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Abstract

This thesis presents a report of predicting latency in a 5G network by using deep
learning techniques. The training set contained data of network parameters along
with the actual latency, collected in a 5G lab environment during four different test
scenarios. We trained four different machine learning models, including Forward
Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and Long Short-Term Memory (LSTM). After the initial model
implementation, each model was refined by using Bayesian optimization for Hyper-
parameter Optimization (HPO). In addition, both the standard mean squared error
(MSE) and a custom asymmetric version of the mean squared error (AMSE) were
used as loss functions.

Overall, it was possible to predict the latency behavior for all models, although
the FNN model was reactive rather than predictive and therefore not suitable for
this task. Before the Bayesian optimization the models excluding FNN had a
R2 score of 0.88− 0.95, and after Bayesian optimization the score increased to
0.96− 0.98 for the first data set. According to research, custom loss functions can
be used to make the models even more suitable for practical use by penalizing
underpredictions more severely than overpredictions.
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1
Introduction

The fifth-generation (5G) network promises to significantly improve network speed,
capacity, and latency, making it possible to support a wide range of new applica-
tions and user scenarios [Lema et al., 2017]. Latency is the time delay between
a data request and the response received from the network. The latency is caused
by various factors, including the distance between the user and the cell tower, the
signal strength, and the network congestion [Kurose and Ross, 2017]. Even with
the new 5G technology, physical limitations of the network and in the transmission
of data exist [Shariatmadari et al., 2018].

Despite this, it is feasible to mitigate the effects of latency by predicting it in
advance. However, our model can solely control the latency over the 5G interface
and not the overall end-to-end duration[Elgcrona and Mete, 2023].

Machine learning is a promising technique for predicting latency in 5G networks.
By analyzing large amounts of data, machine learning models can learn to identify
patterns and make accurate predictions about network latency in real time. This
report aims to explore the performance of different machine learning approaches.

Specifically, this report will evaluate several popular machine learning models,
including Feedforward Neural Network (FNN), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN) [Goodfellow et al., 2016, p.164-223]
and Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997].
This report will also explore how hyperparameter optimization (HPO) can further
improve the performance of these models. HPO is a technique that involves system-
atically searching for the best set of hyperparameters to achieve the best possible
performance [Aghaabbasi et al., 2023]. This report will use Bayesian optimization
for HPO [Elgcrona and Mete, 2023]. Lastly, a new loss function will be tried out to
adjust the model to be more suitable for the practical use case. This loss function
is an asymmetrical mean square error (AMSE) that we have created ourselves. The
most promising models will be tuned again with Bayesian optimization for this loss
function.
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Chapter 1. Introduction

By the end of this report, readers will better understand how machine learn-
ing can be used to predict latency in 5G networks, as well as the strengths and
limitations of the different machine learning models for this task. This knowledge
can help network operators and service providers optimize their 5G networks and
provide better service to their customers.

This thesis was developed in collaboration with the Lund division of Sony. Sony is
a global company specializing in the design, development, production, and distri-
bution of a wide range of electronic products, entertainment services, and financial
services [Sony, 2023].

1.1 Objective of Project

This project uses a machine learning approach to predict the near future latency
based on 5G networking data. To be able to take action and minimize the effects of
latency, the prediction needs to be made at least 4 seconds in advance.

The data was extracted from various use cases performed in Sony’s 5G lab. The
data was collected in a controlled environment, making it possible to collect latency
data. The latency data is collected over time together with 14 network variables.
The current latency value will not be included in the input features since it cannot
be determined in the target system [Elgcrona and Mete, 2023].

1.2 Research Questions

Given this context, this report will examine the following research questions:

• Is it possible to accurately predict the latency in the 5G network 4 seconds in
advance using machine learning models?

• What models are best suited for this task?

• Is it possible to improve the models using Bayesian optimization?

10



2
Background

This chapter starts with an introduction to telecommunication networks and ma-
chine learning. This is followed by a more in-depth description of deep learning
and, more specifically, the relevant model architectures of this project. Finally, how
to find the best model and how to evaluate it is described.

2.1 Telecommunication Networks

A telecommunication network is a network where the input from one end to another
is carried out for communication. There are several different types of telecommuni-
cation networks in the literature; however, this work focuses on cellular networks,
precisely the 5G standard.

5G Networks
5G refers to the term 5th generation wireless service technology. One of the key
distinctions between 5G and previous technologies is its integration of optimization
techniques. 5G networks aim to have faster data transmission, lower latency, higher
reliability, capacity, and availability, and a standardized user experience. This new
technology benefits personal usage and significantly affects business tasks with its
target of higher reliability and low latency [Allen, 2020].

In more detail, the usage of 5G can be separated into three main groups. En-
hanced mobile broadband (eMBB) targets a more improvised user experience with
many users. Massive machine-type communication (mMTC) is where the network
reaches many devices requiring a radio network connection. The critical point in
this part is low device cost and energy consumption. Ultra-reliable and low-latency
communication (URLLC) can be found in implementations of traffic safety and
factory automation [Erik et al., 2018].
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Chapter 2. Background

Latency
The definition of latency by the 3GPP technical report for the 5G use cases in the
previous section has been described as the following: "The time it takes to success-
fully deliver an application layer packet/message from the radio protocol layer 2/3
SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio
interface in both uplink and downlink directions, where neither device nor Base
Station reception is restricted by DRX." [ETSI Industry Specification Group for
Next Generation Access (ISG NGP) and European Telecommunications Standards
Institute (ETSI), 2010]. In short, latency refers to the time it takes for data to make
a round trip from a device to the network.

The specific latency requirements vary depending on the 5G use case. For URLLC
tasks, latency is much more critical compared to the other two usages. This is be-
cause the applications in this area include latency-sensitive tasks such as remote
medical surgery or autonomous driving [Zhao et al., 2022].

Thus, the industry places significant emphasis on network control as a means of
enhancing customer service quality. The first step of network control is the ability
to predict upcoming latency in the most precise way. This task has many possible
approaches, including machine learning, statistical modeling [Abbasi et al., 2021],
and real-time monitoring [Sinha et al., 2015]. In this thesis, a machine learning
approach has been chosen. A significant amount of data from the network is used to
train the models to predict upcoming latency in a focused network. This approach
seemed appropriate due to the complex and dynamic nature of the network.

2.2 Machine Learning

Machine learning is a sub-field of artificial intelligence (AI) that teaches machines
to learn from data. Learning from data involves automatically identifying patterns
and relationships within the data, and using this information to make accurate pre-
dictions or decisions about new data [Murphy, 2012, p.1-26].

AI is a growing field with many applications, including image and speech recogni-
tion, medical diagnoses, and intelligent software to automate repetitive tasks. In the
early stages of AI, the focus was mainly on functions that are hard for humans but
easy for computers. The focus has now shifted to performing human tasks that are
intuitive for us humans but are hard to describe formally. Examples of these tasks
are recognizing spoken words or faces in images [Goodfellow et al., 2016, p.1-26].

In most real-world applications, the original data needs to be preprocessed by
transforming it into a new space of variables, called feature extraction. This of-
ten makes the problem easier to solve and sometimes speeds up the calculations.
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2.3 Deep Learning

[Bishop, 2006, p.1-57].

Machine learning algorithms are typically divided into three main approaches:
supervised learning, unsupervised learning, and reinforcement learning. In super-
vised learning, the data set is labeled, and the output targets can be used in training.
In unsupervised learning, the data set is unlabeled, meaning that the algorithm must
find patterns or structures in the data. Reinforcement learning involves training a
machine to take suitable actions in a given situation to maximize a reward [Bishop,
2006, p.1-57].

Supervised learning. There are two main types of problems within supervised
learning, classification and regression problems. The difference between the two
categories is that the output data is numeric for regression problems and categorical
for classification problems [Bishop, 2006, p.1-57].

Unsupervised learning. The learning tasks with unlabeled data with feature vec-
tors are called unsupervised learning. Machine learning models focus on common
behaviors between input features in this learning task [Bishop, 2006, p.1-57]. How-
ever, unsupervised learning has yet to be used for this work since the data is labeled.

Reinforcement learning. The last learning type is reinforcement learning, where
the model tries to maximize the reward by evaluating all possible options in the en-
vironment it is interacting. This means that there is an active trial-and-error process
based on the sequence of states and actions in the given environment [Bishop, 2006,
p.1-57]. However, reinforcement learning has not been used for this work since the
type of task is not appropriate.

