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Abstract

Distributed optimal control is known to be challenging and can become intractable
even for linear-quadratic regulator problems. In this work, we study a special class
of such problems where distributed state feedback controllers can give near-optimal
performance. More specifically, we consider networked linear-quadratic controllers
with decoupled costs and spatially exponentially decaying dynamics. We aim to
exploit the structure in the problem to design a scalable reinforcement learning
algorithm for learning a distributed controller. Recent work has shown that the
optimal controller can be well approximated only using information from a κ-
neighbourhood of each agent. Motivated by these results, we show that similar re-
sults hold for the agents’ individual value and action-value functions. We continue
by designing an algorithm, based on the actor-critic framework, to learn distributed
controllers only using local information. Specifically, the action-value function is
estimated by modifying the Least Squares Temporal Difference for Q-functions
method to only use local information. The algorithm then updates the policy us-
ing gradient descent. Finally, the algorithm is evaluated through simulations which
suggest near-optimal performance.
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1
Introduction

1.1 Motivation

Multi-agent networked systems such as power grids, wireless communications net-
works and smart buildings have been studied extensively, both from the control
community and the machine learning community. Due to the scale of these systems
centralised control is often considered unfeasible and instead algorithms that dis-
tribute the control over the agents in the network are needed [2]. These controllers
do not necessarily depend on the global state, but instead control the system us-
ing information from the agent itself and its neighbours. The distributed control
problem is, however, known to be difficult in general. In fact, a classic result in
distributed control show that even in the setting of linear dynamics with Gaussian
noise and quadratic costs (LQR), synthesis of the optimal distributed controller is a
challenging task [28].

Similarly for multi-agent reinforcement learning (MARL), the curse of dimen-
sionality quickly becomes a problem [20]. Ignoring the issue of scalability, the
success of reinforcement learning (RL) in a wide variety of applications such as
games [24, 27], robotics [11] and autonomous driving [16] makes this approach in-
teresting for control synthesis in networked systems. Taking scalability into account,
recent work has shown promising results when applying reinforcement learning to
networked systems with local information structure [20].

In this work, we aim to study how the structure of the problem can be utilised
to develop a scalable algorithm for learning to control networked systems. More
specifically we are considering a network of linear-quadratic (LQ) controllers with
a spatially exponentially decaying (SED) structure between nodes. Spatial exponen-
tial decay is a system property that is connected to the underlying graph’s topology
and is formally defined in Definition 3.2. Intuitively a system is SED if the de-
pendence between agents in the network decays exponentially with the distance
between them. Recent results on the structure of the optimal controller tell us dis-
tributed control of such systems is feasible [30]. Furthermore, for the single agent
case, the authors of [14] provide performance guarantees when applying centralised
reinforcement learning to synthesise LQ controllers. The goal is to combine these
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Chapter 1. Introduction

results and design a scalable learning algorithm for distributed control of networked
LQ agents.

1.2 Related Work

In the multi-agent case, reinforcement learning algorithms for networked agents
with information decay has been previously studied in [19, 20, 32]. In these works
reinforcement learning algorithms for multi-agent systems are studied in a more
general context and not specifically from a LQ perspective. In short, they show that
there are multi-agent systems with localised interactions that allow for distributed
learning.

More similar to our work is that in [17] where they study distributed reinforce-
ment learning for multi-agent LQ control. They assume each agent observes a par-
tition of the global state and study synthesis of local linear state feedback policies
of the partial observations. They assume the agents can communicate through some
predetermined communication network and rely on consensus and derivative-free
optimisation to find a distributed controller.

Another work similar to ours is that in [9] where a distributed Q-learning pro-
cedure is proposed for the linear-quadratic control problem. The algorithm is eval-
uated through a simulation study indicating near-optimal results. However, analysis
of the algorithm is left to future work.

1.3 Contribution

The contribution of this work is twofold. Firstly, the structure of the individual
agents’ value functions and action-value functions is studied. This analysis culmi-
nate in Theorem 4.3 which shows how the system’s spatially decaying structure is
preserved for the agents’ individual value functions. Corollary 4.4 then extends this
result to the individual action-value functions.

Secondly, an algorithm for distributed learning and control for network LQR is
proposed. The design is motivated by the structure of the individual action-value
functions and based on the actor-critic framework. Finally, the proposed algorithm
is analysed through numerical experiments.

1.4 Outline

• Chapter 2 – Background: Brief overview of linear-quadratic control, rein-
forcement learning and multi-agent systems.

• Chapter 3 – Problem Formulation: Introduces the specific model and as-
sumptions. The spatially exponentially decaying property is defined and our
problem formally stated.
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1.4 Outline

• Chapter 4 – Individual Value and Action-Value Functions for Network
LQR: The rate of decay for the individual value and action-value functions
is studied and the error of truncating these functions is bounded.

• Chapter 5 – Scalable MARL for Network LQR: Motivated by the results of
the previous section, this part concerns algorithm design for scalable control
for the network LQR problem.

• Chapter 6 – Simulation Study: The results from the two previous sections
are studied using numerical simulations and the results are discussed.

• Chapter 7 – Conclusions and Future Work: Summary and concluding re-
marks on this work followed by a discussion on limitations and possible fu-
ture directions.
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2
Background

This chapter provides necessary background information and notation that will be
used throughout the rest of this work. First, the classical LQR problem and its op-
timal solution is introduced. Then, a brief background on concepts in single agent
continuous reinforcement learning is provided. Finally, the LQR problem and con-
tinuous reinforcement learning are discussed when the system consists of multiple
agents.

2.1 The Linear-Quadratic Regulator

The infinite horizon discrete time LQR problem is a classic problem in optimal
control [4]. In a discrete time setting, the state at time t is governed by the linear
equation

x(t +1) = Ax(t)+Bu(t)+w(t), w(t)∼N (0,σ2
wI)

where x ∈ Rn is the state, u ∈ Rm the input and w ∈ Rn system noise. It is assumed
that A and B are controllable, meaning the system can transition from any state to
any other state in a finite time [12]. At each timestep there is also a cost incurred by

c(t) = x(t)⊤Sx(t)+u(t)⊤Ru(t)

where S ∈ Rn×n and R ∈ Rm×m are positive semidefinite cost matrices. The goal is
to minimise the average cost over an infinite horizon by choosing the input u. Math-
ematically formulated the LQR problem aims to solve the optimisation problem:

min
{ut}∞t=0

J(u) := lim
T→∞

E

[
1
T

T−1

∑
t=0

(
x(t)⊤Sx(t)+u(t)⊤Ru(t)

)]
s.t. x(t +1) = Ax(t)+Bu(t)+w(t), w(t)∼N (0,σ2

wI)
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2.2 Continuous Reinforcement Learning for Average Cost Problems

It is well known that the solution to the LQR problem is given by the linear state
feedback controller u∗ = K∗x where

K∗ =−(R+B⊤P∗B)−1B⊤P∗A (2.1)

This means that given any state x the optimal action is given by u∗ = K∗x. In Equa-
tion (2.1), P∗ is the solution to the Discrete Algebraic Riccati Equation [4]

P∗ = A⊤P∗A−A⊤P∗B(R+B⊤P∗B)−1B⊤P∗A+S

and by [3], the optimal cost incurred by following K∗ is given by

min
u

J(u) = J(K∗) = tr(P∗)

When the dynamics are unknown, the optimal controller can obtained by col-
lecting data and then either model the system or find a controller directly from the
data. A general framework for learning from data is reinforcement learning which
will be considered next.

