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Abstract 

Predicting the stock market has been a longstanding topic of interest in financial research. It 

is regarded as a highly challenging but important task given the vital role the financial 

markets play in shaping the global economies. In this thesis, the goal is to predict the 

movement of the S&P 500 Index using machine learning methods. To this end, we apply two 

machine learning algorithms, random forest, and logistic regression, to financial data in a 

quest to try and predict if the S&P 500 Index will move in a positive or negative direction the 

following day. To further test the validity of the best performing machine learning model in 

our study, we develop a dynamic trading strategy where the predictions of the model act as an 

investment signal. If the model predicts that the S&P 500 Index will move in a positive 

direction the following day, we invest in equities (SPDR S&P 500 ETF Trust). Conversely, if 

the model predicts a negative movement, we instead invest in fixed income (Vanguard Total 

Bond Market ETF). We assess the performance of the trading strategy by comparing its 

Sharpe ratio to a second strategy, a traditional portfolio that holds 60% equities and 40% 

fixed income. 

Keywords: Machine Learning, S&P 500 Index, Random Forest, Logistic Regression 
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1. Introduction 

Predicting the directional movement of the stock market has been a longstanding topic of 

interest in financial research. It is regarded as a highly difficult but important task given the 

vital role the financial markets play in shaping the global economies. Portfolio managers are 

interested in the ongoing research in this field due to the practical implications that would 

follow (Huenermund, Kaminski & Schmitt, 2021). Investors and asset managers who are able 

to accurately predict the financial markets are positioned to gain an invaluable advantage in 

regards to developing investment strategies capable of generating high returns while 

maintaining low risk, ultimately providing value to their stakeholders. 

However, according to the most stringent form of the efficient market hypothesis (Fama, 

1970) it is not possible to predict the stock market. The efficient market hypothesis (EMH) 

suggests that financial markets are efficient, and that all available information already is 

reflected in the price of a security. This suggests that any attempt to predict market 

movements based on historical data or other available information would be unsuccessful. 

Another important theory in financial economics pertaining to the predictability of the stock 

market is the random walk hypothesis. It extends the notion of the EMH by suggesting that 

changes in asset prices are completely random and unpredictable. Although these theories 

provide a foundational framework, they have also influenced a body of literature seeking to 

test and challenge their stance. Lo and Mackinlay (1988) found evidence supporting the 

notion that weekly returns do not follow random walks. Drawing from the field of 

behavioural finance, Lo (2004) introduced the adaptive market hypothesis which suggests 

that markets can switch between periods of efficiency and inefficiency, ultimately leaving 

room for market prediction.  

Traditional statistical methods such as autoregressive integrated moving average (ARIMA) 

has been the dominant approach for predicting stock prices and returns (Efendi, Arbaiy & 

Deris, 2018). Although such time series methods have a solid theoretical foundation, they 

have a limited capacity to capture patterns in complex non-linear data (Zhong & Enke, 2017). 

The emergence of machine learning techniques and the increase in computational power have 

paved the way for a paradigm shift in regards to stock market prediction. Unlike the 

traditional statistical methods, machine learning algorithms are able to capture non-linear 

patterns in complex dataset which makes them an interesting alternative (Chen & Hao, 2017). 
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In this thesis, the goal is to predict the movement of the S&P 500 Index with the highest 

accuracy possible to investigate the feasibility of using machine learning in achieving this 

task. To this end, we apply two machine learning algorithms, as random forest, and logistic 

regression, to financial data in a quest to try and predict if the S&P 500 Index will move in a 

positive or negative direction the following day. Thus, we frame our research question as a 

binary classification problem. Evaluation metrics are then used to assess model performance. 

Achieving an accuracy above 50% signifies that a model is performing better than random 

chance. In order to further test the validity of the best performing machine learning model in 

our study, we develop a dynamic trading strategy where the predictions of the model act as an 

investment signal. If the model predicts that the S&P 500 Index will move in a positive 

direction the following day, we invest in equities (SPDR S&P 500 ETF Trust). Conversely, if 

the model predicts a negative movement, we instead invest in fixed income (Vanguard Total 

Bond Market ETF). We assess the performance of the trading strategy by comparing its 

Sharpe ratio to a second strategy, a traditional portfolio that holds 60% equities and 40% 

fixed income (Rekenthaler & J, 2022). While there are numerous studies that apply machine 

learning algorithms to predict the movement of the stock market, we contribute to the 

existing literature by expanding our research beyond prediction accuracy. By developing a 

simple trading strategy based on the predictions of the best performing model, we include a 

practical way of analyzing how well the predictions translate into profitable investment 

decisions. 

The remainder of this thesis is structured as follows: In section 2, we provide an in-depth 

literature review concerning stock market prediction using machine learning. In section 3, we 

describe the data collection, preprocessing, and transformation steps taken to prepare the 

dataset. Transitioning to section 4, we provide a detailed description of the machine learning 

algorithms utilized and the related theory. In section 5, we describe the construction of the 

investment strategies. In, section 6, we present and discuss the empirical results of our study, 

before concluding the thesis in section 7. 
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2. Literature Review 

Predicting the stock market is a difficult and challenging task. Nevertheless, there are 

numerous studies trying to forecast the directional movement of the financial markets. 

