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Abstract

Treatment planning plays a vital role in providing good treatment to cancer patients.
In order to reach an adequate treatment plan, the algorithm used for simulating the
dose in the patient must model the reality well. The most accurate algorithm for this
is the Monte Carlo method, which in the context of radiotherapy treatment most of-
ten is used for pre-computing spot doses and optimizing the intensity for each spot.
Due to storage limitations, it would be preferred to do the mentioned computations
simultaneously as the optimization. This, however, makes the optimization problem
non-convex due to the statistical noise introduced by Monte Carlo.

This thesis investigates the feasibility of using first-order optimization meth-
ods for treatment planning based on Monte Carlo simulations and addresses the
challenges posed by the noise. A simplified proton Monte Carlo dose engine was
implemented together with a matching analytical such, in order to assess the effect
of the noise during optimization.

The results demonstrate that despite the noise, an adequate treatment plan can
be achieved. Convergence is found to be dependent on how simulations are used
within an iteration. Techniques such as accumulating total dose and computing the
gradient and Hessian separately show promise for improving convergence and time
efficiency, respectively. The impact of noise on error computation and the need for
appropriate comparisons are highlighted.

This work provides insights for advancing Monte Carlo treatment planning and
its integration into clinical settings. The findings are applicable not only to proton
treatment plans but also to other ions and perhaps even to photons.
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1
Introduction

1.1 Background

Cancer is among the most deadly diseases in the world. Few can say that they do
not have a friend or relative that have suffered from it. However, cancer treatment is
an active field of research and is constantly advanced.

The most common treatment against cancer is radiotherapy treatment, i.e., irra-
diating with photons or particles which kills cells through ionization. The ionization
damages the cell’s DNA, and if the cell does not manage to repair the damage be-
fore it performs cell division (mitosis), it dies. Due to cancer cells performing cell
division more rapidly than healthy cells, ionization is more deadly for cancer cells.
For a successful radiotherapy treatment, the dose deposited in the tumor area must
be weighed against the dose deposited in healthy tissue.

Traditionally, analytical methods are used to find how the dose is deposited in
the body. While analytical methods in general are fast, they do not always produce
a sufficiently accurate dose distribution, especially not in parts where there is much
heterogeneity. Monte Carlo (MC) dose calculation is the golden standard when it
comes to accuracy, due to the great understanding of particle interactions and cross
sections in the body. In general, the MC method is based on statistical simulations
from random sampling using pseudo-random numbers, in order to make an ap-
proximation of the underlying system. In particular, MC within radiotherapy treat-
ment consists of sampling a particle’s path and tracking where it deposit its energy
through sampling the probability for different types of interactions. The drawback
of MC is the need for many particle simulations to make a good approximation,
which takes time. However, recent advancements in GPU computing and the use of
fast MC algorithms have significantly reduced the computation time.

For protons, MC is widely used in treatment planning for pencil beam scanning
(PBS), which is based on dividing a beam into small areas called spots, computing
the dose each spot is contributing with, and then optimizing the intensity for each
spot. When the parameter space becomes larger, this requires too much memory to
be feasible. Instead, it would be beneficial to incorporate MC in the optimization,
performing the spot dose computations during the optimization and thus eliminat-
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Chapter 1. Introduction

ing the need for storing the large dose matrix that defines how the dose depends on
each spot. However, this method introduces a new problem, namely that the objec-
tive function becomes non-deterministic and thus non-convex, due to the statistical
noise. The calculated gradients will also be contaminated with noise, making many
deterministic optimization methods fail.

This thesis aims at investigating the feasibility of using first order methods to
optimize radiotherapy treatment plans based on MC dose computations and their
ability to handle the noise introduced.

1.2 Objective

The objective of this master thesis is to further advance MC treatment planning in
order to deliver a more accurate, and at the same time efficient, treatment for cancer
patients. This will be done by investigating the effects of optimizing radiotherapy
treatment plans based on MC computations. As MC computations contain noise,
this must be accounted for.

The objective will be reached by answering the following research questions:

• Is it possible to optimize a treatment plan despite the noise introduced by
MC?

• How does the convergence depend on the noise from different parts of an
optimization step?

• Can a better convergence be achieved by smoothing the MC noise?

• How should current MC dose engines be incorporated in treatment plan opti-
mization?

1.3 Constraints

As will be explained in the following chapter, simulating particles interacting with
the body can be done very accurately. This thesis will not focus on simulating phys-
ical interactions as exactly as possible, but the model used will instead be something
that resembles the optimization problem well so that the results of the experiments
can serve as a guide when addressing the real optimization problem.

1.4 Outline of the report

In this report, it is the optimization part of radiotherapy treatment planning based
on MC computations that is the important. However, in order to make the reader
familiar with the topic and motivations for the model, some theory on radiotherapy
treatment is presented. The chapters are as follows:
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1.4 Outline of the report

• Chapter 2 introduces some theory about radiation and how it is used in ra-
diotherapy treatment. Here is also some background that motivates the model
used. Finally, it briefly introduces inverse treatment planning which is used
to optimize treatment plans using mathematical optimization.

• Chapter 3 covers what tools which will be used for the optimization and how
they are formulated for the specific problem.

• Chapter 4 discusses different dose calculation algorithms, both analytical and
based on MC. It further discusses more in depth how MC is used in radio-
therapy treatment planning today.

• Regarding the rest of the chapters; Chapter 5 explains how the dose engines
that was used for the experiment was implemented and the problem setup.
Chapter 6, 7 and 8 consist of the results, discussion and conclusions, respec-
tively.
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2
Radiotherapy treatment

The following chapter introduces radiation and how it is used to cure cancer pa-
tients, especially radiotherapy treatment with protons. At last comes the motivation
for how proton treatment plans are modeled and an introduction to optimization of
treatment plans.

2.1 Radiation

Radiation can be divided into two groups, electromagnetic and particle radiation.
The former constitutes of photons and is named differently depending on its wave-
length, e.g., gamma rays and X-rays. The latter constitutes of matter such as elec-
trons, protons, neutrons and ions traveling at high speeds. [Burton et al., 2023]

Absorbed radiation in body is measured as dose, which is how much energy
from ionizing radiation is absorbed in the body per mass. Dose is most commonly
measured in the SI unit Gray (Gy), where 1 Gy = 1 J/kg. The effect of absorbed
dose is chemical reactions which causes damage to the DNA, consequently leading
to cell death if the cell does not manage to repair it. The basics of radiotherapy
treatment is the healthy cells’ ability to repair themselves in higher extent than the
cancerous cells, referred to as the therapeutic window. [Baskar et al., 2014]

It is often important to have high tumor control, i.e., high probability for all
cancer cells to die, in order for the cancer treatment to be successful, since if only
a fraction survives these will be able to continue their cell growth. However, when
increasing the tumor control, the probability for complication increases as well,
causing side effects such as cancer. Different tumors and organs have varying sen-
sitivity to dose and in order to deliver the best possible treatment to the patient the
dose must adhere to this difference. [Degerfält et al., 2008] To avoid side effects, ad-
vancements have been made to widen the therapeutic window [Baskar et al., 2014].
Another way to avoid complications is to irradiate the patience from different di-
rections, since then the radiation does not travel through the same path to reach the
tumor.
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2.1 Radiation

Figure 2.1 Depth dose curves along the central axis for 6 MV photon beam and 135-200
MeV proton beams. A uniform plateau at the peak is enabled when super positioning several
Bragg peaks with different energy. This allows for delivering a uniform dose in the tumor
while in high extent sparing other parts. Figure reproduced with permission from Bokrantz
(2013).

Proton therapy
Protons for radiotherapy treatment are typically generated from hydrogen, where its
electron is striped off. With the help of cyclotrons and synchrotrons the protons are
accelerated in a circle or a spiral up to a desired energy whereas they are directed
against the target. [Liu and Chang, 2011]

Because the particle is positively charged, when it moves through the body it
constantly attracts and drags with atomic electrons, losing energy to the electrons
and thus losing velocity. Just before it halts completely, after millions of interac-
tions, it undergoes a lot more of these interactions per unit distance, which is what
generates the so-called Bragg peak of the proton depth curve. The electron that is
stripped from its atom is called a secondary particle and is an ionizing particle itself
that deposits energy on its path. [Maughan, 2022]

Due to the Bragg peak, radiotherapy treatment with protons can in high extent
deliver a desirable dose to the tumor while sparing other parts. This is done through
dividing the same beam in many segments, where the protons in each segment have
different energies, effectively having the peak where most of the dose is delivered
at different depths in the body. Figure 2.1 shows how super positioning proton seg-
ments with different energies can create a uniform spread-out Bragg peak.