2.2 Continuous Reinforcement Learning for Average
Cost Problems

The aim of this section is to introduce the most important concepts from reinforce-
ment learning and the interested reader is referred to a textbook on the subject,
for example Sutton and Bartos book Reinforcement learning: An introduction from
2018 [25].

Reinforcement learning is a machine learning paradigm where one or more
agents learn by interacting with the environment. The interaction between agent and
environment is commonly modelled as a Markov decision process (MDP) which is
a tuple (X ,U ,c,P). Let ∆X denote the distribution over states, then

X ⊂ Rn is the state space,
U ⊂ Rm is the action space,

c : X ×U → R is a cost function,
P : X ×U → ∆X is the transition probability

For each timestep t, the agent receives state x(t) ∈X from the environment
and chooses an action u(t) ∈ U which lead to a penalty c(t) = c(x(t),u(t)). This
action also leads to the environment transitioning from x(t) to x(t+1) via x(t+1)∼
P(x(t),u(t)). In reinforcement learning, the transition probability is assumed to be
unknown and the goal is to learn a policy which is a mapping π : X →U from the
current state to an action or distribution over actions. If the agent follows a policy π
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Chapter 2. Background

it will take action π(x) upon receiving state x from the environment. A visualisation
of how the agent interact with the environment can be seen in Figure 2.1.

Agent

Environment

u(t)x(t)

c(t+1)

x(t+1)

c(t)

Figure 2.1 General schema visualising how a reinforcement learning agent interact with
the environment.

For a given policy π we can define the value function and action-value function
and use these to find a better policy. The value function gives the cost of following π

from state x and is given by

V π(x) := Eπ

[
∞

∑
t=0

(c(x(t),π(x(t)))−λ
π) | x(0) = x

]
(2.2)

where λ π is the expected average stage cost of policy π under stationarity

λ
π := lim

T→∞
Eπ

[
1
T

T

∑
t=0

c(x(t),π(x(t)))

]
and similarly the cost of taking an arbitrary action u from state x and thereafter
following π is given by the action-value function

Qπ(x,u) = Eπ

[
∞

∑
t=0

(c(x(t),u(t))−λ
π) | x(0) = x,u(0) = u

]
(2.3)

We note that we can separate out the first term of the summation in Equa-
tion (2.2) and (2.3) and thus see that the Bellman equations

V π(x) = c(x,π(x))−λ
π +Ex′∼P(x,π(x))[V

π(x′)], (2.4)

Qπ(x,u) = c(x,u)−λ
π +Ex′∼P(x,π(x))[Q

π(x′,π(x′))] (2.5)

hold for any state x ∈X and action u ∈U for both the value and the action-value
functions. Moreover, there is an apparent similarity between the value function and
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2.2 Continuous Reinforcement Learning for Average Cost Problems

the action-value function and we note that by setting u = π(x) in the definition
of Qπ(x,u) we recover the value function. That is

Qπ(x,π(x)) =V π(x)

Similarly, an important result in reinforcement learning is the policy improve-
ment theorem which says that if two deterministic policies π and π ′ are such that

Qπ(x,π ′(x))≤V π(x)

then π ′ must be at least as good as π .
The policy improvement theorem has led to many different approaches to learn-

ing the policy π and it is impossible to go through them all, instead we briefly in-
troduce a class of reinforcement learning algorithms known as actor-critic methods
which will be used in this work.

In actor-critic methods there is an actor which selects the actions and there is a
critic which evaluates the policy generated by the actor. The actor-critic is a gen-
eral framework and how one chooses the actor and the critic typically depends on
the problem. One way to construct this architecture is to let the critic construct an
approximate action-value function using Equation (2.5) which is then used by the
actor to update the policy parameters in a direction of improvement [13].

We end this section by specifying the value and action-value functions in the
context of LQR. For the LQR problem, the value function and action-value function
for any stable linear policy π(x) = Kx can be found using equations (2.4) and (2.5).
Using a quadratic ansatz, it can be shown that the value function V K(x) and the
action-value function QK(x,u) are both quadratic [1]. For readability, we drop the
policy superscript when talking about LQR and remember that, for example V =
V π = V K depend on the policy π(x) = Kx. For a stable linear policy K, the value
and action-value functions for the LQR problem satisfy

V (x) = x⊤Px (2.6)

Q(x,u) =
(
x⊤ u⊤

)
H
(

x
u

)
(2.7)

where P is the solution to the Lyapunov equation

P = S+K⊤RK +(A+BK)⊤P(A+BK) (2.8)

and

H =

(
H11 H12
H⊤12 H22

)
=

(
S+A⊤PA A⊤PB

B⊤PA R+B⊤PB

)
(2.9)

Moreover, in [4] it is shown that the average cost of following K is given by

15



Chapter 2. Background

λ = tr
(
σ

2
wP
)
= tr

(
σ

2
wH
(

I
K

)(
I
K

)⊤)
(2.10)

2.3 Learning and Control of Multi-Agent Systems

In this work we will consider multi agent systems where the agents’ dynamics are
coupled and the coupling is due to the agents being interconnected in a network
structure modelled by a graph. This setting comes with several new challenges,
both for controlling and learning the system.

In centralised control, all agents send information about their state to a cen-
tral computing unit which then uses the global state information to decide the next
control action. When the system consists of many agents, centralised control can
become unfeasible due to memory and computational requirements which might
mean a distributed control architecture is the only option [22]. Distributed control
differs from centralised control in the sense that agents share information with only
a few other agents, or not at all. The agents then decide the next action using only
the information they received from other agents [22]. Distributed control requires
less memory and computation but can, of course, never achieve a lower cost than
centralised control. Besides computational aspects, distributed control is appealing
because of its robust nature. If a single subsystem fails, global system failure can
still often be avoided [6].

In the reinforcement learning literature, the study of systems with several agents
is known as Multi-Agent Reinforcement Learning (MARL). In MARL the global
action and state space are given by the product of the individual spaces [6]. For a
system consisting of N agents where the state and action space of Agent i is given
by Xi and Ui respectively, the global state space X and action space U are given
by the product spaces.

X := X1×X2×·· ·×XN

U := U1×U2×·· ·×UN

The dimensions of the state and action spaces thus grow linearly with the size
of the system and, just as in the control case, one wants to lower the computational
and storage costs by distributing the learning across the agents [6].

