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Abstract

This thesis studies the possibility of estimating the ambient temperature around a
mobile phone using its internal temperature sensors.

The thesis aims to develop and evaluate ambient temperature models that use
internal temperature sensors within the device and, from a manufacturer’s perspec-
tive, investigate if the models for ambient temperature can be enhanced by tailoring
them to the internals of specific devices. The chosen approach was to use thermal
circuits and, based on them, derive state-space models. The parameters of these
models were then estimated using collected data. A linear polynomial approach
was also evaluated but gave worse estimations than the state-space approaches. The
best-performing model, one of the state-space models, has an estimation accuracy
of within ±1–3°C and an average error of below 1.5°C when evaluated on a broad
collection of testing scenarios.

Once parameter estimations have been performed, all the models have a low
processor resource utilisation, which is ideal for an on-device implementation. The
thermal models should theoretically be generalisable and could be used on other
mobile phone models with similar internal layouts with only the need for new pa-
rameter estimations. The thermal models’ principles could theoretically also be able
to be used on almost all embedded devices with similar internal temperature sen-
sors.

3





Acknowledgements

We want to thank Rickard Möller and Jimmy Olsson at Sony for their support and
the opportunity to write this thesis in collaboration with Sony. We would also like to
thank all the talented people at SW1 for all their invaluable help and warm welcome.

We would like to thank Karl-Erik Årzén at LTH for being a great supervisor and
giving us valuable advice and feedback throughout the project.

And finally, we would like to give a big thanks to the coffee machine to the left
and a !thanks to the annoying rotary doors at Sony’s office!

5





Contents

1. Introduction 9
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Contribution statement . . . . . . . . . . . . . . . . . . . . . . . 12

2. Theory 13
2.1 The physics of heat transfer . . . . . . . . . . . . . . . . . . . . 13
2.2 Thermal modelling . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 State-space modeling . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Methods for parameter estimation . . . . . . . . . . . . . . . . . 16
2.5 Grey-box modeling . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Methods 18
3.1 Equipment and testing environment . . . . . . . . . . . . . . . . 18
3.2 Data collection and test scenarios . . . . . . . . . . . . . . . . . 19
3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Model evaluation metrics . . . . . . . . . . . . . . . . . . . . . 23

4. Modelling 25
4.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Thermal circuit approach . . . . . . . . . . . . . . . . . . . . . 25
4.3 Linear approach . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Model evaluation and discussion 38
5.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Evaluation on specific scenarios . . . . . . . . . . . . . . . . . . 44
5.3 Performance compared to related works . . . . . . . . . . . . . 51
5.4 Limitations of the models . . . . . . . . . . . . . . . . . . . . . 51
5.5 Identifiability analysis . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Computational efficiency . . . . . . . . . . . . . . . . . . . . . 53

6. Conclusion 54
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 56

7





1
Introduction

High temperature is an unwanted artefact of mobile phones caused by heat gen-
erated from multiple sources such as the CPU, battery, charging, and camera. The
temperature constrains how a device can operate efficiently over extended periods of
time without overheating the components or harming the user, especially in warmer
climates. With the increased power of modern mobile phone processors and ad-
vanced cellular modems, thermal challenges will continue to be a problem in future
smartphone design. Therefore, it is in all mobile phone manufacturers’ interest to
improve their strategies for thermal mitigation.

The mitigation of thermal issues is done in both hardware and software. Android
applies multiple strategies to solve this in software, such as energy-aware scheduling
and a thermal engine allowing vendors to control the hardware based on the phone’s
temperature [Google, 2022; Parab and Mangaonkar, 2018].

To optimise the software mitigation strategies further, it would be beneficial to
know the ambient temperature of the air surrounding the device, for example, to
compensate for warmer climates. An ambient temperature parameter in the device’s
thermal management system would allow for more precise control, and it could,
for example, allow the system to rely on the cooling effect of the surrounding air
and thereby be more or less aggressive when controlling the processor frequency to
maximise performance without overheating the device.

The ambient temperature could be estimated using thermal sensors scattered
around the device’s internals. But this is not as straightforward as reading the raw
sensor data since the internal thermometers get affected by ”spill heat” from differ-
ent surrounding components. This means a model needs to be created to consider
these factors when combining all the sensor data.

This modelling could be done using different approaches, and this thesis aims
to investigate how the problem could be solved using thermal circuit heat modelling
and automatic control methods. The thesis is performed in collaboration with Sony
to improve their thermal mitigation strategies. Due to this collaboration, one of their
devices will be used as the main testing platform, however, the models and methods
can be applied to other mobile phones or devices with a similar sensor setup.
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Chapter 1. Introduction

1.1 Related work

There has been some previous research on ambient temperature modelling for mo-
bile phones. Chau has shown how the battery temperature sensor could be used to
estimate the ambient temperature with a linear one-variable equation. However, the
model is only built to handle when the mobile phone is idle, i.e. when only running
the operating system with no apps active, and does not compensate for when the
battery temperature is influenced by heat generated from internal sources such as
the processor. The testing environment is also a normal room with air conditioning,
lacking the accuracy of a proper lab environment [Chau, 2019].

He et al. improve upon this model by replacing the linear equation with a
quadratic regression method called Support vector machine (SVM) and adding the
current draw from the battery as an additional parameter compensating for internal
heat. Their testing shows an average error of 1.25°C, but when applying load, it is
closer to 2-3°C [He et al., 2020].

There is also some other research similar to this thesis that applies the concept
of thermal circuits for thermal modelling. Ishii and Nakashima derive transfer func-
tions for the surface temperature of the device and, in the process, also estimate the
ambient temperature. But due to the focus on surface temperature, the performance
of the ambient estimations is not shown [Ishii and Nakashima, 2017].

Li et al. derive a fixed point iteration algorithm based on thermal circuits to
achieve an accuracy of 0.7°C. However, it is worth mentioning that the device heats
a maximum of 7°C compared to idle when full CPU load is applied [Li et al., 2020],
which later will be shown to be significantly less than the device used in this thesis.

The approach in this thesis differs from other related work in a few ways. Firstly,
no previous work investigates how state-space models derived from thermal circuits
could be used to predict ambient temperature. Secondly, other work focuses on
using as few sensors as possible and allowing any type of sensors to be used, while
this thesis looks at the problem from a device manufacturer perspective, i.e., which
specific sensors does the device contain and which are the most interesting ones to
use when estimating the ambient temperature.

1.2 Objectives

The thesis aims to develop and evaluate ambient temperature models that use inter-
nal temperature sensors within the device and, from a manufacturer’s perspective,
investigate if the models for ambient temperature can be enhanced by tailoring them
to the internals of specific devices. The different models will be simulated, imple-
mented, and evaluated in a laboratory environment. The goal of the project can be
summarised into the following research questions.

1. How can the ambient temperature of a mobile phone be modelled using ex-
isting internal temperature sensors?
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1.3 Limitations

2. Which models can be used, how accurate are they, and how efficiently can
they be implemented on a mobile phone?

3. How do the number of sensors and their placement within the device affect
the accuracy of the models?

1.3 Limitations

To make the project feasible for the scope of a master thesis, the following limita-
tions had to be made.

• Due to time constraints, the thermal modelling and evaluation have only been
done on a single mobile phone model. Testing the thermal model on multiple
platforms would be of interest to further investigate its generality. Investi-
gating how a mobile phone case would affect the model’s performance would
also be interesting, but it has also not been considered due to time constraints.

• Radiation from the sun shining on the phone could make the estimation in-
correct due to it adding external heat. But this scenario is not considered due
to the lack of the proper testing equipment.

• In this thesis, the evaluation is only done based on data collected in a labo-
ratory environment. This limitation was set due to practical reasons and time
constraints. But further evaluating the models with field testing could provide
additional information on the model’s usability.

1.4 Outline

Except for the introduction, the report is divided into five additional chapters, briefly
summarised below.

• Chapter 2 introduces the theory behind thermal modelling and other relevant
concepts for this thesis.

• Chapter 3 describes the equipment and methods used to collect the data re-
quired to design and evaluate the models. It also describes the parameter es-
timation and evaluation procedure.

• Chapter 4 describes the iterative process of model development by describ-
ing which models were chosen, why, and how the ambient temperature was
derived from them.

• Chapter 5 evaluates the models designed in the previous chapter, showing
how the different models perform in different scenarios by providing plots
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Chapter 1. Introduction

and tables with different metrics and discussing the results and the models in
general.

• Chapter 6 summarises the discussions in the previous chapter and ties them
into the thesis’s research questions and overall goal. It also provides a discus-
sion on future works.

1.5 Contribution statement

During the creation of the thesis, there has been an equal contribution from both
authors. The authors collaborated on data collection and model development, con-
tributing equal work and key ideas. Both authors have worked together on the ac-
tual model evaluation implementations. However, Paulcén has mostly focused on
the non-state-space implementations in Python, and Evaldsson has focused on the
state-space Matlab implementations.

Regarding the writing, both authors have been involved in all chapters and in
creating a report skeleton, including chapters, sections and subsections. The writing
of specific sections or subsections has been divided among the authors to speed up
the process. However, the authors have reviewed each other’s sections and have had
constant dialogue regarding all sections and their contents.
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2
Theory

This chapter introduces the necessary theory required to model the ambient tem-
perature. It will give the reader a brief overview of the physics behind heat and the
theory required to build models, both thermal specific such as thermal circuits and
general concepts, such as state-space and grey box modelling.

2.1 The physics of heat transfer

To model a system, some fundamental knowledge about the domain is required.
This chapter, therefore, begins with a short introduction to the physics of heat and
heat transfer.

Borgnakke and Sonntag define the thermodynamical definition of heat as ”the
form of energy that is transferred across the boundary of a system at a given tem-
perature to another system” [Borgnakke and Sonntag, 2013, p. 98]. If there exists a
temperature differential between the two systems, then the system with the higher
temperature will transfer heat energy, denoted by Q, to the other system until they
achieve equal temperature [Borgnakke and Sonntag, 2013]. The relationship be-
tween heat and temperature can be compared with how a difference in voltage drives
current in electronics.