Pencil beam scanning. Due to the proton being a charged particle, after it has
been accelerated and it is on the way towards the target, it passes through two sec-
tions of magnets that are perpendicular. Changing the magnetic field between the
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Chapter 2. Radiotherapy treatment

magnets creates the ability to steer the proton to a specific location. This gives the
possibility to change the form of the fluence, which will be described in Section
2.2 but simplified is an intensity map of the beam. This is the foundation of proton
pencil beam scanning (PBS).

Lateral deviation
Besides the type of interaction where the proton excites an electron from its atom,
the proton can also interact with the atom nucleus. If the proton comes close enough
to the nucleus, it will be repelled, causing a change in its directory. This causes a
dose that is smeared out along the main path. [Newhauser and Zhang, 2015] Fur-
thermore, when the secondary particles, i.e., the electrons, are excited from their
atom, their path can be in any direction. This also contributes to the smeared out
dose along the main path, making a spot dose look pear shaped. [Maughan, 2022]
Lastly, the proton can also undergo non-elastic nuclear interaction, where the proton
is absorbed and a neutron is ejected [Newhauser and Zhang, 2015].

2.2 Fluence

Fluence is a physical property of a radiation beam, describing properties such as the
direction, energy and position distribution. This project will regard a simplified view
of it; a two dimensional intensity image of the radiation, as seen from the source of
the radiation. The ability to in some extent decide the form of the fluence is the basic
idea of intensity modulated proton therapy (IMPT). In these treatment models the
fluence is divided into several spots, often as in a grid, where the intensity of each
spot, the spot weights, can be chosen independently.

Spot weight optimization
This project is limited to spot weight optimization, i.e., the parameters that are op-
timized are the before mentioned spot weights. An advantage of spot weight opti-
mization is that the dose is linear to the spot weights. This causes the optimization
problem to be convex if 1) the problem is convex in the dose and 2) the parameter set
is convex. [Bokrantz, 2013] As will be seen, the dose objectives will be (sometimes
one-sided) quadratic, and the parameter set will be convex.

2.3 Treatment planning

For the patient to receive the best possible treatment, the treatment needs to be
adapted to the patient. The process of finding a parameter setting that corresponds to
a good dose distribution in the target is called treatment planning, and the outcome
of the process is a treatment plan. The parameters for this thesis are, as already
mentioned, the spot weights.
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2.3 Treatment planning

Characterization of a good treatment plan is such as a uniform dose in the tumor
on a certain dose level and as little dose as possible in healthy tissue. Other criteria
can be that the plan is robust to changes in the patient geometry [Sundström, 2021]
and that it can be delivered fast.

Forward treatment planning
One intuitive way to find a treatment plan is to manually adjust the parameters and
evaluate the dose corresponding to that setting. If the result is not good enough, the
parameters are changed in a way that the person doing it thinks will yield a better
result, something that requires experience. The mentioned steps are carried out until
a satisfactory dose distribution is reached. Dose computation will be described in
Chapter 4

Inverse treatment planning
In inverse planning, the procedure is the other way around. As mentioned in Section
2.1, different tumors need different amount of dose to achieve tumor control, and
similarly for healthy tissue in the near region. With this information, a physician
can specify both the upper limit and the lower limit of dose in different parts of the
body, as well as the importance to fulfill them. These are the so-called clinical goals
which are inserted in a mathematical model that can give a number of how well a
certain dose satisfies the clinical goals.

A treatment planning system (TPS) is a program that models the target and de-
livery machine and with this handles the treatment planning. The TPS uses the pre-
viously mentioned mathematical model of the problem to optimize a delivery plan
that satisfies the clinical goals. Chapter 3 describes the theory of the optimization.
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3
Inverse treatment planning

The following chapter begins with introducing the optimization methods used in the
thesis and a short motivation for them. The term improved precision is explained
and the motivation for it. After that comes the mathematical formulation of the ob-
jective function and how the problem is formulated with the help of dose objectives.

3.1 Optimization methods

Machine learning algorithms
When training large neural networks the most common approach when it comes to
optimization is using stochastic gradient descent (SGD). SGD replaces the gradient
evaluation in gradient descent (GD), which is described next, with an unbiased
stochastic approximation of it. In machine learning this amounts to performing the
gradient evaluation on just a part of the whole data set, a so-called mini-batch, taking
shorter time at the expense that noise is introduced in the gradient. When running
SGD there is a trade-off between how fast each iteration takes and the accuracy of
the step. The method has proved itself of performing well even for small batches.
[Bottou, 2010]

Monte Carlo (MC) computes an unbiased approximation of the real solution,
where more simulations correspond to higher certainty. Thus computing the gradi-
ent based on MC gives an unbiased stochastic approximation of the gradient. This
serves as motivation why first order methods should also work in optimization based
on noisy MC data.

Gradient descent
Gradient descent (GD), sometimes referred to as steepest-descent, is a so-called
first order method, since it only uses the first derivative, in contrast to second order
methods which also make use of the Hessian. The gradient ∇ f : Rm → Rm of a
differentiable function f : Rm→R of m variables points in the direction of greatest
ascent, thus a lower function value is reached in the opposite direction, which is
beneficial when aiming to minimize f . The update rule for GD is as follows:
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3.1 Optimization methods

xn+1 = xn−α∇ f (xn) (3.1)

where α > 0 is the step length and the subscript indicates the iteration. If the step
length is small enough and f is continuous, GD is certain to converge to a local
minimum, except for some special initial points, e.g., saddle points. Under the same
conditions but if the problem is convex, GD is certain to converge to the global
minimum. A difficulty with GD is to choose the step size; a too small one will
result in slow convergence and if it is too big the sequence of points might not
converge, and maybe even diverge. This issue is often handled by including a line
search, which is a one dimensional minimization problem in the search direction,
i.e., the direction of the step.

Momentum
Another difficulty with GD is that it has trouble to navigate in so-called ravines, i.e.,
areas in the error landscape with curvature much sharper in one direction than in
another. The result of using GD in such cases is that it tends to oscillate much in the
direction with sharp curvature and only making small progress in the direction of not
so sharp curvature. A solution to the mentioned problem is to include momentum of
the gradient, i.e., including a decaying average of the past gradients when computing
the step [Polyak, 1964]. The update formula for GD with momentum then becomes

gn = γgn−1 +α∇ f (xn)

xn+1 = xn−gn
(3.2)

where the scalar γ usually is about 0.9 [Ruder, 2017]. The result from the above
update formula is that the updated momentum increases in directions where the
gradient has the same sign as the momentum, whilst decreasing in the directions
where the opposite holds. This will lead to less oscillation and at the same time
acceleration in the not so sharp curvature dimension. [Qian, 1999]

In addition to hinder oscillation, taking the decaying average of current and past
gradients may serve as a way to reduce the effect of the noise in the gradient. If
there is no systematic error in the noise, averaging the gradients will cause the noise
to decrease.

Nesterov accelerated gradient
The step gn in (3.2) consists of two terms, the decayed sum of the previous gradients
as well as the current gradient. Thus a semi step in the direction of the decayed sum
of gradient will be taken regardless of the gradient in the current point. Because of
this, it makes sense to instead of calculating the gradient in the current point xn to
calculate the gradient in the point xn− γgn−1. This is called Nesterov Accelerated
Gradient (NAG) [Nesterov, 1983] and can be written as
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Chapter 3. Inverse treatment planning

gn = γgn−1 +α∇ f (xn− γgn−1)

xn+1 = xn−gn
(3.3)

The effect of applying NAG is less overshooting as we have a sense of what the
error landscape looks like around where the coming step will take us.

Pre-conditioner
While the gradient is cheap to calculate, it has some drawbacks; it only regards
the steepness of the error landscape at the point investigated. It is desired to pre-
condition each step with a term that regards also the curvature in the current point.
The reason for having a pre-conditioner is to improve the condition number. New-
ton’s method is an example of such a method, written as

xn+1 = xn−H(xn)
−1

∇ f (xn) (3.4)

where H(xn)
−1 is the inverse Hessian at the current point xn. This is derived from

approximating the function with a second order Taylor expansion and taking a step
to the minimum of this. Newton’s method has local quadratic convergence if the
right conditions hold, such as the initial point is near the solution [Nesterov and
Nemirovskii, 1994]. However, calculating the Hessian is computationally expen-
sive, the cost is O(m2) as opposed to calculating the gradient whose cost is O(m),
where m is the number of parameters and O(·) represents the complexity w.r.t. input
parameters. On top of this, the cost to invert the Hessian is O(m3). One common
technique is to approximate the Hessian with its diagonal elements, reducing the
cost for both calculating and inverting it to O(m). The diagonal elements of the
Hessian as an approximation of the Hessian, from now on referred to as Hessian
diagonal, becomes a better approximation if the Hessian is diagonally dominant,
i.e., its diagonal elements are large in comparison to the other elements on the same
row. Approximating the Hessian with its diagonal elements has been done before,
e.g., by Bordes et al. (2009).