In general, optimal decentralised control is NP-hard and as far as we know ad-
ditional conditions or structure on the problem is needed in order for efficient al-
gorithms to even exist for the problem [8]. Due to the difficulty of the problem,
suboptimal algorithms are interesting and one can then study the trade-off between
optimality and scalability [20]. These algorithms can, similarly to the single agent
case, be based on learning value and action-value functions which we now introduce
in the MARL setting.
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2.4 Individual Value and Action-Value Functions

2.4 Individual Value and Action-Value Functions

In the MARL setting, we introduce the concept of individual value and action-value
functions. For problems where the global cost is defined as the sum of the individual
costs,

c(t) :=
N

∑
i=1

ci(t) (2.11)

there is a natural way to define these individual functions. Inspired by [19], we first
define the expected average stage cost for the individual costs as

λ
π
i := lim

T→∞
Eπ

[
1
T

T

∑
t=0

ci(x(t),π(x(t)))

]
and note that

λ
π = lim

T→∞
Eπ

[
1
T

T

∑
t=0

c(x(t),π(x(t)))

]
= lim

T→∞
Eπ

[
1
T

T

∑
t=0

N

∑
i=1

ci(x(t),π(x(t)))

]

=
N

∑
i=1

lim
T→∞

Eπ

[
1
T

T

∑
t=0

ci(x(t),π(x(t)))

]
=

N

∑
i=1

λ
π
i

Continuing in this fashion, we define Qπ
i as the action-value function for the indi-

vidual costs ci by writing

Qπ(x,u) = Eπ

[
∞

∑
t=0

(c(x(t),u(t))−λ
π) | x(0) = x,u(0) = u

]

=
N

∑
i=1

Eπ

[
∞

∑
t=0

(ci(x(t),u(t))−λ
π
i ) | x(0) = x,u(0) = u

]

:=
N

∑
i=1

Qπ
i (x,u)

Doing the same for the value function lets us define V π
i

V π(x) = Eπ

[
∞

∑
t=0

(c(x(t),π(x(t)))−λ
π) | x(0) = x

]

=
N

∑
i=1

Eπ

[
∞

∑
t=0

(ci(x(t),π(x(t)))−λ
π
i ) | x(0) = x

]

:=
N

∑
i=1

V π
i (x) (2.12)
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Chapter 2. Background

Treating the first term of the summation separately, we see that the Bellman equation
introduced in Equation (2.4) and (2.5) still hold for the individual value and action-
value functions

V π
i (x) = ci(x,π(x))−λ

π
i +Ex′∼P(x,π(x))[V

π
i (x′)], (2.13)

Qπ
i (x,u) = ci(x,u)−λ

π
i +Ex′∼P(x,π(x))[Q

π
i (x
′,π(x′))] (2.14)
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3
Problem Formulation

In this work we consider a multi-agent version of the LQR problem where the agents
are embedded on a graph. Additionally, there is a spatially exponentially decaying
structure between agents. We begin by specifying the dynamics, cost function and
assumptions in our model. Subsequently, we introduce the spatially decaying struc-
ture and provide formal definitions for the problems under consideration.

3.1 Problem Setup

Consider an infinite-horizon, discrete time, network LQR problem controlled by N
agents, [N] := {1, . . . ,N}, embedded on an undirected graph. The graph is equipped
with a distance function dist(·, ·) : [N]× [N]→ R.

DEFINITION 3.1
A real valued function, dist(·, ·) : [N]× [N]→ R is called a distance function, if the
following properties hold for all i, j ∈ [N].

1. dist(i, i) = 0 and dist(i, j)> 0 if i ̸= j

2. dist(i, j) = dist( j, i)

3. dist(i, j)≤ dist(i,k)+dist(k, j) 2

Since we are considering problems where the agents can be seen as being em-
bedded on a graph, we naturally let dist(·, ·) denote the graph distance, i.e. the short-
est distance between any two nodes in the graph. We will however, keep in mind
that our results hold for all distance functions. The graph distance allows us to in-
troduce the concept of the κ-neighbourhood of Agent i which we denote by N κ

i
and define by

N κ
i := { j ∈ [N],dist(i, j)< κ}

19



Chapter 3. Problem Formulation

With the graph in place, we now turn to the dynamics and costs in the model.
The global state x and control action u are given by

x(t) = [x1(t)⊤,x2(t)⊤, . . . ,xN(t)⊤]⊤ ∈ Rn

u(t) = [u1(t)⊤,u2(t)⊤, . . . ,uN(t)⊤]⊤ ∈ Rm

where xi(t) ∈ Rni and ui(t) ∈ Rmi with n = ∑i ni and m = ∑i mi respectively. Fur-
thermore, the state at time t + 1 is a linear function of the previous state, control
action and Gaussian system noise w.

x(t +1) = Ax(t)+Bu(t)+w(t), w(t)∼N (0,σ2
wI)

As previously mentioned the global state and action spaces can be partitioned
into local states and actions. For Agent i, the state at time t +1 is given by

xi(t +1) =
N

∑
j=1

[A]i jx j(t)+ [B]i ju j(t)

where xi(t) ∈ Rni is the local state and ui(t) ∈ Rmi is the local control action.
Here [X ]i j denotes the submatrix of X where the row indices correspond to the
indices of Agent i and its column indices correspond to the indices of Agent j. By
indices of Agent i, if the total index length is n = ∑i ni, we mean the indices in
the range [∑i−1

j=1 n j +1,∑i
j=1 n j]. Furthermore we let [X ]i: and [X ]:i denote the set of

rows and columns corresponding to Agent i respectively.
For each agent, there is also a quadratic local cost which only depend on the

state and action of the agent itself

ci(t) = xi(t)⊤[S]iixi(t)+ui(t)⊤[R]iiui(t)

with [S]ii ∈ Rni×ni and [R]ii ∈ Rmi×mi . The global cost is defined as the summation
of the individual costs

c(t) =
N

∑
i=1

ci(t) = x(t)⊤Sx(t)+u(t)⊤Ru(t)

Here S ∈ Rn×n and R∈ Rm×m are both assumed to be positive semidefinite matrices.
Restricting ourselves to static feedback linear policies of the form u(t) = Kx(t),
the problem can be formulated as a classical LQR problem

min
K

J(K) := lim
T→∞

E

[
1
T

T−1

∑
t=0

c(t)

]
s.t. x(t +1) = Ax(t)+Bu(t)+w(t), w(t)∼N (0,σ2

wI) (P)
u(t) = Kx(t)
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3.2 Spatially Exponentially Decaying Structure

3.2 Spatially Exponentially Decaying Structure

The problem we consider here is a special type of LQR problem in which the indi-
vidual agents’ costs have been decoupled and where the dynamics are unknown but
satisfy a spatially decaying structure introduced in [30]. The decaying property we
will work with can be defined in terms of norms on the subsystems and we let || · ||
denote both the l2-norm of a vector and the induced l2-norm of a matrix.

DEFINITION 3.2—SPATIALLY EXPONENTIALLY DECAYING (SED)
Given a matrix X ∈ R∑

N
i=1 ni×∑

N
i=1 mi partitioned into N×N blocks, [X ]i j ∈ Rni×m j ,

and distance function dist(·, ·) : [N]× [N]→R, the block matrix X is (c,γ)−SED if∥∥[X ]i j
∥∥≤ c · e−γdist(i, j), ∀ i, j ∈ [N]

2

Definition 3.2 aim to describe interconnected systems where the dependence
between any two agents is negligible if the distance between them is large enough.
In the special case of scalar blocks (ni = mi = 1), we note that [X ]i j is a scalar and
the matrix norm in Definition 3.2 reduce to the absolute value.