Therniaki and Hoseinzade (2013) deployed an ANN model in an attempt to predict the S&P 

500 Index using 27 different economic features. The outcome of the study was positive and 

showed that the ANN model can outperform traditional econometric methods. In the study of 

Shen et al. (2012), the importance of the feature selection process is highlighted. The authors 

include global stock indices, commodities, and exchange rates as features for predicting the 

directional movement of the S&P 500 Index, Hang Seng Index (HSI), and Deutscher 

Aktienindex (DAX).  

Kumar and Thenmozhi (2011) predicted the daily directional movement of the CNX Nifty 

Index using random forest and SVM. The feature space in the study consists of 12 various 

technical indicators such as relative strength index (RSI) and momentum. According to the 

empirical results, the SVM outperforms the random forest model. In a later study, Ballings et 

al. (2015) employed several machine learning algorithms such as LR, RF, AdaBoost and 

SVM, to predict the directional movement of various European equities one year into the 

future. The results of the study show that the random forest was the best performing model. 

In the study by Patel et al. (2015), the authors develop four machine learning models: ANN, 

SVM, random forest, and naïve bays. The partial objective of the study is to predict the 

directional movement of the CNX Nifty Index using technical indicators as features. In the 

first approach, the technical indicators are continuous values. In the subsequent approach, 

they are converted into discreate values. The authors find that the random forest model has 

the highest accuracy for the first approach. However, the accuracy of all prediction models 

improves when the features are discreate. Huang (2019) uses the same technical indicators as 

Patel et al. as features and the same machine learning algorithms to predict the direction of 

the Taiwan Stock Exchange. Interestingly, the author finds that ANN outperforms the other 

models, including the random forest. 

Fisher and Kraus (2018) deployed an LSTM model using stock price data on equities that are 

constituents of the S&P Index to predict their directional movement. The authors of the study 

showed that the LSTM model could derive meaningful insights from financial data. Based on 

the performance metrics used in the study, the LSTM outperformed the random forest and the 

logistic regression. Huang et al. (2005) investigated the feasibility of using SVM to predict 

the weekly directional movement of the NIKKEI 225 Index. The authors compared the SVM 
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with linear discriminant analysis and other alternatives. However, the outcome of the study 

showed that the SVM was the best performing model.  

Basak et al. (2019) explored the feasibility of predicting the movements of ten individual 

stocks by using technical indicators together with two machine learning models, random 

forest, and XGB. Both models performed well, however, the RF outperformed the XGB 

model. Liu et al. (2016) predicted the daily movement of the S&P 500 Index by using an 

SVM model with a radial basis function. In their research, the authors utilized exchange rates 

and commodities as input features. The best performing model achieved an accuracy of 

approximately 62.51%. Di (2014) investigated the possibility of using machine learning to 

predict the trend of the S&P 500 Index. As in the previous mentioned study, Di utilized an 

SVM classification model and 12 technical indicators which provided an accuracy of 56%. In 

(Wang & Choi, 2013), a hybrid approach that combines principal components (PCA) with 

SVM in an attempt to predict the Hang Seng Index is investigated. The study uses the power 

of PCA to conduct feature selection before fitting the SVM model to the selected features. 

The study provided a prediction accuracy of 62.80% 

In light of the reviewed literature, it is evident that this is a challenging but highly relevant 

field of research. However, most of the literature in this section is focused on the predictive 

accuracy the models in the particular studies are able to obtain. With this thesis, we hope to 

contribute to the existing literature by expanding our research slightly beyond only focusing 

on prediction accuracy. By incorporating a simple trading strategy based on the predictions of 

the best performing model, we introduce a practical and tangible way of assessing how well 

the predictions translate into informed investment decisions.  
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3. Data  

This section provides a detailed overview of the data used in the predictive modelling. It 

details the data collection, preprocessing, and transformation procedures conducted in order 

to prepare the data for the machine learning models. Furthermore, the rationale behind the 

feature selection is presented in light of the objective of this study to predict the daily 

movement of the S&P 500 index. 

 

3.1 Data Collection 

The raw data in this research consists of historical prices and levels on financial securities 

and indices, including the S&P 500 Index. All data is in a daily frequency that ranges from 

03.01.2008 to 31.12.2022, resulting in 3783 observations. Furthermore, the data is retrieved 

from Yahoo Finance using the yfinance API available in Python.  