The heat transfer described above can occur both within and between mediums.
The different ways of heat transfer are called conduction, convection and radiation.
Conduction is heat transfer within a fluid, meaning both liquids and gases, or solid
medium, while convection is heat transfer between a solid and fluid, and radiation
is heat transfer carried out without an intervening medium using electromagnetic
waves [Incropera et al., 2007].

In the case of a mobile phone, conduction occurs within the phone internals,
while convection occurs between the mobile phone’s surface and the ambient air
surrounding it. There can also exist radiation between the phone and heat sources
such as the sun. However, as stated within the limitations in Section 1.3, this aspect
will not be investigated in this thesis.
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Chapter 2. Theory

Conduction
The conductive heat transfer between two points with temperatures T1 and T2 and
the distances L can be described using Fourier’s Law,

q = k
T2 −T1

L
= k

∆T
L

, (2.1)

where q (alternatively Q̇ or dQ
dt ) is the heat flux (W/m2), i.e., the amount of heat

energy transferred per unit of time and area, and k is a material-specific constant
called thermal conductivity which uses the unit W/(m ·K) [Incropera et al., 2007].

Convection
Convective heat transfer can be described with an equation similar to the one for
conduction called Newton’s law of cooling,

q = h(Ts −T∞). (2.2)

In this formula, we have the surface temperature Ts of the solid material, the fluid
temperature T∞ and the convection heat transfer coefficient h expressed in W/(m2 ·
K) [Incropera et al., 2007].

2.2 Thermal modelling

When modelling thermal behaviour, a common approach is to use a lumped-element
model, meaning that the thermal system is simplified to a system of a finite amount
of discrete nodes representing the different materials in the system [Incropera et al.,
2007]. This method is similar to node analysis in electronics, and those similarities
will continue in this section, where the concept of thermal circuits is explained.

Thermal circuits
Continuing the analogies between electronics and heat, using so-called thermal cir-
cuits is a common approach to modelling heat transfer. Sidebotham describes ther-
mal circuits as circuits where the traditional current sources, capacitors and resistors
are replaced with thermal heat sources, thermal capacitors and thermal resistors.
Thermal capacitors model thermal energy stored with a material, and thermal resis-
tors model heat change resistance and how easily heat can be transferred between
materials. These thermal capacitances and resistances in the thermal circuits are an
actual measurement of the thermal properties of the combined materials between
the nodes. The measurement of the thermal capacitors and resistors can vary signif-
icantly if the materials are changed or altered in size. These thermal capacitors and
resistors can be calculated if the physical materials and size are known [Sidebotham,
2015]. Otherwise, if the materials are unknown, they can be calculated through dif-
ferent estimation approaches. There is also a thermal circuit equivalent of batteries,
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2.2 Thermal modelling

providing a source of heat for the system instead of voltages. An example of a sim-
ple thermal circuit with a resistor (R), capacitor (C) and thermal source (T0) can be
seen in Figure 2.1.

Figure 2.1 Thermal circuit example with a resistor, capacitor and temperature source.

The heat flux transferred over a resistor with the thermal resistance R between
nodes with temperature T1 and T2 can be expressed with Equation 2.3 [Sidebotham,
2015]. The thermal resistors can be used to both model convection and conduction,
and the formula closely resembles the laws defined in Equation 2.1 and 2.2.

qR =
T2 −T1

R
(2.3)

For a thermal capacitor in a system with the reference temperature Tre f and the
capacitance C connected to a node with temperature T , the following heat flux is
generated [Sidebotham, 2015],

qc =C
d(T −Tre f )

dt
. (2.4)

For thermal circuits, most laws of regular electrical circuits apply, parallel and
serial resistances can, for example, be combined into a single equivalent resistor.

1
Rparallel

=
1

R1
+

1
R2

+
1

R3
+ . . . (2.5)

Rserial = R1 +R2 +R3 + . . . (2.6)

Another important law that applies similarly to electrical circuits is Kirchhoff’s
current law, which states the sum of the incoming and outgoing current in a node
is always zero. In the case of thermal circuits, the law can be rewritten using heat
flux instead of currents, this law makes sure that each node within the circuit up-
holds the first law of thermodynamics, i.e., the principle of conservation of energy
[Sidebotham, 2015; Incropera et al., 2007]. For a generic node with N incoming and
outgoing arcs having the heat flux qx, we get the following,

∑
N

qi = 0. (2.7)
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Chapter 2. Theory

The laws defined in Equation 2.3, 2.4, and 2.7 can be used to set up balance
equations for each node within the circuit. The balance equations for the simple
thermal circuit in Figure 2.1 becomes

qR +qC = 0. (2.8)

The above-described basic building blocks can be used to setup up arbitrary
large thermal circuits, allowing the modelling of highly complex thermal behaviour.

2.3 State-space modeling

A common way to model a physical system within the automatic control theory is
to use a so-called state-space model. As the name implies, the system is defined
by having a vector of physical variables called its state x(t), and the external input
signals u(t). The current state and the input signal determine the system’s output
y(t), which in the linear case can be expressed with the matrices C and D,

y(t) =Cx(t)+Du(t). (2.9)

While the state change is expressed with the derivative ẋ, which depends on the
current state and input signals, which similarly can be expressed using the matrices
A and B in the linear case,

ẋ(t) = Ax(t)+Bu(t). (2.10)

Combining equations 2.9 and 2.10 gives the equation system definition of the linear
state-space model [Ljung and Glad, 2004].{

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

(2.11)

One important property to consider when building state-space models is the
stability of the model. A state-space system is asymptotically stable if it, for any
arbitrary initial state, given that no external input u(t) is applied, eventually reaches
the equilibrium x = 0. The asymptotic stability of a system can be determined by
looking at the eigenvalues of the matrix A, if their real part is negative, the system
is stable [Daleh et al., 2011]. An unstable system does not need to reach a point of
equilibrium, meaning that the state could potentially grow towards infinity.

2.4 Methods for parameter estimation

If the parameters of a thermal system, such as resistances and capacitances, are
unknown and the materials composition of these are also unknown, these could
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2.5 Grey-box modeling

be estimated instead. Ljung and Glad define a general approach for the function
ŷ(t|θ) modelling the system y(t) using the parameter vector θ . First, they define the
prediction error ε ,

ε(t,θ) = y(t)− ŷ(t|θ). (2.12)

The prediction error can then be used to sum the error VN for a time series of
input and output signals of length N,

VN(θ) =
1
N

N

∑
t=1

ε(t,θ). (2.13)

The optimal parameter estimation θ̂N is then achieved by minimising the VN
[Ljung and Glad, 2004],

θ̂N = argmin
θ

VN(θ). (2.14)

Plenty of numerical methods exist to minimise a function, often called the ob-
jective function. A common approach is to use the derivatives, the Jacobian matrix,
to be more precise, to minimise them using Newton’s method. When they are hard
to find or computationally heavy, a Quasi-Newton method can be used, which ap-
proximates the derivatives [Bonnans et al., 2006].

2.5 Grey-box modeling

In model development, there are two main methods: white box modelling, where
the model is purely based on theory and thereby tailored to the specific system, and
black box modelling, where you have a generic model structure where data is used
to fit it to the specific system. Grey box modelling combines the two methods, al-
lowing the model structure to be based on theoretical knowledge while the unknown
aspects, such as parameters, are estimated using numerical methods [Bohlin, 2006].
Many modelling tools, such as Matlab, support grey box modelling [Mathworks,
2023a].

When building models from data, it is important to consider the identifiability
of the system. A system ŷ with the parameters θ∗ is identifiable if there are no
other parameters θ that result in the same predictions when supplied the same input
data. If the system is unidentifiable, then multiple parameter sets for that system
result in the same output, potentially causing trouble for an estimator by introducing
unwanted properties in objective functions, such as saddle points. A system can
either be unidentifiable because of its mathematical properties or due to the chosen
set of input signals not providing enough inputs to be able to expose a difference in
output between parameterisations [Ljung and Glad, 2004; Guillaume et al., 2019].

17



3
Methods

Data collection is necessary for multiple purposes to build the thermal models, such
as gaining insights regarding the system behaviour, parameter estimation and model
evaluation. This chapter describes how the test environment was set up, how the data
was collected in different scenarios, how Python and Matlab’s grey-box methods
were used for the parameter estimation and how the models with their estimated
parameters were evaluated.

3.1 Equipment and testing environment

To create a controllable environment where temperature data can be collected at
specific ambient temperatures, a Vötsch VT 4004 heating chamber was used. The
chamber allows testing in an extensive temperature range (–40°C and +130°C) and
it can be programmed to change the temperature in specific sequences, allowing for
complex test scenarios.

Several temperature probes were placed free-floating in the middle of the cham-
ber to get accurate ambient temperature measurements within the heating chamber.
Each temperature probe is calibrated using a pre-calibrated thermometer, specif-
ically a G1700 from Greisinger, with a verified accuracy of 0.1 degrees Celsius.
The temperature probes are all connected to a multiplexer from which the data can
be imported to a computer. The connected computer can control the multiplexer
by setting, for instance, the sample rate and calibrations. As a part of processing
the multiplexer data, the average temperature value of all the probes is used to de-
termine the ambient temperature. The testing environment, including the heating
chamber and multiplexer with probes, can be seen in Figure 3.1.
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3.2 Data collection and test scenarios

Figure 3.1 Image of the laboratory set up for collecting data, the test device is placed within
the heating chamber together with the temperature probes, and the multiplexer is placed on
top of the chamber.

A Sony Xperia 5 IV is used as the main testing platform. It is representative of
a modern flagship smartphone, released in 2022 and equipped with a Qualcomm
Snapdragon 8 gen 1 SoC [Sony Electronics, 2022]. An SoC or System-on-Chip is a
single chip integrating the processor, GPU and RAM. The mobile phone is placed
on a foam platform within the heating chamber to isolate it from the metal side
panels of the heating chamber, eliminating sources of conduction. A computer is
connected to the mobile phone to gather real-time temperature data from the mobile
phone and store it. The computer can also control the mobile phone by generating
computation loads or disabling settings such as USB charging, WiFi, etc., allowing
the creation of specific test scenarios.