Before continuing, we also remark that all matrices fulfill Definition 3.2 for
some γ and c. Definition 3.2 gives an upper bound on the norm of the submatrices
for a given matrix and in order for this bound to be useful, c should preferably be
small and γ large, relative to the matrix size.

We now provide an example to strengthen the intuition behind Definition 3.2.
As previously mentioned, we let the distance be the graph distance and thus first
need to define the graph topology. Consider a graph consisting of N = 20 chained
agents, i.e., Agent 1 is connected to Agent 2, Agent 2 is connected to Agent 1 and
3 and so on (see Figure 3.1).

1 2 3 N-2 N-1 N

Figure 3.1 Graph topology for a chain of N agents.

When the agents are chained as in Figure 3.1, a SED matrix decays away from
the diagonal. Schematically this is visualised in Figure 3.2. The scale is not of any
importance per se, but rather Figure 3.2 visualise the rate of decay.

Using the definition, we can show how the SED parameters behaves under ad-
dition and mulitplication.

LEMMA 3.1
Suppose X ,Y ∈ Rn×m are (cx,γx)− SED and (cy,γy)− SED, respectively, and
let γ = min(γx,γy). Then, X +Y is (cx + cy,γ)−SED.
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Chapter 3. Problem Formulation

Proof. ∥∥[X +Y ]i j
∥∥≤ ∥∥[X ]i j

∥∥+∥∥[Y ]i j
∥∥≤ (cx + cy)e−γdist(i, j) 2

LEMMA 3.2—LEMMA 18 IN [30]
Suppose X ∈ Rn×m, Y ∈ Rm×p are (cx,γx)−SED and (cy,γy)−SED, respectively,
and let γ = min(γx,γy). Then, XY is (Ncxcy,γ)−SED.

Proof.

∥∥[XY ]i j
∥∥= ∥∥∥∥∥ N

∑
r=1

[X ]ir[Y ]r j

∥∥∥∥∥≤ N

∑
r=1
||[X ]ir||||[Y ]r j||

≤
N

∑
r=1

cxcye−γ(dist(i,r)+dist(r, j)) ≤
N

∑
r=1

cxcye−γdist(i, j)

= Ncxcye−γdist(i, j) 2

(a)

0 5 10 15 20
10

-3

10
-2

10
-1

(b)

Figure 3.2 Heatmap and decay plot for a SED matrix, X , when the network consists of
chained agents as in Figure 3.1.

With the SED-property defined, we also define the stronger concept of spatially
exponentially decaying away from Agent i.

DEFINITION 3.3
Given a matrix X ∈ R∑i ni×∑i mi partitioned into N×N blocks, [X ]i j ∈ Rni×m j , and
distance function dist(·, ·) : [N]× [N]→ R, the block matrix X is (c,γ)-SED away
from i, if i ∈ [N] and

||[X ]l j|| ≤ c · e−γ max(dist(i,l),dist(i, j)), ∀l, j ∈ [N]

2
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3.2 Spatially Exponentially Decaying Structure

Definition 3.3 is stronger than Definition 3.2, since

max(dist(i, l),dist(i, j))≥ dist(i, l)+dist(i, j)
2

≥ dist(l, j)
2

meaning that if X is (c,γ)-SED away from i it is also (c,γ/2)−SED.
For the same chain graph topology as in Figure 3.1, an example of a matrix that

is SED away from i is visualised in Figure 3.3 when i = 10.

(a)

0 2 4 6 8 10

10
-1

10
0

(b)

Figure 3.3 Heatmap and decay plot for a matrix, X , that is SED away from Agent 10 when
the network consists of chained agents as in Figure 3.1.

By following the proofs of Lemma 3.1 and Lemma 3.2, it is easy to show that
these lemmas also hold for matrices that are SED away from i. Another property of
matrices that fulfill Definition 3.3 is that the decay away from i is preserved when
such a matrix is multiplied by a SED matrix.

LEMMA 3.3
Let Y ∈ Rn×m be (cy,γy)− SED and let X ∈ Rm×p be (cx,γx)-SED away from i.
Furthermore, let γ = min(γx,γy). Then XY is (Ncxcy,γ)-SED away from i.

Proof.

||[XY ]l j||=

∣∣∣∣∣
∣∣∣∣∣ N

∑
r=1

[X ]lr[Y ]r j

∣∣∣∣∣
∣∣∣∣∣≤ N

∑
r=1
||[X ]lr|| ||[Y ]r j||

≤
N

∑
r=1

cxcye−γ(max(dist(i,l),dist(i,r))+dist(r, j))

≤ Ncxcye−γ max(dist(i,l),dist(i, j))

Where we used that max(a+ c,b+ c)≥max(a,b+ c) ∀ a,b,c≥ 0 and the triangle
inequality in the last step. 2
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Chapter 3. Problem Formulation

We notice that there is nothing special about multiplying Y by X from the left and it
is easy to see that the same bound holds if we change the dimensions of X or Y and
consider the product Y X .

We now return to problem (P) and note that, since the costs are decoupled, the S
and R matrices are sparse and trivially SED. The matrices A and B are however
dense in general and we add the following decaying assumption on the dynamics

ASSUMPTION 1—SED DYNAMICS
There exist γsys > 0 and constants cA,cB > 0 such that A,B are (cA,γsys),(cB,γsys)-
SED repsectively. Without loss of generality we assume cA,cB ≥ 1.

Under Assumption 1, we constrain ourselves to systems where the interdepen-
dence in the dynamics between agents becomes exponentially small as the distance
between them increases.

As previously mentioned, if we are allowed to pick γ and c freely, Assumption 1
will hold for any finite-dimensional matrix. In order to get a useful bound from
Assumption 1, it is therefore important that c and γ do not scale with N. Meaning,
there exists some upper and lower bounds on c and γ that are independent of N.
This property can be relaxed to include the case when there is a dependence on N,
as long as c grows, or γ decays slowly as N increases.

3.3 Stable Systems and Stabilising Controllers

Another useful concept we will need is the concept of stability and especially sta-
bilising policies. Intuitively, a system is stable if and only if any bounded input
produces a bounded output. Formally, we define the concept of (τ,ρ)-stability by

DEFINITION 3.4—(τ,ρ)-STABILITY

For τ ≥ 1, ρ > 0, a matrix X is said to be (τ,ρ)-stable if ||Xk|| ≤ τ ·e−ρk, ∀ k ∈Z≥0

By [10, Theorem 5.6.12 and Corollary 5.6.13] the existence of such a τ and ρ

for the matrix X is equivalent to the standard definition of stability, which states that
the spectral radius of X is less than 1. Definition 3.4 is however stronger than the
standard definition, since it explicitly provides the rate of convergence. We say that a
policy K is stabilising if there exists τ, ρ such that the closed-loop system (A+BK)
is (τ,ρ)-stable.

