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Abstract

In this thesis, the subject of data-driven control of Unmanned Surface Vehi-
cles (USVs) is explored. The control task is formulated through Nonlinear
Model Predictive Path Following Control (NMPFC). System identifica-
tion (SYSID) and Reinforcement Learning (RL) are employed to improve
performance in a data-driven manner. The objectives were to assess the
resulting controller’s path-following ability, as well as its adaptability to
new environments, enabling the use of the controller on different USVs and
under different conditions. The evaluation was done in simulation and in ex-
periments with the Saab Kockums AB’s Piraya vessel. Based on the results
presented, NMPFC gives low-error solutions in both simulation and ex-
periments but seems non-robust against disturbances and model mismatch.
The simulation results of the learning-based methods showed that enabling
SYSID on a USV with an incorrect initial model would identify the correct
model in one update. Moreover, applying SYSID in experiments roughly
halved the USV tracking error, compared to the usage of a model identified
offline. Lastly, the RL implementation was found to increase performance
in offline simulation, though less than SYSID. Moreover, the RL method
computational times prohibited real-time control of the Piraya. This led to
the method not being deployed in experiments.
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1
Introduction

In recent years, the development of autonomous vehicles has been pro-
gressing at a rapid pace. Of special interest are small autonomous boats,
usually referred to as Unmanned Surface Vehicles (USVs). The interest in
these developments stems from uses in the defense industry, coast guard,
mapping, ocean research, and transport. However, steering a ship with pre-
cision is no easy feat, due to the highly complex nature of the ship-water
interactions. Previous solutions to USV control include PID control, LQR
controllers, Stochastic Control, as well as LOS path-following control,
sliding mode control, and cross-tracking control [Fossen, 20212021Fossen, 20212021]. In some
applications, like docking at a wharf, or moving through an archipelago
with small margins of error, precision control of USVs is necessary. In this
thesis, we investigate model-based control, for path-following control of an
USV. Any model-based control method requires mathematical modeling
and parameter estimation. The first of these tasks might be very difficult
due to the complex dynamics involved in the system. With regards to USVs,
this includes accounting hydrostatics, hydrodynamics, the geometry of the
vessel, wind, etc [Fossen, 20212021Fossen, 20212021]. In the second task, it is often necessary
to estimate the parameters which are part of the model through a gray-box
experiment. This includes running controlled experiments which might be
time-consuming and costly, in order to record enough data to fit to the
model. Furthermore, if the model is nonlinear, such as an USV model, an
estimated model will only be valid in situations similar to those encountered
during estimation. Often, the limiting factor is the velocity the USV is trav-
eling at when the estimation is done. Thus, obtaining such a model through
offline system identification comes with many drawbacks. Therefore, it is
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relevant to ask if the performance and number of operative situations of the
USV can be increased by employing these kinds of methods online instead.

1.1 Prior Work

Previously, in [Kockum, 20222022Kockum, 20222022] a Model Predictive Control (MPC) con-
troller was developed for the USV to be studied in this thesis, the Piraya.
It handled traveling to way-points in an archipelago successfully, at low
speeds. That work used, and we will use, a gray-box model of the Piraya,
obtained using offline system identification. Ship modeling is detailed in
[Fossen, 20212021Fossen, 20212021], where various models are presented for ships operating
in different conditions, at different velocities, and more. Like the Piraya
model, these are gray-box models and require parameter estimation from
real-world data. A gray-box model of the Piraya based on models from
[Fossen, 20212021Fossen, 20212021] was obtained in [Ljungberg, 20212021Ljungberg, 20212021] for use at 2 m/s.

In [Faulwasser et al., 20172017Faulwasser et al., 20172017], Model Predictive Path Following Control
(MPFC) was used for control of a three-joint robot, which thus gained
writing capabilities. No instance of the MPFC method applied to USV path-
following control could be found. Furthermore, in [Martinsen et al., 20222022Martinsen et al., 20222022],
the authors successfully implemented System Identification (SYSID) and
Reinforcement Learning (RL) using Q-learning method on the ReVolt and
milliAmpere fully actuated vessels, improving control performance in both
simulation and experiments.

1.2 Problem Formulation

This thesis is an investigation into how online learning techniques such
as system identification and reinforcement learning can improve the path-
following capabilities of the Piraya USV. It will be explored how this can
be implemented in the context of model predictive control. Furthermore,
the thesis aims to investigate whether these kinds of methods enable the
development of control algorithms which are vessel-independent, and thus
can adapt themselves to the control of new vessels. The purpose of this
thesis is to further the development in the maneuvering of USVs, and online
learning control methods.
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The following topics are part of the problem formulation of this thesis:

• How can path-following Model Predictive Control be implemented
to control the Piraya?

• What methods, from the theory of control systems and machine
learning, can be used to increase tracking performance in the context
of Model Predictive Control?

• How do the learning methods adapt to the dynamics of the vessel,
and external disturbances that are present?

• Can the learning methods extend the operative range of the vehicle,
by learning dynamics online? For example, increase the range of
velocities at which the model-based controller can be used?

1.3 Limitations

External obstacle avoidance is not included in the problem formulation,
and the path is thus assumed to be obstacle-free. The actuator dynamics of
the Piraya are not modeled, introducing unknown dynamics. Only learning-
based control methods which include MPC are investigated. Waves are not
to be compensated for as a disturbance, only winds and currents, which are
relatively stationary, are.

12



2
Background

2.1 Piraya USV

The Piraya is an Unmanned Surface Vehicle owned and developed by Saab
Kockums AB [WARA-PS, 20232023WARA-PS, 20232023]. The vessel, which measures 4 meters
from bow to stern, 1.4 meters from port to starboard, and weighs approx-
imately 300 kg, can be seen in figure 2.12.1. Mounted at the stern is a 20
Horsepower outboard engine. Rudder action is achieved by rotating the
motor, with a maximum angle of 30° in either direction. The Piraya is
equipped with a video camera and LiDAR, as well as RADAR sensors for
navigation. Further, it is equipped with a GPS sensor measuring position,
heading, and speed. The sensor suite is adaptable and could also include an
Inertial Navigation System (INS) containing an accelerometer, gyro, and
magnetometer, which supplies measurements of the current vessel rotation
(in 3D space) as well as velocities in 3 dimensions. Communication with
the USV from a base station is handled using a long-range WiFi-antenna.
Any received commands in terms of throttle, rudder, and gear are processed
by a low level controller before being mechanically actuated on the craft.
Furthermore, it is possible to remotely control the USV with an RC remote,
which acts as a fail-safe during autonomous testing, and the vessel will shut
down if the signal connection is lost. Onboard the Piraya, a Robot Operating
System (ROS) runs on a Ubuntu 20.04 Intel NUC i7-7567@3.5GHz with
16GB RAM, and allows for remote code execution and logging over WiFi.
A 9-parameter model of the Piraya has previously been estimated through
offline system identification in [Ljungberg, 20212021Ljungberg, 20212021]. This model is presented
in Section 3.13.1.
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(a) Piraya USV in stationary state

(b) Piraya USV banking starboard

Figure 2.1 The Piraya USV during initial testing on 2023-04-05.
Photos: Saab Kockums / Glenn Pettersson.
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2.2 Model Predictive Control

Model Predictive Control is a technique for control of dynamical systems
[Rawlings et al., 20172017Rawlings et al., 20172017]. As in other control applications, a controller is
responsible for delivering inputs, or control signals to the system, with the
aim of driving the system state (e.g., position, or velocity) to some desired,
or reference state. Unlike traditional control techniques like the widely-used
PID controller, which computes the control signal from various manipu-
lations of the state error, i.e., the difference between the current state and
the reference state, the MPC controller makes use of a dynamic model of
the system when calculating the control signal [Rawlings et al., 20172017Rawlings et al., 20172017]. A
dynamic model can be used to predict how the system state will evolve
over time, given the current system state and the control signal applied.
Intuitively, in MPC this process is reversed, and the controller tries to
find what sequence of control signals applied from now on, will achieve
the desired behavior. Furthermore, MPC controllers are able to explicitly
account for constraints on both the control signals and states. That is, it is
possible to specify a limit on the control signal, like a maximum throttle, or
in the state, like a maximum velocity [Rawlings et al., 20172017Rawlings et al., 20172017]. The controller
will then find (if possible) a way to drive the system to the reference state,
while respecting those constraints, which might look very different from
the unconstrained case.

In order to find those control signals, numerical optimization is used. A
cost function is specified, which assigns a numerical value to the behavior
of the system [Rawlings et al., 20172017Rawlings et al., 20172017]. A good cost function should give
a small value when the system is performing as desired, e.g., when it is
close to or at the reference state, and when excess control signal is not
applied. When the MPC controller is ran, the numerical optimization will
find the sequence of control signals which minimize the cost function, over
some prediction horizon, i.e., a number of time-steps into the future. Since
the cost function summarizes the desired behavior of the system into one
numerical value, the solution is necessarily a compromise between driving
the system to the reference state, not applying too much control signal, and
staying within the constraints. The behavior of the real system, controlled
by MPC, can then be adjusted by tuning the cost function, i.e., making it
"cost more" to deviate from the reference state, or by making it "cost more"
to use a high control signal [Rawlings et al., 20172017Rawlings et al., 20172017]. Here, the former would
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lead to faster control behavior, and the latter would lead to slower control,
while reducing control input, like gas for an engine.

When deployed online, i.e., controlling a system in real-time, the MPC
controller is ran at some frequency, and calculates the optimal control
signal sequence at that time, given the newest measurements. The first
calculated control signal is applied to the actuators of the real system,
while the rest of the control sequence is discarded. In the next iteration,
this is repeated, and the first signal in the calculated sequence is applied,
while the rest are discarded [Rawlings et al., 20172017Rawlings et al., 20172017]. This is done since the
model used in MPC is never a perfect description of the real world, and
the optimal controls found at the next time step will tend to vary from the
ones found at the previous. Having to redo the optimization every iteration
places an inherent limitation on the frequency at which the controller can
be run, since the numerical optimization is a time-intensive process, and
must finish before the next iteration can start.

Path Following MPC
In [Faulwasser, 20132013Faulwasser, 20132013], the author outlines the theory for a method of Model
Predictive Path Following Control (MPFC), where a system is controlled
along a predefined path but chooses the velocity along the path dynamically.
This is then implemented in a writing robot in [Faulwasser et al., 20172017Faulwasser et al., 20172017]. For
USVs, trajectory tracking through way-point-following is a more common
method [Fossen, 20212021Fossen, 20212021].

2.3 Learning-Based Control

Recently, machine learning and statistical techniques have been extensively
applied in the context of control systems [Moe et al., 20182018Moe et al., 20182018]. These tech-
niques are often model-free, and instead learn the behavior of the systems
from data. One broad category of machine learning algorithms used in
control in recent years is Reinforcement learning (RL) and in particular,
𝑄-learning [Gros and Zanon, 20202020Gros and Zanon, 20202020].

Reinforcement learning is a subset of machine learning in which an agent,
meaning any learning system, learns an optimal policy (controller) by in-
teractions with its environment. The objective of the agent is to maximize
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a numerical reward, or minimize a numerical cost, cf. MPC. The reward to
be maximized is not just related to the current or next state but to all sub-
sequent states. Thus, an RL agent will learn to maximize the total reward
during the span of any task [Sutton and Barto, 20182018Sutton and Barto, 20182018]. Any RL algorithm
contains trial and error, whereby the agent learns of the reward for any ac-
tion by trying that action, and how that will impact the subsequent rewards
it will receive. Through enough trial and error, the value of any action in
any state will be known, and the policy can easily be chosen as the action
with the lowest cost in any state. In order to achieve this, exploration is
necessary, i.e., trying different actions and learning of the result. However,
an optimal, final, policy, will not explore, as it should always maximize
the total reward received. This is called exploitation, but it cannot be done
without first exploring [Sutton and Barto, 20182018Sutton and Barto, 20182018]. A good RL agent should
be able to balance these two aspects of learning. Too much exploration
will reduce the reward gained during any task, while too much exploitation
might prevent the agent from learning better ways of accomplishing the
task, yielding higher rewards in the long term.

Learning-Based MPC
In [Gros and Zanon, 20202020Gros and Zanon, 20202020], a method for improving the performance of an
MPC controller using Reinforcement Learning (RL) was first proposed. The
method was then improved in [Zanon et al., 20192019Zanon et al., 20192019] where implementation
details were discussed. This method was then expanded to use online System
Identification (SYSID) through the Prediction Error Method (PEM) along
with RL in [Martinsen et al., 20202020Martinsen et al., 20202020], where various approaches to combining
the SYSID and RL updates were investigated. Finally, these methods were
applied for Nonlinear Model Predictive Control (NMPC) control of an USV
in [Martinsen et al., 20222022Martinsen et al., 20222022], where control performance was successfully
increased using these methods.
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3
Model-Based Ship
Control

In this chapter, the framework for controlling an USV along a path with
MPC is established. Firstly, general ship modeling in six degrees of freedom
(DOF) is briefly introduced. Then, relevant coordinate frames are discussed.
After that, a 3-DOF model for USVs is shown, which is suitable for naviga-
tion and will be used for the remainder of the thesis. Then, a simple model
for external disturbances is shown. In the final section on ship modeling,
the model for the Piraya found in [Ljungberg, 20212021Ljungberg, 20212021] is shown, which later
is used for simulation. In the following section, NMPC is introduced in
general. Finally, the method of Nonlinear Model Predictive Path Following
Control (NMPFC) is discussed.

3.1 Ship Modeling in 6-DOF

Marine craft motion can in general be described in six degrees of free-
dom. These are surge 𝑢: motion in the forward direction, sway 𝑣: motion
in the sideways direction, yaw 𝑟: rotation about the vertical axis, roll 𝑝:
rotation about the forward axis parallel with 𝑢, pitch 𝑞: rotation about the
sideways axis parallel with 𝑣 and heave 𝑤: motion in the vertical direction
[Fossen, 20212021Fossen, 20212021], see Figure 3.13.1. These velocities are collected in the gener-
alized velocity vector 𝝂 = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]𝑇 . Furthermore, the pose vector
𝜼 = [𝑥, 𝑦, 𝑧, 𝜙, \, 𝜓]𝑇 is introduced. Here (𝑥, 𝑦, 𝑧) is the position of the
ship in Cartesian space, and (𝜙, \, 𝜓) are Euler angles about the 𝑥, 𝑦, and 𝑧
axes, respectively. These angles correspond to the angular velocities 𝑝, 𝑞,
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and 𝑟 . The generalized velocity vector of any ship abides by the following
differential equation [Fossen, 20212021Fossen, 20212021]

𝑴 ¤𝒗 + 𝑪 (𝒗)𝒗 + 𝑫 (𝒗)𝒗 + 𝒈(𝜼) + 𝒈0 = 𝝉act + 𝝉w,c + 𝝉wave (3.1)

Here 𝑴 ∈ S6
++ is the system inertia matrix, 𝑪 (𝒗) ∈ R6×6 is the velocity-

dependent Coriolis matrix and 𝑫 (𝒗) ∈ R6×6
++ is a velocity-dependent damp-

ing matrix. The R6×6
++ notation refers to a 6 × 6 positive definite matrix.

Futhermore, 𝒈(𝜼) is a pose dependent force vector of gravitational and
buoyancy forces, while 𝒈0 is a vector containing static forces. Further, 𝝉w,c
is the torque applied to the ship by wind and currents, lumped together, 𝝉wave
is torque applied to the ship by surrounding waves, and 𝝉act is a vector con-
trol of inputs. The total torque is commonly denoted, component-wise as
𝝉 = [𝑋,𝑌, 𝑍, 𝐾, 𝑀, 𝑁]𝑇 . This should be interpreted as 𝑋 being a force
acting in the direction of the surge, 𝑌 being a force acting in the direction
of sway, and 𝑍 being a force acting in the heave direction. Furthermore, the
torques 𝐾, 𝑀 , and 𝑁 should be interpreted as torques around these same
axes [Fossen, 20212021Fossen, 20212021]. This can also be seen in Figure 3.13.1.

u

w

v

q

r

p

Figure 3.1 Figure showing the 6 DOF of a marine ship; surge 𝑢,
sway 𝑣 and heave 𝑤 and angular velocities 𝑝, 𝑞, and 𝑟. Photo: Saab
Kockums / Glenn Pettersson.
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Coordinate Frames
It should be noted that the matrices and vectors in Equation (3.13.1) depend
on the frame of reference used. In this thesis, two primary frames are used,
as shown in Figure 3.23.2. The first frame is the BODY frame. This frame is
aligned with the geometry of the craft, with the first axis spanning from
the aft to the fore of the craft. The second axis is aligned from port to
starboard, and the third axis is pointed ”downwards”, into the water, see
Figure 3.2a3.2a. This is the system in which the generalized velocity vector 𝝂
will be represented. The second frame is in this thesis used for expressing
the position of the craft in the pose vector 𝜼, the NED (North-East-Down)
frame. This frame has the 𝑥-axis pointed north, the 𝑦-axis pointed east and
shares the 𝑧-axis with the BODY system, see Figure 3.2b3.2b [Fossen, 20212021Fossen, 20212021].
The different degrees of freedom and the coordinate systems used are
summarized in Table 3.13.1.

xBODY

yBODY

zBODY

(a) BODY frame. The 𝑥-axis
points from aft to fore, and the 𝑦-
axis points from port to starboard.
The 𝑧-axis points ”downwards”.

xNED

yNED
zNED

(b) NED frame. The 𝑥-axis points
northwards, and the 𝑦-axis east-
wards. The 𝑧-axis points ”down-
wards”.

Figure 3.2 Illustration of the BODY and NED (North-East-Down)
frames, looking at a vessel from above.
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Table 3.1 Table summarizing the 6 degrees of freedom of a marine
craft and which coordinate systems they are measured in. Table
adapted from [Fossen, 20212021Fossen, 20212021].

NED BODY
Position
Angle

Velocity
Angular Velocity

Forces
Moments

Motion

𝑥 𝑢 𝑋 surge
𝑦 𝑣 𝑌 sway
𝑧 𝑤 𝑍 heave
𝜙 𝑝 𝐾 roll
\ 𝑞 𝑀 pitch
𝜓 𝑟 𝑁 yaw

The NED pose vector 𝜼 and the BODY velocity vector 𝝂 are coupled by the
following differential equation

¤𝜼 = 𝑱(𝜼)𝝂 (3.2)

where 𝑱(𝜼) is a transformation matrix defined according to

𝑱(𝜼) =
[
𝑹(𝜼) 03×3

03×3 𝑻 (𝜼)

]
, (3.3)

where 𝑹(𝜼) ∈ SO(3) is a rotational matrix and 𝑻 (𝜼) ∈ R3×3 is a transfor-
mation matrix of the Euler angles [Fossen, 20212021Fossen, 20212021].

