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Abstract

This study focuses on estimating the state of health (SoH) of a lithium iron phos-
phate (LFP) battery system, which is crucial for assessing the value and lifespan
of new or used batteries in energy storage, grid support, and electric vehicle appli-
cations. A proposed method for determining SoH based on comparing useful and
nominal useful capacities in Ah and Wh, as well as total and nominal capacity,
has been presented. To validate the method, 200 charging and discharging cycles
over five months were performed. Three models were developed to track battery
behavior and one model to simulate degradation. An extended Kalman filter has
been used in the model to estimate the battery’s non-linear parameters and filter
the noisy measurements. The models revealed that while estimating capacity using
Coulomb and Watt counting proved difficult for the battery system that has been
used, weighted least squares and recursive weighted least squares methods showed
promise for determining current capacity. Furthermore, an attempt to estimate the
battery’s equivalent series resistance was performed, but no conclusion could be
drawn due to limited knowledge of battery parameters. The findings highlight the
challenges of modeling and estimating the SoH of used batteries and suggest the
need for more targeted experimentation to improve battery modeling and estima-
tion accuracy.
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Preface

This Master’s Thesis was performed at the Technical University of Denmark under
the supervision of Lund University on the topic of State of Health (SoH) estimation
of battery systems.

It was performed from the start of November 2022 until the start of April 2023.
The purpose of this thesis is to figure out a way to estimate the state of health of

an LFP battery system to apply it to the battery system in the lab, and to see what
the SoH of the battery system is.

The battery testing generates a lot of data for the charging and discharging per-
formance of LFP battery cells. The results will be public and allow for further re-
search on LFP cells.
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1
Introduction

Knowing the state of health (SoH) is necessary for safe and reliable operations of
batteries. In addition, the SoH can help determine the viability of the battery and
what purposes it can be used for. Using a battery and knowing its SoH might also
help in problems related to renewable energy production, such as stabilizing the
electrical grid and increasing the reliability of charging an EV. The importance of
determining the SoH of a battery system to acquire a battery will be highlighted. The
chapter will end with the goal of the thesis and the content of the coming chapters.

Background
It is essential to know a battery’s State of Health (SoH), i.e., how much the battery
has degraded from its nominal values. The SoH indicates how well the battery will
perform and how long it can be used. Unfortunately, there is not a clear consensus
on the definition of SoH. Therefore, the SoH will be discussed in more detail in
Chapter 2. Determining SoH is essential to determine if the batteries are worth the
investment and how long they can be used. However, knowledge of the number of
cycles, current capacity, and initial technical specification might be unknown when
acquiring a battery that has been used, for example, an old EV battery.

The use of batteries in different applications has increased over the years [Bloch
et al., n.d.]. The climate crisis and the rising cost of electricity, as seen in Fig-
ure 1.1, have created a larger incitement to install more renewable energy, such as
solar and wind-power [UN, n.d.]. The hope of producing and using energy with
a lower carbon footprint has entered sectors such as the energy and transportation
sectors, to name a few. Cheaper and lower carbon footprint electricity generation
increases electric vehicle (EV) viability since charging EVs becomes cheaper and
more sustainable. However, the increased use of renewable energy is not without its
problems [Trafikanalys, n.d.]. Renewable energy is an intermittent source of energy,
which can cause problems with the current electrical grid. In addition, intermittent
energy sources are not dependable, meaning that electricity production cannot be
controlled. For example, wind and solar power are intermittent sources of energy
because when the wind blows, and there is sunlight, it can not be controlled to pro-
duce electricity from a wind turbine and solar panel.
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Figure 1.1 Illustrates a steady price for household consumers for years and a large
price increase by a factor of two in recent years [Eurostat, n.d.].

Intermittent sources of energy can produce instabilities in the electrical grid. The
instabilities can be caused by production not meeting the electricity demand. The
difference between production and demand can affect the grid frequency. Changes
in the grid frequency can cause problems in the electrical grid with blackouts or
machine tripping [entsoe, n.d.].

With renewable energy in consideration, changes in the electrical grid frequency
are partly due to the inertia problem [Pates and Mallada, 2018]. Wind power can
produce direct current (DC) or alternating current (AC) (depending on the generator
in the turbine). However, the electricity is transformed to DC and then transformed
again to AC and supplied to the grid. The transformation of AC to DC and back to
AC loses all the inertia that the wind turbine has in the spinning of the rotor blades,
and therefore, wind turbines have more or less no contributing inertia. Solar power
has no inherent inertia since it only produces DC. Some inverters can emulate inertia
or compensate for changes to the grid [Denholm et al., 2020].

With less inertia, the frequency of the grid can become less stable. The lower
stability is caused by changes in produced and consumed power affecting the change
in frequency to a greater extent. Equation (1.1) shows the relationship between the
inertia, power consumed and power generated.

d f (t)
dt

∝
1
M
(pg − pc) (1.1)
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d f (t)
dt The change in grid frequency

pg Power generated
pc Power consumed
M Total moment of inertia in the grid

[entsoe, n.d.]

The larger M in the electrical grid is, the less changes in pg and pc affect the
changes in grid frequency. Suppose M is close to zero. Then the effect that pg and pc
have on the change in frequency gets amplified. The amplification occurs because M
sets the time constant in the system. If (pg - pc) increases, the frequency decreases;
when (pg - pc) decreases, the frequency increases. Hydropower is, to some extent,
used for frequency control for the electrical grid due to the huge rotating masses of
the generators and their ability to open a valve and produce more energy. However,
for example, in Sweden, more than hydropower will be needed for frequency control
if wind and solar are expanded to meet future energy demands [Sandberg, 2016].
Large power plants such as nuclear or coal also contribute to inertia. However, with
a reduction in coal power plants, and if there is no expansion in nuclear power
plants, their inertia might not be sufficient in the future to bring stability to the grid
[entsoe, n.d.; Kundur, 1994].

For future energy demands to be reached using renewable energy, a proposed
solution is to use batteries as backup storage and modulate inertia [Xing et al.,
2021]. Using more renewable energy will require large batteries (or other forms
of storage) that need to store a vast amount of energy during high production and
low demand while supporting the grid when production is low and high demand. In
addition, acquiring batteries can stabilize the grid frequency, meet energy demands,
and increase the reliability of charging an EV [Nerve, n.d.].

The number of EVs is increasing, and their need for electricity can strain the
new and the current electrical grid, especially if more vehicles become electric. The
strain on the grid might be more apparent with the gradual switch to using more
renewable energy. To support the grid and ensure there is always electricity for
EVs, a proposed solution is to use a battery to charge the EV [Trafikanalys, n.d.].

As mentioned, large batteries are required for grid support and EV charging.
These large batteries can be expensive and require a considerable investment cost.
In order to cut down on the costs and resources required to create a new battery,
EV batteries can be used past their end of life (EoL) in a second-life application.
The EoL of a battery for an EV is usually when the current capacity of a battery
has dropped to 80% of its nominal capacity [Xiong and Shen, n.d.]. The second-
life applications of the batteries imply that they are used past their EoL for other
applications.

To meet future demands for the electrical grid and EVs, then safe and reliable
operations of batteries are necessary. To allow for safe and reliable operations of
batteries, knowledge of the battery’s current SoH is vital.
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Goal of the thesis
This thesis aims to estimate the SoH of a Lithium Iron Phosphate (LFP) battery
system.

The purpose of this battery system is to be used for grid support and as a new
battery-buffered EV high-power charger. The idea is that this battery will support
renewable energy to charge EVs [ApS, n.d.]. When the electricity demand is high,
the battery will support the EV charger to keep it operational. The battery will be
charged when renewable energy production is high, and demand is low.

There is little knowledge of the batteries used, such as the amount of charge and
discharge cycles performed, their current capacity, and their current SoH. Therefore,
estimating these parameters of the battery will be studied in this thesis.

The battery might deteriorate over time (calendar aging) and with use (cycle
aging). How much the battery has deteriorated can be defined by the SoH. The
focus of this thesis is to figure out a method to study the online SoH of the battery.
Online estimation implies estimating SoH in real-time instead of extensive battery
testing. Furthermore, online SoH estimation of the battery could allow for applying
necessary control measures to increase the lifespan and prevent failures.

The main objective of this Master Thesis is to estimate the SoH of a battery
system. The objective can be divided into the following sub-objectives.

• State of the art analysis

– Review how the research front tackles SoH estimation and battery mod-
eling of battery systems.

– Study what methods for SoH estimation are successful.

– Study previous research used to define the SoH.

• Define SoH

– Define SoH in a way that can be tested and validated.

– The definition for SoH needs to be relevant to the usage of the battery.

• Derive a mathematical model of the battery

– Derive a model that sufficiently captures the internal dynamics of the
SoC and terminal voltage of the battery regarding changes in SoH.

– Determine a mathematical model of the battery’s performance concern-
ing SoH of the battery.

– Create a model of an aging battery and run simulations of the aging
battery.

• Derive the estimator
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– Derive an estimator that can estimate the necessary variables to deter-
mine SoH. Some of the variables that are accessible are the battery’s
internal temperature, output current, terminal voltage, and SoC.

– the estimator requires that the estimation is fast and robust.

• Perform experiments and validate the model and estimator

– Analyze the collected data and adjust the model accordingly.

– Perform a test to see the performance of the model and the real data.

– Validate the model with the data from the experiments.

– Evaluate the reliability of the results from the model and experiment
results.

Thesis structure
• Chapter 2 This chapter presents the theoretical background used in the thesis.

This aims to give the reader knowledge about the theory used in the thesis.

• Chapter 3 This chapter presents and explains the methods used to acquire
the battery model. The workflow of creating the model and acquiring the nec-
essary parameters will be presented in this chapter. The choice of estimation
methods used is explained in this chapter. How the estimation takes place will
also be presented.

• Chapter 4 The simulation and testing that have been done are presented in
this chapter. The results are presented here.

• Chapter 5 This chapter presents the results of the modeling, simulation, and
testing of the battery system.

• Chapter 6 In this chapter, the conclusion of the thesis is drawn from the
results and the discussion. The future work of the thesis is discussed here.
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2
Theoretical Background

This chapter will explain the theoretical building blocks for determining SoH. The
chapter will start by introducing the main concepts that will be used regarding the
battery, such as C-rate, SoC, and DoD, that are necessary to determine and define
the SoH of a battery. Next, the different methods that SoH is defined and estimated
in literature will be presented. Next, the problem statement will be explained, and
the definitions for SoH used in this thesis will be discussed. Lastly, the chapter will
discuss the relevant methods from control theory, such as EKF, WLS, and RLS.

Battery
A battery is an electrochemical device that can produce or store electricity through
chemical reactions. The battery cells used in this thesis are Lithium Iron Phosphate
(LFP). LFPs are not optimal for EVs due to their low power and energy density
compared to other Lithium-ion batteries. The low energy density makes them heav-
ier than other Lithium-ion batteries, which is undesirable for EVs. On the other
hand, the lower energy density makes LFP batteries more suitable for storage and
grid support [Couto et al., 2022]. The battery system is used for grid support and
EV charging. The LFP suits well for this application.

When discharged, the battery produces DC and requires DC to be charged.
Therefore, a rectifier and an inverter are needed to charge and discharge from and
to the electrical grid. A rectifier converts AC into DC. An inverter converts DC into
AC. Since the current in the AC changes, the battery would charge and discharge
proportional to the frequency of the AC.

A current flows when a load is connected to the battery’s two terminals. The
potential from the two terminals is denoted by the terminal voltage (Vterm). When
there is no load on the two terminals, and they are not connected, no current flows
through the battery. There is, however, still a potential, denoted by the open circuit
voltage (Voc) [Couto et al., 2022].
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Chapter 2. Theoretical Background

C-rate. A current rate (C-rate) of a battery is the current that it is being charged or
discharged with, related to its total capacity in Ah [Couto et al., 2022].

C-rate =
Idischarge/charge

QAh
(2.1)

C-rate The current discharge/charge rate
Idischarge/charge The discharge/charge current in A
QAh The full capacity of the battery in Ah

For example, a battery with a total capacity of 100Ah being discharged at a
current of 100A implies it is discharged at a C-rate of 1 since it will take 1 hour
for the battery to be completely discharged. If the battery is discharged with 30A, it
implies that it is discharged at a C-rate of 0.3 (or around C/3). It will take 3.3 hours
for the battery to be completely discharged [Xiong and Shen, n.d.; Plett, 2015].

Battery capacity. The battery capacity (Q) implies the total charge that the battery
contains. The battery’s capacity can be defined as the total Ampere hours (Ah) or
Watt hours (Wh) in the battery. When Wh is used for the battery’s capacity, the term
energy of the battery is commonly used. The capacity and energy will be defined as
QAh from the capacity in Ah and QWh for the capacity in Wh. The producer gives
the nominal capacity, the theoretical max the battery can hold [Xiong and Shen,
n.d.; Plett, 2015].

State of Charge. The State of Charge (SoC) is defined as the current charge in the
battery compared to the total capacity of the battery. For example, when a phone is
charged to 80%, this implies an SoC of 80%. A common method for determining
the SoC is from Coulomb counting [Xiong and Shen, n.d.; Plett, 2015], as shown in
equation (2.2). The initial SoC at the beginning of discharge or charge (SoC(t0)) is
subtracted by the integrated current (i) during the time of charge or discharge, times
the efficiency of charge or discharge (η) divided by the nominal capacity (Qnom,Ah)
in Ah as shown in the equation below.

SoC(t) = SoC(t0)−
1

Qnom,Ah

∫ t

t0
η i(τ)dτ (2.2)

With equation (2.2), SoC(0) and Q need to be known to determine the SoC ac-
curately. Equation (2.2) is the same when the battery is being charged or discharged
since when the battery is charged, the current is negative, and when the battery is
charging and positive when the current is discharging [Plett, 2015; Xiong and Shen,
n.d.].

Battery management system. The battery management system (BMS) maintains
and controls the battery [Xiong and Shen, n.d.; Plett, 2015]. It is responsible for
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the charging and discharging operations of the battery. The BMS ensures that the
desired current and voltage are reached and that the voltage stops the charging and
discharging at the battery’s voltage cut. The BMS’s job is to ensure the battery is
safely operated. The BMS must be able to measure a battery cell’s voltage, temper-
ature, and current. The SoC must be measured, and the cells should be balanced.
Balancing cells implies that the SoC and SoH are equalized, along with reaching
the desired current [Plett, 2015; Xiong and Shen, n.d.; Pinter et al., 2021].