Other methods that approximate the Hessian. Quasi-Newton (QN) methods are
a family of optimization methods that iteratively approximate the inverse of the
Hessian for each iteration with the help of the gradients. The difference between
different QN methods is the update formula for calculating the next inverse Hes-
sian approximation. The most common is BFGS (named after Broyden, Fletcher,
Goldfarb and Shanno) and its limited memory version L-BFGS, which instead of
storing the m×m big inverse Hessian approximation, it saves the gradients from the
k latest iterations and at each iteration calculates the approximation. This saves a lot
of storage when m is say >1000 and k is around 10 or 20.

The main advantage of QN methods compared to Newton’s method is that the
computationally expensive inverse operation is not needed, since the inverse Hes-
sian is approximated directly.
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3.1 Optimization methods

Decaying average of Hessian
In the same way as the momentum term might decrease the effect of the noise in the
gradient, treating the Hessian as a decaying average over the current and previous
Hessians might prove to be a good idea. This is due to local curvature information
for noisy functions might be misleading.

ADAHessian is a method that, in addition to spatial averaging which will not be
discussed, preconditions a step with the inverted square root of decaying average of
the squared Hessian diagonal. The reason for using the squared Hessian and then
square root is due to stability reasons, which is also adopted in Adaptive Moment
Estimation (Adam) and Root Mean Squared Propagation (RMSProp), except these
methods use their squared gradient. [Yao et al., 2021].

Putting it all together
Equation (3.5) explains how the decaying average on the Hessian is handled when
integrating it with NAG; the previous decaying average of gradients and Hessian
diagonals are multiplied with their respective decay factor γ1,γ2 ∈ (0,1).

gn+1 = ∇ f
(

xn−α
γ1mn√

γ2vn

)
hn+1 = ∇

2 f
(

xn−α
γ1mn√

γ2vn

)
mn+1 = γ1mn +gn+1

vn+1 = γ2vn +h2
n+1

xn+1 = xn−α
mn+1√

vn+1

(3.5)

Improved precision
When evaluating an optimization algorithm for deterministic optimization, the wish
is often to find a satisfactory point in as few iterations as possible, i.e., for as few
optimization steps as possible. For the case of MC based optimization, it is probable
that the fewest iterations for finding a satisfactory point is reached when running as
many MC simulations as possible for each iteration, because the more simulations
computed the better is the approximation as will be seen in Section 4.2, and then the
optimization steps should have a higher quality. However, computing simulations is
time consuming, thus it is not probable that the fewer iterations run, the less time the
optimization takes. With that said, the same trade-off between time and quality of
the step occurs for MC based optimization as for SGD, as discussed in the beginning
of Section 3.1.

The idea of improved precision (IP) consists of having high uncertainty in the
beginning of optimization and then gradually decreasing it, i.e., improving preci-
sion, in this case increasing the number of simulations. The reason for it is to re-
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Chapter 3. Inverse treatment planning

duce the total number of simulations for the optimization, thus reducing the time. It
is motivated by that in the beginning, the current point is relatively bad and therefore
a step calculated with high uncertainty should still improve the point. As the point
becomes better, the error that a step is intended to decrease becomes smaller than
the uncertainty of the step. Thus more simulations should be computed to decrease
the uncertainty and make an improvement of the optimization parameters.

Although the concept of IP has been studied before, e.g., for solving least-square
problems based on MC [Pfeiffer and Sato, 2018], it has to the knowledge of the
author not been used before in the setting of performing more simulations over the
procedure of an optimization.

3.2 Mathematical formulation

When considering vectors, all are assumed to be column vectors.

Patient
The part of the patient that is subject for any considerable amount of dose is mod-
eled as a three dimensional volume which is discretized into a set of voxels in a
grid, indexed as v ∈ V. A voxel is a box-shaped volume which typically is a few
millimeters wide.

Dose
Each voxel v holds a dose value dv. The vector D ∈ R|V|+ contains the dose in all
voxels, where R+ = {y ∈ R | y≥ 0}.

Parameters
The optimization parameters are the spot weights xs, each belonging to a spot s ∈ S.
The parameter vector x ∈ R|S|+ contains all the spot weights. Each spot belongs to a
segment which in turn belongs to a beam. A segment consists of all the spots in a
beam whose protons have a certain range. A beam consists of all segments from a
certain source.

Minimization problem
The problem is formulated as the following; minimize the objective function Φ

subject to the constraints Ax≤ b. Mathematically, this looks like

min
x∈RN

Φ(x)

s.t. Ax≤ b
(3.6)

where N is the number of parameters. The objective function Φ is a sum of the dose
objectives, which will be defined in (3.8) and (3.9).
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3.2 Mathematical formulation

Constraints. The only constraint for the problem is that the parameters cannot be
negative, since that would mean to have negative irradiation which is not physically
possible. Thus the problem can be written compactly as

min
x∈RN

+

Φ(x) (3.7)

Dose objectives
The objective function is dependent on the dose dv in each voxel v. Before the
optimization begins, each voxel in the body is given a dose objective, i.e., a desired
dose set by a treatment planner/physician, as well as an importance factor which
is a constant that signals the importance to fulfill the desired dose. This is done
by having a desired upper and/or lower dose value in each voxel, and a function
that sets a penalty when the desired dose level is not satisfied. [Siggel, 2012] The
requested function is for the case of desired lower respectively upper dose written
as

fmin(D) = ∑
v∈V

(wmin,v(dmin,v−dv))
2
+ (3.8)

fmax(D) = ∑
v∈V

(wmax,v(dv−dmax,v))
2
+ (3.9)

where the operator (·)+ = max(·,0), the scalar wmin/max,v ≥ 0 is the weight of the
lower/upper dose objectives in voxel v, a high value indicating a high importance to
satisfy the dose objective, dmin/max,v is the desired lower/upper dose for voxel v and
D is a vector containing the dose in all voxels.

For some parts, there might be penalty just on one side of the desired dose, e.g.,
for healthy tissue where there is no need to have a lower bound on the dose. In
contrast to this, for the tumor, where it is considered best to have as uniform dose
as possible, penalty is set both when the dose is above and below the desired one.

Dose falloff region. Conflict of interest between dose objectives inside and out-
side of the tumor can cause the dose in the tumor near the edges to decrease. To
avoid this, a dose falloff region can be used. This region might have linearly de-
creasing desired dose, ranging from d∗tumor to d∗outside, starting at the edge of the
tumor and spreading outwards a given distance. The weight on this new dose objec-
tive, i.e., the importance to adhere to this linear decreasing dose, should be less than
the weight on the desired dose in the tumor. [Bokrantz, 2013]

Objective function
The objective function Φ can now be written as follows:

Φ(x) = fmin(D(x))+ fmax(D(x)) (3.10)
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Chapter 3. Inverse treatment planning

The dose D in the voxel grid depends on the spot weights x through the dose
computation, described in Chapter 4. For each dose D the objective function com-
putes an objective value, also called error.

Gradient
The gradient for the objective function is computed by differentiating (3.10) w.r.t.
each parameter xs as follows:

∂Φ

∂xs
= (∇DΦ)T Ds = ∑

v∈V

(
∂Φ

∂dv

∂dv

∂xs

)
(3.11)

where the dose derivate field ∇DΦ describes how the error depends on the dose
in each voxel and the spot dose Ds describes how the dose in each voxel depends
on parameter xs, which will be described more in Chapter 4. Notice that the chain
rule is applied; from first differentiating w.r.t. the parameter xs, we then differentiate
w.r.t. the dose in all voxels D and differentiate the dose in each voxel w.r.t. the same
parameter xs which is equal to the spot dose Ds.

The dose derivate field ∇DΦ is calculated by differentiating (3.8) and (3.9) w.r.t.
to the dose in each voxel, for voxel v it can be written as follows:

Pv,min =−2w2
v(dmin,v−dv)+ (3.12)

Pv,max = 2w2
v(dv−dmax,v)+ (3.13)

Let the vector P ∈ R|V| contain all Pv = Pv,min +Pv,max for each voxel v. Then
(3.11) can be written as

∂Φ

∂xs
= PT Ds (3.14)

Hessian diagonal
Recall that creating and inverting the Hessian is computationally expensive, while
approximating it with its diagonal demands a lot less computation. Each element of
the Hessian diagonal is computed by taking the second partial derivative w.r.t. the
specific parameter xs as follows:

∂ 2Φ

∂x2
s
= ∑

v∈V

(
∂ 2Φ

∂d2
v

(
∂dv

∂xs

)2
)

(3.15)

The term ∂ 2Φ

∂d2
v

is derived from differentiating (3.12) and (3.13) w.r.t. the dose in
voxel v. For voxel v it is written as follows:

Hv,min = 2w2
vθ(dmin,v−dv) (3.16)
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3.2 Mathematical formulation

Hv,max = 2w2
vθ(dv−dmax,v) (3.17)

where θ(·) is the Heaviside function. Let the vector H ∈R|V| contain Hv = Hv,min+
Hv,max for all v. Equation (3.15) can then be rewritten as follows:

∂ 2Φ

∂x2
s
= HT D2

s (3.18)

where D2
s is element-wise product of the elements.