3.4 Structure of the Optimal Controller

Previously the structure of the optimal controller for network LQR with spatial
exponential decay has been studied by Zhang, Li and Li in [30]. That work considers
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3.5 Problem Statement

problem (P) under Assumption 1 and the additional assumption that there exists an
initial stabilising controller, K0 which is (k0,γsys)−SED. Under these assumptions
they show that the optimal controller also has a decaying structure, where the norm
of the subsystems of the optimal controller ||[K∗]i j||, are O

(
exp
(
−c·dist(i, j)
poly ln(N)

))
[30].

They continue studying truncated controllers Kκ of the form

[Kκ ]i j =

{
[K∗]i j if dist(i, j)< κ

0 otherwise

and show that by taking κ ∼ poly ln(N) ln(1/ε), Kκ achieves ε-optimal control [30].
This means that the optimal controller can be well approximated by a truncated
version, allowing for distributed control of the system.

3.5 Problem Statement

We are mainly concerned with the problem of using reinforcement learning to learn
a sample based controller for network LQR with SED structure. Motivated by the
previous results described in Section 3.4, we aim to address two questions: Firstly,
how the decaying structure is preserved for the individual value and action-value
functions; Secondly, can we use the structure of the problem to design a distributed
reinforcement learning algorithm to learn distributed controllers. More formally, we
want to address the following two problems:

Problem 1. Consider stabilising, spatially exponentially decaying, linear feed-
back policies K, that is, K such that, K is (cK ,γK)− SED and (A+BK) is (τ,ρ)-
stable for some cK , γK , τ and ρ . Does the individual value function Vi and action-
value function Qi for problem (P) also have a spatially decaying structure under
decoupled costs (Equation (2.11)) and Assumption 1?

Problem 2. Let K κ be a class of localised controllers defined by

K κ := {K ∈ Rm×n : [K]i j = 0mi×n j if j /∈N κ
i }.

In the case when A and B in (P) are unknown but satisfy Assumption 1, can the
network structure be used to design a scalable RL algorithm for learning a stabilis-
ing, localised, feedback controller K ∈K κ ?

25



4
Individual Value and
Action-Value Functions for
Network LQR

This section aims to address Problem 1 (see page 25). Inspired by the results on the
structure of the optimal controller in Section 3.4, we derive the individual value and
action-value functions for problem (P) in order to investigate their structure.

4.1 Derivation of the Individual Value and Action-Value
Functions in the Network LQR setting

We start by investigating the value and action-value functions for the individual
agents. For a linear policy K we first note that Agent i’s action at time t is given
by ui(t) = [K]i:x(t). We then define S′i ∈ Rn×n and R′i ∈ Rm×m to be zero-padded
versions of [S]ii and [R]ii, such that, x⊤S′ix = x⊤i [S]iixi and u⊤R′iu = u⊤i [R]iiui. Using
the definition of the individual value function from Equation (2.12) together with
decoupled quadratic costs and linear dynamics we get

Vi(x) = E

[
∞

∑
t=0

(x⊤i (t)[S]iixi(t)+u⊤i (t)[R]iiui(t)−λi) | x(0) = x

]

= E

[
∞

∑
t=0

(x⊤i (t)[S]iixi(t)+ x⊤(t)[K]⊤i: [R]ii[K]i:x(t)−λi) | x(0) = x

]

= E

[
∞

∑
t=0

(x⊤(t)(S′i +[K]⊤i: [R]ii[K]i:)x(t)−λi) | x(0) = x

]
= x⊤(S′i +[K]⊤i: [R]ii[K]i:)x−λi +Ex′=Ax+Bu+w

w∼N (0,σ2wI)

[
Vi(x′)

]
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4.2 Spatially Decaying Structure of the Individual Value and Action-Value
Functions

We notice that the individual value-functions are in fact on the same form as the
global value-function given by Equation (2.6). Once again using a quadratic ansatz,
it can be seen that the individual value function is also quadratic, with Vi(x) = x⊤Pix
where Pi satisfies the Lyapunov equation

Pi = S′i +[K]⊤i: [R]ii[K]i: +(A+BK)⊤Pi(A+BK) (4.1)

Similarly, for the individual action-value functions

Qi(x,u) = x⊤S′ix+u⊤R′iu+(Ax+Bu)⊤Pi(Ax+Bu) (4.2)

=
(
x⊤ u⊤

)(S′i +A⊤PiA A⊤PiB
B⊤PiA R′i +B⊤PiB

)(
x
u

)
(4.3)

=
(
x⊤ u⊤

)(Hi11 Hi12
H⊤i12 Hi22

)(
x
u

)
(4.4)

=
(
x⊤ u⊤

)
Hi

(
x
u

)
(4.5)

The importance of the individual value and action-value functions also being
quadratic is not immediate. However, this structure imply they have the same form
as the global value and action-value functions where a lot more work has been done.
This allows us to borrow both proof-techniques and design ideas from centralised
LQR.

4.2 Spatially Decaying Structure of the Individual Value
and Action-Value Functions

We now investigate the structure of Vi and Qi from the previous section. We notice
that Pi solving the Lyapunov equation (4.1) plays an important role for both the
individual value and action-value functions. Hence, it is logical to commence our
investigation by examining how Pi preserves spatial decay. We start by considering
a more general Lyapunov equation.

LEMMA 4.1
Let L∈Rn×n be (τ,ρ)-stable and (cL,γ)−SED, with cL≥ 1, and M ∈Rn×n (cM,γ)-
SED away from i, then the solution P to the Lyapunov equation P = L⊤PL+M, is
(cP,γP)-SED away from i with

cP =
||M||τ2

1− e−2ρ
+2cM

and
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Chapter 4. Individual Value and Action-Value Functions for Network LQR

γP =
ργ

ρ + ln(NcL)

2

Proof. Since L is stable, the solution to the Lyapunov equation is unique and given
by

P =
∞

∑
k=0

(Lk)⊤MLk

Define Pt to be the first t terms in the series

Pt =
t−1

∑
k=0

(Lk)⊤MLk

then using that L is (τ,ρ)-stable,

∥∥P−Pt∥∥= ∥∥∥∥∥ ∞

∑
k=t

(L⊤)kMLk

∥∥∥∥∥≤ ∞

∑
k=t
||(L⊤)k|| ||M|| ||Lk||

≤ ||M||
∞

∑
k=t

τ
2e−2ρk = ||M||

∞

∑
k=0

τ
2e−2ρ(k+t)

=
||M||τ2

1− e−2ρ
e−2ρt

Now since L is (cL,γ)− SED, Lemma 3.2 says Lk is (cLk ,γ)− SED, where cLk =
Nk−1ck

L and by Lemma 3.3 it holds that

||[MLk]l j|| ≤ (NcL)
kcMe−γ max(dist(i,l),dist(i, j))

and

||[(Lk)⊤MLk]l j|| ≤ (NcL)
2kcMe−γ max(dist(i,l),dist(i, j))

Furthermore, cL ≥ 1 implies (NcL)
2 ≥ 2 and

t−1

∑
k=0

(NcL)
2kcM = cM

(NcL)
2t −1

(NcL)2−1
≤ 2(NcL)