Depth of discharge. Depth of discharge (DoD) is how much the battery has been
discharged compared to its full capacity [Xiong and Shen, n.d.; Plett, 2015]. Most
BMS limit the DoD to 80%. This implies that with a battery of 100Ah with a DoD
of 80%, the battery has been discharged with 80Ah. The DoD is usually stated
at 100% SoC until 20%. The useful capacity is the capacity that can be extracted
from the battery. When a battery of a capacity of 100 Ah is discharged at a DoD of
80%, which the BMS limits, the capacity is measured or estimated. The measured
or estimated extracted capacity is the useful capacity. The DoD can also indicate
the useful energy that can be extracted from the battery. Usable energy means how
much energy can be stored in the battery or extracted within its operational range.
The usable capacity is usually the energy extracted at 80% DoD [Calearo et al.,
2022].

End of Life. The battery’s EoL is when it can no longer meet its technical spec-
ification [Xiong and Shen, n.d.; Plett, 2015]. The end of life of a battery is usually
defined when it has a capacity drop to 80% of its nominal capacity. The decrease in
capacity due to aging is considered a capacity fade [Xiong and Shen, n.d.]

State of Health
The SoH describes how much the battery has aged compared to its beginning of life
and how the battery age can be classified into cycle aging or calendar aging [Xiong
and Shen, n.d.; Plett, 2015]. Cycle aging implies how much the battery degrades
due to the charging and discharging cycles. Calendar aging implies how much the
battery degrades due to the passing of time [Thingvad et al., 2021].

Reference [Birkl et al., 2017] presents the different effects on the cell when they
age and why the SoH decreases. The battery can also degrade if the C-rate is too
high, if the temperature is too high, or if the voltage is outside its operational range.

The capacity of the battery is expected to reduce over time and usage. The reduc-
tion in capacity is partly due to unwanted side reactions that consume the lithium.
The electrode deterioration is also a cause of capacity fading [Plett, 2015].

There have been numerous ways to estimate the SoH. Unfortunately, some esti-
mation methods are impractical for online applications due to the extensive testing
needed.

SoH estimation from changes in capacity and resistance. According to [Plett,
2015], the SoH is defined as the present total capacity over the nominal capacity and
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the present equivalent series resistance (ESR) over the nominal ESR. To estimate
the SoH, a model needs to be created that simulates the behavior of the battery dur-
ing discharge, charge, and aging. Other parameters that change when the battery’s
SoH changes can include the open circuit voltage (Voc), but this is not widely used in
current BMS to determine the SoH. Methods for estimating SoH include non-linear
Kalman Filter (KF) such as Extended Kalman Filter (EKF), Sigma-point Kalman
Filter (SPKF), and Joint and dual estimation [Plett, 2015]. The non-linear KF can
estimate slow time-varying changes in the battery parameters that can be used to es-
timate the SoH. The parameters can include the present equivalent series resistance.
The capacity can be determined using methods such as linear regression, Weighted
ordinary least squares (WOLS), weighted total least squares (WTLS), simplified
least squares (SLS), and recursive least squares (RLS) from the estimated SoC and
the Coulomb counted SoC [Plett, 2015]. Once the necessary parameter have been
estimated, the SoH is calculated from the change in current capacity over the nom-
inal and the current ESR over the nominal.

[Moreno, 2021] presents three methods for estimating SoH. One is SoC-
based SoH estimation. The other studies charge gradient-based SoH estimation and
impedance-based SoH estimation. The first method used the two SoH relationships,
as shown in the equations below.

SoHQ =
Q f ull

Qnom
(2.3)

SoHR =
R0

R0,nom
(2.4)

where Q f ull is the current maximum available capacity, Qnom is the rated capacity,
R0 is the current internal resistance, and R0,nom is the nominal internal resistance.
Each method is tested using constant current constant voltage (CCCV). The results
are compared using the incremental capacity (IC) method and differential voltage
(DV) trajectory variations.

The book [Xiong, n.d.] uses a similar definition for SoH as [Xiong and Shen,
n.d.] with capacity or energy measurements, internal resistance, and impedance
measurement methods. They also discuss indirect measurement methods that cal-
ibrate the related SoH by studying process parameters. The process parameters
can include solid electrolyte interphase (SEI) film resistance, capacity-Voc-SoC re-
sponse, voltage response, and charging time with constant current or voltage. They
state that these can be combined to get a broader perspective of the SoH. These
methods performed tests with constant current (CC), constant voltage (CV), or
CCCV.

The article [Thingvad et al., 2020] defines SoH as the full current capacity
(Q f ull) compared to the nominal capacity (Qnom). Therefore, the SoH is calculated
through the equation below.
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SoH =
Q f ull

Qnom
(2.5)

The experiments are performed in a laboratory setting where the battery is dis-
charged from 100% to 0%.

SoH approximation from cycle counting. In [Xiong and Shen, n.d.], they used
several definitions for SoH. They state that SoH can be determined by the energy
or capacity fade of the battery. SoH is defined in that paper as the currently avail-
able capacity or energy ratio compared to the nominal capacity or energy. They
also present internal resistance measurement for the SoH estimation. With the R0
measurement, the battery’s EoL is when the current R0 is twice that of the nominal.
The present internal resistance measurement is derived from a discharge and charge
pulse test. Impedance measurement could also be used for SoH estimation using
electrochemical impedance spectroscopy (EIS). The impedance increases with ag-
ing and can be used for SoH estimation. For calculating the SoH using cycle number
counting, the equation used is shown below:

SoH =
Ntotal −Nexp

Ntotal
(2.6)

This method is tested using the CC and CV methods to charge the battery. They also
mention destructive methods which destroy the cell to study the internal chemistry
of the cell. These methods can determine the SoH of the battery with high precision
but destroy the cell.

SoH estimation from decreasing initial discharge potential. The paper [Kong et
al., 2018] presents two models for SoH estimation. One method includes SoH pre-
diction based on decreasing discharge potential at the beginning of discharge (V0+).
The other SoH prediction method is based on the increasing constant voltage (CV)
charging capacity. The purpose of studying V0+ is to find a mathematical model for
SoH concerning temperature and charge/discharge current. One method suggests a
prediction model by studying the decrease of V0+ as seen in equation (2.7).

V0+ =V0+(n) (2.7)

where n is the number of cycles performed on the battery and V0+ is the voltage at
the start of the discharge. Using linear regression to relate the cycle number to the
change in V0+, equation (2.8) is obtained.

V0+(n) = β0 +β1n (2.8)

β0 is the original value and β1 is the rate of change. The other model in [Kong et
al., 2018] studies the CV charging capacity of the battery. The resistance increases
from the model, so the constant current charge reaches the cutoff voltage faster with
aging. Linear regression is also performed to get a function related to the cycle
number of the battery.
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SoH estimation from Equivalent-Hydraulic model. In [Couto et al., 2019], the
SoH is estimated using a two-step approach. The first used the Equivalent-Hydraulic
model (EHM) and estimated SoH using EKF and SoC. The other step attempts to
link specific parameters to the degradation of the battery for online measurement
of SoH. The general way of defining SoH in [Couto et al., 2019] is presented in
equation (2.9).

SoH =
δθ0

θ0
(2.9)

where δθ0 is the change of any variable from its initial (nominal) value θ0. δθ0 is
calculated using an estimated current value of a variable (θ̂0) and the nominal value
(θ0) using:

δθ0 = θ̂0 −θ0 (2.10)

[Couto et al., 2019] compares the estimated SoH from capacity fade and power
fade. The tests were carried out by testing different C-rates of the battery in a
temperature-controlled climate chamber. The results were parameters related to
SoH with enough precision to observe aging.

SoH estimation through Voc-SoC curves. In the article [Thingvad et al., 2020],
they also present a method to estimate SoH, called the Voc-SoC method. The Voc-
SoC method is based on a curve that relates the Voc to a specific SoC. This method
can estimate the SoH during partial charging. To estimate the SoH, the following
formula is used:

SoH =
∆SoCCC

∆SoCVoc

, (2.11)

where ∆SoCCC is the difference in SoC given by coulomb counting and ∆SoCVoc is
the difference given by the Voc-SoC curve. To estimate SOH, one must estimate the
SoC with the Voc and perform a partial discharge. During the discharge, coulomb
counting is performed, and another estimate of the SoC is made with the Voc. The
SoH is after that given by equation (2.11). In the characterization of SoH methods
made in [Yang et al., 2021], it is noted that the Voc-SoC method has some drawbacks.
The Voc-SoC curve requires a long period of testing to obtain, which is not very
practical for use cases outside of the laboratory. In [Thingvad et al., 2021], they
also confirm the long testing period required to measure the Voc. To measure the
Voc, the terminal voltage must be measured when the relaxation time has passed,
which might take hours, depending on battery chemistry. Another problem with this
method is that the SoH estimation accuracy depends on the current measurement.
Since the current is integrated during coulomb counting, the error will continuously
grow over a long time. It is, therefore, necessary to calibrate the SoC with the Voc-
SoC curve when possible.
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SoH estimation with integrated voltage method. In [Zhou et al., 2018], a method
to estimate SoH during partial charges or discharges was used, called the integrated
voltage (IV) method. While searching for an SoH estimation method that works
with both CC and CV, they discovered that integrated voltage over time (equation
(2.12)), during the charging phase, strongly correlates to the SoH.

IV =
∫ t1

t0
Vterm dt (2.12)

where Vterm is the terminal voltage, t0 and t1 correspond to the time when two pre-
defined voltages are reached. These are freely chosen, and in [Zhou et al., 2018], the
two predefined voltages were chosen as V0 = 3.85V,V1 = 4.2V . The two predefined
voltages are the terminal voltage at an SoC of 12% and 89%. In [Jenu et al., 2022],
the two predefined voltages were chosen as V0 = 3.3V,V1 = 3.4V , and in that article,
they were studying an LFP cell. The relationship between SoH and IV is assumed
to be linear and given by:

SoH = α + IV ·β (2.13)

where α and β are parameters to be determined by the least squares method from
experimental data. α is the initial SoH and β is the gradient.

SoH estimation with incremental capacity analysis. The article [Jenu et al.,
2022] used incremental capacity analysis (ICA) to estimate SoH. The ICA method
uses the incremental capacity (IC) curve to estimate the SoH. The following equa-
tion gives the curve:

IC =
dQ
dV

(2.14)

where Q is the charged or discharged capacity, and V is the terminal voltage. In
[Jenu et al., 2022], Q is given by coulomb counting:

Q =
∫ t2

t1
Idt (2.15)

where t1 and t2 are the start and stop times of the charging or discharging period.
From the ICA curve, the SoH can be determined by studying the changes in the
peak area and then applying RMS to plot the results. The SoH in [Jenu et al., 2022]
uses capacity fade to determine the SoH of the battery by fitting a polynomial to
the IC curve. The paper [Jenu et al., 2022] also researched how the C-rate affects
the SoH estimate and found that the lower the C-rate is, the better for an accurate
estimation. Though, a C-rate of 2 still provided satisfactory results.

SoH estimation with ML. In the report [Wu et al., 2020], the authors use Artificial
Neural Networks (ANN), which is a form of Machine Learning (ML) for predicting
states in the battery to be used to determine the SoH. However, they also state the
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problems of using ANN or ML, which is the vast amount of data needed to create
an accurate model.

The report [Clevert et al., 2016] presents the advantages and disadvantages of
using the EC model. Some disadvantages are due to the variation in R0 being very
small. R0 being very small makes it difficult to predict using a KF accurately. Also,
KF has a disadvantage in that it is difficult to apply due to the system’s complexity.
So instead, the report studies Deep Neural Networks (DNN) to be applied for SoH
estimation.

In [Cârstoiu et al., 2021], the authors state that the usual way of defining SoH
is the ratio of the current energy capacity to the nominal capacity of a fresh battery.
They state that the EC model is most commonly cited, partly due to its implementa-
tion simplicity. They talk about the problems of using a Recurrent Neural Network
(RNN) for SoH estimation, but the problems with the amount of time it takes for
the training and that it is prone to error. They use the model for SoH from the accu-
mulated degradation model L, where L = 1−SoH.

The second method in the report [Moreno, 2021] trained an intelligent algo-
rithm to determine SoH using equation (2.3). The third method uses equation (2.3)
and (2.4) to estimate SoH using an impedance-based method. These methods use
machine learning to determine the SoH of the battery.

In [El-Dalahmeh et al., 2021], the SoH is defined according to the equation
below:

SoH =
Q f ull

Qnom
×100% (2.16)

where Q f ull is the full current capacity and Qnom is the battery’s nominal capacity.
The estimation technique used is based on three data-driven (DD) algorithms. They
conclude that the DD algorithms are sufficient for SoH estimation, especially for
online applications. They discuss the problem with the EC model, which is not
accurate enough but is simple to implement. The ECh model is accurate but too
complex to be implemented.

SoH definition for this thesis
There is no universal agreement for what SoH is for a battery, as discussed in the
literature [Xiong and Shen, n.d.; Plett, 2015; Couto et al., 2019; Moreno, 2021].
The definition of the SoH needs to be relevant to the usage of the battery and the
model, respectively. The battery will be used for grid support (GS) and EV charging
stations in this thesis. If the battery is primarily used for frequency compensation, it
must be able to supply enough power at a specific time. There are other frequency
compensation methods for renewable energy systems, such as inverters with inertia
[Hamada et al., 2022]. Suppose the battery only stores the excess generated elec-
tricity from wind turbines. In that case, it is more important to determine the total
current capacity to predict how much energy can be stored in the batteries to sup-
port the grid. For EV charging stations, the capacity in Ah and Wh are essential for
charging an EV.
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The SoH estimation aims to see what the SoH is of a battery when the battery
is received. Knowledge of the SoH is not guaranteed when it is received from an
EV, for example, in a second-life scenario. Knowledge of SoH is essential to pre-
vent failures and determine battery usage. For the battery, it is important to know
what the capacity of the battery is compared to the nominal and to know the avail-
able charge that can be supported to the grid and the EV. If the available capacity
becomes too low, the battery becomes useless [Kong et al., 2018].