Observe that the Heaviside function is not continuous, consequently the Hessian
diagonal is not defined in all points.

Uncertainty propagation
There are several ways to find the uncertainty in the error. One way is to calculate
it in batches and find the standard deviation through propagation of uncertainty as
follows:

s2
f = ∑

i

(
∂ f
∂xi

)2

s2
xi

(3.19)

where s f represents the standard deviation of the objective function f and sxi repre-
sents the standard deviation of variable xi, under the assumption that the variables
are independent. However, since the objective function depends on the dose in each
voxel, the uncertainty in the voxel dose should be mirrored in the objective function
uncertainty. A better way to do so is to let x in (3.19) be the dose in the voxels
[Siggel, 2012]. Then the standard deviation of the objective function can be approx-
imated as follows:

s f =
√

∑
v∈V

P2
v s2

dv
(3.20)

Uncertainty affecting error
Suppose there is an underlying true dose distribution Dt that the MC based dose
distribution DMC approximates. Further suppose that Dt is close to the desired dose
distribution Dd . Since DMC corresponds to Dt with added noise, the dose in many
voxels will deviate further from the desired dose in each voxel, and the objective
function will increase if the dose deviates in such direction. Furthermore, with in-
creasing uncertainty the objective function will increase even more. [Siggel, 2012]

Summary
The objective function depends on the dose distribution which is discretized into
voxels, each voxel containing a dose value. The clinical goals are defined by the
dose objectives in the voxel space, thus they build up the objective function. The
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Chapter 3. Inverse treatment planning

dose in each voxel depends on the spot weights and is computed by the dose en-
gine, described in Chapter 4. The only constraint in the parameter space is non-
negativeness.
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4
Dose computation

A dose engine is an algorithm that computes the dose in the body. The inputs are
such as the parameters (in this case the spot weights), geometry of the target, type
of particle and source position.

This chapter begins with describing an analytical dose algorithm. Then it covers
the background of Monte Carlo (MC), why it works and how it can compute dose.
It ends with how MC is used in radiotherapy treatment today.

4.1 Analytical dose engine

Analytical dose engines are, in contrast to MC dose engines, completely determin-
istic. They are fast at the expense of accuracy, especially in heterogeneous mediums
such as bone and cavities [Fiorini et al., 2018]. A common thing for analytical dose
engines is that the whole dose is unambiguously determined by the input param-
eters. An example of an analytical algorithm used for proton dose calculation is
pencil beam algorithm (PB).

Pencil beam algorithm. The idea behind PB algorithms is to first compute the
kernel of an infinitesimally thin pencil beam in water, i.e., the dose this pencil beam
deposits. The kernel is then used for convoluting the fluence, taking into account
the thickness of the medium only on the central axis of each point on the fluence.
Since only the middle of the beam is regarded, the dose is poorly represented in e.g.
lungs or bones that happens to lie right beside the central axis. This is because these
have different thickness, but the algorithm deposits dose in these volumes just as if
the thickness there was the same as on the central axis. [Elcim et al., 2018]

4.2 Monte Carlo dose engine

General Monte Carlo
MC is a statistical method based on randomly sampling from a probability distribu-
tion many times and categorizing the result to find out about the underlying system.
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Chapter 4. Dose computation

It is often used for approximating multi-dimensional integrals and solving partial
differential equations.

Monte Carlo dose engine
MC is often regarded as the most accurate way to compute dose. It is based on
randomly simulating individual particles moving through the body and their inter-
actions based on the different characteristics of the mediums in the body, such as
density and cross-sections for particle interactions. This is done both for the pri-
mary particle as well as its secondary particles. Given that enough particles are sim-
ulated and that the physics of particle interactions are correctly modeled, the MC
dose engine provides a good approximation. In recent years, fast MC algorithms
have become available that speed up simulations by, e.g., only considering the most
important interactions and stopping simulation of a particle after the energy have
dropped below a certain threshold. [Teoh et al., 2020] The simulation of a particle
and its secondary particles is called a history and is described below.

Particle history. A primary particle is sampled from the source, obeying the ge-
ometry of the problem on the way to the body. When entering the body, the distance
to the first interaction is sampled based on the total cross section in its path. When a
distance is found, the type of interaction is sampled based on the cross sections for
the different types in the medium, as well as the interaction parameters, i.e., scat-
tering angle for the primary particle, energy locally deposited and energy and angle
for eventual secondary particles. Lastly, the distance until an interaction is sampled
again for the primary and secondary particles. The steps are repeated, until all parti-
cles have left the simulated geometry, or their energy have fallen below a threshold
in which case all their energy is deposited in that volume. Figure 4.1 illustrates a
history. Due to the cross section’s dependency of a correct model of the body, it
is important that the CT images, which the model of the body often is based on,
is correct and the different regions are correctly identified. [Seco and Verhaegen,
2013]

Statistics of Monte Carlo. Let Xh
vs represent the dose deposited at voxel v by spot

s by the h:th history. Xh
vs is a random variable that depends on the fluence dependent

initialization of the primary particle and the geometry of the body it travels through.
Furthermore, the mean dose in voxel v from spot s is calculated by averaging over
all N histories as follows:

Dvs =
1
N

N

∑
h=1

Xh
vs (4.1)

Assuming that the histories are independent enough and that N is sufficiently
large, according to the central limit theorem, the mean dose Dvs will be approxi-
mately normally distributed. This in turn implies that the standard deviation of the
mean dose is approximately proportional to 1/

√
N. This is the basic idea of the
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4.2 Monte Carlo dose engine

Figure 4.1 Illustration of an MC simulation. The particle is simulated from the source,
whereas it undergoes stochastic interactions such as scattering and creation of secondary
particles. The total effect from a simulated primary particle is called a history.

MC method, assuming that the system is well modeled the result of the method will
converge toward the real solution as N grows large.

Fast Monte Carlo dose engine
In recent years so-called fast MC dose engines have been introduced to the market.
The fast differ from the general purpose MC dose engines in the way that they are
designed to be able to compute dose in time frames that are acceptable for clinical
use - this is achieved, e.g., by only considering the most likely interactions. They
are also designed to run on multiple threads (about 100,000) on GPUs, where each
of these threads is typically assigned a history which it simulates.

Due to the large number of threads, the memory for each thread is limited, and
thus the big data chunks such as the voxel grid and gradient vector is stored cen-
trally.

Deposit dose. Each time dose is deposited in a voxel simulated by a thread, the
thread directly writes this to the centralized dose voxel grid, or in the case the history
is simulated to compute the gradient, the dose in the voxel is multiplied with the
voxel element in the dose derivative field P as in (3.14). When the thread has written
the dose to the correct instance, it is thrown away.

Monte Carlo dose normalization
The dose computed with MC must be normalized with the number of histories, so
that the result is not dependent on the number of histories simulated, except for
generating a result with less noise. Except for this, the dose must also be multiplied
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Chapter 4. Dose computation

with the sum of all the spot weights to correspond to the magnitude of the total
beam.

4.3 Monte Carlo in radiotherapy today

Today, MC in radiotherapy treatment is mainly used in two situations; for evaluation
and for pre-computing spot doses.

Treatment plan evaluation using Monte Carlo
After a parameter setting has been found, e.g., through inverse planning based on
an analytical dose engine or through forward planning, we may want to evaluate the
solution to make sure that the plan fulfills the clinical goals, in which case MC can
be used. The procedure is then to perform a dose computation with MC based on
the found parameter settings. If the computed dose is satisfactory, the plan is used
for treatment.

Optimization using pre-computed spot doses
MC can be used to pre-compute each spot dose Ds, i.e., how much spot s contributes
with dose to each voxel. The total dose is a linear combination of all the spot doses,
and can be expressed as follows:

D(ω) = ∑
s∈S

Dsωs (4.2)

where ωs is the weight of spot s and S is the set of spots. The objective function Φ

depends on the total dose through the dose objectives, as described in Section 3.2.
The gradient can then be computed as the scalar product between the dose derivative
field, i.e., the objective function differentiated w.r.t. the dose in each voxel, and the
dose contribution from each spot Ds as follows:

∂Φ

∂ωs
= (∇DΦ)T Ds (4.3)

The spot weights can now be optimized deterministically using the pre-
computed spot doses. The spot doses still have noise in them, since they were com-
puted with a MC dose engine, and the quality of the optimal point found by the
optimizer will be limited by the noise in the spot doses. However, the noise will not
affect the procedure of the optimization.

