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Abstract

Oxygen uptake is a great indicator of cardiopulmonary health but requires spe-
cialized equipment and is time consuming to measure. There are ways to estimate
oxygen uptake based on other factors such as heart rate and acceleration. The
aim of this master thesis was to investigate whether models estimating oxygen
uptake based on acceleration data collected from the sensors in smartphones,
and steps and heart rate data from wearables could be created.

To do this ten healthy volunteers performed a cardiopulmonary exercise test
(CPET) where their oxygen uptake was measured using a portable system in ad-
dition to this acceleration was measured using both an MSR 165 accelerometer
and a smartphone, and their heart rate was measured using a Fitbit Edge 4. Dif-
ferent ways to process the raw acceleration data were used to create models link-
ing acceleration to oxygen uptake. The models were compared to each other to
investigate which model best estimated oxygen uptake.

The results show that models using the L2 norm of the acceleration, with
the effect of gravity removed, performed better than models using the integral
of absolute acceleration. Additionally, the models based on data collected using
the smartphone outperformed the models based on data from a purpose made
accelerometer. A model based on 6-axis motion data collected using the smart-
phone performed the best with an R2 value of 0.98 showing great potential for
estimating oxygen uptake using only a smartphone.

Keywords: Oxygen uptake, Acceleration, Smartphone, Estimation, Health



Sammanfattning

Syreupptagningsförmåga är en bra indikator av kardiopulmonär hälsa, men be-
höver speciell utrustning och är tidskrävande att mäta. Det finns sätt att upp-
skatta syreupptagningsförmåga baserat på andra faktorer så som puls och accele-
ration. Målet med denna masteruppsats var att undersöka om modeller som upp-
skattar syreupptag baserat på accelerationsdata insamlad från sensorer i smartp-
hones, samt steg- och hjärtfrekvensdata från en bärbar enhet, kunde skapas.

För att göra detta utförde tio friska försökspersoner ett kardiopulmonärt
ansträngningstest (CPET) där deras syreupptag mättes med hjälp av ett portabelt
system. Dessutom mättes acceleration med både en MSR 165 accelerometer och
en smartphone, och deras hjärtfrekvens mättes med hjälp av en Fitbit Edge 4.
Olika sätt att behandla rå accelerationsdata användes för att skapa modeller som
kopplade acceleration till syreupptag. Dessa modeller jämfördes med varandra
och med modeller skapade med hjärtfrekvens- och stegdata från en Fitbit.

Resultaten visar att modeller som använder L2-normen för acceleration, med
gravitation borttagen, presterade bättre än modeller som använde integralen av
absolut acceleration. Dessutom överträffade modellerna baserade på data insam-
lad med smartphones de modeller som baserades på data från MSR 165 accelero-
metern. En modell baserad på 6-axlig rörelsedata, insamlad med smartphones
presterade bäst med en R2-värde på 0,98 och visade stor potential för att upp-
skatta syreupptag med endast en smartphone.

Nyckelord: Syreupptagningsförmåga, Acceleration, Smartphones, Uppskattning, Hälsa
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Chapter 1

Introduction

1.1 Background
Maximum oxygen uptake (V̇O2max), first described by Hill et al. in 1921 [1] is considered a
great indicator of cardiopulmonary health. The applications are numerous, both in the med-
ical field and for recreational and professional athletes. Additionally, instantaneous oxygen
uptake (V̇O2) has shown potential as an indicator for post-operative health [2] and could be
used to estimate metabolic rate [3] in real time. However, the standard method of measur-
ing oxygen uptake (V̇O2) is both time consuming and costly as it requires special equipment.
Models exist that estimate V̇O2 based on maximum heart rate, and more recently models
based on acceleration measured by accelerometers placed on different parts of the body have
been developed [4]. These methods can be invasive with regards to the placement of the ac-
celerometer and as it requires special extra equipment in the form of said accelerometers they
are limited in who can perform studies. Modern smartphones and smart wearables contain
accelerometers and can track heart rate and step data, thus they could in theory be used to
record the same data as accelerometers used in other studies and estimate V̇O2 that way. This
would provide greater access to V̇O2 data, both for individuals and for population studies
and could enable applications to be developed that can give information on V̇O2 and related
health aspects such as metabolic rate and energy expenditure. It is not clear, however, if the
acceleration measured in the phone just by having it placed in the pockets of a persons pants
is good enough to create this model and this is something that needs to be investigated. Fur-
thermore, new models using 6-axis motion data including both the linear acceleration and
the angular velocity of an accelerometer and gyroscope have been developed [5]. Smartphones
can also log 6-axis motion data and this can potentially give even better models.
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1.2 Aim & Method

1.2 Aim & Method
The aim of this thesis is to see if a model can be created that estimates V̇O2 uptake in real time
based on the sensors in a smartphone placed in the pocket of a person’s pants. This would
then be compared with the model based on an accelerometer placed on the lower back, as
well as a wrist worn fitness tracker. This would eliminate the need for special accelerometers
and would be less invasive than having to tape said accelerometer to the skin on the body.
If the model based on the phone data can be shown to be as good or nearly as good as the
model using a purpose made accelerometer without the need for calibration or fixing it in
place in the pocket, then it would lower the barrier of use significantly when estimating V̇O2.
This would enable more people to get access to information about their V̇O2 which in turn
would give them better information about their health, exercise and/or work intensity, and
metabolic rate. This could help them exercise more efficiently and could give health care
providers better information about their patient’s health.
This will be done by performing a V̇O2 test until V̇O2max is reached, while collecting data
from both a commercial accelerometer, a smartphone and a Fitbit and performing a linear
regression on the data to create a linear model. Different ways to process the raw acceleration
data will be tested to find out which model gives the best estimation of real oxygen uptake
and hence physical activity level and metabolic rate (energy expenditure).

1.3 Research questions
The overall aim of this thesis was also summarized as two research questions, these were:

• Develop a model to estimate oxygen uptake and physical activity based on data col-
lected using smart wearables.

• Which device/variable can better estimate oxygen uptake?

1.4 Global sustainable development goals
In 2015 the United Nations set new Global Sustainable development goals to be fully imple-
mented in 2030 [6]. This thesis should contribute to goal 3: "Ensure healthy lives and promote
well-being for all at all ages" by providing greater access to health data on both a personal
and global scale. It might also contributes to goal 10: "Reduce inequality within and among
countries" by reducing the need for complex and expensive equipment when studying oxygen
uptake, something that richer countries will have greater access to [6].

1.5 Structure
This thesis will begin by going over previous research that is the basis for the methods chosen
for the project. Next the methodology used in the study is presented, followed by the results
of said study. Finally the results will be discussed and related to the previous research.
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Chapter 2

Previous research

This chapter will present previous research on oxygen uptake, its uses and ways to estimate it, and
acceleration processing methods. Hopefully this will provide the reader with enough information to
understand the reasoning behind why certain methods were used in the study.

2.1 Oxygen uptake
Oxygen uptake is a measure of the amount of oxygen the body can take up and utilize. This
increases with increased work load up to a point, after which plateaus, this is called the
maximum oxygen uptake (V̇O2max). V̇O2max is unique for each individual and depends on
factors such as age, gender, lung function and fitness level [7]. According to the American
College of Sports Medicine’s Guidelines for Exercise Testing and Prescription [8] the average
V̇O2max for males aged 20-29 is 43.9 ml/kg/min and for males aged 40-49 it is 40.4 ml/kg/min,
showing that the average maximum oxygen uptake decreases with age.

The current gold standard for measuring oxygen uptake is through indirect calorimetry
by doing a maximum exertion test while directly measuring the oxygen uptake using a gas
exchanger [8–10]. The most commonly used method is the Bruce treadmill test developed by
Bruce in 1971 [11] where test subjects run on a treadmill at increasing speed and inclination
for 3-minute periods until exhaustion [8,12]. When performing tests where V̇O2 for different
activity levels is studied a steady state level needs to be reached which requires performing
at said activity level for at least three to four minutes [8, 13–16].