The SoH can be accurately determined by opening up the battery and studying
the internal chemistry of the battery. A problem with this method is that the battery
is dismantled and can no longer be used. This method is impractical for determining
the current SoH of a battery in use since it destroys the cell [Xiong and Shen, n.d.].

As mentioned in the literature, there are a couple of model-based methods for
SoH estimation: The Equivalent circuit (EC) model, the electrochemical model
(ECh), the data-driven model (DD), and the equivalent hydraulic model (EHM)
[Plett, 2015; Wu et al., 2020; Clevert et al., 2016; Cârstoiu et al., 2021; Couto et al.,
2019]. Using the (EC) model, multiple variables can be studied to estimate the SoH,
and the EC is relatively easy to implement. The definition of SoH that is chosen af-
fects what models can be chosen. The measurements that can be taken to estimate
the SoH also affect the chosen model.

The EC model is a common physical battery model for SoH estimation. From
the EC model, the power fades, capacity fade, change in SoC, internal resistance
increase, or change in internal resistance can be estimated. These estimates can all
be used to, in turn, estimate the SoH. The (EC) model has a few different layouts.
The common EC models are the Thevenin model [Plett, 2015]. When there is an
internal capacitance and resistance in parallel, this model is very simple but can be
expanded indefinitely. The limit for expanding the EC model is the accuracy of the
estimated variables and the computational time. From the EC model, the SoH can
be estimated by itself or in combination with another battery model. More details
about the modeling method used will be defined in chapter 3.

From the EC model, the terminal voltage of the batteries can be simulated. The
model, in turn, can show how the battery behaves during charge and discharge and,
in turn, see changes that could be due to the SoH. For example, as the battery de-
grades, the internal resistance of the battery is expected to increase, which increases
the losses and lowers the total capacity. In addition, different components in the bat-
tery, such as shunt capacitance and resistance, might also vary with SoH and cause
deviations in the model. Another attempt to estimate SoH is to look at the battery’s
total capacity (Q) and compare it to the nominal. A problem with looking at Q is
that a whole cycle needs to be performed to measure the total current capacity of
the cell. In normal operations, this rarely happens to the battery. It is, however, a
test that can be performed. The capacity can also be estimated using the change in
SoC during a short charging period and then the battery’s total capacity is estimated
[Thingvad et al., 2020].

The definition adopted for this thesis for SoH is the relationship between the
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current capacity and its nominal capacity together with the increase in internal re-
sistance compared to its nominal resistance. Traditionally, batteries are mainly used
for discharging and not primarily for charging. Therefore, most methods for deter-
mining the total capacity are when the battery is discharged. Therefore, the battery’s
total capacity when charged and discharged is essential.

The SoH can be compared in Wh, Ah, SoC, and R0. Each of the cases will be
discussed in the following.

SoHWh =
Q̂meas,Wh

Q̂nom,Wh
=

∑
Ns
k=1 ikV̂meas

∑
Ns
k=1 i0V̂nom

(2.17)

Equation (2.17) calculates the SoH from the total power in Wh extracted from the
battery and compares it to its nominal, where Q̂Wh is the estimated capacity in Wh
and calculated from the sum of the current ik and the estimated terminal voltage
V̂meas. Qnom,Wh is the nominal capacity in Wh and calculated from the sum of the
nominal current i0 and the nominal terminal voltage Vnom.

SoHAh =
Q̂measAh

QnomAh
=

∑
Ns
k=1 ik

∑
Ns
k=1 ik

(2.18)

where equation (2.18) calculates the SoH from the total power in Wh extracted from
the battery and compares it to its nominal, and Q̂meas,Ah is the estimated capacity in
Ah and calculated from the sum of the measured current ik. Qnom,Ah is the nominal
capacity in Ah and calculated from the sum of the nominal current i0, which is also
given by the technical specifications or early measurements.

SoHR0 =
R0,nominal

R0,current
(2.19)

where equation (2.19) calculates the SoH from the changes in ESR (R0), and
R0,nominal is the nominal ESR given by the technical specifications or early mea-
surements, and R0,current is the estimated current ESR of the battery.

SoHSoC =
∆SoCcalc

∆SoCest
(2.20)

where equation (2.20) calculates the SoH by dividing the change in Coulomb
counted SoC (∆SoCcalc) by the estimated change in SoC (∆SoCest ). The definitions
for SoH in equations (2.18), (2.19) and (2.20) will be used and compared.

Control Theory
Control theory methods are used to model, and estimate the parameters of the bat-
tery to determine the SoH. The extended Kalman filter (EKF) has been used to
estimate the slowly varying parameters of the battery [Zucconi, n.d.; Plett, 2015].
The EKF has been used instead of the ordinary Kalman Filter (KF) because it can
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handle non-linear processes. Weighted least squares (WLS) and Recursive weighted
least squares (RLS) [Kutner et al., 2005] are used to determine the capacity and in
turn the SoH of the battery.

To accurately control or estimate SoH, a good model of the system is necessary
for accurate estimations. The more accurate the model of the actual process, the
better the estimation will be. Linear systems are simpler systems to create a model
of. However, in reality, few systems are linear. The system in question is a time-
varying non-linear system. The nonlinearity is partly due to the complex internal
dynamics of the LFP battery, not exact knowledge of the process of the system,
and the change in the SoH of the battery. A change in the SoH might cause the
battery to behave differently than if the SoH would not change. These changes can
be hard to predict since the battery’s internal chemistry is not directly observable
under normal operations. The output does not follow the input proportionally, but
other factors affect the systems that are not measurable or predictable. Since the
output does not directly follow, the input makes it difficult to create a model since
the output is not directly proportional to the input.

There are numerous ways of dealing with non-linear systems. The most simplis-
tic method is to linearize the non-linear system. This method allows the non-linear
system to be treated locally as a linear system and be modeled in such a way. Lin-
earizing a system can be done in a couple of ways, such as linearizing around a
point or a trajectory [Zucconi, n.d.].

The SoH will be estimated using control theory techniques. The estimation will
be carried out by creating a model of the battery and then bringing forward the
mathematical equations of the system by setting up a system of equations. The
system of equations will be put in a block diagram. With the block diagram, possible
disturbances will be added, and the estimation will be included.

State space representation. A system with mathematical equations can be repre-
sented in a state space form in continuous time.

ẋ = Ax+Bu (2.21)

Equation (2.21) shows the state transition equation, where the states are x, the input
is u, the changes in states are given by ẋ and A is the state transition matrix with
dimensions N×N where N is the number of states and shows how the state x affects
ẋ. B is the input transition matrix with dimensions N×M where M is the number of
input signals and B shows how the input affects the ẋ.

y =Cx+Du (2.22)

Equation (2.22) shows the measurement function, where the states are x, the input is
u, and the measurement or output is y. C is the observation matrix with dimensions
Ny ×N where Ny is the number of measurements or outputs, and N is the number
of states and shows how the state x affects y. Finally, D is the feed-through matrix
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with dimensions Ny ×M, where M is the number of input signals and D shows how
the input affects y. Where x are all the states in the system.

For example, the output of a system could be inside room temperature. The
input could be the outside temperature. The states could be people inside the room
or how much heat escapes the window. The states, in this case, can be measured
and can change if someone leaves the room or the window is closed. But they are
all affected by the outside temperature u and affect the inside temperature y.

Kalman filter
The Kalman Filter (KF) is an optimal linear filter [Glad and Ljung, 2000]. The KF
has a wide variety of applications. For example, a KF can be used for smoothing,
filtering, or predicting the states of a system [Glad and Ljung, 2000]. The KF is an
optimal linear state observer (or state estimator) and assumes Gaussian noise [Glad
and Ljung, 2000]. For example, due to technical limitations such as the measuring
equipment can not handle high heat such as rocket heat, or when the states are not
actual components but made up components to capture the dynamics of a process,
state observers (or estimated states) can be used in the such cases.

The KF uses the current states of the model and the current measurements to
study the difference between the states and the measuments. The KF starts with
an initial estimate of the states and the estimation error covariance. A new state is
predicted and attempts to minimize the error in the estimated state. This process is
then updated as new measurements are received and the actual states of the system
change [Automatic Control LTH, n.d.].

The sampling time is a property of the KF, and the more frequently the time
is sampled, the better the approximations of the continuous system are. In discrete
time the KF has a prediction step and a state update step [Glad and Ljung, 2000].

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1 (2.23)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk−1 (2.24)

Update step:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1 (2.25)

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (2.26)

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkKT

k (2.27)
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x̂k|k−1 The predicted state k based on k−1 measurements
x̂k−1|k−1 The state estimate at k−1
x̂k|k Estimated state at k
uk−1 The input at k−1
yk The measurement at k
Fk−1 The state state transition matrix at k−1
Bk−1 The input transition matrix at k−1
Hk The observation matrix at k
Pk|k−1 Covariance matrix at k based on k−1
Pk−1|k−1 Covariance matrix at k−1
Pk|k The updated covariance matrix at k
Kk The Kalman gain at k
Qk−1 Process noise matrix at k−1
Rk The measurement uncertainty or noise at k
I Identity matrix

Measurement noise variance. The measurement noise variance is the variance of
the noise that affects the measured output of our system. The measurement noise
can be caused by uncertain measurements or such as disturbances. The origin of
these disturbances could be white noise from the measurement equipment. R rep-
resents the measurement noise variance. The measurement noise is assumed to be
uncorrelated Gaussian noise.

Process noise variance. The process noise variance is the noise that affects the
input in the system and, in turn, the process. In this case, the input is current, so the
noise could be errors in the measurement of the current or disturbances when the
battery switches some cells on and off. The process noise variance of the system
affects the system of equations and the states of the system. Therefore, the process
noise variance is represented using Q. The process noise is assumed to be uncorre-
lated Gaussian noise.

Extended Kalman Filter
An extended Kalman Filter (EKF) is a KF modified to handle non-linear processes.
It is necessary to calculate the conditional expectation of the state. The conditional
expectations are calculated by calculating x̂, linearizing around the current x̂, and
calculating the Kalman gain at the current instant. When the state and measurement
dynamics are linearized, the result is an EKF.

The EKF is structured similarly to the KF but with the state estimate being
linearized around the current estimate.

f (x)≈ f (x̂0)+ f ′(x̂0)(x− x̂0) (2.28)

Equation (2.28) approximates a linear function to the non-linear data to estimate the
state x̂. The linearization is done with an initial state estimate x̂0 and a function f (x̂)
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that aims to be the same as f (x). Then, the slope of the function is given by f ′(x̂0)
that is multiplied by the estimated state x̂0 and the actual state x. This linearization
is done at every new estimate of the state x̂. Once the dynamics are linearized, the
prediction equations are the same as for the KF with equations (2.23) and (2.24).
The update equations are the same as for the KF with equations (2.25), (2.26), and
(2.27) [Zucconi, n.d.].

Weighted least squares
Weighted least squares (WLS) [Plett, 2015] are used when the relationship between
x and y is unknown, and x and y are two data sets. WLS attempts to find a relation-
ship with some function y = f (x,r) between these sets of data points by minimizing
the residual (r) and, in turn, minimizes the cost function (2.29). The residual is the
difference between y and f (x,r) [Strutz, 2016]. With WLS, the residual is weighted
using the variance of the data points. The variance weighs the importance of the
residual and affects the changes in f (x,r) more or less. The weight w is often de-
fined as the inverse variance ( 1

σ2 ) of the data points in y.

χ
2 =

N

∑
i=1

(yi − f (xi,r))2

σ2
yi

(2.29)

where χ2 is the cost function. The derivative of function (2.29) with respect to the
function f (x,r) is shown in equation (2.30)

δ χ2

δ f (x,r)
=−2

N

∑
i=1

(yi − f (xi,r))
σ2

yi

(2.30)

Equation (2.29) and (2.30) are combined to determine the function f (x,r) [Plett,
2015].

Recursive weighted least squares
Recursive weighted least squares (RLS) [Plett, 2015] are similar to WLS. The main
difference is that the weight is updated at each iteration when new data arrives. The
iteration allows for more or less importance to the error. The recursion is performed
by updating the weight each time new data is received. The purpose is to localize the
weight at each time instance and adjust so that the variance can be larger at different
times. In the WLS, the weight is usually the inverse variance ( 1

σ2 ). In the RLS, the
inverse variance is updated at every time instance and results in ( 1

σ2
i

) at every time
instance [Plett, 2015].
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3
Method

This chapter will first describe the assumptions made and the limitation of the the-
sis. Next, the tools used to gather the data and run the experiments are described.
Then, the derivation of the different models used and how they work will be dis-
cussed. Lastly, the estimation techniques using WLS and RLS and how they will be
validated will be explained.

Assumptions
The ambient temperature of the battery is not controllable. However, the ambient
temperature in the lab does not significantly change. The temperature difference in
the lab is between 18 and 30◦C during the time of the tests. The operating range
of the cells is 0-70◦C during charge and -20 to 70 ◦C during discharge. However,
the cells behave quite differently if they are at 25◦C or 45◦C. Since the change
in ambient temperature is low, the ambient temperature change is assumed not to
affect the cells. The battery’s assumed parameters, such as resistors and capacitors,
are temperature-dependent, affecting the current and the voltage. As the battery
is being charged and discharged, the temperature change is assumed to be small
enough not to affect the resistance and capacitance. The values for the components
have been assumed to be at a constant 25◦C.

The amount of charging and discharging cycles performed on the battery is as-
sumed to affect the SoH of the battery to a more considerable extent than the calen-
dar aging over a short period. The experimentation lasts for five months. The battery
should degrade less than 0.63% [Wang et al., 2022] in five months. The battery in
this study has more than 2000 life cycles. The lifetime implies that it can be charged
and discharged more than 2000 times with a DoD of 80% at 0.3 C until the battery
has reached its end of life. If the battery is charged and discharged with a higher C
rate, it might degrade at a higher rate. The battery will be charged and discharged
at around 0.375 C and an 80% DoD. This project has assumed that the battery will
only degrade due to cycle aging. The project expects the number of cycles to de-
grade the battery more significantly than the degradation due to the passing of time.
Other ways a battery can degrade could be from mechanical damage or a significant
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increase or decrease in temperature that can affect the internal chemistry of the bat-
tery. This project has assumed that this will not and has not happened to the battery.
Damages to the cell can increase the cell’s aging and therefore change the SoH at
a higher rate. The battery can also degrade if the C-rate is too high or the voltage
exceeds the operational range. The battery will not be operated at a high C-rate, and
the BMS should ensure the voltage is within its operational range. The assumption
is that the battery will not degrade due to too high a current or voltage outside the
operational range, only from normal operations.

