran(A) to denote the range of A ∈ Rm×n,

Ran(A) = {y ∈ Rm | y = Ax for some x ∈ Rn}, (2.20)

and Null(A) to denote the nullspace of A ∈ Rm×n,

Null(A) = {x ∈ Rn | Ax = 0}. (2.21)

Lastly, we state the following theorems, which are fundamental to the differen-
tiation described in chapter 5.

THEOREM 2.17—RADEMACHER
If f is a Lipschitz continuous function in Rn, then f is differentiable almost every-
where. This holds in particular for projections onto closed convex sets.

Borrowing the notations used [Dontchev and Rockafellar, 2009], where the follow-
ing version of the classical implicit function theorem is presented, we will let Dx f
denote the derivative operator for a function, f , with regard to x. In this case it
should be interpreted as a Jacobian.

THEOREM 2.18—DINI’S IMPLICIT FUNCTION THEOREM
Let f (p,x) : Rm×Rn → Rn be continuously differentiable in a neighborhood of
(p̄, x̄) ∈ Rm×Rn, for which f (p̄, x̄) = 0. If the Jacobian of f w.r.t. x, Dx

f (p̄, x̄), is
non-singular then the solution mapping S(p), defined as

S : p ∈ Rm 7→ {x ∈ Rn | f (p,x) = 0}, (2.22)

is single-valued and continuously differentiable in a neighborhood of p̄. The Jaco-
bian of S is

DS(p) =−Dx(f (p,S(p)))−1Dp(f (p,S(p))). (2.23)

16

3
State space formulation of
first-order optimization
algorithms

We will now consider a general representation of a fairly broad class of first-order
optimization methods, and will give a first introduction to the types of optimization
algorithms to be considered. Firstly, the state space representation of optimization
methods will be introduced. This will be followed by some examples of algorithms
on the state space form. Lastly, we will discuss an important property of optimiza-
tion algorithms, with some necessary conditions for an algorithm on the state space
form to be meaningful.

3.1 State space formulation

Consider the minimization problem

min
y∈Rp

m

∑
i=1

fi(y),

for fi :Rp→R and some p∈N. If we let xk ∈Rn×p denote some auxiliary sequence
of n elements in Rp, and let yk denote the sequence of iterates of the optimization
algorithm, then the state space formulation for a first-order optimization algorithm
is as follows:

xk+1 = Axk +Buk

yk =Cxk +Duk

uk ∈ ∂ f(yk), (3.1)

for A ∈Rn×n, B ∈Rn×m, C ∈Rm×n and D ∈Rm×m. The number of elements in x, n,
is often denoted as lifting. It should be noted that the formulation can be extended

17

Chapter 3. State space formulation of first-order optimization algorithms

to arbitrary Hilbert spaces, but in order to simplify the notation, we will restrict
ourselves to Rp. This allows us to deviate from the tensor product notation used in
[Upadhyaya et al., 2023]. Instead let yk,uk ∈ Rm×p and xk ∈ Rn×p. Each row in xk,
uk and yk represents an element x(i)k , u(i)k or y(i)k ∈ R1×p. Also, let f(y) ∈ Rm denote

the cartesian product of fi(y
(i)
k),

f(yk) =

f1(y

(1)
k))

f2(y
(2)
k))
...

fm(y
(m)
k)

 . (3.2)

The inclusion in (3.1) should be interpreted elementwise as

uk ∈ ∂ f(yk) ⇐⇒

u(1)k ∈ ∂ f1(y

(1)
k)

u(2)k ∈ ∂ f2(y
(2)
k)

...
u(m)

k ∈ ∂ fm(y
(m)
k)

 . (3.3)

The algorithm contains two steps: In each iteration, the following equation has to
be solved.

yk =Cxk +D∂ f (yk). (3.4)

The xk sequence can then be updated:

xk+1 = Axk +Buk. (3.5)

For this to be solvable, we require the D matrix to be lower triangular. The values
u(i)k and y(i)k can then be calculated iteratively, for increasing values of i:

y(i)k −Diiu
(i)
k =

n

∑
j=1

Ci jx
(j)
k +

i−1

∑
j=1

Di ju
(j)
k . (3.6)

For Dii = 0, we calculate y(i)k directly and from that then compute u(i)k = ∇ f (y(i)k).
Assuming Dii < 0, note that the expression (3.6) defines a proximal step according
to the optimality condition (??). Since the right-hand side only contains known
quantities,

y(i)k = prox− fiDii

(
n

∑
j=1

Ci jx
(j)
k +

i−1

∑
j=1

Di ju
(j)
k

)
. (3.7)

Each u(i)k component is uniquely determined from the expression above. If D was
not triangular, this interpretation would not work, since the sum over Di j would

18

3.2 Examples

contain multiple unknown quantities. The overarching algorithm is built on iterates
yk, where y(i)k is either where the gradient of fi is evaluated or it is obtained through
a proximal evaluation of fi.

DEFINITION 3.1
We say that x⋆, u⋆ and y⋆ form a fixed-point to the algorithm if

x⋆ = Ax⋆+Bu⋆
y⋆ =Cx⋆+Du⋆
u⋆ ∈ ∂ f(y⋆)

3.2 Examples

In the section that follows, some examples of first-order methods are given and writ-
ten on state space form. To start, we show the gradient method and then move on
to some more interesting examples; the Douglas–Rachford and Davis–Yin operator
splitting methods. The term operator splitting method is used to emphasize the fact
that they separate the problem of minimizing a sum of functions into proximal eval-
uations, or gradients, of the individual functions, fi. These methods are flexible, and
due to the use of the proximal operator, they can be used also for non-differentiable
functions.

A motivating example, where these kinds of operator-splitting methods are use-
ful is the following problem:

min
x

f (x)

subject to x ∈C

for a proper, closed convex function f ∈ Rp → R and a closed convex set C. It is
troublesome to use the simple gradient method for this constrained optimization
problem, but through a minor reformulation, this problem can be handled well by
e.g. the Douglas–Rachford method. The problem can be reformulated as follows:

min
x

f (x)+ ιC(x),

using the indicator function, ι , defined in (2.12). This is an unconstrained optimiza-
tion problem albeit with a non-differentiable objective function. This problem can
be solved by many operator-splitting methods, as long as the ιC function is handled
via the proximal operator.

The gradient method
For the gradient method,

yk+1 = yk− γ∇ f (yk), (3.8)

19

Chapter 3. State space formulation of first-order optimization algorithms

the state space formulation becomes

xk+1 = xk +(−γ)uk

yk = xk +0 ·uk

uk = ∇ f (yk).

The Douglas–Rachford operator splitting method

y(1)k = proxγ f1(xk)

y(2)k = proxγ f2

(
2y(1)k − xk

)
xk+1 = xk +λ (y(2)k − y(1)k),

where γ > 0 and λ ∈R+ is a so-called relaxation parameter. Note that the optimality
condition (2.9) for the proximal operator can be used to express the following:

y(1)k − xk =−γu(1)k for some u(1)k ∈ ∂ f1(y
(1)
k)

=⇒ y(1)k = xk− γu(1)k

(3.9)

and
y(2)k + xk−2y(1)k =−γu(2)k for some u(2)k ∈ ∂ f2(y

(2)
k)

=⇒ y(2)k =−xk +2y(1)k − γu(2)k

= xk−2γu(1)k − γu(2)k

(3.10)

Using these expressions for y(1)k and y(2)k , we obtain the state space formulation

xk+1 = xk−λ
(
γ γ

)
uk (DR)

yk =

(
1
1

)
xk +

(
−γ 0
−2γ −γ

)
uk.

The Davis–Yin three operator splitting method
Another algorithm to consider is the Davis-Yin three-operator splitting method:

xk = proxγ f1(zk)

zk+ 1
2
= 2xk− zk− γ∇ f2(xk)

zk+1 = zk +λ (proxγ f3(zk+ 1
2
− xk).

with the state space representation

xk+1 = xk−λ
(
γ γ γ

)
uk (DY)

yk =

1
1
1

xk +

 −γ 0 0
−γ 0 0
−2γ −γ −γ

uk.

20

3.3 The fixed-point encoding property

For a more detailed derivation of the state space formulation, we refer to [Upad-
hyaya et al., 2023]. Note that u(2)k is a simple gradient evaluation. In order to assure
differentiability we will therefore assume that f2 ∈ Fσ ,β for β < ∞ in all investi-
gated examples.

3.3 The fixed-point encoding property

An important requirement for a proposed algorithm is that solutions to the optimiza-
tion problem have corresponding fixed points for the algorithm (see definition 3.1)
and that it is possible from every fixed point of the algorithm, to extract a solution
to the optimization problem. This section will give a more detailed description of
the fixed-point encoding property and some necessary conditions.

DEFINITION 3.2
An algorithm on the state space form, (3.1), is said to fulfill the fixed-point encoding
property if for every solution to the optimization problem, y⋆ ∈ Rm×p, for which
∑

m
i=1 ∂ fi(y⋆) = 0, there exists x⋆ ∈ Rn×p and u⋆ ∈ Rm×p for which x⋆, u⋆ and y⋆

form a fixed point, and where additionally, for all fixed-points of the algorithm it is
guaranteed that

m

∑
i=1

u(i)⋆ = 0 (3.11)

and
y⋆ = (y⋆,y⋆, . . . ,y⋆)T , (3.12)

for y⋆ ∈ Rp.

The last two conditions ensure the following for a fixed point:

0 =
m

∑
i=1

u(i)⋆ ∈
m

∑
i=1

∂ f (y(i)⋆) =
m

∑
i=1

∂ f (y⋆) ⇐⇒ y⋆ solves the optimization problem.

(3.13)
Those two conditions can succinctly be written

NT y⋆ = 0

u⋆ = Nû⋆ ⇐⇒ u(m)
⋆ =−

m−1

∑
i=1

u(i)⋆ (3.14)

with

N =

(
I
−1T

)
∈ Rm×(m−1) (3.15)

21

Chapter 3. State space formulation of first-order optimization algorithms

for some

û⋆ =

u(1)⋆

u(2)⋆
...

u(m−1)
⋆

 ∈ R(m−1)×p. (3.16)

THEOREM 3.3
An algorithm on state space form (3.1) has the fixed point encoding property if and
only if

Ran
(

BN 0
DN 1

)
⊆ Ran

(
I−A
−C

)
(3.17)

Null
(
I−A −B

)
⊆ Null

(
NTC NT D

0 1
T

)
. (3.18)

A more detailed account is given in [Upadhyaya et al., 2023], where the theorem is
proven.