A standard incremental exercise test, like the Bruce protocol, gives very accurate values
for V̇O2max if done correctly but requires the test subject to wear a mask over the mouth
and nose while being connected to the system which can be uncomfortable and requires
specialized equipment. Therefore, tests such as these can be expensive and time consuming
[17] and thus ways of estimating V̇O2max from sub maximum tests have been developed which
can be accurate at estimating the V̇O2max to an extent [18].
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2.2 V̇O2 and health

2.2 V̇O2 and health
Maximum oxygen uptake has been linked to cardiovascular health with a higher V̇O2max in-
dicating a better physical fitness. This is important as cardiovascular disease is one of the
leading causes of death worldwide [19–21]. Chiaranda et al. [22] studied V̇O2 and cardiores-
piratory fitness based on models using the FRIEND registry and sub-max testing and found
that increased fitness as measured by the percentage improvement in FRIEND score led to
decreased hospital readmission. One of the limitations of their study was the use of a sub-
max test to measure fitness and thus a way to better estimate V̇O2max is needed, for example
using acceleration [22].

In addition to V̇O2max, Rose et al. [2] showed how instantaneous V̇O2 could be of inter-
est in post operative care to evaluate patient recovery. Their study showed that there is an
increased need for oxygen in the immediate post operative period. However, in this kind
of situation it might not always be possible to perform a full cardiopulmonary exercise test
(CPET) and this is one possible area where a model estimating V̇O2 and not just V̇O2max
could be useful. If the patient’s own phone could be used to do this estimation doctors would
have access to much more information about their patients which could lead to more individ-
ualized care that could improve survival odds in the patients. This is further corroborated by
the study done by Negus et al. [23] in which they showed that it can be important to include
heart rate and instantaneous V̇O2 when coming up with a recovery plan for orthopaedic pa-
tients. As we can see there is a need for methods that can track V̇O2 in real time and not only
estimate V̇O2max .

2.3 Metabolic rate
Oxygen uptake is also useful in determining metabolic rate which measures the energy re-
quired for different muscular loads and thus can give a value for activity level. Metabolic
rate is not very affected by temperature, but a high metabolic rate can worsen the effects of
heat stress since large amounts of heat is generated in the body [3]. It is therefore important
to keep track of, especially in hot conditions [3]. Estimating metabolic rate through V̇O2
could be used to keep up to date on the risks of heat stress in real time. With climate change
becoming an increasing problem, heat stress is becoming a greater issue as well which can
impact all parts of life [24].

In addition to oxygen uptake, there are other ways of determining metabolic rate, as
outlined in the ISO 8996 standard [3], of which the analytical methods involving accelerom-
etry [25–28] and heart rate [27] are especially interesting [3]. By estimating V̇O2 using models
then metabolic rate and energy expenditure, can also be estimated [28] which could be useful
when exercising to know how much energy or fat you have burned. Sirichana et al. [28] fur-
ther showed that energy expenditure can be reliably estimated using accelerometry based on
Metabolic Equivalents (METs) where V̇O2 is converted into METs by assuming that 1 MET =
3.5 ml/kg/min V̇O2. Their model was especially accurate for lower activities below 6 METS.

One issue with using V̇O2 to estimate metabolic rate is that, as No et al. [29] showed, V̇O2
is higher at submaximal exercise for higher temperatures. In contrast V̇O2max decreases in hot
conditions [29, 30] and thus models developed at room temperature might not be accurate
in hotter environments, if they are based on V̇O2 and V̇O2max . Potentially a compensation
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2.4 V̇O2 estimation

factor relating to the decrease in V̇O2max in hot conditions, similar to the one described for
heart rate in the ISO 8996 standard [3], could be used, but this needs to be studied. Using
accelerometry to estimate metabolic rate directly could be used instead, but it would need
to be generated based on data other than V̇O2, such as doubly labelled water [3]. It also
needs to be studied how the acceleration changes depending on temperature. If it is not
temperature dependent, it would be a better way to estimate metabolic rate compared to
other methods. Using accelerometry to estimate metabolic rate also depends on the type of
activity as stated in the ISO8996 [3] standard. Falcone et al. [31] further corroborate this.
They showed that different tasks needed individual models to be accurate when estimating
metabolic rates based on accelerometry.

2.4 V̇O2 estimation
Smartphones and smart wearables have become more and more common with 98% of the
population in Sweden reporting using a mobile phone for private use [32] and models aimed
at estimating V̇O2 using the sensors in both phones and wearables have started to be de-
veloped. Oftentimes these models focus on using heart rate as the basis for the model [33]
but there is also potential for using the acceleration sensors found in smartphones or smart
watches [34].
Recent studies have shown that acceleration data from accelerometers worn on the body
could be used to estimate V̇O2 and V̇O2max as well which could lead to even more accurate
models [5, 35–37]. These methods normally use commercial accelerometers that are taped to
the tibia [35], lower back [5, 36] or to the wrists or ankles [34, 35]. Additionally, Brinkløv
et al. [4] showed that a smartphone placed in the pockets of the test subject’s pants could
predict V̇O2max using their InterWalk app with an R2 value of 0.6 in patients with type 2 dia-
betes. However, their test protocol did not include higher activity intensities, so it is unclear
how well the smartphone collection method works when the subjects run at higher intensity.
They also found that placing the smartphone in a lower position, such as the pants pockets,
was better than in an upper position, such as on the torso or arm. If the methods developed
for accelerometers fixed to the body could be applied to data collected from smartphones
or wearables, then it would give the general public greater access to V̇O2 estimates and de-
crease the equipment needed for tests. This could be of interest in studying the general health
of a larger population than could be studied by doing a normal V̇O2max test since everyone
with a smartphone could theoretically be included in such a study. Heart rate has also been
widely used to predict V̇O2 and V̇O2max [38] and by combining heart rate measurements and
acceleration there is the potential for even better models [36, 39–41]. An issue with this is
that the estimation by heart rate alone can be affected by environmental conditions such as
temperature and thus it needs to be corrected if used for predictions in hot environments.
Heart rate is further affected by age and physical fitness which also needs to be considered
when creating models based on heart rate [3, 29].

2.4.1 Acceleration processing for V̇O2 estimation
When using accelerometers to estimate oxygen uptake the raw acceleration data needs to be
processed. Different techniques for doing this exists, for example vector magnitude or the L2
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2.4 V̇O2 estimation

norm [5, 31, 42, 43] and the Integral of absolute acceleration [25, 36, 44].
Cook et al. [36] outline one of these methods for processing the acceleration data collected
from an accelerometer and creating a model for estimating instantaneous V̇O2. Their method
revolves around taking the Integral of absolute acceleration (IAA) for 30 second periods and
plotting this for corresponding 10 second periods of V̇O2 uptake. They calculated IAA using
the following formula:

IAA =
∫ 30s

t=0
axdt +

∫ 30s

t=0
aydt +

∫ 30s

t=0
azdt (2.1)

V̇O2 was then calculated by performing a linear regression on the measured V̇O2 and the
calculated IAA giving:

V̇O2 = k · IAA + c (2.2)

They especially found that including heart rate in the model improved performance and
could become a new gold standard for instantaneous V̇O2 estimation.
However, in this study [36], the authors created their own wearable device using an ac-
celerometer and ECG. It should be possible, as they mention, to use their model on other
devices, such as smartphones [36]. As previously stated, using the accelerometer in a smart-
phone instead would be more interesting. However it is unclear whether the movement of
the phone when placed in a pocket is enough, which would be interesting to study.

Another method that can be used is the one proposed by Miyatake et al. [5] where the
L2 norm, sometimes called the Vector Magnitude (VM) in other articles [31, 42, 43], of the
acceleration is taken. In their study, both 3-axis acceleration data and 6-axis motion data was
analysed. According to their research treating each axis of the 6-axis motion data separately
gave improved results rather than combining all 6-axes to one value. Since smartphones can
also track 6-axis motion data it would be interesting to study if this could also be used in a
similar way. From Miyatake et al. [5] the following equation for calculating the L2 norm of
the acceleration is found

A2
i =

√
|ax,i − āx |2 + |ay,i − āy|2 + |az,i − āz|2 (2.3)

Where ax,i ay,i az,i are the ith samples for acceleration over a 10 second interval for the x, y
and z directions respectively. The component of gravity is removed by subtracting the average
acceleration over the 10 second interval. Another way to remove the gravity component is to
use a high pass filter [31, 43].
Next the average of all i samples of L2 norms over the 10 second interval is taken.

I2 =
1
N

N∑
i=1

A2
i (2.4)

This value is then used to predict V̇O2 as

V̇O22 = k · I2 + c (2.5)

The values for k and c are then found using linear regression on the collected data.