The open circuit voltage (Voc) is essential to create an accurate model since the
terminal voltage output depends on the Voc. However, for LFP batteries, the Voc does
not change significantly with changes in SoH [Plett, 2015]. Therefore, data of the
batteries Voc to SoC exists and is assumed to not change with changes in SoH.

Delimitations
The project is limited to DTU’s power lab. The experiments are at DTU’s power lab.
The experiments take a long time to perform, and avoiding scheduling conflicts with
other projects is necessary. Avoiding scheduling conflicts requires synchronization
with different projects to perform the test without disturbance.

Controlling the temperature of the cells is not possible. How the temperature
changes internally in the cell is not directly measurable. There are temperature sen-
sors on the top of each cell, but they are assumed to differ from the internal temper-
ature of the battery.

Running tests on other types of batteries is not possible. Therefore, the model
and estimation are limited to the LFP battery system in the lab. The measurements
and tests aim to be applicable in real-world applications to determine the SoH. How-
ever, the limitation in measurements might cause difficulties in accurately estimat-
ing SoH. In addition, the real-world operations of the battery might also differ from
the lab and cause the battery to degrade faster or slower than expected, for example,
due to larger temperature changes or higher or lower C-rates.

The battery that the experiments were carried out on has its own BMS. The BMS
can not be changed or modified. Balancing the batteries in the BMS can cause non-
linearity and make the estimations difficult. Testing on individual cells is impossible
with the current setup, but acquiring data from individual cells is possible. Not
being able to test on individual cells limits the accuracy of not having a controlled
environment.

The battery cells in the battery system will differ slightly due to imperfections
in the production stage. The assumption is made that all cells are initially the same
and have the same values for the parameters of the cell.

Due to the current energy crisis in Europe, DTU, including DTU power labDK,
might be shut down for a process called a brownout. A brownout is an inten-
tional blackout that is implemented in emergencies. If Denmark’s energy production
reaches a critical low, then DTU might be subjected to a brownout to supply more
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important facilities with energy. A brownout will limit the amount of testing that
can be done on the battery as the electricity supply is cut out. The brownout is not
intended to be long-lasting, but if it occurs in the middle of a charge/discharge cycle
test, some data will be lost, and the test will be ruined.

Lab setup
The experiments are in a lab in a big room where multiple other experiments are be-
ing conducted. This project is limited to a lab cell connecting the battery, electrical
grid, and power amplifier. There is also a connection between the battery, the Nerve
smart system, and a Raspberry Pi to communicate with the battery. The data from
the battery is accessed remotely and stored on a computer, where it is processed.
The lab setup is illustrated in Figure 3.1. The battery is not directly connected to the
local grid but is passed through the inverter and rectifier.

Figure 3.1 Diagram of the lab setup

PowerLabDK. The experimentation is at PowerLabDK in the laboratory at DTU
[PowerLabDK, n.d.]. It is a world-class facility for performing experiments on elec-
tric power and energy. In addition, the facility hosts experiments on renewable en-
ergy research or research that contribute to cost-efficient, reliable, and sustainable
power systems based on renewable sources. In PowerLabDK, one can find the state
of the art laboratories for many different areas, such as the electric vehicle lab, the
high power lab, the high voltage lab, and more [PowerLabDK, n.d.]. However, the
experiments in this thesis are in the electric lab and lab cell 9.

PuTTY and automation. PuTTY is a terminal simulator that supports SSH and
Telnet for Windows and Linux-based platforms [Tatham, n.d.]. The client connects
to the Raspberry Pi via SSH, which controls the BMS. In addition, scripts are in the
programming language bash through PuTTY, which can control the BMS.

UaExpert. UaExpert is an OPC UA client used to log the experiment data mea-
surements [Foundation, n.d.]. OPC is a standard used within industrial automation
for secure and reliable data exchange [Foundation, n.d.]. UaExpert subscribes to
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different values generated by the measurement equipment, and every time a value
is updated, a generation of a new data point occurs in UaExpert. After generating
a new data point, adding the data point to a CCV file with a maximum of 10.000
lines occurs. A new CCV file is generated when it reaches the maximum number of
lines.

SCADA. SCADA software controls circuit breakers in the lab cells [OleumTech,
n.d.]. With this software, one can control all the circuit breakers for certain labo-
ratories within PowerLabDK. In addition, it can open and close breakers remotely
and get an overview of the electrical grid at PowerLabDK.

Figure 3.2 The lab cell used for testing the batteries in SCADA

Figure 3.2 shows the lab cell in SCADA. The controller for the battery is the
purple circuit breaker in lab cell 9 (LC9), and the green circuit breaker in LC9 is
where the charging and discharging current goes through.

MATLAB® and Simulink®. MATLAB® is a programming language developed
by Mathworks [MathWorks, n.d.]. MATLAB® is used to represent the state-space
model. In addition, MATLAB® is used to process the raw data received from Ua-
Expert, so it is possible to perform simulations. Finally, MATLAB® is also used to
perform necessary calculations and estimate the capacity.

Simulink® is a tool that simulates processes such as the battery system. First,
using block diagrams, Simulink® is used to simulate the real process of the battery.
Next, Simulink® will be used with MATLAB® to simulate the battery and estimate
the values.

NERVE smart systems. The BMS of the battery is from NERVE smart systems
[Nerve, n.d.]. The calculated SoC by the NERVE smart systems uses Coulomb
counting. As the NERVE smart system attempts to estimate the SoC, an error grows
over time. To reset the error, the SoC needs to be calibrated occasionally. The cal-
ibration occurs at the edges of SoC, so close to 0% and 100% SoC. But when the
calibration is necessary is not known to the author [Nerve, n.d.; Pinter et al., 2021].

Battery cell. The battery cell is a Sinopoly SP-LFP100AHA battery cell [Sinopoly
battery systems n.d.]. The battery is charged and discharged at around 0.375 C,
equivalent to 37.5 A. The capacity used to calculate the C-rate of the battery uses
100Ah. However, charging or discharging the capacity at 0.375 C increases the
capacity to around 107Ah.
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Rectifier and inverter. The rectifier and inverter are essential to charge and dis-
charge the battery system to and from the grid. The rectifier and the inverter are
a Coverdan 3-phase active front-end module [Coverdan n.d.] The rectifier and in-
verter are needed because the battery system can only charge and discharge with
DC, and the grid has AC. The rectifier and inverter limit the battery’s charge or dis-
charge C-rate. The limit in C-rate is because the rectifier and inverter have a fuse
of 50A. If the current is larger than 50A, a fuse will break, or it might damage the
rectifier and inverter [Coverdan n.d.].

Test deployment
The testing consists of charging and discharging the battery. A script charges the
battery to the maximum allowed SoC and discharges to the lowest allowed SoC.
One full charge and discharge is considered one cycle. The cycles are looped con-
tinuously with a break between a charge and discharge session of 30 min, as seen
in Figure 3.3. The reason for the break is to allow the battery to cool and for the
diffusion voltages to settle to their steady-state values. The longer the break is, the
longer the battery has to settle, but then a cycle takes longer. The waiting time com-
promises the quality and quantity of the measurements. To reach the desired power
at the start of a charge and discharge, the script has a ramp function, which slowly
increases the current at the start of the charge and discharge. The reason for the
ramp function is to avoid overshooting the current that might cause a fuse in the
inverter and rectifier to break.

Figure 3.3 Flow chart of the test algorithm

The testing is on the entire battery system. For one cycle, all 295 cells are
charged and discharged. However, the balancing algorithm in the BMS does not
charge and discharge all cells simultaneously. Instead, the charging and discharging
are stopped and started to keep the desired voltage of around 800V for the whole
battery system. Even though the batteries are all connected in series, the Nerve smart
system allows a cell to be bypassed and stop charging or discharging for individual
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cells. Connecting the cells in series implies that the current in all cells switched on
is the same.

Modeling
Modeling the battery is a vital part of this thesis. The more accurate the model of
the battery is, the more accurate the estimations will be. There are a few models
to consider when creating a model of the battery. These include the electrochemi-
cal (ECh) model, the equivalent circuit (EC) model, or the data-driven (DD) model
[Plett, 2015; Wu et al., 2020; Clevert et al., 2016; Cârstoiu et al., 2021; Couto et al.,
2019]. The ECh model is, according to the literature, the most accurate model for
SoH estimation. The ECh model is, however, very complex, takes a lot of computa-
tional power, and requires difficult measurements. The complexity makes the model
slow and not very practical for online applications. Simplified ECh models use half
of a cell that requires less computational power but with a loss of accuracy [Couto
et al., 2022]. The lab setup is impractical for an ECh model since the experiments
are on a whole battery pack, not just one or half a cell. The DD model can give
accurate results and quick results. Its application is good for a black box where the
states are unknown or the nominal SoH of the battery. The major problem with the
DD model is that it requires a lot of data to create an accurate prediction. The vast
amount of data required will be a problem due to the limited time for testing [Glad
and Ljung, 2000].

The model chosen was the EC model due to its simplicity, the measurements
of the battery system, and the limit in the amount of data required to create the
model. Creating a model was done by deriving mathematical equations of the pro-
cess, creating a model, and testing the model. Then, the model was updated, and
necessary changes were made depending on the results. Finally, battery cell mod-
els are modified to handle charging and discharging. The reason for this is that the
battery behaves slightly differently from charging or discharging. The difference
between charging and discharging is due to the components of the EC model being
different for charging and discharging.

EC model. There is a couple of different way of designing the EC model. To
model a battery as an equivalent circuit, a certain amount of building blocks to cap-
ture the dynamics are needed [Plett, 2015]. The idea of an EC model is to represent
the battery’s behaviors with known or similar electrical components. The simplest
EC model of the battery is an RC model. When n = 0, the model consists of just a
voltage source Voc.
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Figure 3.4 An 0-RC EC model

When n = 1, the model consists of one branch of a resistor R and a capacitor C
in parallel called the RC branch. The RC components exist to catch the behavior of
the diffusion voltage of the battery. For example, the model in Figure 3.5 is a 1-RC
model of the battery.

Figure 3.5 An 1-RC EC model

The model in Figure 3.5 uses an ideal voltage source with internal resistance and
a resistor and capacitance in parallel. The purpose of the resistance and capacitance
of the battery is to catch the behavior of the battery. This model can be expanded
to better catch the behavior of the battery by adding more parallel resistance and
capacitance. This model is considered an n-RC model when n > 1. This expansion
makes it more complex but increases the accuracy of the model.

According to [Xiong and Shen, n.d.], the error decreases with an increase in n.
The computational time, however, becomes huge when n is higher than 4. When
n is smaller than 4, the model gives a high accuracy with a short computational
time. Adding more states can also lead to problems related to overfitting and might
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cause problems in predictions and estimations [B.S. Everitt, 2010]. The difficulty
in deriving the parameters for the n-RC circuit increases for higher orders of n.
The 2-RC model will be used to have high accuracy but not too computationally
demanding. A 2-RC circuit is illustrated in Figure 3.6. The 2-RC model consists of
an ideal voltage source denoted Voc, and R0, two branches of a resistor and capacitor
in parallel denoted R1, C1 and R1 and C2, respectively.

Figure 3.6 An 2-RC EC model. R0 is the internal resistance. R1 and C1 exist
to capture the diffusion voltage, and R2, and C2 exist to extend the capture of the
diffusion voltage.

Resistance estimation. The equivalent series resistance (R0) can be estimated by
studying changes in terminal voltage over the change in current for the same time
interval. Since the current changes very little, to estimate the R0, the change in
current and voltage needs to be captured when the change in current and voltage are
relatively significant, for example, when the cell is switched on and off. Switching
on and off an individual cell is not possible [Plett, 2015]. The cell is, however,
switched on and off as the BMS attempts to balance the voltage to 800V. Studying
the response of a cell being switched on and off could be enough to estimate R0.

R0 =
∆V
∆I

(3.1)

From equation (3.1), ∆V is the change in voltage, and ∆I is the change in current.
This method should be avoided when ∆I is small (in CC charge or discharge) since
it will be a division by a number close to zero, and the resistance will be infinite.
Since ∆I needs to be large, equation (3.1) only works when the cell is switched on
or off. There is data on how R0 changes with SoC but not with changes in SoH.
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Resistance-capacitor couples. A similar test to deriving R0 could be performed to
determine variables such as R1, R2, C1, and C2. Determining the variables is more
complicated since the resting time required is around 30 min [Plett, 2015]. There
are lookup tables from [Pinter et al., n.d.; Schmidt et al., n.d.] based on SoC for the
values of Voc,R0, R1, R2, C1, and C2 for a cell that has been used to create the model
with an assumed constant temperature of 20◦C [Pinter et al., n.d.; Schmidt et al.,
n.d.].

The resistance in the resistance-capacitor couples represents the charge transfer
resistance Rn [Ω], and the capacitors Cn [F] represent the internal dynamics of the
battery that can be observed as a time delay. The time delay in the system τ(s)
equals RC [Plett, 2015].

The resistor and the capacitor in parallel values can be determined using the
pulse test and studying the slow change in voltage as the terminal voltage reaches
its steady state. Determining the resistor and the capacitor values is tedious and
takes a long time. Acquiring the values at a high precision limits the degree of the
n-RC circuit. Most reports use no more than a 2-RC circuit, and some use less. The
values for the components of R and C in the 2-RC will not be determined and have
been acquired from previous research of a similar cell [Pinter et al., n.d.; Schmidt et
al., n.d.]. The reason for not deriving them is the limitation in the testing equipment
for individual cells. Performing an accurate pulse test for the whole system would
be time-consuming, tedious, and error-prone.

The nominal capacity. The nominal capacity of the cells is 100Ah. However, this
is dependent on the C-rate for charging and discharging.