3-DOF Maneuvering Models
For maneuvering purposes, [Fossen, 20212021Fossen, 20212021] proposes to simplify the 6-DOF
model into a 3-DOF model in terms of the surge 𝑢, sway 𝑣 and yaw 𝑟. This
restricts the motion of the ship to the surface, ignoring wave height, pitch
and roll. When navigating in calm waters like in an archipelago, this is likely
to be a good simplification, since the other degrees of freedom are mostly
excited in the presence of waves. Thus the pose vector is redefined to 𝜼 =

[𝑥, 𝑦, 𝜓]𝑇 and the generalized velocity vector is redefined to 𝝂 = [𝑢, 𝑣, 𝑟]𝑇 .
Furthermore, it is common to assume that all currents are constant and
irrotational, meaning they are of the form 𝒗𝑐 = [𝑢𝑐, 𝑣𝑐, 0]𝑇 . Under that
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assumption, the relative velocity 𝒗𝑟 = 𝒗 − 𝒗𝑐 is introduced in order to
simplify further. Under these conditions, the equations (3.13.1), (3.23.2) and
(3.33.3) are reduced to the following equation [Fossen, 20212021Fossen, 20212021].

¤𝜼 = 𝑹(𝜓)𝝂𝑟 (3.4a)
𝑴 ¤𝒗𝑟 + 𝑪 (𝒗𝑟 )𝒗𝑟 + 𝑫 (𝒗𝑟 )𝒗𝑟 + 𝒈(𝜼) + 𝒈0 = 𝝉act + 𝝉w,c + 𝝉wave (3.4b)

where 𝑹(𝜓) ∈ SO(3) is a rotational matrix about the 𝑧 axis

𝑹(𝜓) =

cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1


and the inertia matrix 𝑴 ∈ S3

++ is constant and composed of two parts, rigid-
body components as well as a hydrodynamic component, 𝑴 = 𝑴RB +𝑴A.
Similarly, the Coriolis matrix 𝑪 ∈ R3×3 is composed of a rigid-body and
a hydrodynamic component 𝑪 (𝒗𝑟 ) = 𝑪RB (𝒗𝑟 ) + 𝑪A (𝒗𝑟 ), however it is
skew-symmetric. Finally, the damping matrix 𝑫 (𝒗) ∈ R3×3

++ is composed
of a linear and nonlinear component, 𝑫 (𝒗) = 𝑫l + 𝑫n (𝒗𝑟 ). The matrices
are detailed in [Fossen, 20212021Fossen, 20212021], and contain linearization coefficients of the
nonlinear mappings to the general velocities and their squares, from the
forces 𝑋,𝑌 , and 𝑁 acting upon the ship. The model contains up to 22
parameters [Fossen, 20212021Fossen, 20212021].

Currents, Wind, and Waves. The external forces of currents and winds
are such that they vary slowly with time. Thus, it is reasonable to try to
estimate them as constant offsets in the model, which could be slowly
adapted over the course of an experiment

𝝉w,c =


𝑋w,c

𝑌w,c

𝑁w,c

 (3.5)

where 𝑋w,c and 𝑌w,c are forces in the 𝑥 and 𝑦-directions. Further, 𝑁w,c is a
constant torque on the ship, which can be interpreted as the wind catching
the vessel at an angle, and inducing a rotational force. When navigating
along straight sections of path, this torque can be expected to be constant,
as long as the wind is constant.
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The behavior of waves is too complex to be modeled as any constant bias
or offset, especially since they induce short-term oscillations. Furthermore,
they affect the heave, pitch and roll of the vessel, which are ignored in
the 3-DOF maneuvering model. Therefore, the force from waves was not
accounted for, setting 𝝉waves = 0.

Offline Identified Model of the Piraya
A fewer-parameter model than the one discussed so far has been created and
identified for the Piraya in [Ljungberg, 20212021Ljungberg, 20212021]. This is a 9-parameter model,
with the quadratic damping terms mentioned previously assumed to be 0,
containing only linear terms and quadratic cross terms. Since the model
was intended for use at low velocities, those terms could be assumed to be
negligible [Ljungberg, 20212021Ljungberg, 20212021]. Furthermore, the parameters are aggregates
of multiple of the parameters found in [Fossen, 20212021Fossen, 20212021]. It can be written

¤𝒗 = 𝚿𝒗 + 𝝉act =


𝑋𝑢 𝑋𝑣𝑟𝑟 0
𝑌𝑢𝑟𝑟 𝑌𝑣 0
𝑁𝑢𝑣𝑣 0 𝑁𝑟

 𝒗 +

𝑋𝜏 0
0 𝑌𝜏

0 𝑁𝜏


[
𝐹𝑥

𝐹𝑦

]
(3.6)

where 𝑋𝑢, 𝑌𝑣 and 𝑁𝑟 are linear damping terms on 𝑢, 𝑣 and 𝑟 , respectively.
Furthermore, 𝑋𝑣𝑟 , 𝑌𝑢𝑟 and 𝑁𝑢𝑣 couple the quadratic velocities 𝑣𝑟 , 𝑢𝑟 and
𝑢𝑣 to the generalized velocities 𝑢, 𝑣 and 𝑟. Finally, 𝑋𝜏 , 𝑌𝜏 and 𝑁𝜏 couple
the actuator forces 𝐹𝑥 and 𝐹𝑦 , described in the next section, with the
generalized velocity vector 𝝂. The model was sampled at 5 Hz and will
be used in simulation, since the offline system identification efforts have
yielded numerical values for these parameters [Ljungberg, 20212021Ljungberg, 20212021].

Control Actuation. The Piraya is driven by a single outboard motor, see
Figure 2.1b2.1b. The force generated by the motor is modeled as a single
force vector applied at the motor mounting point. The force direction is
determined by the angle 𝛼 at which the motor is rotated, which creates a
virtual rudder [Ljungberg, 20212021Ljungberg, 20212021]. An illustration can be found in Figure 3.33.3.
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Figure 3.3 The force 𝐹 from the engine is applied at the aft of
the ship, generating a force along the 𝑥 and 𝑦 directions, as well as
a torque, dependent on the virtual rudder angle 𝛼.

Commands sent to the engine and rudder are labeled 0 ≤ 𝑏 ≤ 100, which
is the engine throttle in percent, and −100 ≤ 𝑐 ≤ 100, which is the rudder
angle in percent, where 𝑐 = −100 signifies maximum rudder in the opposite
direction of 𝑐 = 100. This corresponds to the physical rudder maximum of
±30°. Thus the virtual rudder angle can be calculated as 𝛼 = 𝜋

6 ·
𝑐 (𝑡 )
100 . The

model for the forces is

𝐹𝑥 (𝑡) = 𝑏(𝑡)cos
(
𝜋

6
· 𝑐(𝑡)

100

)
(3.7)

𝐹𝑦 (𝑡) = 𝑏(𝑡)sin
(
𝜋

6
· 𝑐(𝑡)

100

)
(3.8)

Furthermore, since the engine is not placed at the vessel’s center of rotation,
a torque will also be generated, which is modeled as

𝜏𝜓 (𝑡) = Δ𝑥𝐹𝑦 (𝑡) − Δ𝑦𝐹𝑥 (𝑡) (3.9)

where Δ𝑥 and Δ𝑦 are the offsets of the engine with respect to the center
of rotation, along 𝑥 and 𝑦 respectively. In this case, the engine is assumed
to be placed in the center of the aft of the boat, yielding Δ𝑦 = 0, again,
see Figure 3.33.3. The total actuating force on the craft is assumed to be
proportional to this force and torque, yielding
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𝝉act =


𝑋𝜏𝐹𝑥 (𝑡)
𝑌𝜏𝐹𝑦 (𝑡)
𝑁𝜏𝐹𝑦 (𝑡)

 (3.10)

where 𝑋𝜏 , 𝑌𝜏 and 𝑁𝜏 are parameters to be found. In this model, the wake-
effect is ignored. The wake effect says that the output power of a propeller
engine is lowered at higher velocities. Thus, here the engine is assumed to
output the same force at any velocity [Ljungberg, 20212021Ljungberg, 20212021].

Discrete Piraya Model. The model from [Ljungberg, 20212021Ljungberg, 20212021] was created
for the estimation of these parameters through offline SYSID. In order to
aid the parameter estimation of model (3.63.6), the model was discretized in
[Ljungberg, 20212021Ljungberg, 20212021], in the following way

[
𝜼𝑘+1
𝒗𝑘+1

]
=

[
𝜼𝑘

𝒗𝑘

]
+ 𝑇𝑠 ·

[
𝑹(𝜓)
𝚿

]
𝒗𝑘 +

[
0

𝝉act + 𝝉w,c

]
(3.11)

with 𝚿, 𝑹(𝜓), 𝜏act and 𝜏w,c defined previously. In [Ljungberg, 20212021Ljungberg, 20212021], Eu-
ler’s Method was used for discretization when obtaining the simulation
model. The advantage of Euler’s Method is the computational simplicity
compared to other methods, and the fact that if a continuous model is linear
in its parameters, the discrete model will be as well, which will come in
useful later [Martinsen et al., 20222022Martinsen et al., 20222022]. The disadvantage of this method is in
the linear rate of convergence, O(𝑇𝑠), and thus the prediction accuracy for
simulation of multiple time-steps will be relatively low.

For using this model with a time-step size 𝑇𝑠 ≠ 0.2, not corresponding
to 5 Hz, the parameters in 𝚿 and 𝜏act have to be scaled to compensate. In
[Kockum, 20222022Kockum, 20222022] it was found that simply scaling the coefficients linearly by
the ratio between the desired and actual model frequency, 𝑇𝑠/0.2, worked
well. This is later used when simulating the model in real-time.
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3.2 Model Predictive Control

Model predictive control begins with taking advantage of a known model
of the system we want to control. So, consider a system, with a state vector
𝒙 ∈ R𝑛𝑥 , an input vector 𝒖 ∈ R𝑛𝑢 and an output vector 𝒚 ∈ R𝑛𝑦 , where
𝑛𝑥 , 𝑛𝑢 and 𝑛𝑦 are the number of states, controls and outputs, respectively.
Further assume it follows the model

¤𝒙 = 𝑓 (𝒙, 𝒖)
𝒚 = ℎ(𝒙, 𝒖)

(3.12)

where 𝑓 describes the dynamics of the system and ℎ is an output map of
the system. The system is subject to constraints on the states and controls,
𝒙(𝑡) ∈ X, 𝒖(𝑡) ∈ U,∀𝑡 and 𝒙(0) = 𝒙0, whereX is the set of allowed states,
U is the set of allowed control inputs, and 𝒙0 is the initial condition of
the system [Rawlings et al., 20172017Rawlings et al., 20172017]. The goal, in this case, is to construct a
control signal 𝒖(𝑡) such that the output state function 𝒚(𝑡) → 𝒚ref (𝑡) where
𝒚ref (𝑡) is some desired output of the system.

Discrete-Time Control
When MPC is implemented as an online method, the system needs to be
discretized:

𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘),
𝒚𝑘 = ℎ̂(𝒙𝑘 , 𝒖𝑘),
𝒙0 = 𝒙(0),
𝒙𝑘 ∈ X, 𝒖𝑘 ∈ U, 𝑘 = 1 . . . 𝑁𝑝 − 1

(3.13)

where 𝒙𝑘 = 𝒙(𝑇𝑠𝑘), 𝑇𝑠 is the sampling period and 𝑘 ∈ N is the itera-
tion number. Here 𝑓 and ℎ̂ are discretizations of the model 𝑓 and output
map ℎ, respectively. Using this discretized model, MPC should generate a
control sequence {𝒖𝑘}𝑁𝑐−1

𝑘=0 , giving the system the desired behavior. Here
𝑁𝑝 ∈ N is the prediction horizon, the number of time steps of look-ahead
in the optimization [Rawlings et al., 20172017Rawlings et al., 20172017]. The principle is illustrated in
Figure 3.43.4
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Figure 3.4 Illustration of the MPC principle, applied in every
time-step. In the past, at every time-step the state 𝑥𝑡 was measured,
under the influence of the control signal 𝑢𝑡 , driving the system
toward the reference 𝑟𝑡 . At the time "now", a sequence of control
signals {𝑢𝑡 }𝑁𝑐

𝑡=0 is found to be optimal in order to drive the predicted

states {𝑥𝑡 }
𝑁𝑝

𝑡=0 to the reference 𝑟. It can be seen that up to the control
horizon 𝑁𝑐 , one control signal is computed per time-step, and after
that and up until the prediction horizon 𝑁𝑝 , the final computed
control signal is held constant. At the time "now" the reference can
be seen to change.

This control sequence should achieve the control objective by minimizing
the cost function, which should quantify the difference between the current
output 𝒚𝑘 and the desired output over the prediction horizon. The cost
function is defined as the sum of the stage cost function ℓ(𝒚, 𝒖, 𝒚ref), for
every predicted state. Explicitly, this is usually formulated as the following
minimization problem [Rawlings et al., 20172017Rawlings et al., 20172017]

minimize
{𝒖𝑘 }𝑁𝑐−1

𝑘=0

𝑁𝑐−1∑︁
𝑘=0

ℓ(𝒚𝑘 , 𝒖𝑘 , 𝒚ref) +
𝑁𝑝−1∑︁
𝑘=𝑁𝑐

ℓ(𝒚𝑘 , 𝒖𝑁𝑐−1, 𝒚ref) (3.14a)

subject to 𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘), (3.14b)
𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘), (3.14c)
𝒙0 = 𝒙(0), (3.14d)
𝒙𝑘 ∈ X, 𝒖𝑘 ∈ U, 𝑘 = 1 . . . 𝑁𝑝 − 1 (3.14e)

27



here 𝑁𝑐 ∈ N is the control horizon and determines the number of control
signals to calculate. The first sum in Equation (3.14a3.14a) corresponds to steps
in which the control actions are to be determined by the MPC controller,
while in the second sum, the cost for the remaining steps is calculated
assuming that the final control action 𝑢𝑁𝑐−1 is kept for all of the remaining
iterations

Stage Cost Function
Introducing the error 𝒆 = 𝒚 − 𝒚ref , the stage cost function is written ℓ(𝒆, 𝒖),
and is commonly picked to be a quadratic function. The cost function
provides the ability to penalize the error in every state individually, as well
as the magnitude of the individual control signals. This can be written

ℓ(𝒆, 𝒖) = 𝒆𝑇𝑸𝒆 + 𝒖𝑇𝑹𝒖 (3.15)

where 𝑸 ∈ R𝑛𝑦×𝑛𝑦

++ and 𝑹 ∈ R𝑛𝑢×𝑛𝑢++ are often picked to be diagonal
matrices. Furthermore, it is common to penalize large changes in control
signal between iterations, to avoid excessive tear on actuators. This is done
similarly to 𝒆 and 𝒖, adding a quadratic cost to Δ𝒖 = 𝒖 − 𝒖prev as follows:

ℓ(𝒆, 𝒖,Δ𝒖) = 𝒆𝑇𝑸𝒆 + 𝒖𝑇𝑹𝒖 + Δ𝒖𝑇𝑷Δ𝒖 (3.16)

where 𝑷 ∈ R𝑛𝑢×𝑛𝑢++ is often a diagonal matrix [Rawlings et al., 20172017Rawlings et al., 20172017]. The
interpretation of the cost function should be that increasing the size of
the elements in 𝑸 will encourage the controller to find solutions with
lower state error 𝒆. This will be accomplished with larger control signal
magnitudes and changes. Conversely, if keeping the control signal small
is important, increasing the size of the terms in 𝑹 will accomplish this.
Similar changes to performance can be achieved by augmenting the matrix
𝑷, which will affect the rate of change in the control signal. It should be
noted that only the relative size of the terms in the matrices matter. The
MPC problem in Equation (3.14a3.14a) can now be rewritten in the following
form, with 𝒖 𝑓 = 𝒖𝑁𝑐−1
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minimize
{𝒖𝑘 }𝑁𝑐−1

𝑘=0

𝑁𝑐−1∑︁
𝑘=0

[
𝒆𝑇𝑘𝑸𝒆𝑘 + 𝒖𝑇

𝑘 𝑹𝒖𝑘 + Δ𝒖𝑇
𝑘 𝑷Δ𝒖𝑘

]
+

𝑁𝑝−1∑︁
𝑘=𝑁𝑐

[
𝒆𝑇𝑘𝑸𝒆𝑘 + 𝒖𝑇

𝑓 𝑹𝒖 𝑓

] (3.17a)

subject to 𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘), (3.17b)
𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘), (3.17c)
𝒙0 = 𝒙(0), (3.17d)
𝒙𝑘 ∈ X, 𝒖𝑘 ∈ U, 𝑘 = 1 . . . 𝑁𝑝 − 1 (3.17e)

This is solved to compute a control signal at every iteration. The initial
condition 𝒙0 at every iteration is taken to be the current position, and
the minimization generates a control sequence {𝒖∗

𝑘
}𝑁𝑐−1
𝑘=0 which is optimal

with respect to the cost function (3.17a3.17a). Of this sequence, the first control
signal 𝒖∗0 is applied to the real system, while the rest is discarded. In the
next control iteration, a new optimal 𝒖∗0 is calculated.

3.3 Model Predictive Path Following Control

A MPC controller like the one formulated in Equation (3.173.17) can be used
for steering a system to way-points, or trajectory tracking. In order to make
the system follow paths in space, the Model Predictive Path Following
Control (MPFC) approach introduced by [Faulwasser, 20132013Faulwasser, 20132013] can be used.
Here, a path is a geometric curve in the output space: P = {𝒚 ∈ R𝑛𝑦 |𝑧 ∈
R ↦→ 𝒚 = 𝑝(𝑧)}, where 𝑧 ∈ [0, 𝑧max] is a scalar path parameter, and 𝑝 is
a parameterization of the curve. The controller is tasked with advancing
𝑧, thus advancing the system along the path. This is similar to following
a logged trajectory, but in contrast to trajectory following, while 𝑧 evolves
with time, it is not specified at what time the system should be at a specific
state [Faulwasser et al., 20172017Faulwasser et al., 20172017]. Thus, we use ¤𝑧, the path velocity, which is
the derivative of the path parameter 𝑧with respect to time. The path velocity
represents the speed of the vessel along the path. The controller is designed
to advance the system along P at a variable pace, and the controller chooses
¤𝑧 as a trade-off between accurate curve tracking and advancing along the
path at a desired rate. An illustration can be seen in Figure 3.53.5.
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z = 2 m/s.

z = 5 m/s.