2(t−1)

this means we can bound ||[Pt ]l j|| by

||[Pt ]l j|| ≤ 2cM(NcL)
2(t−1)e−γ max(dist(i,l),dist(i, j))

Combining these results gives
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4.2 Spatially Decaying Structure of the Individual Value and Action-Value
Functions

||[P]l j|| ≤ ||[P−Pt ]l j||+ ||[Pt ]l j||

≤ ||P−Pt ||+2cM(NcL)
2(t−1)e−γ max(dist(i,l),dist(i, j))

≤ ||M||τ
2

1− e−2ρ
e−2ρt +2cM(NcL)

2(t−1)e−γ max(dist(i,l),dist(i, j))

This holds for any t, in particular it holds when the two terms are roughly equal.
That is, for t such that

e−2ρt = (NcL)
2(t−1)e−γ max(dist(i,l),dist(i, j))

and we therefore set

t =
⌊

γ max(dist(i, l),dist(i, j))
2(ρ + ln(NcL))

⌋
+1

which gives

||[P]l j|| ≤
||M||τ2

1− e−2ρ
e−2ρt +2cM(NcL)

2(t−1)e−γ max(dist(i,l),dist(i, j))

≤
(
||M||τ2

1− e−2ρ
+2cM

)
exp
(
− ργ

ρ + ln(NcL)
max(dist(i, l),dist(i, j))

)
2

Lemma 4.1 states that the Lyapunov equation preserves the spatial decay away
from i when the matrix L is (τ,ρ)-stable. The proof is essentially borrowed from
[30] where they prove a similar result with M being SED, here adapted to the case
when M is SED away from i. We remark that the condition cL ≥ 1 is not strictly
necessary but allows for a tidier bound and was added for convenience in the proof.
In order for Lemma 4.1 to provide a useful bound, it is important that the param-
eters γ,ρ,τ, ||M||, etc, do not scale with N. Due to the ln(NcL) term, the exponent
always scale with N, which worsens the bound as N grows. However, the rate of
growth is slow and as long as max(dist(i, l),dist(i, j))≥Nε for any ε > 0, [P]l j→ 0
as N→ ∞.

Prior to stating our main result, we state another lemma about the structure
of S′i +[K]⊤i: [R]ii[K]i: showing up in Equation (4.1).

LEMMA 4.2
Let K be (cK ,γsys)− SED. Then, the matrix S′i +[K]⊤i: [R]ii[K]i: from the Lyapunov
equation (4.1) is (||[S]ii||+ ||[R]ii||c2

K ,γsys)-SED away from i.

Proof. First we note that∥∥∥[[K]⊤i: [R]ii[K]i:]l j

∥∥∥≤ ||[R]ii||c2
Ke−γsysdist(i,l)e−γsysdist(i, j)
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Chapter 4. Individual Value and Action-Value Functions for Network LQR

and since e−γsysdist(i,l) ≤ 1 for all l we get∥∥∥[[K]⊤i: [R]ii[K]i:]l j

∥∥∥≤ ||[R]ii||c2
K min(e−γsysdist(i,l),e−γsysdist(i, j))

= ||[R]ii||c2
Ke−γsys max(dist(i,l),dist(i, j))

By construction of S′i we know that [S′i]l j = 0 unless j = l = i and thus

||[S′i]l j|| ≤ ||[S]ii||e−γ max(dist(i,l),dist(i, j))

is true for any γ , in particular it is true for γ = γsys. Combining these results using
Lemma 3.1 into

||[S′i +[K]⊤i: [R]ii[K]i:]l j|| ≤ (||[S]ii||+ ||[R]ii||c2
K)e
−γsys max(dist(i,l),dist(i, j))

finishes the proof. 2

We are now ready for our main result concerning the structure of Pi that solves
Equation (4.1)

THEOREM 4.3
Let K be (cK ,γsys)−SED and such that the closed system (A+BK) is (τ,ρ)-stable.
Then for the solution Pi to the Lyapunov equation

Pi = S′i +[K]⊤i: [R]ii[K]i: +(A+BK)⊤Pi(A+BK)

it holds that Pi is (cPi ,γPi)-SED away from i, with

cPi =
||S′i +[K]⊤i: [R]ii[K]i:||τ2

1− e−2ρ
+2(||[S]ii||+ ||[R]ii||c2

K)

and

γPi =
ργsys

ρ + ln(NcA +N2cBcK)
.

2

Proof. Lemma 3.2 and 3.1 gives that (A+BK) is (cA +NcBcK ,γsys)− SED and
Lemma 4.2 tells us the decay rate of S′i +[K]⊤i: [R]ii[K]i:. The result directly follows
by setting L = (A+BK) and M = S′i +[K]⊤i: [R]ii[K]i: in Lemma 4.1. 2

Theorem 4.3 says that the individual value-functions Vi(x) = x⊤Pix dependency
on other agents decays exponentially as the distance between them increases. We
remark that the result in Theorem 4.3 is rather conservative and the bound is not
tight.

By revisiting the definition of the submatrices Hi11, Hi12 and Hi22 parameteris-
ing Qi and using Lemma 3.3, we get a similar result for the individual action-value
function.
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4.2 Spatially Decaying Structure of the Individual Value and Action-Value
Functions

COROLLARY 4.4
For a linear policy fulfilling the assumptions in Theorem 4.3, the submatri-
ces Hi11,Hi12 and Hi22 of the matrix Hi defined in Equation (4.4) are all (cHi ,γPi)-
SED away from i, with

cHi = max
(

cS′i
+N2c2

AcPi , N2cAcBcPi , cR′i
+N2c2

BcPi

)
2

Proof. The result follows immediately by applying Lemma 3.1 and 3.2 on the def-
inition of the submatrices and then choosing cHi as the maximum coefficient. 2

From Equation (4.4), we know that the individual action-value functions depend
on the global states and actions. In order to design a scalable algorithm that utilises
the individual action-value functions, we want to remove the global dependence. It
is thus interesting to bound the error caused by truncating these functions. We first
define the κ-truncated matrices.

DEFINITION 4.1

[Hκ
i11]l j :=

{
[Hi11]l j if max(dist(i, l),dist(i, j))< κ

0 otherwise

[Hκ
i12]l j :=

{
[Hi12]l j if max(dist(i, l),dist(i, j))< κ

0 otherwise

[Hκ
i22]l j :=

{
[Hi22]l j if max(dist(i, l),dist(i, j))< κ

0 otherwise

2

Using Corollary 4.4 we can now bound the error caused by truncating Hi11, Hi12
and Hi22 with the following lemma.

