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Abstract

Mobile robotics is an expanding field worldwide leading to the need for advanced
path-planning algorithms that can traverse various environments. Current state-of-
the-art path-planning algorithms used at the Swedish Defence Research Agency,
FOI, tend to be inflexible and parameter dependent. The parameters might need to
be tuned for each new environment, which is a very labor-intensive process.

This thesis investigates the possibility to replace computationally heavy path-
planning algorithms with neural networks using Imitation Learning. Neural net-
works with and without Long Short-Term Memory (LSTM) layers were trained and
evaluated. The network without LSTM failed to capture the temporal dependency
of the input data, which lead to poor performance. Using LSTM layers performed
close to the imitated algorithm in the training environment and in certain situations,
the trained neural network outperformed the algorithm by a big margin. In conclu-
sion, neural networks are, after training, able to replace path-planning algorithms
and in certain scenarios, the network outperforms the algorithm. Further work is
needed to get a robust local planner with a neural network as a base.
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1
Introduction

The use of mobile robotics is booming worldwide, with applications in many differ-
ent fields such as logistics, health care, agriculture, and military. This development
gives rise to the need for navigational systems that can traverse various environ-
ments with potentially unknown and dynamic obstacles [Fragapane et al., 2020].
The current state-of-the-art solutions for the navigation task are generally split into
two parts, a global and a local planner. The global planner constructs the long-range
plan from the starting point to the goal point and it assumes a static environment.
The global plan is passed to the local planner and the local planner will perceive
the environment through different sensors, e.g. LiDAR sensors and cameras, and
based on this local perception it will make a short-term plan that optimally should
follow the global plan as closely as possible at the same time as avoiding obstacles.
The current approaches that employ this hierarchical structure run into problems
when handling fast-moving obstacles and the optimization algorithms provide a
large computational burden. Often the algorithms need to be hand-engineered for
the specific environment to meet safety and robustness constraints, which makes
the implementation a very involved process [Alatise and Hancke, 2020].

Development in recent years has started implementing machine learning com-
ponents as a part of the navigation solution to mitigate the problems present in
the optimization algorithms. Deep Reinforcement Learning (DRL) has provided a
promising solution for handling unknown and dynamic obstacles [Everett et al.,
2018] [Guldenring et al., 2020] [Chen et al., 2018]. However end-to-end DRL
algorithms have been shown to have trouble learning good behavior in certain
environments with sparse rewards [Faust et al., 2017]. There is also the problem
that always accompanies DRL, i.e. how the network best should be trained and
how to generate the needed training data. Different ways of solving these issues
have been introduced in recent years with slightly different approaches. In [Kästner
et al., 2021] a DRL-based control switch was proposed that depending on the local
environment switches between using a traditional local planning algorithm or a
DRL-based planner. A local planner purely based on Reinforcement Learning (RL)
combined with a global planning algorithm was proposed in [Faust et al., 2017],
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Chapter 1. Introduction

whereas in [Chiang et al., 2018] an end-to-end RL planner was proposed. The use
of Behaviour Cloning (BC), which is a Supervised Learning (SL) approach, in
navigational tasks has been researched extensively, and using this approach has
advantages and disadvantages. Supervised learning assumes that the data is i.i.d.
(independent and identically distributed), which the sequential data from a naviga-
tional task is not. An advantage to using SL is that the training is quick and easy
to set up. Approaches to solving or at least mitigating the problems with SL in
navigational tasks have been researched, Data Aggregation (DAgger) being one of
them [Ross et al., 2010].

Current path planning algorithms used at the Swedish Defence Research Agency,
FOI, tend to be very parameter dependent. The algorithms used for the path plan-
ning are optimization algorithms that have a lot of options: choosing weights for
how much a certain behavior should be penalized, how far in the future shall the
algorithm look, what update rate should the local plan have, how close is the Un-
manned Ground Vehicle (UGV) allowed to come to an obstacle, etc. It is often hard
to determine which parameter affects the performance of the UGV, leading to a
trial-and-error-based approach with no clear plan of action. Some settings might
even lead to the optimization algorithm being slowed down leading to the local
planner missing deadlines, which is detrimental to performance. What parameter
settings work in one environment might struggle in another and the tuning is a
time-consuming endeavor. This provides an issue if the UGV is to be introduced for
military applications. The UGV needs to work in numerous environments without
the demand for tuning parameters. It would be unacceptable if the UGV got stuck
in a narrow corridor just because some setting was a bit off, and thereby not being
able to solve its task, which in the worst case could lead to a failed mission and
possibly military personnel getting injured or killed.

When the path planning algorithm is well-tuned the performance is good and the
path is close to optimal, i.e. it follows the global plan. Having this in mind, a naive
starting point is to investigate what happens if a neural network tries to imitate
the optimization algorithm used for navigation. Could the network learn to achieve
the same path following performance from only trying to imitate without the need
for tuning? The idea going into this thesis is that the network could learn good
path-following behavior from imitating the planning algorithm in one environment.
When introduced to a new environment where the planning algorithm requires a
lot of work tuning parameters, the neural network could work directly without any
tuning. The neural network should only be trained in the first environment and still
perform in the new environment without additional training. Using a neural network
would also mitigate the risk of missing deadlines since the prediction step of the
neural network would always be below a set time and consistent for all iterations.
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1.1 Research questions

1.1 Research questions

In the list below the research questions that will be investigated are listed in the
order of priority.

1. Can a neural network replace current state-of-the-art path following algo-
rithms and local planners while keeping the same level of performance?

2. Can a neural network generalize to new environments better than current
state-of-the-art path following algorithms?

3. How can a neural network be trained to imitate current state-of-the-art path
following algorithms? What machine learning approaches can be used?

4. How can the network architecture be constructed to fully utilize the temporal
information in the input data?

The main goal of this thesis is to investigate the possibility of using a trained neural
network as the local planner instead of a computationally heavy optimization algo-
rithm. A number of metrics are evaluated including the success rate of reaching the
goal, time to reach the goal, distance traveled, and generalization to novel settings
and environments. If the neural network can achieve close to the same metrics as
the optimization algorithm but it generalizes to novel environments better, it would
be a promising result for further development.

1.2 Limitations

The construction and implementation of the global path planner and the handling
of dynamic obstacles are out of the scope of this thesis work. While the testing of
the path-planning algorithm on a physical UGV unit would potentially give more
insights, this thesis exclusively deals with simulated UGV control and thus treats
such tests as out of scope. Similarly, training data obtained from the physical UGV
was also deemed out of scope.
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2
Background

This chapter presents the path-planning problem and some common algorithms that
are used to solve this problem are presented. Thereafter, a very brief review of Ma-
chine Learning is presented.