The main limitation with using MC to pre-compute spot doses is the storage
limitation. The amount of storage needed is linear with the number of spots used,
as well as with the number of voxels the target is represented with. The size of each
spot dose Ds is the number of voxels, and the number of such spot dose contributions
is the number of spots. This makes it infeasible to use the method for e.g. carbon
PBS, due to the number of spots needed (around 40k instead of 10k).
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4.3 Monte Carlo in radiotherapy today

Another problem for pre-computed spot doses is that the desired statistical un-
certainty must be decided at the start of the optimization, generally applying for
all the spots. This is done because the solution reached by the discussed method is
limited by the quality of the spot doses. Since there are many spots that will have a
low weight in the end, or even zero weight, the long calculation time for these spots
was in vain.

A beamlet-free MC based optimization method
To avoid the computationally expensive procedure of calculating the spot doses,
Pross et al. (2023) developed a beamlet-free algorithm which incorporates MC in
the spot weight optimization. The algorithm views the spot weights as a probabil-
ity distribution, in each iteration sampling a spot from this probability distribution
and simulating a batch of particles. The spot probability corresponding to the sim-
ulated spot is changed according to the impact of the simulated particles, taking
into account the current dose, similarly to gradient descent, while the dose from the
simulated particles is accumulated to the total dose. The probability distribution in
the end is the result from the optimization. Due to constantly sampling from the
probability distribution and regarding all simulations for the total dose, there is no
need for a final dose computation.
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5
Implementation

This chapter begins with explaining how the parameters are connected to the fluence
and then the implementations of the two dose engines are explained. It goes on
with describing how some features of the optimization are handled and declares the
optimization algorithm used. Lastly, the experimental problem and general settings
for the optimization are described.

5.1 Parameters to fluence map

The fluence map is represented with a matrix with the same size as the voxel grid
looking from the current radiation source, and with the same resolution. The spots
in a segment, explained in Section 2.1, are distributed as in Figure 5.1, where spot
s has the weight xs. Also, between segments the spots are moving in the pattern
shown in the figure, as described also in Section 2.1. The pattern and the moving
of the spots makes all positions in the matrix filled for four consecutive segments,
except for the edges, which if the parameter space is big enough for the problem,
will be zero either way.

5.2 Dose engine

For the project, the optimizer was not implemented in a developed treatment plan-
ning system with an integrated Monte Carlo (MC) dose engine, described in Section
2.3. Instead, a simplified MC dose engine was implemented in Matlab, with the aim
of capturing the stochastic qualities, and not the accuracy with which commercial
MC engines model real particle interactions. Along with the simplified MC dose en-
gine, a matching analytical dose engine was implemented such that the dose from
the MC dose engine converges to the dose from the analytical dose engine as the
number of histories increases.

The fact that the MC dose converges to the analytical dose creates the ability to
compare the convergence based only on the noise introduced, which would not be
possible if a commercial analytical and MC dose engine had been used.
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5.2 Dose engine

Figure 5.1 The figure shows the pattern of the spots in a segment, as well how the position
of each spot moves between segments. Note that the same spot can have different intensity
between segments.
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Mean depth curve of many protons

Depth curve single proton

Figure 5.2 The depth curve for a mean proton at a specific energy (red) and the mean depth
curve for many protons (blue), i.e., the Bragg curve. The Bragg curve is smeared out due to
the energy of the protons deviate as well as they take different paths due to scattering. The
curves are not formed from real data but are approximates.

Analytical dose engine
Proton depth curve. As described earlier, the proton continuously deposits energy
along its path, thus the proton is modeled such that it deposits energy at every voxel
it passes, according to its depth curve. As previously mentioned, the Bragg curve
for many protons is smoother than the curve for a single particle, due to the range
is normally distributed around the mean, as in Figure 5.2. For the analytical dose
engine this is modeled through convoluting the idealized depth curve for a particle
with the mean energy for the specific segment with a normal distribution kernel.
The depth curves used, as seen in Figure 5.2, are simplified.
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Chapter 5. Implementation

Lateral deviation of fluence. The fluence map is convoluted with a two dimen-
sional normal distribution kernel to model the lateral deviation of the protons and
how the secondary particles spread the dose out, as described in Section 2.1.

Fluence to dose. The dose distribution on each depth layer in the voxel grid is
equal to the convoluted fluence times the value of the depth curve at the current
depth.

Monte Carlo dose engine
Proton depth curve. To model the smeared Bragg curve for the MC dose engine,
for each history within a segment the depth curve of a single proton is offset by an
amount sampled from the normal distribution, where the normal distribution has the
same properties as the kernel used for the analytical dose engine.

Lateral deviation of fluence. To sample the position of a particle in the fluence
for MC, first an index is sampled from the spot weights, resulting in more sampled
particles from a spot with high weight. To that position is then a deviation added in
both cardinal directions, sampled form a normal distribution, with the same prop-
erties as the kernel with which the fluence was convoluted for the analytical dose
engine.

Fluence to dose. When the position of the particle for the current history is sam-
pled, the voxels that are on a straight line from that position is subject for receiving
dose. The dose is deposited according to the depth curve for that specific history, as
just described. The dose is also multiplied by the MC dose normalization factor, de-
scribed in Section 4.2, which is the sum of the spot weights divided by the number
of histories simulated to calculate the dose.

Computing gradient and Hessian diagonal
The elements of the gradient describes how the error is changed when taking a small
step in each direction, and the Hessian diagonal in a similar way, thus they depen-
dend on the dose at the current point. This can be seen in (3.14) and (3.18) which
depend on P respectively H, which in turn depend on the dose at the current point.
To compute the gradient and Hessian diagonal, both the total dose and spot dose
must be computed, i.e., what is the dose distribution for the current spot weights
and what is the dose contribution for each individual spot s, respectively. The above
creates the ability to choose how many histories are used to compute the different
parts of the gradient and Hessian diagonal.

The procedure of computing the total dose is described above. The spot dose Ds
for spot s is computed by setting the spot weight xs to one and the rest to zero and
computing the dose.

Addressing fast MC dose engine´s way of throwing dose away. As discussed in
Section 4.2, the procedure of fast MC dose engines is to throw away a deposited
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5.3 Optimization features

dose directly after it has been computed and written. This creates no problem when
computing the total dose and the gradient, since these properties are linear to the
dose deposited by a single history. However, the Hessian diagonal is not linear to
the dose from a single history, as seen in (3.18).

From Cauchy-Schwarz inequality it can be derived that

(
N

∑
h=1

dvh

)2

≤
N

∑
h=1

d2
vhN (5.1)

where dvh is the dose in voxel v from history h from a spot and N is the number of
histories from the current spot. Working with the fast MC dose engine as is would
require to use the right hand side of (5.1) when calculating the Hessian diagonal,
due to there is not enough memory to store all the spot doses at the same time. Then
the dose from a history deposited in a voxel is directly squared and multiplied by
the number of histories N and H, as in (3.18). This would overestimate the Hessian,
thus causing the optimizer to take shorter steps, which is arguably better than taking
steps too long.

Ideally, however, the left hand side would be used, i.e., the total dose in voxel
v from all histories for a certain spot squared. To overcome the problem of having
to store all spot doses at the same time, instead only a fraction of the spots could
be accumulated simultaneously. When enough histories have been simulated for a
spot, the entire dose in each voxel is squared and multiplied with H as in (3.18),
thus according to the left hand side in (5.1). The dose engine implemented assumes
that the total dose for a spot is known, except for one case, presented in Section 6.3.

The above is not an issue for the analytical dose engine, as discussed in Sec-
tion 4.3 the spot dose is generally precomputed and saved before the optimization
begins, thus the whole spot dose is known for each voxel and the left hand side of
(5.1) can be used.

5.3 Optimization features

Improved precision
The idea of improved precision (IP) is, as explained in Section 3.1, that higher
uncertainty is accepted in the beginning of the optimization, when the current point
is of poorer quality compared to later points. It is implemented as follows; given
start values from sequences representing how many histories are to be used for both
total dose and spot dose, from a given iteration the current point is compared to some
previous point. If no improvement has been made considering the errors and their
uncertainty, the next values in the sequences are used. The motivation for starting
after some iterations have passed is partly to have some value before to compare
with, partly because some oscillation might be to expect in the beginning due to
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uncertain steps, but the trend might be downwards anyways and that should not be
wasted.