For the 6-axis method I2 is calculated independently for each axis of acceleration and these
are then used for the linear regression giving a formula for V̇O2 [5]

V̇O2 = w1 · Iax + w2 · Iay + w3 · Iay + w4 · Igx + w5 · Igy + w6 · Igz + c (2.6)
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Chapter 3

Method

In this chapter the equipment and methods used in the study will be described. This includes the V̇O2
measurement and data logging as well as the data processing.

3.1 Participants
Ten healthy male volunteers were recruited as test participants. The participants were pri-
marily recruited from friends, fellow students and family. They were not chosen based on
fitness level, gender or age. All the participants had prior experience with running but not
generally on treadmills. In total 13 people were recruited but three were unable to participate
in the end due to illness. No monetary rewards were able to be offered to entice people to
participate, instead each participant was able to find out their V̇O2max as a form of reward.
One hour was set aside for each test and this was communicated to each participant.

There were some exclusion criteria for the study. First, the participant could not have a
history of cardiovascular and/or respiratory disease. In addition to this they could not have
a history of musculoskeletal disorders, or recent lower limb or trunk surgery. They were
also discouraged to participate if they had a cold or a fever. All subjects self-reported that
they had no health problems or prior lower limb surgery that would exclude them from the
study. Furthermore, all subjects signed informed consent forms to participate in the study.
All subjects were asked to refrain from exercising on the day of their test, and from drinking
coffee at least two hours before their test so as to not affect resting heart rate. Table 3.1 shows
the participant characteristics of the study.

3.2 Equipment and setup
Participants were fitted with a polar H7 heart rate monitor (Polar Electro Oy, Kempele, Fin-
land) over the chest which was connected to a Metamax 3B V̇O2 measuring system (COR-
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3.3 Procedure

Table 3.1: Participant data. Mean values for all participants ± stan-
dard deviation.

Gender: Male
n: 10

Age (years) 27.6 ± 5.3
Height (cm) 181.7 ± 6.0
Weight (kg) 77.3 ± 8.2

V̇O2max (ml/kg/min) 51.9 ± 5.6

TEX Biophysik GmbH, Leipzig/Germany) which measured oxygen uptake breath-by-breath.
In addition, a wearable device, Fitbit Edge 4 (Fitbit LLC, San Francisco, USA), was placed on
the left wrist to measure heart rate and steps per minute. After this an MSR 165 accelerom-
eter (MSR Electronics GmbH) was fixed with tape to the lower back of each participant,
sampling the acceleration at a rate of 100Hz for the duration of the test. Lastly, a Oneplus 6
smartphone (OnePlus Technology (Shenzhen) Co., Ltd.) was placed in the left pocket of the
participants while walking and running, with the app MATLAB Mobile (Mathworks, Nat-
ick, MA, US) logging acceleration and angular velocity at a rate of 100Hz during the test. A
screenshot of the app can be seen in figure 3.3 showing the acceleration as selected. Figure 3.4
shows the sampling parameters selected in the app. Acceleration from the phone was logged
for all ten participants but angular velocity was only logged for seven participants. All analy-
sis performed using angular velocity was thus based on seven participants rather than all ten.
The Fitbit was forgotten for one participant, so this participant was excluded for the analysis
performed on data from the Fitbit, and the polar H7 heart rate monitor would not connect
to the system for one participant so this was excluded for the models including that data.
A list of all the equipment used to log data can be seen in Table 3.2, including information
about sampling rate and how many participants each piece of equipment was used on.

Table 3.2: List of equipment used in the study, the measurement they
logged and how many of the participants they were used on.

Equipment Measurement Sampling rate Number of participants
Metamax 3B V̇O2 Breath-by-breath 10

Oneplus 6 smartphone Acceleration 100Hz 10
Angular velocity 100Hz 7

MSR 165 accelerometer Acceleration 100Hz 10
Polar H7 Heart rate Breath-by-breath 9

Fitbit Edge 4 Heart rate 0.2Hz 9
Steps 0.016Hz 9

3.3 Procedure
Prior to each test the test participant’s age, height and weight were recorded. Age and height
were self-reported and the weight was measured using a high precision digital scale. Before
the whole study the Metamax 3B system was calibrated in terms of volume and flow for
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3.3 Procedure

Figure 3.1: The kind of MSR 165 accelerometer used in the
test. (https://www.msr.ch/en/product/datalogger-vibration-shock-
acceleration-msr165/)

Figure 3.2: Photo of the Fitbit Edge 4 used in the test.
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3.3 Procedure

Figure 3.3: Screenshot of the MATLAB mobile app showing that the
acceleration sensor is selected and tracking the acceleration
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3.3 Procedure

Figure 3.4: Screenshot of MATLAB mobile app showing the selected
sampling parameter of 100Hz for the Motion Sensors Sample Rate

each test. New O2 and CO2 sensors were calibrated with standard gas (with O2 and CO2
concentration similar to exhaled air) before the study. Prior to each individual test ambient
air calibration was performed according to the system manual, this provided a reference value
for the oxygen level in the ambient air that is breathed in. The participants then performed
an incremental exercise test, similar to the Bruce protocol [12,45], on a treadmill. Meanwhile
data from different sensors was synchronized and collected, like the tests done by Miyatake
et al [5] and Halder et al. [13]. Other test protocols exist, such as the athlete-led protocol
developed by Hamlin et al. [46] but since the Bruce protocol is widely used [11] it was decided
that a modified version of this worked best for the study. In a standard Bruce protocol test
the speed and inclination are increased in three minute intervals [12, 45]. For this study,
the protocol was modified slightly by not increasing the inclination from the start, and by
increasing the time at each interval to four minutes. This ensured that steady state for V̇O2
and heart rate had been reached at each interval. To reach steady state takes at least three
minutes [16] and by increasing the time to four minutes it was deemed more certain that this
stage had been reached. The protocol details can be seen in Table 3.3. All participants started
with five minutes of sitting rest followed by four minutes of walking, jogging and running
at five, eight and ten km/h respectively. After this, each participant carried on at increased
speed and inclination until he felt he could no longer continue at which point the test was
finished. Before each test each participant was asked about their running experience and the
speed after the ten km/h section was decided based on this and was therefore different for
each participant. All participants carried on at a speed of eleven or twelve km/h for at least
two minutes, after which the inclination was increased in 3 grade increments for two minutes
at each inclination. This was continued until the test subject was no longer able to continue
at which point exhaustion was considered to have been reached. V̇O2max was defined as the
maximum V̇O2 registered during the test. The exact protocols for each participant can be
seen in Appendix A. The start of data collection for each measuring device was synced so that
collection was started at roughly the same time. As mentioned V̇O2 was measured breath-
by-breath and since the polar H7 heart rate monitor was connected to the same Metamax
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3.4 Data analysis

Table 3.3: Base test protocol used in the study. After all these stages
were performed speed was increased by one to two km/h depending
on participant. When each participant felt they had reached the
maximum speed they were comfortable running at, inclination was
increased in increments of grade 3. These stages were done in two to
three minute intervals, depending on participant, until exhaustion.

Duration (minutes) Speed (km/h) Treadmill inclination (grade)
5 0 (sit and rest) 0
4 5 0
4 8 0
4 10 0

3B system, the heart rate was also logged breath-by-breath. The logging from the MSR 165
and smartphone were both started manually, and the Fitbit gathers data continuously while
worn. Therefore, the start and end times were noted so that the Fitbit data could be extracted
after the test using time stamps.

3.4 Data analysis
The Metamax 3B measures the V̇O2 and Heart rate breath by breath, thus the sampling rate is
not uniform throughout the test. Therefore, the data was smoothed by taking the average over
thirty seconds giving data points in thirty second intervals. This smoothing was performed
in the data collection software Metasoft (CORTEX Biophysik GmbH, Leipzig/Germany)
directly rather than in MATLAB.