A higher C-rate of the battery lowers the capacity. Since the battery is discharged
at around 30A or 37.5A, the operational battery range is between 2.8V and 3.8V.
The capacity at the battery’s lower cut-off voltage of the cell was estimated to be
around 107Ah. 107Ah is what is used as Q0 for the battery at a discharge rate of
around C

3 . The nominal useful capacity is the nominal capacity that can be extracted
from the battery. The useful capacity is approximately 80% of the full capacity. As
the nominal capacity is estimated to 107Ah, the useful nominal capacity is 85.6Ah.
The capacity of 107Ah is an assumption based on the technical specifications of
the battery. To gain better knowledge of the battery cell, then testing on the cell is
required at the start of life.

First-principles modelling. The measurements of the battery are the terminal volt-
age, the current, and the outer cell temperature. The battery’s resistors or capacitors
are components in the system that can not be measured directly and have to be
estimated. The components that comprise the EC model, such as the R0 and the
resistance and capacitance in parallel, are taken from previous experiments on a
similar cell with the same battery chemistry [Pinter et al., n.d.; Schmidt et al., n.d.].

There are two different models: the degrading model and the tracking model.
The purpose of the degrading model is to simulate how the battery degraded de-
pending on the number of cycles. The development of a tracking model was a more

42



Chapter 3. Method

iterative procedure where the first version was the 2-RC model with an EKF, the
second the model with SoC as a state, and the final version was the model of 2-RC
and SoC as the only state in the EKF.

Assuming a 2-RC circuit, the terminal voltage can be determined by the sum of
all the voltages in the circuit, following Kirchhoff’s voltage law, as seen in equation
(3.2). A 2-RC circuit is illustrated in Figure 3.6.

Vterm =Voc −V0 −V1 −V2 (3.2)

Vterm Terminal voltage of a cell
Voc Open circuit voltage of a cell
V0 Voltage over the R0
V1 Voltage over the first RC branch
V2 Voltage over the second RC branch

Ohm’s law can be used to determine the voltage over R0 as shown in equation
(3.3).

V0 = R0i (3.3)

The relationship between capacitance, voltage, and current is shown in equation
(3.4).

iC =C
dV
dt

(3.4)

where iC is current over the capacitor, C is the capacitance of the capacitor, and dV
dt

is the change in voltage multiplied by the capacity. For example, in a parallel RC
circuit, the current over the parallel coupling is illustrated in equation (3.5).

i = iR + iC =⇒ iR = i− iC (3.5)

where iR is current over the resistor and the voltage over the resistance is shown in
equation (3.6).

VRC = iRR (3.6)

Inserting equation (3.6) in iR and equation (3.4) in iC results in equation (3.7).

VRC = iRR = R(i− iC) =⇒ VRC = R
(

i−C
dVRC

dt

)
(3.7)

By rearranging equation (3.7), the final result is equation (3.8).

dVRC

dt
=

1
C

i− 1
RC

VRC (3.8)

The system states are according to equation (3.9) where x1 = V1 and x2 = V2.
The input of the system is u = i.
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VRC = x =⇒ dVRC

dt
= ẋ (3.9)

ẋ =− 1
R1C1

x+
1

C1
u (3.10)

[
ẋ1
ẋ2

]
=

[
− 1

R1C1
0

0 − 1
R2C2

][
x1
x2

]
+

[
1

C1
1

C2

]
u (3.11)

where R1 and C1 are the resistance and capacitance in the first branch. R2 and C2
are the resistance and capacitance in the second branch.

The states are the components that represent the internal dynamics change of
the system. In the 2-RC circuit, each component is dependent on the SoC. These
include R0, R1, R2, C1, C2 and Voc.

The tracking models
This section presents the method for deriving the models used to track the behavior
of the battery.

2-RC model with an EKF. The 2-RC model was the first model created to see
how well it could follow the existing system. The input to the system using the EC
2-RC model is the current (u= i) into the system. The system states are the diffusion
voltages x1 =V1 and x2 =V2. The state update equation is shown in equation (3.12).

ẋ = Ax+Bu (3.12)

A =

[
− 1

R1C1
0

0 − 1
R2C2

]
(3.13)

B =

[
1

C1
1

C2

]
(3.14)

where x is a vector of the states x1 and x2 and equation (3.13) presents the state
transfer matrix A. The input transition matrix B is shown in equation (3.14).

The system’s output is the open circuit voltage subtracted by the terminal volt-
age. The desired output from the circuit is the terminal voltage, but since the open
circuit voltage does not have a derivative dependence, it is not part of the state space
equations. The Voc is determined through a lookup table where Voc depends on SoC.
The system’s output is shown in equation (3.20).

y =Vterminal −Voc (3.15)

y =Cx+Du (3.16)
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The observation matrix C is shown in equation (3.17).

C =
[
−1 −1

]
(3.17)

The feed-through matrix D is just R0 since there is only one input into the system.

D =−R0 (3.18)

The EKF then uses the measured terminal voltage of the cell Vterm and subtracts
Voc to acquire the same y as in equation (3.20).

SoCk+1 = SoCk −
100

Qnom,Ah
ik∆t (3.19)

SoC is calculated using Coulomb counting. First, the current ik is measured at
instant k for charging or discharging. ∆t is the system’s sampling rate, and for the
measurements, ∆t = 1s. The nominal capacity Qnom,Ah is multiplied with 3600 to
get from Ah to seconds. ik∆t is divided by Qnom,Ah to get the change in SoC. The
change in SoC is subtracted from the previous SoC. The initial condition for SoC is
100% for discharging and 20% for charging to follow the actual process.

All the variables in the A, B, C, and D matrices change with SoC. The variable
dependency on SoC implies that the matrices change with SoC. First, all the matri-
ces are computed and then inserted into the variable state-space system. The output
of the system is y, but the terminal voltage Vterminal is what is required, so Voc is
added to y to acquire Vterminal from the model. The reason for combining Vterminal
and Voc is because of the model’s simplicity since Voc is a time-varying constant.

Vterminal = y+Voc (3.20)

The Extended Kalman filter uses the measured ymeasured = Vterm,measured −Voc.
ymeasured is the actual measured output of the battery, not the output from the model.
Therefore, ymeasured and input are inserted into the EKF. The EKF outputs the esti-
mated states of the system to filter the signal and give a better Vterm than the model.
The EKF uses the same varying A, B, C, and D matrices as the model to consider
changes in SoC. Vterm from the model, the EKF estimated states and the measure-
ments are then compared to see how well they perform.

Model with SoC as a state. By studying the 2-RC model, it was observed from
the simulations and results that some improvements could be made. The attempt to
create a model that follows the measured Vterm better was to add another state in the
system of equations. In this model, an extra state is added to the system of equations.
The third state is the SoC and is denoted as x3. The state transition equation is shown
in equation (3.21).

x3(k+1) = SoC(k+1) = SoC(k)− 1
Qnom

i(k)∆t (3.21)
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SoC(k) is the SoC at the instance k, and SoC(k+ 1) is the next value of the SoC,
Qnom is the nominal capacity, and ∆t is the sampling time of the current, which is
1 second. A function Voc depending on the SoC is created to use SoC as a state. To
make Voc depending on the SoC, was accomplished by linearization around a point
in the Voc vs. SoC curve. The linearization resulted in equation (3.22).

Voc =Voc(base)+α(SoC−SoC(base)) (3.22)

The Voc vs. SoC curve is split into ten different SoC sections, from 10% to 20%,
20% to 30%, until 100% SoC. The Voc(base) and SoC(base) are the base of each
section. α is the gradient of the straight line between two base points, for exam-
ple, between Voc(base) at 10% SoC and Voc(base) at 20% SoC. The gradient of the
Voc vs. SoC section is α that changes for every time interval with its correspond-
ing Voc(base) and SoC(base). The original Voc(SoC) and the linearized curve are
shown in Figure 3.7. Equation (3.22) is then inserted into equation (3.23), as seen
in equation (3.24).

Figure 3.7 The linearized curve in blue and the original Voc(SoC) curve in orange

Vterm =Voc −V1 −V2 −R0i (3.23)

Vterm =Voc(base)+α(SoC−SoC(base))−V1 −V2 −R0i (3.24)
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The variable α,Voc(base) and SoC(base) is dependent on the current SoC,
Voc(base) is subtracted, and SoC(base) is added on both sides to represent it in
state space form easily. The system’s output then results in equation (3.25).

y =Vterm −Voc(base)+αSoC(base) = αSoC−V1 −V2 −R0i (3.25)

The output of the system is y, but the terminal voltage Vterminal is what is desired,
so Voc(base) is added and αSoC(base) is subtracted from y to acquire Vterminal as
seen in equation (3.26). The reason for this is the simplicity of the model. Voc(base)
and αSoC(base) are values that are independent of the states dependent on the cur-
rent SoC.

Vterm = y+Voc(base)−αSoC(base) (3.26)

The state update equation is shown in equation (3.27).

ẋ = Ax+Bu (3.27)

The new state transfer matrix A is shown in equation (3.28). The system states
are the diffusion voltages V1, V2, and SoC.

A =

 − 1
R1C1

0 0
0 − 1

R2C2
0

0 0 1

 (3.28)

B =

 − 1
C1

− 1
C2

−∆t
Q

 (3.29)

y =Cx+Du (3.30)

The new C matrix for equation (3.30) is shown in equation (3.31). The D matrix
is the same with the new state as is shown in equation (3.32).

C = [−1 −1 α] (3.31)

D =−R0 (3.32)

Including the new state x3 = SoC is the only method to calculate the SoC for
this model. The state x3 determines the variables that make up the matrices in the
system of equations. The new state x3 calculates the SoC in the same way as in the
previous model, as is shown in equation (3.21).

The EKF used for state estimation in this model also contains the new state and
the new system of equations. The reason for adding the new state is to see if the
SoC could estimate the states and SoC with higher accuracy if the SoC is used in
the EKF compared to Coulomb counting. The estimated states in the EKF can also
be used to compare to the state in the model.
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Model of 2-RC and SoC as the only state in the EKF. There was some improve-
ment in adding a third state to the system from the simulations and results. However,
the estimated state in the EKF behaved unexpectedly and outside the norm. In order
to improve the results, the third state x3 was removed, and the only states are V1 and
V2. The EKF was applied to a model with one state, which is SoC. The error with
the third state might be because the states that represent V1 and V2 are in Volts, while
the state that represents SoC are in %. The use of different units in the EKF might
make it difficult for the EKF to distinguish between the states, how much they affect
the output in the system, and how much they correlate.

The system of equations is the same as in the first model but with a different
EKF. The measured output y that is inserted in the EKF is shown in equation (3.33).

y =Vterm −Voc(base)+αSoC(base)−V1 −V2 (3.33)

For the model, the system of equations is identical to equation (3.13), (3.14),
(3.17) and (3.18).

The EKF only has the SoC as a state and the same input, which is current (u= i).
The output (y) that enters the EKF differs from the model. Equation (3.25) must be
rearranged to only depend on SoC and the current I. Moving all other variables to
the left side of equation (3.25) results in equation (3.34).

Vterm −Voc(base)+αSoC(base)+V1 +V2 = αSoC−R0i (3.34)

Vterm = y+Voc(base)−αSoC(base)−V1 −V2 (3.35)

Vterm is then acquired from equation (3.33) by adding Voc(base) and subtracting
αSoC(base), V1 and V2 from y as seen in equation (3.35). In this case, the A matrix
for the EKF is A = 1, the B matrix results in B =−∆t

Q , the C matrix results in C = α ,
and the D matrix results in D = −R0. The variables in the model were determined
using the SoC state from the EKF that is applied on the model.

Degrading Model
A model of a degrading battery was created. This model aims to get an idea of
how the battery behaves when it degrades. The degrading model can also be used to
validate the results of the other models. The validation only works if the degrading
model is accurate. How the cells degrade is not precisely known. The data sheet
of the battery cells states that the battery’s lifetime is more than 2000 cycles at
80% DoD discharge as mentioned in Chapter 2. The end of life is, as mentioned
in Chapter 2, when the battery has dropped to 80% total capacity compared to the
nominal capacity. Since the assumption is made that the battery degrades linearly, a
straight line can be fitted to the curve, and how the battery degrades can be modeled.
The model switches between charging and discharging when its fully charged to
100% or discharged to 20%, which implies a DoD of 80%.
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The drop in capacity is not expected to happen instantly but gradually as the
battery is charged and discharged with a gradient of 0.2·107

2000 = 0.0107. After 2000
cycles, the battery capacity will have dropped from 107Ah to 85.6Ah.

The cycles are calculated by starting at the first cycle with a cycle length of
171.2Ah in the first cycle. The cycle length decreases as the capacity in the battery
decreases. When the Coulomb counting has reached the capacity length, the cycle
counter is increased by one. The capacity decreases with every cycle, so the Ah
required to charge the battery decreases as well with every cycle. The model is
described by equation (3.36).

Q = Qnom − 0.2 ·Qnom

2000
n (3.36)

where Q is the capacity after n cycles in Ah, Qnom is the nominal capacity, and n is
the number of cycles performed. The reason for relating the current total capacity
to the number of cycles is that the capacity changes after every cycle, and the time
it takes for the battery to be charged decreases with time in the degrading model as
the battery degrades.

The SoH is calculated in the degrading model by calculating the current ca-
pacity over the nominal. The nominal capacity used here is 107Ah. Changes to R0
to changes in SoH were implemented in the degrading model to get a more accu-
rate output from the model. R0 is expected to increase with degradation as seen in
equation (3.37).

R0(SoC,SoH) = R0(SoC)

(
1

SoH/100

)
(3.37)

where R0 charges with SoC and SoH is in %.
The system of equation for the degrading model is the same as the model with

SoC as a state, so equation (3.24), (3.28), (3.29), (3.31) and (3.32). The state x3 =
SoC determines the matrices in the system of equations. The changes in the matrices
also take into consideration the SoH. The degrading model does not use an EKF for
state estimations. The B and D matrices change when SoH changes, but A and C do
not change when the SoH changes. The matrices B and D change with SoH because
the capacity Q in the B matrix changes with SoH, and R0 changes with SoH.

Estimation
Estimation occurs in the EKF, where the states are estimated, as discussed in the
models. From the models, the terminal voltage is filtered and acquired. The results
from the models have been used to estimate the capacity and, in turn, the SoH.