2.3 Deep Learning

Linear and logistic regression are the two fundamental parametric models used for
solving regression and classification problems. By stacking multiple copies of these
types of models, more complex relationships between the input and outputs of data
can be found. These hierarchical machine learning models form their subfield called
deep learning [Lindholm et al., 2022, p.133-162].

Many machine learning problems become very different from traditional machine
learning when the data has many dimensions, a phenomenon known as the curse
of dimensionality. This was one of the main motivations for deep learning: finding
more complicated functions in high-dimensional spaces [Goodfellow et al., 2016,
p.96-161].

Artificial Neural Network (ANN)
Artificial Neural Networks (ANN), sometimes known as just Neural Networks, are
structured and inspired by biological neural networks that make up the human brain
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Chapter 2. Background

[Bishop, 2006, p.225-284]. An ANN consists of many interconnected elements
representing the neurons. These neurons are organized in different layers that can
perform complex computations by processing inputs through weighted connections
between the neurons [Mohammed, 2021, p.133-162].

There are several types of ANNs, each suitable for different types of tasks or
problems. The most basic ANN is the Feedforward Neural Network (FNN,) which
is the basis for other types of networks. If feedback connections are added, we get
a Recurrent Neural Network (RNN) which can be used for sequential data analysis
such as speech recognition and natural language processing. A Convolutional Neu-
ral Network (CNN) can be used for image and video analysis [Goodfellow et al.,
2016, p.164-223].

Feedforward Neural Network (FNN)
A Feedforward Neural Network is a simple type of ANN where the information
only flows in one direction. A FNN aims to approximate a function f ∗, which maps
an input x to an output y by learning the parameters θ that give the best approxi-
mation of the function y = f (x;θ). The FNN consists of many logistic regression
models stacked on each other. Each layer is built up by different nodes, representing
the neurons in the human brain, connected to the nodes in the previous and follow-
ing layers. These connections are called weights and determine how much weight
each connection has, and this weight is updated during the training phase [Goodfel-
low et al., 2016, p.164-223]. Depending on whether the problem is a classification
or regression problem, the final layer is either another logistic regression or a linear
regression [Lindholm et al., 2022, p.133-162].

An illustration of a fully connected layer is shown in Figure 2.1, where inputs
from the previous layer x1 to xn are multiplied by weights w1 to wn, a bias term b is
added, and the sum is then applied to an activation function f (z) that produces an
output y. A FNN is created by combining a series of fully connected layers, such
as the one in Figure 2.1, which receive inputs from the nodes in the previous layer
and produce an output connected to the nodes in the next layer. Figure 2.2 shows an
example of a FNN with input, hidden, and output layers.
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2.3 Deep Learning
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∑ b f (z) y

Inputs Weights
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Figure 2.1 The architecture for a fully connected layer with inputs x1 to xn, weights w1 to
wn, summation, bias b, activation function f (z), and output y.
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x4

y
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Figure 2.2 A FNN with one hidden layer. The input layer has four nodes, the first hidden
layer has three nodes, and the output layer has one node

Mathematically, the FNN can be described by a set of equations (2.1)-(2.4). The
first input layer is described by

h(0) = x (2.1)

where x is the input vector of size n [Goodfellow et al., 2016, p.164-223]. The input
layer is followed by many hidden layers l = 1,2, ...,L where L is the total number
of layers in the network. Each hidden layer has a weight matrix W(l) of layer l of
size ml ×ml−1 and bias vector b(l) of size ml × 1. The input to each hidden layer
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Chapter 2. Background

z(l) is the weighted sum z(l) of the activation function of layer l−1 plus the bias of
layer l. The input is passed through an activation function f (l), resulting in

h(l) = f (l)(W(l)h(l−1)+b(l)) (2.2)

describing the output of each hidden layer [Goodfellow et al., 2016, p.164-223].
The activation layer applies a nonlinear function to the output of the previos, intro-
ducing non-linearity into the network. This function can be any nonlinear function,
but the most commonly ones are Rectified Linear Unit (ReLU), Sigmoid, or Hyper-
bolic Tangent (tanh).

Finally, the hidden layers are followed by an output layer with the weight ma-
trix W(L) of size k×mL−1, where k is the number of output nodes, and the bias
vector b(L) of size k×1. The output of the output layer is given by

h(L) = f (L)(W(L)h(L−1)+b(L)) (2.3)

which gives the final output of the network in

ŷ = h(L) (2.4)

[Goodfellow et al., 2016, p.164-223]. During the training, the goal is to get the
predictions ŷ as close to the target outputs y as possible. This is typically done by
introducing a loss function L(ŷ),y along with a regularizer Ω(θ) where θ contains
all parameters, including the weights and biases. When training the network, the
aim is to minimize the total cost J = L(ŷ,y)+Ω(θ) in a process known as forward
propagation. In this process, the weights of the connections between the nodes are
adjusted to minimize the error between the predicted output and the actual output
[Goodfellow et al., 2016, p.164-223].
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2.3 Deep Learning

Convolutional Neural Network (CNN)
A Convolutional Neural Network (CNN) is a specialized ANN for data with a grid-
like structure, including image data of 2D pixels or time series data 1D grid taking
samples at regular time series intervals. The name convolution comes from the name
of a special linear operation called convolution. A convolution between two func-
tions f and g is denoted as f ∗g and is defined in

( f ∗g)(t) =
∫

f (a)g(t−a)da (2.5)

[Goodfellow et al., 2016, p.326-366]. The first function, f , is commonly called the
input, and the other function, g, is called the kernel. In machine learning scenarios,
the input is usually a multidimensional array, and the kernel is a multidimensional
array of parameters. Since input and kernel have individually stored elements, it
can be assumed that these functions are zero at all points except where these values
are stored. This means that an infinite sum can be implemented as a sum over an
infinite number of array elements[Goodfellow et al., 2016, p.326-366].

A CNN is made up of a series of building blocks called layers. There are different
layers, each designed with a specific purpose and function, including convolutional,
pooling, and fully connected layers. The convolutional and pooling layers extract
features, while the fully connected layers map the features to the final output that is
suitable for the problem. A typical architecture stacks iterations of these different
types of layers [LeCun et al., 1998].

The most fundamental layer in a CNN is the convolutional layer, which applies
filters or kernels to the input data and produces a feature map. The feature map
corresponds to the activation function at each input position in the filter and is auto-
matically learned by the network during the training phase. The filters can capture
patterns in the data, such as edges and textures [LeCun et al., 1998].

Another important layer in a CNN is the pooling layer, which provides a downsam-
pling operation to reduce the dimensionality of the network. Examples of different
types of pooling layers are max pooling and global average pooling [Lindholm
et al., 2022, p.133-162].

Finally, the fully connected layer maps the extracted features to produce the fi-
nal output suitable for the given task. The fully connected layers are then typically
followed by an activation function [LeCun et al., 1998].

The structure of a CNN is shown in Figure 2.3. In a convolutional layer, the
units are organized into planes called feature maps. A feature map takes only a
subpart of the image at a time [Bishop, 2006, p.268].

The convolution operation for a single channel input image and a single chan-
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Chapter 2. Background

Conv MaxPool Conv MaxPool FC FC Output

Figure 2.3 This figure shows a typical CNN architecture consisting of convolutional, pool-
ing, and fully connected layers. The input flows through the network and is finally passed to
the output layer.

nel kernel is shown in

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n) ·K(m,n) (2.6)

where i and j represent the pixel coordinates of the output feature map, m and n
represent the pixels in the filter [Goodfellow et al., 2016, p.326-366].

Recurrent Neural Network (RNN)
The Recurrent Neural Network (RNN) is a type of networks designed to process
sequential data. Due to this property, some RNNs can take inputs of much longer se-
quences than networks without sequence-based specialization. Most of these types
of networks can also handle inputs of variable sequence length. The critical concept
of RNNs is that they have a "memory" or "state" that can capture information from
previous states. This allows parameters to be shared between different parts of the
model [Goodfellow et al., 2016, p.367-415].