3.4 Parameterization of first-order methods

We will here make use the fixed point-encoding requirements from (3.17) and (3.18)
to find a parameterization of first-order methods with the fixed point encoding prop-
erty. We will also give a new proof for a known result on the possible dimensions
of the xk sequence in relation to the dimension of the yk sequence. We use the fact
that for matrices E ∈ Rp×q and F ∈ Rp×r

Ran(E)⊆ Ran(F) ⇐⇒ E = FU, (3.19)

for some U ∈ Rr×q. We also use the property

Null(E)⊥ = Ran(ET). (3.20)

Now, we write

Null(E)⊆ Null(F) ⇐⇒ Ran(ET)⊥ ⊆ Ran(FT)⊥ ⇐⇒ Ran(FT)⊆ Ran(ET).
(3.21)

As a consequence, the requirements for the fixed point encoding property (3.17) and
(3.18) become (

BN 0
DN 1

)
=

(
I−A
−C

)
U (3.22)

22

3.4 Parameterization of first-order methods

and (
CT N 0
DT N 1

)
=

(
I−AT

−BT

)
V

⇐⇒
(

NTC NT D
0 1

T

)
=V T (I−A −B

)
(3.23)

respectively. We will partition U ∈ Rn×m and V ∈ Rn×m as

U =
(
Ũ Um

)
V =

(
Ṽ Vm

)
,

where Um,Vm ∈ Rn×1 and Ũ ,Ṽ ∈ Rn×(m−1).

The state-space formulation of the algorithm is not unique. In the following
proposition we will show that a change of variables preserves the yk and the uk
sequences as well as the fixed-point encoding property.

PROPOSITION 3.4
Let S ∈ Rn×n be invertible. Given an algorithm of the form (3.1), defined by the
matrices A, B, C and D, the change of variable, defined by x̂k = S−1xk, along with
the following altering of the system matrices:

Â = S−1AS
B̂ = S−1B
Ĉ =CS
D̂ = D

(3.24)

will preserve the yk-sequence and the original algorithm has the fixed point encoding
property if and only if the altered algorithm does.

Proof. First, we show that the new x̂k-sequence is consistent through induction. We
can define x̂0 = S−1x0. Assume now that x̂k = S−1xk. Then it follows that

x̂k+1 = Âx̂k + B̂uk = S−1ASS−1xk +S−1Buk = S−1(Axk +Buk) = S−1xk+1.

As a consequence:

yk =Cxk +Duk =CSS−1xk +Duk = Ĉx̂k +Duk.

It remains to show that the fixed-point encoding property for the altered system
iff it holds for the original one:(

B̂N 0
DN 1

)
=

(
I− Â
−Ĉ

)
Û ⇐⇒

(
S−1BN 0

DN 1

)
=

(
S−1S−S−1AS
−CS

)
Û ⇐⇒(

BN 0
DN 1

)
=

(
I−A
−C

)
SÛm.

23

Chapter 3. State space formulation of first-order optimization algorithms

By choosing the matrix, Ûm = S−1Um, we see that the new algorithm fulfills the
fixed-point encoding property if and only if the original algorithm does. The second
fixed point condition follows similarly. 2

3.5 General parameterization for lifting 1

We investigate the case of lifting 1 (n = 1). We claim the following general repre-
sentation and prove it incrementally.

THEOREM 3.5
All state space representable optimization algorithms with the fixed-point encoding
property and lifting 1 have the structure

xk+1 = xk +
(
−β −β . . . −β

)
uk

yk =

1
1
...
1
1

xk +

−γ1 0 0 . . . 0
−γ1 0 0 . . . 0

...
...

. . .
...

...
−γ1 0 0 . . . 0
−γ1− γ2 −γ2 −γ2 . . . −γ2

uk.

PROPOSITION 3.6
For a lifting 1 method, which fulfills the fixed point encoding property, A = 1 and B
is a vector of constant value , B = β1T for β ∈ R.

Proof. From the last column in (3.18) we conclude that V T
m (I−A) = 0 and−VmB =

1
T . Since A and Vm are scalars, this can only hold if A = 1 and B is the constant row

vector −1
Vm
1

T ≡ β1T . 2

PROPOSITION 3.7
The C matrix is a constant column matrix and by scaling x we can find an equivalent
algorithm, with C = 1.

Proof. From the last column in (3.17), it is required that−CUm = 1, which requires
C =−1/Um, for the same reason as above. We can now use the change of variables,
x̂k =−Umxk. According to proposition 3.4, we obtain the new representation of the
algorithm:

Ĉ =−CUM =−Um1/Um = 1. (3.25)
2

24

3.5 General parameterization for lifting 1

Lastly, we have the requirements DN = −CŨ and DT N = −BT Ṽ . Using the
requirement that D is lower-triangular, we write out the products explicitly

DN =

d11 0 . . . 0
d21 d22 . . . 0

...
...

. . .
...

dn1−dnn dn2−dnn . . . dn(n−1)−dnn

CŨ =

U1 U2 . . . Um−1
U1 U2 . . . Um−1
...

... . . .
...

This implies that DN must be constant along the columns, but since DN is lower-
triangular, this is only possible if the first column in DN is constant and all other
columns are zero. Denoting that constant−γ1 and letting dnn be called−γ2 we arrive
at following theorem,

REMARK 3.8 If γ1 = γ2, this is equivalent to the Douglas-Rachford method for
m = 2 and Davis-Yin for m = 3, as seen if compared to (DR) and (DY). If instead
m = 2 and γ1 ̸= γ2 this can be shown to be the so-called adaptive Douglas-Rachford
method [Dao and Phan, 2019].

COROLLARY 3.9
Any algorithm with dimension m > 3 (and n = 1), can be reduced to an equivalent
algorithm with m = 3.

Proof. Since y(1) = y(2) · · ·= y(m−1), the algorithm can now be written as

xk+1 = xk−β

m

∑
i=1

u(i)k

= xk−β

(
u(1)k +u(m)

k +∇

m−1

∑
i=2

fi(y
(1)
k)

)
y(1)k = y(2)k = · · ·= y(m−1)

k = proxγ1 f1(xk)

y(m)
k = proxγ2 fm

(
xk− (γ1 + γ2)u

(1)
k − γ2

m−1

∑
i=2

∇ fi(y
(1)
k)

)

= proxγ2 fm

(
xk− (γ1 + γ2)u

(1)
k − γ2∇

m−1

∑
i=2

fi(y
(1)
k)

)
.

This can be written equivalently using only three functions; f1, ∑
m−1
i=2 fi and fm, with

the same x, y(1)k and y(m)
k sequences.

25

Chapter 3. State space formulation of first-order optimization algorithms

Since the gradient is linear, there is no difference in calculating ∇∑
m−1
i=2 fi(y(1))

or ∑
m−1
i=2 ∇ fi(y(1)) 2

26

4
The performance estimation
problem

We will now turn to the performance estimation problem (PEP), the formulation
of the worst-case convergence rate of first-order optimization algorithms as a con-
vex optimization problem. Through a series of reformulations, this seemingly very
complicated problem can be reduced into a relatively small semidefinite program.
In many cases, the result is as exact as the numerical solver. We will start with a
general outline of a PEP formulation and will then give a more detailed derivation.
We use a simplified version of the problem description in [Upadhyaya et al., 2023].

4.1 PEP outline

For all examples in this report, we will consider the convergence of some sequence,
x, to the fixed point corresponding to the optimum, x⋆. We can first present an outline
of a PEP formulation, inspired by [Drori and Teboulle, 2013], where one iteration
of the algorithm is considered:

max
f ,x0,x1,x⋆,g0

∥x1− x⋆∥2
2

subject to
f ∈ Fσ ,β

∥x0− x⋆∥2
2 = R2

x1 = B(f ,x0,g0)

g0 ∈ ∂ f (x0)

0 ∈ ∂ f (x⋆). (4.1)

B describes a step with the specified first-order optimization algorithm and f be-
longs to the set of β -smooth σ -strongly convex functions, Fσ ,β . If we let ρ2 denote

27

Chapter 4. The performance estimation problem

the optimal value derived from this problem, then the optimization problem implies

∥x1− x⋆∥2
2 ≤

ρ2

R2 ∥x0− x⋆∥2
2. (4.2)

In many cases, the objective value, ρ2 scales linearly with R2. For that purpose one
can let R2 = 1 and obtain the general worst-case convergence rate

∥x1− x⋆∥2
2 ≤ ρ

2∥x0− x⋆∥2
2. (4.3)

It should be noted that it is possible to also consider multiple iterations of the al-
gorithm or use other metrics than the distance to the minimum. An important ex-
ample of an alternative performance metric, is the function value suboptimality,
f (x1)− f (x⋆).

Convex interpolation
This formulation serves as an initial formulation, however the set of convex func-
tions is infinite-dimensional and this problem is generally non-convex. Some re-
formulations are needed in order to arrive at a well-behaved optimization problem.
The first step is to remove the infinite-dimensional constraints on f . [Drori and
Teboulle, 2013] relaxed the problem, replacing the constraints on the function f ,
with constraints on function values and subgradients only in the points x0, . . . ,xN ,x⋆.
In [Taylor et al., 2016], it is shown that this can be done equivalently, as long as the
constraints are formulated in a certain way. For the intended purpose of rewriting
the PEP into a small optimization problem, this does exactly what is needed.

THEOREM 4.1—TAYLOR
There exists a β -smooth, σ -strongly convex function, f , with function values

f (xi) = fi and subgradients gi ∈ ∂ f (xi) if and only if there are triplets (xi, fi,gi)
for i ∈ I which fulfill the inequalities

fi ≥ f j +gT
j (fi− f j)+

1
2(1− σ

β
)

(
1
β
||gi−g j||22 +σ ||xi− x j||22−2

σ

β
(g j−gi)

T (x j− xi)

)
(4.4)

for all j ∈ I. This theorem shows that the infinite-dimensional convexity constraint
can be relaxed into equivalent, finite-dimensional constraints.