3.2 Data collection and test scenarios

The data collected from the mobile phone consists of thermal readings from about
50 sensors. The data was collected from the mobile phone during different testing
scenarios with varying complexity. The tests were designed to evaluate different as-
pects of the phone’s thermal behaviours by applying ambient temperature changes
or different computational loads. The testing scenarios are explained in the follow-
ing subsections.
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Chapter 3. Methods

Test scenarios
Scenario 1 - Idle state. Static ambient temperature of 20°C for 30 minutes with
minimal computation load on the mobile phone with no apps actively running, often
called the idle state.

Scenario 2. Scenario 2 consists of five sub-scenarios all performed with a static
ambient temperature. Each sub-scenario tests a certain kind of load on the mobile
phone.

1. 20°C ambient temperature with 10 minutes 100% CPU load on all cores for
10 minutes.

2. 20°C ambient temperature with charging for 50 minutes.

3. 20°C ambient temperature while using the camera filming at 1080p resolution
with 60 Hz frame rate for 10 minutes and then 10 minutes idle followed by
filming again but at 4k resolution with 120 Hz frame rate for 10 minutes.

4. 20°C ambient temperature while streaming YouTube at a resolution of 4k
over modem for 20 minutes.

5. 50°C ambient temperature with 10 minutes 100% CPU load on all cores for
15 minutes.

Scenario 3. Test with mobile phone in idle state and temperature change. It starts
at a normalised temperature of -10°C ambient temperature for 30 minutes and then
increases to 50°C in ambient temperature. The mobile phone will not have any
computation loads, and the total length of the scenario is 80 minutes.

Scenario 4 - Verification. Tests temperature change and different CPU loads. It
starts at a normalised temperature and then either increases or decreases to another
temperature point. The mobile phone will have CPU loads at different timestamps.
This test is our main verification test and has the following sequence of changes:

• Starts with -10°C in ambient temperature and idle state for the mobile phone
in 35min.

• CPU gets 100% load on all cores for 25 minutes.

• Ambient temperature is increased to 10°C , and the mobile phone idles for 60
minutes.

• CPU gets a load of 50% for 20 minutes.

• Idles for 150 minutes.

• CPU load of 50% for 20 minutes.

20



3.2 Data collection and test scenarios

• Idles for 25 minutes.

• Ambient temperature increase to 30 °C and the mobile phone idle for 60
minutes.

• CPU load of 100% for 15 minutes.

• CPU load of 50% for 20 minutes.

• The mobile phone is in idle while the ambient temperature increases to 50°C
and continues to idle for 50 minutes.

• CPU gets a load of 100% for 20 minutes.

• Idles for 75 minutes.

Scenario 5 - Training. This scenario’s main purpose is to be used as training
data to estimate variables for the models. This means it needs to be quite extensive
scenarios, which go through almost all the possible scenarios. In other words, the
longer and more complex the scenario is, the better the estimation is. The training
scenario consists of the following sequence:

• Starts at a normalised ambient temperature of -10°C.

• Idle for 20 minutes.

• 100% CPU load for 10 minutes.

• Change of ambient temperature to 10°C.

• Idle for 35 minutes.

• 50% CPU load for 10 minutes.

• Idle for 75 minutes.

• 100% CPU load for 10 minutes.

• Idle for 15 minutes.

• Change of ambient temperature to 30°C.

• Idle for 30 minutes.

• 100% CPU load for 10 minutes.

• 50% CPU load for 10 minutes.

• Change of ambient temperature to 50°C.
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Chapter 3. Methods

• Idle for 30 minutes.

• 100% CPU load for 10 minutes.

• Idle for 35 minutes.

• Filming at 1080p resolution with 60Hz refresh rate for 10 minutes.

• Idle for 15 minutes.

• Filming at 4k resolution with 120Hz refresh rate for 10 minutes.

• Change of ambient temperature to 20°C.

• Filming at 1080p resolution with 60Hz refresh rate for 10 minutes.

• Idle for 15 minutes.

• Filming at 4k resolution with 120Hz refresh rate for 10 minutes.

• Idle for 15 minutes.

3.3 Parameter estimation

The parameter estimation process differs between the state-space models, where
the parameters occur non-linearly, and the non-state-space linear equations and is
therefore described under two different subsections. The first one describes how
the linear equations were fitted to data using minimisation methods in Python, and
the second one how the grey-box methods within Matlab were used to estimate the
state-space models.

Estimation of linear equations
For the parameter estimations of the linear equations, Python was used. The process
closely resembles the method described in Section 2.4 and is described below.

1. Define the function for the model with Python and the NumPy library.

2. Define the sum of squared errors VN (Equation 2.13) over the training data
sequence, which is described in Section 3.2.

3. Perform parameter estimation by minimising Equation 2.14 using the min-
imisation method in the SciPy library, which uses the BFGS algorithm[SciPy
Authors, 2023a], a kind of Qausi-Newton method. The initial guess for all
parameters was set to 1.
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3.4 Model evaluation metrics

Grey-box estimation of state-space models
For the state-space models, Matlab’s grey-box modelling tools were used. To define
the state-space models as shown in Equation 2.11, the idgrey method was used,
which requires a function to be supplied defining the matrices A, B, C and D based
on a set of user-defined parameters [Mathworks, 2023c]. The exact structure of the
state-space models, i.e. the number of states, inputs, parameters and matrices, varies
among the presented models and is therefore described for each model in Section
4.2, where each model has there own subsection Parameter estimation.

Once the models are defined, their parameters need to be estimated, which was
done using the Matlab method greyest [Mathworks, 2023b]. As described in more
detail in Section 4.2, the parameters of models consist of a combination of capac-
itances, resistances and, in some models, weights defining their matrices. To ini-
tialise the estimation process, some initial values parameter values need to be set,
these initial values are based on qualified guesses and testing, which gives the best
results. Except for an initial model, the parameter estimator needs to be provided
with training data as well, the training data set is defined in 3.2 together with some
other test scenarios used for evaluation.

3.4 Model evaluation metrics

For the model evaluation, a few different metrics to compute the average error were
used to make our results comparable to as many other studies as possible. The fol-
lowing error metrics were chosen [Ljung and Glad, 2004; Jha et al., 2023], where y
is the true value and ŷ is prediction:

• Root mean square error:

RMSE(y, ŷ) =

√
∑

N
i=1(yi − ŷi)2

N
(3.1)

• Mean absolute error:

MAE(y, ŷ) =
∑

N
i=1 |yi − ŷi|

N
(3.2)

• Mean bias error (equivalent to VN in equation 2.13):

MBE(y, ŷ) =
ΣN

i=1(yi − ŷi)

N
(3.3)

To further evaluate the usability of the predictions made by the models, confi-
dence intervals at 50%, 90% and 98% for the error of an individual prediction were
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computed. The sample size of one when computing the confidence intervals was
chosen since it represents the range error that can be expected for each individual
prediction.

Assuming that the errors xi = yi − ŷi are normally distributed, the mean µ and
the standard deviation σ are defined like this,

µ =
∑

N
i=1 xi

N
(3.4)

σ =

√
∑

N
i=1(xi −µ)2

N −1
. (3.5)

Once µ and σ are known, the confidence interval at the given percentage 1−α

becomes
µ ±λα/2 ·σ , (3.6)

where λα corresponds to the value of the standardised normal distribution where
P(X > λα) = α [Blom et al., 2017]. The actual implementations used SciPy’s
stats.norm and Matlab’s fitdist methods for computing standard deviations
and normal distributions [SciPy Authors, 2023b; Mathworks, 2023d].
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4
Modelling

This chapter shows the model development process by describing which models
were chosen and why, their mathematical definitions and how they could be im-
proved. For each model, it mentions the specific parameter configuration used when
estimating the parameters. The chapter focuses mainly on model design and will
only briefly mention performance, the full performance evaluation of all the models
is presented in more detail in Chapter 5.

4.1 The system

To model the system, it is necessary to have an understanding of how the system
behaves. About 50 temperature sensors can be read in real-time, but most are either
inside the SoC or located close to it on the mainboard. These sensors are heavily
affected by heat from the SoC, meaning they are less useful. The more valuable
sensors are oriented further from the SoC, like the flashlight, battery, display and
USB port thermal sensors. To illustrate this, the sensor temperatures when apply-
ing a processor load are shown in Figure 4.1. To make the figure more readable,
only two main-board sensors are shown. To understand the models presented in this
chapter, the reader will need a basic understanding of the phone’s hardware layout,
as shown in Figure 4.2.

4.2 Thermal circuit approach

The primary focus of this thesis was modelling using thermal circuits. In this sec-
tion, the thermal circuits and the models derived from them are described in the
same order as they were designed, presenting the iterative processes of model im-
provement.
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Chapter 4. Modelling

Figure 4.1 Raw sensor temperature readings when applying a processor load in Scenario
2.1. Note that when the load is applied, the CPU temperature reaches about 90°C. Board 1
and Board 2 are two sensors on the main PCB board close to the CPU.

Thermal circuit for Model 1

Figure 4.3 Model 1 thermal circuit of the mobile phone, where the T nodes are readings
from the corresponding temperature sensor, except for Tamb, which is the estimated ambient
temperature. SoC is the CPU temperature.

The thermal circuit for Model 1, which can be seen in Figure 4.3, uses three thermal
sensors as reference nodes: the sensor in the camera flashlight, a sensor within the
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4.2 Thermal circuit approach

Figure 4.2 Simplified hardware layout schematic of the mobile phone, the sensors plotted
in Figure 4.1 is marked in red.

battery and a sensor in the USB contact. They were selected based on their position
relative to the heat source, see Figure 4.2, and how much they were affected by it,
where the less affected sensors were more appealing since they have a stronger cor-
relation with the ambient temperature. The circuit has a single heat source, namely
the SoC or, more precisely, the CPU within the SoC. It has arcs going to the battery
and flashlight nodes since they are directly connected to the main board housing the
SoC. The USB sensor is located far from the SoC, with the battery acting as a ther-
mal buffer in between, which is modelled by having an arc between the battery and
the USB node. Arcs go from each thermal sensor node to an ambient temperature
node representing how the device interacts with the environment.