P

Figure 3.5 An illustration of MPFC, which relates to the trade-off
of traveling at the desired speed, and making sure to stay on the path
P (purple). The vessel in red keeps a higher speed but does not stay
on the path as well as the slower vessel in green. By varying the
speed dynamically, based on the path ahead, one can travel quickly
when possible, like along straight path sections, while still sticking
to corners by lowering the speed.

MPFC objective
There are two mathematical formulations of MPFC given by
[Faulwasser, 20132013Faulwasser, 20132013]. The first one emphasizes reaching the goal, and the
path velocity is only limited by the ability of the controller to keep the
system on track. That is formulated as follows

lim
𝑡→∞

𝑝(𝑡) − 𝑝(𝑧(𝑡)) = 0, (3.18a)

lim
𝑡→∞

𝑧(𝑡) − 𝑧max = 0, ¤𝑧(𝑡) > 0, (3.18b)

where ¤𝑧(𝑡) > 0 ensures forward movement along the path. Further, the
second variation of MPFC replaces Equation (3.18b3.18b) with

lim
𝑡→∞

¤𝑧(𝑡) − ¤𝑧ref = 0, ¤𝑧(𝑡) > 0 (3.19)

where ¤𝑧ref is a specified speed the system should aim to keep along the
path. This version of MPFC will aim to keep the speed at ¤𝑧ref , but make
adjustments in order to fulfill the condition of staying on the path.
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Virtual States and Virtual Control
In order to use MPC for path-following, the system in Equation (3.123.12)
is extended with one virtual input �̃� and multiple virtual states, �̃� =[
𝑧, ¤𝑧, . . . , 𝑧 (𝑟 )

]𝑇 . Here, 𝑟 is the relative vector degree of the system
[Faulwasser, 20132013Faulwasser, 20132013]. The relative vector degree essentially specifies the or-
der of the system, the number of integral steps between the control input,
𝒖, and the output state 𝒚. The virtual input is connected to the virtual states
by 𝑧 (𝑟+1) = �̃�. This should be interpreted as an integrator chain of length 𝑟
from the virtual input �̃� to the virtual state 𝑧. In MPFC, the virtual states �̃�
represent the path parameter and its derivatives. From the discussion in Sec-
tion 3.33.3 we have the constraints 𝑧 ∈ [0, 𝑧max] and ¤𝑧 > 0. The other virtual
states and the virtual input �̃� are unconstrained. Using this, the continuous
time model Equation (3.123.12) is extended as follows,

¤𝒙𝑒 = 𝑓 𝑒 (𝒙𝑒) =
(
¤𝒙
¤̃𝒙

)
=

(
𝑓 (𝒙, 𝒖)
𝑓 (�̃�, �̃�)

)
(3.20a)

¤𝒚𝑒 = ℎ𝑒 (𝒙𝑒) =
(
𝒚

�̃�

)
=

(
ℎ(𝒙, 𝒖)

�̃�

)
(3.20b)

where 𝑓 (�̃�, �̃�) =
[
¤𝑧, ¥𝑧, . . . , 𝑧 (𝑟 ) , �̃�

]𝑇 . This extended model can then be
discretized with Euler’s method for discrete control. In MPFC, the virtual
output 𝑧, generated from these dynamics, maps to a position 𝑝(𝑧) on the
path. This position is then used as a reference for the stage cost function
in Equation (3.163.16) where we substitute 𝒆 = 𝒚 − 𝑝(𝑧) for the error. In the
following then, the error signifies the difference between the vessel position
and the position on the path which the controller "wants" to be at. Further,
a virtual state error is introduced, based on equations (3.18b3.18b) and (3.193.19), as

�̃� =

[
𝑧 − 𝑧max

¤𝑧 − ¤𝑧ref

]
(3.21)

which we want to drive to zero [Faulwasser, 20132013Faulwasser, 20132013]. The first component of
�̃� going to zero implies the vessel is at the end of the path, while the second
component being zero implies the vessel is keeping the desired speed along
the path. This further allows us to introduce the extended error vector and
extended input vector,
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𝒆𝑒 =

[
𝒆

�̃�

]
, 𝒖𝑒 =

[
𝒖

�̃�

]
(3.22)

It should be noted thatΔ𝒖 is not given an extension, since the virtual control
signal �̃� just exists in computer memory and thus there is no actuator wear
to worry about. Furthermore, extended cost matrices 𝑸𝑒 ∈ R𝑛𝑦+2×𝑛𝑦+2

++ and
𝑹𝑒 ∈ R𝑛𝑢+1×𝑛𝑢+1++ are introduced, with penalties as appropriate on the path
parameter and path velocity, and on the control input, respectively. Using
this new extended system, a new cost function containing the new virtual
states can be written as follows

ℓ(𝒆𝑒, 𝒖𝑒,Δ𝒖) = (𝑒𝑒)𝑇𝑸𝑒𝒆𝑒 + (𝑢𝑒)𝑇𝑹𝑒𝒖𝑒 + Δ𝒖𝑇𝑷Δ𝒖

Finally, the new constraint sets are X𝑒 = X × [𝑧0, 𝑧max] × [0,∞] × R𝑟−2

andU𝑒 = U ×R, as discussed previously. The full MPFC formulation can
be written similarly to Equation (3.173.17)

minimize
{𝑢𝑘 }𝑁𝑐−1

𝑘=0

𝑁𝑝−1∑︁
𝑘=0

[
(𝒆𝑒)𝑇𝑘𝑸

𝑒𝒆𝑒𝑘 + (𝒖
𝑒)𝑇𝑘 𝑹

𝑒𝒖𝑒
𝑘 + (Δ𝒖

𝑒)𝑇𝑘 𝑷
𝑒Δ𝒖𝑒

𝑘

]
(3.23a)

subject to 𝒙𝑒𝑘+1 = 𝑓 𝑒 (𝒙𝑒𝑘 , 𝒖
𝑒
𝑘), (3.23b)

𝒚𝑒𝑘 = ℎ𝑒 (𝒙𝑒𝑘 , 𝒖
𝑒
𝑘), (3.23c)

𝒙𝑒0 =
[
𝒙(0)𝑇 , 𝑧0, 0, . . . , 0

]𝑇
, (3.23d)

𝒙𝑒𝑘 ∈ X
𝑒, 𝒖𝑒

𝑘 ∈ U
𝑒, 𝑘 = 1 . . . 𝑁𝑝 − 1 (3.23e)

where 𝑧0 at every iteration is chosen to be the path parameter which is the
minimizer of | |𝒙0− 𝑝(𝑧0) | |2, i.e. the position on the path which is closest to
the current position of the system [Faulwasser et al., 20172017Faulwasser et al., 20172017]. As before, 𝒙0
is chosen as the current position of the system every iteration. In the rest of
the thesis, this is the MPFC formulation used, and the superscript 𝑒 of the
extended system is dropped for the sake of notational brevity. In Figure 3.63.6
the solution to one iteration of an example of prediction along a predicted
path can be seen.
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Simulation results:
Initial: T = 0.0, (x,y, ) = (6223679.0,535512.5,183.461° ), (u, v, r) = (3.0,0.0, 0.000° )

Current: t = 49.80, (x,y, ) = (6223543.5,535607.2,151.741° )(u, v, r) = (3.582,-0.059, 3.137° ).
Signal: (b,c) = ( 6.93,-16.88), State cost:   2199

Figure 3.6 Illustration of the solution of an iteration of MPFC. To
the left the planned path is shown in purple, along with the trajectory
already traveled in blue. Part of the virtual state trajectory can be
seen in the top of the left picture, where the orange indicates what
the virtual state position 𝑝(𝑧) was while the vessel was off the path.
In red, the predicted trajectory of the MPFC solution can be seen
sticking close to the planned path. Finally, in the two right plots,
the throttle (upper right) and rudder (lower right) signals needed to
achieve this trajectory are shown.

3.4 Nonlinear Model Predictive (Path Following)
Control

In Nonlinear Model Predictive Control (NMPC), the principle of MPC de-
tailed above is applied to a non-linear system, i.e., a system where the model
function 𝑓 is non-linear. Similarly, when applying the MPFC formulation
to the control of a non-linear system, it becomes a Nonlinear Model Pre-
dictive Path Following Control (NMPFC) problem. In a nonlinear setting,
the same method discussed in Section 3.33.3 is used, but without guarantees
of global optimality of the computed solution to the minimization problem,
{𝒖∗

𝑘
}𝑁𝑐−1
𝑘=0 . This is due to the fact that a non-linear 𝑓 will give rise to a

non-convex optimization problem in most instances. In a non-convex opti-
mization problem, there are multiple points of local minima, as compared
to a convex optimization problem, where the only minimum is the global
minimum of the function [Böiers, 20102010Böiers, 20102010]. In practice, this requires the use
of more robust optimization methods, which might increase computation
time.
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4
Learning-Based Ship
Control

While Model Predictive Control is a powerful tool for control, it relies
heavily on the model being accurate to real-world behavior. If some inter-
nal system dynamics are left out of the model, or if external disturbances
are not modeled, performance is quickly degraded. Unlike a classic PID
controller, there is no integral action compensating for steady-state errors
in the standard MPC implementation [Rawlings et al., 20172017Rawlings et al., 20172017]. In the case of
USV control, our model is approximate, and there are multiple disturbances
like winds, currents, and waves which interact with the system in a manner
that is complex to model [Fossen, 20212021Fossen, 20212021]. One method for improving MPC
performance is system identification, which updates the prediction model
parameters in the MPC, ensuring the model fits as close to reality as
possible. Further, there are multiple model-free approaches for adapting
the MPC controller to account for unmodeled dynamics. One such method
is Q-learning, which tries to maximize the reward received by the agent,
without consideration of the real-world meaning of parameters.

4.1 System Identification

In system identification, the parameters of a model are calculated from
the real-world behavior of the system. This necessitates the creation of
a mathematical model 𝑓𝜽 , which is expected to predict the behavior of
the system given the correct set of parameters 𝜽 . Furthermore, data on
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real-world behavior has to be collected. In the Prediction Error Method
(PEM) [Åström, 19811981Åström, 19811981], the model is used to predict the next state of the
system, 𝒙+ = 𝑓𝜽 (𝒙, 𝒖) given the current state and control signal 𝒙 and 𝒖.
Here the subscript 𝜽 indicates that the prediction depends on the model
parameters. The difference between the predicted position and the next
measured position can then be used to calculate a new parameter vector 𝜽+,
which more accurately describes the behavior of the system.

Online Prediction Error Method
Once a model has been determined and an initial guess of the parameters
𝜽 is acquired, an online system identification algorithm can update these
parameters in order to reduce the mismatch between the behavior predicted
by the model, and the observed behavior of the system. Given a measured
state 𝒙𝑡 with control signal 𝒖𝑡 , as well as the next measured state 𝒙𝑡+1 and
the predicted state 𝑓𝜽 (𝒙𝑡 , 𝒖𝑡 ), the prediction error is

𝜺𝑡 = 𝒙𝑡+1 − 𝑓𝜽 (𝒙𝑡 , 𝒖𝑡 ) (4.1)

Identifying the parameters 𝜽 that minimize the prediction error is an ex-
ample of a non-linear least squares problem (NLS), where the goal is to
minimize the squared error [Martinsen et al., 20202020Martinsen et al., 20202020]

𝜙(𝜽) = 𝜺𝑇𝜺 (4.2)

which for a batch of prediction errors, E = {𝜺𝑡 }𝐵𝑡=𝐵−𝑊 , is a NLS problem

min
𝜽

𝜙(𝜽) = min
𝜽

𝐵∑︁
𝑡=𝐵−𝑊

𝜺𝑇𝑡 𝜺𝑡 = min
𝜽

𝐵∑︁
𝑡=𝐵−𝑊

| |𝒙𝑡+1 − 𝑓𝜽 (𝒙𝑡 , 𝒖𝑡 ) | |2 (4.3)

Here, 𝐵 is the batch size, and𝑊 the window size. The batch size determines
the number of new data points to be gathered before each update, while the
window size determines the total number of data points to be kept and used
for the update. After a parameter update, the prediction errors corresponding
to these old data points are then recomputed using Equation (4.14.1), but using
the updated parameters 𝜽+ for prediction. Thus, when 𝑊 > 𝐵, the method
ensures that not only does the model fit the new data, but also the old
data. NLS problems are commonly solved using the Gauss-Newton method
[Böiers, 20102010Böiers, 20102010]
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𝜽 ← 𝜽 + 𝛽 𝑓 (𝑱𝑇𝑓 𝑱 𝑓 + _ 𝑓 𝑰)−1𝑱𝑇𝑄E (4.4)

where _ 𝑓 𝑰 is a regularization term ensuring the positive definiteness of the
(modified) matrix hessian 𝑯 𝑓 = 𝑱𝑇

𝑓
𝑱 𝑓 +_ 𝑓 𝑰. Moreover, 𝛽 𝑓 is the learning

rate and the Jacobian 𝐽 𝑓 and batch of errors E are defined as

𝑱 𝑓 =


∇𝜽𝜺1 (𝒙0, 𝒖0, 𝒙1)
∇𝜽𝜺2 (𝒙1, 𝒖1, 𝒙2)

...

∇𝜽𝜺𝑇 (𝒙𝑇−1, 𝒖𝑇−1, 𝒙𝑇 )


, E =


𝜺1

𝜺2
...

𝜺𝑇


(4.5)

Note that if the model is linear in the parameters, 𝑓𝜽 (𝒙𝑡 , 𝒖𝑡 ) = 𝒀 (𝒙𝑡 , 𝒖𝑡 )𝜽 ,
the gradient is ∇𝜽𝜺𝑡 (𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1) = −𝒀 (𝒙𝑡 , 𝒖𝑡 ). So the update step reduces
to the modified Newton Method for such systems. With _ 𝑓 = 0, and 𝛽 𝑓 = 1
this method should find the optimal 𝜽 in just one step [Böiers, 20102010Böiers, 20102010].
However, in practice, it is necessary to set _ 𝑓 > 0, but small, to avoid
trying to invert a singular expression [Martinsen et al., 20202020Martinsen et al., 20202020]. This, in turn,
implies the optimal 𝜽 will not be found at every batch update, but a good
approximation.

Piraya Online PEM
When running SYSID online on the Piraya, the model proposed in
[Ljungberg, 20212021Ljungberg, 20212021] is used as a basis. Thus, the parameterized model 𝑓𝜽
is chosen to be the model in Equation (3.113.11), with parameters 𝜽model

𝜽model =
[
𝑋𝑢 𝑋𝑣𝑟 𝑋𝜏 𝑌𝑢𝑟 𝑌𝑣 𝑌𝜏 𝑁𝑢𝑣 𝑁𝑟 𝑁𝜏

]𝑇
(4.6)

Environmental bias vector. In addition to identifying the model param-
eters, a vector of environmental biases is also estimated in order to help
with the prediction of the model state in the case where disturbances such
as wind and currents are present, corresponding to Equation (3.53.5). This is
done by introducing the parameterized bias vector

𝝂bias =


𝑢b

𝑣b

𝑟b

 (4.7)
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It is important to note that in the model Equation (3.53.5) the bias is modeled
as two forces and a torque, while here a generalized velocity vector is used
to model the disturbance. Thus the bias is introduced into the model as

¤𝜼 = 𝑅(𝜓)𝝂 + 𝝂bias (4.8)

The reason for this is the rotational invariance gained by modeling the
bias this way in NED. Since no rotational matrix is applied to 𝝂bias, any
identified disturbance will still be valid after the USV makes a turn. The
biases are model parameters 𝜽bias = {𝑢𝑏, 𝑣𝑏, 𝑟𝑏}, and are to be learned
on-line using system identification and reinforcement learning. Thus, the
set of parameters to be identified using SYSID online is

𝜽SYSID =

[
𝜽𝑇model 𝜽𝑇bias

]𝑇
(4.9)

4.2 Reinforcement Learning Based Model
Predictive Control

As previously mentioned, the performance of any MPC controller is highly
dependent on the accuracy of the model used for prediction. In the previous
section, it was outlined how to adjust model parameters based on real-
world data in order to more closely match the real system. However, when
the mathematical model is known to be approximate, the performance
improvements possible by this method is limited by which dynamics are
modeled. In order to increase performance beyond the limits of the modeled
dynamics, Reinforcement Learning can be used to improve the performance
of the controller in a model-free manner [Gros and Zanon, 20202020Gros and Zanon, 20202020].

This section is outlined as follows. First, the idea of Reinforcement Learn-
ing and the Q-learning algorithm are introduced in a discrete-space context.
This is not strictly necessary for the thesis, but is shown in Appendix AA.
Then, Function Approximation is described, which allows the usage of Re-
inforcement Learning concepts in continuous space, and thus approximate
Q-learning is outlined. After that, the manner in which this can be combined
with MPC, as shown in [Gros and Zanon, 20202020Gros and Zanon, 20202020], is described.
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Discrete Reinforcement Learning
Reinforcement Learning is most often introduced in a discrete-space setting.
While discrete RL is not used in this thesis, the notation and concepts
introduced in that setting carry over to continuous-space RL. The first
important concept is the state 𝑠, which encompasses all information about
an agent at a given time. Furthermore, an action 𝑎 is any decision an agent
can make which changes the state. In RL, a reward 𝑅(𝑠) is introduced,
which is the ground truth, and the RL agent wishes to maximize the reward
received over an entire run, called value. The value is measured by a value
function 𝑉𝜋 (𝑠) and signifies the total reward received when starting from
state 𝑠 and taking actions according to the policy 𝜋(𝑠) afterwards. Finally,
the action-value function or Q-function, 𝑄 𝜋 (𝑠, 𝑎) similarly measures the
value of the state 𝑠, if the action 𝑎 is taken, and the policy 𝜋(𝑠) is followed
afterwards [Sutton and Barto, 20182018Sutton and Barto, 20182018]. Details on how this can be turned into
a learning-method can be found in Appendix AA.