2.1 Path planning

The goal of a path-planning problem is to compute a continuous path from a starting
point to a goal point while avoiding collision with static and dynamic obstacles,
at the same time, respecting the kinematic and dynamic motion constraints of the
mobile robot. As mentioned in the introduction, path planning is generally split
up into a global planner and a local planner. For the global planner, there exist
several algorithms that can find an obstacle-free trajectory between start and goal,
e.g. Dijkstra’s algorithm, A∗, and Rapidly Exploring Random Tree (RRT), which
all have their pros and cons. For some algorithms, there are optimality guarantees
for the generated trajectory, where optimal can have a different meaning in different
scenarios.

In Fig. 2.1 a path-planning problem is displayed, with three example trajectories.
All trajectories are successful in providing a continuous path from start to goal,
however, if finding the shortest path is of importance then trajectories 2 and 3 are
better than 1, but if keeping a certain distance to the obstacles is of importance then
trajectory 1 might be more optimal than 2 and 3. The focus of this thesis is the local
planner so it is assumed that there exists a global plan connecting the start and the
goal that is close to optimal. The local planner is the adaptive part of the planner,
which handles static and dynamic obstacles not known beforehand when construct-
ing the global plan. Constructing a functioning local planner has its difficulties. How
should obstacles be handled? What is a safe distance from the obstacle? How far in
the future should the local planner plan? How should the local planner behave if an
obstacle is placed on the global plan, making it impossible to follow the global plan?
These questions have led to the development of several local planners, e.g. Dynamic
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2.2 Machine learning

Window Approach (DWA) [Fox et al., 1997], Timed Elastic Band (TEB) [Rösmann
et al., 2012] and Model Predictive Control (MPC) [Rösmann et al., 2021]. The three
mentioned approaches are based on optimization algorithms, which have the goal
of minimizing a cost function or maximizing an objective function. There is a fine
line when constructing the cost or objective function, making sure that the local
planner is robust and can handle obstacles in a safe way as well as generating a
trajectory that is optimal both in distance and time. Optimization algorithms tend to
have issues when handling fast-moving obstacles. For this problem machine learn-
ing approaches have proven useful [Everett et al., 2018] [Guldenring et al., 2020]
[Chen et al., 2018].

Figure 2.1 A path planning problem with three viable trajectories. Trajectory 1 is success-
ful but it is not optimal when evaluating the length of the trajectory. However, if keeping a
certain distance from the obstacles is important then it might be optimal.

2.2 Machine learning

Machine learning approaches are often split into three or four categories: super-
vised learning, unsupervised learning, reinforcement learning and some like to add
a fourth category, semi-supervised learning. In this thesis, the machine learning ap-
proach used is SL, however, a brief overview of RL will also be presented for the
purpose of comparison.
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Chapter 2. Background

2.2.1 Supervised learning
In Supervised Learning (SL) the available data has labels, meaning that each sam-
ple has the correct or true value connected to it. In an image classification setting
the data consists of the image of e.g. a dog together with the label "Dog". In that
way, the learning algorithm can train on datasets where the correct class or value
is known. Generating labeled data might be very expensive, time-consuming, and
require an expert to manually label the data, therefore multiple labeled datasets
have been generated for certain tasks. Some examples are the MNIST dataset with
60000 training images of handwritten numbers and ImageNet with over 14 million
labeled images for object recognition tasks. For novel settings, the labeled data has
to be generated before the learning can take place. In navigation settings, SL is
often called Behavioural Cloning (BC) or Imitation Learning (IL), depending on
the scenario. For navigational tasks the data might consist of the readings of the
surrounding from the different sensors and the label is the velocity generated from
the algorithm from which the neural network is trying to imitate. The learning is
done through the use of a loss function that compares the generated output from the
neural network to the label or correct value. Different loss functions are used for
different purposes, e.g. for classification tasks cross-entropy loss is often used and
for regression tasks mean square error (MSE) is a common choice. For this thesis
the latter type of loss functions, i.e. those for regression tasks, are used.

2.2.2 Reinforcement learning
In contrast to SL, RL does not need any training data to be generated in order for
it to learn. Instead, it learns from directly interacting with the environment. The
classical terminology is that the agent acts in the environment and is provided feed-
back on its actions, often as a numerical reward which it tries to maximize during
learning. For this to work, the agent needs to be able to observe the environment,
i.e. the state, and have a set of actions that can affect the environment. The problem
is formulated as a Markov Decision Process (MDP) and includes three parts: state,
action, and goal. The three parts are highly dependent on the setting of the problem,
as well as what the wanted learning outcome is. The agent learns how to map states
to actions, also known as the policy, in order to maximize the reward and the goal
is to find the optimal policy, i.e. find the action in each state that maximizes the
reward. The reward is the feedback signal from the environment telling the agent
if the performed action was good or bad and constructing this feedback signal is
a crucial part of reinforcement learning [Sutton and Barto, 2018]. The feedback
signal can be constructed in many different ways to generate a certain behavior.
The agent can be penalized for every timestep it has not reached the goal to teach
the agent that reaching the goal fast is important. Alternatively, the agent can be
penalized if it is deviating from the global plan, teaching the agent that following
the global plan is important. Choosing which combinations of penalties and rewards
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2.2 Machine learning

can be a challenging task and the chosen combination might not always generate
the wanted behavior.
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3
Methods

This chapter begins by presenting the mobile robot and the software used in the
thesis and the path-planning algorithms used during the data generation. The chapter
then presents the construction of the simulated environments, the data generation,
the neural network architecture, and how the performance evaluation is done.

3.1 System

The mobile robotics platform used in this thesis is an Unmanned Ground Vehicle
(UGV) and specifically the Husky platform from Clearpath Robotics, see Fig. 3.1.
UGVs are used in applications where it may be inconvenient, dangerous, or impos-
sible to have a human operator present. The Husky is a four-wheeled differential
drive robot that can be equipped with multiple sensors, e.g. LiDAR, cameras, GPS
units, and IMUs, but for this thesis’s application only the data from a LiDAR sen-
sor is used as input. The Husky can be used in many different environments with
varying and challenging terrain.

Figure 3.1 The UGV considered in the thesis, the Husky platform equipped with a LiDAR
sensor. A simulated version of the Husky is used during data generation and testing.
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3.1 System

3.1.1 Software
Testing and generation of training data are done in the simulation tool Gazebo
[Koenig and Howard, 2004]. It is an open-source 3D robotics simulator with many
built-in tools and functionalities that allows for the simulation of complex robotics
tasks in various environments, see Fig. 3.2. In that way, different algorithms, ap-
proaches, and parameter settings can be tested before being implemented on the
physical robot. For many commercial robots, there exist libraries with the robot pre-
built with various localization and mapping algorithms implemented. Therefore the
focus can instead be on further development and improvement of new algorithms.
Inside Gazebo, the interface for the robot is Robot Operating System (ROS), which
is a set of software libraries and tools that help build robot applications. For this
work, an advantage is that there are libraries with global and local planners that
easily can be interchanged, which provides an easy way to test the performance of
different algorithms. Inside ROS there is an application called RViz, which is used
to visualize the robot and sensor data from Gazebo. In Fig. 3.3 a screenshot from
RViz is displayed where the red circles are the visualization of the LiDAR point
cloud.