Handling constraints
As stated in (3.7) the only constraint of the problem is for the spot weights to be
non-negative. This is handled by projecting any parameter that happens to become
negative back to zero.

Avoid calculating zeroed parameters
To decrease computing time the spot dose was not calculated for parameters that had
been zero for the last three iterations. The motivation for this was that the step with
high certainty would be zero or negative, since it had been so at least the three last
iterations. To not fall in the trap of never giving the parameter a chance to become
positive again, the spot dose was calculated for all parameters every 30th iteration.

Stopping criterion
A necessary condition for a point x to be a minimum is that ∇ f (x) = 0. A common
stopping criterion for deterministic optimization, i.e., optimization without noise, is
thus to investigate if the norm of the gradient at each point is less than a certain tol-
erance, and if so consider the point to be the minimum. For MC based optimization,
the above procedure does not work since the gradient will contain noise and thus
it will differ from its actual value. The stopping criterion used was instead to set a
maximum number of iterations and a maximum number of histories, and stop the
optimization when any of them was passed. The maximum number of histories was
compared with the number of histories used, i.e., accumulated histories used for
both computing total dose as well as computing all the spot doses. If a parameter’s
spot dose not was computed for a certain iteration, as explained above, it did not
contribute with any histories to the total number of histories used.

5.4 Optimization algorithm

The fundamental difference of integrating MC dose calculation in the optimiza-
tion process compared to optimizing spot weights on pre-computed spots, as ex-
plained in Section 4.3, is that the dose from each spot is not stored but constantly
re-computed. For each iteration, to find the step first the total dose must be com-
puted based on the current spot weights to find P and H, and then each spot dose
is computed and the dose from each history is written to the gradient and Hessian
diagonal vector according to (3.14) and (3.18). Lastly, a step is taken based on (3.5).

The optimization algorithm used can be found written in pseudo-code in Algo-
rithm 1.
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5.5 Problem

Algorithm 1 The procedure of the optimizer.

1: x← x0 ▷ Initiate variables
2: m0← 0
3: v0← 0
4: no_hist← first value in history sequence
5: for i = 1 : max_itr do
6: Dt = f (xi−α

γ1mi√
γ2vi

,no_hist) ▷ Calculate dose
7: if need to improve precision then
8: no_hist← next value in history sequence
9: end if

10: Compute P and H from Dt
11: for s = 1 : length(x) do ▷ For all spots
12: for h≤ no_hist do ▷ For all histories in that spot
13: Simulate particle h to get dose Dh
14: g(s)+ = PDh
15: h(s)+ = HD2

h
16: end for
17: end for
18: mi+1 = γ1mi +g ▷ Update decaying average
19: vi+1 = γ2vi +h2

20: xi+1 = xi−α
mi+1√vi+1

▷ Update point, project negative to zero
21: end for

5.5 Problem

The experimental problem that is used for this project is a simplified one that aims
to resemble the geometry in head and neck cancer. It consists of the tumor vol-
ume which is the tonsils, shaped like a ’c’, surrounding the trachea which should
have minimal dose, see Figure 5.3. The voxel grid representing the area of interest
is 50x50x20 voxels and the area constituting the tumor and trachea is 20x30x16
voxels.

The target was irradiated with two beams from opposite sides, each with 12
segments such that consecutive Bragg peaks was at equidistant and covered the
whole target volume.

5.6 Optimization settings

If not stated differently in a certain section, the settings that were used to get the
results in Chapter 6 are found in Table 5.1.
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Chapter 5. Implementation

Figure 5.3 The problem setup with the tumor (yellow), organ at risk (blue) and healthy
tissue (purple). The figure is at a cross section in the middle. The two beam directions are
where the arrows come from.

Table 5.1 The standard settings for the optimization.
*Notice that the number of histories is to calculate the spot dose for one spot.

Entity Value
Step size α MC 0.1

Step size α analytical 0.05
Momentum factor γ1 0.9

Decaying average Hessian diagonal factor γ2 0.9
History sequence total dose 1042k, k = 0,1,2, ...

Histories sequences spot dose* 1022k, k = 0,1,2, ...
Iterations until uncertainty can decrease 10

Number of segments 12
Initial point All ones
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6
Results

This chapter presents the results from different experiments, all based on the exper-
imental problem introduced in Section 5.5

Three different errors will be discussed; analytical, MC and ideal MC. The an-
alytical error comes from optimization based on the analytical dose engine. Both
MC and ideal MC error is computed on points that come from optimization based
on the Monte Carlo (MC) dose engine, with the exception that the ideal MC error is
computed with the analytical dose engine. The ideal MC error thus gives a "correct"
quality measure of the point, whereas the MC error provides a quality measure with
noise, similar to what will be visible in a clinical setting.

When taking the norm, it is the Euclidean norm that is referred to.

6.1 General dose distribution and convergence results

Figure 6.1 shows the dose distribution at a cross section of the voxel grid, for the
solution of the problem based on the MC dose engine. The desired dose in the tumor
is 4. Notice the relatively uniform dose in the tumor.

It is common practice to present a cumulative dose-value histogram (DVH) for
different regions in the target, such as tumor and nearby organ, when investigat-
ing methods for treatment planning, bench marking the investigated to the most
common or the state-of-the-art method. A DVH relates the absorbed dose to tissue
volume for each such region. Since the dose engines implemented do not try to be
as physically correct as possible, there is no point in presenting such results. In-
stead, Figure 6.1 shows that the MC based optimization yields something that looks
like the desired dose, and from now on only convergence plots or similar will be
regarded.

To investigate how the dose computed with the MC dose engine converges to the
dose computed with the analytical dose engine, the norm of the difference between
the analytical dose and the MC dose was computed for an increasing number of
histories for the MC dose. The results are shown in Figure 6.2. As can be seen,
the norm of the difference is monotonically decreasing. These results have no value
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Figure 6.1 Dose distribution in a cross section of the target. The plateau is the ’c’ shaped tu-
mor and in the middle of it is the trachea where the dose should be minimized, all surrounded
by healthy tissue. The treatment plan that corresponds to the dose distribution comes from
optimization based on the MC dose engine, however, the dose distribution was computed
with the analytical dose engine.
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Figure 6.2 The norm of the difference between the analytical dose and the MC dose for
increasing number of histories used to compute the MC dose. The point was chosen as one
near the solution.

other than motivation that the analytical dose engine equals the MC dose engine
computed with infinite number of histories.

Figure 6.3 shows the MC convergence that led to the point giving the dose dis-
tribution in Figure 6.1, as well as an analytical convergence. Notice that the two
plots follow each other well, the analytical always a bit below.
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6.2 Increased error due to uncertainty
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engine.
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Figure 6.3 Convergence both based on analytical dose engine (blue) and MC dose engine
(red) for 120 iterations. The ideal MC error for each iteration during the MC optimization
(orange) can also be seen in figure (b) which is zoomed in on the later part of the optimization
for easier view.

6.2 Increased error due to uncertainty

As can be seen in Figure 6.3b the ideal MC error lies below the MC error for the
same point. That can also be seen in Figure 6.4 which shows the difference between
the MC and ideal MC error for each point in the MC based optimization, normalized
with the ideal MC error at that point. After the initial increase, the difference is
decreasing in clear steps which corresponds to when the number of histories to
compute the total dose is increased, starting at around iteration 35, which aligns
with the results in Figure 6.2. The initial increase is probably due to the choice of
initial point, which is all ones according to Table 5.1. The point causes the noise
not to have a big effect, since all the spot weights are equal and the noise probably
cancels out. Furthermore, the increase within each step is due to the normalization
number is constantly decreasing, since a better point is being reached.

The reason for the MC error to be higher than the ideal MC error is as previously
mentioned in Section 3.2, the noise from the MC dose calculation causes the dose in
each voxel to deviate from the ideal value. Since the dose penalties are (sometimes
one sided) quadratic, a deviation towards a better dose level for a voxel causes
less improvement in error than an equally big deviation towards a worse dose level
causes degradation.
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Figure 6.4 The difference between the MC and ideal MC error for each iteration during
an MC based optimization, normalized with the ideal error. After the initial increase due to
lower normalization number, the difference decreases as more histories are being simulated.

6.3 Quality of step dependence on number of histories

The following results intend to show how the quality of the gradient and the Hessian
diagonal compared to the analytical such depends on the number of histories used
to compute the total dose and the spot dose. The gradient and Hessian diagonal in
a given point was computed for an increasing number of histories for two cases,
namely 1) when computing the total dose with the analytical dose engine and the
spot dose with the MC dose engine (A-MC), and 2) when computing the total dose
with the MC dose engine and the spot dose with the analytical dose engine (MC-A).
The entities were compared with an analytical gradient respectively Hessian diag-
onal in three ways; by taking the norm of the difference between them normalized
with the norm of the analytical such, calculating the angle between them and com-
paring the length of them. The point was chosen as one near the optimal solution.