Function Approximators in Continuous Space
Parameterized Q-Function. The methods discussed in Appendix AA can
be shown to converge to the optimal value- or Q-function for discrete sets
of states S and of actions A. The value- or Q-function is usually kept
track of in tables and is updated by the principles of dynamic programming
[Sutton and Barto, 20182018Sutton and Barto, 20182018]. For a continuous space of possible states and
actions, that kind of method becomes unfeasible, requiring infinite memory.
Instead, the method employed in continuous space RL is called Function
Approximation, where the true value- or Q-function is approximated by a
continuous function parameterized by a vector 𝜽 . In this case, since we will
be applying Q-learning, the parameterized Q-function can be written as
[Sutton and Barto, 20182018Sutton and Barto, 20182018].

𝑄(𝑠, 𝑎) ≈ �̂�(𝑠, 𝑎, 𝜽) (4.10)

Realistically, the number of state-action combinations visited in any task
typically outnumbers the number of parameters in the Q-function. This
implies that the approximate function will not be able to perfectly fit to
and equal the true function. However, this turns out to be a strength of the
function approximation method. Since the Q-function is parameterized to
be continuous, the value of any state and action in a region close to a visited
state 𝑠, should be similar to the value of �̂�(𝑠, 𝑎, 𝜽). This enables the method
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to generalize [Sutton and Barto, 20182018Sutton and Barto, 20182018], making informed decisions about
states it has never visited before, thanks to experience of the value of other,
similar states. A common method for function approximation is the usage of
artificial neural networks (ANN) [Sutton and Barto, 20182018Sutton and Barto, 20182018]. That is not the
method applied in this thesis however, due to ANN approximations leaving
few guarantees on the resulting control scheme [Gros and Zanon, 20202020Gros and Zanon, 20202020].
The approximation used here is outlined in Section 4.24.2.

Fitting Optimal Functions. In order to approximate the true Q-function,
the Mean Square Error (MSE) of a batch of observed transitions
{(𝑠𝑡 , 𝑎𝑡 , 𝑠+𝑡 )}𝐵𝑡=0 is measured, and is to be minimized

MSE𝑄 (𝜽) =
1
𝐵

𝐵∑︁
𝑡=0

[
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) − �̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽)

]2 (4.11)

where �̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽) is the parameterized function approximation of the
Q-function, and 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) is the true Q-function corresponding to the
policy 𝜋(𝑠), which at this point is unknown [Sutton and Barto, 20182018Sutton and Barto, 20182018].

A common method of optimization in machine learning is Stochastic gradi-
ent descent (SGD) [Sutton and Barto, 20182018Sutton and Barto, 20182018]. In SGD, the gradient descent
method is used on a single transition, with a randomly chosen subset of the
data. The gradient of the function to be minimized, i.e., the MSE, will point
in the direction for which the function increases the most. This method
works by taking steps in the opposite direction of the gradient, where it
decreases the most, with respect to this single transition. The parameter
update with respect to the transition (𝑠𝑡 , 𝑎𝑡 , 𝑠+𝑡 ) is [Sutton and Barto, 20182018Sutton and Barto, 20182018]

𝜽 𝑡+1 = 𝜽 𝑡 − 𝛽∇𝜽MSE𝑄 (𝜽)
= 𝜽 𝑡 + 𝛽

[
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) − �̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽)

]
∇𝜽�̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽)

(4.12)

where 𝛽 once again is the learning rate of the method. Now, just as in
the tabular case, the actual Q-function is unknown, and the method needs
to be modified into a bootstrap [Sutton and Barto, 20182018Sutton and Barto, 20182018] method in order
to work with solely the estimate �̂�. This gives rise to the name of Semi-
Gradient Methods (SeGD), as they do not properly approximate the gradient
of the MSE. In the function approximation variant of Q-learning, with
average reward setting, SeGD uses the difference between �̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽) and
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𝑅𝑡+1− �̄�+�̂�(𝑠𝑡+1, 𝑎𝑡+1, 𝜽) for its update step, where �̄� is the average reward
received thus far [Sutton and Barto, 20182018Sutton and Barto, 20182018]

𝜽 𝑡+1 = 𝜽 𝑡 + 𝛽𝛿∇𝜽�̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽) (4.13)

where

𝛿 =
[
𝑅𝑡+1 − �̄� + �̂�(𝑠𝑡+1, 𝑎𝑡+1, 𝜽) − �̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽)

]
∇𝜽�̂�(𝑠𝑡 , 𝑎𝑡 , 𝜽) (4.14)

It should be noted the resemblance that this update bears to the discrete
update Equation (A.7A.7), with 𝛿 as in Equation (A.6A.6), substituting �̂� for
𝑄. The function approximation version of the Q-learning algorithm from
[Sutton and Barto, 20182018Sutton and Barto, 20182018] is shown in Algorithm 11, and should be able to
find the optimal Q-function, and thus the optimal policy.

Algorithm 1 Function Approximation Q-learning
Initial state 𝑠
Learning rate 𝛽 > 0, Greedy parameter 𝜖 > 0
Parameter vector 𝜽 arbitrary
while learning do

𝑝 ← sample from𝑈 (0, 1)

𝑎 ←


argmax
𝑎

�̂�(𝑠, 𝑎, 𝜽), 𝑝 > 1 − 𝜖

random action, 𝑝 < 𝜖

𝑅, 𝑠+ ← system(𝑠, 𝑎)
𝜽 ← 𝜽 + 𝛽𝛿∇𝜽�̂�(𝑠, 𝑎, 𝜽)
𝑠← 𝑠+

end while

MPC as a Function Approximator
The previous sections have left out the important part of how to param-
eterize the Q-function approximation. Before doing so, we exchange the
total value and reward scheme for a total cost and stage cost scheme.
In this scheme, the stage cost is received as truth, and the total cost re-
ceived over the entire run is to be minimized. The theory presented thus far
still holds, as maximization and minimization are equivalent up to a sign
change. Now, as part of the method presented in [Gros and Zanon, 20202020Gros and Zanon, 20202020],
the Q-function is chosen as the MPC prediction cost, Equation (3.14a3.14a).
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Furthermore, a few terms are added to the MPC total cost in order to extend
the parameterization capabilities. An initial cost _ and a final cost matrix,
𝑽 𝑓 = diag

(
𝑉

𝑓

1 , . . . , 𝑉
𝑓

6

)
, which is used as a quadratic cost on the final pre-

dicted state error, are added. These parameters, the values in cost function,
along with the SYSID parameters discussed in Section 4.14.1, constitute the
parameter vector 𝜽 which the RL algorithm may alter. That is,

𝜽 =

[
𝜽𝑇SYSID 𝜽𝑇MPC

]𝑇
(4.15)

where 𝜽MPC includes the initial cost _ and the diagonal elements of the
cost matrices 𝑸, 𝑹, 𝑷 and 𝑽 𝑓 . Thus, 𝜽 contains 32 parameters. The
entire Q-function parameterization is as below [Gros and Zanon, 20202020Gros and Zanon, 20202020]
[Zanon et al., 20192019Zanon et al., 20192019]

𝑄𝜽 (𝑠, 𝑎) = minimize
{𝑢𝑘 }

𝑁𝑝−1
𝑘=1

_\ +
𝑁𝑝−1∑︁
𝑘=0

[
𝒆𝑇𝑘𝑸𝒆𝑘 + 𝒖𝑇

𝑘 𝑹𝒖𝑘 + Δ𝒖𝑇
𝑘 𝑷Δ𝒖𝑘

]
+ 𝒆𝑇𝑁𝑝

𝑽 𝑓 𝒆𝑁𝑝

(4.16a)
subject to 𝒙𝑘+1 = 𝑓𝜽 (𝒙𝑘 , 𝒖𝑘), (4.16b)

𝒚𝑘 = ℎ(𝒙𝑘 , 𝒖𝑘), (4.16c)

𝒙0 =
[
𝒔𝑇 , 𝑧0, 0, . . . , 0

]𝑇
, (4.16d)

𝒖0 = 𝑎, (4.16e)
𝒙𝑘 ∈ X, 𝒖𝑘 ∈ U, 𝑘 = 1 . . . 𝑁𝑝 − 1 (4.16f)

An argument for why the MPC total cost might be a good candidate for the
Q-function parameterization is, that by construction, the MPC optimization
objective is to minimize the total cost over the prediction horizon 𝑁𝑝 , which
could be considered as truncated version of the RL-problem of minimizing
the cost over the entire run.

Second Order Q-learning based Parameter Updates
Given the 𝑄-function parameterized by the MPFC cost function in Equa-
tion (4.164.16), we employ a similar method as in the system identification
algorithm in Section 4.14.1. We use a second-order method outlined in
[Zanon et al., 20192019Zanon et al., 20192019]. Instead of semi-gradient steps, we use hessian steps.
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This is done with the Modified Gauss-Newton method to minimize the
squared TD error as a function of the parameters 𝜽 . In practice, in order to
calculate the temporal difference, 𝛿, both �̂�𝜽 (𝑠𝑡+1, 𝑎𝑡+1, 𝜽) and �̂�𝜽 (𝑠𝑡 , 𝑎𝑡 )
are taken as the MPC solution cost at time 𝑡 and 𝑡 + 1, respectively. Given
a batch of transitions {(𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1, 𝒖𝑡+1)}𝐵𝑡=0, the TDs 𝜹 = {𝛿𝑡 }𝑇𝑡=0 can be
calculated. Then, the function to minimize is

𝜓(𝜽) = 𝜹𝑇𝜹 (4.17)

The NLS problem arising from minimizing the squared TD error is

min
𝜽

𝜓(𝜽) = min
𝜽

𝐵∑︁
𝑡=0

𝛿𝑇𝑡 𝛿𝑡

= min
𝜽

𝐵∑︁
𝑡=0
| |𝑅𝑡+1 − �̄� + �̂�𝜽 (𝒙𝑡+1, 𝒖𝑡+1) − �̂�𝜽 (𝒙𝑡 , 𝒖𝑡 ) | |2

(4.18)
The modified Gauss-Newton method applied in this case looks like

𝜽 ← 𝜽 + 𝛽𝑄 (𝑱𝑇𝑄𝑱𝑄 + _𝑄 𝑰)−1𝑱𝑇𝑄𝜹 (4.19)

where _𝑄 𝑰 is a regularization term ensuring the positive definiteness of the
(modified) hessian matrix matrix 𝑯𝑄 = 𝑱𝑇

𝑄
𝑱𝑄 + _𝑄 𝑰, and

𝑱𝑄 =


∇𝜽𝛿1 (𝒙0, 𝒖0, 𝒙1, 𝒖1)
∇𝜽𝛿2 (𝒙1, 𝒖1, 𝒙2, 𝒖2)

...

∇𝜽𝛿𝐵 (𝒙𝐵−1, 𝒖𝐵−1, 𝒙𝐵, 𝒖𝐵)


, 𝜹 =


𝛿1

𝛿2
...

𝛿𝑇


(4.20)

here, the target value at time 𝑡 + 1, 𝑅𝑡+1 − �̄� + �̂�𝜽 (𝒙𝑡+1, 𝒖𝑡+1) is taken to be
independent of 𝜽 [Martinsen et al., 20202020Martinsen et al., 20202020]. Thus 𝑱𝑄 reduces to

𝑱𝑄 =


∇𝜽𝑄𝜽 (𝒙0, 𝒖0, 𝒙1, 𝒖1)
∇𝜽𝑄𝜽 (𝒙1, 𝒖1, 𝒙2, 𝒖2)

...

∇𝜽𝑄𝜽 (𝒙𝐵−1, 𝒖𝐵−1, 𝒙𝐵, 𝒖𝐵)


(4.21)

Just as in the system identification case, the matrix 𝑱𝑇
𝑄
𝑱𝑄 may be singular.

Thus _𝑄 > 0 small is required, and the solution is not optimal.
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4.3 Combining System Identification and
Q-learning

Since both the SYSID and RL updates in the previous section modify the
parameters 𝜽 , it is plausible that these updates will conflict. This is natural
as the two algorithms have different goals. The SYSID algorithm tries to
predict the next position as accurately as possible, while the RL algorithm
tries to minimize the total cost of the run. While one could expect that a
more accurate model would help in achieving the RL objective, this does
not necessarily have to be the case. In [Zanon et al., 20192019Zanon et al., 20192019] it is shown
that for a perfect action-value-space parameterization, the updates of the
model parameters by system identification should not make the𝑄-function
parameterization violate the Bellman equation. However, since we do not
assume the parameterization to be perfect, the conflict must be handled.

In [Martinsen et al., 20202020Martinsen et al., 20202020] the Smallest Singular Value Projection is pro-
posed as a projection where the SYSID update does not impact RL perfor-
mance. It projects the SYSID update into a basis consisting of the 𝑝 smallest
singular values of the RL update step. Intuitively, this makes sense, as the RL
objective will not be sensitive to changes in this direction in the parameter
space, and shows good performance in practice in [Martinsen et al., 20202020Martinsen et al., 20202020].
Given the singular value decomposition of the hessian generated by the
Q-learning step,

𝑼𝚺𝑽 = 𝑯𝑄 (4.22)

a basis of the 𝑝 smallest singular values is formed by the last 𝑝 rows of 𝑽,
and we call it 𝑽. The smallest singular value projection is then given by

Δ𝜽𝑆𝑓 = 𝑽𝑇𝑽Δ𝜽 𝑓 (4.23)

where Δ𝜽 𝑓 is the unmodified parameter change computed by the SYSID
algorithm [Martinsen et al., 20202020Martinsen et al., 20202020]. Finally, the total update step using both
SYSID and RL is

𝜽 ← 𝛽𝑄Δ𝜽𝑄 + 𝛽 𝑓𝑽
𝑇𝑽Δ𝜽 𝑓 (4.24)

where 𝛽𝑄 and 𝛽 𝑓 are the learning rates of the respective methods. The
batch size of the respective methods 𝐵 is set to be the same, in order to
simplify the operation.
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5
Implementation

In this chapter, an overview of the entire program flow is first shown.
Then, the Cross Track Error (XTE) is described and used as a performance
measure. After that, the symbolic and numeric framework that was used is
described. This includes details on setting up the problem, how to compute
the Q-function gradient, and what solvers were used. Following, there is a
brief explanation of how the paths to be followed were generated. Finally, the
ROS interface is outlined, and the communication between the controller
and USV is described.

5.1 Program Overview

An overview of the implementation can be seen in Figure 5.15.1. The pro-
gram is initialized with a set of way-points (WPs) that the USV is sup-
posed to travel through. These are turned into a smooth path P. The
paths were created as part-linear, part-circular paths which approximately
follow through the way-points specified. This was necessary since the
path followed by MPFC needs to be at least continuously differentiable
[Faulwasser et al., 20172017Faulwasser et al., 20172017], in order for the optimization problem to be well-
defined and solvable in reasonable time. So given a set of way-points and
a turning radius, a path was created according to the method outlined in
Appendix BB. This path is then sent to the interface. The interface is
the center of the program, and is responsible for taking the latest sensor
data 𝒙 at fixed intervals 𝑇𝑠 , and calling the controller with the sensor
data, as well as the time elapsed since last update Δ𝑡, the current parameter
vector 𝜽 and the path to be traveled. The controller will run the NMPFC
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solver, with implementation details described in Section 5.35.3. The solver
will return the optimal control signal 𝒖∗ as the solution to Equation (3.233.23),
as well as the solution information, including the entire predicted path and
control signals, �̂�, �̂�, along with the total cost and the Lagrange multipliers
`, Z , also described in Section 5.35.3. The control signal is actuated on the
USV, and the solution information along with the elapsed time, current
parameter vector and cross-track-error 𝜒 is sent to the parameter updater.
The cross-track-error is described in Section 5.25.2. Further, the parameter
updater calls on the SYSID and RL objects with this information, and
receives the parameter updates Δ𝜽 𝑓 and Δ𝜽𝑄 according to equations (4.44.4)
and (4.194.19), respectively. The parameter updater then combines these using
the projection in Equation (4.244.24), yielding a final parameter update Δ𝜽 ,
which is updated in the interface. It should be noted that in case this is not a
batch update iteration cycle, the parameter change will be 0. The interface
then logs all this information, sending it to be printed and plotted. While
this is happening, the actuated signals lead to movement of the USV, which
are reflected in the sensors, whose outputs are used in the next cycle.

5.2 Cross Track Error

The performance of the controller will be measured using the cross-track-
error [Fossen, 20212021Fossen, 20212021], denoted 𝜒. The XTE is defined as the distance from
the vessel to the nearest point on the path, and is a measure of how well the
vessel follows the path, see Figure 5.25.2. It can be calculated as

𝜒 = | |𝜼 − 𝑝(𝑧) | |2 (5.1)

where 𝜼 is the USV position, 𝑝(𝑧) is the position on the path given the path
parameter 𝑧, which is chosen such that it minimizes the equation above.
Furthermore, the XTE is used as the true RL cost, and is substituted for 𝑅
in the RL method, Equation (4.184.18).
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Figure 5.1 Overview of the program, and essential signals. Here
WPs are the way-points, P is the path to be followed. 𝑇𝑠 is the tick-
rate of the program, Δ𝑡 is the (measured) time between iterations,
𝒙 is the measured state and 𝜽 is the parameter vector. Furthermore,
�̂� and �̂� are the predicted states and controls respectively, 𝑄 is the
MPC cost and ` are the Lagrange multipliers of the optimization
problem. Moreover, 𝒖 is the control signal sent to the USV and 𝜒 is
the cross-track error. Finally, Δ𝜽 , Δ𝜽 𝑓 and Δ𝜽𝑞 are the combined
parameter update, parameter update due to SYSID and parameter
update due to RL, respectively. Data contains all of these signals.

χ

Figure 5.2 Illustration of the XTE, 𝜒. It is defined as the closest
distance between that path and vessel.
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5.3 CasADi Optimization

The tool used for the algebraic formulation of, and numerical solution
of the optimization problems is CasADi, an open source tool for nu-
merical optimization and algebraic differentiation [Andersson et al., 20192019Andersson et al., 20192019].
CasADi uses computational graphs in a symbolic framework, with al-
gebraic differentiation to be able to calculate arbitrary derivatives, Jaco-
bians and Hessians. This information can then be used to interface with
various numerical solvers that can take advantage of this information,
such as QRQP [Andersson and Rawlings, 20182018Andersson and Rawlings, 20182018] or the external IPOPT
[Wächter and Biegler, 20062006Wächter and Biegler, 20062006]. CasADi is written in C++, and has inter-
faces to Python and Matlab. Thus, all code was written in Python, with the
performance-critical optimization done through native CasADi C++ code.