Figure 3.2 The Husky platform equipped with a LiDAR sensor inside the simulation tool
Gazebo, where all the data generation and testing is done.
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Chapter 3. Methods

Figure 3.3 The environment in Fig. 3.2 visualized in RViz, where the LiDAR point cloud is
visualized as red dots. In RViz the different sensor readings from Gazebo can be visualized.

3.2 Path planning algorithms

Based on the results presented in [Filotheou et al., 2020] the best combination
of planner, inside the ROS library, is navfn as global planner and teb_local_
planner as local planner. However navfn assumes that the robot is circular, which
the Husky is not. Luckily the global planner global_planner has almost the
same performance as navfn but it does not assume a circular robot [Filotheou
et al., 2020]. Therefore the choice of global and local planner for this thesis is
global_planner and teb_local_planner.

3.2.1 Global planner
The planning algorithm used for global_planner is based on A∗ and Dijkstra’s
algorithm, which are common choices for finding the shortest path between points.
The focus of this thesis will be on the local planner so no effort to optimize and tune
the global planner will be made.

3.2.2 Local planner
Timed Elastic Band (TEB) is a state-of-the-art local planner that is often used for
navigation tasks. TEB discretizes the trajectory along the prediction horizon in
terms of time and applies a continuous numerical optimization scheme. The global
path is split into a number of intermediate robot poses and aims to find the time-
optimal trajectory from the current state to the next state or pose [Rösmann et al.,
2012] [Rösmann et al., 2017]. The planned trajectories are closer to the actual op-
timal solution, but constraints are implemented as penalties only, therefore precau-
tions have to be taken in order for constraints to be met. It is suited for all robot
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3.3 Initial work

types and can handle dynamic obstacles. However, it requires a large computational
burden for its updates. TEB has many tunable parameters and they have a significant
effect on how the local planner performs and the settings can be highly dependent
on the environment. So having optimized TEB in one environment the performance
when transferred to a new environment might drop significantly.

3.3 Initial work

The construction of the simulated environment was done in Gazebo. The simula-
tion software has a built-in building editor with the possibility to manually create
buildings with the wanted properties. In Fig. 3.4 the map of the created training en-
vironment is shown where the different starting points for the UGV during the data
generation are displayed as red arrows indicating the orientation of the UGV. The
building can be seen in Fig. 3.5 but without the roof added. The Husky is located
at the starting point approximately at (5, 10) in Fig. 3.4 pointing to the right. The
visualization of the sensors in Gazebo is shown in Fig. 3.6, where the red points
are the LiDAR point cloud and the blue regions are a costmap that is used by the
planner to construct the global and local plans and avoid walls and obstacles. In
addition to the training environment displayed in Fig. 3.4 another environment was
built, the validation environment, and its map can be seen in Fig. 3.7. The validation
environment is used to mitigate the risk of overfitting to the attempts from the train-
ing environment. Evaluation of the local planners will be done in both the training
environment as well as the validation environment.

Figure 3.4 Map of the training environment with the five starting points (red arrows) used
during data generation. The black lines are walls, the white areas are inside the building and
the grey areas are outside. Only goal points in the white areas are viable.
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Chapter 3. Methods

Figure 3.5 Simulation environment Gazebo where the Husky is located inside the training
environment, whose map is displayed in Fig. 3.4. The roof has been removed to be able to
see the UGV.

Figure 3.6 The environment in Fig. 3.5 visualized in RViz. The red points are the LiDAR
point cloud and the blue regions are the costmap, which is used by the optimization algorithm
to avoid walls and obstacles.

Having the two environments constructed, the necessary software for simulating the
UGV in the environment was created. As mentioned in Section 3.1 the UGV used
in this thesis is the Husky platform from Clearpath Robotics. There exist multiple
libraries created by Clearpath Robotics that handle everything from bringing up the
simulated Husky in Gazebo and its physics to the navigation stack. Also, different
sensors and configurations are available, e.g. LiDAR sensors, cameras, and IMUs.
These libraries are both used in the simulated setting but could also be used on the
real Husky. In this way, new sensors can be tested and evaluated in the simulated
environment before being introduced to the physical UGV.
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3.4 Data generation and preprocessing

Figure 3.7 Map of the validation environment with the starting point (red arrow) used dur-
ing data generation. The validation environment is used to minimize the risk of overfitting.

3.4 Data generation and preprocessing

The training data is, as mentioned in Section 3.1.1, generated in Gazebo where the
UGV is provided with a large number of randomized points in the environment,
and the observations and actions chosen by TEB are recorded. The recorded data
consists of LiDAR data, position and angle of the UGV, velocities published by
TEB, and lastly, the global plan generated by global_planner mentioned in Sec-
tion 3.2.1. In Fig. 3.8 the recorded data for one attempt is shown, except the LiDAR
data. All of the data is recorded in a so called "rosbag", where all the messages
are saved. The global plan is published once before the UGV starts moving, and
position and angle feedback are being published with a frequency of 5 Hz. The
frequency of the LiDAR data can manually be set and the choice was made to set
it to 5 Hz as well to match the frequency of the feedback from the system. Another
option would be to set the frequency higher for the LiDAR data and use multiple
frames for each point of feedback from the system, but for simplicity’s sake, the
frequency was kept at 5 Hz. In Fig. 3.9 the randomized goal points are shown for
the five starting points. 50 goal points are recorded for each starting point and since
the goal points are randomly generated some end up on the same coordinates, i.e.
there are not 50 individual points for each starting point in Fig. 3.9. The validation
data consists of 50 attempts in the validation environment, see Fig 3.10.

Before the network could use the recorded data as input it had to be formatted in a
way suitable for the network. The recorded rosbags are processed and the relevant
information is extracted from the recorded messages. The LiDAR data is an im-
portant input, however it can often look similar for different goal points, especially
if the UGV starts from the same position in each simulation. So how should the
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Chapter 3. Methods

Figure 3.8 One example trajectory in the training data, with starting point (red arrow), goal
point (green), and corresponding linear and angular velocities generated by TEB. The top left
plot displays the global plan generated by global_planner and the second plot shows the path
the UGV followed using TEB. The data presented is recorded for each start-goal pair and it
is used when training the network.

UGV know where to go? Another input should be added to give the network an
idea of where the goal point is and how the UGV should be steered to reach this
goal. Therefore in each timestep, the input to the network should consist of the
LiDAR data and some other input that indicates where the goal is placed. This other
input has throughout the thesis changed to give a better performance of the network.