Based on the thermal circuit for Model 1, the following balance equations can
be defined, describing the relationship between the node’s temperatures. Note that
in this and all subsequent equations, the temperatures are functions of time, the time
Tx(s) is not written out to keep the equations brief.

−Tsoc−Tf lash
Rsoc, f lash

+
Tf lash−Tamb
R f lash,amb

+C f lash
d[Tf lash−Tamb]

dt = 0

−Tsoc−Tbatt
Rsoc,batt

+ Tbatt−Tamb
Rbatt,amb

+ Tusb−Tbatt
Rusb,batt

+Cbatt
d[Tbatt−Tamb]

dt = 0

−Tbatt−Tusb
Rbatt,usb

+ Tusb−Tamb
Rusb,amb

+Cusb
d[Tusb−Tamb]

dt = 0

(4.1)

From the thermal circuit and balance equations defined above, the ambient tempera-
ture can be derived in multiple ways. The different derivations done in this thesis are
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Chapter 4. Modelling

shown in the sections below. To make it easier to understand the results in Chapter 5,
the titles of the sections are named the same as within the tables.

Model 1 Kirchhoff
The simplest way to achieve the ambient temperature is to apply Kirchhoff’s current
law to the ambient node, combining all the arcs resulting in Equation 4.2, where the
ambient temperature is based on the adjacent nodes’ temperatures and the resistance
between them and the ambient node, modelling the behaviour of the system once
the transients caused by capacitors have stabilised. Since the heat stored within the
capacitors is ignored, the processor temperature driving heat flow towards the nodes
can be ignored, only the temperatures of the nodes are of interest.

0 =
Tf lash −Tamb

R f lash,amb
+

Tbatt −Tamb

Rbatt,amb
+

Tusb −Tamb

Rusb,amb
+qe (4.2)

By replacing all the resistances with their corresponding conductances

G f =
1

R f lash,amb
,Gb =

1
Rbatt,amb

,Gu =
1

Rusb,amb
. (4.3)

Equation 4.2 can be solved for Tamb. resulting in Equation 4.4,

(G f +Gb +Gu) ·Tamb = G f ·Tf lash +Gu ·Tusb +Gb ·Tbatt +qe (4.4)

where qe is the heat flux contributed to the ambient air from other sources than the
mobile phone. This heat flux is impossible to measure for the mobile phone itself
and can therefore be seen as the estimation error.

Parameter estimation. The parameter estimation for Model 1 Kirchhoff is done
through the Python library SciPy, which is described in Section 3.3. All the param-
eters were initially set to one, and the final parameters after estimation can be seen
in Table 4.1.

As mentioned earlier, the variable qe represents heat flow from the environment
around the mobile phone, which cannot be measured in the general case. Setting
this value to zero would assume the temperature of the surrounding air only to be
influenced by the mobile phone, which is incorrect and would potentially yield bad
results. Through experimentation, the value of 1 was chosen since it worked well in
the heating chamber, for better accuracy in a more complex real-world scenario, a
more sophisticated estimation technique would have to be used.

Model 1 Kirchhoff Rbatt,amb Rusb,amb R f lash,amb
Parameters 2.28 ·105 0.01 2.32 ·105

Table 4.1 Estimated parameters for Model 1 Kirchhoff.
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The estimated value of the parameters suggests that the heat transfer between
USB and ambient is a factor 105 times greater than for the other two nodes, which is
physically unrealistic. The estimator itself has no intuition for physics and does only
find the parameters yielding the best result, meaning there are some inaccuracies
within the model causing these parameters. The hard to accurately estimate qe might
be one of the causes for the weird parameters.

Model 1 State-space
Model 1 Kirchhoff takes only the thermal resistances into account, however, the
nodes have thermal capacitors embedded in them. Hence, the model could be im-
proved by also considering the capacitances. By re-writing the balance equations in
4.1 using the term ∆Tx = Tx −Tamb we achieve a system of first-order differential
equations. 

C f lash ˙∆Tf lash =−∆Tf lash
R f ,amb

+
Tsoc−Tf lash

Rsoc, f

Cbatt ˙∆Tbatt =− ∆Tbatt
Rbatt,amb

− Tusb−Tbatt
Rusb,batt

+ Tsoc−Tb
Rsoc,batt

Cusb ˙∆Tusb =− ∆Tusb
Rusb,amb

+ Tbatt−Tusb
Rbatt,usb

(4.5)

This makes it possible to express the circuit as a continuous-time state-space
model {

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

(4.6)

where the output y(t) corresponds to the ambient temperature, the states x(t) to the
temperature deltas, and the input u(t) to the sensor value readings.

x(t) =

∆Tf lash
∆Tbatt
∆Tusb

 , u(t) =


Tf lash
Tbatt
Tusb
Tsoc

 (4.7)

The matrices A and B can be obtained directly from Equation 4.5.

A =

−
1

C f lashR f lash,amb
0 0

0 − 1
Cbatt Rbatt,amb

0

0 0 − 1
CusbRusb,amb

 (4.8)

B =

−
1

Rsoc, f lashC f lash
0 0 1

Rsoc, f C f lash

0 1
Cbatt

( 1
Rusb,batt

− 1
Rsoc,batt

) − 1
Rusb,battCbatt

1
Rsoc,battCbatt

0 1
Rbatt,usbCusb

− 1
Rbatt,usbCusb

0

 (4.9)

The C matrix defines how the ambient temperature depends on the states,
which is the temperature delta between each sensor and the ambient. Since the
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sensor values are known, you could easily compute the estimation for each node
Tamb = ∆Tnode+Tnode, but they need to be combined into a singular estimation. One
way to do it is to replace the three arcs in Figure 4.3 with a singular arch with
the temperature Tx, producing the same amount of heat flux as the individual arcs
combined.

Tx −Tamb

Rparrallel
=

∆Tf lash

R f ,amb
+

∆Tbatt

Rbatt,amb
+

∆Tusb

Rusb,amb
(4.10)

From this, a single ambient temperature estimation can be derived. The parallel
resistances Rparrallel can be computed using the law of parallel resistances in Equa-
tion 2.5. However, there is still one unknown, the temperature Tx, which could be
estimated as a linear combination of the sensor temperatures with weights w1, w2
and w3, resulting in the matrices C and D.

C =− 1
1

R f lash,amb
+ 1

Rbatt,amb
+ 1

Rusb,amb

[
1

R f lash,amb

1
Rbatt,amb

1
Rusb,amb

]
(4.11)

D =
[
w1 w2 w3 0

]
(4.12)

Parameter estimation. When using grey-box estimation on Model 1 State-space,
the supplied function to idgrey produces the matrices A, B, C and D defined above
using the parameters described in Table 4.2. The model has three states, and the
input consists of three temperature sensors and the average temperature from the
processor temperature probes within the SoC. All the parameters were set to free,
and the capacitances and resistances were restricted to above zero, the requirement
of positive values is done both for physical correctness and having the eigenvalues
of A negative, thereby keeping the system stable. The weights wx were held between
[0,1] since they represent a weighted average of the three temperature sensors.

Model 1 State-space single input
Another way to formulate the state-space model is to use the sensor temperatures
instead of the deltas as the state vector and have the heat source as the only input.

x(t) =

Tf lash
Tbatt
Tusb

 , u(t) =
[
Tsoc

]
(4.13)

This requires some modifications of the A and B matrices. To achieve an equa-
tion system containing ẋ similar to Equation 4.5, the capacitance expressions must
be rewritten only to contain the node temperature Tf , Tb or Tu, which, according to
Equation 2.4 can be achieved by assuming a reference temperature of zero for the
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Parameter Free Min/Max Initial Values Estimated Values
C f lash Yes [0,∞] 1 4.45
Cbatt Yes [0,∞] 1 0.47
Cusb Yes [0,∞] 1 0.20
R f lash,amb Yes [0,∞] 1 4.05
Rbatt,amb Yes [0,∞] 1 0.67
Rusb,amb Yes [0,∞] 1 0.01
Rsoc, f lash Yes [0,∞] 1 0.44
Rsoc,batt Yes [0,∞] 1 0.53
Rbatt,usb Yes [0,∞] 1 1.60
w1 Yes [0,1] 0.33 0
w2 Yes [0,1] 0.33 0
w3 Yes [0,1] 0.33 0.96

Table 4.2 The grey-box parameter setup for Model 1 State-space. The Free column indi-
cates if the parameters were free, i.e. if the grey-box estimator was allowed to change it or
not.

thermal system. With this assumption, the following matrices are obtained.

A =

−
1

Rsoc, f lashC f lash
0 0

0 1
Cbatt

(− 1
Rsoc,batt

+ 1
Rusb,batt

) − 1
Rusb,battCbatt

0 1
Rbatt,usbCusb

− 1
Rbatt,usbCusb

 (4.14)

B =


1

Rsoc, f lashC f lash
1

Rsoc,battCbatt

0

 (4.15)

Since the state differs from the other state-space representation, the C and D
matrices must also change. Because the state is equal to the node temperatures,
Kirchhoff’s laws can be used similarly to Equation 4.4 with the same definition of
conductances as in Equation 4.3.

C =
1

G f +Gb +Gu

[
G f Gu Gb

]
(4.16)

D = [0] (4.17)

Parameter estimation. For the grey-box estimation of Model 1 State-space single
input, the supplied function to idgrey produces the matrices A, B, C and D defined
above using the parameters described in Table 4.3. The model has three states, and
the input Tsoc is the average temperature from the processor temperature probes
within the SoC. It is worth noting that the parameter C f lash was constrained to 1
since it is always multiplied with Rsoc, f lash when used in A and B, meaning that it’s
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unidentifiable. The capacitances and resistances were restricted to above zero, the
requirement of positive values is done both for physical correctness and to keep the
system stable.

Parameter Free Min/Max Initial Value Estimated Values
C f lash no [0,∞] 1 1
Cbatt yes [0,∞] 1 199.9
Cusb yes [0,∞] 1 5172
R f lash,amb yes [0,∞] 1 223.9
Rbatt,amb yes [0,∞] 1 156.6
Rusb,amb yes [0,∞] 1 272.3
Rsoc, f lash yes [0,∞] 1 1.1 ·104

Rsoc,batt yes [0,∞] 1 2.59
Rbatt,usb yes [0,∞] 1 5176

Table 4.3 The grey-box parameter setup for Model 1 State-space single input.