The following equations show how an RNN can take sequential inputs and pro-
duce sequential outputs while maintaining a memory of previous inputs. Assume
that we have the input sequence x1, ...,xτ . The input at each time step t is denoted
by xt , and the hidden state at time t is denoted by ht . The output at each time step is
denoted by yt, and the hidden state at time t is a function of the input at time t and
the previous hidden state h(t−1). The hidden state h(t) can be computed using the
previous hidden state h(t−1) and the input x(t) at the current time step, using some
function f that maps the previous state to the next state with the parameters θ as
shown in

h(t) = f
(

h(t−1),x(t);θ

)
(2.7)

[Goodfellow et al., 2016, p.370]. The output ŷ(t) at time step t is then calculated
using the current hidden state h(t) and a nonlinear activation function g that maps
the hidden state to the output, as shown in

ŷt = g(ht) (2.8)

[Goodfellow et al., 2016, p.367-415]. Network architectures range from fully con-
nected to partially connected networks and often include multi-layer FNNs. It is
also possible to have a feedback loop to the node itself [Goodfellow et al., 2016,
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2.3 Deep Learning

p.367-415].

When calculating the loss while training the network, a problem or vanishing or
exploding gradients may occur. Because the hidden state at a time step is computed
from the previous time steps, a chain of dependencies is created that propagates
through time. Multiplying the gradients of the weights by the gradients of the acti-
vation function can lead to either vanishing or exploding gradients if the numbers
become very small or very large [Goodfellow et al., 2016, p.367-415].

Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) is a type of RNN network designed to address
the problem of vanishing or exploding gradients in traditional RNNs. LSTM solves
this problem by introducing a memory cell controlled by input, forget, and output
gates. The gates control the flow of information into and out of the memory cell
[Hochreiter and Schmidhuber, 1997]. The cells in the LSTM network have an in-
ternal self-loop in addition to the external recurrence of the RNN, meaning that
the LSTM is a more complex version of an RNN [Goodfellow et al., 2016, p.367-
415]. A block diagram of the LSTM network is shown in Figure 2.4 (adapted from
[Goodfellow et al., 2016, Figure 10.16, p. 405]).

The input gate decides how much information should be allowed to enter the
cell and prevents irrelevant inputs [Hochreiter and Schmidhuber, 1997]. This is de-
scribed in

g(t)i = σ

(
bg

i +∑
j

Ugi, jx(t) j +∑
j

W g
i, jh

(t−1)
j

)
(2.9)

for an external input gate gate g(t)i , for a time step t and a cell i, where h(t) is the
current hidden layer with outputs from previous states, b is the bias, and U and W
are the weights for the input layer and the recurrent gate. The sigmoid function σ

makes the output between 0 and 1 [Goodfellow et al., 2016, p.367-415]. The forget
gate decides how much information should be removed from the cell [Hochreiter
and Schmidhuber, 1997]. This is shown for a forget gate f (t)i in

f (t)i = σ

(
b f

i +∑
j

U f
i, jx

(t)
j +∑

j
W f

i, jh
(t−1)
j

)
(2.10)

where W and h are the weight matrices for the input and hidden states, respec-
tively, and b is the bias vector [Goodfellow et al., 2016, p.367-415]. The output
gate determines how much information should be output from the cell [Hochreiter
and Schmidhuber, 1997].

q(t)i = σ

(
bo

i +∑
j

Uo
i, jx

(t)
j +∑

j
W o

i, jh
(t−1)
j

)
(2.11)
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Chapter 2. Background

Figure 2.4 An illustration of an LSTM cell, showing the input, forget, and output gates,
the memory cell state, self-loop connections, and the output adapted from [Goodfellow et al.,
2016, Figure 10.16, p. 405].

shows the equation of an output cell q(t)i , where U and W are the weight matrices
for the input and hidden states, respectively, and b is the bias vector [Goodfellow et
al., 2016, p.367-415]. The internal state of the LSTM is updated with a conditional
self-loop weight f (t)i , given by

s(t)i = f (t)i s(t−1)
i +g(t)i σ

(
bi +∑

j
Ui, jx

(t)
j +∑

j
Wi, jh

(t−1)
j

)
. (2.12)

LSTM networks have proven successful in many applications, for example, reading
and generating handwritten texts, speech recognition, and image captioning [Good-
fellow et al., 2016, p.367-415].

Performance Metrics
The final performance of the model is calculated based on the performance of the
unseen data, which is separated from the training and validation sets. Various perfor-
mance metrics can be used to numerically represent and evaluate this performance.
Multiple performance metrics can vary based on different expectations of the model.
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2.3 Deep Learning

R-squared value (R2 value). The R-squared value (R2 Value) is based on fitting
the performance of the predicted values to the true line and is calculated as in

R2 = 1− ∑
n
i=1(yi− ŷi)

2

∑
n
i=1(yi− ȳ)2 (2.13)

where yi are the true output values and ŷi are the predicted values.

Mean squared error (MSE). The mean squared error (MSE) calculates the sum
of the squared distance between the data and predicted values and takes the average,
calculated as in

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 (2.14)

[James et al., 2021, p.15-51].

Root mean square error (RMSE). The root means square error (RMSE) takes the
root square of MSE, meaning that larger errors have a greater effect than smaller
ones.

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2 (2.15)

shows how this is calculated [Jones, 2018, p.15-66].

Mean absolute error (MAE). The mean absolute error (MAE) is the average of
the absolute difference between the predicted values and the actual data, which can
be calculated from

MAE =
1
n

n

∑
i=1
|yi− ŷi| (2.16)

[Myttenaere et al., 2015].

Mean absolute performance error (MAPE). The mean absolute performance er-
ror is a percentage representation of MAE on real values. This is expressed in

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣×100% (2.17)

[Myttenaere et al., 2015].

Loss Functions
The loss function L to be used in the training phase is a design choice that defines
how the model’s performance will be measured. Therefore, the choice of the loss
function will affect the solution θ̂ . The default choice for linear regression is MSE,
as described in (2.14). This is also the function that will be used in this thesis [Lind-
holm et al., 2022, p.133-162].
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Chapter 2. Background

Custom loss function. Another approach to loss functions is to create custom loss
functions for specific problems. The built-in functions mostly focus on the most
common needs for the model training; however, many advanced tasks calculate the
loss that occurs due to the difference between predicted and true values is calculated
differently to improve the model performance for the given data set and conditions.
The most common adaption approaches for regression problems are weighted loss
functions, adding regularization, and Huber loss [Bishop, 2006, p.41].

Training
Since a Neural Network is a parametric model, we need to find these parameters θ ,
which is performed during the training phase. We can write this as an optimization
problem in

θ̂ = argmin
θ

J(θ), where J(θ) = L(xi,yi,θ). (2.18)

for a cost function J(θ) and the loss function L(xi,yi,θ). The model is presented
with a large training data set during the training phase. The training process begins
with a weight initialization. In this step, the weights are assigned initial random
values to start the training. The goal of training is to adjust these weights during the
epochs to minimize the loss function [Mohammed, 2021, p.133-162].

Forward Propagation. The first step is forward propagation, where the model
passes input vectors to neurons and calculates an output using weight vectors and
bias terms. The theory behind forward propagation has already been explained in
2.3 Feedforward Neural Network.

Backward Propagation. To start backward propagation, the difference between
the actual values and the output of forward propagation must be calculated. Using
the error in the output layer, the backpropagation algorithm calculates the error in
the hidden layer using the

δ
v
n j =

K

∑
k=1

((δ w
nk)∗ (wk j)∗ (g

′
)∗ (an j)). (2.19)

The total gradient is being calculated by

∇θ J(θ) = ∑
n
(δ v

n ∗ xn,δ
w
n ∗ zn) (2.20)

[Murphy, 2012].

Finding The Best Model
The next step after model selection is to try to optimize the model to achieve a
better performance. Methods such as hyperparameter optimization (HPO), neural
architecture search (NAS), or meta-learning can be used to improve performance.
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2.3 Deep Learning

Neural Architecture Search (NAS). Neural architecture search (NAS) is an ap-
proach to improving the performance of deep learning models by optimizing the
network architecture. NAS is designed to automate this process of searching for
the optimal architecture. NAS is a subfield of automated machine learning (Au-
toML), which include methods to increase the performance of complex deep learn-
ing models with minimal manual effort. NAS also performs hyperparameter tuning
and meta-learning [Hutter et al., 2019, p.64].