A script written by Github user rz0012 [47] in Python to download the intraday heart rate
and steps/minute data for a specific time period from the Fitbit, was used to access this data.
This is possible if the same Fitbit account is used to collect the data, as the Fitbit API can
be used to access your own data freely. The following is stated on Fitbits developer website
"A Fitbit developer’s personal Intraday data is automatically available through the “Personal”
application type. You do not need to submit a request." [48]

3.5 Acceleration data processing
Two methods were used to process the acceleration data. One was the method described by
Cook et al. [36] shown in equation 2.1 and 2.2 calculating the integral of absolute acceleration
(IAA) over a 30 second period. The other method was the L2 norm method used by Miyatake
et al. [5] described in the literature review and shown in equations 2.3-2.5. For the 6-axis
motion data the method described by Miyatake et al. [5] shown in equation 2.6 was used.
Similar to the IAA method the L2 norm was calculated for a 30 second time period. After
the acceleration data was processed the value for the final 30 seconds of each activity level
in the test protocol was plotted against the corresponding value, for the final 30 seconds of
each activity level, for the V̇O2. Additionally, each participant’s V̇O2max and corresponding
acceleration for that point was included in the data set. This was not used as a separate
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3.6 Linear Models

Figure 3.5: Test set up. Subject running on treadmill wearing mask
connected to Metamax 3B

variable, but as a data point in the whole set. Since the test protocol for each participant was
different after the first four stages, only the V̇O2max was included from the final section.

3.6 Linear Models
Linear regression [49] was performed in MATLAB in order to create a model to describe the
relationship between acceleration and V̇O2. The model that was created was a simple linear
model with a slope and intercept.

V̇O2 = m · acc + b (3.1)

Four different models were created using the acceleration data from the MSR 165 and from
the phone. For both collection methods, the acceleration data was process in two different
ways (IAA or L2 norm). In the equation above acc. represents either the IAA or L2 norm
and b is the y-intercept.

V̇O2MSRIAA
= a · IAAMSR + b (3.2)

V̇O2MSRL2
= a · L2MSR + b (3.3)

V̇O2PhoneIAA
= a · IAAPhone + b (3.4)

V̇O2PhoneL2
= a · L2Phone + b (3.5)
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Four additional models were created by performing multiple linear regression with the
acceleration and heart rate as predictor variables. This gave four models:

V̇O2MSRIAA+HR
= a · IAAMSR + b · HR + c (3.6)

V̇O2MSRL2+HR
= a · L2MSR + b · HR + c (3.7)

V̇O2PhoneIAA+HR
= a · IAAPhone + b · HR + c (3.8)

V̇O2PhoneL2+HR
= a · L2Phone + b · HR + c (3.9)

In the models, a and b are model constants and c is the y-intercept.
In addition to these models linear regression was performed on V̇O2 and heart rate, mea-

sured using the Polar H7 and Fitbit, on its own. A model based on V̇O2 and steps/minute
measured using the Fitbit was also created. Finally a model combining steps/minute and
heart rate was created.

V̇O2PolarH7HR
= a · HRPolarH7 + c (3.10)

V̇O2FitbitHR
= a · HRFitbit + c (3.11)

V̇O2FitbitSteps
= a · StepsFitbit + c (3.12)

V̇O2FitbitSteps+HR
= a · StepsFitbit + b · HRFitbit + c (3.13)

For the 6-axis data set one model was created, a multiple linear regression was performed
in MATLAB with six predictor variables as described by Miyatake et al. [5]. No model was
created combining all 6 axes, as the performance was lower than that with them assessed
independently as shown by Miyatake et al. [5]. All models were based on the final 30 seconds
of each activity level that was common between all test subjects. In addition to these the
V̇O2max value was added for each subject and the corresponding 30 second period preceding
the time this was reached for the acceleration data.

3.7 Leave one out validation
Since the data set consisted of data from only ten subjects, leave one out cross correlation
[4, 50] was used on the data. This meant that for each method a model was created based on
nine test subjects and this was then used to estimate the V̇O2 for the tenth subject. This was
then repeated ten times creating ten models that were used to estimate ten different subjects.
Then, for each model, the Mean Absolute Error of V̇O2 was calculated for each test subject
and its model by calculating the absolute error for selected data points when comparing the
estimated V̇O2 from the models to the actual measured V̇O2 and then taking the mean of
this [35].

MAE =
1
N

N∑
i=1

|VO2estimated − VO2measured | (3.14)
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Chapter 4

Results

This chapter will present the results of the tests that were performed and the models that were created
based on the collected data.

4.1 Oxygen uptake and acceleration
The measured V̇O2 with 30 second smoothing, as well as the L2 norm of the acceleration
and the IAA of the acceleration, for one test subject are shown in figures 4.1 and 4.2. The
scale for V̇O2 is shown on the left and for acceleration to the right. Vertical lines indicate the
breakpoints for the different stages of the test as shown in Table 3.3, beginning with the rest
period. For all the participants the actual start time of the 5 km/h part was slightly delayed
by roughly 15 seconds due to them moving to the treadmill and starting running. This is
not indicated in the graphs since the time region of interest is the final 30 seconds of each
stage, when steady state has been reached. The points for the acceleration is the processed
acceleration of the preceding 30 seconds.

4.2 Linear models
The subfigures in figure 4.3 show the results of linear regression performed on V̇O2 and ac-
celeration data. Specifically, figures 4.3a and 4.3c shows the results of the linear regression
performed on the MSR 165 data and figures 4.3b and 4.3d show the linear regression per-
formed on data from the smartphone. These models are shown in equations 4.1 to 4.4.

Four additional models were created combining either the IAA or L2 norm with the heart
rate, measured using the polar H7 heart rate monitor, and then performing multivariable
regression with these as predictor variables as described in section 3.5, equations 3.6 - 3.9.
The combined acceleration and heart rate models are shown in equations 4.6 to 4.9.
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4.2 Linear models

Figure 4.1: V̇O2 and the L2 norm of acceleration over the duration
of the test for one participant. The blue line shows the V̇O2 with 30
second smoothing and the triangles show the L2 norm of the accel-
eration, measured from the smartphone and calculated using MAT-
LAB. Scale for V̇O2 to the left and acceleration to the right. The
vertical lines represent the breakpoints for the different parts of the
test protocol.

Figure 4.2: V̇O2 and the IAA for the duration of the test for one
participant. The blue line shows the V̇O2 with 30 second smoothing
and the triangles show the IAA of the acceleration, measured from
the smartphone and calculated using MATLAB. Scale for V̇O2 to
the left and acceleration to the right. The vertical lines represent
the breakpoints for the different parts of the test protocol.
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4.2 Linear models

(a) L2 MSR 165. (b) L2 phone.

(c) IAA MSR 165. (d) IAA Phone.

Figure 4.3: Linear regression plots of V̇O2 and the integral of ab-
solute acceleration or L2 norm, calculated on acceleration data col-
lected with either MSR 165 accelerometer (a and c) or MATLAB
Mobile running on a Oneplus 6 smartphone (b and d). With line of
best fit and 95% confidence bounds.
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4.2 Linear models

(a) Polar H7 HR (b) Fitbit HR

(c) Fitbit Step-
s/min

(d) Steps & HR

Figure 4.4: Results of the linear regression performed on V̇O2, heart
rate and steps/min. V̇O2 measured using Metamax 3B, heart rate
measured using Polar H7 heart rate monitor or Fitbit Edge 4 and
steps/min measured using Fitbit Edge 4. The first two figures show
models based on only heart rate, figure three shows model based
on steps and final figure shows results of multiple linear regression
based on steps and heart rate.

21



4.2 Linear models

V̇O2L2(MSR) = 32.0339 · L2MSR + 7.6431 (4.1)

V̇O2L2(Phone) = 24.9047 · L2Phone + 2.2028 (4.2)

V̇O2IAA(MSR) = 0.7583 · IAAMSR + 4.4980 (4.3)

V̇O2IAA(Phone) = 1.0312 · IAAPhone − 34.6236 (4.4)

V̇O26−axis = 17.2488 · Iax + 24.3149 · Iay + 11.3253 · Iaz

−3.3050 · Igx − 1.5313 · Igy + 0.4606 · Igz + 4.4929
(4.5)

V̇O2L2HR(MSR) = 11.5130 · L2MSR + 0.2813 · HR − 19.0565 (4.6)

V̇O2L2HR(Phone) = 18.0016 · L2Phone + 0.1283 · HR − 8.6515 (4.7)

V̇O2IAAHR(MSR) = 0.2463 · IAAMSR + 0.2983 · HR − 21.7885 (4.8)

V̇O2IAAHR(Phone) = 0.6669 · IAAPhone + 0.1558 · HR − 34.2266 (4.9)

Four models were created using linear regression based on heart rate and steps, measured
using a Polar H7 heart rate monitor and Fitbit Edge 4. These can be seen in figure 4.4a-
4.4d. The first two models show the linear regression performed on V̇O2 and heart rate with
figure 4.4a showing the Polar H7 model and figure 4.4b showing the Fitbit HR data. Figure
4.4c shows the linear regression results of the steps/min data from the Fitbit. Finally, figure
4.4d shows the estimated V̇O2 from the combined steps and heart rate model created using
multiple linear regression plotted against the measured V̇O2. The corresponding models are
shown in equations 4.10 - 4.13.