Thermal circuit for Model 2

Figure 4.4 Model 2 thermal circuit of the mobile phone. The T nodes are readings from
the corresponding temperature sensor, except for Tamb, which is the estimated ambient tem-
perature. SoC is the CPU temperature. Compared with Model 1, a state has been added for
the display.

The thermal circuit for Model 2, which can be seen in Figure 4.4, is the next
iterative step from Model 1 in Figure 4.3. It was developed to suppress the small
spikes which occur because the SoC increases its temperature quickly when put
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4.2 Thermal circuit approach

under load, as an example, see Figure 5.2 in Chapter 5. To solve this issue, it was
desired to find a sensor that changes with the SoC temperature but less aggressively,
thereby acting as a thermal buffer between the SoC and the other nodes. The thermal
sensor behind the display node was suitable since it represents how the heat travels
through the phone. The display covers the whole mobile phone and is one of the
main avenues of heat transfer due to its metal plating. The display itself does not
generate any significant heat, as shown in Figure 4.5, showing the sensor value
when the display is on at 100% brightness compared to when it is off. Changing the
circuit does not change the model that is purely based on Krichhoff’s law, therefor
there is no Model 2 equivalent to Model 1 Krichhoff.

(a) Display off (b) Display on

Figure 4.5 Thermal readings from the display temperature sensor when the display is off
respectively on, and CPU gets 100% load on all cores for 10 minutes. The plots show only a
difference of about 1–2°C.

These changes led to a new set of balance equations similar to Model 1, the dif-
ference is that Tsoc and Rsoc,x have been replaced with the display node equivalents.

−Tdisp−Tf lash
Rdisp, f lash

+
Tf −Tamb
R f lash,amb

+C f lash
d[Tf lash−Tamb]

dt = 0

−Tdisp−Tbatt
Rdisp,batt

+ Tbatt−Tamb
Rbatt,amb

+ Tusb−Tbatt
Rusb,batt

+Cbatt
d[Tbatt−Tamb]

dt = 0

−Tbatt−Tusb
Rbatt,usb

+ Tusb−Tamb
Rusb,amb

+Cusb
d[Tusb−Tamb]

dt = 0

(4.18)

As for Model 1, the ambient temperature can be derived in multiple ways, which
are shown in the sections below.

Model 2 State-space
Using the same procedure as for Model 1, a similar state-space representation can
be derived. Similar to the balance equation, the difference between Model 1 is the
heat source and its resistances.
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x(t) =

∆Tf lash
∆Tbatt
∆Tusb

 , u(t) =


Tf lash
Tbatt
Tusb
Tdisp

 (4.19)

A =

−
1

C f lashR f lash,amb
0 0

0 − 1
Cbatt Rbatt,amb

0

0 0 − 1
CusbRusb,amb

 (4.20)

B =

−
1

Rdisp, f lashC f lash
0 0 1

Rdisp, f lashC f lash

0 1
Cbatt

( 1
Rusb,batt

− 1
Rdisp,batt

) − 1
Rusb,battCbatt

1
Rdisp,battCbatt

0 1
Rbatt,usbCusb

− 1
Rbatt,usbCusb

0


(4.21)

C =− 1
1

R f lash,amb
+ 1

Rbatt,amb
+ 1

usb,amb

[
1

R f lash,amb

1
Rbatt,amb

1
Rusb,amb

]
(4.22)

D =
[
w1 w2 w3 0

]
(4.23)

Parameter estimation. When using grey-box estimation on Model 2 State-space,
the supplied function to idgrey produces the matrices A, B, C and D defined above
using the parameters described in Table 4.4. The model has three states, and the in-
put consists of three temperature sensors and the display temperature sensor. All the
parameters were set to free, and the capacitances and resistances were restricted to
above zero, the requirement of positive values is done both for physical correctness
and having the eigenvalues of A negative, thereby keeping the system stable. The
weights wx were kept between [0,1] since they represent a weighted average of the
three temperature sensors.

Model 2 State-space single input
Using the same procedure as for Model 1, a similar single input state-space rep-
resentation can be derived. Similar to the other state-space model, the difference
between model 1 is the changed heat source and its resistances.

x(t) =

Tf lash
Tbatt
Tusb

 , u(t) =
[
Tdisp

]
(4.24)
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Parameter Free Min/Max Initial Values Estimated Values
C f lash Yes [0,∞] 1 14.14
Cbatt Yes [0,∞] 1 37.72
Cusb Yes [0,∞] 1 0.08
R f lash,amb Yes [0,∞] 1 11.57
Rbatt,amb Yes [0,∞] 1 36.74
Rusb,amb Yes [0,∞] 1 0.18
Rdisp, f lash Yes [0,∞] 1 9.59
Rdisp,batt Yes [0,∞] 1 3.82
Rbatt,usb Yes [0,∞] 1 11.71
w1 Yes [0,1] 0.33 0.42
w2 Yes [0,1] 0.33 0
w3 Yes [0,1] 0.33 0.94

Table 4.4 The grey-box parameter setup for Model 2 State-space.

A =

−
1

Rdisp, f lashC f lash
0 0

0 1
Cbatt

(− 1
Rdisp,batt

+ 1
Rusb,batt

) − 1
Rbatt,usb

0 1
Rbatt,usbCusb

− 1
Rbatt,usbCusb

 (4.25)

B =


1

Rdisp, f lashC f lash
1

Rdisp,battCbatt

0

 (4.26)

C =
1

G f +Gb +Gu

[
G f Gu Gb

]
(4.27)

D = [0] (4.28)

Parameter estimation. The grey-box estimation of Model 2 State-space single
input uses almost the same matrices A, B, C and D and parameters for idgrey as
the model 1 counterpart. There is also a change in input, which is the value of the
display sensors (Tdisp) instead of the CPU temperature (TSoC).

Model 2 state-space random C & D
Based on observations when developing the other models, it could be seen that
Model 2 state-space model performed quite well when letting both the C and D
matrix be filled up with free parameters. Due to its performance, it was added as
an additional model called Model 2 state-space random C & D, where x(t), u(t), A
and B are the same as for Model 2 state-space, but C and D are replaced with the
following matrices,

C =
[
w1 w2 w3

]
(4.29)

D =
[
w4 w5 w6 w7

]
. (4.30)
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Parameter Free Min/Max Initial Value Estimated Values
C f lash no [0,∞] 1 1
Cbatt yes [0,∞] 1 0.13
Cusb yes [0,∞] 1 3.26
R f lash,amb yes [0,∞] 1 2.21
Rbatt,amb yes [0,∞] 1 0.10
Rusb,amb yes [0,∞] 1 1.05
Rdisp, f lash yes [0,∞] 1 0.19
Rdisp,batt yes [0,∞] 1 2.33
Rbatt,usb yes [0,∞] 1 2.26

Table 4.5 The grey-box parameter setup for Model 2 State-space single input.

Parameter estimation. When using grey-box estimation on Model 2 State-space
random C & D, the supplied function to idgrey produces the matrices C and D
defined above as well as the matrices A and B from Model 2 State-space. Since this
model is largely based on Model 2 State-space, it has almost the same parameter
configuration but with two exceptions: there are four extra weights, and the range
constraints of the weights are removed. The full parameter setup can be seen in
Table 4.6.

Parameter Free Min/Max Initial Value Estimated Value
C f lash yes [0,∞] 1 4.16
Cbatt yes [0,∞] 1 1.98
Cusb yes [0,∞] 1 1.82
R f lash,amb yes [0,∞] 1 3.96
Rbatt,amb yes [0,∞] 1 10.34
Rusb,amb yes [0,∞] 1 11.05
Rdisp, f lash yes [0,∞] 1 1.66
Rdisp,batt yes [0,∞] 1 30.09
Rbatt,usb yes [0,∞] 1 0.76
w1 yes [−∞,∞] 0.33 0.29
w2 yes [−∞,∞] 0.33 11.43
w3 yes [−∞,∞] 0.33 10.98
w4 yes [−∞,∞] 0.33 0.27
w5 yes [−∞,∞] 0.33 -1.68
w6 yes [−∞,∞] 0.33 -4.34
w7 yes [−∞,∞] 0.33 6.72

Table 4.6 The grey-box parameter setup for Model 2 State-space random C & D.
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4.3 Linear approach

The simplest approach is a linear equation fitted to one thermal sensor’s value and
the ambient temperature. Chau applies this approach to the battery sensor [Chau,
2019]. In contrast to the thermal circuit-based models, this approach will be applied
to both the battery, USB and flash sensors separately, resulting in the following
linear equations,

Tamb = k ·Tbatt +m (4.31)
Tamb = k ·Tusb +m (4.32)

Tamb = k ·Tf lash +m. (4.33)

To improve the linear approach, all three sensors are combined into a single
expression, as seen in the equation below.

Tamb = c0 ·Tusb + c1 ·Tbatt + c2 ·Tf lash +m (4.34)

Similarly to Model 1 Kirchhoff, the parameter estimation for the linear models
is done through the Python library SciPy, which is described in Section 3.3. All
the parameters were initially set to one. The final parameters for the single-sensor
linear equations can be seen in Table 4.7, and the parameter for the combined linear
model can be seen in Table 4.8. Adding additional sensors to the equation, such as
Tsoc or Tdisp, to Equation 4.34 did not improve the results, it instead made the results
significantly worse in many of the test scenarios. Only the USB, battery and flash
sensors were kept to give the linear options the best chance at performing.

Model linear k m
Battery linear 0.86 -0.82
USB linear 0.96 -0.88
Flash linear 0.84 -0.99

Table 4.7 Estimated parameters for each linear model on the form Y = k ·X +m.

Model Linear combined c0 c1 c2 m
Parameters -1.36 1.52 0.80 -0.38

Table 4.8 Estimated parameters for combined linear equation.
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5
Model evaluation and
discussion

This chapter presents and discusses the result when evaluating the models in differ-
ent scenarios, both in the verification scenario showing the general performance of
the models and in other scenarios evaluating more specific aspects. The chapter vi-
sualises the accuracy of the models using plots and presents the evaluation metrics
defined in Chapter 3 in tables, where the best results for each table are marked in
bold font. It also discusses how the models compare to related works, their limita-
tions, identifiability and the models’ computational resource utilisation and ease of
implementation.