 

In the following section, we detail the data collected with the intention to serve as predictors 

or features in this thesis. Shen et al. (Shen, Jiang & Zhang, 2012) incorporate global indices, 

commodities, and exchange rates as predictors in their research. In this thesis, we follow this 

approach with the aim of capture market dynamics. The Dow Jones Industrial Average 

(DJIA) is a benchmark index that reflects the performance of 30 large U.S. companies across 

different sectors. The inclusion of DJIA is motivated by the expectation that it might capture 

the broader market sentiment. Large technology stocks have the potential to shape market 

trends. By including large individual technology companies like Google, Apple, and 

Amazon, we hope that they can serve as leading indicators for broader market movements, 

given their substantial weight within the S&P 500. The U.S. Dollar Index (DXY) serves as a 

proxy for the performance of the U.S. dollar against other major currencies. As currency 

fluctuations can impact global trade and overall investment sentiment, we include the index 

as it might be a good indicator for the S&P 500’s trajectory. We also include the CBOE 

Volatility Index (VIX). The VIX measures market volatility and investor sentiment. It is 

derived from option prices on the S&P 500 Index and signals the overall market’s 

expectations for volatility over the next 30 days. As high VIX values often correlate with 

market downturns, we hope to capture how changes in the VIX might indicate the directional 

movement of the S&P 500 Index. The 5-year and 10-year CBOE Treasury Note Yield indices 

are included to capture changes in interest rate expectations. Lastly, commodities futures like 

oil, copper, and gold, are included with the motivation being that commodity prices have an 
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impact on the overall economy and therefore, could be good indicators for predicting the 

movement of the S&P 500 Index.  

 

3.2 Data Preprocessing 

3.2.1 Data Cleaning 

Data cleaning is an important step when preparing data intended to be used for predictive 

modelling. A common issue that researchers face is the challenge of missing values in the 

dataset. This can bias the results of machine learning models or negatively impact the 

accuracy of their predictions. In this thesis, all variables that were collected exhibited a 

minimal number of missing values, ranging between 1 and 4 instances. The proportion of 

missing values for each feature was less than 0.01% of the total number of observations. 

Because of the time series nature of the data, we solved this problem by employing the 

forward-fill technique. This technique uses the most recent observed value for a feature to fill 

missing values. Thus, it maintains the temporal sequence in our time series data. 

 

3.2.2 Feature Engineering  

Previous literature has shown that technical indicators can be useful when predicting stock 

prices or market movements (Kara, Acar Boyacioglu & Baykan, 2011). They can capture 

characteristics such as momentum and market trend that potentially could have predictive 

power. Therefore, we utilize the OHLCV data retrieved for the S&P 500 Index to calculate 6 

different technical indicators which we include as features in this study. All indicators are 

calculated using the Pandas TA library. Furthermore, the selection of technical indicators and 

their window lengths is based on previous literature (Patel et al., 2015).  

 

The simple moving average (SMA) is a technical indicator that smooths out price fluctuations 

and captures underlying trends. In this study, we use the 10-day SMA which is a rolling 

average of the closing prices over the last 10 days. The formula for the 10-day SMA can be 

written as: 

 

𝑆𝑀𝐴10  =  
𝐶𝑡 + 𝐶𝑡−1 ⋯ + 𝐶𝑡−9

10
  

 

 

 

(1) 
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Where 𝐶𝑡  is the closing price of an asset at time t. By including the SMA we introduce a 

lagging indicator that has the potential to capture the short-term trend and shifts in 

momentum. 

The weighted moving average (WMA) is an indicator that can be viewed as a compliment to 

the SMA. The WMA assigns weights to the price observations. It assigns higher weights to 

more recent prices, making it more responsive to recent price movements. We use the 10-day 

WMA which can be expressed by the following formula: 

 

𝑊𝑀𝐴10  =  
𝑛𝐶𝑡 + (𝑛 − 1)𝐶𝑡−1 + ⋯ + 𝐶𝑡−9

𝑛 + (𝑛 − 1) + ⋯ + 1
  

 

 

(2) 

Where  𝐶𝑡  is the closing price at time t and n represents the window length which in this case 

is 10 days. 

 

The relative strength index (RSI) is a widely recognized momentum indicator that quantifies 

the magnitude of recent price changes. It helps in recognizing the points where a security is 

overbought or oversold. The formula for RSI can be written as: 

 

𝑅𝑆𝐼 =  100 −  
100

1 + (∑ 𝑈𝑝𝑡−1/𝑛𝑛−1
𝑖=0 )/(∑ 𝐷𝑤𝑡−1/𝑛𝑛−1

𝑖=0 )
  

 

 

(3) 

Where 𝑈𝑝𝑡 represents upward price change and 𝐷𝑤𝑡 stands for downward price change at 

time t. Furthermore, n represents the number of periods which typically is 14 days. This is 

also the window length utilized in this thesis. 

 

The William’s %R is a versatile indicator that similar to the RSI also measures overbought 

and oversold points for a security over a specified period. In this study we use the default 

period of 14 days. The indicator is calculated as the ratio of the difference between the 

highest high and the current closing price to difference between the highest high and the 

lowest low over the selected period. The formula for Williams %R can be expressed as: 

 

𝑊𝑖𝑙𝑙𝑖𝑎𝑚′𝑠 %𝑅 =
𝐻𝑛 − 𝐶𝑡

𝐻𝑛 − 𝐿𝑛
 × 100  

 

 

(4) 
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Where 𝐻𝑛 represents the highest high at time t and 𝐿𝑛 represents the lowest low during the 

same time period. Williams %R yields values between -100 and 0. 