NMPFC in CasADi
The problem is formulated through the low-level CasADi interface nlpsol,
based on the lecture [Mehrez, 20192019Mehrez, 20192019]. Symbolic SX variables are created for
all of the states, virtual states and control signals, in all time-steps. Further-
more, symbolic states were created for the extended parameter vector 𝜽 ,
which allowed differentiation of the model 𝑓𝜽 and the Q-function 𝑄𝜽 with
respect to the parameters. Then, model constraints were expressed as equal-
ity constraints of the form 𝑓𝜽 (𝒙𝑘 , 𝒖𝑘) − 𝒙𝑘+1, set to zero, for 𝑘 = 0, . . . , 𝑁𝑝 .
Similarly, for the virtual states, the integrator dynamics 𝑓 (�̃�𝑘 , �̃�𝑘) − �̃�𝑘+1,
were set as equality constraints for 𝑘 = 0, . . . , 𝑁𝑝 . As a side effect, this
turned the extended states {𝒙𝑒

𝑘
}𝑁𝑐−1
𝑘=0 into decision variables along with the

extended control signals {𝒖𝑒
𝑘
}𝑁𝑐−1
𝑘=0 . This makes the problem sparser, hope-

fully improving solution times. The reference path is then initialized as a
function of the path parameter 𝑧, introduced as another SX variable. Using
these symbolic variables, the MPC cost according to Equation (3.233.23) was
computed as a symbolic function of these variables and the path, and set
as optimization objective. Finally, the constraints are set by creating nu-
meric vectors corresponding to the lower and upper bounds of the relevant
expressions, with the lower bound set equal to the upper bound in case of
equality constraints. The constraint vectors are built separately with respect
to constraints on decision variables, 𝒙, 𝒖, and constraints on expressions,
such as the model equations. The order of the variables in the constraint
vector should be the same as the order in which the variables are input to the
solver. With this setup, the NMPFC solution can be calculated by inputting
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the current state and model parameters to the solver, yielding numerical
values for all symbolic variables and Lagrange multipliers `∗ and Z∗.

Q-function Gradient
The Q-function is as mentioned chosen to be the total MPC cost. In order
to make use of the SeGD methods shown in Section 4.24.2, it is necessary to
compute the gradient of the Q-function with respect to the parameter vector,
∇𝜽𝑄𝜽 (𝒙, 𝒖). When doing SYSID, the gradient with respect to the model,
∇𝜽 𝑓𝜽 was easily computed by differentiating the model equations. This is not
the case here, since𝑄𝜽 is defined as the solution to a minimization problem
(Equation (4.164.16)). The methodology is given by [Zanon et al., 20192019Zanon et al., 20192019], where
the authors showed that the relevant gradient can be computed using the
Lagrangian of the optimization problem. The Lagrangian is given as

L𝜽 (𝒙, 𝒖, `, Z) = 𝑉 𝑓

𝜽 (𝒙𝑁𝑝
) +

𝑁𝑝−1∑︁
𝑘=0

ℓ𝜽 (𝒙𝑘 , 𝒖𝑘 ,Δ𝒖𝑘) +

+ `𝑇0 (𝒙0 − 𝑠) +
𝑁𝑝−1∑︁
𝑘=0

[
`𝑇𝑘+1 ( 𝑓𝜽 (𝒙𝑘 , 𝒖𝑘) − 𝒙𝑘+1) + Z𝑇𝑘 𝑔𝜽 (𝒙𝑘 , 𝒖𝑘)

] (5.2)

where the first row of the definition is the objective function, the MPC
cost to be minimized, and the second row is the cost of violating the
optimization problem constraints, such as the initial condition, model
update equation, and state constraints (𝑔𝜽) [Böiers, 20102010Böiers, 20102010]. The variables
{`𝑘 , Z𝑘}

𝑁𝑝−1
𝑘=0 are the Lagrange Multipliers of the problem. It can be shown

that [Zanon et al., 20192019Zanon et al., 20192019], given this formulation, the gradient of the Q-
function can be computed as

∇𝜽𝑄𝜽 (𝒙, 𝒖) = ∇𝜽L𝜽 (𝒙, 𝒖, `∗, Z∗) (5.3)

where `∗, Z∗ is the collection of optimal Lagrange multipliers in the dual-
primal solution of the minimization problem. It should be noted that while
L𝜽 is a complicated function, it is straightforward to differentiate through
CasADi, and can be formulated as shown in [Andersson, 2023b2023bAndersson, 2023b2023b] based on
[Andersson and Rawlings, 20182018Andersson and Rawlings, 20182018].

48



Solver Settings
As mentioned above, CasADi supports multiple numerical solvers, includ-
ing IPOPT and QRQP, among others. IPOPT is a very robust solver for
nonlinear optimization, and delivers good solutions even with a lower
number of iterations: Thus, the maximum number of iterations was set
to 25. For those reasons, IPOPT is used in most cases for the sake of
robustness and speed. QRQP is a less robust solver when solving these
kinds of problems, as it is designed for solving Quadratic Programs
[Andersson and Rawlings, 20182018Andersson and Rawlings, 20182018], but delivers more accurate sensitivity in-
formation when a solution is found. That is, the gradients computed by
CasADi using the Lagrange multipliers of the QRQP solution will be more
accurate than when using those provided by IPOPT [Andersson, 2023a2023aAndersson, 2023a2023a].
Therefore, since the Q-function gradient needs to be computed in order
to do RL updates, QRQP is chosen as the solver for the entire run when
using RL. Since QRQP often delivers solutions with constraint violations,
the number of iterations is not capped in this case, in order to allow for
the solution to converge. Furthermore, if QRQP delivers a solution with
constraint violations, another valid is found with IPOPT and actuated, and
is not used in the RL calculations. In general, the optimization problems are
solved with a warm-start, using the previous solution to the optimization
problem as an initial guess for the next solve. This significantly decreases
computation times. However, warm-starting makes the solver more likely
to get stuck in local minima. Depending on the minima, this might be a
good or a bad thing, which can not be predicted beforehand.

5.4 ROS Interface

The communication between the Piraya and the Python code was
done through the Robot Operating System (ROS). ”ROS is an
open-source software development kit for robotics applications”
[Stanford Artificial Intelligence Laboratory et al., 20182018Stanford Artificial Intelligence Laboratory et al., 20182018]. While ROS of-
fers various capabilities, the ones used for this thesis is communication
through topics and services. Both of these are used for communication,
transfer of data, but handle it in different ways. Communication through
topics work on a publish-subscribe messaging pattern. In this pattern, a
publisher, for example a sensor, will publish data to a topic, without
awareness of any recipient. A subscriber which wants to receive that
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data then, will subscribe to that same topic, and will receive data when it
is published. The subscription is also without knowing who is publishing
to that topic. Furthermore, the regime is asynchronous, with publishers
publishing data when available, and subscribers receiving data when they
actively retrieve it. When invoking a service request to for example, set the
throttle, the desired code is executed remotely, and the request will wait on
the code to finish executing, and a reply to be received, before continuing.

Controller Node
The controller node contains the Python code described in the earlier sec-
tions. The controller is executed at a regular rate through ROS, specified by a
tickrate specified in the main program. The controller is invoked through
the ROSinterface class, where the do_iterationmethod is called. Here,
the latest position is processed through a subscriber on the odo_sim_ned or
odo_combo_ned topics, for running a simulation vs. against the real boat,
respectively. The sensor data from the Piraya are sent with 10 Hz, limited by
the GPS frequency. Thus, the controller node contains a subscriber which
solely saves the latest message received. When the controller is executed,
the latest message is processed and the latest position is supplied as a pa-
rameter to the CasADi optimizer. When the optimization is complete, the
first control pair 𝒖∗0 is logged by publishing on the topic control_signal,
and then sent to the services throttle_service and rudder_service
for execution on the Piraya. The time between publishing control signals is
calculated for the system identification algorithm. After this, the program
flow is the same as when running in Python simulation. It should be noted
that when running on the Piraya, both the Python code and ROS node were
run onboard, on the same machine. So ROS was used as a messaging layer
between the Python code, and the hardware, where sensor data and control
actuation was handled outside the scope of this thesis.

Piraya Node
There were two versions of the Piraya node, one for running real-time
simulations and testing the communication interface, and one for com-
municating with the actual USV. The pose 𝜼 and velocity 𝝂 are sent as
Odometry messages, native to ROS. It should be noted that ROS usually
operates in the East-North-Up (ENU) frame, rather than NED. This meant
the messages had to be converted to NED before being used.
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ROS Simulation. In addition to the Python simulation, another simula-
tion was set up as a ROS node. This node executed a model simulation
step at regular intervals specified by gps_message_rate, 100 Hz. In that
case, the model parameters are scaled by a factor of 20, as suggested in
[Kockum, 20222022Kockum, 20222022]. The ROS simulation published Odometry messages and
behaved identically to the messages sent by the Piraya. Unlike the Piraya,
however, the commands were received by subscribing to control_signal,
rather than by executing service code.

ROS-Piraya. The node running locally on the Piraya is responsible for
running the throttle_service and rudder_service calls, setting the
underlying actuator set-points to the desired values. Furthermore, it collects
sensor data and publishes the data to various topics. This included the data
from the INS, published to ins, and from the GPS, published to pir/gps.
These messages containing the raw sensor data were also processed locally,
into an Odometry, containing the position and heading as measured by the
GPS, as well as the velocities measured by the INS.
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6
Simulation

Two sets of simulation tools were developed in order to evaluate the ideal-
case performance of the controller and learning algorithms. The first ”of-
fline” simulation tool was running the USV model as part of the same
program as the controller. This is the best-case scenario in terms of algo-
rithm performance since the real-time aspect of control is removed. In the
second ”ROS” simulation tool, the USV model was run as a separate ROS
node, publishing its position and subscribing to control signals, while the
controller was run on another ROS node, subscribing to the USV posi-
tion, and publishing the corresponding control signals. Simulating in this
way allows analysis of the effect of the time delay on the control perfor-
mance, while the model is still known to be correct. In this chapter, first, the
simulation scenarios are shown, then all of the simulation settings are pre-
sented. Finally, the simulation results are presented, first running NMPFC,
then NMPFC+SYSID, and finally, NMPFC+SYSID+RL. The Offline sim-
ulation is shown first, as the ideal case performance, and then the ROS
simulation is shown.

6.1 Simulation Setup

Evaluation Missions
The missions that were used to evaluate the performance of the controller
are given using a set of way-points, through which a path is created by the
method described in Appendix BB. The first way-point of each mission is
set as (0,0). The other way-points are then given as offsets in meters from
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this position. In simulation, only one mission was deemed necessary to
demonstrate the capabilities of the methods. It can be seen in Figure 6.16.1.
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Figure 6.1 Simulation mission. Way-points: {(0, 0), (41, -116),
(126, -124), (119, -15), (-51, 37), (-167, 71), (-176, 165), (-87, 177),
(-9, 35)}. The path is 740 meters long.

Simulation Settings
Initial Condition and Environment. In simulation, the vessel was placed
on the first way-point of the path to be followed, facing along the path,
but with a random offset. The random offset was ±5 meters in both the
north and east direction. Furthermore, the initial angle was offset by ±30°.
Moreover, the initial velocity was 3 m/s in the forward direction. The path
was generated with a turning radius of 10 m. Finally, it was possible to add
a constant disturbance as a simplified model of wind or current, which in
this case was set to 0.4 m/s north, 0 m/s east.

Model Parameters. The model parameters used for the actual movement
of the vessel in simulation were the ones found by [Ljungberg, 20212021Ljungberg, 20212021].
The movement was simulated using Equation (3.113.11). When testing SYSID
though, other parameter values were made up in order to investigate if the
algorithm would revert them back to the real parameters. These are dubbed
”slow”, as they tend to produce lower speed solutions. The real and ”slow”
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set of parameter values can be seen in Table 6.16.1. The parameter evolution
results are shown alongside the tracking results in the later sections.

Table 6.1 Table showing the parameters used in simulation of the
USV, and the ones used as an initial guess for the SYSID algorithm.

Parameter Simulation SYSID "slow"
𝑋𝑢 -0.0478 -1.0000
𝑋𝑣𝑟 0.1259 0.5000
𝑋𝜏 0.0166 0.8000
𝑌𝑣 -0.2375 -0.5370
𝑌𝑢𝑟 0.1526 -0.1526
𝑌𝜏 0.0737 0.1740
𝑁𝑟 -0.3191 -0.7190
𝑁𝑢𝑣 0.0031 0.0700
𝑁𝜏 -0.0345 -1.0000

Algorithm Parameters
The NMPFC controller was tuned to use a prediction horizon of 𝑁𝑝 = 50,
and 𝑁𝑐 = 25, yielding a look-ahead of 10 seconds. The controls signal were
evenly spread out over the prediction horizon so that from the controller’s
perspective, each control signal would be actuated for 2𝑇𝑠 , i.e., 0.4 seconds.
This was done because of considerations of unmodeled actuator dynamics,
possibly making more tightly spaced actuator signals unnecessary. Further-
more, increasing the control horizon to 𝑁𝑐 = 50 was found to have little
benefit in simulation. In reality, however, the controller was run at 5 Hz as
mentioned, and thus control signals were actually actuated every 0.2 sec-
onds. Finally, the reference path speed was set as ¤𝑧ref = 3.5 m/s. This speed
ensures maneuverability, and challenges the SYSID method, as the offline
SYSID was done at 2 m/s.

Controller Tuning. All of the weight matrices used with the controller
can be seen in Table 6.26.2. There were two tuning profiles created, an ”ag-
gressive” profile, which leads to strong control signals and low error, and
a ”robust” profile, which leads to larger errors but slower changes in the
control signal. As mentioned in Section 3.23.2, the 𝑸-matrix penalizes the
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states 𝑥, 𝑦, 𝜓, 𝑢, 𝑣 and 𝑟 . The first three elements correspond to penalties
on 𝜼 − 𝑝(𝑧), i.e., the tracking error, while the latter three penalize 𝝂,
discouraging high velocities. It can be seen that there is no penalty on the
heading since the calculation of the heading of the path was not imple-
mented. Furthermore, it should be noted that there are large penalties on
the magnitude of 𝑣 and 𝑟 . This is done to mitigate looping behavior, as
the controller would often decide on a path including 180° or larger turns
when the path did not call for it. Another reason for these penalties is the
fact that the measurements of 𝑣 were not used in experiments, discussed
in Section 7.17.1, and thus we want to avoid states with a large amount of sway.

The matrix �̃� penalizes the virtual state error, (𝑧 − 𝑧 𝑓 , ¤𝑧 − ¤𝑧ref). Again, it
can be seen in Table 6.26.2 that there is a large penalty placed on the virtual
state speed error, guiding the USV to maintain the speed ¤𝑧ref , though the
controller can deviate when deemed favorable, as outlined in Section 3.33.3.
The penalty on ¤𝑧− ¤𝑧ref is larger in the robust tuning case, ensuring the USV
will keep going forward even in the face of disturbances. Furthermore,
there was only a very small penalty placed on the control signals in 𝑹, and
none on the virtual control in �̃�. Finally, in the robust profile, a relatively
large penalty was placed on the change of control signal, seen in the matrix
𝑷. These penalties are introduced in order to slow down the change in
the control signal, since because of the unmodeled actuator dynamics, the
control signals sent will not be actuated instantaneously.

Table 6.2 Table showing two controller tuning profiles, one for
aggressive control tuned for minimum cross-track-error, only used
in simulation, and one for robust control, used in both simulation
and experiments. "diag" signifies a square matrix with the input as
diagonal elements. A dash ’-’ indicates no difference.

Weight Matrix Aggressive Tuning Robust Tuning

𝑸 diag
( [

10 10 0 0 10 10
] )

-

�̃� diag
( [

0 10
] )

diag
( [

0 100
] )

𝑹 diag
( [

0.001 0.01
] )

-

�̃� 0 -

𝑷 diag
( [

0 0
] )

diag
( [

0.1 1
] )
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Constraints. In Table 6.36.3 the constraintsX𝑒 andU can be seen. The con-
strained signals are 𝑢, 𝑧, ¤𝑧, 𝑏 and 𝑐. The velocity and throttle are constrained
for safety reasons, to avoid losing control of the vessel, while the rudder
signal is constrained for performance reasons found during experiments.
Since going backward requires a gear change, the forward velocity is also
constrained to not be negative. The virtual state is constrained to be on
the path, with 𝑧max being the length of the path, and ¤𝑧 > 0 ensures we are
advancing along the path.

Table 6.3 Table showing the signal constraints

Signal Min Max Unit
𝑢 0 5 m/s
𝑧 0 𝑧max m
¤𝑧 0.001 - m/s
𝑏 0 30 %
𝑐 -60 60 %

Learning Tuning. In Table 6.46.4 the settings for SYSID and RL are shown.
The learning rates 𝛽 𝑓 and 𝛽𝑞 can be seen, as well as the number of di-
mensions for the projection 𝑝, the batch size 𝐵, and the SYSID window
size 𝑊 . Furthermore, in Table 6.56.5, the initial guesses for the initial cost
and final cost matrix introduced in the cost function when RL is enabled,
are shown. These are then adapted by the Q-learning algorithm. The initial
cost _ is just a constant additive cost, while 𝑽 𝑓 should be understood to
operate on the final state in the same manner as 𝑸 above, which can be
seen in Equation (4.164.16). Another decision made at this point was to fix the
rotational velocity bias 𝑟𝑏 = 0. This parameter was hard to justify from a
physical point of view, and also tended to degrade performance by adapting
aggressively when turning.

Table 6.4 Table showing the parameters set for the SYSID and
RL algorithms.

Parameter 𝛽 𝑓 𝛽𝑞 𝑝 𝐵 𝑊

Value 1 0.1 32 100 200
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Table 6.5 Table of the initial guesses for the extra cost parameters
used when RL was enabled.

Cost Parameter Value
_ 10000

𝑽 𝑓 diag
( [

0 0 0 10 2000 2000
] )

6.2 Simulation Results

The offline simulation was run at a frequency of 5 Hz, matching the model
sample frequency. Here, the simulation does not proceed before receiving
a control signal from the NMPFC optimization. This corresponds to the
simplification of having no computation time in the controller.