LEMMA 4.5
For a linear policy fulfilling the assumptions in Theorem 4.3 the error caused by
truncating the submatrices of Hi is bounded by

||Hi11−Hκ
i11||, ||Hi12−Hκ

i12||, ||Hi22−Hκ
i22|| ≤

√
NcHie

−γPi κ

2

Proof. From the definition of Hκ
i11 and Corollary 4.4 we have that

||[Hi11−Hκ
i11]l j|| ≤ cHie

−γPi κ

Multiplying by x ∈ Rn with ||x||= 1 gives
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Chapter 4. Individual Value and Action-Value Functions for Network LQR

||[(Hi11−Hκ
i11)x]l ||=

∣∣∣∣∣
∣∣∣∣∣ N

∑
r=1

[(Hi11−Hκ
i11)]lrxr

∣∣∣∣∣
∣∣∣∣∣≤ cHie

−γPi κ
N

∑
r=1
||xr||

and thus

||(Hi11−Hκ
i11)x||2 ≤ N(cHie

−γPi κ)2

(
N

∑
r=1
||xr||

)2

≤ N(cHie
−γPi κ)2

N

∑
r=1
||xr||2

= N(cHie
−γPi κ)2||x||2

Finally taking square roots on each side gives the result for Hi11. Repeating the
same procedure for Hi12 and Hi22 finishes the proof. 2

Lemma 4.5 implies that in order to truncate the submatrices of Hi with an ε >

0 error, taking κ ≥ ln
(√

NcHi
ε

)
/γPi is sufficient. Once again, we emphasise the

importance of checking the dependence of the different parameters on N. As an
extreme example, consider a situation where cHi grows exponentially with N and
γPi ≤ 1. Then, κ ≥ N is required to keep the error upper bounded by ε , meaning we
are not able to truncate the action-value function. This is, however, not generally
the case of interest, and we can instead use Lemma 4.5 to give a reasonably small
bound on the error due to truncation.
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5
Scalable MARL for Network
LQR

Inspired by the findings from the previous chapter, we continue to design an algo-
rithm where learning the truncated individual action-value functions serves as an
intermediate step. Building on the actor-critic framework, we design an algorithm
where the critic estimates the individual action-value functions. Based on these es-
timates, the actor calculates the gradient of the cost function and updates the pa-
rameters by taking a step towards a lower cost. The actor and the critic are two
separate architectures, and we provide a detailed description of each architecture
before combining them. First, however, we give some background on a method for
centralised learning of LQR.

5.1 Least-Squares Temporal Difference Learning for
Centralised Q-Function Evaluation

Linear-quadratic control has been studied extensively from the reinforcement learn-
ing perspective, particularly as a test-bed for learning algorithms in continuous con-
trol [1, 5, 7, 14, 21, 26]. The reason is that both the action space and state space are
continuous and that the optimal controller is known, enabling easy quantification
of learning algorithms’ performance [21]. Moreover, the problem is theoretically
tractable due to its simplicity, allowing guarantees to be provided for these algo-
rithms [26]. Importantly, many of the observed patterns persist when considering
more challenging nonlinear problems [21].

Important for our work is that in [14], which applies the method developed
in [15] to learn the action-value function for the linear-quadratic control problem
and then take the next action greedily. After deriving their method, their analysis
proves that approximately (n+m)3ε−2 log(1/ε) samples are required to learn an ε-
optimal static feedback controller. The critic in our method can be described as a
distributed version of the LSTDQ estimator for estimating individual action-value
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Chapter 5. Scalable MARL for Network LQR

functions rather than the global action-value function. Here, we introduce the theory
behind their algorithm and refer the interested reader to [14].

In order to do this, we first introduce some notation. For a symmetric ma-
trix M ∈ Rn×n, svec(M) ∈ Rn(n+1)/2 denotes the vectorised version of the upper
triangular part of M so that svec(M)⊤svec(M) = ||M||2F . We let smat(·) be the in-
verse of svec(·) so that smat(svec(M)) = M. Using this we recall Equation (2.7)
and write

Q(x,u) =
(
x⊤ u⊤

)
H
(

x
u

)
= svec(H)⊤svec

((
x
u

)(
x
u

)⊤)
:= h⊤φ(x,u) (5.1)

The linearity of the action-value function allows the use of the Least-squares
temporal difference learning (LSTDQ) method developed in [15]. LSTDQ approx-
imates the action-value function by forcing the approximated function to be a fixed
point to the Bellman equation (2.5). This is achieved by projecting the estimate onto
the subspace spanned by the features φ(x,u).

Formally, the authors of [14] assume they have access to a sample trajec-
tory {(x(t),u(t),Kx(t+1))}T

t=1 where {u(t)} can be any arbitrary sequence, as long
as it ensures sufficient exploration [14]. They then introduce,

φ(t) := φ(x(t),u(t)), (5.2)
ψ(t) := φ(x(t),Kx(t)), (5.3)

c(t) := x(t)⊤Sx(t)+u(t)⊤Ru(t), (5.4)

f := svec

(
σ

2
w

(
I
K

)(
I
K

)⊤)
(5.5)

and estimate the parameters of the action-value function with

ĥ :=

(
T

∑
t=1

φ(t)(φ(t)−ψ(t +1)+ f )⊤
)† T

∑
t=1

φ(t)c(t) (5.6)

where M† denotes the pseudo-inverse of a real valued matrix M. After estimating the
parameters of the action-value function with Equation (5.6), their algorithm updates
the policy greedily by minimising the approximated action-value function.

5.2 Critic Architecture: Decentralised Q-function
estimation

Inspired by the result of Lemma 4.5, we adapt the LSTDQ algorithm from [14]
to learn truncated Qi in a decentralised way. We consider stabilising, decentralised
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5.2 Critic Architecture: Decentralised Q-function estimation

policies K ∈ K κ (see page 25) and let xN κ
i

denote the neighbourhood state of
Agent i meaning the concatenation of all x j with j ∈N κ

i and similar for uN κ
i

. We
let · denote truncation and ·̂ denote estimation from samples. Using Definition 4.1,
we introduce the truncated individual action-value function by

Qi(x,u) :=
(
x⊤ u⊤

)(Hκ
i11 Hκ

i12

Hκ⊤
i12 Hκ

i22

)(
x
u

)
= Qi(xN κ

i
,uN κ

i
)

Lemma 4.5 then suggests that for sufficiently large κ

Qi(x,u)≈ Qi(x,u) = Qi(xN κ
i
,uN κ

i
)

Using the feature vector φ(x,u) introduced in Equation (5.1) we write

Qi(xN κ
i
,uN κ

i
) = h⊤i φ(xN κ

i
,uN κ

i
)

Our later proposed algorithm will be an off-policy algorithm which means the
policy used to generate data is different from the one being learned [25]. Thus the
input u0 can come from any sequence, as long as it provides sufficient exploration.
We will consider inputs of the form

u0(t) = K0x(t)+η(t), η(t)∼N (0,σ2
η I)

where K0 ∈K κ is a stabilising initial policy and η injected noise in order to ensure
sufficient exploration. In order to evaluate the current policy we also need actions
from our current policy K ∈K κ

uK(t) = Kx(t)

Since both K0 and K belong to K κ they are localised policies in the sense that
Agent i’s next action only depend on the states of agents in N κ

i . Now suppose
Agent i has access to a trajectory, DN κ

i
consisting of Tc samples

DN κ
i

:=
{(

xN κ
i
(t),u0

N κ
i
(t),uK

N κ
i
(t +1)

)}Tc

t=1

Then, similar to equations (5.2)-(5.5), we define

φi(t) := φ(xN κ
i
(t),u0

N κ
i
(t)), (5.7)