Hyperparameter Optimization (HPO). The best hyperparameters are found by
minimizing the loss function to optimize the performance of the models. Manually
testing different hyperparameters is the simplest and most common used method,
although it often needs to be more efficient. The more complex the model, the more
combinations need to be tried. The main goal of HPO is to automate the hyperpa-
rameter search [Aghaabbasi et al., 2023].

There are several standard methods for HPO of machine learning models, including
traditional approaches such as gradient descent methods, simpler methods such as
grid search and random search, and more advanced techniques such as Bayesian
methods. Since HPO problems are often non-convex and non-differentiable, there
is a risk of ending up in a local minimum, which is why traditional methods are less
suitable for HPO [Aghaabbasi et al., 2023].

Grid Search exhaustively tests all possible combinations for a given set of hy-
perparameters. An interval must be defined for each hyperparameter. Until the
desired condition is met or the end is reached, the search tries an infinite number
of hyperparameters in the defined subset. The set of hyperparameters where the
model showed the best performance is selected. Grid search was not the first choice
because it is slow and expensive due to the large search space.

Random Search performs a random search on defined samples of the data. Since it
does not check all combinations of the search space, it creates random combinations
from possible options and tries out these sets; the exploration time for finding the
best set is less than for the grid search, making it more efficient [Murthy et al.,
2022]. However, it is still inefficient because it considers many options that are not
optimal.

Bayesian Optimization is the primary approach that has been used for HPO of
this thesis. Compared to the other methods mentioned above, this method is known
to be more efficient and faster. The main reason for this is the search space ex-
ploration strategy of Bayesian optimization. First and foremost, machine learning
algorithms require parameters that describe the basic settings of the model. The
possible search space of a model is very large because of the large number of com-
binations and wide intervals for each parameter [Snoek et al., 2012]. To optimize
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Chapter 2. Background

this search, Bayesian optimization usually uses Gaussian processes with stationary
kernels but other probabilistic models are also applicable. Maximum Likelihood Es-
timation (MLE) or Maximum Posteriori Estimation (MAP) approaches are used to
estimate hyperparameters in Bayesian optimization. The performance of Bayesian
optimization also strongly depends on a good choice of hyperparameters, and this
becomes even more important in the case of a heterogeneous objective function
[Hvarfner et al., 2023].

For Bayesian optimization, the first step is to create a prior distribution over the
objective function. The Bayesian optimization assumes an unknown position using
a Gaussian process and creates a posterior distribution for newer observations as
training runs for the data set. The learning algorithm experiments with different
hyperparameter sets for these upcoming unobserved data. The set that needs to be
evaluated in the next step is determined based on the chosen probabilistic model.
To select the set, the expected improvement EI over the current best results or the
upper confidence bound (UCB) of the Gaussian process can be optimized. This pro-
cess is repeated until Bayesian optimization reaches the final set that best optimizes
this equilibrium [Snoek et al., 2012].

The first step in Bayesian optimization is to define the surrogate model. The surro-
gate model is the objective function that Bayesian optimization tries to optimize.
The second step is to define the Expected Improvement function by using the cur-
rent best values and using Gaussian process expectations.

After the initial definitions, the Bayesian optimization algorithm iteratively op-
timizes the fit function. The first step is to fit the Gaussian process to the data
(x,y)

f (x)∼ G P(µ(x),k(x,x′)) (2.21)

where µ(x) is the mean and k(x,x′) is the covariance of the x values. Then EI needs
to be computed for all data points x∗ in the search space

EI(x) = E
[
max( f (x)− f (x+),0)

]
(2.22)

where the term x+ refers to the last best point.

The x∗ that maximizes the EI needs to be found, as in

x∗ = argmax
x

EI(x). (2.23)

By using the selected point x∗, a new observation y∗ is calculated by

y∗ = f (x∗). (2.24)
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2.3 Deep Learning

Lastly, the Gaussian process needs to be updated with the output from one prior
step, as in

(x,y)← (x,y)∪ (x∗,y∗) (2.25)

and repetition continues until the specified budget is reached [Garnett, 2023, p.1-
67].
An illustration of the Bayesian optimization process over three iterations is shown
in Figure 2.5 (adapted from [Shahriari et al., 2016, Figure 1, p.150]). The mean and
confidence intervals estimated with a probabilistic model of the objective function is
shown in the plots together with the acquisition function. When the model predicts
a high objective, exploitation, and the prediction uncertainty is high, exploration,
the acquisition is elevated. Note that the unexplored region on the extreme left re-
mains unsampled because it is accurately predicted to offer minimal improvement
compared to the highest observation, despite having high uncertainty.

Figure 2.5 Illustration of the Bayesian optimization process over three iterations, showing
the estimated mean and confidence intervals for the objective function using a probabilistic
model, adapted from [Shahriari et al., 2016, Figure 1, p.150]
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3
Methodology

This chapter first presents the data collection and preprocessing, including feature
selection, normalization, and data preparation. The software tools used are then
described, followed by the model selection process. Finally, model tuning using
Bayesian optimization and the development of the custom loss function are de-
scribed.

3.1 Data Collection

Radio network engineers collected the data in Sony’s 5G lab. Some data pre-
processing had to be performed on the raw data from the lab. Not all network
parameters were continuously updated at the same rate, and the value of some
parameters was only propagated to the mobile device when the value was updated.
Therefore, some empty values had to be filled with the latest updated values and
sometimes with the average of the latest values. This was done in consultation with
the radio network engineers. The values were then aggregated over 500 ms.

The data was collected in different experiments with different network configu-
rations, each with ten runs. Data from 4 different experiments were selected for
this report. Experiment 1 contains more clean data, which is easier to predict and
will be the focus of this thesis. Experiments 2-4 had more realistic data with more
random patterns closer to the user scenario.

3.2 Data Preprocessing

Since the data is a time series, methods such as k-fold cross-validation are incom-
patible because the input sequence must be ordered. Therefore, each run was used
in its entirety. Since the experiments involved different configurations, an even dis-
tribution of each experiment was desired when dividing the data into training, test,
and validation sets. Therefore, it was decided to use the first eight runs for training,
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3.2 Data Preprocessing

run 9 for validation, and run 10 for testing, as shown in Table 3.1. The different runs
use different network configurations, and there is no particular order of the runs.
Therefore, it is not necessary to shuffle the order of the runs between the different
experiments, and we can use the same split of the data for all four experiments.

Table 3.1 How the data was divided into training, test and validation sets. The first eight
runs were used for training, run 9 for testing, and run 10 for validation.

Run 1

Training

Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9 Test
Run 10 Validation

Feature Selection
The data contained 14 different features with corresponding latency values. Due
to confidentiality, this report does not disclose the specific names of the net-
work parameters corresponding to each feature. Instead, the features are named
f1, f2, ..., f14. Since many of the network parameters were correlated, an attempt
was made to reduce the number of features in order to reduce the complexity of the
models and prevent the possibility of overfitting.

Some correlation between some of the features and the latency could be noticed by
studying the plots of the data. Figure 3.1 shows the data for the first run of Exper-
iment 1 for the input features f3, f6, and f14 along with the latency. For example,
we can see that f3 and f14 decrease when a latency peak occurs, and feature f6
jumps up and down when the latency peak occurs. The noticeable correlation in the
data between the features and the latency is promising for finding a good model.
The correlation between the features and the latency could also be confirmed by
studying the correlation map in Figure 3.2. This figure shows a high correlation
between some groups of features: f1- f2, f3- f4, f6- f8, and f11- f14. It can also be
seen in the Figure A.1.1 in the appendix in Section A.1 that these features have very
similar plots to the others in this group.

After discussions with the radio network engineers, nine features were selected.
The goal was to eliminate the features that had similar behavior to the other fea-
tures. The selected features were f1, f2, f3, f5, f6, f9, f11, f12, and f14. The omitted
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Chapter 3. Methodology

Figure 3.1 Plots of the input features f3, f6 and f14 together with the latency for Experi-
ment 1 run 1. There are visible correlations between the features and the latency.

features were f4, f7, f8, f10, and f13.

The analysis of the features was done on the data from Experiment 1, which was
the first data set available. Similar behavior was expected from the data of other
experiments, but there is a possibility that the selected features are only optimal for
some data sets.