Estimating capacity and energy from Coulomb counting and power counting.
The simplest method for estimating the useful current capacity in both Ah and in
Wh is Coulomb counting and Watt counting is shown in equations (3.38) and (3.39),
respectivley.
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Q̂u,Ah = ∆t
Ns

∑
k=1

ik (3.38)

Equation (3.38) shows how the useful capacity in Ah is calculated by summing up
the current ik until Ns. The Ns is one discharge or charge period. ∆t is the sampling
rate which is 1. The absolute value of the current ik is considered for the equation
to work for both discharging and charging.

Q̂u,Wh = ∆t
Ns

∑
k=1

ikVmeas,k (3.39)

Equation (3.39) shows how the useful capacity in Wh is calculated by summing up
the current ik multiplied by the terminal voltage Vmeas until Ns. ∆t is the sampling
rate which is 1. The Ns is one discharge or charge period. The absolute value of the
current ik is considered for the equation to work for both discharging and charging.

The purpose of using both equations (3.38) and (3.39) is to compare and see
if the change in capacity is different when considering Ah and Wh. The capacity
in Wh, is also helpful to see how much total power the battery can contain. This
method determines the cell’s useful capacity during one charge and discharge. The
useful capacity can be used to calculate the total capacity if the changes in SoC dur-
ing a charge and discharge are known. The changes in SoC must be known because
the BMS might switch off a cell before it is fully charged or discharged to balance
the voltage.

Estimating capacity from RLS and WLS. The SoC uses the capacity to calculate
the current SoC of the cell, as in equation (3.19). The models that do not use SoC
as a single state in the EKF made it challenging to estimate the SoC. The model
that uses a single state in the EKF could be used to estimate the SoC. The EKF
attempts to minimize the error between the model and the measurements. Equation
(3.19) that is used for the model could have a different capacity, or the current
could be slightly different due to losses or measurement errors. These differences
could cause the model to deviate from the system’s output. The EKF studies the
system’s measured output and attempts to correct the SoC. From the difference
between the Coulomb counting and the estimated SoC, the deviations could be due
to the capacity deviating from the actual. Coulomb counting in sections is presented
in equation (3.40).

yi =−∆t
kiend

∑
ki=1

ik (3.40)

where ki is a section of SoC, for example, when SoC is between 10% and 20%, k1
is the time in seconds between SoC 10% and 20%. ki = 1 is the first value in the
interval i and kiend is the last value in the interval i. ∆t is the sampling rate which is
1. yi is Coulumb counted during the interval ki.
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xi = SoC(ki(1))−SoC(ki(end)) (3.41)

yi = Qxi +∆yi (3.42)

The interval of ki in equation (3.41) is the same as in equation (3.40). xi is the change
in SoC in the interval ki. The inverse capacity Q relates x to y as seen in equation
(3.42). The values of yi and xi are then used in WLS and RLS to fit a function
between them. Equations (3.40) and (3.41) are derived from equation (3.19).

yi = β0 +β1xi (3.43)

The gradient of the curve is β1, which is the inverse capacity. The y-intercept is
β0. WLS attempts to minimize the error between the estimated function and the
measured yi.

c1,i =
n

∑
i=1

x2
i

σ2
yi

= c1,i−1 +
x2

i
σ2

yi

(3.44)

c2,i =
n

∑
i=1

xiyi

σ2
yi

= c2,i−1 +
xiyi

σ2
yi

(3.45)

With RLS, the values of c1 and c2 are updated after every iteration as seen in
equation (3.44) and (3.45). Updating c1 and c2 is what is considered here as the
recursive version of WLS. The capacity is estimated using c2 and c1 after the RLS
has gone through all i.

Q̂ =
c2

c1
(3.46)

The estimated capacity is denoted Q̂. The equation (3.46) shows how the capacity
can be estimated from the values c1 and c2.

The capacity can also be estimated using the gradient to the function from the
WLS. For WLS, the function fitlm() in MATLAB® is used to fit a weighted linear
regression model to the two data sets xi and yi, where the weights are a vector wi
which is the inverse variance of yi ( 1

σ2
yi

). The variance of yi (σ2
yi

) is calculated using

equation (3.47) for every instant of i.

σ
2
yi
=

√
(yi − Ȳi)2

i
(3.47)

where Ȳi is the mean of yi from start until the current value of i. The reason for
using both methods is to see which method gives the most likely results. The WLS
assumes that there is only measurement noise on yi but not on xi, while RLS might
handle measurement noise on both yi and xi better [Plett, 2015]. An advantage of the
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WLS and the RLS method is that it gives the actual total capacity of the battery, not
just the useful capacity. The function fitlm() returns the function as seen in equation
(3.43).

Validating the model. The estimation will then be validated to determine the
model’s goodness of fit. To determine the goodness of fit, R2 is a common method
[Kutner et al., 2005]. How to determine R2 is shown in equation (3.48).

R2 = 1− RSS
T SS

(3.48)

The total sum of squares (TSS) is presented in equation (3.49).

T SS =
n

∑
1
(yn − Ȳ )2 (3.49)

where Ȳ is the mean of yn. The residual sum of squares (RSS) is presented in equa-
tion (3.50).

RSS =
n

∑
1
(yn − (β1xn +β0))

2 (3.50)

where n is the amount of data points.
The standard deviation of residual (σR) is given in equation (3.51).

σR =

√
RSS
DoF

(3.51)

where the degrees of freedom (DoF) is DoF = n− 2, and n is the number of data
points, since the comparison is made between two dimensions, then two is sub-
tracted by the number of data points to acquire the DoF [Kutner et al., 2005].
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Results

This chapter will present the acquired results. First, the estimation of R0 is pre-
sented. Then the results of the different models are presented. The chapter finishes
by presenting the capacity estimations. First, the results of the capacity estimation
from Coulumb counting are presented, then the capacity estimation from RLS and
WLS and the validation of the methods.

The engagement signal from the BMS is necessary for the model to work. The
engage signal shows when the cells are on and off in the battery pack. However, the
engagement signal from the recorded data was entirely off. The engagement error
could be an error in the data processing. The engagement error was solved by taking
the SoC signal and creating an engagement signal. Creating the engagement signal
from SoC was done by looking at when the SoC was changing, then the cell was
engaged, and when SoC was not changing, the cell was bypassed.

Estimating the equivalent series resistance. How the equivalent series resistance
(R0) changes with degradation is essential for an accurate model and observing
degradation. Data is available on R0, but only an assumption on how it changes
with degradation [Pinter et al., n.d.]. An accurate estimation will better explain how
R0 behaves with degradation.

Figure 4.1 The results of measured Vterm of a charging cell.
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Figure 4.2 The results of measured experienced current of a charging cell.

Figure 4.1 shows the terminal voltage, and Figure 4.2 shows the experienced
current of the same cell. Figure 4.1 and 4.2 show that when the current is switched
on or off, the voltage changes significantly. The significant change in current and
voltage is used to estimate the R0. The diffusion voltages can also be observed, for
example, at around 5200s, where the voltage decreases quickly and slowly con-
verges when the cell is switched off. Then when it is turned on again, it rises to the
same voltage as before it was switched off.

Figure 4.3 Estimating R0 of a cell for different cycle numbers during one charge.

The data was first estimated using equation (4.1) and then filtered using equation
(4.2), and the results are shown in Table 4.1.

R̂0,k =
∆vk

∆ik
(4.1)
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where R̂0,k is the current R0 estimate at the short interval k. ∆vk is the change in
voltage during the short interval k. ∆ik is the change in current during the short
interval k. The estimation of R0 is taken each time the current changes significantly
when the cell is turned off or on during a charge. Therefore, the estimates of R0
were only taken during the charging of the battery.

R̂ f ilt
0,k = αR̂ f ilt

0,k−1 +(1−α)R̂0,k (4.2)

After the estimation of R̂0, then R̂0 was filtered using equation (4.2) [Plett,
2015], where α is 0 << α < 1. The α chosen was 0.95 to give more weight to
the filtered data than the unfiltered. The reason for α=0.95 is that there are not a
lot of data points, so a smaller α will allow for faster conversion since there are
not a lot of data points for R0 during a charge or discharge. Equation (4.2) uses the
previous filtered R̂0 and then adds on a weight of the new. The larger α is, the more
weight is put on the previous filtered value of R0.

Table 4.1 Results of the filtered estimated R0.

Cycles R̂ f ilt
0,k (mΩ)

120 12.87
124 8.88
156 13.31
172 11.85

The nominal value for R0 is 0.7 mΩ. The values for R0 that was used for the
modeling are presented in Figure 4.4.

Figure 4.4 R0 that was used instead of the estimated R0 [Pinter et al., n.d.].
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The tracking models
This section presents the results from the models that are meant to track the behavior
of the battery. The results presented are of the same cell.

2-RC model with an EKF. When the cells are switched on or off during discharge,
or the charge cannot be controlled during testing, the power can be set, which sets
the current.

Figure 4.5 In the charging cell, blue is measured, red is EKF, and yellow is models
Vterm for the 2-RC model with an EKF.
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Figure 4.6 In the discharging cell, blue is measured, red is EKF, and yellow is
models Vterm for the 2-RC model with an EKF.

The results of the 2-RC model with an EKF are shown in Figure 4.5 for when
the battery is charging and in Figure 4.6 for when the cell is discharging. The model
does not follow the process when the cell is discharging. The only method for know-
ing the SoC in this model is by Coulomb counting the measured current. The model
and the EKF Vterm makes a visible compromise between measurement and model
for discharging. The error between the model and the measurement for discharging
seems larger than for charging. The model seems not well to fit the tested cell.

Model with SoC as a state. The model with SoC as a state has three states in the
model and the EKF, as discussed in Chapter 3.
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Figure 4.7 In the charging cell, blue is measured, red is EKF, and yellow is models
Vterm for the model with SoC as a state.

Figure 4.8 In the discharging cell, blue is measured, red is EKF, and yellow is the
model’s Vterm for the model with SoC as a state.
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The results of the 2-RC model with an EKF are shown in Figure 4.7 for when the
battery is charging and in Figure 4.8 for when the cell is discharging. The model and
the EKF with SoC as a state follow the measurements worse than the 2-RC model
with an EKF for charging, as seen in Figure 4.7. On the other hand, the discharging
seems to be very similar, but with the EKF Vterm being closer than the measurements
and with a lower noise magnitude as seen in Figure 4.8 than the 2-RC model with
an EKF. The model and the EKF follow the terminal voltage Vterm worse than the
model without SoC as a state.

Figure 4.9 The results of SoC for the charging cell, blue is EKF, red is model
(Coulumb counted) for the model with SoC as a state.
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Figure 4.10 The results of SoC for the discharging cell, blue is EKF, red is model
(Coulumb counted) for the model with SoC as a state.

The results of the 2-RC model with an EKF are shown in Figure 4.9 for when
the battery is charging, and Figure 4.10 for when the cell is discharging. The SoC
is shown here from the model’s state and the estimated state from the EKF. The
estimated SoC from the EKF seems to follow the SoC curve from the model well
for charging, as seen in Figure 4.9. On the other hand, discharging the results for
the estimated SoC seems unreasonable, as seen in Figure 4.10, since a negative SoC
is not possible.
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Figure 4.11 The states x1 (in blue) and x2 (in orange) from the model for a cell
being discharged.

Figure 4.12 The states x1 (in blue) and x2 (in orange) from the EKF for a cell being
discharged. The two estimated states are the same, so only x2 (in orange) is visible.

Figure 4.11 shows how the diffusion voltages V1 and V2, which are the states
x1 and x2, behave in the model. Figure 4.12 shows how the estimated diffusion
voltages V̂1 and V̂2, which are the states x̂1 and x̂2, behave in the EKF. The two
estimated states are the same, so only x2 (in orange) is visible. The estimated states
differ from the model states by a factor of three.
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Model of 2-RC and SoC as the only state in the EKF. The model with SoC as a
state has two states in the model and one in the EKF, as discussed in Chapter 3.

Figure 4.13 Results for the charging cell, blue is measured, red is EKF, and yellow
is models Vterm from the model of 2-RC and SoC as the only state in the EKF.

Figure 4.14 Results for the discharging cell, blue is measured, red is EKF, and
yellow is models Vterm from the model of 2-RC and SoC as the only state in the
EKF.

The charging cell in Figure 4.13 is very similar to the plot for the model with
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SoC as a state in Figure 4.7. The discharging cycle for this model shown in Figure
4.14, looks very different from the discharging plot for the model with SoC as a
state in Figure 4.8.

Figure 4.15 The results of SoC for the charging cell, blue is EKF, red is Coulomb
counted from the model of 2-RC and SoC as the only state in the EKF.

Figure 4.16 The results of SoC for the discharging cell, blue is EKF, red is
Coulomb counted from the model of 2-RC and SoC as the only state in the EKF.

The SoC can be computed in two different ways in this model. First, the SoC
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can be acquired from Coulomb counting. The other is the estimated SoC from the
EKF. The estimated SoC from the EKF seems to follow the SoC curve better with
only one state in the EKF than with three states in the model and three states in
the EKF. The SoC computed from Coulomb counting and estimation for a charging
cell can be seen in Figure 4.15 and for a discharging cell in Figure 4.16. The differ-
ence between the EKF and Coulomb counted SoC seems to be larger than for the
discharging cell.

Degrading model
The degrading model attempted to simulate how a battery would degrade as it was
being cycled. The results of simulations of the change in terminal voltage of the
battery as it is being cycled and charged are presented in Figure 4.17 and for dis-
charging in Figure 4.18.

Figure 4.17 The results of Vterm for the charging cell, blue is 1 cycle, red is 100
cycles and yellow is 200 cycles from the degrading model.
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Figure 4.18 The results of Vterm for the discharging cell, blue is 1 cycle, red is 100
cycles and yellow is 200 cycles from the degrading model.

The simulated degrading model has a DoD of 80%. The terminal voltage Vterm
behaves similarly, even with degradation. However, it stops earlier for a cell with a
higher number of cycles than the one with a lower number of cycles. The terminal
voltage is shorter for a degraded cell for the charging and discharging cells. The
result of the simulated capacity for a different amount of cycles run is presented in
Table 4.2.