5.1 General Performance

This section shows how different models perform when evaluated on the verifi-
cation scenario (scenario 4), a test which aims to provide an idea of the general
performance both at different temperatures and processor loads. The performance
of the thermal circuit-based models can be seen in Figure 5.1, 5.2, 5.3, 5.4, 5.5 and
5.6. The same scenario was also used to evaluate the linear non-thermal circuit-
based approaches, see Figure 5.7 and 5.8. In addition to the model estimation and
ambient temperature, the plots contain the processor temperature to illustrate the
device’s internal heat generation. The light blue areas within the graphs illustrate a
98% rolling window confidence interval for the prediction error, the reason behind
these intervals is to show how the consistency of prediction error changes during
the different parts of the tests. The confidence was created by applying a rolling
window of size 20 samples over the prediction error, for each window, the mean
and standard deviation were computed, allowing the construction of a confidence
interval under the assumption of the error being normally distributed using the for-
mulas presented in Section 3.4. When plotting the confidence intervals, they were
aligned to the time stamp at the centre of each window, leading to the first and last
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10 time stamps not having a confidence interval. Therefore, they were padded with
the first and last confidence interval values.

Figure 5.1 Model 1 Kirchhoff ambient temperature estimation for the verification scenario.
The closer the estimation line is to the ambient line, the better the estimation is. The graph’s
light blue area is the prediction error’s rolling window confidence interval.

0 2000 4000 6000 8000 10000 12000

Time (seconds)

-20

0

20

40

60

80

100

T
e
m

p
e
ra

tu
re

 (
d
e
g
re

e
 C

)

Model 1 state-space approach

Ambient

Estimation

CPU

Figure 5.2 Same scenario as Figure 5.1, but with Model 1 state-space approach. It works
reasonably well but still has performance issues when CPU load is applied, but not as much
as in 5.1.

As mentioned in the introduction, the graphs above clearly show that estimating
the ambient temperature is not as trivial as just making a linear approximation of
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Figure 5.3 Same scenario as Figure 5.1, but for Model 1 State-space single input, which
clearly do not work very well.
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Figure 5.4 Same scenario as Figure 5.1, but for Model 2 state-space instead. It seems to
perform similarly to its Model 1 counterpart but is still not able to fully compensate for the
CPU load.

one single sensor value. Comparing Figure 5.7 with the other ones shows that the
linear equations cannot handle CPU loads and swift changes in ambient tempera-
tures. When observing the linear equation combining the three sensors in Figure
5.8, the performance seems on par with the best state-space model. To give a bet-
ter understanding of how the performance differs between them, it is necessary to
inspect the evaluation error metrics defined in Section 3.4, which can be seen in Ta-
ble 5.1 and as well as the confidence interval for individual predictions at different
percentages in Table 5.2. The confidence intervals shown within the tables differ
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Figure 5.5 Same scenario as Figure 5.1, but for Model 2 state-space single input instead.
This approach is a massive improvement compared to its Model 1 counterpart.
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Figure 5.6 Same scenario as Figure 5.1, but for Model 2 state-space with random C and
D instead. This approach for estimating ambient temperature will be shown to perform the
best. But it still has some slight overcompensation when applying CPU load.

from the coloured area within the graphs since they are computed over the whole
scenario, giving a sense of the models’ overall error range. When looking through
the tables, focus primarily on RMSE and MAE, the MBE can be deceiving since a
test with very high positive and negative errors can yield a small MBE.

The error metrics and confidence intervals show decent results for all state-space
models except Model 1 state-space single input. The model that performs best is
Model 2 state-space with random C & D, which shows an average error below
1.5°C and accuracy of within ±1–3°C, which can be seen in Table 5.2, however, it
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Figure 5.7 Same scenario as Figure 5.1, but for the linear equations k ·Tx +m. Compared
to the previous plots, these equations do not work very well.

Figure 5.8 Same scenario as Figure 5.1, but for the linear polynomial combing multiple
sensors. This is a clear improvement over the sensors in Figure 5.7 and it looks to be on par
with Model 2 State-space random C & D.

is worth noting that in 90% of the cases, it is closer to ±1–2°C. This level of accu-
racy is good enough to approximate how warm or cold the environment around the
mobile phone is. This approximation could be useful for optimising the sustained
performance of the mobile phone, especially in more extreme weather, such as very
warm or cold climates. As mentioned in the introduction, having an ambient-aware
thermal mitigation policy would allow these optimisations, and the shown result
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Model RMSE MAE MBE
Model 1 Kirchhoff 4.55 3.00 -1.01
Model 1 state-space 4.43 2.42 0.27
Model 1 state-space

single input 16.07 13.02 0.00
Model 2 state-space 4.64 2.58 0.69
Model 2 state-space

single input 3.21 2.19 -1.16
Model 2 state-space

random C & D 1.30 0.92 0.11
Linear battery 8.61 5.52 2.37
Linear USB 4.62 2.46 0.79
Linear Flash 8.16 5.64 2.56
Linear combined 2.27 1.44 -0.07

Table 5.1 Error metrics defined in Section 3.4 for both the non-thermal circuit-based and
thermal circuit-based approaches for the verification scenario 4. The best result for each error
metric is marked with bold font.

Model 50% 90% 98%
Model 1 Kirchhoff (-4.015, 1.978) (-8.326, 6.289) (-11.354, 9.317)
Model 1 state-space (-2.72, 3.25) (-7.02, 7.55) (-10.04, 10.57)
Model 1 state-space

single input (-10.84, 10.84) (-26.44, 26.44) (-37.40, 37.40)
Model 2 state-space (-2.41, 3.78) (-6.86, 8.24) (-9.99, 11.36)
Model 2 state-space

single input (-3.18, 0.86) (-6.08, 3.76) (-8.13, 5.81)
Model 2 state-space

random C & D (-0.76, 0.99) (-2.02, 2.25) (-2.90, 3.13)
Linear battery (-3.20, 7.96) (-11.24, 16.00) (-16.88, 21.64)
Linear USB (-2.28, 3.86) (-6.70, 8.28) (-9.80, 11.38)
Linear flash (-2.66, 7.79) (-10.18, 15.32) (-15.46, 20.60)
Linear combined (-1.61, 1.46) (-3.82, 3.67) (-5.37, 5.22)

Table 5.2 Confidence interval for each model over the verification scenario 4 at different
percentages. The best result for each confident interval is marked with bold font. The confi-
dence interval is computed over the whole test scenario as described in Section 3.4.

would allow for different thermal mitigation policies with a granularity of a few
degrees Celsius.

As concluded earlier, using a single sensor is not enough to achieve good and
reliable ambient temperature estimations, however, Linear combined is a massive
improvement compared to the other linear approaches, and even it even slightly out-
performs the second-best state-space model Model 2 state-space single input. The
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next section will go into more detail, investigating how they differ in performance
in more specific situations.

5.2 Evaluation on specific scenarios

This section contains more specific scenarios and use-case-based scenarios, such as
camera and YouTube, highlighting how the models perform in those specific cases
compared to the more general case presented in the previous section.

Idle test
The first test scenario of interest is scenario 1, i.e. which tests the models when
the mobile phone is idling at a static ambient temperature of 20°C. Since it is the
simplest of the defined scenarios, it provides a best-case scenario for the models.
Table 5.3 and 5.4 show the error metrics and confidence intervals. Worth noting
is the linear models perform relatively well compared to the state-space ones in
this scenario. All models except the flash and battery-based ones are within 1°C in
RMSE.

Model RMSE MAE MBE
Model 1 Kirchhoff 0.80 0.76 -0.76
Model 1 state-space 0.30 0.25 0.17
Model 1 state-space

single input 0.19 0.16 0.00
Model 2 state-space 0.20 0.16 0.01
Model 2 state-space

single input 0.76 0.70 -0.70
Model 2 state-space

random C & D 0.30 0.26 0.21
Linear battery 2.60 2.59 2.59
Linear USB 0.96 0.93 0.93
Linear flash 3.10 3.09 3.09
Linear combined 0.35 0.30 0.25

Table 5.3 Error metrics for test when idling in 20°C , see scenario 1. The best result for
each error metric is marked with bold font.

Applying high CPU load
By applying a high CPU load, we can get some insight into how the models perform
when exposed to internal heat generation, this is done by evaluating Scenario 2.1,
i.e. when applying 100 % CPU load for 10 minutes at a static ambient temperature
of 20°C. The error metrics and confidence intervals are shown in Table 5.5 and
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Model 50% 90% 98%
Model 1 Kirchhoff (-0.93, -0.60) (-1.17, -0.36) (-1.33, -0.19)
Model 1 state-space (0.00, 0.34) (-0.24, 0.58) (-0.41, 0.75)
Model 1 state-space

single input (-0.13, 0.13) (-0.32, 0.32) (-0.45, 0.45)
Model 2 state-space (-0.13, 0.14) (-0.32, 0.34) (-0.45, 0.47)
Model 2 state-space

single input (-0.90, -0.49) (-1.19, -0.20) (-1.40, 0.00)
Model 2 state-space

random C & D (0.06, 0.36) (-0.15, 0.57) (-0.30, 0.72)
Linear battery (2.43, 2.75) (2.19, 2.98) (2.03, 3.15)
Linear USB (0.76, 1.10) (0.53, 1.33) (0.36, 1.50)
Linear flash (2.93, 3.25) (2.70, 3.48) (2.54, 3.64)
Linear combined (0.08, 0.41) (-0.15, 0.65) (-0.32, 0.82)

Table 5.4 Confidence interval for test when idling in 20°C , see scenario 1. The best result
for each confident interval is marked with bold font. The confidence interval is computed
over the whole test scenario as described in Section 3.4.

5.6. Similar to the verification scenario, we can see a similar performance between
Linear combined and Model 2 state-space random C & D.