The results are shown in Figure 6.5. The MC dose converges to the analytical
dose as seen in Figure 6.2, thus there is no surprise that the normalized difference
for the gradient and the Hessian diagonal is decreasing for both the MC-A and the
A-MC case. This, of course, also implies that the angles decrease and the fraction
of the lengths converges to one.

Comparing the y axes in Figure 6.5 for the gradient figures (left) and the Hessian
diagonal figures (right), the axes for the gradient has a larger scale. This implies that
the gradient is much more sensitive to the number of histories used to calculate it
than the Hessian diagonal is. That in turn means that there is not as important to
have a high accuracy when computing the Hessian diagonal as for computing the
gradient.

Looking at Figure 6.5a, it is much more beneficial to increase the number of
histories to compute total dose than to compute spot dose, as the steepness of the
MC-A case is greater. Note also that the histories for computing a spot dose must
be scaled with the number of spots Ns, i.e., when computing the spot dose with 100
histories the number of histories spent is really 100 ·Ns, where Ns often is around
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Figure 6.5 The analytical gradient and Hessian diagonal are compared with two semi MC
gradient and Hessian diagonal for increasing number of histories. The two cases of semi MC
is MC total dose and analytical spot dose (MC-A) and analytical total dose and MC spot
dose (A-MC). The upper figures show the norm of difference between the semi MC and
the analytical normalized with the norm of the analytical, the middle figures show the angle
between the semi MC and the analytical and the lower figures show the norm of the semi MC
divided by the norm of the analytical. The left figures are the comparisons of the gradient and
the right figures are for comparisons of the Hessian diagonal. The error bars are one standard
deviation, calculated from 20 batches. All gradient and Hessian diagonal computations were
done for the same point which was one near the solution.

10,000.
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Approximation of Hessian diagonal
The results in Figure 6.6 show the comparison with an analytical step for the case A-
MC but where the Hessian diagonal is approximated (A-MC-approx), as discussed
in Section 5.2, based on the qualities of fast MC dose engines. Instead of comparing
the gradient and Hessian diagonal separately they are combined as a whole step, i.e.,
H−1g where H is the Hessian diagonal and g is the gradient. Interestingly, the di-
rection for the A-MC-approx step is degraded as more histories are used to compute
the step after 200 histories, as seen in 6.6b. Also, the length of the A-MC-approx
step is decreasing from at the beginning being not even 1.5% the length of the an-
alytical step, as seen in 6.6c. The fact that the step is shorter than the analytical is
according to the hypothesis discussed in Section 5.2. This overall causes the nor-
malized difference between the steps to degrade, which can be seen in Figure 6.6a,
after 200 histories.

The degradation is probably due to that the approximation for the Hessian di-
agonal, where the number of histories is used as a scale factor, is a bad one. Notice
that as the gradient is linear to the dose from each history, we can know that it has
no effect on these results comparing to the results in Figure 6.5.

The overall results suggest that fast MC dose engines might need to be changed
so that the whole spot dose can be computed to find the correct Hessian diagonal
when incorporating it in the optimization process.

6.4 Improved precision

Only increase total dose histories
The results from Section 6.3 indicate that it might be of more interest to increase
the number of histories to compute total dose than number of histories to compute
spot dose for gradient and Hessian diagonal. The present section investigates how
the convergence is affected by only increasing the number of histories to compute
the total dose.

The convergence for MC dose engine, both for standard sequence of histories
to compute spot dose as in Table 5.1 (standard) as well as not increasing histories
to compute spot dose from the start value 100 histories (light), was computed for
70 iterations. As seen in Figure 6.7a, the convergence for the two cases (red and
blue) is quite similar w.r.t. iterations. However, looking at 6.7b, where the error is
plotted w.r.t. the total number of histories used, it can be seen that the convergence
is significantly better for the light case. The error at the end for the two cases is
1.49509 and 1.54834 for standard respective light case, i.e., the standard reaches
a lower error, but this is done at over 6 times the amount of histories used, while
the standard case is around the same error as the light case at about 5.5 times the
amount of histories used.

Since simulating histories is, despite fast MC dose engines, a time consuming
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Figure 6.6 A semi MC step is compared with an analytical step for increasing number
of histories. The semi MC step comes from calculating the total dose with the analytical
dose engine and the spot dose with the MC dose engine (A-MC-approx), where the Hessian
diagonal is approximated based on the discussion in Section 5.2. The figures show (a) the
norm of difference between the semi MC steps and the analytical step normalized with the
norm of the analytical step, (b) the angle between the semi MC steps and the analytical step
and (c) the norm of the semi MC steps divided by the norm of the analytical step. The error
bars are one standard deviation, calculated from 20 batches. All step computations was done
for the same point which was one near the solution.

part, reducing it with such a big factor at the cost of not reaching as good point,
might be worth it.

Increasing neither total nor spot dose
The following section investigates how the convergence is affected by not increasing
histories to compute total dose nor spot dose.

The convergence based on MC dose engine was computed when the histories for
total and spot dose was not increased from their start values at 10,000 and 100 (non-
increasing) and compared to the standard case as described above. The optimization
was performed for 70 iterations, and results are in Figure 6.7 (blue and green). The
convergence is quite similar until around iteration 30, where the non-increasing case
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Figure 6.7 Convergence based on MC dose engine for standard history sequence (blue),
when only increasing number of histories to compute total dose (red) and when not increasing
total nor spot dose (green), w.r.t. iterations (a) and accumulated histories (b). (c) illustrates
the same as (b) with the difference that the error in each iteration is the analytical one. Note
that only the later part of the convergence is visible in (b) and (c), for easier view.

has an inferior convergence compared to the standard case, as seen in Figure 6.7a.
Looking at convergence w.r.t. histories in Figure 6.7b, the non-increasing case has
an inferior convergence until it catches up in the end of the optimization, i.e., at
around iteration 70.

Analytical convergence
As seen in Section 6.2, the ideal MC error for a given point is lower than the MC
error, as well as that the difference between the errors decreases as more histories
are used for the total dose calculation. To see how this affects the convergence, the
ideal MC convergence is illustrated in Figure 6.7c, for the same optimization runs
as in the other two sub-figures.

As can be seen when comparing the ideal MC convergence in Figure 6.7c with
the MC convergence in Figure 6.7b, the non-increasing case makes the best im-
provement. This is due that the total dose is always counted with 10,000 histories
for the non-increasing case, while the standard and light cases have increased their
number of histories to compute the total dose, due to IP.

6.5 Varying history sequence start values

In order to see how the convergence was affected by different start values on the
history sequences, the MC based optimization was run for different combinations
of start values both for calculating total dose as well as spot dose. The start values for
the total dose history sequence was set to 100, 1,000, 10,000 and 100,000 histories,
and for the spot dose 10 and 100 histories. Figure 6.8 shows the results from varying
start values of number of histories w.r.t. the total number of histories spent. The
optimization was run for around 1.5 ·108 histories.
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6.6 Uncertainty propagation

The general result is that, for the given amount of histories spent, it is better to
start at a high number of histories for total dose and a low number of histories for the
spot dose. This agrees with the results from Section 6.3, which states that it is better
for the convergence to increase the number of histories to compute the total dose. It
should, however, be noted that for both start values on number of histories for spot
dose the convergence is best when starting with 10,000 histories to compute total
dose (yellow) in the beginning. Later during the optimization the case of starting
with 100,000 histories for total dose (purple) reaches lower error. This might be
due to that in the beginning, based on the quality of the points, simulating 10,000
histories saturates the step qualities and because the convergence is w.r.t. histories
it is more effective to not spend more histories than that. Then, as the quality of the
points increase, it is beneficial to have an increase in step quality, thus starting with
100,000 histories for total dose has better convergence.

The fact that the optimizations starting with 10 histories for computing spot
dose have better convergence than when starting with 100 histories, see Figure 6.8c
and 6.8d, is somewhat overshadowed by the fact that this causes the optimization to
go through more iterations. This of course also holds when starting value for total
number of histories decrease. Simulating histories is a time consuming task, but the
optimization time also increase when the number of iterations increase, for a given
number of total histories.

6.6 Uncertainty propagation

The two ways to compute the error uncertainty as described in the end of Section 3.2
was compared. The results are presented in Figure 6.9, illustrating the uncertainty
both from standard deviation of error from 10 batches, as well as from propagating
the dose uncertainty in each voxel from the same 10 batches. It can be seen that the
error uncertainty based on dose uncertainty in general lies above. It can also be seen
that while the uncertainty based on error batches oscillate much, the uncertainty
based on dose uncertainty is much smoother, making distinct decreases correspond-
ing to when the number of histories for computing total dose is increased.