Offline Simulation
The simulation performance is evaluated using the average and maximum
cross-track-error, 𝜒 and 𝜒max as well as the average and maximum NMPFC
calculation time, 𝑇 and 𝑇max. Only the final 50 % of the data is used for
the calculation of the average and max XTE, to allow for the method to
have some time to learn, without affecting the final performance metric.
In Table 6.66.6 a summary of the performance in simulation of the different
controllers in various scenarios can be seen. It can be seen that with ag-
gressive tuning, the NMPFC algorithm in an ideal case can steer the USV
along the path with an average error of under 0.1 m, and a maximum error
of under one meter. The robust-tuning controller achieves an average error
of less than half a meter, and a maximum error under 2 m. Introducing
a disturbance decreases the performance of the controller, and using the
wrong model parameters decreases performance significantly, as expected.
Enabling SYSID at this point, increases the performance of the controller
to be the same as in the ideal case. Enabling RL on the other hand, does
increase performance over the non-learning case, but substantial perfor-
mance degradation is still present when compared to the ideal case. Finally,
SYSID+RL still increases performance over the non-learning case, but
performs worse than either method on its own.

It should be noted that the computation time of bare NMPFC and
NMPFC+SYSID are well below the tick-rate of 200 ms, showing that these
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methods are suitable for real-time use. However, when enabling RL, since
another solver is used as mentioned in Section 5.35.3, the computation time
increases by over 10 times, both in average and worst case. Thus, at this
point, it was concluded that the RL method is not ready for use in real-time.
It is therefore not applied in the ROS simulation nor on the Piraya.

Table 6.6 Summary of the Offline simulation results. The average
and maximum cross-track-error, 𝜒 and 𝜒max as well as the average
and maximum MPC calculation time, 𝑇 and 𝑇max are shown. The
robust and aggressive tuning parameters are shown in Table 6.26.2.
The robust tuning is used when indicated with ’R’. When the 0.4
m/s north disturbance is present, this is marked with ’D’. Finally,
if the slow SYSID parameter guess is used, this is marked with the
letter ’S’.

Simulation 𝜒 (m) 𝜒max (m) 𝑇 (ms) 𝑇max (ms)
Aggressive 0.07 0.85 29 86
Robust (R) 0.48 1.81 30 111
R Disturbance (RD) 1.17 3.63 30 106
RD slow (RDS) 3.56 11.81 31 100
RDS SYSID 0.47 1.81 29 68
RDS RL 1.63 6.55 320 1210
RDS SYSID+RL 2.32 8.28 460 1260

NMPFC. The following results were obtained when running the con-
troller without learning enabled. In Figures 6.26.2 and 6.36.3 the results are
shown for the aggressive and robust controller, respectively. Here the cor-
rect model parameters were used, and no disturbance was present. Further-
more, in Figures 6.2a6.2a and 6.3a6.3a, the trajectories followed can be seen, and
in Figures 6.2b6.2b and 6.3b6.3b the state evolution, control signal and cross-track-
error over time can be seen. It is evident that the more aggressively tuned
controller follows the path more closely, but it can also be seen that the
control signal is less smooth. Therefore, as expected, the robustly tuned
controller is more suitable for real-world use.
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Simulation results: T = 209.60
 Initial: T = 0.0, (x,y, ) = (6223677.2,535305.4,138.125° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223710.1,535303.6,180.032° ), (u, v, r) = (1.433,-0.001, 0.020° )
Final state cost:   2639
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(a) The path followed by the offline simulated aggressive USV.
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(b) Signals over time from the offline simulated aggressive USV.

Figure 6.2 Results of offline simulation of the USV with an ag-
gressively tuned controller.
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Simulation results: T = 224.20
 Initial: T = 0.0, (x,y, ) = (6223671.8,535302.8,134.353° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223710.3,535303.4,177.946° ), (u, v, r) = (1.418,-0.007, 0.185° )
Final state cost:   8301
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(a) The path followed by the offline simulated robust USV.
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(b) Signals over time from the offline simulated robust USV.

Figure 6.3 Results of offline simulation of the USV with a robustly
tuned controller.
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SYSID-NMPFC. Before enabling system identification, we want to es-
tablish a sense of the performance when the model is incorrectly identified.
To this end, in Figure 6.46.4 the control performance of the NMPFC con-
troller with the ”slow” parameters can be seen. Furthermore, a disturbance
has also been introduced. It is evident that the controller does not follow
the path well. Not shown is the fact that the average velocity was just 1.8 m/s.
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Simulation results: T = 441.60
 Initial: T = 0.0, (x,y, ) = (6223668.4,535300.2,123.423° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223710.2,535307.2,194.328° ), (u, v, r) = (0.942,-0.049, 1.171° )
Final state cost:   8715
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Figure 6.4 Results of offline simulation of the USV with external
disturbance present, and the slow parameter guess

In Figure 6.56.5 the performance when SYSID is enabled is shown. Moreover,
in Figure 6.5a6.5a the resulting path can be seen. While the first 5 seconds of
the path are similar, the SYSID method quickly adjusts, and the controller
afterward performs just as well as in the nominal case. The parameter
evolution is shown in Figure 6.5c6.5c, and confirms that the optimal model
is found within the first update iteration, at 20 s, as the theory predicts.
It can also be seen that the identified disturbance does not change as the
vessel turns, indicating that we successfully identified the disturbance in
the NED system. Finally, in Figure 6.5b6.5b, among other things, it can be seen
that the magnitude of the prediction error, | |𝜺 | | goes to practically zero, and
the temporal difference error 𝛿 decreases quickly after the parameters are
updated. Also evident is that the calculated cost 𝑄 is lowered as the model
converges.
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Simulation results: T = 231.60
 Initial: T = 0.0, (x,y, ) = (6223675.0,535302.7,156.244° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223710.3,535303.4,177.945° ), (u, v, r) = (1.418,-0.007, 0.185° )
Final state cost:   8300
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(a) The path followed by the offline simulated USV when SYSID was enabled.
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(b) Performance statistics of the USV controller when SYSID is used on the offline
simulated USV.
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(c) The model parameter evolution using SYSID on the offline simulated USV.

Figure 6.5 Results of offline simulation of the USV with system
identification enabled. An external disturbance present, and the slow
parameter guess was used.

RL-NMPFC. In Figure 6.66.6 the results when RL is enabled with the same
scenario settings as in the previous simulation are shown. In Figure 6.6a6.6a
the corresponding path can be seen. It should be noted that the controller
seems to perform well when heading straight, but not as well when turning.
In Figure 6.6b6.6b, it can be seen that the magnitude of the prediction error | |𝜺 | |
stays constant and large. While this method is not necessarily expected to
converge to the correct model parameters, it is a reasonable assumption that
doing so would improve performance. Furthermore, temporal difference
error 𝛿 is relatively constant and low when heading straight, but increases
while turning. This agrees with the resulting path, where performance
was worse while turning. This might be because of the relatively limited
exposure to turning behavior. Also, in the last third of the run, it can be
seen that the path velocity no longer hovers around 3.5 m/s, indicating that
performance was lost. Finally, it can be seen that the computation time often
exceeds the tick-rate. This could be due to the fact that the RL-adaptation
of the cost function changes how well the problem is posed. In a more
ill-posed problem, it is feasible that the solutions require more iterations
to be found. That is especially true since QRQP is not designed to solve
general non-linear problems. Furthermore, the longer computation times
seem to all be about equal. This is likely a result of the solver hitting the
internal cap for maximum number of iterations. Now, the model parameter
evolution is shown in Figure 6.6c6.6c. The RL cost and cost function parameter
evolution are harder to interpret and are thus placed in Appendix CC. They
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can thus be seen in Figures C.1aC.1a and C.1bC.1b, respectively. The results are
difficult to interpret, but show that the RL method does not converge to
the offline model. Furthermore, some cost parameters are changed to being
negative, raising issues with the positive definiteness of the cost function.
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Simulation results: T = 436.40
 Initial: T = 0.0, (x,y, ) = (6223676.9,535308.9,126.885° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223716.0,535305.2,181.541° ), (u, v, r) = (-0.008,-0.006, 0.073° )
Final state cost:   6687
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(a) The path followed by the offline simulated USV when RL was enabled.
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(b) Performance statistics of the USV controller when RL is used on the offline
simulated USV.
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(c) The model parameter evolution using RL on the offline simulated USV.

Figure 6.6 Results of simulation of the USV with Reinforcement
Learning enabled. An external disturbance present, and the slow
parameter guess was used.

SYSID-RL-NMPFC
Finally, SYSID and RL were run together, hopefully combining the benefits
of both methods. The results can be seen in Figure 6.76.7. The path shown in
Figure 6.7a6.7a indicates, however, that the disturbance was not compensated
for, and the turns were made later, leading to large deviations from the
reference path. In Figure 6.7b6.7b the performance statistics are shown. Just as in
the previous case, computation times very often exceed the tick-rate, for the
same reasons that were given previously. The prediction error magnitude,
in this case, is lowered initially, but only by about an order of magnitude.
The temporal difference error, similarly to the last case, seems to be large in
turns and low on straight sections of the path. In Figure 6.7c6.7c, it can be seen
that some of the model parameters converge toward the offline parameters,
for parts of the run. After that, it seems that the system identification was
overruled by the reinforcement learning method. Just as before, the RL
cost and cost function parameter’s evolution are hard to interpret and are
put in Appendix CC. The evolution can be seen in Figure C.2aC.2a and C.2bC.2b,
respectively.
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Simulation results: T = 342.40
 Initial: T = 0.0, (x,y, ) = (6223674.9,535303.2,111.389° ), (u, v, r) = (2.9,0.0, 0.000° )

Final: (x,y, ) = (6223710.0,535303.7,175.949° ), (u, v, r) = (1.759,0.000,-0.011° )
Final state cost:   6827
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(a) The path followed by the offline simulated USV when SYSID and RL was
enabled.
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(b) Performance statistics of the USV controller when SYSID and RL is used on
the offline simulated USV.
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(c) The model parameter evolution using SYSID and RL on the offline simulated
USV.

Figure 6.7 Results of offline simulation of the USV with System
Identification and Reinforcement Learning enabled. An external
disturbance present, and the slow parameter guess was used.

ROS Real-Time Simulation
The settings in Section 6.16.1 were used also in the ROS simulation. The
crucial difference is in the simulation update rate and the fact that this
simulation emulates real-time communication with the real USV. This
simulation is ran at 100 Hz, corresponding to the update rate of the fastest
sensor on the USV, the INS. Thus, the model publishes its current position
on the odo_sim_ned topic once every 0.01 s. The model subscribes to
control_signal and always uses the most recent one. The controller was
still run at 5 Hz, using the latest position published as input.

A summary of the results of the simulations in ROS is given in Table 6.76.7,
where we can see that the ideal-case performance with robust tuning is an
average cross-track-error of half a meter and a maximum error of less than
2 m. Introducing a disturbance worsens the performance as expected, and
in a similar way to in the Offline simulation. When the slow parameters
were used, the error is of the same size as when simulating offline, but
the USV lost the path and could not finish the run. Finally, just as in the
Offline simulation, the SYSID algorithm increases the performance to the
ideal-case levels.

The computational time roughly doubled when compared to Offline sim-
ulation. This might be because of the fact that ROS was run in a VM.
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Furthermore, since the prediction performance is worse when running in
ROS, because of the real-time aspect, warm-starting the solvers with the
previous solution will be less advantageous. This could also contribute to
worsened computation times.

Table 6.7 Summary of the ROS simulation results. The average
and maximum cross-track-error, 𝜒 and 𝜒max as well as the average
and maximum MPC calculation time, 𝑇 and 𝑇max are shown. The
robust tuning parameters are shown in Section 6.16.1. The robust tuning
is used when indicated with ’R’. When the 0.4 m/s north disturbance
is present, this is marked with ’D’. Finally, if the slow SYSID
parameter guess is used, this is marked with the letter ’B’.

Simulation 𝜒 (m) 𝜒max (m) 𝑇 (ms) 𝑇max (ms)
Robust (R) 0.50 1.85 61 231
R Disturbance (RD) 1.23 3.66 62 231
RD slow (RDS) DNF 3.29 9.92 62 217
RDS SYSID 0.51 1.98 65 266

NMPFC. When running in the ideal case, the real-time aspect of the con-
trol did not seem to matter much. Performance was roughly the same as in
offline simulation, which can be seen in Figure 6.86.8. The path looks mostly
the same, shown in Figure 6.8a6.8a. It is however notable, that in addition to the
computation time increasing, the prediction error is quite large throughout
the simulation. This can be seen in Figure 6.8b6.8b. The magnitude of the pre-
diction error is rarely less than 10−2, likely because of the delay introduced
by the NMPFC computation time. This error also increases significantly
during the iterations with long computation times.
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Simulation results: T = 217.51
 Initial: T = 0.0, (x,y, ) = (6223668.6,535310.8,124.464° ), (u, v, r) = (1.5,0.0, 0.000° )

Final: (x,y, ) = (6223710.2,535304.8,-176.430° ), (u, v, r) = (1.535,-0.013, 0.438° )
Final state cost:   8392
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(a) The path followed by the USV controller simulated in ROS.
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(b) Performance statistics of the USV controller simulated in ROS.

Figure 6.8 Results of simulation of the USV in ROS. The robust
tuning, and correct model parameters were used and no disturbance
was present.

SYSID-NMPFC. As in the Offline simulation case, in order to evaluate
the SYSID performance, a base-case performance measurement was made
with disturbance and slow parameters. It seems that using the correct pa-
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rameters is more important when running in real-time. That can be seen in
Figure 6.96.9, where the run did not finish, as the USV turned off the track
and did not recover. The controller not recovering when going off-track has
been observed to be a common occurrence with the NMPFC implementa-
tion. In this case, the solver outputs 𝒖∗ = (0, 0), deciding that stopping is
the optimal solution.
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Simulation results: T = 145.84
 Initial: T = 0.0, (x,y, ) = (6223668.7,535310.3,105.545° ), (u, v, r) = (1.5,0.0, 0.000° )

Final: (x,y, ) = (6223645.3,535536.3,-39.162° ), (u, v, r) = (2.041,-0.360,12.099° )
Final state cost:   7363
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Figure 6.9 Results of simulation of the USV in ROS. Shown is
the path. The robust tuning, and slow model parameters were used
and the disturbance was present.

In the last simulation, SYSID was enabled, and the results are shown in
Figure 6.106.10. The path is largely the same as the ideal-case path, except for
an initial data-collecting part, see Figure 6.10a6.10a. The performance statistics
were largely the same as in the ideal case. However, the prediction error
magnitude seems to settle slightly lower than in the ideal case. This in-
dicates that the SYSID method is adjusting the model to compensate for
the computational delay. The model parameter convergence is shown in
Figure 6.10c6.10c. It can be seen that some parameters converge to their offline
values, while other parameters do not settle. Furthermore, some converge to
different values than the offline estimates. This might be a case where some
of the delay effects can be compensated for by adjusting these parameters
to be different than the offline estimates.
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Simulation results: T = 227.99
 Initial: T = 0.0, (x,y, ) = (6223667.2,535308.5,155.854° ), (u, v, r) = (1.4,0.0, 0.000° )

Final: (x,y, ) = (6223710.2,535304.5,-160.785° ), (u, v, r) = (2.373,0.300,-5.743° )
Final state cost:   8591
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(a) The path followed by the USV controller simulated in ROS when SYSID was
enabled.
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(b) Performance statistics of the USV controller simulated in ROS when SYSID
was enabled.
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(c) The model parameter evolution using SYSID on the USV simulated in ROS

Figure 6.10 Results of simulation of the USV in ROS with system
identification enabled. An external disturbance was present, and the
slow parameter guess was used.
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7
Experiments

The experiments were run on 2023-06-02 in the archipelago outside the
Saab Kockums Shipyard in Karlskrona. A map of the area can be seen in
Figure 7.17.1. During the day, light wind from the North-west of about 3 m/s
was present. The settings were the same as during simulation, in order to
facilitate comparison. Before the start of each mission, the USV was manu-
ally steered to point toward the beginning of the path, and then the controller
was enabled. Furthermore, since the simulated results showed that the RL
method was unsuitable for real-time use, the experiments compared running
NMPFC with and without SYSID.

Figure 7.1 Map showing the testing area outside the Saab Kock-
ums AB Wharf in Karlskrona [Open Sea Map, 20232023Open Sea Map, 20232023].
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7.1 Experimental Setup

Evaluation Missions
The missions used for the evaluation of performance were selected in two
ways. The first mission ”Eight” is similar to the simulation mission, and
can be seen in Figure 7.27.2, in order to facilitate comparison. The second
mission ”Criss-Cross” is intended to evaluate turning performance, and
can be seen in Figure 7.37.3. The vessel was started in the neighborhood of
the first way-point and had to find its way onto the path and onwards on its
own.
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Figure 7.2 Mission ’Eight’. Way-points: {(0, 0), (41, -116),
(126, -124), (119, -15), (-51, 37), (-167, 71), (-176, 165), (-87, 177),
(-9, 35)}. The path is approximately 945 meters long.
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Figure 7.3 Mission ’Criss-Cross’, in Karlskrona. Way-points:
{(0, 0), (-73, -79), (-55, 77), (-181, 1), (-154, 174), (-276, 97),
(-214, 244), (-347, 182), (-277, 303)}. The path is approximately
980 meters long.

Sensor Configuration
The INS was supposed to be used for the measurement velocity, but the
measurements of 𝑢 and 𝑣 were found to be unreliable. This led to the
GPS total velocity being used as a measurement of 𝑢, 𝑣 being set to zero,
while the rotational velocity measurement of the INS was used for the
measurement of 𝑟. Thus the measurements sent to the controller were of
the form (𝑥GPS, 𝑦GPS, 𝜓GPS, 𝑢GPS, 0, 𝑟INS). It should be noted that not being
able to measure 𝑣, reduces the ship model specified in Equation (3.43.4)
from a 9-parameter model to a 4-parameter model, potentially reducing
performance significantly.