Normalizing the data
Normalization is a standard tool in data science and machine learning. The most
common types are min-max scaling and standardization scaling. The goal of nor-
malization is to set the mean to zero and the standard deviation to 1. Normalization
is the process of converting the data between 0 and 1. Many machine learning
algorithms benefit from standardization or normalization, especially when the data
has variable dimensions.

Re-scaling the values between 0 and 1 is done by the

x′ =
x− xmin

xmax− xmin
(3.1)

where xmin and xmax are the minimum and maximum values of x.

Data Preparation
Depending on the model used, the data had to be preprocessed into the correct input
and output form. The input to the FNN model was a 2-dimensional array, while the
other models had a 3-dimensional array as input.
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3.2 Data Preprocessing

Figure 3.2 Correlation map of the 14 features and the latency for Experiment 1 run1. A
high correlation can be seen between features in the yellow areas, for example, f1- f2, f3- f4,
f6- f8 and f11- f14.

For FNN, the input is a 2-dimensional array that only looks at the current fea-
ture values. The output data needs to be shifted 4 steps to predict the latency four
seconds in advance. Therefore, the input at time xt is mapped to the output y(t+4).
This means that the last four samples had to be excluded from the input data and
the first four samples had to be excluded from the output data. This procedure
was performed for each feature to create the input and output matrices X and y,
respectively, as shown

X =


x1
x2
...

xT−4

 , y =


y5
y6
...

yT

 . (3.2)

A CNN processes data in a grid-like topology, which also applies to time series
data, by taking a 1D grid of samples at regular time intervals. RNN and LSTM take
sequential data xt ,xt+1, ...,xT . This means that the same input data type can be used
for CNN, RNN, and LSTM. The time series data was divided into segments with
a window size of fixed length s. The window size is a hyperparameter that can be
adjusted based on the data. An example of how the input matrix was created for
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input data x1,x2, ...,xT and window size s is shown as

X =


x1 x2 · · · xs
x2 x3 · · · xs+1
...

...
. . .

...
xT−s+1 xT−s+2 · · · xT

 y =


ys

ys+1
...

yT

 (3.3)

and this procedure was done for each input feature.

3.3 Software

Python is a popular machine learning programming language that will be used for
this project along with the Keras [Chollet et al., 2021] and TensorFlow [TensorFlow,
2021] libraries. Keras is a Python deep learning API that runs on top of the Tensor-
Flow machine learning platform. The Keras API allows us to easily define different
model architectures by specifying the number and type of layers in the model and
the connections between them. Keras provides a wide range of layers with different
activation functions [Chollet et al., 2021].

3.4 Model Implementation

Four different latency prediction models have been implemented to compare perfor-
mance. The implementation used built-in functions of Keras [Chollet et al., 2021].
Some manual architecture design and parameter tuning was done for initial testing
of the models. Then, each of these models was improved by Bayesian optimization,
the details of which can be found later in this section.

Models
For every model below, the following was used:

• keras.models.Sequential implements sequential plain stack layer models
where the task has an input and output tensor [Chollet et al., 2015b].

• keras.layers.Dense adds densely connected neural network layers to the
model. Starting from the second layer, a dense layer is added with units spec-
ifying the number of nodes in the layer, and the rectified linear unit activation
function (activation=’relu’) [Chollet et al., 2015a].

• models.compile is a built-in function to start the learning process of the
model. Before tuning, it was parameterized with a loss function to com-
pute learning errors for training loss=’mse’ and a good optimizer with op-
timizer=’adam’.
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3.4 Model Implementation

FNN. For FNN, in addition to the above built-in functions, Dropout [Srivastava
et al., 2014] layer has been used.

RNN. For RNN, in addition to the above built-in functions, Dropout layer and
SimpleRNN layer were used.

CNN. For CNN, in addition to the built-in functions above, Reshape layer,
Conv1D, MaxPooling1D, and Flatten layer have been used.

LSTM. For LSTM, in addition to the above built-in functions, LSTM layers and
Dropout layers have been used.

Model Tuning
The KerasTuner is a hyperparameter tuning library for Keras that was used to im-
plement the HPO. The KerasTuner provides several types of tuning algorithms,
including Bayesian optimization [O’Malley et al., 2019].

After creating a Keras model, the model was wrapped in a function that takes
hyperparameters as input. A dictionary defined the hyperparameter search space,
specifying the different hyperparameters and their possible values and ranges.
In this case, for Bayesian optimization, the specified tuner searched the hyper-
parameter space and evaluated the model performance for each combination of
hyperparameters. After the search was completed, the best set of hyperparameters
was retrieved [O’Malley et al., 2019].

Because the different models have different model architectures with different
types and numbers of layers, the search space was different for each model. For
numerical parameters, such as learning rate or number of units in a layer, the range
was defined as two integers. Categorical parameters, such as the activation function,
take a list of possible values as input. Boolean parameters, such as whether or not to
use normalization, use Boolean values that are true or false [O’Malley et al., 2019].

Custom Loss Function
Some modifications have been made to the problem to make it even better suited to
the particular application. When predicting latency, it is more beneficial to overpre-
dict than to underpredict. Therefore, a custom loss function was created to optimize
the models for this scenario instead. In previous parts, the MSE was used as the
loss function. This function will be modified to penalize underprediction more than
overprediction.

The MSE loss function L(y, ŷ) = (y− ŷ)2 has been made asymmetric by adding
a penalty for errors in one direction. To penalize underprediction more than over-
prediction, a penalty factor α was added, which could be adjusted depending on
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how much the underprediction should be penalized. The asymmetric MSE function
is shown in the

L(y, ŷ) =

{
α(y− ŷ)2, if y− ŷ > 0
(y− ŷ)2, if y− ŷ≤ 0

(3.4)

for a penalty factor of α .
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4
Results

This chapter presents the results of the project. First, the initial performance of the
different models is presented and discussed. Then, the initial models are compared
to the models after HPO with Bayesian optimization. Finally, the new loss function,
AMSE, will be tried to bring the models even closer to the practical application of
latency prediction. The most interesting results are presented in this chapter, and the
complete set of plots and tables can be found in the appendix of Chapter 5.2.

4.1 Initial Results

First, the initial results before hyperparameter tuning are presented. Different com-
binations of layers and hyperparameters were manually tried for each model, and
only the best model is shown here.

The Figure 4.1 shows the predicted latency values for the different models and
the true latency. The plot shows the results of the test set from experiment 1, which
is the test set with the least noise and more regular latency peaks. Table 4.1 shows
the performance metrics evaluated on the different models for the test-set from
Experiment 1. For all metrics except MAPE, CNN is the best performing model,
while FNN is the worst performing for all metrics.

It can be seen from the Figure 4.1 that all models seem to capture the pattern
of latency. However, the FNN predicts the latency with a significant delay of about
20 seconds. The difference in input data between this model and the others can
explain this. The FNN only receives the current feature values and not a whole time
series, which makes it difficult for the model to detect trends in the data beforehand.
It still captures the latency behavior, but the performance metrics are significantly
worse than the other models. This is also the case for the other Experiments, 2-4, as
seen in the appendix in Chapter 5.2. Since the goal was to predict latency 4 seconds
in advance, the FNN is probably not an appropriate model for this application.
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Figure 4.1 The initial results for the different models and the true values of the latency
evaluated on the test set from Experiment 1. All models capture the latency behavior, al-
though the FNN has a large delay of about 20 s.

Table 4.1 Initial results for all models evaluated on the test set from Experiment 1. The
CNN is the best performing model and the FNN the worst performing model based on these
metrics.

FNN CNN RNN LSTM
R2 6.046 ·10−2 9.453 ·10−1 8.811 ·10−1 8.908 ·10−1

MSE 5.476 ·109 3.187 ·108 6.927 ·108 6.360 ·108

RMSE 7.400 ·104 1.785 ·104 2.632 ·104 2.522 ·104

MAE 4.297 ·104 1.002 ·104 1.385 ·104 1.418 ·104

MAPE 1.370 ·10−1 2.737 ·10−1 2.102 ·10−1 2.687 ·10−1

The CNN model has the lowest MSE for all experiments except Experiment 3
and is therefore the most appropriate model for the task. However, the RNN model
better captures the timing of the onset of latency peaks. The plots of the CNN model
are shown separately in Figure 4.2. From the figure, we can see that the model has
a good overall performance in capturing latency. It shows small pulses of latency
before the peak occurs, for example around 200-240 seconds. A possible reason
for this could be that the hyperparameters are not optimized enough to adjust the
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weight vectors for features of fundamental importance. Also, the predicted latency
is still slightly lower than the actual values, so the model cannot reach the maximum
peaks in the actual values.
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Figure 4.2 Initial results for the CNN model together with the true values of the latency
evaluated on the test set from Experiment 1. In general, the model captures the behavior of
the latency. Some small peaks occur before the large latency peak comes.