4.2 State space formulation of the PEP

The following PEP formulation will be based on the formulation used in [Upad-
hyaya et al., 2023]. We will follow their outline, with some slight modifications and
simplifications. We can construct this formulation from the base formulation of the

28

4.2 State space formulation of the PEP

performance estimation problem, however since we consider one iteration of an op-
timization algorithm on state space form, we have to optimize over points xi, yi, fi
and ui for i∈ {0,1,⋆}, with the additional constraints that they fulfill the state-space
equations. We will only consider the quadratic objective function

n

∑
l=1
∥x(l)i − x(l)⋆ ∥2

2 = Tr((xi− x⋆)T (xi− x⋆)), (4.5)

but since n = 1 for all cases in this report we only need consider ∥xi− x⋆∥2
2 and

search for the linear convergence rate ρ for which

∥x1− x⋆∥2
2 ≤ ρ

2∥x0− x⋆∥2
2. (4.6)

Note that more general cases can be considered. The general quadratic objective
functions from [Upadhyaya et al., 2023], can be incorporated by instead finding a
linear convergence rate for

Tr(ζ TCζ)+qT (f (yi)− f (y⋆)), (4.7)

for a positive semidefinite matrix C and ζ =

xk− x⋆

u0
u1
û⋆

 . This combines function

value suboptimality, scaled distances to the fixed points and subdifferentials. It is
possible to prove that the objective value at the optimum scales linearly with ∥x0−
x⋆∥= R2. It holds as a consequence that

ρ
2 = max

∥x1− x⋆∥2
2

∥x0− x⋆∥2
2
= max
∥x0−x⋆∥22=1

∥x1− x⋆∥2
2 (4.8)

and we will optimize ∥x1− x⋆∥2
2 under the constraint that ∥x0− x⋆∥2

2 = 1.

29

Chapter 4. The performance estimation problem

4.3 Initial formulation

We start with the following, needlessly verbose problem

sup
x0,x1,x⋆, f ,u0,u1,u⋆

∥x1− x⋆∥2
2

subject to ∥x0− x⋆∥2
2 = 1

y0 =Cx0 +Du0

x1 = Ax0 +Bu0

y1 =Cx1 +Du1

x⋆ = Ax⋆+Bu⋆
y⋆ =Cx⋆+Du⋆
uk = ∂ f(yk)

fi ∈ Fσi,βi . (4.9)

Similarly to the previous base formulation, this is not a convex optimization prob-
lem, and it is more complex than need be. It will therefore be reformulated, step
by step. Many of the variables to be optimized over, can be rewritten in terms of
x0,x⋆,u0,u1 and u⋆. We will also replace the convexity constraint through theorem
4.1.

For a fixed point, we require that the sum of u(i)⋆ to be zero. Just like in the
previous chapter, this means the last u⋆ component is uniquely determined by the
rest and we can instead optimize over û⋆ ∈ R(m−1)×p, letting

u⋆ = Nû⋆ =
(

û⋆
−1T û⋆

)
, (4.10)

for N defined in (3.15). Let us introduce

ζ =

x0− x⋆

u0
u1
û⋆

 ∈ R(n+3m−1)×p (4.11)

and note that most expressions in the problem (4.9) can be expressed only through
the elements in ζ . We firstly express x1− x⋆ and x0− x⋆ in terms of ζ ,

x0− x⋆ =
(
I 0 0 0

)
ζ ≡ Σ0ζ . (4.12)

Secondly,

x1− x⋆ = Ax0 +Bu0− (Ax⋆+BNû⋆) = A(x0− x⋆)+Bu0−BNû⋆ (4.13)

30

4.4 Convexity constraints

and consequently (
x1− x⋆

)
=
(
A B 0 −BN

)
ζ ≡ Σ1ζ (4.14)

No more expressions depend on x1 and we obtain the following intermediary opti-
mization problem

sup
x0,x1,x⋆, f ,u0,u1,u⋆

Tr
(
ζ

T
Σ

T
1 Σ1ζ

)
subject to Tr

(
ζ

T
Σ

T
0 Σ0ζ

)
= 1

y0 =Cx0 +Du0

y1 =C(Ax0 +Bu0)+Du1

x⋆ = Ax⋆+Bu⋆
y⋆ =Cx⋆+Du⋆
uk = ∂ f(yk)

fi ∈ Fσi,βi (4.15)

since
∑

i=1n
∥x(i)1 − x(i)⋆ ∥2

2 = Tr
(
(Σ1ζ)T (Σ1ζ)

)
= Tr

(
ζ

T
Σ

T
1 Σ1ζ

)
. (4.16)

4.4 Convexity constraints

As an extension of theorem 4.1 from [Taylor et al., 2016], a suitable reformulation
is made in [Upadhyaya et al., 2023]. Let the column vector el ∈ Rm denote the
the l:th canonical basis vector in Rm and let the matrix Ml be defined through the
Kroenecker product

Ml =

1
2(βl−σl)

βlσl −σl βl

−σl 1 −1
βl −1 1

⊗diag(el) if βl < ∞

1
2

σl 0 1
0 0 0
1 0 0

⊗diag(el) otherwise.

(4.17)

Let also ξ denote the matrix

ξi j =

yi− y j
ui
u j

 for i ̸= j ∈ {0,1,⋆} (4.18)

31

Chapter 4. The performance estimation problem

The convexity constraints from [Upadhyaya et al., 2023], can be written

−eT
l (fi− f j)+Tr

(
ξ

T
i j Mlξi j

)
≤ 0 (4.19)

for all i ̸= j ∈ {0,1,⋆} and l ∈ [0,1, . . . ,m].
The next method of simplifying the expression is to describe all instances of, y0

and y1 in terms of x0, u0 and u1. The inequalities representing the convexity con-
straints now become more complex, but we can drop almost all equality constraints.
We arrive at an optimization over u0,u1, û⋆,x0−x⋆. All other variables are uniquely
determined from these. We find expressions on the form

−eT
l (Fi−Fj)+Tr(ξ T

i j Mlξi j), (4.20)

where the yi− y j terms can be written in terms of x0− x⋆ since

y1− y0 =Cx1 +Du1−Cx0−Du0 =C(Ax0 +Bu0)+Du1−Cx⋆+Cx⋆−Cx0−Du0

=CAx0 +CBu0 +Du1−C(Ax⋆+Bu⋆)−C(x0− x⋆)−Du0

=C(A− I)(x0− x⋆)+CBu0 +D(u1−u0)

=
(
C(A− I) CB−D D 0

)
ζ

(4.21)

Similarly, expressions can be derived for y0− y⋆ and y1− y⋆:

y0− y⋆ =Cx0 +Du0−Cx⋆−Du⋆ =
(
C D 0 −DN

)
ζ

y1− y⋆ =Cx1 +Du1−Cx⋆−Du⋆ =C(Ax0 +Bu0)+Du1−C(Ax⋆+Bu⋆)−Du⋆
=
(
CA CB D −CBN−DN

)
ζ

(4.22)

and now, since there is no dependence left on y⋆, y1 or x1, all equality constraints
for these can be dropped. We use these expressions to rewrite the vectory1− y0

u1
u0

=

C(A− I) CB−D D 0
0 0 I 0
0 I 0 0

ζ ≡ E10ζ

y0− y⋆
u1
û⋆

=

C D 0 −DN
0 I 0 0
0 0 0 N

ζ ≡ E0⋆ζ

y1− y⋆
u1
û⋆

=

CA CB D −CBN−DN
0 0 I 0
0 0 0 N

ζ ≡ E1⋆ζ

(4.23)

with the first block-row of E ji having opposite sign from the corresponding rows
in Ei j and the remaining rows staying the same. We can now write the quadratic
expressions in terms of ζ

Tr(ξ T
i j Mlξi j) = Tr(ζ T ET

i jMlEi jζ) (4.24)

32

4.4 Convexity constraints

and now arrive at the simplified problem

max
ζ , f0, f1, f⋆

Tr(ζ T
Σ

T
1 Σ1ζ)

Tr(ζ T
Σ

T
0 Σ0ζ)

−eT
l (fi− f j)+Tr(ζ T

l ET
i jMlEi jζl),≤ 0 ∀i, j, l

x⋆ = Ax⋆+Bu⋆. (4.25)

However, from the first fixed-point encoding assumption in (3.17), we know that
always there must exist a point x⋆ = Ax⋆+Bu⋆ = Ax⋆+BNû⋆ since

Ran(BN)⊆Ran(I−A) ⇐⇒ ∃U : BN =(I−A)U =⇒ BNû⋆=(I−A)Uû⋆≡ (I−A)x⋆.
(4.26)

Since there is no other direct dependence on x⋆, this expression can now be dropped.

Gramian formulation
Lastly, we rewrite the quadratic expressions using the Gramian, which can be de-
fined as G = ζ ζ T . This is done as a final step, to arrive at a semidefinite program.
Recall that

ζ =

x0− x⋆

u0
u1
û⋆

 . (4.27)

Since we can write the quadratic expression xT Gx as (ζ T x)T ζ T x≥ 0 we know this
matrix is symmetric and positive semidefinite. If we now let ζi denote the i:th row
in ζ , note that the quadratic functions can be rewritten

Tr(ζ TCζ) = Tr(Cζ ζ
T) = Tr(CG(ζ)) = ⟨C,G⟩, (4.28)

where the first equality follows from the identitity Tr(AB) =Tr(BA). Lastly, we note
that all function values arise as a difference. f (y1)− f (y⋆)≡ ∆ f1, f (y0)− f (y⋆)≡
∆ f0 and ∆ f⋆ ≡ 0 and all terms involving f can be replaced with theses expressions.
We finally arrive at a Semidefinite optimization problem over the Gramian matrix,

sup
G,∆ f0,∆ f1

⟨ΣT
1 Σ1,G⟩ (PEP)

s.t ⟨ΣT
0 Σ0,G⟩= 1

− eT
l (∆ fi−∆ f j)+ ⟨ET

i jMlEi j,G⟩ ≤ 0 ∀i ̸= j ∈ {0,1,⋆} and ∀l ∈ [0,1, . . . ,m]

G⪰ 0,

33

Chapter 4. The performance estimation problem

but the question arises; is this problem equivalent to the original one? From a
given vector ζ , we can always obtain a Gramian but can we always construct a
vector ζ from a given positive semidefinite matrix G? As mentioned in [Taylor
et al., 2016] and [Upadhyaya et al., 2023], this is dimension dependent. Since G
is positive semidefinite we can obtain an admissible P matrix from the Cholesky
decomposition of G. However, if we also have some constraint on the dimension,
p, for f : Rp 7−→ R, then the PEP-problem is inexact for p < n+3m−1. As a way
to view this, consider what happens if the Gramian, G has rank more than p. Then
we cannot obtain a factorization ζ ζ T where ζ is a n+3m−1× p matrix, since the
product ζ ζ T can have rank at most p. This is not a problem for p ≥ n+ 3m− 1,
but when this problem occurs, the problem (PEP) gives an upper bound on the
worst-case convergence rate.