Momentum is a technical indicator that measures the rate of change in a security’s price. It is 

calculated as the difference between the closing price at time t and the closing price at t – k 

where k represents the number of time periods. In this study we use a window length or time 

period of 10 days which also is the default value in the Pandas TA library. Momentum 

provides insights into the strength and direction of price movements. The formula for 

momentum can be expressed as: 

 

 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  𝐶𝑡 − 𝐶𝑡−9  

 

 

(5) 

Where 𝐶𝑡 represents the closing price of the asset or security at the current time period t and 

𝐶𝑡−9 represents the closing price of the same asset 9 trading days earlier. 

 

Stochastic %K is a momentum indicator that compares the current closing price of an asset 

relative to its price range over a selected period. The default value of 14 days is used in this 

thesis. Stochastic %K provides insights into momentum and potential reversal points which 

could help our models capture short-term market trends. The formula for the indicator can be 

written as:  

 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 %𝐾 =  
𝐶𝑡 − 𝐿𝐿𝑡−𝑛

𝐻𝐻𝑡−𝑛 − 𝐿𝐿𝑡−𝑛
  

 

 

(6) 

Where 𝐻𝐻𝑡 and 𝐿𝐿𝑡 represent the highest high and lowest low prices in the past t days 

respectively. 

3.2.3 Target Variable 

In this thesis, we frame the movement of the S&P 500 Index as a binary classification 

problem. To derive the binary classes, we calculate the daily logarithmic returns for the S&P 

500 Index using the following formula: 

 

𝐿𝑜𝑔 𝑅𝑒𝑡𝑢𝑟𝑛𝑡  =  𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
)  

 

(7) 
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Where 𝑃𝑡 is the adjusted closing price of the S&P 500 at time t, and 𝑃𝑡−1 is the adjusted 

closing price of the previous day. 

With the log returns calculated, we categorize each trading day or observation as either “Up” 

or “Down”. An observation is categorized as “Up” if the log return of the S&P 500 Index is 

positive. Conversely, if the log return is negative or equal to zero, we label that observation 

as “Down”. The final step in constructing the target variable involves encoding our two 

classes into a numerical format. We assign the label 1 to the “Up” class, and the label 0 to the 

“Down” class. 

3.2.4 Data Transformation 

An important aspect of working with time series data is to test for stationarity. Non-stationary 

data often show trends, cycles, and other patterns that aren’t stable over time. This can lead to 

the identification of spurious relationships between variables (Brooks, 2008). Furthermore, 

models built on such data might not generalize well as the patterns identified are not 

consistent.  

In order to check the features for stationarity, we utilized the augmented-Dickey Fuller test 

with a significance level of 0.05. All variables apart from the technical indicators and the 

logarithmic return of the S&P 500 Index exhibited non-stationarity. A common approach 

used to detrend non-stationary variables is to take their first difference and, in some cases, 

their second difference (Wooldridge, 2013). In this study, we transform all variables that 

exhibited non-stationarity by taking the logarithmic difference, using the same formula as in 

equation (7). Following the transformations, we completed another round of augmented-

Dickey Fuller tests and observed that all features now appeared to be stationary. 

We standardize all features to ensure that they are on the same scale. This is important as 

differences in scale can lead to biases during the modelling process where variables with 

larger values are favoured. We also lagged all features by one period or day to align them 

with the target variable. This allows us to utilize information available today, to predict the 

directional movement of the S&P 500 Index the following day. After all transformations, we 

have a final dataset that ranges from 07.01.2008 to 31.12.2022, resulting in 3777 

observations, and 18 features. 
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4. Methodology 

4.1 Logistic Regression 

Logistic regression is a common machine learning method which often is applied to solve 

binary classification tasks (Sperandei, 2014). As a linear classifier, it assumes that the 

decision boundaries separating the data points into distinct classes are linear. The model 

predicts the probability of an observation belonging to one of two classes by transforming a 

linear combination of input features using the sigmoid function. The output variable of the 

logistic regression model is restricted to an interval between 0 and 1, allowing it to be 

interpreted as a class probability. The sigmoid function is defined as: 

 

𝑔(𝑧)  =  
1

(1 +  𝑒−𝑧)
 

 

(8) 

In the formula for logistic regression, the 𝑦 represents the binary target variable (1 or 0), 

while 𝑥 is a representation of the input features. The goal of logistic regression is to find the 

best fitting parameters 𝜃 that minimize the difference between the predicted probabilities and 

the actual class labels in the training data. The formula for the logistic regression model can 

be written as: 

𝑝(𝑦 =  1|𝑥;  𝜃)  =  ℎ𝜃(𝑥)  =  𝑔(𝜃𝑇𝑥)  =  
1

1 +  𝑒𝜃𝑇 𝑋
 

 

(9) 

In order to map the output of a logistic regression model to a class label, a decision threshold 

must be defined (Zweig & Campbell, 1993). In this thesis, the default threshold of 0.5 is used 

as it maximizes the accuracy for balanced datasets. If the output of the logistic regression 

model is greater than 0.5, the model assigns the observation to class 1 and predicts that the 

S&P 500 will move in a positive direction the next day. If the probability is less than 0.5, the 

model will assign the observation to class 0, which predicts that the S&P 500 will move in a 

negative direction. 