The initial models show promising results in predicting latency, although there is
room for improvement. The models do not give the correct amplitude of the latency
peaks and slightly underpredict them. Also, the models show small latency peaks
before an actual peak occurs. The FNN is the worst option because it cannot predict
the latency peaks in advance.
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4.2 Results after Bayesian Optimization

To further improve the accuracy of each model, an HPO was performed using
Bayesian optimization. Starting with the models from Section 4.1, a search space
was defined for each model, which is shown in Table A.3.5-A.3.8 in the appendix
in Section A.3.

Figure 4.3 shows the predicted values for the different models after Bayesian
optimization together with the actual latency, also evaluated on the test set from
Experiment 1. The metrics after Bayesian optimization are shown in the Table4.2.
The table shows that the LSTM has the lowest MSE and the FNN has the highest
MSE. We can see that the results for all models except the FNN have improved
compared to the initial results presented in Table 4.1. The MSE has decreased by a
factor of about 3 for the CNN, RNN and LSTM of Experiment 1. Although the FNN
achieved a higher MSE in Experiment 1, the MSE was reduced for Experiments
2-4 after Bayesian optimization, which still positively affected the performance of
the model.
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Figure 4.3 Results after Bayesian optimization for the different models and the true latency
values evaluated on the test set from Experiment 1. An improvement compared to the initial
results can be seen.
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Table 4.2 Results after Bayesian optimization for the different models evaluated on the
test set from Experiment 1. The LSTM is the best performing model and the FNN the worst
performing model based on these metrics.

FNN CNN RNN LSTM
R2 1.165 ·10−1 9.781 ·10−1 9.601 ·10−1 9.815 ·10−1

MSE 5.149 ·109 1.274 ·108 2.323 ·108 1.076 ·108

RMSE 7.176 ·104 1.128 ·104 1.524 ·104 1.038 ·104

MAE 4.143 ·104 5.145 ·103 7.232 ·103 5.037 ·103

MAPE 1.252 1.091 ·10−1 1.733 ·10−1 1.428 ·10−1

Depending on how good the initial models were, Bayesian optimization im-
proves performance more or less. The most significant improvement is seen for the
CNN and LSTM models, shown in figures 4.4 and 4.6.

Figure 4.4 shows the results before and after Bayesian optimization for the RNN
model. After tuning, the RNN can predict the amplitude of the actual latency values.
Another effect that starts after the Bayesian optimization is that the model shows
false latency peaks. The reason may be that the model has started to increase the
importance of some features after tuning.

Figure 4.5 shows the results before and after Bayesian optimization of the CNN
model. The first noticeable change is the reduction of latency peaks to stable,
smoothed times. For example, the small peaks around 200-240 seconds are absent
after Bayesian optimization. Another improvement is that the predicted latency is
closer in magnitude to the actual latency. It even exceeds the peak of the actual
latency in the increase of about 100 seconds.

Figure 4.6 shows the results before and after Bayesian optimization of the LSTM
model. Similar smoothing effects in the floor levels can be observed for the LSTM
as for the CNN; for example, the peaks around 220-240 seconds have disappeared.
The amplitude of the latency is also predicted more accurately. In general, the
Bayesian optimizations have a good effect on the models. The FNN needs to per-
form better even after Bayesian optimization. In general, all models underpredict
rather than overpredict the latency. Therefore, this is not preferred in the application
and is something that will be addressed in Section 4.3. Training with Bayesian
optimization took about a day instead of 1-2 hours, depending on the model being
trained.
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Figure 4.4 Results after BO for RNN with the true values of the latency evaluated on
the test set from Experiment 1. A clear improvement can be seen for the RNN model after
Bayesian optimization.

4.3 Results Using the AMSE Loss Function

In the previous Sections 4.1 and 4.2, the MSE loss function was used during
training. In this section, the AMSE loss function was used to attempt to penalize
underprediction more than overprediction. This will give a better outcome for the
practical application. The results are shown for the initial RNN, since this model
had the most problems with underprediction, which can be seen in Figure 4.1.

How much underprediction is penalized is determined by the parameter α . The
results after experimenting with different values of α are shown in Figure 4.7. The
higher the value of α , the more the predictions are shifted upwards. However, if the
value of α is too high, the model will constantly overpredict, which is also unde-
sirable. To find the optimal value of α , more knowledge about the real application
is needed to know how costly overprediction is. Without more specific knowledge
about the application, α = 10 seems to be a good value after observing the Figure
4.7.
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Figure 4.5 Results after Bayesian optimization for CNN with the true values of the latency
evaluated on the test set from Experiment 1. The model performs better after the Bayesian
optimization.

The results of Bayesian optimization with AMSE are shown in Figure 4.8. The
performance metrics after Bayesian optimization are shown in Table 4.3. The table
shows that CNN is the best performing model for all performance metrics, and the
FNN is the worst performing model.

Table 4.3 Results after Bayesian optimization using for all models using AMSE as loss
function evaluated on test set from Experiment 1. The CNN is the best performing model and
the FNN the worst performing model based on these metrics.

FNN CNN RNN LSTM
R2 1.165 ·10−1 9.612 ·10−1 9.065 ·10−1 9.251 ·10−1

MSE 5.149 ·109 2.260 ·108 5.449 ·108 4.365 ·108

RMSE 7.176 ·104 1.503 ·104 2.334 ·104 2.089 ·104

MAE 4.143 ·104 7.557 ·103 1.426 ·104 1.030 ·104

MAPE 1.252 2.455 ·10−1 5.696 ·10−1 3.636 ·10−1

AMSE 4.591 ·109 3.771 ·107 8.7132 ·107 4.848 ·107
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Figure 4.6 Results of Bayesian optimization for LSTM with the true values of the latency
evaluated on the test set from Experiment 1. The model has improved after Bayesian opti-
mization.

Figure 4.9 shows the CNN model after Bayesian optimization for the different
loss functions MSE and AMSE. The AMSE function seems to give the desired
results, we note that it is very close to the true latency or slightly above it. We can
still see that we get some small latency peaks before the big ones. But in general,
the CNN model is good at predicting both the time and the magnitude of the latency.

The best working model, the CNN model after Bayesian optimization with the
AMSE loss function, was then tried on the more difficult test sets from Experiments
2-4. The results are shown in Figure A.7.10 in the Appendix. The model seems to
work well for Experiments 2 and 4, but predicts a huge false peak in Experiment 3.
The model overpredicts the magnitude of the latency peaks and it can be thought
of as a worst case expected latency. However, the timing of the peaks seems to be
good, although slightly delayed in Experiment 4.
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Figure 4.7 Initial results for RNN using an asymmetric MSE loss function for different
penalty factors α .
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Figure 4.8 Results after Bayesian optimization for all models using AMSE as loss function
with α = 10. The FNN is still performing very bad,but the other models are now more likely
to overpredict.
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Figure 4.9 Results after Bayesian optimization for the CNN model with MSE and AMSE
as loss functions.
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5
Discussion

This chapter discusses the results of this thesis and will answer the research ques-
tions of the report. Specifically, it discusses which models are suitable for the la-
tency prediction task and makes a comparison before and after Bayesian optimiza-
tion. It also discusses the performance after the introduction of the custom loss and
how this affected the models. Finally, the limitations of this project and possible
improvements for future work are discussed.

5.1 Evaluation of Prediction Results

Based on the results presented in Chapter 4, we have shown that it is possible
to predict the latency in advance based on the available data with good accuracy.
We found that FNN is not a suitable model for this task, since it cannot capture
short-term dependencies in the data, and is therefore reactive rather than predictive.
However, the other models we tried, including CNN, RNN, and LSTM, all showed
promising results in capturing both the magnitude of the latency and the timing of
latency peaks.