Model RMSE MAE MBE
Model 1 Kirchhoff 3.53 3.02 -3.02
Model 1 state-space 2.26 1.68 -0.98
Model 1 state-space

single input 4.72 3.72 0.00
Model 2 state-space 1.92 1.51 -0.52
Model 2 state-space

single input 3.60 2.82 -2.80
Model 2 state-space

random C & D 1.36 0.85 0.43
Linear battery 6.18 4.28 -2.80
Linear USB 2.16 1.58 -1.25
Linear flash 6.69 4.58 -2.32
Linear combined 1.19 0.82 0.07

Table 5.5 Error metrics for test in 20°C ambient temperature with CPU load on all cores
for 10 minutes, see Scenario 2.1. The best result for each error metric is marked with bold
font.

45



Chapter 5. Model evaluation and discussion

Model 50% 90% 98%
Model 1 Kirchhoff (-4.263, -1.794) (-6.039, -0.018) (-7.286, 1.229)
Model 1 state-space (-2.36, 0.40) (-4.34, 2.38) (-5.73, 3.77)
Model 1 state-space

single input (-3.19, 3.19) (-7.77, 7.77) (-10.99, 10.99)
Model 2 state-space (-1.77, 0.73) (-3.57, 2.53) (-4.83, 3.79)
Model 2 state-space

single input (-4.33, -1.27) (-6.52, 0.92) (-8.07, 2.47)
Model 2 state-space

random C & D (-0.44, 1.30) (-1.69, 2.55) (-2.57, 3.43)
Linear battery (-6.51, 0.92) (-11.87, 6.27) (-15.62, 10.02)
Linear USB (-2.44, -0.06) (-4.15, 1.64) (-5.35, 2.84)
Linear flash (-6.55, 1.91) (-12.64, 8.00) (-16.91, 12.27)
Linear combined (-0.72, 0.88) (-1.88, 2.03) (-2.69, 2.85)

Table 5.6 Confidence interval for test in 20°C ambient temperature with CPU load on all
cores for 10 minutes, see scenario 2.1. The best result for each confident interval is marked
with bold font. The confidence interval is computed over the whole test scenario as described
in Section 3.4.

Performance during temperature changes
This scenario tests heavy ambient temperature changes from -10°C to 50°C , show-
ing how well the models will follow the ambient temperature changes. The error
metrics and confidence intervals are shown in Table 5.7 and 5.8. In this test sce-
nario, we see how Linear combined performs significantly worse than all state-space
models except Model 1 state-space single input.

Model RMSE MAE MBE
Model 1 Kirchhoff 7.969 5.773 -0.826
Model 1 state-space 6.11 3.42 2.08
Model 1 state-space

single input 13.43 11.18 0.00
Model 2 state-space 6.13 4.26 2.20
Model 2 state-space

single input 2.46 1.75 0.03
Model 2 state-space

random C & D 1.38 1.24 0.19
Linear battery 7.79 6.67 4.07
Linear USB 8.24 5.37 1.06
Linear flash 10.08 8.42 4.14
Linear combined 12.22 8.55 -0.73

Table 5.7 Error metrics for test when ambient temperature changes from -10°C to 50°C,
see scenario 3. The best result for each error metric is marked with bold font.
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Model 50% 90% 98%
Model 1 Kirchhoff (-6.172, 4.521) (-13.864, 12.212) (-19.266, 17.614)
Model 1 state-space (-1.80, 5.96) (-7.38, 11.54) (-11.30, 15.46)
Model 1 state-space

single input (-9.07, 9.07) (-22.12, 22.12) (-31.28, 31.28)
Model 2 state-space (-1.67, 6.06) (-7.23, 11.62) (-11.13, 15.52)
Model 2 state-space

single input (-1.63, 1.69) (-4.03, 4.08) (-5.71, 5.76)
Model 2 state-space

random C & D (-0.73, 1.11) (-2.05, 2.44) (-2.98, 3.37)
Linear battery (-0.41, 8.55) (-6.86, 15.00) (-11.39, 19.53)
Linear USB (-4.44, 6.57) (-12.38, 14.51) (-17.95, 20.08)
Linear flash (-2.06, 10.34) (-10.98, 19.27) (-17.25, 25.54)
Linear combined (-8.96, 7.49) (-20.80, 19.32) (-29.11, 27.64)

Table 5.8 Confidence intervals for test when ambient temperature changes from -10°C to
50°C, see scenario 3. The best result for each confident interval is marked with bold font.
The confidence interval is computed over the whole test scenario as described in Section 3.4.

Camera tests
Tests were conducted when filming at different resolutions to see how the models
perform when the camera is active. Table 5.9 and 5.10 show the error metrics and
confidence intervals. In this scenario, Linear combined outperforms the state-space
in the two first metrics.

Model RMSE MAE MBE
Model 1 Kirchhoff 4.675 4.452 -4.452
Model 1 state-space 2.34 1.91 -1.78
Model 1 state-space

single input 2.97 2.39 0.00
Model 2 state-space 2.16 1.74 -0.76
Model 2 state-space

single input 5.90 5.49 -5.45
Model 2 state-space

random C & D 2.88 2.60 -2.51
Linear battery 7.44 6.12 -6.07
Linear USB 2.95 2.61 -2.61
Linear flash 8.72 7.16 -6.93
Linear combined 1.61 1.43 -1.32

Table 5.9 Error metrics for tests when filming at different resolutions, scenario 2.3. The
best result for each error metric is marked with bold font.
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Model 50% 90% 98%
Model 1 Kirchhoff (-5.415, -3.489) (-6.800, -2.104) (-7.773, -1.131)
Model 1 state-space (-2.80, -0.76) (-4.27, 0.70) (-5.30, 1.73)
Model 1 state-space

single input (-2.00, 2.00) (-4.89, 4.89) (-6.91, 6.91)
Model 2 state-space (-2.12, 0.61) (-4.08, 2.57) (-5.46, 3.95)
Model 2 state-space

single input (-6.98, -3.92) (-9.18, -1.72) (-10.72, -0.18)
Model 2 state-space

random C & D (-3.46, -1.56) (-4.83, -0.19) (-5.79, 0.78)
Linear battery (-8.97, -3.18) (-13.14, 0.98) (-16.06, 3.91)
Linear USB (-3.53, -1.68) (-4.87, -0.35) (-5.80, 0.58)
Linear flash (-10.50, -3.37) (-15.63, 1.76) (-19.23, 5.36)
Linear combined (-1.94, -0.70) (-2.83, 0.18) (-3.46, 0.81)

Table 5.10 Confidence intervals for tests when filming at different resolutions, scenario 2.3.
The best result for each confident interval is marked with bold font. The confidence interval
is computed over the whole test scenario as described in Section 3.4.

YouTube over 4G
To see the modem’s impact on the models and the varying processor load it intro-
duces (see Figure 5.9), a test was conducted when watching YouTube over 4G at
different resolutions. The error metrics and confidence intervals are shown in Ta-
ble 5.11 and 5.12, here it is worth noting how Model 1 state-space single input
state-space variations in difference to other test outperform the rest.

Model RMSE MAE MBE
Model 1 Kirchhoff 3.359 3.339 -3.339
Model 1 state-space 1.52 1.46 -1.45
Model 1 state-space

single input 0.24 0.19 0.00
Model 2 state-space 0.35 0.28 -0.04
Model 2 state-space

single input 4.22 4.09 -4.01
Model 2 state-space

random C & D 2.68 2.60 -2.50
Linear battery 1.89 1.81 -1.81
Linear USB 1.58 1.54 -1.54
Linear flash 1.85 1.77 -1.70
Linear combined 1.41 1.37 -1.36

Table 5.11 Error metrics for tests when watching YouTube at different resolutions over 4G,
see scenario 2.4. The best result for each error metric is marked with bold font.
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Model 50% 90% 98%
Model 1 Kirchhoff (-3.590, -3.087) (-3.952, -2.725) (-4.206, -2.471)
Model 1 state-space (-1.77, -1.12) (-2.23, -0.66) (-2.56, -0.33)
Model 1 state-space

single input (-0.17, 0.17) (-0.40, 0.40) (-0.57, 0.57)
Model 2 state-space (-0.28, 0.19) (-0.61, 0.53) (-0.85, 0.77)
Model 2 state-space

single input (-4.90, -3.12) (-6.19, -1.84) (-7.09, -0.93)
Model 2 state-space

random C & D (-3.15, -1.85) (-4.09, -0.91) (-4.75, -0.26)
Linear battery (-2.18, -1.43) (-2.72, -0.89) (-3.10, -0.51)
Linear USB (-1.79, -1.30) (-2.14, -0.95) (-2.39, -0.70)
Linear flash (-2.18, -1.22) (-2.87, -0.54) (-3.36, -0.05)
Linear combined (-1.62, -1.09) (-2.00, -0.71) (-2.27, -0.45)

Table 5.12 Confidence intervals for tests when watching YouTube at different resolutions
over 4G, see scenario 2.4. The best result for each confident interval is marked with bold font.
The confidence interval is computed over the whole test scenario as described in Section 3.4.

Looking at the metrics shown above, the performance of the models varies be-
tween the different scenarios, but Model 2 state-space with random C & D per-
forms among the best in most scenarios, making it the overall best model. The other
state-space model based on the second thermal circuit also performs well. Linear
combined often performs well, except for the test with larger temperature changes.
However, overall, the results show that the thermal circuits approach leads to better
results than linear, especially compared to the cases with linear equations that only
use a single sensor.

When looking at the results, two question arises, why is Model 2 state-space
with random C & D better than the other state-space variations more closely based
on the thermal circuits? And why do the results from the YouTube and camera sce-
narios differ from the rest? Addressing the first question, this indicates the thermal
circuits might be too simplified to fully address the thermal behaviour of the mobile
phone, having more free parameters in Model 2 state-space with random C & D
allows the model to better compensate for the inaccuracies of the model.

When looking at the YouTube scenario in Table 5.12, Model 1 state-space single
input performs the best. One difference between the YouTube test is when looking
at the CPU load in Figure 5.9, it is more varied than the other test cases while the
other sensors stay stable. Our theory is that the additional input in the other state-
space models, compared to the single input variation in this scenario, hinders the
models from reacting to the load introduced by the CPU. For the camera tests, the
performance varies quite a lot compared between the different models, making it
difficult to explain the results, but it may be similar to the YouTube test caused by a
more varied CPU temperature compared to the other tests.