4.5 The PEP formulation of a few algorithms

We will give a few examples, in order to give a little more intutition for the gramian
PEP formulation, using the same algorithms as in section 3.

Gradient Method
From before, we have Σ1 =

(
A B 0 −BN

)
Σ0 =

(
I 0 0 0.

)
For the gradient method, the resulting Σ1 matrix is

Σ1 =
(
A B 0

)
=
(
1 −γ 0

)
, (4.29)

since N ∈ R1×0 disappears due to the dimensions. The products of the Σ matrices
are

ΣT
1 Σ1 =

 1 −γ 0
−γ γ2 0
0 0 0

ΣT

0 Σ0 =

1 0 0
0 0 0
0 0 0

and assuming the function f ∈ Rp is allowed dimension p at least n+3m−1 = 3,
the gramian matrix can be interpreted as

G =

 ∥x0− x⋆∥2 (x0− x⋆)T u0 (x0− x⋆)T u1
uT

0 (x0− x⋆) ∥u0∥2
2 uT

0 u1
uT

1 (x0− x⋆) uT
1 u0 ∥u1∥2

2

 (4.30)

34

4.5 The PEP formulation of a few algorithms

We can use these matrices to show that the trace formulation gives us expressions
in correspondence to the original formulation

Tr(ΣT
0 Σ0) = 1 ⇐⇒ Tr

1 0 0
0 0 0
0 0 0

G

= 1

⇐⇒ ∥x0− x⋆∥2 = 1. (4.31)

Note that the objective function depends on the chosen algorithm and from the
following calculations, we show how the gramian formulation corresponds to the
original formulation:

Tr

 1 −γ 0
−γ γ2 0
0 0 0

G

= ∥x0− x⋆∥2
2−2γ(x0− x⋆)T u0 + γ

2∥u0∥2
2

= ∥(x0− γu0)− x⋆∥2
2 = ∥x1− x⋆∥2

2. (4.32)

The Douglas–Rachford method
For the Douglas-Rachford method, a similar expression can be obtained, however
since m = 2, the dimensions are largerΣ1 =

(
A B 0 −BN

)
=
(

1 −λγ −λγ 0 0 0
)

Σ0 =
(

1 0 0 0 0 0
)
.

(4.33)

35

5
Differentiating a convex
optimization problem

The following chapter will describe the theory of differentiation of conic optimiza-
tion problems as presented in [Agrawal et al., 2020] and [Busseti et al., 2018]. The
more general optimization results can be read in [Boyd and Vandenberghe, 2011].
We will start by showing some fundamental principles of conic optimization, follow
up by introducing some necessary concepts for the differentiation and lastly com-
bine all results in order to show how the full differentiation can be performed. The
convex optimization problem we ultimately want to differentiate is the PEP as de-
scribed in section 4. This chapter will be followed by a chapter on the PEP-specific
aspects of differentiation.

5.1 Conic programming

Throughout, we will consider convex optimization problems of the form

min
x∈Rn,s∈Rm

cT x

subject to s = b−Ax (P)
s ∈ K,

where K ⊆ Rm denotes a convex cone, A ∈ Rm×n, b ∈ Rm and c ∈ Rn.This class of
problems is called conic optimization problems, or conic programming problems.
The dual to the conic optimization problem (P) is of the form

min
y∈Rm

bT y

subject to AT y+ c = 0 (D)
y ∈ K∗.

A detailed derivation can be read in [Boyd and Vandenberghe, 2011].

36

5.1 Conic programming

PROPOSITION 5.1
For points x ∈ Rn and y ∈ Rm that are feasible for the primal (P) and dual problems
(D) respectively, the following holds for the objective functions of the primal and
dual problems

cT x+bT y≥ 0. (5.1)

Proof. This follows from the definition of the dual cone. We know that c = −AT y
and that b = s+Ax, which implies that

cT x+bT y =−yTAx+ sT y+ xTAT y = sT y≥ 0, (5.2)

since s ∈ K and y ∈ K∗. 2

For the optimal points for the primal and dual problems, respectively, this sum is
often called the duality gap. For the purposes of this report, we will be interested in
the dual problem and we state the following important result. Under relatively mild
assumptions, this duality gap can be assumed to be zero (see for example Slater’s
condition in [Boyd and Vandenberghe, 2011]).

PROPOSITION 5.2
Let x ∈ Rn, s ∈ Rm and y ∈ Rm be feasible, i.e.

s = b−Ax ∈ K
y ∈ K∗

AT y+ c = 0,
(5.3)

and let also sT y = 0. Then (x,s) solves the primal problem (P) and y solves the dual
problem (D).

Proof. From 5.2 and the assumption that sT y = 0, we conclude that

0 = sT y = bT y+ cT x. (5.4)

Assume furthermore that (x,s) is not optimal, i.e that there exists an admissible
point (x̂, ŝ) ∈ Rn×K for which ŝ = b−Ax̂ and where cT x̂ < cT x. Then

bT y+ cT x̂ < bT y+ cT x = 0, (5.5)

which is impossible, according to (5.2).
Similarly, if we assume there exists an admissible point ŷ∈K∗ for whichAT ŷ+

c = 0 and bT ŷ < bT y, we again arrive at a contradiction because

cT x+bT ŷ < cT x+bT y = 0. (5.6)
2

37

Chapter 5. Differentiating a convex optimization problem

5.2 Solution mapping for convex optimization problems

In order to differentiate a conic optimization problem we need to define a mapping
from the problem parameters, A∈Rm×n, b ∈Rm and c ∈Rn to the primal and dual
solutions of interest, x ∈ Rn, s ∈ Rm and y ∈ Rm. The backbone of this mapping is
the homogeneous self-dual embedding as described in [Busseti et al., 2018]. It acts
as a certificate of either optimality (or infeasibility) and therefore pairs well with the
implicit function theorem. For the full solution mapping, we consider the following
formulation:

(x,y,s) = S(A,b,c) = φ ◦S◦Q(A,b,c) (5.7)

The function

Q(A,b,c) : Rm×n×Rm×Rn→ R(n+m+1)×(n+m+1) (5.8)

simply constructs a matrix, Q, containing all problem parameters, A, b and c. Sec-
ondly, the function

S(Q) : R(n+m+1)×(n+m+1)→ Rn+m+1 (5.9)

can be defined from the implicit function theorem in combination with the self-dual
embedding, it and maps the matrix Q to a solution, z, of the self-dual embedding.
We will never find a closed-form expression for the function S(Q), however the
implicit function theorem can be used to prove that the function exists and gives us
an expression for the derivative of S(Q). The function

φ(z) : Rn+m+1→ Rn×Rm×Rm (5.10)

lastly maps z to a solution (x,y,s).

5.3 Self-dual embedding

In the section that follows, we will describe the self-dual embedding and show how
to construct the Q(A,b,c) and φ(z) functions, and follow up by describing how the
implicit function theorem can be used to differentiate the function S(Q).

Let us now define the skew-symmetric matrix

Q(A,b,c) =

 0 AT c
−A 0 b
−cT −bT 0.

 ∈ R(n+m+1)×(n+m+1) (5.11)

and consider vectors u ∈ Rn+m+1 and v ∈ Rn+m+1 that satisfy
u = (u1,u2,τ) ∈K = Rn×K∗×R+

v = (0,v2,κ) ∈K∗ = Rm×K×R+

Qu = v
(Self-dual embedding)

38

5.3 Self-dual embedding

and where at least one of κ and τ is strictly positive. These vectors, u and v, along
with the matrix Q, define the self-dual embedding.

PROPOSITION 5.3
If u ∈K and v ∈K∗ are solutions to the self-dual embedding, Qu = v, then either τ

or κ is zero.

Proof. Since Qu = v and Q is skew-symmetric, we can show that uT v = uT Qu is
zero according to proposition (2.16). Writing out the inner product uT v we conclude
that

0 = uT v = 0+uT
2 v2 + τκ. (5.12)

However, since u2 ∈ K∗ and v2 ∈ K it holds that uT
2 v2 ≥ 0 by the definition of the

dual cone, and since κ and τ are non-negative, we can only have equality if κ or τ

is zero and uT
2 v2 = 0. 2

This gives three cases, τ > 0 and κ = 0, τ = 0 and κ > 0, and τ = 0 and κ = 0.
Let us look into the τ > 0 case.

PROPOSITION 5.4
For τ > 0 and κ = 0, we can derive optimal solutions to the primal and dual prob-
lems:

x = u1
τ

y = u2
τ

s = v2
τ

(5.13)

Proof. First note that s = v2
τ
∈ K and y = u2

τ
∈ K∗. According to the definition of

the self-dual embedding,

Qu = v =⇒

 AT u2 + cτ

−Au1 +bτ

−cT u1−bT u2

=

 0
v2
κ

 . (5.14)

From the first equality, we find that

0 =AT u2 + cτ = (AT y+ c)τ, (5.15)

meaning y is admissible for the dual problem. The second equality shows us that x
and s are admissible for the primal problem

−Axτ +bτ = sτ (5.16)

and from the last equation−cT xτ−bT yτ = 0, we can use (5.2) to prove optimality.2

For κ > 0, it is possible to prove that either the primal or the dual problem is
infeasible, using a similar argument.