7.2 Experimental Results

The following results were obtained during experiments in Karlskrona. It
can be seen that in the baseline case, without learning, the average cross-
track error is below two meters in both missions, and the maximum error
is about six meters. The controller performed better on mission ”Eight”,

75



which is expected, as the mission contains more straight-line tracks. When
enabling system identification during mission ”Eight” the error roughly
halved. The average cross-track-error was reduced to below one meter, and
the maximum error is below 3 m. However, when evaluating SYSID on
mission ”Criss-Cross”, the run did not finish, and tracking performance
was worse than with learning disabled. This was likely because of the wind
picking up, increasing the disturbance to about 5 m/s with 7 m/s gusts.
The controller has proved fragile when pushed off the course, discussed
in Section 8.18.1. In this case, the USV during multiple attempts was pushed
outside of the path by the wind, during a turn where the wind was at its back.

Finally, the calculation time of the controller stayed below the tick-rate of
200 ms at all times, indicating that an increase in controller frequency might
be feasible in the future.

Table 7.1 Summary of the Experimental results. The average and
maximum cross-track-error, 𝜒 and 𝜒max as well as the average and
maximum MPC calculation time,𝑇 and𝑇max are shown. The robust
tuning parameters are shown in Section 6.16.1.

Experiment Mission 𝜒 (m) 𝜒max (m) 𝑇 (ms) 𝑇max (ms)
Robust (R) Eight 1.53 5.50 37 126
R Criss-Cross 1.7 6.23 36 119
R SYSID Eight 0.90 2.85 32 85
R SYSID DNF Criss-Cross 2.75 5.32 38 106

NMPFC
Mission ”Eight”. The following plots show the performance of the con-
troller when no learning was enabled. In Figure 7.4a7.4a, the mission ”Eight”
path can be seen. The USV manages to join the path, and follows it through
each way-point to the end. However, it is immediately obvious that the path-
following performance is worse than in simulation. The USV ”wobbles”
around the path, and at one point does a ”loop”, a behavior which was
explicitly punished. This is likely both because of unmodeled dynamics,
especially in the actuators, and because of disturbances. In Figure 7.4b7.4b the
control signals are shown. Here it is evident that the measured velocities,
as well as the applied control signals, are more jagged than in simulation.

76



That behavior might a result of noise in the measurements, and the con-
troller aggressively trying to compensate. This is supported by the fact that
the rudder angle signal is less jagged than the throttle, as rudder changes
are punished more than throttle changes. Furthermore, the average throttle
signal is set significantly higher in the real experiment when compared to
simulation, 𝑏 = 20 vs. 𝑏 = 10, see figure (6.3b6.3b). This indicates that there is
a significant model mismatch in this parameter. In Figure 7.4c7.4c then, it can
be seen that the the prediction error of the offline model is in the order of
magnitude of 1. An increase in prediction error, as well as the calculation
time can be seen at around 70 s. This corresponds to the USV looping,
and the prediction error increases because of the fact that the sensors re-
port 𝑣 = 0, which it definitely is not when turning. It is plausible that this
also is the reason that the calculation time increases at this time, since the
predicted trajectory used for warm-starting the solver is inaccurate when
turning.
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Simulation results: T = 322.66
 Initial: T = 0.0, (x,y, ) = (6223349.0,535634.5,-39.980° ), (u, v, r) = (1.8,0.0,-0.453° )

Final: (x,y, ) = (6223275.4,535766.9,-78.800° ), (u, v, r) = (1.157,0.000, 7.572° )
Final state cost:   9618
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(a) The path that was followed by the Piraya USV.
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(b) The measured and output signals from and to the USV.
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(c) Performance statistics

Figure 7.4 Experimental results when running the controller on
the Piraya USV along the Mission "Eight".

Mission ”Criss-Cross”. During the evaluation of turning performance
with the mission ”Criss-Cross”, which can be seen in Figure 7.57.5, similar
results are found. The path can be seen in Figure 7.5a7.5a, which similarly to
the previous mission shows wobbling behavior. The USV does successfully
complete the mission, however, with satisfactory performance. As expected
with this sensor configuration, the performance is worse when turning com-
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pared to during straight sections. In Figure 7.5b7.5b, all controller signals are
shown. Once again the velocities and control signals vary a lot, especially
the forward velocity and throttle. Interestingly, when looking at the path pa-
rameter velocity, the velocity drops at even intervals, corresponding to the
turns made by the USV. This clearly demonstrates the NMPFC principle in
action, with path velocity being lowered in order to improve path-following
performance. Finally, the performance statistics in Figure 7.5c7.5c are similar to
the ones in mission ”Eight”, with spikes in prediction error, and calculation
time during turning sections.
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Simulation results: T = 370.82
 Initial: T = 0.0, (x,y, ) = (6223390.0,535559.0,-179.450° ), (u, v, r) = (2.0,0.0,-0.484° )

Final: (x,y, ) = (6223078.7,535857.7,78.386° ), (u, v, r) = (2.592,0.000,-6.658° )
Final state cost:   6956
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(a) The path that was followed by the Piraya USV.
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(b) The measured and output signals from and to the USV
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(c) Performance statistics

Figure 7.5 Experimental results when running the controller on
the Piraya USV along the Mission "Criss-Cross".
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SYSID-NMPFC
Finally, the results when enabling system identification are shown, mission
”eight” in Figure 7.67.6, and ”criss-cross” in Figure 7.77.7. It can be seen in
Figures 7.6a7.6a and 7.7a7.7a that the tracking performance quickly improves when
compared to the non-learning case. The wobbling during straight sections
is reduced, and the overshoot while turning is replaced with an undershoot.
The undershoot while turning is similar to what is seen with this tuning in
simulations, like in Figure 6.3a6.3a. What can also be seen in Figure 7.7a7.7a how-
ever, is the fact that the mission was not finished, as previously discussed.

Mission ”Eight”. The signals during mission ”Eight” are shown in Fig-
ure 7.6b7.6b, where it can be seen that the velocities and control signals are
smoother than in the non-learning case. It should also be noted that the
throttle is set to max 𝑏 = 30, for most of the run, while not achieving surge
𝑢 or path velocity ¤𝑧 of 3.5 m/s, indicating that the strength of disturbances
had increased at this point. It is interesting that the cross-track-error perfor-
mance increased in spite of this. Furthermore, the performance statistics
shown in Figure 7.6c7.6c indicate that the prediction error decreased compared
to the non-learning case in Figure 7.4c7.4c. Finally, in Figure 7.6d7.6d the model
parameter evolution is shown. First of all, it should be noted that the
parameters relating to the sway 𝑣 are either not affected by the system
identification, or set to 0, as a consequence of the constant zero measure-
ment. When it comes to the parameters 𝑋𝑢, 𝑋𝜏 , 𝑁𝑟 and 𝑁𝜏 , it can be seen
that they have periods of relative stationary, intertwined with periods of
rapid change. This could be a consequence of the under-parameterized
model, and the limited window of data used for identification. Thus, certain
parts of the data-set might correspond to different optimal parameters for
estimation. It can also be seen that neither of the offset biases 𝑢𝑏 and 𝑣𝑏
are stationary. This does not necessarily have to be incorrect, as part of the
unmodeled dynamics, i.e., the disturbances, are expected to change with
time. However, it is also very likely that the residual dynamics reflected
in these parameters varies over the dataset, just as with the other parameters.
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Simulation results: T = 230.21
 Initial: T = 0.0, (x,y, ) = (6223223.5,535551.7,-8.220° ), (u, v, r) = (2.4,0.0,14.725° )

Final: (x,y, ) = (6223189.3,535678.1,-66.680° ), (u, v, r) = (1.470,0.000,-0.312° )
Final state cost:   9264
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(a) The path that was followed by the Piraya USV with SYSID enabled.
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(b) The measured and output signals from and to the USV with SYSID enabled.
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(c) Performance statistics with SYSID enabled.
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(d) Model parameter evolution

Figure 7.6 Experimental results when running the controller on
the Piraya USV along the Mission "Eight" with SYSID enabled.

Mission ”Criss-Cross”. The signals of mission ”Criss-Cross” are shown
in Figure 7.7b7.7b. As previously mentioned, this run did not finish. At the end
of the run, it can be seen that the USV is facing 90° away from the path. This
lead to the solver outputting 𝒖∗ = (0, 0), effectively deciding that staying
in place is the most optimal solution, as previously discussed. The Piraya
turning this far off-path and not recovering indicates that there were large
unmodeled disturbances present during this experiment, which pushed the
USV off the path at an important moment. Moreover, in the signal plot, it
should be noted that the rudder signal is very active, as well as the yaw
rate changing very quickly. Just as before, it is difficult to tell if this is
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a result of increased disturbances or the controller being over-active. The
latter does seem less likely though, as overactive rudder signals have been
effectively punished in the other scenarios. Also, the throttle is often set to
max, 𝑏 = 30, further indicating the presence of a significant disturbance.
The performance statistics during the mission are shown in Figure 7.7c7.7c,
where the behavior is similar to the previous mission. Finally, the model
parameters are shown in Figure 7.7d7.7d. The live parameters, 𝑋𝑢, 𝑋𝜏 , 𝑁𝑟 and
𝑁𝜏 seem to converge to stationarity in this case, while the disturbances 𝑢𝑏
and 𝑣𝑏 do not converge. In this case it is more likely that this is because of
the disturbances changing with time, since the same behavior is not seen
in the model parameters. It should, however, be noted that this data-set is
smaller, and might thus not be representative for the method performance
over time.

200 100 0 100 200 300 400 500
y: East (m)

350

300

250

200

150

100

50

0

50

x:
 N

or
th

 (m
)

Simulation results: T = 90.82
 Initial: T = 0.0, (x,y, ) = (6223399.8,535519.7,158.530° ), (u, v, r) = (1.7,0.0,-6.071° )

Final: (x,y, ) = (6223298.9,535632.8,112.626° ), (u, v, r) = (1.531,0.000,-1.199° )
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(a) The path that was followed by the Piraya USV with SYSID enabled.
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(b) The measured and output signals from and to the USV with SYSID enabled.
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(c) Performance statistics with SYSID enabled.
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(d) Model parameter evolution

Figure 7.7 Experimental results when running the controller on
the Piraya USV along the Mission "Criss-Cross" with SYSID en-
abled.
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8
Discussion

In this section, the employed methods are discussed in terms of strengths,
weaknesses, and possible improvements. First NMPFC is evaluated as a
path-following formulation, then SYSID is discussed for learning model
parameters, and finally, SYSID+RL is spoken about in terms of improving
overall controller performance.

8.1 Model Predictive Path Following Control

The simulation results seem to indicate that in the ideal case, MPFC is a
good method for path-following control. This can be seen when studying
the results of the controller ’A’ in offline simulation, see Table 6.66.6, where
the average error was less than 1 dm. Furthermore, it is also relatively easy
to implement, as it is done the same way the system model is in a regular
MPC controller. The method also lends itself well to producing different
behavior through tuning, as noted when comparing Figures 6.2a6.2a and 6.3a6.3a.
Thus the method can be tailored to fit the specific needs of the application.
Moreover, when compared to trajectory control, the operator does not have
to consider at which time the USV should be at any specific position. This
removes the need for generation of a trajectory that is feasible for the vessel
at hand. Rather, the method can be tuned to produce a certain behavior,
which will be applied to any path the vessel is set to travel along. Thus,
allowing the controller to dynamically adjust the USV velocity in a com-
promise between speed and tracking accuracy increases the autonomy of
the vessel, since human input on the timing along the path is not necessary.
Finally, the method translates well into real-time control, see Figure 6.86.8.
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However, from the results presented the method does not seem to be very
robust against going off-path. This leads to low robustness to incorrect
model parameters, as seen in Figure 6.96.9, and low robustness against actual
disturbances, as shown in Figure 7.7a7.7a. An explanation of this behavior is
that re-joining the path would necessitate moving farther from it, before
coming closer. Staying still, on the other hand, is penalized since the
controller is punished for not proceeding along the path at the desired
rate. However, the solution does stay close to the path, which is desirable.
Intuitively then, it can be reasoned that there are multiple local minima
in the NMPFC solution. This is also to be expected since the problem is
non-convex.

In terms of solutions to this problem, calculating the heading to be followed
might be a way to increase the robustness in these cases, as there are more
weights to ensure the vessel does not go off-path. That would also increase
the likelihood that the USV is pointing along or towards the path, which
does seem to be the most crucial factor in terms of getting the desired
solutions from the solver. In practice, a way to decrease the prevalence of
this issue is to increase the cost on ¤𝑧− ¤𝑧ref . This leads to stationary solutions
being more costly, encouraging the solver to head forwards. However, this
leads to less adaption of the velocity when turning, which was supposed to
be one of the advantages of this method. Furthermore, one could imagine
also punishing velocities close to zero in the cost function. That does
however increase the non-convexity of the MPC problem, which was the
root of the issue in the first place.

Another possible solution could be to ignore the cost of the first few pre-
dicted states. That would allow for solutions that temporarily travel away
from the path, as that cost would not be counted. This solution, however,
does mean that short-term performance is degraded also in turns and along
straight sections. Early in the thesis, this option was explored but was not
found to solve the problem. Another possible solution is to intelligently
warm-start the solver, i.e., with guesses that have the velocity and throttle
set to some fixed above zero value. This was also explored but turned out to
be difficult in practice, with the solver often returning constraint-violating
output.
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8.2 SYSID-NMPFC

The System Identification method used here, the Prediction Error Method
with a rolling window, shows great performance uplifts when used online.
In offline simulation, the method finds the correct parameters in just one
iteration. When comparing the results of using slow parameters and slow
parameters with SYSID, the average error decreases by a factor of about
8, see Table 6.66.6, for that choice of parameters, see Table 6.16.1. Moreover, in
the ROS simulation, the model parameters mostly converged within one
iteration and even managed to slightly adjust for the delay introduced by
the computation time. This led to a small decrease in prediction error when
compared to the ideal case. It also made the difference between finishing
the run and the controller quitting when running with the slow parameters,
as discussed above. Finally, when running against the real USV, both the
average and maximum error decreased by a factor of two, see Table 7.17.1,
compared to a model which had been sampled specifically for the Piraya.
Since the model from [Ljungberg, 20212021Ljungberg, 20212021] was sampled at 2 m/s and the
tests were run at 3.5 m/s the offline model was not expected to be accurate
in these conditions. This confirms the usefulness of online SYSID in the
case of nonlinear systems, or in cases where the model used is known to
be inaccurate.

Furthermore, implementation of the method is very simple, and is also com-
putationally cheap, with computation times that are negligible compared
to the MPC computation time. Thus, the method should be considered for
any MPC control application where offline system identification may be
prohibited. Since offline system identification might be a burdensome and
expensive operation, another application of the method is the ability to
improve a model quickly obtained through offline SYSID. Looking ahead,
this also allows for the development of a single control algorithm that could
be deployed to different vessels. The control algorithm could in that case
be developed on any chosen vessel, and then be applied directly to another,
with the SYSID method compensating for the parameter differences be-
tween the vessels.

As expected, however, the method is only as good as the mathematical model
provided, and the sensor data that are collected. Even in the ROS simulation,
the prediction performance was well below the offline simulation case,
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likely because of unmodeled dynamics, such as the real-time computational
delay, and the fact that the model updates are compounded non-linearly
between control iterations. Then, when running against a real system, most
unmodeled behavior will not be possible to capture, and thus lead to non-
stationary parameter estimates. Therefore, a large model should be preferred
when using this method. However, when a larger model is used, more and
higher-fidelity sensor data are necessary to excite the method. Therefore,
as expected, the method is limited by the kind of sensors equipped on the
system.

8.3 SYSID-RL-NMPFC

From the results in Table 6.66.6, it is indicated that this method of Reinforce-
ment Learning has the potential to improve the tracking performance of
an USV. However, when compared to SYSID in simulation, the method
does not perform as well. This is to be expected, as the offline simulation
is what might be considered the ideal case for the SYSID method. The
RL method’s potential is in adjusting a model known to be approximate,
in order to increase performance in the face of unmodeled dynamics. It is
therefore unfortunate that this implementation of the RL method was not
suitable for real-time use, as that is where it intuitively should perform best.
This seems to be an issue with the choice of numerical solver and automatic
differentiation framework. While using CasADi with the QRQP method
often resulted in quick calculations and good control performance, but also
constraint violations and random spikes in calculation times made it not
practical for real-time use, which can be seen in Figure 6.6b6.6b. Using IPOPT
when constraint violations were generated was a solution that worked as
a remedy to the first problem. The second problem is harder to tackle,
however, as these periods with long calculation times appeared at what
seemed like random intervals.

Furthermore, another issue with the RL framework is how to generate ex-
ploration through the policy. Since the Q-learning method only guarantees
the learning of the optimal Q-function in the case that every state-action
pair is visited, it is necessary to take actions that would be detrimental
to performance in most situations. This might be an indication that of-
fline Q-learning would be better to apply in this case, where a lot of data
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could be collected offline, and where maneuvers that are not often ap-
plied could be sampled. Furthermore, this allows for batch updating of
the data [Sutton and Barto, 20182018Sutton and Barto, 20182018], just as in the SYSID method applied
here. Then the Q-values, which in this case have been the MPC costs, can
be recomputed after every parameter update iteration, allowing for more
learning with a smaller dataset. This has to be done offline, however, since
re-calculating the best control signals for every past trajectory simply takes
too much time to be done online.
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9
Conclusion

In this thesis, we have shown that Nonlinear Model Predictive Path-
Following control can be implemented on the Piraya USV. It was shown to
result in good solutions in simulation and is easy to implement when an
NMPC formulation is already present. However, the results show that the
method is not very robust against model error and external disturbances,
leading to halting, 𝒖∗ = (0, 0) solutions.

The first method implemented to improve tracking performance was Sys-
tem Identification through PEM. In offline simulation, the method quickly
identified the exact model parameters and the external disturbances. It
also showed robustness when running in real-time simulation, though the
unmodeled time delay increases the prediction error. Finally, when running
on the real Piraya USV, it did roughly double the tracking performance of
the controller. Here the method showed adaptability to model the changing
disturbances in the environment. Furthermore, the experiments showed that
the method increased the range of velocities the model-based controller
can be used at. Moreover, results show that this online method has the
potential to save time and effort when compared to offline SYSID, and
could therefore be deployed for control of other vessels.

The second method used was Reinforcement Learning through Q-learning.
It was implemented and evaluated in offline simulation. While it was found
to increase the performance of the controller, it did not increase performance
as much as the System Identification. Interestingly, performance increased
even though the parameters did not converge towards the offline-identified
parameters, nor correctly identify the external disturbance. Furthermore,
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the particular implementation of Q-learning in this thesis was found to
be too computationally demanding for real-time use, which is where the
method in theory should be able to increase performance beyond SYSID.