V̇O2PolarH7HR = 0.3856 · HRPolarH7 − 26.2272 (4.10)

V̇O2FitbitHR = 0.3224 · HRFitbit − 17.7302 (4.11)

V̇O2FitbitSteps = 0.1811 · StepsFitbit + 3.0763 (4.12)

V̇O2FitbitSteps+HR = 0.0837 · StepsFitbit + 0.2027 · HRFitbit − 11.7084 (4.13)

The R2 values for the models given in eq. 4.1 to 4.13 are shown in table 4.1. All models
are significant with p<0.001. The phone models all have R2 values greater than 0.9 and the
models that include heart rate have greater R2 values than the models that do not include it.

In figure 4.5 the models created in equations 4.6 - 4.9 were used to predict V̇O2 based on
the acceleration data. The predicted values were plotted against the measured V̇O2 for the
corresponding acceleration and the resulting plots are shown in figures 4.5a and 4.5b where
the line of equality where the predicted value is equal to the measured value is shown. The
squares show the results of the IAA models and the circles show the L2 norm models.

The results of the leave one out analysis is shown in figure 4.6 as the predicted V̇O2 from
the models plotted against the corresponding measured V̇O2. All models created in the leave
one out analysis are combined in one plot together with the average R2 value for all models.
The squares represent the IAA acceleration processing method and the circles represent the
L2 method. Leave one out validation was also performed on the 6-axis motion model. The
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4.2 Linear models

(a) MSR 165 (b) Phone

Figure 4.5: Measured V̇O2 on x-axis and predicted V̇O2 based on
acceleration and heart rate models on y-axis. Squares represent the
IAA method of acceleration processing and circles the L2 norm
method. The line is the line of equality where the predicted value
is equal to the measured value.

(a) MSR 165 (b) Phone

Figure 4.6: Measured V̇O2 on x-axis and predicted V̇O2 based on
leave one out validation performed on all the data. Squares represent
the IAA method of acceleration processing and circles the L2 norm
method. The line is the line of equality where the predicted value is
equal to the measured value.
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4.2 Linear models

Table 4.1: R2 values for the different linear models created using
linear regression. The MSR subscript indicates a model based on
data collected using the MSR 165 accelerometer, and the Phone sub-
script indicates that the model was based on data collected using the
smartphone. Heart rate for the combined acceleration and heart rate
models was logged using the polar H7 heart rate monitor connected
to the Metamax 3b.

Model R2 Eq.
L2MSR 0.6934 (p<0.001) 4.1
L2Phone 0.9424 (p<0.001) 4.2
IAAMSR 0.6482 (p<0.001) 4.3
IAAPhone 0.9028 (p<0.001) 4.4

L2 + HRMSR 0.8863 (p<0.001) 4.6
L2 + HRPhone 0.9582 (p<0.001) 4.7
IAA + HRMSR 0.8830 (p<0.001 4.8
IAA + HRPhone 0.9279 (p<0.001) 4.9

HRPolarH7 0.8575 (p<0.001) 4.10
HRFitbit 0.8389 (p<0.001) 4.11

StepsFitbit 0.7877 (p<0.001) 4.12
Steps + HRFitbit 0.8917 (p<0.001) 4.13

predicted V̇O2 from all models are plotted against the measured V̇O2 in figure 4.7.
The mean R2 values, calculated using leave one out validation, for the IAA and L2 models

based on both MSR 165 and phone data, and the 6-axis model are shown in table 4.2. The
mean R2 is greatest for the 6-axis model, and the phone models are greater than the MSR 165
models. Including the heart rate in the models increases the R2 value for all models with the
increase being largest for the MSR models. All models have a mean p<0.001 meaning they
are significant.

Additionally, the mean absolute error and root mean square error was calculated for the
models using leave one out validation, the results of which are shown in table 4.3. The MAE
and RMSE are lower for the phone models and the 6-axis model where the L2 acceleration
processing has a lower MAE and RMSE than the IAA method.
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4.2 Linear models

Figure 4.7: Measured V̇O2 on x-axis and predicted V̇O2 based on
leave one out validation performed on the 6-axis motion model. The
line of equality is shown, indicating when the predicted V̇O2 is equal
to the measured.

Table 4.2: Mean R2 calculated using leave one out validation for the
models described in equations 4.1 - 4.9 and the 6-axis model. The
heart rate for the models was logged using a polar H7 heart rate
monitor connected to the Metamax 3B system.

Model Mean R2

L2MSR 0.6949 (p<0.001)
L2Phone 0.9427 (p<0.001)
IAAMSR 0.6502 (p<0.001)
IAAPhone 0.9032 (p<0.001)
6 − axis 0.9872 (p<0.001)

L2 + HRMSR 0.8819 (p<0.001)
L2 + HRPhone 0.9516 (p<0.001)
IAA + HRMSR 0.8801 (p<0.001)
IAA + HRPhone 0.9295 (p<0.001)

Table 4.3: Mean absolute error (MAE) of V̇O2, and Root Mean
Square Error (RMSE) of V̇O2 for the models described in equations
4.1 - 4.9 and for the 6-axis model.

Model MAE (ml/kg/min) RMSE (ml/kg/min)
L2MSR 6.9 9.9
L2Phone 3.2 4.2
IAAMSR 7.5 10.6
IAAPhone 4.4 5.5
6 − axis 2.3 3.1

L2 + HRMSR 5.4 6.4
L2 + HRPhone 3.0 3.9
IAA + HRMSR 5.5 6.5
IAA + HRPhone 4.0 5.0
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Chapter 5

Discussion

This chapter will first go over some general thoughts about the project as a whole. Then, there will
be some discussion on the results and it will link the results to the theory presented in the chapter on
previous research. Finally some future research possibilites and uses will be discussed.

5.1 General thoughts
Designing and carrying out a study involving human participants from scratch was a chal-
lenging but rewarding experience. Several factors made the project take longer than initially
planned and with hindsight the initial end date was probably optimistic. For example, at
the start, when the research questions were posed and solidified, it was not even certain that
acceleration data from the phone could be accessed, not to mention the fact that no partici-
pants had yet been recruited.

The acceleration problem proved to be no problem at all, MATLAB had the answer with
their mobile app. Recruiting test participants, was also not as difficult as one might expect.
Friends, family, friends of friends and fellow classmates were asked if they wished to par-
ticipate and the response was surprisingly enthusiastic. Most felt that the project sounded
interesting, and since a lot of them were runners themselves they wished to find out their
V̇O2max . Finding time for all the tests and actually carrying them out was a different matter.
The approach chosen for the planning of test dates and times was to do it on an individual
basis, talking to each participant and finding a time that suited them. Unfortunately, this
meant that there was a lack of overview of the whole test and when each participant was
available. In a future test a more sensible approach would be to send out a form where each
participant can fill in the times they are available, and then plan from that. Further problems
arose when participants wrote on the day of the test that they were ill. Obviously they could
not participate if they were ill, so when possible their tests were rescheduled. This meant that
the tests took many weeks to finish and some participants could not reschedule and could
not participate in the end. It should be mentioned, however, that the wish before the study
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5.2 Estimation Models

was to have at least ten participants and this was achieved, which was a huge plus, and is
not something to take lightly. Finding participants for studies is hard, especially when you
cannot offer a concrete reward.

There is a risk that the fact that the participants were mostly people who regularly exer-
cise, and who were interested in finding out their V̇O2max influenced the results by being a
group with above average fitness. This is indicated by the fact that the average V̇O2max for
the participants was 51.9 ml/kg/min as seen in Table 3.1 which is above the average of 43.9
ml/kg/min for the age group [8]. This was purely unintentional as there was no focus on this
in the selection process. Rather the selection was one of convenience and anyone who could
and wanted to participate was welcome.

When designing the V̇O2 test, a version of the Bruce protocol [12] was chosen since it is the
most common test protocol used [11]. Since the test is mainly used to measure V̇O2max [11,12]
it was modified to put more emphasis on the intermediary phases and not push to exhaustion
as quickly as possible. By emphasising these phases steady state was reached for the different
activity levels since four, rather than three minutes [16], at each increment was chosen as the
time. The inclination was not increased until after the ten km/h section since it is not certain
how the inclination affects the acceleration data. Investigating that is something that should
be done in a future test. This had the end effect that each test took longer than is perhaps
ideal when measuring the maximum uptake [16] but it felt like a decent compromise.