39

Chapter 5. Differentiating a convex optimization problem

5.4 Differentiating the residual mapping

The previous section gives an overview of the self-dual embedding and how to
construct a solution (x,y,s) from solution vectors u ∈K and v ∈K∗. For the sake of
differentiating the conic problem, one piece is still missing: we still have not found a
derivate for the function S(Q) or even shown that this function exists. The main idea
is to define the residual function, R(z) = Qu(z)−v(z), and normalize it. This serves
as a measure of how close u and v are to solving the self-dual embedding. This
function is differentiable (almost everywhere) and can ultimately be used together
with the implicit function theorem, in order to prove the existence and define the
derivative of the function S(Q).

From the self-dual embedding, we define the conic complementary set as

C = {(u,v) ∈K×K∗ | uT v = 0}. (5.17)

Let
ΠK : Rn+m+1→K⊂ Rn+m+1 (5.18)

denote orthogonal projection onto the set K, and let

Π
∗
−K∗ : Rn+m+1→−K∗ ⊆ Rn+m+1 (5.19)

denote projection onto −K∗. It follows from (2.14), that Π−K∗ = I−ΠK and that
ΠK(z) is orthogonal to Π−K∗(z). For any vector z, we can now introduce the Minty
Parameterization, M : Rn −→ C defined as

M(z) = (ΠK(z),−Π−K∗(z)), (5.20)

with the purpose of uniquely mapping a vector z∈Rn+m+1 onto elements (u,v)∈ C,
which will serve as solution candidates for the self-dual embedding. We say that z is
a solution to the self-dual embedding if (u,v)=M(z) solve the self-dual embedding.

PROPOSITION 5.5
M is bijective with inverse M−1(u,v) = u− v.

Proof. It follows from the definition of the Minty parameterization and the Moreau
identity (2.11) that

M−1(M(z)) = ΠK(z)− (−Π−K∗(z)) = ΠK(z)+Π−K∗(z) = z ∀z ∈ Rn+m+1.
(5.21)

2

Since we obtain candidate vectors u ∈ K and v ∈ K∗, from the Minty
parametrization, the conditions of the self-dual embedding, Qu = v can now be
written in terms of z:

QΠK(z) =−Π−K∗(z). (5.22)

40

5.5 Normalized residual mapping

Let the residual function be defined as

R(z,Q) = QΠK(z)+Π−K∗(z). (5.23)

This is zero precisely when Qu = v for (u,v) = M(z), i.e. when z is a solution to the
self-dual embedding described above.

PROPOSITION 5.6
The derivatives of R(z,Q)

DQR(z,Q)U =UΠK(z)

DzR(z,Q) = QDΠK(z)+DΠ−K∗(z), (5.24)

for some matrix U , as long as the derivatives of the projections are defined.

COROLLARY 5.7
Since both ΠK and ΠK∗(z) are Lipschitz continuous, it follows from Rademacher’s
theorem (2.17) that R(z,Q) is differentiable almost everywhere.

5.5 Normalized residual mapping

Now we turn to the normalized residual mapping. To see why this is necessary, note
that the self-dual embedding is invariant to scaling, i.e. if u ∈ K and v ∈ K∗ solve
the embedding then so do λu and λv for λ ∈R. If u and v are not solutions however,
then the residual Qu− v can be made arbitrarily close to zero by scaling u and v by
the constant constant λ . For that reason, we normalize so the last element in z is
always 1. The normalized residual mapping is defined as

N(z,Q) =
R(z,Q)

zn+m+1
=

R(z,Q)

eT z
, (5.25)

where zn+m+1 can be written as eT z, if by e, we denote the last unit vector, e =
(0, . . . ,0,1)T . Whenever R(z,Q) is differentiable, so is N(z,Q), and we obtain the
following expression

DQN(z,Q)U = DQ
R(z,Q)

zn+m+1
U =U

ΠK

zn+m+1

DzN(z,Q) =
DR(z,Q)

zn+m+1
− R(z,Q)

z2
n+m+1

eT . (5.26)

The second term vanishes if z solves the self-dual embedding, and the result is as
follows:

DzN(z,Q) =
DR(z,Q)

zn+m+1
= ((Q− I)DΠ(z)+ I)/zn+m+1. (5.27)

41

Chapter 5. Differentiating a convex optimization problem

Now the function, φ(z) : Rn+m+1 → Rn ×Rm ×Rm, which constructs a so-
lution to the optimization problem fromt z, can be defined. It is already estab-
lished in (5.13) that (x,y,s) = (u1

τ
, u2

τ
, v2

τ
) is a solution. If we make the partition

z = (z1,z2,z3) ∈ Rn×Rm×R and investigate the projections onto K, we find the
following:

u = ΠK(z) = ΠR(z1)×ΠK∗(z2)×ΠR+(z3) = z1×ΠK∗(z2)× τ, (5.28)

where we assume z3 = τ ≥ 0. Moreover,

v =−Π−K∗ =−(z−ΠK(z)) = u− z = 0×ΠK∗(z2)− z2×0. (5.29)

Ultimately, the solution (x,y,s) = (u1
τ
, u2

τ
, v2

τ
) can be written

(x,y,s) = φ(z) = (z1,ΠK∗(z2),ΠK∗(z2)− z2)/z3 (5.30)

and after normalization, where z3 is assumed to be 1, the derivative is

Dφ(z) =

I 0 −x
0 DΠK∗(z2) −y
0 DΠK∗(z2)− I −s

 . (5.31)

A solution z can similarly be constructed from (x,y,s)

(z1,z2,z3) = (x,y− s,1). (5.32)

5.6 Full solution mapping

Lastly, the solution mapping S(Q) needs to be differentiated. After that, we have all
necessary expressions to differentiate a conic program.

If we let the the normalized residual mapping, N(z,Q), be used as the function
f in the the implicit function theorem (theorem 2.18), it follows as a consequence
that there exists a solution mapping S(Q) : R(n+m+1)×(n+m+1)→Rn+m+1, whenever
N(z,Q) is differentiable and non-singular. The solution mapping function, S(Q),
maps the problem parameters, Q, to a solution of the self-dual embedding, denoted
z, in a neighborhood of a solution , z̄, Q̄ for which N(z̄, Q̄) = 0. If N is non-singularly
differentiable, the theorem states that (see (2.23)) the derivative is

DS(Q) =−(DNz (s(Q),Q))−1 DNQ (s(Q),Q) . (5.33)

From the expressions (5.26), the closed form expression is

DS(Q) =−((Q− I)DΠ(z)+ I)−1DNQ(S(Q),Q) (5.34)

Now we have all the expressions necessary to calculate the derivative

DS(A,b,c) = D(φ ◦S◦Q(A,b,c)) = Dφ(z)DS(Q)DQ(A,b,c). (5.35)

42

5.7 Differentiating the conic projection

The function Q(A,b,c) is differentiable with derivative

DQ(A,b,c) =

 0 DAT Dc
−DA 0 Db
−DcT −DbT 0

 . (5.36)

The derivative of φ(z) is defined in (5.31).
One can equivalently formulate the reverse or adjoint mode expressions for Au-

tomatic Differentiation

DST (A,b,c) = DQT (A,b,c)DST (Q)Dφ
T (z). (5.37)

[Griewank and Walther, 2008] give the additional interpretation that the expres-
sion in (5.35) describes how sensitive the solution (x,y,s) is to small perturbations
(dA,db,dc)

(dx,dy,ds) = DS(A,b,c)(dA,db,dc) (5.38)

and [Agrawal et al., 2020] state that the adjoint DST describes how sensitive the
inputs dA, db and dc are to a slight perturbation of the solution (x,y,s)

(dA,db,dc) = DST (A,b,c)(dx,dy,ds) = DT Q(A,b,c)DT S(z)DT
φ(z)(dx,dy,ds).

(5.39)
This is the basis of our backpropagation. For a perturbation (dx,dy,ds) we find

(dA,db,dc)=−DT Q(A,b,c)DNQ(z,Q)T R((Q−I)DΠK(z)+I)−T Dφ(z)T (dx,dy,ds)
(5.40)

Expanding one expression at a time, we can define g = −((Q − I)DΠ(z) +
I)−1(dx,dy,ds)+ and lastly calculate

(dA,db,dc) = DT Q(A,b,c)DNQ(z,Q)T g = DT Q(A,b,c)gΠK(z)T , (5.41)

where the rearrangement of the terms comes from the derivative NQ ((5.26)). This
concludes the sections on the derivation of backpropagation through conic pro-
grams.

5.7 Differentiating the conic projection

As shown in the previous section, the differentiation of conic programs ultimately
revolves around the projection on cones as well as the derivative of those projec-
tions. For a general cone, these projections and gradients could be difficult to com-
pute. In the examples to follow we need to deal with Semidefinite Programs, a subset
of conic programs limited to the cone of (symmetric) positive semidefinite matrices,
Sn along with the zero cone, 0 ∈ Rn and the non-negative cone, Rn

+.
For the purposes of this thesis, the interesting cones are therefore the zero cone,

{0}, the non-negative cone, Rn
+, the real cone R, and the cone of symmetric positive

43

Chapter 5. Differentiating a convex optimization problem

definite matrices. All cones used are Cartesian products of these types of cones and
for the purpose of differentiation, we need to be able to differentiate the projections.

If we let the function max, be defined elementwise, the simpler projections can
be written

ΠRn(z) = z

ΠRn
+
(z)i = max(zi,0)

Π0(z) = 0 ∈ Rn (5.42)

with derivatives,

DΠRn(z) = I ∈ Rn×n

DΠRn
+
(z)ii =

{
1 if zi ≥ 0
0 otherwise

DΠ0(z) = 0 ∈ Rn×n. (5.43)

5.8 Projection onto the set of positive semidefinite
matrices

The interesting projection is the Positive semi-definite projection. A more thorough
explanation is given in [Busseti et al., 2018].

The projection of a symmetric matrix onto the cone of positive semidefinite
matrices can be written

UD+UT (5.44)

where U,D are obtained from the eigenvalue decomposition of the matrix, and D+

is the diagonal matrix with D+
ii = max(Dii,0).

In [Busseti et al., 2018], the derivative of the projection onto the semidefinite
cone is defined implicitly.