 

 

 

 

 



11 
 

4.2 Random Forest 

Random forest is an ensemble learning method that is widely used for both classification and 

regression tasks (Breiman, 2001). It belongs to the family of decision-tree based algorithms 

and operates by constructing and training multiple decision trees in parallel. Decision trees 

are hierarchical structures that recursively partition the feature space based on the value of the 

input features (Quinlan, 1986). Each internal node in a tree represents a decision based on a 

specific feature, and each leaf node represents the predicted output or class label. Decisions 

trees are easy to interpret and can capture complex non-linear relationships with low bias. 

However, they tend to have high variance as they are prone to overfitting when generalizing 

to new data. 

The random forest algorithm combines several decision trees in an ensemble. To construct 

the ensemble, a user-defined number of trees are built in parallel. During the construction of 

each tree, a random subset of the training data is drawn with replacement. This technique, 

known as bagging, helps reduce variance and improves the model’s stability by introducing 

diversity in the training data.  

Additionally, at each split point of a tree, only a random subset of the total features is 

considered for determining the best split. By doing so, the random forest algorithm 

decorrelates the individual trees in the ensemble which leads to a further reduction in 

variance (Belgiu & Drăgu, 2016). 

Once all decision trees in the ensemble are constructed, the final prediction of the random 

forest algorithm is obtained by aggregating the predictions of the individual trees. For 

classification tasks, a majority vote system is utilized. If the majority of the trees in the 

ensemble predicts that the S&P 500 will move in a positive direction the next day, that will 

be the final prediction of the model for that specific data point. The prediction of the random 

forest model can be written as: 

�̂�  = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 (∑
�̂�𝑏(𝑥)

𝑏

𝐵

𝑏=1

) 

 

 

(10) 

The �̂� is the final aggregated predicted class label generated by the model, while �̂�𝑏(𝑥) 

represents the prediction of an individual decision tree. Furthermore, the B represents the 

number of actual decision trees in the ensemble.  
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4.2.1 Hyperparameter Tuning 

Hyperparameter tuning plays a critical role in optimizing the performance of many machine 

learning models (Hoque & Aljamaan, 2021). In the case of random forest, selecting 

appropriate hyperparameters can significantly impact the model’s ability to generalize and 

make accurate predictions.  

The number of estimators (“n_estimators”) is an important hyperparameter. It determines the 

number of decision trees to construct and include in the random forest model. A larger value 

for the number of estimators can lead to improved model performance. However, it also 

increases the computational cost and training time. Conversely, a small value could result in 

underfitting, where the model fails to capture the pattern in the data. 

The maximum depth of the decision trees (“max_depth”) is another important 

hyperparameter. It controls the depth to which each decision tree in the ensemble is allowed 

to grow. A deeper tree can capture more complex patterns in the data but may also lead to 

overfitting, reducing the model’s ability to generalize to new data. A decision tree that is too 

shallow might however fail to capture complex relationships or patterns. 

Another crucial hyperparameter is the maximum features (“max_features”). It is the 

parameter that determines how many features to consider when searching for the optimal split 

at each node. A lower value will reduce the randomness in the random forest model and 

could therefore prevent overfitting. However, a lower value comes with a trade-off as it 

potentially could lead to overfitting if it’s adjusted too low. Setting “max_features” to “auto” 

allows the algorithm to consider the square root of the total features or predictors, while 

“log2” considers the log base 2 of the total features.  

We designed a search space with candidate values for a selection of the hyperparameters in 

the random forest model. The grid search algorithm in Python was then used to find the 

optimal combination of hyperparameter values. The objective was set to maximize model 

accuracy. In table 2, we summarize the search space of evaluated candidates and the optimal 

hyperparameter values that were selected. 
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Table 2. Random forest hyperparameters. 

Hyperparameter Search space Default value Selected value 

n_estimators {200, 300, 400} 100 300 

max_depth {4, 5, 6, 7} none 4 

max_features {sqrt, log2} sqrt sqrt 

 

There are several other hyperparameters that could be tuned in order to potentially improve 

the performance of the random forest model. However, tuning hyperparameters can be very 

computationally expensive and time consuming. Furthermore, a larger search space could 

potentially find more optimal values for the selected hyperparameters. This would however 

lead to an additional increase in computational cost that could be considerably high. In this 

thesis, we only consider a small number of hyperparameters and a limited search space of 

candidate values due to limitations in computational power and time. 

 

4.3 Cross-Validation 

In order to utilize machine learning algorithms, training and test data are required. A common 

approach is to partition the data where 80% is used to train the algorithm and the remaining 

20% is used to test the model’s performance on previously unseen data (Lindholm et al., 

2022). If the data is large enough, this approach might be sufficient. However, if data is 

limited or scarce, this method might fail as machine learning algorithms require a lot of 

training data in order to ensure optimal performance (Hastie et al., 2021).  