9.1 Future Work

The most obvious thing to try as future work is the control of other vessels,
using this implementation, unmodified, and see how well the methods can
adapt. Moreover, it would be interesting to see the performance of this
algorithm with the full Piraya sensor array working. Then a larger model
could also be tried to identified online, which should improve performance.
Furthermore, this would increase the richness of the Q-function parameter-
ization, possibly allowing for a better fit of the Q-function, and even larger
performance improvements could be made through RL. In addition, more
advanced RL methods such as policy-gradient methods, which directly
modify the controller policy, would be interesting to implement. Finally,
an investigation into a dedicated symbolic framework and numerical solver
combination is probably necessary for the deployment of the RL methods
online.
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A
Discrete-Space
Reinforcement-Learning

This chapter introduces the notation, concepts, and algorithms necessary to
perform discrete-space Reinforcement Learning, in particular, Q-learning
[Sutton and Barto, 20182018Sutton and Barto, 20182018]. In discrete-space RL, the world is often thought
of as a grid, and actions 𝑎 take the agent from one square (state 𝑠) on the
grid to another. Furthermore, often these states come with rewards 𝑅(𝑠),
which either encourage or discourage the agent to come back to that state.
In Figure (A.1A.1) an illustration of states, actions, and rewards is shown. In
this example, there are five states 𝑠 ∈ {−2,−1, 0, 1, 2}, and two actions in
each state, go left or go right, 𝑎 ∈ {−1, 1} . Furthermore, there are rewards
placed in states 𝑠 = −2 and 𝑠 = 2, with 𝑅(−2) = −1 and 𝑅(2) = 1. These
have been placed in order to encourage the agent to head to the rightmost
state, 𝑠 = 2.

s=0 s=1 s=2s=-1s=-2

a=1a=-1

Figure A.1 A simple discrete RL problem with five states, two
actions, and two rewards. The heart gives reward 1, and the lightning
bolt gives reward -1. The agent should, through RL, learn to always
walk right.
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RL methods in general are concerned with, through trial and error, learning
of the rewards of each state, and from that information, knowing what
actions to take in any situation. This is formulated as the agent wanting to
maximize the reward received not just in the next state, but during the entire
task.

A.1 Value-, Action-Value-Function, and Policies

Since an RL agent will aim to maximize the total reward over the rest of
the task, it is natural to introduce a Value Function 𝑉𝜋 (𝑠), which gives
the expected total (including future) reward in the state 𝑠, taking actions
following the policy 𝜋(𝑠) [Sutton and Barto, 20182018Sutton and Barto, 20182018]. Further, the Action-
Value Function 𝑄 𝜋 (𝑠, 𝑎) or the Q-function, measures the expected total
reward in the state 𝑠, and taking the action 𝑎, while subsequently following
the policy 𝜋(𝑠). This also implies the need for a reward function 𝑅(𝑠),
which measures the true reward of any state [Sutton and Barto, 20182018Sutton and Barto, 20182018]. A
visualization of the connection between the value, Q-function, and rewards,
as well as the state 𝑠, future state 𝑠+ and action 𝑎, can be seen in Figure A.2A.2.

s s+

V(s) V(s+)

a2

R(s+)Q(s,a2)

a1

a3

Q(s,a1)

Q(s,a3)

Figure A.2 Figure showing a current state 𝑠, with state value
𝑉 (𝑠). An action, 𝑎2 is chosen by some policy 𝜋(𝑠) out of the
possible actions 𝑎1, 𝑎2 and 𝑎3. The actions taken in state 𝑠 have
the state-action values 𝑄(𝑠, 𝑎1), 𝑄(𝑠, 𝑎2) and 𝑄(𝑠, 𝑎3). Applying
action 𝑎2 leads to the state 𝑠+ = 𝑓 (𝑠, 𝑎2), where the reward 𝑅(𝑠+)
is received. Finally, the future state 𝑠+ has the state value 𝑉 (𝑠+).

Given any reward function, there exists at least one optimal policy
𝜋∗, for which 𝑉𝜋∗ (𝑠) ≥ 𝑉𝜋 (𝑠) for all states 𝑠 and policies 𝜋(𝑠)
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[Sutton and Barto, 20182018Sutton and Barto, 20182018]. The optimal policies share a optimal value func-
tion𝑉∗ (𝑠). and Optimal Action-Value Function𝑄∗ (𝑠, 𝑎), which measure the
maximum total reward possible from any state, and from any state given
an action in that state, respectively. Naturally, these are connected by the
simple equation

𝑉∗ (𝑠) = max
𝑎

𝑄∗ (𝑠, 𝑎) (A.1)

Intuitively, the action with the biggest total reward as given by the Q-
function must be equal to the value of the optimal policy in that state.
Further, the optimal policy is obtained given the optimal Q-function, as

𝜋∗ (𝑠) = argmax
𝑎

𝑄∗ (𝑠, 𝑎) (A.2)

where the optimal policy takes the action which maximizes the optimal
Q-function and thus achieves the largest value in the state 𝑠. In the con-
text of a system that evolves with time, through a dynamics function like
𝑠+ = 𝑓 (𝑠, 𝑎), where 𝑠+ is the next state, the optimal value function and
Q-function satisfy the following recursive equation, called the Bellman
Equation [Sutton and Barto, 20182018Sutton and Barto, 20182018]

𝑉∗ (𝑠) = 𝑅(𝑠+) +𝑉∗ (𝑠+) (A.3a)
𝑄∗ (𝑠, 𝑎) = 𝑅(𝑠+) +max

𝑎+
𝑄∗ (𝑠+, 𝑎+) (A.3b)

which states that the optimal value of any state, must be equal to the reward
acquired in the transition to the next state 𝑅(𝑠+), plus the maximum total
reward achievable in the next state 𝑉 (𝑠+) [Sutton and Barto, 20182018Sutton and Barto, 20182018].

A.2 Temporal Difference Methods

In Reinforcement Learning Methods, the objective is to learn either the
optimal value function, Q-function, the policy, or a combination of the
three [Sutton and Barto, 20182018Sutton and Barto, 20182018]. Since the Bellman Equation can easily be
used to verify if any approximation of these have achieved optimality, it
is a useful tool in the learning process. In Temporal Difference methods,
(TD methods), the temporal difference error (TD error) is formed as the
mismatch in the Bellman Equation for a specific transition (𝑠, 𝑠+), with an
associated reward 𝑅. Starting from an initial guess of value function 𝑉 (𝑠),
the TD error is formed as [Sutton and Barto, 20182018Sutton and Barto, 20182018]
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𝛿 = 𝑅(𝑠+) +𝑉 (𝑠+) −𝑉 (𝑠) (A.4)

where 𝛿 = 0 means the Bellman equation is satisfied and would imply the
approximate 𝑉 is equal to the optimal value function in that state.

In the TD(0) method, the TD error is used to learn the value function 𝑉𝜋

corresponding to a given policy 𝜋 [Sutton and Barto, 20182018Sutton and Barto, 20182018]. Intuitively, if
𝛿 ≠ 0, updating the value function in that state 𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛿 would
ensure no TD error is incurred next time this transition is made. However,
as is common in machine learning, a learning rate 𝛽 > 0 is introduced
instead, and the update made is

𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛽𝛿 (A.5)

which still reduces the temporal difference in this state. The purpose of
introducing the learning rate is to increase the robustness of the method in
the face of, e.g., noisy measurements, giving lesser importance to individ-
ual transitions. It should be noted that since the unknown value function
is used twice in the equation, the value function iterates are not expected
to converge exactly to the value function 𝑉𝜋 . This can still be useful, since
the reward, 𝑅, received in any transition (𝑠, 𝑠+) is considered the truth,
and thus the value 𝑅(𝑠+) + 𝑉 (𝑠+) contains more information than 𝑉 (𝑠).
Intuitively then, the value function estimate is updated to match the rewards
𝑅 received during training [Sutton and Barto, 20182018Sutton and Barto, 20182018].

A.3 Q-Learning

Q-learning is a method for learning the optimal policy 𝜋∗ associated with the
reward 𝑅(𝑠) [Sutton and Barto, 20182018Sutton and Barto, 20182018]. An advantage of Q-learning is that
this can be done while allowing the system to follow any other policy during
learning, as long as that policy visits all state-action pairs. This is called off-
policy learning since we are not on (using) the policy we are trying to learn.
As the name implies, in this case, the TD error is formed with Q-functions,
and the algorithm can be shown to have an initial guess 𝑄 converge to the
optimal 𝑄∗. The optimal policy is then found by Equation (A.2A.2). Given a
transition (𝑠, 𝑎, 𝑠+) and reward 𝑅, the TD error is [Sutton and Barto, 20182018Sutton and Barto, 20182018]

100



𝛿 = 𝑅(𝑠+) +max
𝑎+

𝑄(𝑠+, 𝑎+) −𝑄(𝑠, 𝑎) (A.6)

which captures the error in the Bellman Equation (A.3bA.3b). Similar to TD(0),
the Q-function estimate is updated using the TD error.

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛽𝛿 (A.7)
where 𝛽 once again is the learning rate. As previously stated, in Q-learning,
any policy can be followed during the learning phase as long as it visits all
state-action combinations. A common choice for the policy to be followed
during Q-learning is called an 𝜖-greedy policy [Sutton and Barto, 20182018Sutton and Barto, 20182018],
𝜋𝜖 . For some small probability 𝜖 > 0, and a random number 𝑝 ∼ 𝑈 (0, 1),
where𝑈 (0, 1) is the uniform distribution between 0 and 1, the policy is

𝜋𝜖 (𝑠) =


argmax
𝑎

𝑄(𝑠, 𝑎), 𝑝 > 1 − 𝜖

random action, 𝑝 < 𝜖
(A.8)

as can be seen above, a 𝜖-greedy policy is greedy with probability 1 −
𝜖 , which is exploitative behavior. On the other hand, the policy engages
in exploration with probability 𝜖 , where any other sub-optimal action is
taken at random. The full Q-learning procedure is shown in Algorithm (22)
[Sutton and Barto, 20182018Sutton and Barto, 20182018].

Algorithm 2 Tabular Q-learning
Initial state 𝑠
Learning Rate 𝛽 > 0, Greedy parameter 𝜖 > 0
𝑄(𝑠, 𝑎) arbitrary for all (𝑠, 𝑎)
while learning do

𝑝 ← sample from𝑈 (0, 1)

𝑎 ←


argmax
𝑎

𝑄(𝑠, 𝑎), 𝑝 > 1 − 𝜖

random action, 𝑝 < 𝜖

𝑅, 𝑠+ ← system(𝑠, 𝑎)

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛽
(
𝑅 +max

𝑎+
𝑄(𝑠+, 𝑎+) −𝑄(𝑠, 𝑎)

)
𝑠← 𝑠+

end while
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B
Path Parameterization

In this chapter, the creation of a part-linear, part-circular path for the purpose
of model predictive path following control is detailed. The necessary input
is a set of way-points W to follow, as well as a turning radius 𝑅, which
is used as the path circle radius. Crucially, the path is by this construction
ensured to be contiously differentiable in order to facilitate the optimization
in MPFC.

B.1 Piece-Wise Linear Paths

Given a set of way-pointsW = {(𝑥𝑖 , 𝑦𝑖)}𝑀𝑖=1 a piece-wise linear path can
be established by creating the set of directional vectors

D =

{
(𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1)√︁
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2

}𝑀

𝑖=1

(B.1)

The linear paths are then given by (𝑥(𝑧), 𝑦(𝑧))𝑖 = 𝒅𝑖𝑧 + 𝒘𝑖 , where 𝒅𝑖 ∈ D,
𝒘𝑖 ∈ W and 𝑧 ∈ [0, 𝑧max,𝑘]. Here 𝑧max,𝑖 =

√︁
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 is

the length of the path to be traveled.

B.2 Circular Arc Path Corners

In order to facilitate the optimization of the path parameter 𝑧 in the
NMPFC solution, the path needs to be continuously differentiable, P ∈ C1

[Faulwasser, 20132013Faulwasser, 20132013]. This is achieved by generating circular arcs connecting
the linear segments defined by the way-points specified. Given two linear
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paths ℓ𝑖 : 𝒅𝑖𝑧 +𝒘𝑖 , ℓ𝑖+1 : 𝒅𝑖+1𝑧 +𝒘𝑖+1 intersecting in the point 𝒑 = (𝑥𝑖 , 𝑦𝑖),
a circular arc of specified radius 𝑅 is constructed by the following algo-
rithm, visualized in Figure B.1B.1. The method is based on [Alexiou, 20152015Alexiou, 20152015]
with modification.

k

m

p

Δ

(x0, y0)

(x2, y2)

R
ψ/2

φ

Figure B.1 Illustration that motivates the formulas behind circular
arc creation. The way-points are {(−2, 0), (0, 0), (2, 2)}, and the
circle radius 𝑅 = 2. Here, Δ is the overlap distance between the arc
and the lines. The angles 𝜓 and 𝜑 correspond to the arc interior
angle and the angle between the lines, respectively. Furthermore, 𝒌
is the center of the circle, 𝒎 is the endpoint of the arc, and 𝒑 is the
intersection of the two lines. Based on [Alexiou, 20152015Alexiou, 20152015].

The angle 𝜑 between the two directional vectors 𝒅𝑖 and 𝒅𝑖+1 is calculated
based on the dot product as

𝜑 = 𝜋 − cos−1
(

𝒅𝑖 · 𝒅𝑖+1
| |𝒅𝑖 | | · | |𝒅𝑖+1 | |

)
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Thus, the overlap distance from the line intersection point 𝒑 to the arc start
and endpoints is given by the definition of the co-tangent,

Δ = 𝑅 cot
(𝜑

2

)
Now, let 𝒎 be the endpoint of the arc. It can be expressed as

𝒎 = 𝒑 + Δ𝒅𝑖+1

The handedness of the turn, i.e., if it is a left or right turn, can be determined
by the sign of the determinant of the matrix

[
𝒅𝑖 𝒅𝑖+1

]
consisting of

the directional vectors of the bounding lines. If det
[
𝒅𝑖 𝒅𝑖+1

]
> 0, the

turn is right-handed, otherwise it is left-handed. With this information, the
circle arc center 𝒌 follows as a point a distance of 𝑅 away from 𝒎, in
the perpendicular direction of 𝒅𝑖+1, amounting to a 90° rotation. Here, the
direction of the rotation depends on the left- or right-handedness of the arc:

𝒌 = 𝒎 − 𝑟 · 𝑹
( 𝜋

2

)
𝒅𝑖+1 · sgn

(
det

[
𝒅𝑖 𝒅𝑖+1

] )
where sgn(·) is the sign function, and 𝑹(�̂�) is a 2 × 2 rotational matrix,

𝑹(�̂�) =
[
cos �̂� − sin �̂�
sin �̂� cos �̂�

]
This in turn enables the calculation of the coordinates of a point on the arc,
𝒄(�̂�), given the angle relative to the circle arc start, �̂� ∈ [0, 𝜓]

𝒄(�̂�) = 𝒌 + (𝒌 − 𝒎)𝑹(�̂�)

where 𝑹(�̂�) once again is the 2 × 2 rotational matrix, and 𝜓 is the size of
the interior angle of the arc determined as

𝜓 = 𝜋 − 𝜑

which can be seen in Figure B.1B.1, since 𝜑/2 and 𝜓/2 form a right-angle
triangle, so 𝜑

2 +
𝜓

2 = 𝜋
2 . Finally, the length of the arc is 𝐿 = 𝑟𝜓.
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B.3 Path Creation

The continuously differentiable path P is given on the following form,
inspired by [Faulwasser et al., 20172017Faulwasser et al., 20172017]

𝑝(𝑧) =
𝑁P−1∑︁
𝑖=0

𝐻 (𝑧 − 𝑧𝑖)𝐻 (𝑧𝑖+1 − 𝑧)𝒒𝑖 (𝑧 − 𝑧𝑖) (B.2)

where 𝐻 is the Heaviside step-function, {𝑧𝑖}𝑁P𝑖=0 are distances along the path
at which a new segment starts, and

𝒒𝑖 (𝑧) =
{
𝒅𝑖𝑧 + 𝒘𝑖 , 𝑖 even
𝒌𝑖 + (𝒌𝑖 − 𝒎)𝑖𝑹(�̂�(𝑧)), 𝑖 odd

(B.3)

where �̂�(𝑧) = 𝑧𝜓

𝐿
· sgn

(
det

[
𝒂0 𝒂1

] )
depends on the handedness of the

turn,. This ensures that the circle is traversed in the right direction, and
scales the mapping of the interval endpoints �̂�(0) → 0 and |�̂�(𝐿) | →
𝜓 correctly. Furthermore, {(𝒌𝑖 ,𝒎𝑖)}𝑁P𝑖=1 are the central and final points
describing the circular arcs. The number of segments, 𝑁P is always odd,
meaning that the path always starts and ends with a line segment to and
from the final and starting point, respectively. A complete path ”through”
the points {(−2, 0), (0, 0), (2, 2), (1, 4)} can be seen in Figure B.2B.2.
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Figure B.2 Smooth path created through the points
{(-2, 0), (0, 0), (2, 2), (1, 4)}, with a turning radius of 1 m.
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C
Reinforcement Learning
Parameter Evolution

In this appendix, the evolution of all the parameters tuned by reinforce-
ment learning are shown for the sake of completeness. First, the of-
fline simulated NMPFC+RL run is shown in Figure C.1C.1, and after that
NMPFC+SYSID+RL is shown in Figure C.2C.2. In Figures C.1aC.1a and C.2aC.2a the
cost parameters _ and 𝑽 𝑓 are shown, while the cost function parameters
𝑸, 𝑹, �̃�, �̃� and 𝑷 are shown in Figures C.1bC.1b and C.2bC.2b.
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(a) The cost parameter evolution using RL on the simulated USV.
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(b) The cost function evolution using RL on the simulated USV.

Figure C.1 Figure showing the RL cost parameters and cost func-
tion parameters’ evolution during the USV simulation with RL en-
abled.
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(a) The cost parameter evolution using SYSID and RL on the simulated USV.
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(b) The cost function evolution using SYSID and RL on the simulated USV.

Figure C.2 Figure showing the RL cost parameters and cost func-
tion parameters’ evolution during the USV simulation with SYSID
and RL enabled.
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