Table 4.2 The results of the capacity from the degrading model

Cycles Qu,ch(Ah) Qu,ch(Wh) Qu,dis(Ah) Qu,dis(Wh)
1 85.59 286.08 85.58 281.72

100 82.91 277.03 83.11 273.73
200 80.48 267.68 81.30 267.45

The result of the simulated SoH for a different amount of cycles run is presented
in Table 4.3.

Table 4.3 The results of the SoH from the degrading model

Cycles SoHAh,ch(%) SoHWh,ch(%) SoHAh,di(%) SoHWh,dis(%)
1 99.99 99.99 99.99 99.99

100 96.86 96.83 97.09 97.15
200 94.02 93.56 94.98 94.92
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The nominal used capacity in Ah (Qu,nom,Ah) to calculate the SoH is 80% of the
nominal capacity Qnom,Ah = 107 Ah, so Quse f ul,nom,Ah= 85.6 Ah.

The nominal used capacity in Wh used for charging is (Qu,nom,Ah) to calculate
the SoH is 80% of the nominal capacity Qnom,Wh = 357.63 Wh so Quse f ul,nom,Wh=
286.1 Wh.

The nominal used capacity in Wh used for discharging is (Qu,nom,Wh) to calculate
the SoH is 80% of the nominal capacity Qnom,Wh = 352.19 Wh so Quse f ul,nom,Wh=
281.75 Wh.

Parameter identification
To estimate the states in the different models, an EKF has been used. The EKF
allowed for state estimation for a non-linear system to correct the model error. Be-
sides using an EKF to estimate the states, the capacity was estimated to determine
SoH.

Estimating capacity and energy from coulomb counting and power counting.
The results presented in Figures 4.19, 4.20 4.21, 4.22, 4.23 and 4.24 are from the
measurements of all the cells in the battery system.

Figure 4.19 The results of useful Q in Ah all cells for three different cycles for the
charging battery.
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Figure 4.20 The results of useful Q in Ah all cells for three different cycles for the
discharging battery.

Figures 4.19 and 4.20 show the capacity of all 297 cells after being tested for
84, 100 and 200 cycles. The cells look to have formed two or three groups with a
capacity of around 67Ah, 75Ah, and 90Ah for a charging battery. When the battery
is discharging, then the capacity seems more spread out.

Figure 4.21 The useful capacity of a charging cell in Ah for all cells in the battery.
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Figure 4.22 The useful capacity of a discharging cell in Ah for all cells in the
battery.

Figure 4.23 The useful capacity of a charging cell in Wh for all cells in the battery.
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Figure 4.24 The useful capacity of a discharging cell in Wh for all cells in the
battery.

In Figures 4.21, 4.22, 4.23 and 4.24, all the useful capacities from all the cells
are shown in Ah and Wh for charging and discharging cells. The black dotted line
above the box shows the upper adjacent. The black dotted line below the box shows
the lower adjacent. The bottom of the box shows the 25th percentile. The top of the
box shows the 75th percentile. The red line shows the median and the red crosses
show the outliers of the data.

Estimating capacity from RLS and WLS. Table 4.4 and Figures 4.25 and 4.26
show the results from the capacity estimates using WLS and RLS. The variables xi
are taken from the SoC from the EKF from the model with only one state in the
EKF. The variables yi are taken from the current from the EKF from the model with
only one state in the EKF. The variables xi and yi are taken when the SoC changes
with 0.5%.
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Table 4.4 The results from an estimated capacity and SoH from different amounts
of cycles made on one battery cell. The table shows the results of the estimated
capacity using WLS and RLS.

Cycles Qc (Ah) Qwls (Ah) SoHc (%) SoHwls (%)
84 109.35 109.38 102.20 102.22
100 110.78 110.34 103.53 103.13
120 109.86 109.98 102.67 102.79
124 109.24 109.61 102.09 102.44
156 110.26 110.18 103.05 102.97
172 108.33 108.45 101.24 101.35
180 116.06 110.04 108.47 102.84
184 112.30 111.86 104.95 104.54
200 111.31 110.09 104.03 102.86

The current for the 84th and the 120th cycles was around 32A, while the current
for the rest was around 37.5A.

In Table 4.4, Qc is the estimated total capacity in Ah using equation (3.46) where
c1 and c2 are determined as described in Chapter 3. Qwls is the capacity calculated
using weighted least squares. SoHc is the SoH using Qc and SoHwls is the SoH using
Qwls. The WLS and the RLS are only computed for a charging cell. The nominal
capacity used to calculate SoH is 107Ah.

Figure 4.25 Estimated capacity Qc from RLS for one cell for three different cells.
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Figure 4.26 Estimated Capacity Qwls from WLS for one cell for three different
cells.

Figure 4.25 present the results of the estimated capacity from a different number
of cycles performed on the battery using RLS. Figure 4.26 presents the estimated
capacity results from a different number of cycles performed on the battery using
WLS. The results of both RLS and WLS behave stochastically and seem to have
large errors. Cell 7 for both RLS and WLS seems to have provided the most reliable
and stable results out of the three cells presented.

Validating the model. The validation was carried out by calculating the R2 of
the WLS. Then, the Residual sum of squares (RSS) was calculated using equation
(3.50). The total sum of squares (TSS) was calculated using equation (3.49). The
R2 was calculated using equation (3.48) and the RSS and TSS results. The standard
deviation of the residual (σR) was calculated using equation (3.51). The results are
presented in Table 4.5.

Table 4.5 Results used to validate WLS

TSS 20667
RSS 34.2966
R2 0.9983
Qch 0.0017
σR 0.5916
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Discussion

This chapter will discuss the results and what they might imply. First, the estima-
tion of R0 appeared unreliable, so the original values for R0 were used. The model
was updated to do capacity estimation and follow Vterm as well as possible. The es-
timation results will be discussed. Lastly, the challenges with the entire project are
discussed.

Estimating the equivalent series resistance. As seen in Chapter 4, estimating the
equivalent series resistance (R0) proved challenging. The BMS controls the battery
cells and engages or bypasses them. The number of measurements that can be taken
is limited by the BMS. Since the change in current needs to be significant, the mea-
surements can only be taken when the battery cell is engaged or bypassed. The more
recorded measurements, the more accurate our estimation will be. The results of the
estimated R0 presented in Figure 4.3 do not show any clear sign of degradation. As
mentioned in [Xiong and Shen, n.d.], the battery is considered at its EoL when the
R0 has doubled. An increase in R0 might indicate that the R0 might increase as the
battery ages. However, an increase in R0 is not visible in Figure 4.3. The partial
reason why this is not visible might be that the number of cycles tested (200 cycles,
which is at its EoL after 2000 cycles) is not large enough for a change in R0 to be
observed. Another partial reason is that the estimations of R0 have a considerable
error. The filtered results of R0 as shown in Table 4.1 and the nominal R0 of the
battery is at 0.7mΩ, and if it is considered at its EoL when R0 has doubled, then the
EoL is when R0 = 1.4mΩ. In Table 4.1, R0 is not only too high but R0 increases and
decreases with the increase in cycles run. A possibility is that R0 has not changed
significantly for a change to be observed and that the measurements are wrong. The
uncertainty in the estimation of R0 resulted in the estimation of R0 not being used in
the thesis, but an approximation of how R0 would change with the degradation was
used in the degrading model. The estimate of R0 is wrong because R0 is too high
compared to the estimated useful capacity of the battery. During the charge and dis-
charge, R0 changes with SoC and temperature. In order to perform a more accurate
estimation of R0, the SoC and temperature would have to be included, along with
more cell switching, to get more data to determine R0.
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2-RC model with an EKF
As shown in Figures 4.5 and 4.6, the model for when the battery is charging fol-
lows the measured results much better than the discharging plot. The difference
between the battery charging results could be that the values for R0, R1, R2, C1, and
C2 are closer to the actual values for when the battery is charging than discharg-
ing. The difference between the charging and the discharging results could also be
due to the different efficiency of charging and discharging the battery. It could also
be that degradation is more visible when the battery discharges than for charging.
The difference between the model and the actual results is signs of degradation.
This assumption can only be made if the model is perfect. The model does not con-
sider degradation. The EKF considers the model’s measurements and results and
attempts to estimate the correct state values. The terminal voltage (Vterm) from the
EKF in Figure 4.5 is not very noisy, but the Vterm from the EKF in Figure 4.6 is very
noisy. The reason for the noise is that the value for the measurement covariance is
smaller for the discharging EKF than for the charging EKF. Smaller measurement
noise covariance makes the EKF trust the measurements more for discharging than
charging and attempts to follow the measurements more. However, since the model
has a significant error for discharging, the EKF becomes worse at filtering the noise.

The only method to know the SoC of this model is Coulomb counting. Only es-
timating the SoC from Coulomb counting limits the capacity estimation techniques
that can be used for this mode. The only way of estimating the capacity was by
Coulomb counting or Watt counting.

Model with SoC as a state
The third state in the model was introduced to estimate the SoC in ways other than
Coulomb counting. When the SoC was added as a state, it allowed the EKF to es-
timate the SoC. The model is a bit off with the third state; the models Vterm has a
more significant error in the start of charge and a similar error in discharge with three
states in Figures 4.7 and 4.8 compared to the model with two states in Figures 4.5
and 4.6. For discharging, the EKF is in between the model and the measurements,
which is desired. From Figures 4.7 and 4.8, it seems like the discharging model is
better than the charging model. However, with the SoC, as shown in Figures 4.9
and 4.10, the charging model follows the measurements better than the discharging.
Therefore, the SoC for discharging is a clear error in the model, and the EKF’s SoC
should not be negative. A possible reason for the significant error is that the dis-
charging model has a smaller measurement noise covariance than the charging. The
smaller measurement noise covariance allows the Vterm from the EKF to follow the
measurements of Vterm closer but also picks up some of the noise from the measure-
ments. The EKF deviates from the model, which might be why the SoC state in the
EKF deviates from the Coulomb-counted SoC. The reason for this error could be
that the EKF attempts to correct the values of the voltage with the values of the SoC
and finds correlations between them that do not exist. The significant error makes
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the EKF compensate for the error more that it changes the SoC so drastically that it
becomes negative. Since the SoC becomes negative, it indicates something is wrong
with the model.

Model of 2-RC and SoC as the only state in the EKF
The 2-RC model and SoC as the only state in the EKF can follow the measuments
better than when the EKF had three states, especially for SoC as seen in Figure
4.10 compared to Figure 4.8. This model is more simplistic since it only has one
state and might make it easier for the EKF to estimate the state with less error.
The model of 2-RC and SoC as the only state in the EKF has a higher measurement
noise covariance, allowing it to trust the model more and the measurements less. The
higher measurement noise covariance might be one reason why this model follows
the Coulomb counted SOC better than the model with three states in the EKF. This
model and EKF Vterm follow the measurements of Vterm well for charging, and the
EKF Vterm follows the model Vterm well for discharging, but the model and EKF
has a more significant error to the measurements of Vterm for discharging. The error
might be primarily due to the model being slightly off for discharging compared to
charging. The Voc affects the model to a large extent, so Voc might be prone to a more
significant error for discharging than charging. The Voc was used from previous data
[Pinter et al., n.d.], and the Voc might need to be redone for discharging the cell. The
SoC estimated with the EKF followed the Coulumb counted SoC better as seen
in Figures 4.15 and 4.16 than the model with three states and three states in the
EKF as seen in Figures 4.9 and 4.10. However, it has a more significant error for
discharging, which might be due to the model being more off than discharging. The
EKF has problems handling when the cell is suddenly switched off, and the SoC is
not supposed to change. This error might be due to Vterm still changing even when
no current exists. The EKF filters the signal well and can handle switching the cell
off and the constant error due to not having a perfect model. The switching of the
cell can be seen in Figures 4.13 and 4.14 when Vterm suddenly increases or decreases
or in Figures 4.15 and 4.16 when the SoC does not increase or decrease. The error
between the SoC from the model and the EKF and the error between the measured
Vterm and the modeled and EKF Vterm might be due to changes in the capacity that
might indicate changes in SoH, but it could also be due to modeling errors.

Degrading model
The degrading model has made some significant assumptions about how the battery
degrades. However, validating the accuracy of the degrading model is complex and
would require either opening up the battery or fully degrading the battery [Xiong
and Shen, n.d.].

From the simulation, the battery has degraded by around 8% after 200 cycles.
The degradation rate implies that after 2000 cycles, it will have degraded 80% since
the assumption is made that it will degrade linearly until 2000 cycles. How the bat-
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tery will degrade after 2000 cycles is entirely unknown to the author. A specific test
on the cell where it is degraded past 2000 cycles would be necessary to determine
how the battery degrades after 2000 cycles.

The capacity was calculated in Ah and Wh for the data received from the de-
grading model for 1, 100, and 200 cycles. The results in Table 4.2 shows how the
useful capacity slowly decreases as the number of cycles increases, as expected. The
results of the SoH in Table 4.3 also show how the SoH decreases with the number
of cycles as expected. Just because this is what the degrading model illustrates does
not mean that this is how the battery will behave in reality.

The degrading model gave a nominal capacity Qnom,Wh for charging and dis-
charging and a useful nominal capacity Qu,nom,Wh for charging and discharging.
Since the technical specification did not specify a capacity in Wh, this result seems
more realistic than using the lower or higher operational voltage to estimate a large
span for the nominal capacity in Wh.

The degrading model does not switch on and off the cells during charge and
discharge as the BMS does in the actual charging and discharging of the battery.
Switching the cell on and off does not affect the voltage during operations, but how
it affects degradation is unknown to the author.

SoH estimation
Estimating the SoH using the battery’s capacity in Wh proved difficult since the
nominal capacity in Wh of the battery is not given by the supplier of the battery.
What exists is the capacity in Ah, which is 100Ah, and the operational voltage
range, which is between 2.8V and 3.8V. Since the tests are performed at a lower C-
rate (around C/3), the nominal capacity increases to around 107Ah, the operational
voltage, however, is the same. However, with the voltage ranges, the battery’s energy
can be either 299.6Wh or 406.6Wh, which is a considerable range. From the degrad-
ing model, a nominal capacity in Wh was acquired to be Qnom,Wh = 356.63Wh for
charging and Qnom,Wh = 352.19Wh for discharging. This nominal capacity seems
more reasonable because it implies a Vterm of around 3.3V, in the middle of the op-
erating voltage range. Therefore, the Qnom,Wh from the degrading model has been
used to determine the SoH from the capacity in Wh.