Cross-validation is a widely used technique that addresses this issue. In cross-validation, the 

training data is randomly partitioned into “k-folds” of equal size. The model is then trained 

on k-1 folds and tested or validated on the fold that was left out. This is an iterative process 

that is repeated until all folds have served as both training and testing data.  

As the data in this research is time series data, regular cross-validation where the data is 

randomly partitioned and shuffled is inappropriate. In this thesis, we therefore utilize rolling 

window cross-validation, where the temporal structure of the data is maintained (Bergmeir & 

Benítez, 2012). 
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Figure 1. Illustration of a 5-fold rolling window cross-validation. 

As shown in Figure 1, we use a 5-fold rolling window cross-validation technique. In this 

method, the dataset is split into training and testing sets by using a sliding window over time. 

The training set consists of data up to a certain point in time and the testing data contains data 

in the future. The window is rolled forward one step at a time, and the model is retrained and 

validated at each step. The machine learning models in this thesis are trained on the period 

07.01.2008 to 05.07.2020 and then tested between 06.07.2020 and 31.12.2022.  

 

4.4 Feature Importance 

Feature importance is a useful method in the field of machine learning that provides insight 

into which features or variables that have the most impact on a model’s predictions. 

Analyzing the features and their contribution to the model’s performance can help identify 

irrelevant or redundant features that potentially can be removed in order to simply the model 

and reduce the computational cost. Decision-tree based models, such as the random forest 

algorithm, have built-in methods to calculate feature importance. Random forest assigns an 

importance score to each feature based on its contribution to the reduction in impurity across 

all trees in the ensemble. In order to allow us to compare the relative significance of each 

feature, the importance scores are normalized to sum up to 1. A higher feature score indicates 

that a variable has a greater relative impact on the model’s predictions. There are several 

other ways to assess features importance. However, in this thesis we focus on the built-in 

method within the random forest algorithm due to its simplicity. 
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4.5 Evaluation Metrics 

In this section we will describe the key evaluation metrics used to assess the performance of 

our machine learning models in regards to predicting the movement of the S&P 500 Index. 

Evaluation metrics play an important role in understanding how well a model generalizes to 

new data and the quality of its predictions. There are several different metrics that can be 

used to gauge the performance of a model. However, in this thesis we focus on accuracy and 

precision as we’re dealing with a classification task. 

 

4.5.1 Accuracy 

Accuracy is a performance metric that quantifies the effectiveness of a model by calculating 

the proportion of correct predictions. It is computed by dividing the number of correct 

predictions by the total number of predictions. The formula for accuracy can be written as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(11) 

In this formula, TP represents the number of true positive predictions, TN signifies the 

number of true negative predictions, FP denotes the number of false positive predictions, and 

FN indicates the number of false negative predictions.  

 

4.5.2 Precision 

Precision is a metric that measures a model’s ability to correctly predict positive instances. In 

the context of this thesis, precision provides information on how often a model is correct 

when it predicts that the S&P 500 will move in a positive direction the following day. The 

formula for precision can be written as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 

 

(12) 

5. Trading Strategies 

In order to further test the validity of our prediction models, we develop two distinct trading 

strategies and compare their performances. The first strategy is a traditional portfolio that 

allocates 60% to equities and 40% to fixed income (Rekenthaler, 2022). This buy and hold 

strategy is well-known in the financial industry for its ability to achieve a balance between 
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risk and return. Therefore, it will serve as a benchmark in this thesis. The second portfolio 

will follow a dynamic allocation strategy that leverages the predictions of our best-

performing machine learning model. The predictions of the model will act as a signal for 

portfolio allocation decisions. If the model predicts that the S&P 500 Index will move in a 

positive direction the following day, we allocate 100% to equities. Conversely, if the model 

predicts a negative movement, we instead allocate 100% to fixed income.  

To compare the performances of the two portfolios, we will use the Sharpe ratio. The Sharpe 

ratio is a measure that evaluates a portfolio’s return relative to its volatility or risk (Sharpe, 

1966). A higher Sharpe ratio indicates a better risk-adjusted performance, as the portfolio 

generates more excess return for each unit of risk. Conversely, a lower Sharpe ratio suggests 

that the portfolio is not adequately compensating for the level of risk it entails. The formula 

for the Sharpe ratio can be written as: 

𝑆𝑝  =  
𝑟𝑝 − 𝑟𝑓

𝜎𝑝
 

 

(13) 

Where  𝑟𝑝  is the portfolio return, 𝑟𝑓 the risk-free rate, and 𝜎𝑝 the volatility or standard 

deviation of the portfolio. The Sharpe ratio will be reported on a yearly basis as this is 

common practice in the financial industry. The investment horizon for the two portfolios is 

equivalent to the period in the testing dataset as it is for this period the predictions are made. 

Thus, the investment horizon is between 06.07.2020 and 31.12.2022.  