5.2 Estimation Models
Based on the results of the tests there seems to be a good linear relationship between oxygen
uptake, V̇O2, and acceleration, both when measured with an accelerometer placed on the
lower back, and when a smartphone placed in the front pockets of a person’s pants was used.
The linear relationship for both collection methods is similar to the results from Cook et
al. [36] and it would therefore seem that the results are reliable. The R2 values for the models
created using the MSR 165 data were significantly lower compared to the results by Cook et
al. [36] and Miyatake et al. [5], which the methodology was based on. One possible explanation
could be that the accelerometer was placed differently on the back or that the placement on
different test participants was slightly different. This could influence the results and explain
why the results disagree with those from the other studies. When studying this type of activity
using the smartphone these problems do not exist as the phone is simply placed in the pants
pocket of the test participant which is another benefit to being able to use the smartphone
for data collection. However, for other kinds of activity, such as lifting heavy things using
the hands and lower back then the accelerometer on the lower back might be better suited.

The results show that the R2 values for the models created using the smartphone data
were higher than those created using the MSR 165 data. This suggests that simply using
a smartphone without calibration and by only placing it in the pocket of your pants and
gathering data this way could be used to estimate oxygen uptake. From figure 4.3, we can
see that for lower acceleration levels, the MSR 165 models are performing quite well but
for higher accelerations the data becomes more spread out and does not follow the linear
model as well. In contrast, for the models created using phone data there is a much more
linear grouping of the data even for higher intensities. This is true for both the IAA and L2
norm methods of acceleration processing. The indication here is that using the phone gives a
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better response to higher running speed than an accelerometer placed on the lower back. One
potential reason for this is that the legs move a lot more than the trunk when running and this
movement is less dependent on the individual and more on the actual running speed. Since
only running on a treadmill was studied it is possible that the same is not true for running in
the field instead as in that case it is more difficult to run at a specific speed. Further testing
is therefore needed to validate the models beyond running on a treadmill.

As can be seen in table 4.3 the mean absolute error (MAE) was lowest for the model cre-
ated based on the phone data and using the L2 norm method, with the L2 method being
significantly better than the IAA model for the phone. For the MSR 165 data both the IAA
and L2 models performed similarly, with the L2 method being slightly better. Therefore,
when using the phone to collect data the L2 norm method should be used as it has a signifi-
cantly lower MAE meaning the estimated V̇O2 will be closer to the actual V̇O2. When using
a normal accelerometer fixed to the lower back, the L2 norm model is still better but not sig-
nificantly so and there might be other things to take into consideration such as computation
time or performance at different exercise levels. From figures 4.6 we can in fact see that for
the rest period the L2 norm predictions are much better grouped near the line of equality.
The next grouping represents the 5 km/h walking speed and here both models group well
near the line with the L2 norm model for the phone overestimating the V̇O2 slightly and the
IAA underestimating it. For the MSR data both models perform similarly for this activity
level. At the higher activity level, the data is more spread out showing that, especially for the
MSR 165, the models perform better at lower activity levels. The predicted V̇O2 from the L2
model on the phone overestimates the V̇O2 slightly but is overall grouped linearly together
better than the IAA model.
When including heart rate in the models the ones based on the MSR 165 improve signifi-
cantly with R2 values increasing by 0.2 for both IAA and L2 norm as we can see in table 4.1.
The models based on the phone also improve but not as much. The performance is especially
improved at higher activity levels when the V̇O2 is higher as can be seen when comparing fig-
ure 4.5 to figure 4.6. Based on these results we can say that if an accelerometer that is placed
on the lower back is used then heart rate should also be measured and used to get accurate
estimates of V̇O2. When using the phone on the other hand the performance improvement
is not as large and it should be enough to simply use the phone. As previously mentioned it
should also be taken into consideration what task is performed when deciding which data
collection method should be used and whether heart rate should be included or not.

In figure 4.4 the different regression models created based on heart rate alone and with
steps/min from the Fitbit are shown. There is no large difference between the models based
on the heart rate from the Polar H7 heart rate monitor and from the Fitbit. This indicates
that the Fitbit can be used to measure the heart rate and estimate V̇O2 based on this, just as
it can be done using the Polar H7. However, for the rest and 5km/h activity levels the heart
rate is quite spread out even though the V̇O2 at these levels is roughly the same. It thus seems
as though the resting and low activity heart rate is more individual than the V̇O2 at these
levels and that using these models to estimate V̇O2 will not be accurate. This is in contrast to
the models based on acceleration where the estimated V̇O2 for lower activity levels are quite
good, especially for the L2 and 6-axis models.

For the model based on steps/min, however, we can see in figure 4.4c that there is a
grouping of date well outside the confidence bounds, corresponding to the steps/min for
5km/h. Thus, even though the R2 value is 0.78, which sounds good, the model will probably
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severly underestimate the V̇O2 for lower activity levels such as walking. This problem is
eliminated in the model that combines steps and heart rate, shown in figure 4.4d, here we can
see that the predicted V̇O2 from the model is slightly overestimated for the 5 km/h level and
then more evenly spread around the line of equality for the higher activity levels. Therefore
we can say that using only step data from a Fitbit is not accurate enough but combining it
with heart rate also measured from the Fitbit improves the performance.

The main issue with heart rate based models is that heart rate for different activity lev-
els can change depending on environmental temperature. [3, 29] The maximum heart rate
reached will be lower in hotter environments as will the V̇O2max, but for lower activity levels
the heart rate and V̇O2 is lower, as shown by No et al. [29] Since this study was performed in
room temperature nothing can be said about the performance of the models in a hot or cold
environment. It does provide a good benchmark for future testing, however, since thermal
stressors probably increase the individual response making it harder to say things about a
population. One of the benefits of using acceleration based models could be that they might
be less temperature dependent but further research needs to be done to assess this. It is
possible that a temperature dependency term needs to be added to the regression model to
ensure that it performs well in higher or lower temperatures since the V̇O2 is also affected
by temperature [29].

When comparing the 6-axis model to the triaxial models the R2 value of 0.98 for the mul-
tivariable 6-axis model is higher than all the other models, including the ones that combine
heart rate and acceleration. In figure 4.7 we can see that the data points are grouped very
well along the line of equality meaning the estimated V̇O2 is very close to the measured V̇O2
with no consistent under- or over estimation of V̇O2. In table 4.3 wa can also see that the
6-axis method had the lowest MAE and RMSE of all the models. This indicates that using
the accelerometer and gyroscope found in a smartphone, to gather 6-axis data, is a good way
to estimate V̇O2 uptake. Thoguh, it is not certain that all phones have this possibility. The
MATLAB mobile app that was used to log the acceleration and motion data on the phone
is free and available on Android phones. However, a MATLAB account is needed for this
which is not free unless you are a student. The use of MATLAB mobile does show that the
phone has sensors for both triaxial acceleration and angular velocity so one could fairly easily
develop an app that logs that data, eliminating the need for MATLAB mobile. The results
shown are in line with those found by Miyatake et al. [5] and a model using 6-axis motion
data with all accelerations used separately in the model seems to be the best option. It should
be mentioned that this model was created based on only seven participants as this data was
not collected for the first three participants. Thus, it is possible that the results would be
different with more participant data.

5.3 Acceleration analysis methods
When analysing the acceleration data, two different methods were used. From figures 4.1
and 4.2 we can see that the acceleration follows the V̇O2 quite well but there are some key
differences for the two methods. For the IAA we can see that when the test person was
stationary, sitting down, at the start of the test the IAA is nonzero but stable at different
levels depending on the test subject. This could be good as the V̇O2 is also not zero during
resting, but the acceleration processing should represent the level of activity which for this
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stage was basically zero for all participants. For the L2 norm method however the norm is zero
when the test subject is not moving which better represents their actual activity level. This
shows that the L2 norm method successfully removes the gravity component as otherwise it
would show 1G when no other movement is present. Instead of this method for eliminating
the gravity component, a high pass filter could be used, as done by Falcone et al. [31], however
as the method used worked well this seems unnecessary.

One thing that can be seen is that the IAA and L2 norm models differ mainly at the
resting level and perhaps if this was excluded from the model the results would be different.
Including the rest level does give a good intercept for the model however and should therefore
probably be included.