Among the appropriate models, the CNN model performed the best initially, but the
LSTM model performed better after Bayesian optimization. The LSTM model has
more layers and hyperparameters to tune, so it is more difficult to manually select
the right hyperparameters from the beginning. However, on the test set for Experi-
ment 2 and 3 the CNN model after Bayesian optimization performs better than the
LSTM model so we consider the CNN and the LSTM models equally attractive for
the task because they perform similarly. The RNN model performed worst among
the appropriate models, and it especially predicts many false small peaks. We did
however expect the RNN to perform worse than LSTM, since the LSTM is a more
complex version of the RNN. There is however still room for improvement for all
models, for example by using NAS and HPO to a larger extent.

We did however see an improvement for all models after HPO using Bayesian
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5.2 Future Work

optimization. The biggest improvement could be seen for the RNN model. Since
the initial models before HPO were just manually tuned, Bayesian optimization had
more or less effect. In general we consider Bayesian optimization a good method
to further increase the performance of models. With an even larger search space,
it might be possible to improve the results even more, but it is also more time
consuming and computationally expensive to have a larger search space.

By changing the loss function from MSE to AMSE we were able to modify our
problem to better target the practical use case, where it is more useful to predict
the worst case latency rather than the specific value. By penalize underpredictions
more than overprediction we were able to create this behavior for the loss function.
To find the right balance between overpredicting and how costly overpredictions
are more knowledge about the specific application is needed. With the AMSE loss
function the CNN was the best performing model. We think the AMSE worked well
to target our latency prediction task even better.

Since the results vary quite a bit between different data sets, it is difficult to draw
conclusions about how these models would work outside the lab environment. With
a larger data set, we believe our models would become more robust and work better
for different types of data. Based on the data sets we had available for testing, we
are happy with the results for our best performing model and think it could be
possible to implement in a real-time application.

In conclusion, it was possible to predict the latency 4 seconds in advance with
good accuracy. The CNN model performed the best, but RNN and LSTM are also
viable options. FNN is not suited for the task, since it is reactive rather than predic-
tive. Bayesian optimization improved the results for all models, and we think this is
a good tool to increase the performance of the models.

5.2 Future Work

Neural Architecture Search
One of the most promising improvements for future work is the implementation of
a full Neural Architecture Search (NAS). As it was described in Section 2.4, NAS
is an approach that optimizes deep learning architectures to provide better perfor-
mance to the model. For this work, the model architectures were initialized and
developed manually by trial and error method. If we had more time, implementing
a full NAS could provide richer content to experiment and also could improve the
performance of the models for the noisy and random data.
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Chapter 5. Discussion

Model Improvements
Machine learning tasks are always open to improvement. The size and variability
of available data sets, data preprocessing, feature engineering, model selection and
training, and real-world deployment and testing all have a significant impact on
improvements.

First, for this work, the amount and variability of the data to work with was limited
with the data provided by Sony’s 5G lab. As a result, we could not investigate
whether the data we had was realistic enough to work outside of a lab environment.
Second, the decision on which of the 14 available features to retain for training
the models was made by the radio network engineers based on the heat map from
Experiment 1. Third, although we believe that we have tried a sufficient number
of models to experiment with in a longer duration, the number of models tested
can always be increased in terms of model selection. Finally, for a more realis-
tic evaluation of the model performance and also to get feedback on what needs
to be improved, deploying and testing the model in a real-life experiment should
definitely be included in future work.
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Appendix

A.1 Data

In this appendix, a plot of all the features for Experiment 1 Run1 is shown in Figure
A.1.1. This figure gives an idea of what the data looks like and shows the correlation
between some of the features and latency.

Figure A.1.1 Plots of features f1 to f14 along with the latency for the first run of Experi-
ment 1. It is possible to see a correlation between some of the features and the latency.
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A.2 Initial Results

This appendix shows the initial results for each test data set. Figure A.2.2 shows
all models together in the same plot, and each individual model together with the
true latency can be seen in Figure A.2.3. Table A.2.1-A.2.4 shows the performance
metrics for the initial models on the different data sets.
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(c) Initial results evaluated on test set
from Experiment 3 for all models.
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Figure A.2.2 Initial results shown for each test data set with all models in the same plot.
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Figure A.2.3 Initial results shown for each test data set with all models in separate plots.
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Table A.2.1 Initial results for all models evaluated on the test set from Experiment 1. The
CNN is the best performing model and the FNN the worst performing model based on these
metrics.

FNN CNN RNN LSTM
R2 6.046 ·10−2 9.453 ·10−1 8.811 ·10−1 8.908 ·10−1

MSE 5.476 ·109 3.187 ·108 6.927 ·108 6.360 ·108

RMSE 7.400 ·104 1.785 ·104 2.632 ·104 2.522 ·104

MAE 4.297 ·104 1.002 ·104 1.385 ·104 1.418 ·104

MAPE 1.370 ·10−1 2.737 ·10−1 2.102 ·10−1 2.687 ·10−1

Table A.2.2 Initial results 2 for all models evaluated on test set from Experiment. The CNN
and RNN are the best performing models and the FNN the worst performing model based on
these metrics.

FNN CNN RNN LSTM
R2 −2.309 5.719 ·10−1 5.488 ·10−1 5.552 ·10−1

MSE 1.920 ·109 2.484 ·108 2.607 ·108 2.580 ·108

RMSE 4.382 ·104 1.576 ·104 1.614 ·104 1.606 ·104

MAE 1.841 ·104 6.242 ·103 5.059 ·103 6.087 ·103

MAPE 1.276 3.323 ·10−1 2.950 ·10−1 3.48310−1

Table A.2.3 Initial results for all models evaluated on test set from Experiment 3. The CNN
and RNN are the best performing models and the FNN the worst performing model based on
these metrics.

FNN CNN RNN LSTM
R2 −1.287 3.887 ·10−1 0.5488 ·10−1 5.449 ·10−1

MSE 1.322 ·109 3.532 ·108 2.607 ·108 2.629 ·108

RMSE 3.636 ·104 1.879 ·104 1.615 ·104 1.622 ·104

MAE 1.197 ·104 6.614 ·104 5.506 ·104 5.416 ·104

MAPE 7.402 ·10−1 3.673 ·10−1 2.950 ·10−1 3.148 ·10−1
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A.2 Initial Results

Table A.2.4 Initial results for all models evaluated on test set from Experiment 4. The CNN
and RNN are the best performing models and the FNN the worst performing model based on
these metrics.

FNN CNN RNN LSTM
R2 −1.609 7.973 ·10−1 −1.088 ·10−1 6.394 ·10−1

MSE 1.746 ·109 1.357 ·108 7.422 ·108 2.414 ·108

RMSE 4.179 ·104 1.165 ·104 2.724 ·104 1.554 ·104

MAE 1.707 ·104 3.462 ·103 9.030 ·103 5.564 ·103

MAPE 1.024 1.198 ·10−1 4.572 ·10−1 2.487 ·10−1

55



Bibliography

A.3 Search Space for Bayesian Optimization

This appendix shows the search space for Bayesian optimization in Table A.3.5-
A.3.8.

Table A.3.5 Search space for Bayesian optimization of FNN.

Min Values Max Value Step size Distribution
Number of units layer 1 16 128 16
Number of units layer 2 16 128 16
Number of units layer 3 16 128 16

Dropout rate 0 0.5 0.1
Learning rate 1e-4 1e-1 Log

Table A.3.6 Search space for Bayesian optimization of CNN.

Min Values Max Value Step size Distribution
Number of units layer 1 16 128 16
Number of units layer 2 16 128 16
Number of units layer 3 16 128 16

Learning rate 1e-4 1e-1 Log

Table A.3.7 Search space for Bayesian optimization of RNN.

Min Values Max Value Step size Distribution
Number of units layer 1 16 128 16
Number of units layer 2 16 128 16
Number of units layer 3 16 128 16

Dropout rate 0 0.5 0.1
Learning rate 1e-4 1e-1 Log

Table A.3.8 Search space for Bayesian optimization of LSTM.