The reason for the initial great oscillation for both cases has not been found, but
it might have to do with the characteristics of the initial point, which is all ones.

6.7 Smooth dose derivative field

As seen in Section 6.1 the MC dose converges to the analytical dose as more histo-
ries are used to compute it, i.e., when the noise is reduced. As a MC dose calculation
is closer to the analytical, a better convergence should be yielded. To investigate how
reducing the noise in the data from a MC dose calculation affects the convergence,
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Figure 6.8 The figures illustrates the convergence for different start values of the history
sequence. The start values for histories to compute spot dose is 10 for (a) and (c) respectively
100 for (b) and (d), each with start values for calculating the total dose according to legend.
The lower figures are zoomed in to the later part of the convergence, corresponding to the
upper figures, for easier view. The plots are w.r.t. total number of histories simulated during
the optimization.

the dose derivative field tensor P 1 was smoothed by convoluting it with an unbiased
3x3x3 normal distribution kernel with varying standard deviation.

As can be seen in the results in Figure 6.10, the convergence is best for the
non convoluted and degrades for increasing standard deviation for the convolution
kernel. This might be due to the convolution causes the parameters to be more de-
pendent which causes the conditional number to degrade. At the same time, causing
the step to be sub-optimal due to the dose derivative field is smeared out and reso-

1 P is normally handled as a vector but it can instead be seen as a matrix such that its elements are
arranged as the voxels they represent lie in the voxel grid.
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tion based on MC dose engine for 70 iterations.
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7
Discussion

7.1 General discussion

For the specific experiment case and with the simplified dose engine used, an ade-
quate treatment plan can be reached by optimization based on Monte Carlo (MC).
The convergence is degraded compared to the optimization based on the analytical
dose engine.

Of course, the analytical convergence curve comes from optimizing the param-
eters with the same algorithm as the MC based is optimized with. In reality, when
optimizing on pre-computed spot doses a more advanced optimization algorithm is
used, e.g., including a line search. This is not incorporated due to be able to compare
the MC based to the analytical better.

7.2 Importance of total dose

The convergence seems to be most positively impacted by decreasing the uncer-
tainty in the total dose than in the spot dose. This can be seen in Figure 6.5 where
the quality of the gradient only depend on the number of histories used to com-
pute either the total dose or the spot dose. It can be seen that it converges much
more quickly towards the completely analytical step when increasing the number of
histories to compute the total dose.

It can also be seen in Figure 6.7b, which compares optimizations that increase
both history sequences, only total dose history sequence and neither. The case when
only total dose history sequence is increased has significantly better convergence
than for when both sequences are increased.

One way to benefit from this is to instead of computing the total dose based on
the current point at each iteration, to compute the difference in dose and accumulate
it to the dose from the previous iteration. I.e., computing the dose of the step and
adding this to the previous dose according to some update formula. The update
formula must make sure that the new dose, i.e., the old dose together with the dose
difference, corresponds to the new point. The benefit from this is that the number of
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7.3 Computing the Hessian diagonal

histories used to compute the total dose increases, without the need to increase the
number of histories to compute total dose from one iteration to another.

The method of accumulating the total dose has similarities with the beamlet-
free algorithm by Pross et al. (2023) described in Section 4.3. However, instead of
letting the spot weights be represented with a probability distribution, the point is
updated exact and the dose corresponding to this point is updated with means of the
step to get to the point and the previous dose.

The problem with the discussed method is that it only works if the dose is linear
to the optimization parameters. This is not the case when optimizing treatment plans
with e.g. photons.

7.3 Computing the Hessian diagonal

It is clear from Figure 6.6 that the approximation of the Hessian diagonal described
in Section 5.2 is bad, since neither the direction nor the length converges to the
analytical such. The fact that the corresponding do converge when using the correct
Hessian diagonal, as seen in Figure 6.5, shows there is much to benefit from using
the correct Hessian diagonal, instead of the approximation.

As previously discussed, all spot doses cannot be computed and stored, due to
it takes too much memory when optimizing treatment plans for, e.g., carbon, which
uses more spots than proton does. However, the procedure for computing gradient
and Hessian diagonal can instead be to compute say 200-300 spots simultaneously;
when a spot dose is computed it is used to calculate the two instances according
to (3.14) and (3.18), whereas the spot dose is discarded and next spot dose is cal-
culated. This way the correct Hessian diagonal can be computed without storing
spot doses. This of course makes the optimization more time consuming as the full
potential of multi-threading on GPUs cannot be reached.

Another way to solve the problem is to compute the gradient and Hessian diag-
onal separately. The gradient can be computed in the regular way, there is no need
to compute the whole spot dose since the component of the gradient is linear to the
dose. When computing the Hessian diagonal, it is done as described above but with
less accuracy; either by simulating significantly less histories and/or decreasing the
resolution in the voxel grid. This is motivated by the results in Figure 6.5 which
show that the Hessian diagonal has much higher accuracy than the gradient for a
given number of histories to calculate it. Additionally, for convex problems it can
often be assumed that the Hessian varies less than the gradient. Thus it is probable
that a less exact Hessian diagonal can still contribute to a good step. Due to the use
of lower accuracy, using this method should not demand too much overhead when
computing gradient and Hessian diagonal spot doses separately.
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Chapter 7. Discussion

7.4 Uncertainty of error

As was seen in Figure 6.7c, the error from the MC dose can not be trusted to accu-
rately give a good representation of the actual point if the uncertainty for the total
dose is high. As a clinical MC dose engine does not have a matching analytical
dose engine that can give the correct error for a given point, the above can cause
problem, e.g., when investigating different optimization methods and applying IP,
as explained in Section 3.1. IP will cause bias in convergence for methods that have
decreased their uncertainty in total dose, even though they do not necessarily have
reached a better treatment plan.

A possible solution to the above problem is to make an estimation of the current
ideal MC error based on the MC error and the error uncertainty. For this purpose,
the error uncertainty based on propagating the uncertainty in dose as described in
Section 3.2 is probably good, due to it being fairly constant while calculating total
dose with a constant number of histories, as seen in Figure 6.9.

Another solution could be to at a given time perform a total dose computation
with a set number of iterations for all the methods, in order to be able to perform a
bias-free comparison between them.

7.5 Smooth dose derivative field

The idea of smoothing the dose derivative field by convolution with a normal kernel
in order to reduce the effect of noise when computing the total dose was not suc-
cessful. This, however, does not imply that smoothing the dose derivative field is
not a good idea.

7.6 Stopping criterion

A common way to choose a stopping criterion, i.e., a criterion for when to stop the
optimization and consider the point found to be the solution, is when the improve-
ment in error between iterations is within a certain tolerance. As the noise causes
the error to fluctuate much, this does not work.

What could be done instead is to do a linear regression over the last say 10
points and evaluate the slope, if it is within tolerance the best of these points (or the
last) is chosen as the solution.
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8
Conclusions

8.1 Conclusions

The presented results can with certainty only be considered to hold for the simplified
experiment they are based on. However, despite the simplification, the hope is for
the results to serve as a guide for treatment planning based on Monte Carlo (MC)
simulations in a clinical setting. The main conclusions are that...

• ...an adequate treatment plan can be achieved despite the noise introduced by
MC. The optimization converges even though the uncertainty is high,

• ...for better convergence, it is of more importance to have a low uncertainty
in the total dose than in the spot dose,

• ...the noise gives bias for error that was computed with low uncertainty. This
must be accounted for when comparing solutions, and comparing solutions
with the same uncertainty is encouraged,

• ...the fast MC dose engines need to be changed so that the correct Hessian
diagonal can be computed. This leads to the last point, namely that,

• ...it might be better to compute the gradient and Hessian diagonal separately
for time efficiency. This due to the Hessian diagonal’s less need for low un-
certainty in combination with it being more computationally expensive to
compute.

8.2 Outlook

This thesis has investigated the effects of optimizing proton treatment plans based
on MC and the results should serve as a guide towards performing the same in a
clinical setting. However, in the background the method was motivated by being
able to perform treatment planning with MC even when the number of spots grew
too large to be able to store their pre-computed dose. With that said, the results
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Chapter 8. Conclusions

should serve as a guide even for treatment planning with other ions such as carbon,
which uses about 4 times as many spots.

Stretching it even further, the problem was to optimize spot weights which was
linear to the total dose. The results could in some sense also be translatable to op-
timization where the dose is not linear to the optimization parameters, where the
main case of this is intensity-modulated radiotherapy treatment where photons are
used as radiation and the shape and intensity of the beam segments are optimized.
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