5.4 Test set up
Creating a test that could both work for measuring instantaneous V̇O2 as well as getting
a value for V̇O2max was tricky. For V̇O2max you generally want to increase the activity level
quickly to exhaustion [8,11], whereas to measure the V̇O2 at different activity levels you want
a steady state value which is reached after more than three minutes in general [13–16]. This
means that the test set up used for this study worked well for the V̇O2 at different levels but
might not give a completely accurate value for V̇O2max .

Another issue was the fact that the test terminated immediately after V̇O2max was reached
and thus V̇O2 and the other measurements were not performed at rest after the running. This
is especially problematic when creating the model using the L2 norm method for acceleration.
When using this method, the values at rest are zero, as can be seen in figure 1 in the results.
However, the V̇O2 at rest before and immediately after the exertion is not necessarily the
same which can be seen in figure 1. The acceleration immediately drops to zero when the test
is terminated and the subject rests but the V̇O2 takes some time to reach its base level. Thus,
when the values at rest before the test are used in the model creation a very stable intercept
is found. If the values at rest after the test were to be included this intercept would not be as
well defined. It can therefore be discussed if the rest values should be included when creating
the model or not.

The MATLAB mobile application was used to log the acceleration data on the phone.
This worked well and the data was saved as .m files that could be downloaded and used easily.
One issue that was encountered was that the timestamp data that was saved was incorrect
and did not correspond to the 100Hz sample rate that was used. At first the timestamp data
was assumed to be correct but after studying the data and comparing it to the V̇O2 results it
was discovered that the 100Hz sample rate was in fact used. Therefore the acceleration data
was plotted not against the timestamps logged but to the time after the start which was set
to zero. This meant that there were 100 samples per second which is what was used in the
data processing.

When carrying out the test it was somewhat difficult to start logging all data at the same
time as there were several different measuring tools that needed to be started at the same
time. This meant that two researchers had to start measurements, and the test subjects were
asked to start the logging on the phone and then put the phone in their pocket. However,
even if all the logging was not started at the exact same time it should not be a problem.
This is because the V̇O2 data is smoothed over a 30 second interval in the first place, and
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the acceleration data is processed over 30 second intervals, this means that even if there was
a difference in start time of one or two seconds it should not matter as each second is not
individually processed.

5.5 Limitations of the study
The study was carried out on only healthy male test subjects and therefore the models created
can only really be used on data from men to estimate their V̇O2. Since the study only had
ten participants this is perhaps a good thing since there is a difference in V̇O2max based on
gender and by having both genders in the study the results for each gender would be less
certain. Further studies with a larger study group and a greater mix of genders are needed to
validate the models for use by women as well. Furthermore, only healthy participants were
included and if one wants to use the model to estimate V̇O2 for patients in post operative
care, for example, then testing on patients in post operative care would have to be carried
out. This is difficult as you do not want to have unhealthy people perform V̇O2max tests.
Perhaps a test where V̇O2 is measured at exercise intensity while logging acceleration data
and basing a model on this could be carried out on these patients to create a model based on
them. Here there are other issues such as different types of surgery etc. that would need to
be considered, but this is for a future study and beyond the scope of this one.

5.6 Potential Uses
The results show that there is a potential for creating phone applications that can estimate
oxygen uptake based on the acceleration measured from the phone’s accelerometer, which
could simplify test protocols significantly, and conduct large scale population studies. There
could even be the possibility of using the test subjects, or a researcher’s, own phone when
performing a test, rather than purchasing potentially expensive accelerometers that then have
to be placed on the subject’s skin. However, as the test was performed using one specific
model of phone, further tests need to be done to test different phones as there could be
differences in how good the accelerometers are.

The potential for phone apps extends further than the research sphere. Smart wearables
are getting more and more popular, and people want to know more about their health. As
it stands now, V̇O2 max tests can be expensive. A quick Google search showed tests costing
upwards of 2400 SEK [51] in Sweden at a facility focused on providing health and fitness
testing, and thus an app that calculates it for you which needs nothing more than your phone
would enable more people to get a better understanding of their health. It should be said,
however, that such an app would work best when used in combination with a test set up in
the same way as the test in this study as the model has not been compared to data collected
in the field. This is a potential future research area that could be interesting.

Using the estimated V̇O2 to estimate the metabolic rate in real time also has great poten-
tial when it comes to aiding with exercise and preventing issues such as heat stress. By com-
bining metabolic rate estimates, for example through V̇O2 estimated using accelerometry as
described in this thesis, with information about ambient air temperature and information
about an individual then warnings could be issued when the individual is at higher risk of
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heat stress. Models combining these will need to be created and validated but that is for a
future project.

5.7 Ethics
Whenever health data is gathered the ethics of its use needs to be discussed. If, for example,
an application was to be created it is important to consider who has access to the data that is
collected using it. For an app aimed at providing information to aid in planning an exercise
regime the collected data should only be able to be accessed by the user of the app and not for
data collection on a larger scale. In this use case it should also be clear that the V̇O2 estimate
is not to be used as an indication of health. This type of information is already available from
fitness trackers and thus there should be rules in place for how the data is used already.

If the data is used in a medical setting by a physician, perhaps to track oxygen uptake
in patients recovering from different illnesses, then it needs to follow laws and regulations
regarding medical information about patients. The data should also only be analysed by a
medical professional and any smartphone application that is created should not make any
judgements or give advice. There is otherwise a risk that people might be more, or less,
inclined to seek help depending on what information they are given. It would be disastrous
for an application to give a clean bill of health by only interpreting the oxygen uptake and
not taking other health factors into account.

Since maximum oxygen uptake is a great indicator of cardiopulmonary health, there could
be an interest to keep track of data from a large population to see the overall health of said
population. For example, public health agencies in countries around the world might want
to use an application to get an idea of the health of their country. Collecting this type of data
by measuring oxygen uptake directly would be very time consuming and expensive so using
a smartphone app to estimate it could be of interest. In this case there are serious ethical
considerations with regards to who would have access to this data and everyone whose data
is collected would need to consent to its collection.

Furthermore, it is one thing for government public health agencies to access health data,
but say that insurance companies would have access to it. In that case they could base insur-
ance rate on perceived health and since we are only talking about estimations they might not
even be correct.

Clearly there needs to be rules in place for the use of collected data, and it needs to be
clear that the information shown is only estimates and that for any serious health checks
actual measurements would need to be done.
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Chapter 6

Conclusions

Estimating V̇O2 in real time using a linear model based on 6-axis motion data collected using
a smartphone gave the best results compared to tri-axial data collected both using a commer-
cial accelerometer and a smartphone. Including a heart rate term improved performance in
all models with the greatest improvement seen in the models acquired using the MSR 165
accelerometer and only slight improvement in mean absolute error for the phone models.
The 6-axis model did not include heart rate but still had the lowest mean absolute error.

Such a model could be implemented in a smartphone app that could give a real time es-
timate of a person’s V̇O2 when performing different activities. This could in turn be used
both by athletes and recreational runners to keep track of performance, and by medical pro-
fessionals that wish to monitor their patients’ health. It could also provide data on general
population health as V̇O2 is linked to cardiovascular health. The impact of this on a global
scale is that more research can be done easily, better health care can be provided, and general
health and fitness can be improved. It would also provide the possibility for more people to
have access to their V̇O2 information as they would no longer need to pay for expensive V̇O2
tests.