Min Values Max Value Step size Distribution
Number of units layer 1 16 128 16
Number of units layer 2 16 128 16
Number of units layer 3 16 128 16
Number of units layer 4 16 128 16

Dropout rate 1 0 0.5 0.1
Dropout rate 2 0 0.5 0.1
Learning rate 1e-4 1e-1 Log
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A.4 Results after Bayesian Optimization

This appendix shows the results after Bayesian optimization for each test data set.
Figure A.4.4 shows all models together in the same plot, and each individual model
together with the true latency can be seen in Figure A.4.5. Table A.4.9-A.4.12 shows
the performance metrics for the initial models on the different data sets.
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(a) Results after Bayesian optimization
for all models evaluated on test set from
Experiment 1.
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(b) Results after Bayesian optimization
for all models evaluated on test set from
Experiment 2.
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(c) Results after Bayesian optimization
for all models evaluated on test set from
Experiment 3.
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(d) Results after Bayesian optimization
for all models evaluated on test set from
Experiment 4

Figure A.4.4 Results after Bayesian optimization for all models after evaluated on test set
from Experiment 4.
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(b) Experiment 1:
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(c) Experiment 1:
RNN
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(d) Experiment 1:
LSTM
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(f) Experiment 2:
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(h) Experiment 2:
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(i) Experiment 3:
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(k) Experiment 3:
RNN
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(l) Experiment 3:
LSTM
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(m) Experiment 4:
FNN
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(o) Experiment 4:
RNN
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Figure A.4.5 Results after Bayesian optimization shown for each test data set with all
shown in separate plots.
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Table A.4.9 Results after Bayesian optimization using for all models using AMSE as loss
function evaluated on test set from Experiment 1. The CNN is the best performing model and
the FNN the worst performing model based on these metrics.

FNN CNN RNN LSTM
R2 1.165 ·10−1 9.781 ·10−1 9.601 ·10−1 9.815 ·10−1

MSE 5.149 ·109 1.274 ·108 2.323 ·108 1.076 ·108

RMSE 7.176 ·104 1.128 ·104 1.524 ·104 1.038 ·104

MAE 4.143 ·104 5.145 ·103 7.232 ·103 5.037 ·103

MAPE 1.252 1.091 ·10−1 1.733 ·10−1 1.428 ·10−1

Table A.4.10 Results after Bayesian optimization for all models evaluated on test set from
Experiment 2. The CNN is the best performing model and the FNN the worst performing
model based on these metrics.

FNN CNN RNN LSTM
R2 −1.111 8.794 ·10−1 8.153 ·10−1 8.230 ·10−1

MSE 1.225 ·109 6.996 ·107 1.071 ·108 1.026 ·108

RMSE 3.500 ·104 8.364 ·103 1.035 ·104 1.013 ·104

MAE 1.772 ·104 2.979 ·103 4.894 ·103 3.626 ·103

MAPE 1.220 1.365 ·10−1 3.036 ·10−1 1.726 ·10−1

Table A.4.11 Results after Bayesian optimization for all models evaluated on test set from
Experiment 3. The CNN is the best performing model and the FNN is the worst performing
model based on these metrics.

FNN CNN RNN LSTM
R2 −7.035 ·10−1 4.400 ·10−1 4.353 ·10−1 3.066 ·10−1

MSE 9.844 ·108 3.236 ·108 3.262 ·108 4.006 ·108

RMSE 3.137 ·104 1.798 ·104 1.806 ·104 2.001 ·104

MAE 1.451 ·104 3.952 ·103 6.393 ·103 5.422 ·103

MAPE 9.731 ·10−1 1.384 ·10−1 3.601 ·10−1 2.332 ·10−1
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Table A.4.12 Results after Bayesian optimization for all models evaluated on test set from
Experiment 4. The RNN is the best performing model and the FNN is the worst performing
model based on these metrics.

FNN CNN RNN LSTM
R2 9.662 ·10−1 7.298 ·10−1 8.646 ·10−1 7.856 ·10−1

MSE 1.316 ·109 1.809 ·108 9.066 ·107 1.435 ·108

RMSE 3.628 ·104 1.345 ·104 9.521 ·103 1.198 ·104

MAE 1.555 ·104 3.751 ·103 4.459 ·103 3.766 ·103

MAPE 9.750 ·10−1 1.447 ·10−1 2.521 ·10−1 1.597 ·10−1
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A.5 Comparison Before and After Bayesian Optimization

This appendix shows a comparison of the models before and after Bayesian opti-
mization. In Figure A.5.6 individual plots for all models are shown before and after
Bayesian optimization for each experiment.
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(a) Experiment 1:
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(c) Experiment 1:
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(d) Experiment 1:
LSTM
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(l) Experiment 3:
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(m) Experiment 4:
FNN
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(o) Experiment 4:
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Figure A.5.6 Comparison between results before and after Bayesian optimization for each
data set with all models shown in separate plots.
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A.6 Initial Results with AMSE Loss Function

This appendix shows the initial results with the AMSE loss function. Figure A.6.7
shows the initial results for all models together in one plot and Table A.6.13 shows
the performance metrics of all models.
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Figure A.6.7 Initial results for all models using AMSE as loss function with α = 10.

Table A.6.13 Initial results for all models using AMSE as loss function evaluated on test
set from Experiment 1. The CNN has the lowest AMSE and the FNN has the highest AMSE.

FNN CNN RNN LSTM
R2 1.165 ·10−1 9.612 ·10−1 9.065 ·10−1 9.251 ·10−1

MSE 5.149 ·109 2.260 ·108 5.449 ·108 4.365 ·108

RMSE 7.176 ·104 1.503 ·104 2.334 ·104 2.089 ·104

MAE 4.143 ·104 7.557 ·103 1.426 ·104 1.030 ·104

MAPE 1.252 2.455 ·10−1 5.696 ·10−1 3.636 ·10−1

AMSE 4.591 ·109 3.771 ·107 8.713 ·107 4.848 ·107
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A.7 Results after Bayesian Optimization with AMSE Loss
Function

This appendix shows the results after Bayesian optimization with the AMSE loss
function. Figure A.7.8 shows the initial results for all models together in one plot
and Table A.7.14 shows the performance metrics of all models. In Figure A.7.9 a
comparison of the results after Bayesian optimization for the MSE and AMSE loss
function is shown, and the best performing CNN model is shown for all data sets in
Figure A.7.10.
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Figure A.7.8 Results for all models after Bayesian optimization using AMSE as loss func-
tion with α = 10.
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Table A.7.14 Results after Bayesian optimization using for all models using AMSE as loss
function evaluated on test set from Experiment 1. The CNN has the lowest AMSE and the
FNN has the highest AMSE.

FNN CNN RNN LSTM
R2 1.165 ·10−1 9.612 ·10−1 9.065 ·10−1 9.251 ·10−1

MSE 5.149 ·109 2.260 ·108 5.449 ·108 4.365 ·108

RMSE 7.176 ·104 1.503 ·104 2.334 ·104 2.089 ·104

MAE 4.143 ·104 7.557 ·103 1.426 ·104 1.030 ·104

MAPE 1.252 2.455 ·10−1 5.696 ·10−1 3.636 ·10−1

AMSE 4.591 ·109 3.771 ·107 8.7132 ·107 4.848 ·107
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(a) Experiment 1: FNN
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(b) Experiment 1: CNN
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(c) Experiment 1: RNN
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(d) Experiment 1: LSTM

Figure A.7.9 Comparison between results after Bayesian optimization with MSE loss func-
tion and AMSE loss function for all models.
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(a) Experiment 1: CNN
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(b) Experiment 2: CNN
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(c) Experiment 3: CNN
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(d) Experiment 4: LSTM

Figure A.7.10 The best model, the CNN after Bayesian optimization with AMSE loss func-
tion, evaluated on all test sets.
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implementation, each model was refined by using Bayesian optimization for Hyperparameter 
Optimization (HPO). In addition, both the standard mean squared error (MSE) and a custom 
asymmetric version of the mean squared error (AMSE) were used as loss functions. 
 
Overall, it was possible to predict the latency behavior for all models, although the FNN model was 
reactive rather than predictive and therefore not suitable for this task. Before the Bayesian 
optimization the models excluding FNN had a R2 score of 0.88 0.95, and after Bayesian 
optimization the score increased to 0.96 0.98 for the first data set. According to research, custom loss 
functions can be used to make the models even more suitable for practical use by penalizing 
underpredictions more severely than overpredictions. 
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