 

5.1 Trading Strategy Data 

Because it is not possible to invest directly in the S&P 500 Index, we use the SPDR S&P 500 

ETF Trust (SPY) to represent equities. SPY is an exchange-traded fund that is structured to 

closely replicate the performance of the S&P 500 Index. The Vanguard Total Bond Market 

ETF (BND) is selected to represent fixed income. BND is an exchange-traded fund that 

tracks a diverse range of fixed income securities. Furthermore, the three-month U.S. Treasury 

bill serves as a proxy for the risk-free rate in our Sharpe ratio calculations, a common 

approach in the financial industry. All data pertaining to the investment strategies in this 

thesis was retrieved from Yahoo Finance. 
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6.  Results and Discussion 

In this part of the thesis, the empirical results of the prediction models and the trading 

strategies are presented and discussed. The results of the prediction models are analyzed 

using the performance metrics mentioned earlier in this thesis, accuracy, and precision. The 

confusion matrices of the models are also presented. Furthermore, the results of the 

investment strategies are analyzed and compared using the Sharpe ratio. This section is then 

concluded with a discussion regarding the limitations pertaining to this study and reflections 

regarding potential future research.  

 

6.1 Prediction Results 

The empirical results show that the random forest model outperforms the logistic regression 

model. The RF model achieved an accuracy of approximately 54.5%, indicating that it 

correctly predicts the movement of the S&P 500 Index 54.5% of the time. The precision 

score of around 53.9% signifies that when the RF model predicts that the S&P 500 Index will 

move in a positive direction the following day, it is correct 53.9% of the time. The relatively 

balanced relationship between accuracy and precision suggests that the model is achieving a 

good compromise between correctly predicting positive movements and minimizing false 

positives. 

Table 2. Performance of machine learning models 

Model Accuracy Precision 

Random Forest 54.5% 53.5% 

Logistic Regression 50.2% 51.6% 

 

 In contrast, the logistic regression model has an accuracy of approximately 50.2%, 

suggesting that its predictions are slightly better than random chance. The model has a 

precision score of around 51.6% which implies that when it predicts a positive movement the 

following day, it is accurate 51.6% of the time. 

To further asses the performance of our machine learning models, we compare the prediction 

results to previous studies. Di (2014) predicted the next day price trend of the S&P 500 Index 

using a SVM model. The accuracy achieved in the study was 56%. Likewise, Liu, Wang, 

Xiao, and Liang (2016) predicted the daily movement of the S&P 500 Index and achieved an 

accuracy of 62.51%. Our RF model has a slightly lower accuracy than Liu et al. (2016) but 



18 
 

our results appear to be empirically reasonable. The comparison with previous studies 

highlights the complexity and difficulty of predicting the movement of the S&P 500 Index.  

We continue our evaluation of the prediction models by analyzing their confusion matrices. 

The matrices, displayed in figure 3, tabulates the performance of the models in terms of the 

number of true positives (TP), true negatives (TN), false positives (FP), and false negatives 

(FN) made for each class.  

 

 

Figure 2. Confusion matrix of the machine learning models. 

By analyzing the confusion matrix of each machine learning model, we can conclude that 

both models exhibit a tendency to predict upward movements in the S&P 500 Index more 

frequently than they do downward movements. The RF model misclassifies approximately 

15.2% of actual up movements as down movements and around 78.3% of actual down 

movements as up movements. In contrast, the LR model misclassifies around 42.1% of actual 

upward movements as down movements and approximately 57.9% of actual downward 

movements as upward movements. Both models tend to perform better when predicting 

upward movements rather than downward movements. An imbalanced dataset can many 

times be the reason for this. However, the data used in this research is rather balanced. 

Approximately 54% of the observations in the target variable belong to class 1 (upward 

movements) while 45% belong to class 0 (downward movements). Thus, we disregard this as 

a possible explanation. 

Although the superior performance of the RF model is subtle, it is meaningful. The modest 

differences in accuracy and precision can significantly impact trading decisions and 

strategies, highlighting the importance of even slight improvements in model performance. 
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As the RF model was the best performing model, it will be our focus in the following section, 

with an emphasize on feature importance. According to the feature importance analysis, the 

U.S. dollar index (DXY) was the most important variable for predicting the movement of the 

S&P 500 Index. A possible explanation for this finding lies in the fact that changes in the 

relative value of the U.S. dollar can influence international trade dynamics, potentially 

indirectly affecting investor sentiment and market movements. 

 

 

Figure 3. Feature importance analysis. 

Following the DXY, the Down Jones Industrial Average (DJIA), Amazon, Google, and 

Apple have notable importance when it comes to contributing to the RF model’s predictive 

accuracy. The DJIA is a market index that represents many different industries which 

potentially allows it to capture the overall market sentiment and trend. Amazon, Google, and 

Apple are all large technology companies that represent a considerable proportion of the S&P 

500 Index. Thus, we expected them to be amongst the variables with the highest impact on 

model performance. The lagged return of the S&P 500 Index is only the 7th most important 

feature according to the analysis. This is quite surprising as we would expect it to be one of 

the features with the highest impact, given that it is directly derived from the S&P 500 Index 

itself. Equally surprising is the fact that all technical indicators apart from RSI are amongst 

the features with the least importance when it comes to the model’s predictive performance 

since they also are directly derived from OHLCV data on the S&P 500. Furthermore, the VIX 

has a relatively low impact on the model’s predictive performance. Again, this is surprising 

as we expected the market’s overall expectation of volatility to be one of the features with the 
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highest impact when it comes to predicting the movement of the S&P 500 Index. 