SoH estimation from Coulomb and Watt counting. Estimating the capacity from
Coulomb counting proved challenging for determining whether capacity and the
SoH have changed. From Figures 4.19 and 4.20, it can be observed that the use-
ful capacity is very different for all 297 cells. The difference in useful capacity
might be due to the cells being at different levels of SoH or that the BMS priori-
tized some cells more than others. The difference in useful capacity might also be
that the cells were differently degraded when inserted in the whole battery system.
From Figure 4.19, the cell’s capacity can be classified into three different regions
for charging, one large region with a capacity of 67Ah, another smaller one with
almost 75Ah, and a third with above 90Ah for 84 to 100 cycles. For 200 cycles,
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there seems to be one region around 70Ah, one smaller around 77Ah, and a small
above 90Ah. From Figure 4.20 for discharging then, there seem to be two clusters,
one with a capacity of around 68 Ah and another around 78Ah for all cycles. How-
ever, between 68Ah and 78Ah are more spread out than for the charging. The more
extensive spread for discharging and the more apparent regions for charging might
explain why the charging box plots in Figures 4.21 and 4.23 have outliers while
the discharging box plots in Figure 4.22 and 4.24 do not have any outliers. Why
this region occurs is unknown to the author. It could have to do with the balancing
algorithm of the BMS or the cells being degraded and performed differently.

Any change in the useful capacity in Ah or Wh is challenging to observe from
the Figures 4.21, 4.22, 4.23 and 4.23 that illustrate the estimated useful capacity.
Any change in useful capacity is difficult to observe because the useful capacity
fluctuates, increases, and decreases sporadically with the number of cycles. The
sporadic change in capacity makes it difficult to determine whether the capacity
changes because of degradation or if the capacity changes due to the BMS. For
example, there seem to be signs of degradation for the discharging cells until 184
cycles, and then the capacity increased. The capacity of a battery is known to in-
crease if it has been resting for a long time and then is used extensively again, but
the lack of knowledge of how the BMS works makes it challenging to determine if
this is the case.

For the SoH to be calculated, the useful capacity is divided by the nominal useful
capacity. The nominal useful capacity is 85.6Ah for charging and discharging, and
it was estimated to be 289.1Wh for charging and 281.75Wh for discharging. The
SoH is more than 100% for some cells and less than 80% for others. Both an SoH
over 100% and less than 80% are unreasonable. Since the capacity fluctuates with
the number of cycles and the spread is so large, no conclusion can be drawn from
the current SoH or the change of SoH with this method and the number of cycles
performed.

SoH estimation from WLS and RLS. The capacity was estimated from the results
acquired from the model with two states and one state in the EKF, the SoC. Table 4.4
and Figures 4.25 and 4.26 illustrate the results of the capacity estimation using WLS
and RLS. From Figures 4.25 and 4.26, the capacity seems not to change significantly
with more cycles performed, except after 180 cycles, then the capacity seems to
increase. The expectation is that the capacity will decrease with more cycles run on
the battery. However, the capacity increase after 180 cycles when considering cell
200 in Figure 4.25 would indicate a capacity increase of almost 160%. The high
capacity is unreasonable and indicates an error in the capacity estimation. Cell 7
in Figures 4.25 and 4.26 does not change significantly and is around 110 Ah. The
capacity fluctuates slightly but does not seem to decrease. If the capacity estimations
for cell 7 in Figures 4.25 and 4.26 are correct, the state of health would be slightly
larger than 100%. An SoH larger than 100% would indicate that the estimation of
the nominal capacity of 107Ah has a small error and that the nominal capacity is
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larger than 107Ah.
The testing stayed more or less the same for all cycles, charged and discharged

at around 37.5A, except for cycles 84 and 120. After that, it was charged and dis-
charged at 32A. As mentioned earlier, discharging at a lower C-rate should increase
the battery’s capacity. However, this is not the case from the results in Figures 4.25
and 4.26. Therefore, with fewer cycles and a lower C-rate, the battery’s capacity is
expected to be higher than with a higher C-rate and more cycles performed.

The WLS assumes measurement noise on yi but not on xi. If there is more mea-
surement noise on xi than yi, then the values for xi and yi could be switched. The new
yi = xi and new xi = yi. Changing xi and yi could give different results, especially if
there is more measurement noise on xi than yi.

Validating the model. The validation was done using the R2 to determine the
model’s goodness of fit. As seen in the results, the value of R2 is high, and 1-R2

is larger than 0.001. Therefore, the results for R2 indicated that the model was ac-
ceptable. However, the values for the capacity estimation are off for some of the
cells, such as cell 200, after 200 cycles. The standard deviation of the residual (σR)
was calculated to be 0.5916, which is small for the residual values and indicates
that the error is relatively small. Therefore, the method to estimate the capacity us-
ing WLS and RLS might be accurate, but the values received for SoC might need
to be revised. Figures 4.13 and 4.14 show that the model deviates from the actual
measurements. The model shows a higher Vterm than the measurements and might
explain why the capacity is larger than the nominal for the estimation. With a more
accurate model, capacity estimations should be more accurate.

Limitation of the EKF. The EKF results depend on the measurement noise covari-
ance, process noise covariance, and output y. The smaller the process noise covari-
ance is, the more trust in the model. The smaller the measurement noise covariance
is, the more trust in the measurements. The accuracy of the EKF correlates with the
model’s accuracy. Since there is an almost constant error between the model and the
measurements, the model is imperfect. The imperfect model limits the accuracy of
the EKF since it depends on the model. The process noise covariance can be made
more prominent and the measurement noise covariance smaller. Still, the state esti-
mation attempts to compensate for the error, and the state estimations can no longer
be trusted. This phenomenon is known as filter divergence and can be seen in Figure
4.10 that illustrates the SoC for discharging for the model with three states where
SoC is one state [Robert Grover Brown, 2012].

Summary
The battery model is a phenomenological model of the battery. It is difficult to cap-
ture all the battery dynamics, so the model is an approximation. The model behaves
well and follows the process well for charging the battery. As the SoH change, the
model’s parameters are expected to change. The model’s parameters could be up-
dated continuously with changes in SoH. However, this requires specific tests and
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is very tedious. Instead, the change in parameters could be used to determine the
SoH, and the validation for this would be that the model follows the measurements
perfectly.

The significant error when discharging the battery could be due to multiple fac-
tors. The error between discharging and charging could imply that as the battery
ages, the performance of the battery when it charges and discharges deviates inde-
pendently of each other. The parameters used in the model could also be different
when charging and discharging the battery. The Voc was assumed not to change
when creating the model. The Voc significantly influences the model’s performance
and can lead to huge errors. The Voc was acquired through previous data. To gather
results for the Voc changes with degradation, then specific charging and discharging
test would have to be performed. These tests would be extremely time-consuming
as the battery would have to be stopped during charge and discharge until a steady
state is reached to record the Voc.

The estimator that was used to estimate the correct parameters was an EKF.
From the results, the noise is Gaussian noise, where a Kalman filter is the optimal
observer for a linear model. The process is, however, non-linear, so an EKF was
applied to handle the non-linear system [Zucconi, n.d.]. Since the Kalman filter can
be used for smoothing and estimating, it is an excellent option. The EKF worked
well for filtering the data, but the model had errors that caused the EKF to deviate.
The EKF works well when the model is known. However, since the model is not
well known, the EKF will not work well. The initial guess did not significantly
influence the result, but the estimation error greatly affected the results. Therefore,
the EKF also needs to perform some iterations to create and achieve high accuracy.
However, this is fine since charging and discharging a battery is slow. The most
significant problem with using the EKF is the model’s accuracy. The less accuracy
of the model, the lower the estimation accuracy will be.

Challenges
From the state-of-the-art review, it is apparent that there is no unified definition of
SoH. The difference in SoH makes it challenging to know how well an acquired
battery will perform and for how long and when acquiring a battery. The technical
specification does not clarify what the supplier has used for EoL. However, when
considering batteries, the EoL of most batteries is when the capacity has dropped
80% compared to the nominal. Not knowing when the battery is considered at its
EoL makes it challenging to predict the total lifetime of the battery.

The battery that has been used consists of LFP battery cells. The Voc − SoC
curve is exceptionally flat for LFP cells. The flat Voc − SoC, along with the slow
parameter changes, makes it difficult to use a dynamic filter such as the EKF [Tran
et al., 2021].

The battery system could be better known. The cells that make up the battery
system have little to previous knowledge of the cells. Where the cells originally
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come from and how much they have been used is unknown. Little previous knowl-
edge of the cells made it difficult to create an accurate model of a degrading battery
since the performance of a nominal battery cell is missing. The tests that could be
performed needed to be more comprehensive to accurately estimate some parame-
ters of the model, such as the open circuit voltage.

The cell’s current rapidly increases at the start of a charge or a discharge. The
rapid increase in current might have been a cause for some of the fuses in the in-
verter/rectifier to break. The breaking of the fuses made it impossible to charge and
discharge the battery, and testing stopped for a couple of days until the fuse was
fixed. In addition, there was a problem with controlling the battery. The VPN con-
nection was lost and did not work just to restart the entire system. The solution to
the problem was to switch the router on the battery system, and then the problem
with the VPN connection no longer occurred, and testing could proceed as usual.
The cause of the problem might have been due to the router breaking or the sim
card in the router breaking or overusing data. However, stopping the tests limited
the possibility of doing enough tests to see a degradation of the battery’s cells.
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Conclusion

This chapter will summarize and conclude the thesis. The chapter will start by con-
cluding the estimation and definition of SoH. Then the challenges with the modeling
and capacity estimation will be explained. Finally, this chapter will conclude by ex-
plaining what improvements are viable.

The complexity of the lithium iron phosphate battery and the need for prior
knowledge of the battery made it challenging to determine the SoH of the battery
system. Furthermore, validating the results of the SoH is very challenging. To the
author, there is no known way of validating exactly how much the battery will de-
grade or how much the battery has degraded without prior knowledge of the battery
with the method used in this thesis and the testing equipment. Prior knowledge of
the battery system at its beginning of life is vital for accurately determining the SoH
of the battery with the method used.

There is no unified definition for determining the SoH or a definition for SoH in
literature. The most common way of defining SoH in literature is from capacity fade
or increase in R0. Most methods used to determine SoH use specific and controlled
testing environments, such as with only one cell and in a temperature chamber.
By deviating from these methods, SoH became hard to determine from both using
the change in useful capacity compared to the nominal, comparing the change in
total capacity compared to the nominal, and from changes in the equivalent series
resistance compared to the nominal.

The idea at the start of the thesis was to compare the battery’s useful capacity
to the battery’s nominal useful capacity. However, since the BMS balancing algo-
rithm switches on and off the cells unpredictably, the estimated useful capacity of
the cells became unreliable, so the SoH estimation became unreliable. Instead, the
method of using WLS and RLS seemed more promising. However, this was also
unsuccessful, with a lack of knowledge of the nominal capacity and no significant
change observed in the capacity. The inaccuracy of the capacity estimation using
WLS and RLS are largely due to the model’s inaccuracy. A model with higher ac-
curacy would allow for a more accurate capacity estimate. Other models with an
unscented Kalman filter or dual estimation techniques might give better results, as
discussed by Greggory Plett [Plett, 2015].
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Deriving a model of the battery was challenging but seemed promising. It was
an iterative process where the models were adjusted and changed to optimize them.
The result is a model that could follow the terminal voltage and estimate the SoC.
More testing on the model would be necessary to validate the model.

The results that could be obtained are a very rough estimate of the SoH of the
battery, and no change can be seen with confidence. The low change in SoH lim-
its the ability to predict degradation, and the only model to predict degradation is
the degrading model. It can be used to guess how much the battery has degraded
and predict how much more it can be used. However, the degrading model did not
correlate with the test results, which might be because large assumptions have been
made on how the battery would degrade in the degrading model. Changes in the C-
rate will affect the battery unpredictably. From the literature, a C-rate should result
in a lower capacity. However, this conclusion can not be drawn from the acquired
results.

Using the WLS and RLS methods, the current capacity might have been deter-
mined for some of the cells but had a significant error in some cells. Even if WLS or
RLS is an efficient way of estimating the capacity, the SoH can only be determined
if the nominal capacity is known. It can, however, be used to see changes in capacity
but not to determine SoH if not the nominal capacity is known.

Future work
A difficulty in creating the battery model is the lack of previous knowledge. What
could have been done is to take one cell from the entire battery system and per-
form extensive testing on one cell to find the initial parameters to see how one cell
degrades by itself. The complexity that comes with 297 cells and a BMS that con-
trols the performance of the cells makes it difficult to know if it is that cell that
has degraded or the BMS that has switched the cell off for whatever reason. With
knowledge of how one cell behaves as it is degraded, it would be easier to scale up
and apply it to the entire system. A more robust mathematical algorithm could be
implemented and tested instead of WLS and RLS. A more robust algorithm might
lead to more likely results for capacity estimation.

The battery could be tested more. More testing might cause a significant change
in capacity. A significant change in capacity would allow for changes in SoH to
be detected. More testing also creates more data that could be used to increase the
accuracy of the estimation of SoH. More data also allows for other methods for
SoH estimation, such as implementing ML in DD-driven methods that require large
amounts of data.

The data processing took a long time. The vast amount of data became too much
to handle. The battery has been discharged for 200 cycles; one cycle implies one
discharge and one charge. One cycle takes around 5 hours to complete. There are
297 cells, and each cell’s measurements are taken every second on the temperature,
current, SoC, voltage, and engagement. A more efficient way of handling the data

81



Chapter 6. Conclusion

would make this project easier and more information could be extracted from the
data.

Other tests could be implemented, such as simulating the effect that the grid and
charging of EV would have on the SoH of the battery. The effect on the battery could
also be implemented if used for frequency control. For example, the fast responses
needed for the battery can create large currents that might affect the SoH of the
battery. This testing would require a specific test that would take a very long time.
To perform these tests, the model for estimating the SoH would need to be validated.
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