The first idea was at each timestep to give the distance and angle from the current
position of the UGV to the goal point. Using this input gave the network some
indication of where to go but it had a hard time handling goal points behind walls
where a detour is needed to reach the goal. The next idea was to make better use
of the information in the global plan instead of only the goal point. The global
plan was split up into several waypoints depending on the distance from the start to
the goal. Distance and angle to the waypoints gave better results compared to only
using the goal point, however when examining the performance, the distance to the
waypoint provided no positive effect on the network. The final inputs used in each
timestep are LiDAR data as well as the angle from the current position of the UGV
to a waypoint. In Fig. 3.11 the waypoints are displayed for one example trajectory
and the corresponding angle to waypoint used as input to train the network is also
shown. In Fig. 3.12 an illustration of the angle to the waypoint used as input to
the network is shown. The angle is calculated in reference to the local coordinate
system (grey) of the Husky.
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3.4 Data generation and preprocessing

(a) Starting point 1 with randomized goals (b) Starting point 2 with randomized goals

(c) Starting point 3 with randomized goals (d) Starting point 4 with randomized goals

(e) Starting point 5 with randomized goals

Figure 3.9 Training environment with randomized goals for the five starting points, de-
scribed in Fig. 3.4, used for generating the training data. For each start-goal pair an attempt
is recorded, where the local planner used is TEB and the recordings are to be used when
training the neural network.
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Figure 3.10 Validation environment with randomized goals, used for data generation. For
each start-goal pair, an attempt is recorded, where the local planner used is TEB. The record-
ings are used as the validation dataset to mitigate the risk of overfitting to the training dataset.

Figure 3.11 Global plan with waypoints for the example trajectory in Fig. 3.8 and the
corresponding angle to the waypoint which is used as input for the network. Starting point
(red arrow), goal point (green). The angle to waypoint is used to teach the network to follow
the global plan.

The LiDAR data generated in Gazebo is a point cloud with 32 vertical lines, each
with 256 samples and this point cloud is translated to a depth image with the di-
mensions 32x256, where each index is the distance from the sensor to the point
that corresponds to that index. In Fig. 3.13 five depth images are shown for five
timesteps of the example trajectory in Fig. 3.8. Index 0 and 255 lie next to each
other behind the UGV. The number of samples can be increased to 2048 samples
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3.4 Data generation and preprocessing

Figure 3.12 Angle to waypoint θ used as input for the network in relation to the global
coordinate system, where (0, 0) is the starting point. The green point is a waypoint and the
black/yellow shape is the UGV. The angle to waypoint is calculated as the angle from the
UGVs local coordinate system. The angle lies in the interval (−π,π], where 0 is straight
ahead and π is behind the UGV.

instead of 256 if more details of the environment are needed. After evaluation, 256
samples provided enough information for the application of this thesis while keep-
ing the size of images smaller allowing for faster computations. The LiDAR data is
not always complete with all 32x256 points since some points might lie outside the
maximum range of the LiDAR sensor. For those missing points, the distance is set
to the maximum distance, which in this case is set to 100 m. Before the LiDAR data
is fed to the network, the depth image is normalized between 0 and 1, i.e. divided by
the maximum distance. The angle input to the network is a number in the interval
(−π,π] and is calculated in each timestep using the feedback of the UGVs position
and orientation which is then related to the location of the waypoint.
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(a) LiDAR depth image for starting point

(b) LiDAR depth image during path

(c) LiDAR depth image during path

(d) LiDAR depth image for goal point

Figure 3.13 LiDAR point cloud translated to depth images for four timesteps in the exam-
ple trajectory in Fig. 3.8. It shows the distance from the UGV to each point in the point cloud
in the LiDAR data. The images show the inside of the building with the blue rectangles being
windows and the red areas being walls with different distances from the LiDAR sensor. The
image wraps around, meaning that the left and right sides of the depth image lie next to each
other behind the UGV.
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3.5 Network architecture

To simplify the creation and implementation of the neural network, the deep learn-
ing API Keras is used [Chollet et al., 2015]. Keras makes it easy to build networks
with prebuilt layers using a very simple syntax. There even exist pre-trained net-
works that easily can be tested and used for other applications.

Since the LiDAR data can be structured as an image, the idea is to let such an image
go through a pre-trained network that is trained on image classification tasks. This
way of using knowledge gained from solving one task to another is called transfer
learning. In that way, good features of image analysis can be extracted without
having to train a new network on vast amounts of data. The last classification layer
can be omitted from the pre-trained network and the pre-trained weights can be
frozen so no updates will take place for this part of the network. The chosen pre-
trained network is ResNet50V2 introduced in [He et al., 2016]. It is an improved
version of ResNet50 introduced in [He et al., 2015] and it is a residual network.
In this case, it is based on Convolutional Neural Networks (CNN), which are used
for computer vision applications. ResNet50V2 has 109 layers with 25.6 million
parameters. The pre-trained weights used have been trained on image classification
tasks on ImageNet mentioned in Section 2.2.1. The choice of image classification
network could easily be interchanged for a different model in Keras and the results
would probably be similar for other models trained on ImageNet.

After the LiDAR data has been passed through the pre-trained image classification
the output is flattened and the angle input is concatenated. Following the flattening
and concatenation there are either Long Short-Term Memory (LSTM) blocks or
vanilla fully connected layers, to evaluate the effect of the temporal dependency
in the input data. During testing, different network structures have been evaluated
e.g. concatenating the angle input on different places in the network and repeating
the angle input in a vector instead of just one number to achieve more connections
to the angle input to the next layers. Concatenating the angle input as a vector of
length 1000 seemed to influence the network to the extent needed, i.e. the network
started to steer towards the waypoint instead of always taking the same path. The
number of nodes in the fully connected layers decreases in each layer until the new
output layer, which is trained to deliver suitable linear and angular velocity. The
optimizer used is ADAM, the loss function is Mean Squared Error (MSE) and the
learning rate is 0.001 and decreases when the training loss stagnates. The network
is trained with data generated from simulations recorded using TEB. The LiDAR
data and the angle input are passed through the network and the output is compared
to the velocities generated from TEB, calculating the loss. In that way, the network
should learn basic behavior from TEB. The two network architectures are shown
in Fig. 3.14, where NN is the neural network without LSTM and NN-LSTM is the
neural network with LSTM.
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The training of the networks took a couple of hours, depending on the structure of
the network, using a NVIDIA GeForce GTX 1080 Ti. For details about how the
neural network was incorporated as a local planner, please consult Appendix A.
In the appendix, the Robot Operating System (ROS) is briefly explained and the
structure of the local planner node is discussed.