If we let k be the number of negative eigenvalues of X , λ+ is a sorted vector of
max(λ (X),0) and λ− = −min(λ (X),0) then we can define the matrix B from the
eigenvalues of X :

(B)i j =

0 if i≤ k, j ≤ k
λ
+
i

λ
−
j +λ

+
i

if i > k, j ≤ k

λ
+
j

λ
−
i +λ

+
j

if i≤ k, j > k

1 if i > k, j > k

(5.45)

then for any symmetric matrices X and X̃ , the product DΠ(X)(X̃) can be written

DΠ(X)(X̃) =U(B◦ (UT X̃U))UT , (5.46)

44

5.8 Projection onto the set of positive semidefinite matrices

where U is obtained from the diagonalization of X ,

X =UDUT . (5.47)

Since the derivative (5.46) is linear, it is possible to formulate via a matrix. In the
implementation, detail in section 5, we construct the matrix explicitly by calculating
the projection DΠ(x)(ei), for unit vectors ei ∈ Rn×n

45

6
Differentiation of the PEP
and line search

We have derived the semidefinite PEP problem to be investigated and have shown
how to differentiate a conic optimization problem. Using those results we will now
show how the PEP problem can be formulated as a conic program and how it can be
differentiated. Unlike in the derivation in section 5 the matrices and vectors defin-
ing the problem, b, c and A, are not free. There is a lot of structure required. We
will instead consider them to be functions of the method parameters, θ , and instead
let Q be a function of the method parameters, Q(θ). We will use the fact that the
objective value of the PEP, which corresponds to the worst-case convergence rate,
is embedded completely in one dual variable. Therefore we will only consider the
derivative of the function mapping method parameters θ to this dual variable. For
this purpose, we will find direct expressions for the gradients and need not use the
perturbation formulation from [Agrawal et al., 2020], though the formulations are
equivalent. The chapter is concluded with a description of some specifics concern-
ing the implementation.

6.1 Conic reformulation of the performance estimation
problem

We can now write the PEP problem on the conic form, as presented in equation P,

min cT x

subject to s = b−Ax

s ∈ K.

Since the objective function is affine and the constraints all include affine functions
in the variables, this is mainly a reformulation from the matrix expressions in PEP

46

6.1 Conic reformulation of the performance estimation problem

into vector expressions and convex cones. We use the identity

Tr(EF) = ∑
i, j

Ei jFi j = vec(E)T vec(F) (6.1)

for symmetric matrices, E and F . The primal variables are the matrix G and the
function values ∆ f0 and ∆ f1 and we let x represent a vectorized G matrix followed
by the differences ∆ fi,

x =

vec(G)
∆ f0
∆ f1

 ∈ R(n+3m−1)2+2m. (6.2)

Since we want to rephrase the maximization problem of the PEP into a minimization
problem, we change the sign of c and mention that the worst-case convergence rate
will be −cT x since

max
x

cT x =−min
x
−cT x, (6.3)

and we find the objective function

c =
(
−vec(ΣT

1 Σ1)
0

)
. (6.4)

The first constraint, Tr(ΣT
0 Σ0G) = 1, can be written

0 = 1−
(

vec(ΣT
0 Σ0)

0

)T

x≡ 1−A1x ⇐⇒ 1−A1x ∈ K0. (6.5)

Each of the inequality constraints, −el(∆ fi − ∆ f j) + Tr(ET
i jMlEi jG) ≥ 0, can be

represented by constraints on the form

Ai jl
2 x≡

vec(ET
i jMlEi j)

−el ·

1 if i = 0
−1 if i = 1
0 if i = ⋆

−el ·

−1 if j = 0
1 if j = 1
0 if j = ⋆

T

x≤ 0 ∀i ̸= j ∈ {0,1,⋆}, l ∈ [0,1, . . . ,m].

(6.6)

There are 3 ·2 ·m constraints on this form and we letA2 denote the matrix collecting
all matricesAi jl

2 , for which the convexity constraints can compactly be written using
the non-negative cone

A2x≤ 0 ⇐⇒ −A2x ∈ R6m
+ . (6.7)

47

Chapter 6. Differentiation of the PEP and line search

Finally, the constraint on semi-definiteness is written

−A3x≡−
(
−I 0

)
x = vec(G) ∈ Sn+3m−1

vec+ , (6.8)

where we let Sn+3m−1
vec+ denote the set of vectorized symmetric positive semidefinite

matrices, vec(X) for X ∈ Sn+3m−1
+ . The final conic reformulation is as follows:

min cT x

s.t

1
0
0

−
A1
A2
A3

x ∈

 K0
R6m
+

Sn+3m−1
vec+

 . (6.9)

For the dimensions of these problems, neither solving the optimization problem nor
differentiating the SDP is prohibitively expensive.

Conic formulation of the gradient method
Let us once again examine the gradient method. Recall the expressions of ΣT

0 Σ0 and
ΣT

1 Σ1 from chapter 4. Using these we find the objective function

cT =−
(
1 −γ 0 −γ γ2 0 0 0 0

)
(6.10)

and the matrix
A1 =

(
1 0 . . . 0

)
(6.11)

Since each row inA2 depends on the specific parameters β and σ , we will not write
it explicitly but do note that that there are 6 rows, one for each possible ordered pair
of points in {0,1,⋆}.

6.2 Differentiating the PEP

Our conic optimization problem is defined by A(θ), b and c(θ), with θ denoting
the parameters of some first-order optimization method. The parameters θ will only
affect the Ei j and Σi matrices. Assuming strong duality, i.e cT x⋆+ bT y⋆ = 0 for x⋆

and y⋆ solving the primal and dual problems, we know that the worst-case conver-
gence rate obtained from the PEP is equal to −cT x⋆ = bT y⋆ = y⋆1. This simplifies
the dimensions significantly. Instead of considering the mapping

(A,b,c) 7→ (x⋆,y⋆,s⋆) (6.12)

we can consider the much simpler mapping from problem parameters, θ onto y1,
which we will name P(θ) : Rq −→ R,

P(θ) : θ 7→ y⋆1 (6.13)

48

6.3 Differentiation of the Q matrix

For a first-order method, the worst-case convergence rate can now be written as a
function of θ

P(θ) = eT
n+1φ(z)◦S(Q)◦Q(θ), (6.14)

where en+1 denotes the n+ 1:th canonical basis element, and is used since φ(z)
produces (x⋆,y⋆,s⋆), from which only the first elemtent of y⋆, y⋆1, is desired. The
function Q(θ) is used to denote the function

Q(θ) =

 0 A(θ)T c(θ)
−A(θ) 0 b
−c(θ)T −bT 0

 . (6.15)

For a single parameter, θi, the derivative of P(θ) can be expressed

DθiP(θ) = en+1Dφ(z)DS(Q)DθiQ(θ). (6.16)

Since this is a scalar expression, we can transpose and find the alternative expression

DθiP(θ) = DθiP(θ)
T = DQ(θi)

T DS(Q)T Dφ(z)T en+1

= ΠK(z)T DQ(θi)
T (−((Q− I)DΠ(z)+ I)−T)Dφ(z)T en+1, (6.17)

with the added benefit that the relatively expensive matrix inversion, can be calcu-
lated once and reused for all derivatives, Dθi . If we store the result of the computa-
tion

g =−((Q− I)DΠ(z)+ I)−T)Dφ(z)T en+1, (6.18)

and calculate the projection ΠK(z) beforehand, the differentiation can simply be
done through the product

DθiP(θ) = ΠK(z)T DθiQ
T g. (6.19)

We find the gradient

Dθ P(θ) =

Dθ1P(θ)
Dθ2P(θ)

...
DθqP(θ)

=

ΠT

K(z)Dθ1QT

ΠT
K(z)Dθ2QT

...
ΠT

K(z)DθqQT

g (6.20)

It should be noted that an equivalent expression can be gained from the reverse
mode perturbation formulation in chapter 5, if choosing dy = e1.

6.3 Differentiation of the Q matrix

Now all that remains is the differentiation of A(θ) and c(θ) where we note that both
are formed by quadratic matrix expressions, for example,

Ei j(θ)
T MlEi j(θ), (6.21)

49

Chapter 6. Differentiation of the PEP and line search

where can be expressed coordinate-wise as

(C)pq ≡ (Ei j(θ)
T MlEi j(θ))pq = E(p)T

i j ME(q)
i j , (6.22)

where E(p)
i j denotes the p:th column of Ei j. Using the chain rule it is possible to find

the coordinate-wise derivative

Dθk(C)pq = (Dθk E(p)
i j)T MlE

(q)
i j +(Dθk E(q)

i j)T MlE
(p)
i j , (6.23)

from which one can express the derivative

DθkC = (Dθk Ei j)
T MlEi j +ET

i jMl(Dθk Ei j), (6.24)

which gives the following derivatives

Dθk c =

(
−vec

(
Dθk Σ1(θ)

T Σ1(θk)
)

0

)

DθkA=

0

vec
(

Dθk ET
i jMlEi j

)T
∀i, j, l

0

Dθk b = 0

(6.25)

This is used to construct the matrix

Dθl Q(θ) =

 0 DθkA
T Dθk c

−DθkA 0 0
−Dθk cT 0 0

 (6.26)

Note that all these expressions can be formulated in terms of the matrices A, B, C
and D and their derivatives.

Dθk Σ
T
1 Σ1 =

(
Dθk A Dθk B 0 (Dθk B)N

)T (A B 0 −BN
)

+
(
A B 0 −BN

)T (Dθk A Dθk B 0 (Dθk B)N
)

(6.27)

, where similar expressions can be obtained for the row-wise derivative of the A
matrix:

Dθk(E
T
01MlE01) = (Dθk E01)

T MlE01 +ET
01MlDθk E01(Dθk E01)

where DθiE01 =

(DθkC)(A− I)+CDθk A (DθkC)B+C(Dθk B)−Dθk D 0 Dθk D
0 0 0 0
0 0 0 0

 ,

(6.28)
with similar expressions for the other DθiEi j

50

6.4 Pseudocode for differentiating the PEP

Differentiation for the gradient method
Let us once again show this for the gradient method. We can consider the derivative
Dθ c, where we recall that c = ΣT

1 Σ1 for

Σ1 =

 1
−γ

0

 . (6.29)

There is only one parameter, γ and the derivative is

−Dγ(Σ
T
1 Σ1) =−(Dγ Σ1)

T
Σ1−Σ

T
1 (Dγ Σ1)

=−

 0
−1
0

(1 −γ 0
)
−

 1
−γ

0

(0 −1 0
)

=

0 1 0
1 −2γ 0
0 0 0

 (6.30)

As a result

Dγ c =
(

vec(−Dγ(Σ
T
1 Σ1))

0

)
=
(
0 1 0 1 −2γ 0 . . . 0

)T (6.31)

One can differentiate the A matrix similarly.