49



Chapter 5. Model evaluation and discussion

Figure 5.9 The sensor values during the YouTube test.

The worse test scenarios for the state-space models are the camera and YouTube
ones, indicating further model development should consider the camera and modem
temperature in their design.

As discussed in the modelling chapter, Model 2 outperforms Model 1 in most
cases due to replacing the SoC with the display sensor since it should be more repre-
sentative of how the heat from the SoC spreads within the mobile phone. However,
when comparing the different state-space models, it can sometimes be seen how
Model 1 state-space sometimes slightly outperforms Model 2 state-space. This in-
dicates the hypothesis about adding an additional node might be wrong. However,
adding the display node leads to a massive improvement for the single-input varia-
tions. The test clearly shows how certain scenarios fit one model better than another,
but in most cases, when this happens, the Model 2 state-space is close to its Model
1 equivalent in performance. So even when the models show no benefit of adding
the display node, the difference is so small that it does not harm the overall perfor-
mance.

The results show the importance of choosing the best temperature probes within
the phone since it gives a better chance for the model to perform better. An-
other point worth noting is that when choosing temperature sensors, it is better to
choose sensors less affected by heat from heat sources than have additional worse-
performing sensors. Since most of the sensors on the mainboard are heavily affected
by the SoC and have similar temperature values to those on the SoC, they do not
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give the model additional information. This is also the reason why USB, battery and
flash were chosen.

5.3 Performance compared to related works

As part of the introduction in Section 1.1, to give this thesis some context, a few
relevant related works were described. To further elaborate on related works, this
subsection will compare their results to the ones found within this thesis.

Looking at the battery-based approach by He et al., they achieved an average
error of 1.25°C. The results in this thesis are comparable with an MAE of 0.90°C
in the most general test, the verification scenario test. However, the approach in
this thesis outperforms their results when including CPU loads in the test scenarios,
where their error absolute error is closer to 2–3°C [He et al., 2020]. In contrast, in
this thesis, the errors are below 1.5°C in all tests involving a CPU load.

Looking at the fixed point algorithm by Li et al., they show an MAE of 0.7°C .
In most scenarios, the results in this thesis are similar or a bit worse, closer to 0.9°C.
However, this thesis presents better results in YouTube or idle scenarios. It is worth
noting that it is hard to make a fair comparison since the system in their report runs
significantly cooler, while their CPU is fully loaded, the temperature increases by
7°C while the SoC in this thesis test system reaches over 90°C with a full load no
mater which ambient temperature is set [Li et al., 2020].

5.4 Limitations of the models

The main limitation of the models is when the CPU is heavily loaded and gets ex-
tremely warm. Looking at the plots for the verification scenario, it can be seen how
both Model 2 state-space single input and Model 2 state-space under-compensates
for this additional heat (See Figure 5.4 and 5.5). While the overall state-space model
Model 2 state-space random C & D handle it better but still slightly overcompensate
for it (see Figure 5.6).

During extreme ambient temperature changes, it is almost impossible to have
100% accurate estimation since it takes time for the temperature material of the
mobile phone to change and, thereby, the temperature sensors to register a change.
This delay in temperature estimations can be observed for all models, however, for
Model 2 state-space and Model 2 state-space random C & D, it is barely noticeable.
Another limitation of the models is the amount of data used when training them. In
this case, the more data from different scenarios, the better the parameter estimation
will be. In this case, the heating chamber is also a limitation since it has difficulty
keeping a stable temperature, resulting in slightly unstable lines for the ambient
temperature within the plots, which can differ up to one degree Celsius.

All the temperature sensors also have their limitation in accuracy. In this case,
the accuracy of the internal sensors is unknown, but they can limit how well the
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ambient temperature can be estimated. The available sensors of a system are also a
limitation. In some cases, there might not be any good-performing sensors located
far away from heat sources such as the CPU. However, in this thesis, that has not
been a problem.

5.5 Identifiability analysis

To analyse the identifiability of the models, the definition in Section 2.5 must be
considered. If another set of parameters providing the same output given the same
set of input signals can be found, then the models clearly are unidentifiable. This
was tested by generating a new data set from the estimated models and then re-
estimating the model parameters using the same Matlab method described in Sec-
tion 2.5 with the new data set. If the procedure found a different parameter set than
the original, yielding a close to 100 % fit, then the model is unidentifiable. The new
data set was generated by inputting the input data from the original training set to
the models and combining their output with the input forming a new data set.

Performing the above-described procedure shows the non-single-input state-
space models to be unidentifiable when using the parameter configurations in Chap-
ter 4, achieving a fit of 98−99% with another parameter set. However, when chang-
ing the models to have the capacitances fixed, the procedure could not find another
parameter set achieving the same fit, which implies the models are identifiable.
The single input variations could not be shown to be unidentifiable, which is rea-
sonable since one of their capacitances was already fixed. Having to constrain the
capacitance to achieve identifiability makes sense from a physical perspective as
well, since the models are based purely on the input and output temperatures from
a thermal system, it is difficult to know what kind of heat flow caused a tempera-
ture change. Comparing the formulas in Section 2.2, the same thermal flow can be
caused by a system with high capacitance and low resistance or by a system with
low capacitance and high resistance.

Making the capacitances fixed and thereby achieving identifiability would allow
the estimator to find a unique optimal parameter set independent from the initial
parameter guess and can potentially improve the estimation. When re-estimating
and evaluating the models with the capacitance fixed, the performance difference
was negligible, thereby, the original results with the free capacitances were kept. For
the purpose of finding good ambient temperature estimations, the unidentifiability
caused by the non-fixed capacitance does not seem to cause any practical problem,
the estimator converges with the provided initial guesses anyway. However, if the
models would be used for analysing the thermal properties of the phone, it would
be important to consider since it is desirable to find a unique parameter set that is as
physically accurate as possible. Because both the resistances and capacities can not
be found in this approach, this would require capacitance parameters to be measured
or estimated using some other methods.
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5.6 Computational efficiency

5.6 Computational efficiency

When implementing a model on a computing device, such as a mobile phone, it
is important to consider the computational cost, i.e. the processing power required
to run the models. For the models presented in this thesis, the most resource-heavy
part is the computational load on the CPU when estimating the parameter. However,
this must only be done once for a specific mobile phone model. Once trained, all
the models would theoretically be quite resource-efficient for on-device implemen-
tation. The most resource-heavy of the models, which is state-space-based ones,
would require the CPU to perform four matrix multiplications with temperature
sensor values for every sample, whereas the largest matrix has a size of 4x4, which
is insignificant for a modern mobile phone CPU when sampling with a frequency
of 1−10 Hz. The CPU resource requirement is even less for the linear approaches,
which only evaluate a simple polynomial. The low resource requirement allows the
models to be implemented on the mobile phone without affecting its performance
and heat generation in any significant way, making it a practically useful method for
ambient estimation.

53



6
Conclusion

The results show that a mobile phone’s ambient temperature can be estimated using
existing internal temperature sensors with an average error below 1.5°C and accu-
racy of within ±1–3°C depending on the scenario. This was achieved by creating
thermal circuits based on the internal temperature sensors and hardware layout. It
is important to consider the sensors that are less affected by heat from SoC, com-
pared to the ones on the mainboard close to the SoC, which give similar tempera-
ture values as SoC and therefore do not give the model any additional information.
Numerical methods and grey-box estimation in Python and Matlab were used to
calculate the parameters of the different thermal circuit-based models, where the
state-space-based approaches yielded the best results.

Estimating ambient temperature can also be done using linear static (non-
dynamic) models, using the different sensors as variables. The results show the
polynomial combining the thermal sensors in the USB port, battery and flash per-
forms well in many test scenarios, as long as the temperature does not change too
quickly, but overall, the best state-space models still are slightly better.

Once trained, all the models would theoretically be very computationally effi-
cient, for instance, the most computation-heavy of the model, which is state space
approaches, consists of four matrix multiplications, whereas the largest one is a 4x4
matrix, which has an insignificant computation cost on a modern mobile phone.

The thermal models should theoretically be generalisable and be able to be used
on other mobile phone models with only the need for new parameter estimations.
The thermal models’ principles should theoretically also be able to be used on al-
most all embedded devices with internal temperature sensors.

6.1 Future work

All the tests made in this thesis have been done in a laboratory environment. It
would be useful to do field tests with an on-device implementation consisting of
real use cases, allowing evaluation of the models’ true accuracy and showing if the
models are feasible to deploy on real devices.
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6.1 Future work

As mentioned in the limitations section, see Section 1.3, the thesis has chosen
not to investigate how much impact a phone case or screen cover would impact the
models’ estimation. This could be worth investigating since encasing the device in
isolating materials such as glass and plastics may affect the thermal properties of the
device, resulting in the models’ parameters needing to be re-estimated. The radiant
heat from the sun was also not included in the thesis, but it would be of interest to
investigate if it has a significant impact on the accuracy of the estimation.

Another thing worth investigating is how much the human body would impact
the estimations since the human body would act both as a heat source and a heat
sink. This has been done in similar research papers such as in Chau [Chau, 2019],
but this paper needed retraining of the model to compensate for the human heat
generation. The models in this thesis might need to be revised where a node for
human heat generation might need to be added. On the other hand, how that heat
generation shall be approximated is far from obvious.

To evaluate the generality of the models, it would also be interesting to test
the same pre-trained models on different mobile phone models and see if there are
any significant accuracy losses. It might show that the model parameters need to
be re-estimated for each mobile phone model, or in some cases, not work since the
sensors might not exist or perform too poorly. These tests could also be expanded
to test a completely different platform, such as a TV, video camera, or computer.
The models might need to be revised to fit the layout of the temperature sensors
of the specific device, but theoretically, similar models could be built for those de-
vices using the same principles. As part of these efforts to maximise generality, it
would be interesting to investigate the feasibility of an on-device parameter estima-
tion scheme and an algorithm to systematically design and evaluate different circuit
permutations.
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