Figure 3.14 Network architectures for the two networks used in this thesis. NN-LSTM is
constructed in the same way as NN but with two LSTM layers added. The input to the net-
works is LiDAR data and angle to waypoint and the output is the linear and angular velocity
for a given timestep.
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3.6 Evaluation

The three different local planners that are compared are listed below:

1. Timed Elastic Band, TEB

2. Neural network without LSTM, NN

3. Neural network with LSTM, NN-LSTM

The performance of the local planners is evaluated in a number of ways:

• Success rate of reaching the goal, where the tolerance is 20 cm from the goal

• Time to reach the goal

• Distance traveled

• Generalization to novel settings and environments

Evaluation of the local planners is done in both the training environment as well
as the validation environment. The first test was done in the training environment
with the same starting points as when generating training data and five goal points
were selected to give a good distribution of goal points, see Fig 3.15. For each
start-goal pair, five attempts were recorded and the performance was evaluated.
The reason for evaluating the performance in the training environment is to see
how the trained neural networks perform in the environment they were trained in.
If they fail to perform even in this favorable setting they will have a hard time
when introduced to new environments. In the validation environment two starting
points were chosen and five goal points, see Fig. 3.16. An obstacle is also added
to the validation environment to test how the local planners handle the situation,
Fig. 3.17. Five attempts were recorded for each start-goal pair, with and without
the obstacle, corresponding to a total of 100 attempts for the validation environment.

A run is classified as failed if the UGV collides with a wall or if 200 timesteps are
passed. The number of timesteps is chosen based on the size of the environments,
200 timesteps should give the planner more than enough time to reach the goal with
a margin if the local path is not optimal. 200 timesteps with the frequency 5 Hz
corresponds to 40 s.
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Figure 3.15 Starting points and goal points inside the training environment used for evalu-
ation of the different local planners. The goal points are chosen to get a good distribution of
locations in the environment.

Figure 3.16 Starting points and goal points inside the validation environment used for eval-
uation of the different local planners. The goal points are chosen to get a good distribution of
locations in the environment.
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3.6 Evaluation

Figure 3.17 Starting point and goal points inside the validation environment, see Fig. 3.16,
but with an additional obstacle (dark grey) added to the corridor.
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4
Results

The results are split into two sections: results from the training environment and
results from the validation environment. In each part, the performance metrics dis-
cussed in Section 3.6 are evaluated. No models have trained on any data from the
validation environment, they have only seen the data during validation where no
training takes place. Evaluating the two networks in the validation environment will
give an indication of how the networks generalize to novel settings. The average
time, average distance, and distance of the global plan are calculated for successful
attempts. Including the failed attempts would skew the results since the attempts
with collisions are cut short and the attempts that are timed out are also cut short.
Since only the successful runs are part of the metrics this has to be taken into ac-
count when comparing the metrics between local planners. If the local planner tends
to succeed on goal points far from the starting point but fails to reach goal points
close to the starting point then the average time and average distance will be higher.
To mitigate this problem the average distance is compared to the global plan for
that particular attempt, i.e. if the global plan is 10.0 m and the local planners gen-
erate a path of 10.4 m then the path traveled is 104.0% of the global plan. For the
average time, it is harder to construct a good metric. If the average global plan is
much longer when compared to the other local planners then it is expected to have
a longer average time as well.

4.1 Training environment

In Table 4.1 the results from the training environment are displayed. The numbers
are calculated from five attempts from 25 start-goal pairs, i.e. 125 total attempts.
In Appendix B.1 the results for each start-goal pair are displayed. NN fails to learn
good behavior from the training data with only a 40.0% success rate. TEB and NN-
LSTM have a similar success rate in the training environment, however, NN-LSTM
is a bit slower in reaching the goal and the path is a bit longer. In Fig. 4.1 one of the
recorded attempts is displayed, where TEB and NN-LSTM reach the goal, whereas
NN collides with a wall.
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TEB NN NN-LSTM
Success rate 97.6% 40.0% 95.2%
Average time to reach the
goal for successful runs
[timesteps/seconds]

72.7
timesteps
/ 14.5 s

82.2
timesteps
/ 16.4 s

81.6
timesteps
/ 16.3 s

Average distance to goal for
successful runs [m]

9.15 m 10.84 m 9.37 m

Average distance of the global
plan for successful runs [m]

9.03 m 10.54 m 9.08 m

Distance travelled divided by
distance of global plan [%]

101.3% 102.9% 103.2%

Table 4.1 Performance metrics for the three local planners: TEB, NN, and NN-LSTM in the
training environment. TEB performs slightly better than NN-LSTM, which in turn performs
significantly better than NN.

Figure 4.1 Path taken during testing for the three local planners: TEB, NN, and NN-LSTM,
for one attempt between Start 1 and Goal 1 in Fig 3.15. NN failed to reach the goal and
collided with the wall.

4.2 Validation environment

4.2.1 Start 1
Based on the poor performance of NN in the training environment the decision
was made to only test NN on one starting point in the validation environment to
evaluate if more time should be put into generating additional attempts. In Table
4.2 the performance of the three local planners on the five start-goal pairs starting
from Start 1, see Fig. 4.2, are displayed. The results for each start-goal pair can
be found in Appendix B.2. The success rate is significantly lower for NN (52.0%)
compared to TEB (100.0%) and NN-LSTM (88.0%), therefore the decision was
made to continue with only TEB and NN-LSTM.
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Chapter 4. Results

Figure 4.2 Start 1 and goal points. Same as Fig. 3.15 but without starting point 2.

TEB NN NN-LSTM
Success rate 100.0% 52.0% 88.0%
Average time to reach the
goal for successful runs
[timesteps/seconds]

60.1
timesteps
/ 12.0 s

87.2
timesteps
/ 17.4 s

82.8
timesteps
/ 16.6 s

Average distance traveled to
goal for successful runs [m]

8.65 m 9.15 m 9.65 m

Average distance of the global
plan for successful runs [m]

8.68 m 8.30 m 9.46 m

Distance travelled divided by
distance of global plan [%]

99.7% 110.2% 102.0%

Table 4.2 Performance metrics for the three local planners: TEB, NN, and NN-LSTM in the
validation environment, only from Start 1 without obstacle corresponding to 25 total attempts
per local planner. TEB performs better than NN-LSTM, which in turn performs significantly
better than NN.

4.2.2 Start 1 and Start 2 with and without obstacle
In Table 4.3 the performance metrics evaluated in the validation environment are
displayed for TEB and NN-LSTM, for the two starting points with and without the
obstacle corresponding to 100 total attempts per local planner. The performance
between the two local planners is pretty similar, but if the attempts that force the
UGV to pass the obstacle are isolated, the performance metrics tell a different story.
The isolated attempts can be seen in Fig. 4.3 and for these attempts, the performance
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metrics are displayed in Table 4.4, see Appendix B.2 for details. TEB has a hard
time passing the obstacle and has a success rate of only 44.0% and the attempts that
manage to reach the goal are almost 10 s slower than NN-LSTM. In Fig. 4.4a and
4.4b two examples are shown where TEB gets stuck and NN-LSTM succeeds. In
Appendix C, trajectories for TEB and NN-LSTM are displayed for Start 1 and 2
without the obstacle.