6.4 Pseudocode for differentiating the PEP

For each iteration, we need to find solutions to the PEP-problem, (x,y,s). From here,
a solution to the self-dual embedding can be constructed

z = (x,y− s,1). (6.32)

Note that the dual problem to (6.9) (as defined in (D)) has the objective function

bT y =
(
1 0 . . . 0

)
y = y1. (6.33)

From the expressions detailed in (6.17), we initially calculate,

dz=Dφ(z)T en+1 =

 I 0 0
0 DΠK∗(z2)

T DΠK∗(z2)
T − I

−x −y −s

en+1 =

 0
(DΠK∗(y− s))T e1

−y1

(6.34)

and ultimately
g = ((Q− I)DΠK(z)+ I)−T dz. (6.35)

51

Chapter 6. Differentiation of the PEP and line search

Lastly, we can calculate the projection onto K and the matrix for the derivative
DΠK. Given a method, an objective function and constants for strong convexity and
smoothness, σ and β , we can construct a conic problem, which can be differentiated
using algorithm 1. In order to deal with ill-conditioned problems, we will use a
least-squares solver to replace the matrix inverse in (5.34).

Algorithm 1 Differentiating the PEP
procedure DIFFERENTIATEPEP(θ)
A, b, c←A(θ), e1 ∈ Rm, c(θ)

Q←

 0 AT c
−A 0 b
−cT −bT 0

x, y← solve(θ), solveDual(θ)
s← b−Ax
z← (x,y− s,1)

dz←

 0
DΠK∗(y− s)T e1
−yT e1

g← leastSquares(((Q− I)DΠK(z)+ I)T ,−dz)
ΠK← project(z, K)
for i = 0 to length(θ) do

DQ←

 0 DθiA(θ)T Dθic(θ)
−DθiA(θ) 0 0
−Dθic(θ) 0 0

∇θ [i]←ΠT

KDQT g
end for
return ∇θ

end procedure

The costly operations are mainly the primal and dual solves of the PEP, fol-
lowed by the least-squares solver. The differentiation from [Agrawal et al., 2020],
use the iterative method LSQR which only requires matrix-vector multiplications,
for solving the least squares problem. The numerical inaccuracy of the iterative
solver manifested itself in some of test in the following chapter, resulting in early
termination and worse results. Instead, the built-in least squares solver, based on the
SVD, is used without any notable performance penalty. For the problem at hand,
the expensive operation is the SDP-solve. Some tests were made using the SCS-
solver used in the implementation by [Agrawal et al., 2020], but the accuracy was
significantly worse than with a case-specific SDP-solver. Our choice turned to the
MOSEK SDP-solver. For these examples, the optimization problem is small enough
for expensive but more exact solvers to be worthwhile.

52

7
Implementation and Results

The previous chapter describes how to differentiate the Performance Estimation
Problem. Now we turn to implementation and results. In this chapter, we give
some results, using the differentiation derived in chapter 6. Initially, we motivate
the choice of line search. This is followed by the results for a few methods.
The main examples we investigate are the Douglas-Rachford method, where there
are analytical, tight rates for the worst-case convergence, and the Davis-Yin opera-
tor splitting method, where no such exact bounds are known. For verification, some
code was borrowed from the PEP implementation from [Upadhyaya et al., 2023].

7.1 Implementation of gradient-based optimization

The problem is as follows:
min

θ
P(θ) (7.1)

for P(θ) defined as the solution to the PEP as a function of the method parame-
ters θ , for a given first-order method and strong convexity and Lipschitz constants.
Our approach uses the gradients computed as described in algorithm 1. In addition,
some kind of line search or step size choice is needed. Some different choices were
tried: constant step sizes, fixed, decreasing step sizes and inexact, backtracking,
line-search based on the Armijo rule. Constant step sizes,

θk+1 = θk−d ·∇θP(θ), (7.2)

do not always converge, even for the simplest examples. This is due to non-
differentiability in the minimum, for P(θ). A simple example explaining this be-
havior is the following: Let f (x) = |x|, with gradient ∇x f = sign(x) and assume that
xk ∈ (0,d). Then, when using the gradient method with fixed step sizes, one enters
the cycle

xk+1 = xk−d · sign(xk) = xk−d < 0
xk+2 = xk+1−d · sign(xk+1) = xk+1 +d = xk. (7.3)

53

Chapter 7. Implementation and Results

A simple solution would be decreasing step sizes:

θk+1 = θk−dk∇θP(θ), (7.4)

where dk =
d1

k+1 is one possible choice. Due to slow convergence, this was instead
replaced with in-exact backtracking line search, using the Armijo rule (see algo-
rithm 2). The main idea behind in-exact line search is to only find a satisfactory
step size, for which the function value decreases enough according to some crite-
rion, instead of attempting to find the optimal step size, which would be a lot more
expensive. For multi-dimensional problems, like the ones considered here, this is
often a better approach than more exact line searches, which require more function
evaluations. An introduction to inexact line search and the Armijo rule can be found
in [Böiers, 2010].

Algorithm 2 Inexact backtracking line search
procedure LINESEARCH(method,θ ,∇θ ,ρ0)

d← 1
c← 1

2
m←∥∇θ∥2

2
while λ ·m≤ TOL do

ρ1← solveDual(method,θ +d ·∇θ)[0]
ρ2← solveDual(method,θ +2 ·d ·∇θ)[0]
if ρ1 is None or ρ0 ≤ ρ1 +m · c ·d then

d← d/2
else if ρ2 is not None and ρ0 ≥ ρ2 +2 ·m · c ·d then

d← 2 ·d
else

break
end if

end while
return (θ +d ·∇θ ,ρ1)

end procedure

In all examples, we seek for a linear convergence rate, ρ2, for the function
∑

n
i=1 ∥x(i)− x(i)∗ ∥2

2 = ∥x− x∗∥2
2.

7.2 Numerical results

As an initial example, we can investigate the Douglas–Rachford operator-splitting
method, as explained in (DR), for different classes of functions f1 and f2. There are
known, tight convergence-rate bounds, that can be compared to. The initial example
seeks to demonstrate convergence, at some distance from the solution. Starting at

54

7.2 Numerical results

Algorithm 3 Optimization over the method parameters
procedure MINIMIZEPARAMS(θ ,method)

for i = 1 to MAXITER do
∇θ ,x,y← differentiatePEP(method,θ)
ρ0← y[0]
θ ,ρ1← lineSearch(method,θ ,∇θ ,ρ0)
if ρ0−ρ1 ≤ TOL then

break
end if
ρ0← ρ1

end for
end procedure
return (θ ,ρ1)

half of the optimal parameter values, the proposed method converges in most cases
Fot the last example of the Douglas–Rachford method, a better bound on the con-
vergence rate is found when using the adaptive Douglas–Rachford method, which
has the structure

xk+1 = xk−λ
(
γ2 γ2

)
uk

yk =

(
1
1

)
xk +

(
−γ1 0
−γ1− γ2 −γ2

)
uk (7.5)

Lastly, the Davis–Yin method is investigated, and compared to the adaptive Davis–
Yin method. A small comparison is made between two methods using theoretical
gradients as computed in algorithm 1, and one using a finite difference approxima-
tion.

Douglas-Rachford
The Douglas–Rachford operator splitting method is used to minimize the sum of
two functions, f1 and f2. For the first example, consider the case where f1 ∈ Fσ ,β

and f2 ∈ F0,∞. In [Giselsson, 2015], it is shown that the theoretically tight, worst-
case convergence rate for the Douglas–Rachford method is

ρ =

√
κ−1√
κ +1

, (7.6)

in this case. The condition number, κ , is defined as κ = β

σ
. We will instead investi-

gate the scaled problem, f1 ∈ F 1√
κ
,
√

κ
. This is the problem obtained, when dividing

the functions f1 and f2 by the constant σ
√

κ =
√

β
√

σ . There are advantages to
this choice. Firstly, it simplifies the comparison since the scaled problem always
has optimal Douglas–Rachford parameters, γ = 1 and λ = 2, but more importantly,

55

Chapter 7. Implementation and Results

there seem to be some numerical benefits as the implemented solver seems to per-
form better, especially for large condition numbers. This scaling has no impact on
the condition number, κ , so the optimal rate is the same. For the first example, we
investigate how well this implementation converges. The initial Douglas–Rachford
parameters are chosen to be half of the optimal ones. Starting at γ = 1

2 and λ = 1,
we obtain the optimal parameters in most cases. The results are significantly worse
for other choices of scaling of f1 and f2. A hypothesis is that this is due to the Ml
matrix (4.17), and its products. The condition number of the matrix Ml is much
lower for this choice of scaling, although that is probably not the full explanation.

Figure 7.1 Obtained, optimal convergence rate, starting with initial parameters γ =
1
2 and λ = 1

Figure 7.2 Resulting optimal parameters, starting with initial parameters γ = 1
2

and λ = 1

56

7.2 Numerical results

The resulting optimal linear convergence rate and parameters correspond to the
theoretical optima (see figure 7.1 and 7.2), except in a few cases.

For the next example, the functions are assumed to be f1 ∈ F0,
√

κ
and f2 ∈

F 1√
κ
,∞. Solving for increasing values of κ ∈ [1,2, . . . ,40], using the previous optimal

parameters, gives good results (see figure 7.3). Interestingly, the adaptive Douglas–
Rachford method performs better for this example. The optimal parameters for the
Douglas–Rachford method and the adaptive Douglas–Rachford method can be seen
in figures 7.5 and 7.4 respectively.

Figure 7.3 Obtained optimal squared convergence rate for the classical (blue) and
the adaptive (orange) Douglas-Rachford methods.

Figure 7.4 Optimal parameters for the adaptive Douglas–Rachford method.