Parsimonious models are often favored when it comes to machine learning. We therefore 

used the outcome of the feature importance analysis to build a simpler model by only using 

the 10 most important variables. However, the accuracy fell from 54.5% to approximately 

51% as a result of the experiment. Thus, we reinstated all features as the objective was to 

predict the movement of the S&P 500 Index with the highest accuracy possible. 

 

6.2 Trading Strategy Results 

The results of the two strategies show that the portfolio that followed the predictions of the 

random forest model achieved an annualized return of 41.7% with a standard deviation of 

16.7%. In contrast, the benchmark portfolio that followed the 60/40 strategy generated a 

return of 33.8% with a portfolio volatility of 12.1%. According to these results, the machine 

learning-based strategy is capable of generating positive returns for the period tested. 

However, although the dynamic allocation strategy provided a higher return compared to the 

benchmark portfolio, we are primarily interested in the risk-adjusted performance captured by 

the Sharpe ratio. 

Table 3. Performance of investment strategies. 

Portfolio Annualized Return Annualized Volatility Sharpe Ratio 

60/40 Strategy 33.8% 12.1% 2.440 

RF Strategy 41.7% 16.7% 2.231 

 

A higher Sharpe Ratio indicates a better risk-adjusted performance, highlighting a strategy’s 

ability to generate returns relative to the risk undertaken. By analyzing the Sharpe ratios, we 

observe that the traditional 60/40 strategy outperforms our random forest strategy. The 

benchmark portfolio generated a Sharpe ratio of 2.440 while the random forest-based 

portfolio accumulates a Sharpe ratio of 2.231. This indicates that the benchmark portfolio 

achieves a more optimal balance between risk and return. An investor holding the benchmark 

portfolio would receive a higher compensation for each unit of risk undertaken. However, the 

Sharpe ratios of the two investment strategies are not that significantly different. This 

suggests that if our random forest model achieved a slightly higher accuracy, the dynamic 

allocation strategy potentially would be able to beat the traditional 60/40 strategy.  
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6.3 Limitations and Future Research 

Predicting the movement of the S&P 500 Index using machine learning is a challenging and 

complex task and as such, it is important to acknowledge the limitations pertaining to this 

study. The quality and amount of data utilized is a determining factor for the performance of 

any machine learning model. Although there is a rationale behind the features selected in this 

study, a limitation is that we only use financial data. Due to the inherent complexity of the 

financial markets, it is possible that the data used in this research isn’t diverse enough to fully 

capture the underlying factors that drive market movements. Future research could augment 

the dataset used by including macroeconomic indicators, news data, and sentiment analysis 

from social media platforms to capture a more holistic view of market dynamics. 

In this thesis, we frame the movement of the S&P 500 Index as a binary classification 

problem. This might overlook potential nuances within the financial markets. By adding a 

third category to the binary classes, future research could potentially capture other dynamics 

such as sideway movements which might generate additional insights. 

Another limitation lies in the assumption that the hyperparameter tuning process of the 

random forest model yielded the optimal parameter values. However, due to computational 

constraints, we only considered a small subset of all the possible hyperparameters that 

potentially could be tuned. Furthermore, we employed a rather narrow grid space with 

candidate values for the hyperparameters. As a result, the selected values for the 

hyperparameters might not represent the optimal combination for maximizing the 

performance of the random forest model. Additionally, we focus our study around only two 

algorithms, the random forest, and the logistic regression model. It is possible that other 

machine learning algorithms would yield better performances in terms of capturing market 

dynamics and predictive accuracy. Future research could focus on optimizing a greater 

number of hyperparameters over a larger grid space of candidate values, and employing 

alternative machine learning algorithms such as SVM, ANN and XGB. This could perhaps 

further improve the predictive accuracy. 

In terms of the investment strategies deployed in this study, we only examined two 

approaches. Although the results were insightful, future research could potentially delve 

deeper by implementing several investment strategies focusing on other financial securities 

such as E-mini S&P 500 Index Futures. Furthermore, future research could consider the 

effect of transactions costs as these are disregarded in this study in favour of simplicity.  
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7.  Conclusion 

In this thesis, the goal was to predict the movement of the S&P 500 Index with the highest 

accuracy possible to investigate the feasibility of using machine learning in achieving this 

task. Out of the two models we deployed in this study, the random forest turned out to be the 

best performing model with an accuracy of approximately 54.5%. Although the model only 

achieves a slightly higher accuracy than what would be considered random guessing (50%), 

the outcome should not be considered as unsatisfactory as even small differences in accuracy 

can have huge implications for an investment strategy. Furthermore, the trading strategy 

developed based on the predictions on the random forest model fails to outperform the 

benchmark portfolio. This highlights the difficulties of predicting the stock market. 
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