TEB NN-LSTM
Success rate 85.0% 86.0%
Average time to reach the
goal for successful runs
[timesteps/seconds]

72.0
timesteps
/ 14.4 s

93.3
timesteps
/ 18.7 s

Average distance traveled to
goal for successful runs [m]

8.76 m 10.02 m

Average distance of the global
plan for successful runs [m]

8.68 m 9.66 m

Distance traveled divided by
distance of global plan [%]

101.0% 103.7%

Table 4.3 Performance metrics for TEB and NN-LSTM in the validation environment for
the start-goal pairs in Fig. 3.16 and 3.17. 100 total attempts per local planner. NN-LSTM has
a slightly higher success rate compared to TEB, however TEB has a shorter average time and
average distance.

TEB NN-LSTM
Success rate 44.0% 80.0%
Average time to reach the
goal for successful runs
[timesteps/seconds]

152.1
timesteps
/ 30.4 s

103.2
timesteps
/ 20.6 s

Average distance traveled to
goal for successful runs [m]

15.14 m 14.62 m

Average distance of the global
plan for successful runs [m]

14.57 m 14.74 m

Distance traveled divided by
distance of global plan [%]

103.9% 99.2%

Table 4.4 Performance metrics for TEB and NN-LSTM in the validation environment. The
start-goal pairs that pass the obstacle are isolated, see Fig. 4.3 for a visualization of these
points. 25 total attempts per local planner. NN-LSTM performs significantly better than TEB.
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(a) Starting from Start 1 and going to Goal 2 and 3.

(b) Starting from Start 2 and going to Goal 1,4 and 5.

Figure 4.3 Validation environment with starting points and goals where the path passes the
obstacle. It is an extraction of start-goal pairs from Fig. 3.17. These start-goal pairs are used
when calculating the results in Table 4.4.
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(a) Path taken for TEB and NN-LSTM for one attempt. TEB fails to find a viable path,
whereas NN-LSTM passes through the corridor.

(b) Path taken for TEB and NN-LSTM for one attempt. TEB fails to find a viable path,
whereas NN-LSTM passes through the corridor.

Figure 4.4 Two example attempts where the path passes the obstacle.
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5
Discussion

This chapter begins by discussing the use of a neural network as a replacement
for local planners using optimization algorithms. Then the chapter discusses the
training of the neural network, the temporal dependency of the input data, and the
network architecture. The chapter concludes with a discussion of future work.

5.1 Neural network as replacement

In the below discussion, the comparison between NN-LSTM and TEB will be dis-
cussed. NN will for this part be omitted since the performance is that much lower
compared to the other two. In the training environment, TEB has a success rate
of 97.6%, the path followed is 1.3% longer than the global plan and the average
time is 14.5 s. For NN-LSTM the same metrics are 95.2%, 3.2%, and 16.3 s. Based
on these numbers the two planners can be concluded to have similar performance.
NN-LSTM has a slightly less optimal path and takes a bit longer average time. The
network is trained to imitate TEB with data generated from the training environ-
ment, so expecting that NN-LSTM should outperform TEB in this environment
is unreasonable. It is more interesting to evaluate the performance in novel envi-
ronments, to decide if a neural network can work as a replacement for TEB. If
training would be needed for each new environment it would defeat the purpose of
introducing a neural network to avoid having to tune parameters for TEB. In the
validation environment, TEB had a success rate of 85.0%, the path followed was
1.0% longer than the global plan and the average time was 14.4 s. These results are
presented in Table 4.3, which are calculated for Start 1 and Start 2 with and without
the obstacle. For NN-LSTM the metrics are 86.0%, 3.7%, and 18.7 s. The average
time is a bit longer for NN-LSTM, however, the average distance of the global plan
for the successful attempts is approximately 1.0 m longer which is one contributor
to the increase in average time. NN-LSTM has a slightly higher success rate, how-
ever, it is a bit slower and has a longer path. The reason for the drop in the success
rate for TEB is due to the added obstacle in the corridor. For the attempts where
the path passes the obstacle the success rate is only 44.0% compared to NN-LSTM
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5.2 Training

with 80.0% and for the successful attempts TEB is 10 s slower than NN-LSTM,
see Table 4.4. For certain scenarios, TEB fails considerably, whereas NN-LSTM
performs much better. As expected, when comparing the results for NN-LSTM
between the training and validation environment there was a drop in success rate
from 95.2% to 88.0%.

What is the reason that TEB struggles to pass the obstacle? The reason for this
struggle is based on the parameters used for the optimization algorithm. TEB uses
a costmap around each obstacle as a way to determine if the path is close to an
obstacle or not and the costmap is influenced by a number of parameters in the setup.
In Fig. 5.1a the costmap without the obstacle is shown and there is a clear path in the
middle of the corridor where there is no costmap and therefore the UGV is safe to
pass here. When adding the obstacle to the corridor, see Fig 5.1b, there is no longer
a path that goes through the corridor without going inside the costmap. When the
UGV encounters this situation TEB will try to find a way to pass through the narrow
path and it often starts to oscillate at the beginning of the obstacle. Sometimes TEB
finds a way through after some hesitation but often it gets completely stuck not being
able to move past the obstacle. To mitigate this problem the parameters related to
the costmap would have to be adjusted to fit the new environment. Since the trained
neural network has been trained to imitate TEB without the use of the costmap it
is not affected by the overlapping costmap and does not show the same hesitant
behavior. However, NN-LSTM does not have a 100.0% success rate passing the
obstacle but the problem is not getting timed out and being hesitant to pass the
obstacle, instead, the main issue was that it collided with the obstacle on some
attempts. There were attempts where the UGV just barely collided with the obstacle
or a doorway when passing and still managed to reach the goal. But since an attempt
is considered failed if the UGV collides with anything, the attempt was marked as
failed.

5.2 Training

The learning approach used in this thesis is very simple and the learning is fast. Su-
pervised Learning (SL) is easy to implement and the training can be done in a short
amount of time compared to other machine learning approaches. The drawback
with SL is that labeled data is needed for training which often is time-consuming
and expensive to obtain. But when the data has been generated, training is an easy
process. Using only SL gave results with a performance at the same level as TEB in
many situations, and in other situations, the trained network managed to outperform
TEB. SL can be a good starting point for imitating behavior to later fine-tune the
behavior using other machine learning methods, such as RL. Training from scratch
using RL often requires millions of timesteps to learn basic behaviors. SL could
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(a) Costmap without obstacle (b) Costmap with obstacle

Figure 5.1 Costmaps with and without the obstacle added to the environment, visualized
in RViz. In Fig. 5.1a there is a clear path in the middle of the corridor, whereas in Fig. 5.1b
the costmap overlaps providing difficulty for TEB.

therefore be a fast and efficient starting point to get a good baseline behavior, from
which RL can be applied to make the behavior better. Another alternative to RL
that could be used to improve the baseline behavior is to use DAgger [Ross et al.,
2010].