57

Chapter 7. Implementation and Results

Figure 7.5 Optimal parameters for the Douglas–Rachford method

The Davis–Yin three operator splitting method
For the last example, the Davis–Yin method is investigated, for the case of functions,
f1 ∈ F0,β , f2 ∈ F1,2 and f3 ∈ F0,∞. Recall the structure of the Davis–Yin method

xk+1 = xk−λ
(
γ γ γ

)
uk

yk =

1
1
1

xk +

 −γ 0 0
−γ 0 0
−2γ −γ −γ

uk

uk ∈ ∂ f(yk). (7.7)

Similarly to before, the worst-case convergence rate should be invariant to scal-
ing of the three functions, with the same constant. Therefore, we consider the case
f1 ∈ F0,

√
β

, f2 ∈ F 1√
β
, 2√

β

, f3 ∈ F0,∞ and rescale the parameters, for the original

problem afterward. For the new problem, the gradients and subdifferentials will
simply decrease by a factor 1/

√
β . We can simply scale γ with the factor

√
β to

counteract this an ensure the same xk and yk iterates.

The scaled parameter values were always initiated to the previously obtained
optimal parameters. For β = 1, the initial parameters were λ = 1, γ = 1

2 .

58

7.2 Numerical results

Figure 7.6 Optimal convergence rate for the Davis-Yin method.

Figure 7.7 Optimal parameters for the Davis-Yin method.

These rates in figure 7.7, improvements, compared to the theoretically stable pa-
rameter choices of λ = 1, γ = 1

2 , as tested in [Upadhyaya et al., 2023]. Interestingly,
the optimal γ value is very close to 1

2+β
.

A simple comparison of accuracy
The inexact line-search with gradients from algorithm 1 is compared to two alter-
native solvers: the default SCIPY minimization algorithm, using BFGS, and BFGS
using the gradients from algorithm 1. Comparing the same example of the Davis–
Yin method as previously but with uniformly random initial parameters γ,λ ∈ [0,1]
and β = 1,2, . . . ,40, the inexact line search is both faster and more accurate than
the SCIPY-implementation of BFGS. If using the gradients from algorithm 1 with
BFGS, the result is more accurate, but the time increases significantly.

59

Chapter 7. Implementation and Results

Method Computation time (s) Average worst-convergence rate (ρ2)
Armijo (grad from alg. 1) 207 0.4570

BFGS (default) 212 0.5333
BFGS (grad from alg. 1) 290 0.4568

Table 7.1 Total computation time and average objective value, for 40 solves with
f1 ∈F0,

√
β

, f2 ∈F1/
√

β ,2/
√

β
and f3 ∈ ′,∞. The BFGS method is the default solver

of scipy.minimize, which uses BFGS with finite difference approximations for gra-
dients. The second BFGS method uses the gradients from algorithm 1.

An adaptive Davis–Yin method
Just like for Douglas-Rachford, it is possible to have different parameters, γ1 and γ2
for the two proximal evaluations, while using the Davis-Yin method. The conver-
gence of this adaptive Davis-Yin method can be seen in figure 7.8. The convergence
rate is better than for classical Davis-Yin.

Figure 7.8 Obtained optimal squared convergence rate for an adaptive three-
parameter Davis-Yin method.

60

8
Conclusions

We have investigated the problem of finding optimal parameters of first-order opti-
mization methods, using an adaptation of a recent method for differentiating con-
vex optimization problems. The problem of finding optimal parameters is generally
non-convex and it is clear from tests, that for bad initial parameter guesses or less
well-behaved examples, it is not guaranteed that the method finds the optimal pa-
rameters. For the cases investigated, though, the results are accurate, and we find
the theoretically optimal parameters of the Douglas-Rachford method, as well as
good results in cases where there are no theoretical optima (to my knowledge), like
the adaptive Douglas–Rachford method or the classical or the adaptive Davis–Yin
methods.

The main benefit of the theoretical gradients, as calculated in algorithm 1, is a
reduced need for the comparatively expensive solves of the semidefinite programs,
compared to minimization without gradients, and better accuracy than other meth-
ods for finding gradients, like finite differences. The differentiation revolves around
the solutions of the primal and dual problems, as well as a least squares problem,
all of which can be solved accurately and efficiently. This method performs well,
both with in-exact line search and with BFGS. The method seems sensitive to nu-
merical errors in the SDP or least squares solves, based on some tests. Replacing
more exact solvers, i.e a case-specific SDP solver and backward stable least-squares
solvers, leads to significantly worsened results, for the examples in this report.

We also show a result on the possible parametrizations of first-order methods, in
the state space context and the case of lifting 1, however it is possible to generalize
this approach and find parameterizations also for lifting larger than 1. An interest-
ing experiment would be to investigate these more general parameterizations. It is
in these kinds of higher dimensional problems, where this form of gradient-based
optimization of parameters would be expected to outperform shine, compared to
the gradient-free method used by [Ryu et al., 2020] or methods using the central-
difference approximations of the gradients, which would be significantly more ex-
pensive. It could also be expected that these higher-dimensional problems with more
parameters are less well-behaved.

61

Chapter 8. Conclusions

The proposed method for optimizing parameters is general and can be used for
any state space representable algorithm, though there are no guarantees of conver-
gence to the optimal parameters. Some other optimization algorithms were tested
with mixed results, but not included in the report.

62

Bibliography

Agrawal, A., S. Barratt, S. Boyd, E. Busseti, and W. M. Moursi (2020). Differenti-
ating through a cone program. arXiv: 1904.09043 [math.OC].

Böiers, L.-C. (2010). Mathematical methods of optimization. Studentlitteratur.
Boyd, S. P. and L. Vandenberghe (2011). Convex optimization. Cambridge Univ. Pr.
Busseti, E., W. Moursi, and S. Boyd (2018). Solution refinement at regular points

of conic problems. arXiv: 1811.02157 [math.OC].
Dao, M. N. and H. M. Phan (2019). “Adaptive douglas–rachford splitting algorithm

for the sum of two operators”. SIAM Journal on Optimization 29:4, pp. 2697–
2724. DOI: 10.1137/18m121160x. URL: https://doi.org/10.1137%
2F18m121160x.

Dontchev, A. L. and R. T. Rockafellar (2009). “1b. the classical implicit function
theorem”. In: Implicit functions and solution mappings. Springer.

Drori, Y. and M. Teboulle (2013). “Performance of first-order methods for smooth
convex minimization: a novel approach”. Mathematical Programming 145:1–2,
pp. 451–482. DOI: 10.1007/s10107-013-0653-0.

Giselsson, P. (2015). “Tight linear convergence rate bounds for douglas-rachford
splitting and admm”. 2015 54th IEEE Conference on Decision and Control
(CDC). DOI: 10.1109/cdc.2015.7402716.

Griewank, A. and A. Walther (2008). Evaluating Derivatives. Second. Society for
Industrial and Applied Mathematics. DOI: 10 . 1137 / 1 . 9780898717761.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9780898717761.
URL: https://epubs.siam.org/doi/abs/10.1137/1.9780898717761.

Lessard, L., B. Recht, and A. Packard (2016). “Analysis and design of optimization
algorithms via integral quadratic constraints”. SIAM Journal on Optimization
26:1, pp. 57–95. DOI: 10.1137/15M1009597. eprint: https://doi.org/10.
1137/15M1009597. URL: https://doi.org/10.1137/15M1009597.

Parikh, N. (2014). Proximal algorithms. DOI: 10.1561/9781601987174.

63

Bibliography

Ryu, E. K., A. B. Taylor, C. Bergeling, and P. Giselsson (2020). “Operator splitting
performance estimation: tight contraction factors and optimal parameter selec-
tion”. SIAM Journal on Optimization 30:3, pp. 2251–2271. DOI: 10.1137/
19M1304854. eprint: https : / / doi . org / 10 . 1137 / 19M1304854. URL:
https://doi.org/10.1137/19M1304854.

Taylor, A. B., J. M. Hendrickx, and F. Glineur (2016). “Smooth strongly convex
interpolation and exact worst-case performance of first-order methods”. Math-
ematical Programming 161:1–2, pp. 307–345. DOI: 10.1007/s10107-016-
1009-3.

Upadhyaya, M., S. Banert, A. B. Taylor, and P. Giselsson (2023). Automated tight
lyapunov analysis for first-order methods. arXiv: 2302.06713 [math.OC].

64

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2023
Document Number
TFRT-6204

Author(s)

Anton Åkerman

Supervisor
Pontus Giselsson, Dept. of Automatic Control, Lund
University, Sweden
Yiannis Karayiannidis, Dept. of Automatic Control,
Lund University, Sweden (examiner)

Title and subtitle

Optimizing First-Order Method Parameters via Differentiation of the Performance
Estimation Problem
Abstract

This thesis treats the problem of finding optimal parameters for first-order optimization methods. In
part, we use the Performance Estimation Problem (PEP), a framework for convergence analysis of
first-order optimization methods. The fundamental idea of the PEP is to formulate the problem of
finding the worst-case convergence rate of a first-order optimization algorithm, as an optimization
problem. We also use recent methods for differentiating convex optimization problems. The goal is to
explore the use of gradient-based methods for finding optimal parameters of first-order optimization
methods, within the context of the Performance Estimation Problem. By differentiating the PEP, we
can find gradients which can be used in an attempt to search for optimal method parameters.
We consider the state space representation of first-order methods, which include many well-known
first-order operator splitting methods. We propose a gradientbased algorithm for optimizing first-
order method parameters, based on the differentiation algorithm from [Agrawal et al., 2020] and the
PEP representations from [Upadhyaya et al., 2023], and show decent results. This is a heuristic
approach to a non-convex optimization problem, but it works well for the Douglas–Rachford and
Davis–Yin operator splitting methods. The results seem to agree with the theoretically optimal
parameters for the Douglas–Rachford method, and the obtained convergence rates for the Davis–Yin
method are better than the ones found in [Upadhyaya et al., 2023], using fixed parameters. The
presented results, concern only those two methods, but the proposed algorithm is general. Based on
some limited testing, this problem seems sensitive to numerical inaccuracy, and as a consequence,
our approach using more exact gradients seems to outperform the built-in solver from SCIPY, which
uses approximate gradients, terminating faster with comparable (or better) accuracy.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-64

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