Further research needs to be done to validate the findings, especially by expanding the
study to include women, different activities and to have a larger sample size in order to elim-
inate possible population biases. It would also be interesting to see the effects of temperature
and humidity and if these factors should be included in the models.
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Appendix A

Individual test protocols

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes

10 km/h + 3 incline 2 minutes
10 km/h + 6 incline 15 seconds

Table A.1: Subject 1

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
12 km/h 2 minutes

12 km/h + 3 incline 2 minutes

Table A.2: Subject 2
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Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
11 km/h 4 minutes

11 km/h + 3 incline 2 minutes
11 km/h + 6 incline 2 minutes
11 km/h + 9 incline 30 seconds

Table A.3: Subject 3

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
11 km/h 3 minutes

11 km/h + 3 incline 2 minutes
11 km/h + 6 incline 27 seconds

Table A.4: Subject 4

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes

10 km/h + 3 incline 3 minutes
10 km/h + 6 incline 2 minutes

Table A.5: Subject 5

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
12 km/h 4 minutes

12 km/h + 3 incline 2 minutes
12 km/h + 6 incline 1 minute

Table A.6: Subject 6
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Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
11 km/h 3 minutes

11 km/h + 3 incline 2 minutes
11 km/h + 6 incline 30 seconds

Table A.7: Subject 7

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
12 km/h 3 minutes

12 km/h + 3 incline 2 minutes
12 km/h + 6 incline 1 min. 41 seconds

Table A.8: Subject 8

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes
11 km/h 4 minutes

11 km/h + 3 incline 2 minutes
11 km/h + 6 incline 1 minute

Table A.9: Subject 9

Activity Level Completed time
Sitting Rest (0km/h) 4 minutes

5 km/h 4 minutes
8 km/h 4 minutes
10 km/h 4 minutes

10 km/h + 3 incline 2 minutes
10 km/h + 6 incline 22 seconds

Table A.10: Subject 10
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Appendix B

Full size figures
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Figure B.1: Figure 4.1 full size.
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Figure B.2: Figure 4.2 full size.
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Figure B.3: Figure 4.3a full size.
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Figure B.4: Figure 4.3b full size.
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Figure B.5: Figure 4.3c full size.
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Figure B.6: Figure 4.3d full size.

49



Figure B.7: Figure 4.4a full size.
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Figure B.8: Figure 4.4b full size.
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Figure B.9: Figure 4.4c full size.
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Figure B.10: Figure 4.4d full size.
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Figure B.11: Figure 4.5a full size.

54



Figure B.12: Figure 4.5b full size.
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Figure B.13: Figure 4.6a full size.
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Figure B.14: Figure 4.6b full size.
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Figure B.15: Figure 4.7 full size.
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Appendix C

Matlab code

C.1 Leave One Out

% ----------------------------------Leave one out cross
validation
---------------------------------------------%

function [measuredVO2 ,predictedVO2 ,avgCorrCoff , R2 , p] =
LeaveOneOut (phoneI_model , phoneI_forModel ,VO2_model ,
VO2_forModel , amountOfTestSubjects )

% Create model using n-1 test subjects where n is the
total amount of

% subjects .
% Test model on the subject that was left out. Do this by

taking the
% I values for the indexes used and the VO2 for the

corresponding time
% using its index. Insert the I value into the model as

the x value and
% extract the VO2 as the y value for that x value.
%
subjects = amountOfTestSubjects ;
for i = 1: subjects

AccelTrainingSets (:,i) = setdiff (phoneI_model ,
phoneI_forModel (i ,:) ,'stable ');

AccelTestSets (:,i) = phoneI_forModel (i ,:);
VO2TrainingSets (:,i) = setdiff (VO2_model , VO2_forModel (i

,:) ,'stable ');
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C.2 L2 Norm

VO2TestSets (:,i) = VO2_forModel (i ,:);

leaveOneOutModel {i} = fitlm( AccelTrainingSets (:,i),
VO2TrainingSets (:,i));

predictedVO2_corrCoff (:,i)= leaveOneOutModel {i}.
Coefficients {1 ,1} + leaveOneOutModel {i}. Coefficients
{2 ,1} .* AccelTestSets (:,i);

R2(i) = leaveOneOutModel {i}. Rsquared . Ordinary ;
p(i) = leaveOneOutModel {i}. ModelFitVsNullModel .Pvalue;
end
avgCorrCoff =mean(R2);
predictedVO2 = reshape ( predictedVO2_corrCoff ,numel(

predictedVO2_corrCoff ) ,1);
measuredVO2 = reshape (VO2TestSets ,numel( VO2TestSets ) ,1);

end

C.2 L2 Norm
%

-------------------------------------------------------------------
Calculation of L2 norm
---------------------------------------------------------------------------------------%

% Code by Arvid Lund based on procedure by Miyatake et al
. 2016

x = accelerationX ; % Logged X-axis acceleration
y = accelerationY ; % Logged Y-axis acceleration
z= accelerationZ ; % Logged Z-axis acceleration
t = accelerationTime ; % Time from recorded data ,

should start at 0 and then have values for each
registered acceleration . It might need to be
normalized to start at 0 by

% subtracting t(0) from
every value. Will
depend on sample rate

sampleRate = 100; % Set the sample rate to the one used
in the experiment
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C.3 6-axis

interval = 10; % 10 second interval studied as in
Miyatake et al.

samples = interval * sampleRate ; % Number of samples for
the given time interval that is studied based on
sample rate

p = 1; % Index for the final output I
A = zeros; % A is the L2 norm of the acceleration data as

given by Miyatake et al. eq. 1

for n = 1: samples : length(t)-samples % Loop over the
whole data set in 10 second intervals .

for w = 0: samples -1 % Internal loop to calculate A
for the 10 second interval that is studied .

A(w+1) = sqrt(abs(x(n+w) - mean(x(n:n+ samples ))).^2 ...
+abs(y(n+w) - mean(y(n:n+ samples ))).^2 ...
+abs(z(n+w) - mean(z(n:n+ samples ))).^2);

end
I(p) = mean(A); % I is the mean of the L2 norm over the

10 second interval .
A = zeros; % Zero A to calculate for a new 10 second

interval in next loop
time2(p) = t(n); % Set the time to match the start of the

10 second interval
p=p+1; % Increase index for I
end

C.3 6-axis

function [Iax , Iay , Iaz , Igx , Igy , Igz] = sixAxis (
filename , sampleTime )

load( filename )

xVel = AngularVelocity .X;
yVel = AngularVelocity .Y;
zVel = AngularVelocity .Z;
x = Acceleration .X ./9.82;
y = Acceleration .Y ./9.82;
z = Acceleration .Z ./9.82;
timestamp = Acceleration . Timestamp ;
t = zeros(size( timestamp ));

for n = 1 : length( timestamp )

61



C.4 IAA

t(n) = seconds ( timestamp (n) - timestamp (1))+(n -1)
*0.001;

end
Fs = 1/t(2);
samples = round(Fs* sampleTime );
p = 1;
A = zeros;
for n = 1: samples : length(t)-samples

for w = 0: samples -1
Ax(w+1) = sqrt ((x(n+w) - mean(x(n:n+ samples ))).^2);
Ay(w+1) = sqrt ((y(n+w)-mean(y(n:n+ samples ))).^2);
Az(w+1) = sqrt ((z(n+w)-mean(z(n:n+ samples ))).^2);

Gx(w+1) = sqrt (( xVel(n+w)-mean(xVel(n:n+ samples ))).^2);
Gy(w+1) = sqrt (( yVel(n+w)-mean(yVel(n:n+ samples ))).^2);
Gz(w+1) = sqrt (( zVel(n+w)-mean(zVel(n:n+ samples ))).^2);

end
Iax(p) = mean(Ax);
Iay(p) = mean(Ay);
Iaz(p) = mean(Az);
Igx(p) = mean(Gx);
Igy(p) = mean(Gy);
Igz(p) = mean(Gz);
Ax = zeros;
Ay =zeros;
Az=zeros;
Gx=zeros;
Gy=zeros;
Gz=zeros;
time2(p) = t(n);
p=p+1;
end

end

C.4 IAA
function [normedAccel , IAA ,meanAccel ,I, t, time ,time2

] = TestScript (filename , sampleTime )
load( filename )

x = Acceleration .X ./9.82;
y = Acceleration .Y ./9.82;
z = Acceleration .Z ./9.82;

62



C.4 IAA

timestamp = Acceleration . Timestamp ;

% meanX = movmean (x ,[200 0]);
% meanY = movmean (y ,[200 0]);
% meanZ = movmean (z ,[200 0]);

t = zeros(size( timestamp ));

for n = 1 : length( timestamp )
t(n) = seconds ( timestamp (n) - timestamp (1))+(n -1)

*0.001;
end
Fs = 1/0.01;
samples = round(Fs* sampleTime );
k(1)= 1;
for i = 1: length( timestamp )/ samples

IAA(i) = trapz(t(k(i):(k(i)+( samples -1))),abs(x(k(i):(k(i
)+( samples -1)))))+trapz(t(k(i):(k(i)+( samples -1))),abs
(y(k(i):(k(i)+( samples -1)))))+trapz(t(k(i):(k(i)+(
samples -1))),abs(z(k(i):(k(i)+( samples -1)))));

k(i+1) = k(i)+ samples ;
time(i) = t(k(i));

end
end
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