The performance of the neural network is highly dependent on the training data.
During the testing of different iterations of networks, it was clearly seen in some
iterations that the network overfitted on the training data and when introduced to a
new starting point or a new environment the UGV would get stuck or deviate greatly
from the global plan. The training data would improve if the starting position of
the UGV also was randomized for each iteration as it is implemented for the goal
points. Unfortunately, the settings for the starting point are not as easily changed
as generating goal points so there is no way to make a script to randomize starting
points easily. The best option was to choose several starting points in the environ-
ment that generates simulations that explore the whole environment from different
directions and angles. Since the generation of data is time-consuming, the choice
was to use five starting points during data generation in the training environment,
see Fig. 3.4, but the number could easily be extended to more starting points if time
permitted.

5.3 Temporal dependency

NN and NN-LSTM were trained using the same method but the results were vastly
different. In the training environment, the success rate was only 40.0% for NN,
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whereas NN-LSTM had a success rate of 95.2%. NN fails to capture the temporal
dependency in the input data. The optimal action at the current timestep is highly
dependent on earlier actions, therefore some sort of memory is needed to best
utilize the temporal dependency. NN has a tough time reaching goal points that
demand a lot of turning during the first timesteps of the attempt. In Table 4.1 the
average global plan of the successful attempts is approximately 1.5 m longer than
for the other local planners, indicating that NN struggles with goal points close by
that demand a lot of turning. An example of this behavior can be seen in Fig. 4.1.
Conclusively, adding LSTM layers gives the network the capacity to capture the
temporal dependency of the input data.

Using LSTM is a well-established way of introducing temporal dependency in the
network. In recent years the use of Transformers [Vaswani et al., 2017] has devel-
oped as a way to introduce positional dependency in sequential data outperforming
LSTM.

5.4 Neural network architecture

The choice of the particular network architecture shown in Fig. 3.14 was made after
some trial and error when testing. A lot more time could be put into tweaking the
number and type of layers, dropout parameters, how to input the angle input, etc.
The network architecture for NN-LSTM, shown in Fig. 3.14, gave good enough
performance to start generating the results presented in the earlier chapter. To see
the effect of having LSTM layers, NN was constructed the same way as NN-LSTM
but without the LSTM layers, to get a better comparison.

Using ResNet for handling the LiDAR data can also be changed to another pre-
trained network, e.g. MobileNet, or even create a stack of Convolutional Neural
Networks (CNN) which would have to be trained from scratch. Since ResNet gave
satisfying results, no effort was put into evaluating another structure. Keras has
multiple pre-trained networks, so the change to another network would be only as
involved as changing the name from ResNet50V2 to MobileNet.

The trained neural network has no clear limit when predicting the velocities. During
training it has never trained on any linear velocities larger than 1 m/s and angular
velocity of ±0.3 rad/s, however, there is nothing stopping the network from pre-
dicting velocities larger than these values. The velocities have never been far off
from the known max, but it is important to keep in mind if the system is sensitive to
inputs larger than the max. It is of course easy to add some lines of code that check
if the predicted velocity is larger than the max and in that case set the value to the
max velocity instead.
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5.5 Future work

A possible improvement to the thesis would be to add RL on top of the existing
neural network to optimize the generated behavior to outperform TEB. In that way,
the UGV could get penalties for colliding with obstacles and therefore learn to
avoid them. This could be done using either online or offline RL.

Throughout the thesis, the environment has been static with all obstacles known
beforehand. This is not an accurate depiction of what situations the UGV is aimed
to be used in. A natural next step is to introduce dynamic obstacles to the environ-
ment and use e.g. RL for learning good behavior in handling those obstacles. TEB is
known to have issues with handling fast-moving obstacles so this next step could re-
ally prove the benefits of using a neural network compared to the existing algorithm.

Since the testing has only been done in the simulated setting the obvious next step
would be to implement the local planner on the physical robot and evaluate its
performance in the real world.

5.6 Ethical considerations

Navigation systems for UGVs can be used in a variety of applications such as logis-
tics, health care, and military. The one developed during this thesis is not a working
solution at this stage, and it is only a small part of the complete navigation system
needed for an UGV. However, further development might result in a working local
planner that can be used in the navigation system for the applications listed earlier.

With all new development there needs to be a discussion about how this new tech-
nology can be used and how accessible it will be. The new technology needs to be
regulated and controlled such that it is only used for its intended purpose. FOI works
closely with The Swedish Armed Forces and the research is often aimed at being
used in a military setting at some point. Therefore, it is of great importance that the
research is done in an ethical way and that the development is used in the right set-
ting. A cost-benefit analysis has to be done to make sure that the new development
is a net positive to society and does not create any potential risks.
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6
Conclusion

This thesis explored the possibility of using a trained neural network as a replace-
ment for state-of-the-art path planning algorithms, with the motivation to avoid
having to tune parameters for each new environment and have a less computa-
tionally heavy local planner. Neural networks with and without Long Short-Term
Memory layers were trained with data recorded using Timed Elastic Band with
Supervised Learning as the learning method. The results showed that in many situ-
ations a neural network with Long Short-Term Memory layers can perform close to
the same level as the planning algorithm and in some situations, the neural network
outperformed the algorithm by a big margin. However, there are still some issues
using a neural network since the Unmanned Ground Vehicle is more likely to col-
lide with an obstacle or a wall. Despite not being completely satisfactory the results
provide a promising baseline for further development of implementing machine
learning components into path planning tasks.
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A
ROS and local planner node

A.1 Robot Operating System

Robot Operating System (ROS) is despite its name, not a real operating system but
instead a software framework on top of the operating system that provides a struc-
tured communications layer between processes and systems [Quigley et al., 2009].
The ROS framework uses peer-to-peer communication and supports multiple lan-
guages, e.g. C++ and Python. Communication is done using nodes, messages, and
topics, see Fig. A.1. Processes that perform computation are called nodes, and dif-
ferent nodes send and receive information between each other by passing messages.
Messages are published to a specific topic that other nodes can subscribe to. A topic
is simply a string that explains the type of message such as "map" or "points". There
might exist multiple publishers and subscribers for the same topic and generally, the
two are not aware of each other. A node can be a subscriber and a publisher at the
same time, subscribing to one topic, performing calculations, and publishing to an-
other topic. ROS provides a standardized approach for the communication between
different components in a system, which eases the integration and implementation
of new sensors. In ROS there exists a node that handles the movement of a mobile
base called move_base. In Fig. A.2 the structure of move_base is shown and it can
be seen that there are many components in the architecture. move_base subscribes
to topics related to the map, goal point, and different sensors, e.g. odometry and Li-
DAR and it publishes the wanted linear and angular velocity to the topic cmd_vel
for which the base_controller subscribes. The base_controller will then translate
these velocities to the rotation of the wheels. The focus of this thesis is primarily to
make changes to the local_planner inside move_base.
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Appendix A. ROS and local planner node

Figure A.1 ROS communication. Information is passed between nodes using messages that
are published to topics. A node that sends a message to a topic is called a publisher and one
that reads a message from a topic is called a subscriber.

Figure A.2 move_base architecture inside ROS [Open Robotics, 2020]. move_base han-
dles the movement of a mobile base. It gets information from the map_server, localization
nodes, sensor sources, etc., and uses this information to create costmaps shown in Fig. 3.6,
global plans, and local plans.
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A.2 Local planner

A.2 Local planner

Having trained the neural network, the next step was to build a local planner node
that can substitute TEB. ROS provides the option to create your own local and
global planners and it is easy to change between already existing algorithms and
your own to test performance differences. When the local planner node is launched
it starts by loading the trained neural network and then it starts subscribing to the
topic move_base/GlobalPlanner/plan, where the global plan is published. Un-
til the global plan is published there is no need to subscribe to either LiDAR or
feedback from the UGV, see Fig. A.3. After the global plan is received the global
plan is split up into waypoints, according to Fig. 3.11, which later are used for
calculating the angle to the waypoint during the UGVs movement. As input to the
neural network, LiDAR data and angle to waypoint are needed, which have to enter
as input at the same time. Therefore, there is a need to synchronize the receiving
of LiDAR data and feedback from the system, since the messages might arrive at
slightly different times. ROS uses message_objects called TimeSynchronizer or
ApproximateTimeSynchronizer, where the latter is used when the messages do
not arrive at the same time. The synchronization object subscribes to topic points,
related to LiDAR, and topic move_base/feedback, related to the position and
angle of the UGV.

When one message from each topic is received it processes the input as mentioned
in Section 3.4, i.e. converts the LiDAR point cloud to a depth image, and based on
the position and angle of the UGV calculates the angle to the next waypoint. The
processed data is now ready to be used as input for the neural network, and based
on the input the network predicts the linear and angular velocities. The output from
the network is then published to topic cmd_vel that the base_controller subscribes
to. The synchronization object will continue to subscribe to LiDAR and feedback
and generate velocities to the UGV, either until it gets within a tolerance of the goal
point, or if it’s manually interrupted by the operator. The internal structure of the
local planner node is shown in Fig. A.4.
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Appendix A. ROS and local planner node

Figure A.3 Local planner node created to replace TEB with a neural network. The node
starts subscribing to the topic move_base/GlobalPlanner/plan and when the global plan is
received it starts subscribing to points and move_base/feedback and it starts publishing to
cmd_vel.

Figure A.4 Internal structure of the local planner node. The node subscribes to the topics
points and move_base/feedback, synchronizes the messages, processes the data, feeds it to
the neural network, and the output is published to the topic cmd_vel.
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B
Results

The below tables are the results from the testing of the three local planners: TEB,
NN, and NN-LSTM. A box represents a start-goal pair and each box has five at-
tempts recorded. The number in the box is the number of failed attempts as well as
the cause of the failure, either collision or timing-out. An empty box means that all
five attempts for that start-goal pair were successful.

B.1 Training environment

Number failed attempts and cause, TEB
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1 1 T
Start 2 1 T
Start 3 1 T
Start 4
Start 5

C=collision, T=timed out

Table B.1 Number of failed attempts and cause for each start-goal pair, using TEB as local
planner. A box represents five attempts.
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Appendix B. Results

Number failed attempts and cause, NN
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1 5 C 5 C 5 C
Start 2 5 T 5 C 5 C 2 C 5 T
Start 3 5 C
Start 4 5 C 5 T 5 T 2 T
Start 5 5 C 4 C 2 C 5 C

C=collision, T=timed out

Table B.2 Number of failed attempts and cause for each start-goal pair, using NN as local
planner. A box represents five attempts.

Number failed attempts and cause, NN-LSTM
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1
Start 2 1 T
Start 3 1 C
Start 4 2 C
Start 5 2 C

C=collision, T=timed out

Table B.3 Number of failed attempts and cause for each start-goal pair, using NN-LSTM
as local planner. A box represents five attempts.

B.2 Validation environment

Number failed attempts and cause, NN
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1 3 T, 2 C 3 C 1 C 3 C
C=collision, T=timed out

Table B.4 Number of failed attempts and cause for each start-goal pair, using NN as local
planner. A box represents five attempts.
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B.2 Validation environment

Number failed attempts and cause, TEB
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1
Start 1 with obstacle 1 T 3 T 1 T
Start 2
Start 2 with obstacle 3 T 4 T 3 T

C=collision, T=timed out, Blue color=path passes obstacle

Table B.5 Number of failed attempts and cause for each start-goal pair, using TEB as local
planner. A box represents five attempts.

Number failed attempts and cause, NN-LSTM
Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

Start 1 3 C
Start 1 with obstacle
Start 2 1 T, 1 C 2 T
Start 2 with obstacle 1 C 1 T, 1 C 3 C 1 C

C=collision, T=timed out, Blue color=path passes obstacle

Table B.6 Number of failed attempts and cause for each start-goal pair, using NN-LSTM
as local planner. A box represents five attempts.
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C
Trajectories

Below figures display the successful trajectories from the testing in the validation
environment using TEB and NN-LSTM, corresponding to the results in Table B.5
and B.6. The failed trajectories due to collision or timing out have been omitted
from the plots.

C.1 Validation environment: Start 1 without obstacle

Figure C.1 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 1 (red arrow) to Goal 1 (green circle), see
Fig. 3.16.
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C.1 Validation environment: Start 1 without obstacle

Figure C.2 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 1 (red arrow) to Goal 2 (green circle), see
Fig. 3.16.

Figure C.3 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 1 (red arrow) to Goal 3 (green circle), see
Fig. 3.16.
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Appendix C. Trajectories

Figure C.4 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 1 (red arrow) to Goal 4 (green circle), see
Fig. 3.16.

Figure C.5 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 1 (red arrow) to Goal 5 (green circle), see
Fig. 3.16.
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C.2 Validation environment: Start 2 without obstacle

C.2 Validation environment: Start 2 without obstacle

Figure C.6 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 2 (red arrow) to Goal 1 (green circle), see
Fig. 3.16.
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Appendix C. Trajectories

Figure C.7 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 2 (red arrow) to Goal 2 (green circle), see
Fig. 3.16.

Figure C.8 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 2 (red arrow) to Goal 3 (green circle), see
Fig. 3.16.
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C.2 Validation environment: Start 2 without obstacle

Figure C.9 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 2 (red arrow) to Goal 4 (green circle), see
Fig. 3.16.

Figure C.10 The successful trajectories during testing for the local planners TEB and NN-
LSTM in the validation environment. From Start 2 (red arrow) to Goal 5 (green circle), see
Fig. 3.16.
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