ψi(t) := φ(xN κ
i
(t),uK

N κ
i
(t)), (5.8)

ci(t) := xi(t)⊤[S]iixi(t)+u0
i (t)

⊤[R]iiu0
i (t), (5.9)

fi := svec

(
σ

2
w

(
I

[K]N κ
i :

)(
I

[K]N κ
i :

)⊤)
(5.10)
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and define the LSTDQ estimator for hi by

ĥi :=

(
Tc

∑
t=1

φi(t)(φi(t)−ψi(t +1)+ fi)
⊤
)† Tc

∑
t=1

φi(t)ci(t) (5.11)

Using smat(·) we are able to transform the estimate back into matrix form.
When doing so, we exploit that Hi is a symmetric positive semidefinite matrix [5]
and project the estimate onto the set of symmetric positive semidefinite matrices.
This is a closed convex set and therefore this projection can only reduce the er-
ror [1]. I.e., we define

Proj(·) := argmin
X=X⊤,X⪰0

||X−·||F (5.12)

and form Ĥi = Proj(smat(ĥi)). For notational convenience we form Ĥ i by append-
ing Ĥi with zeros and write

Q̂i(xN κ
i
,uN κ

i
) =

(
x⊤ u⊤

)
Ĥ i

(
x
u

)
=
(
x⊤ u⊤

)(Ĥ i11 Ĥ i12

Ĥ
⊤
i12 Ĥ i22

)(
x
u

)
where Ĥ i by construction is sparse and such that

[Ĥ i11]l j = 0nl×n j , [Ĥ i12]l j = 0nl×m j , [Ĥ i22]l j = 0ml×m j if i /∈N κ
l ∩N κ

j

This implies,

[Ĥ11]i j :=
N

∑
l=1

[Ĥ l11]i j = ∑
l∈N κ

i ∩N
κ

j

[Ĥ l11]i j (5.13)

and similar for Ĥ12 and Ĥ22. Meaning, any parameters concerning Agent i in the
estimate of the global Q-function are completely determined by the local action-
value functions in the κ-neighbourhood of i. Furthermore, the global estimate is
sparse since

[Ĥ11]i j = 0ni×n j , [Ĥ12]i j = 0mi×n j , [Ĥ22]i j = 0mi×m j if j /∈N 2κ−1
i (5.14)

which we see by noting that N κ
i ∩N κ

j = /0 when j /∈N 2κ−1
i . This is a general

property stemming from the definition of N κ
i which the following lemma proves.

LEMMA 5.1

N 2κ−1
i =

⋃
j∈N κ

i

N κ
j 2
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Proof. We use a double inclusion argument to prove the lemma.
N 2κ−1

i ⊇
⋃

j∈N κ
i

N κ
j : Assume l ∈

⋃
j∈N κ

i
N κ

j , specifically let l ∈ N κ
j1

with j1 ∈N κ
i then l ∈N 2κ−1

i since

dist(l, i)≤ dist(l, j1)+dist( j1, i)≤ κ−1+κ−1 = (2κ−1)−1

N 2κ−1
i ⊆

⋃
j∈N κ

i
N κ

j : Now assume l ∈ N 2κ−1
i . If dist(l, i) ≤ κ − 1 we are

done since l ∈N κ
i by definition. Instead assume dist(l, i)> κ−1. Consider the last

node j ∈N κ
i on the shortest path from l to i, that is j ∈N κ

i with dist(i, j) = κ−1.
Then l ∈N κ

j ⊆
⋃

j∈N κ
i

N κ
j since

dist( j, l) = dist(i, l)−dist(i, j)≤ 2κ−2− (κ−1) = κ−1

holds on the shortest path. 2

We use the introduced notation and formulate the critic architecture in Algo-
rithm 1 and 2 for Agent i. The critic is the first half of our learning algorithm and its
purpose is to estimate the action-value functions. In Algorithm 1, the data collection
procedure is described and in Algorithm 2 the Q-function estimation procedure.

Algorithm 1 Critic: COLLECTCRITICDATA

Require:
Kplay ∈K κ : Stabilising exploration controller,

Tc: Trajectory length

σ2
η : Exploration variance,

κ: Neighbourhood size
1: procedure COLLECTCRITICDATA(Kplay, Tc, σ2

η , κ)
2: for t = 1, . . . ,Tc +1 do
3: Share xi(t) with the κ-neighbourhood.
4: Calculate

uplay
i (t) = ∑

j∈N κ
i

[Kplay]i jx j(t)+η(t),η(t)∼N (0,σ2
η I)

5: Share uplay
i (t) with the κ-neighbourhood.

6: end for
7: Agent i now has access to

DN κ
i

:=
⋃

j∈N κ
i

{(
x j(t),u

play
j (t)

)}Tc+1

t=1

8: return DN κ
i

to Agent i.
9: end procedure
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Algorithm 2 Critic: ESTIMATEQ

Require:
DN κ

i
: Data trajectory for all i

Kk ∈K κ : Current controller

Tc: Trajectory length

κ: Neighbourhood size
1: procedure ESTIMATEQ(DN κ

i
, K, Tc, κ)

2: for t = 1, . . . ,Tc +1 do
3: Use DN κ

i
to calculate

uKk
i (t) = ∑

j∈N κ
i

[Kk]i jx j(t)

4: Share uKk
i (t) with the κ-neighbourhood.

5: Use Equation (5.7)-(5.10) to form φi(t), ψi(t), ci(t) and fi.
6: end for
7: Estimate ĥi using Equation (5.11).
8: Using Equation (5.12), transform ĥi into matrix form Ĥi.
9: Share Ĥi12 and Ĥi22 with the κ-neighbourhood.

10: By Equation (5.13), Agent i now knows [Ĥ12]i j and [Ĥ22]i j for all j.
11: return Ĥ11, Ĥ12, Ĥ22
12: end procedure

Even though Algorithm 1 and Algorithm 2 are written in terms of Agent i, all
agents run these two algorithms. With the critic architecture in place, we now turn
our attention to the actor architecture.

5.3 Actor Architecture: Decentralised Policy Update

In [14] the authors update their policy greedily which works well in the centralised
case but require solving a linear system of equations. An alternative update rule is
to update the policy in the direction of improvement using the gradient. We are con-
sidering deterministic policies and use the theory of deterministic policy gradients
from [23]. The deterministic policy gradient is the expected gradient of the action-
value function, which can be more efficiently estimated than the usual stochastic
policy gradient [23]. Specifically, for a deterministic policy π and an objective func-
tion J(π) we have

∇π J(π) = E [∇π Qπ(x,π(x))] (5.15)

Using the inner product definition of the gradient
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5.3 Actor Architecture: Decentralised Policy Update

dQ(x,Kx) := ⟨∇KQ(x,Kx),dK⟩= tr(∇KQ(x,Kx)⊤dK)

we get

dQ(x,Kx) = 2x⊤H12dKx+2x⊤K⊤H22dKx

= tr(2x⊤H12dKx)+ tr(2x⊤K⊤H22dKx)

= tr(2xx⊤H12dK)+ tr(2xx⊤K⊤H22dK)

=
〈

2(H⊤12 +H22K)xx⊤,dK
〉

and thus

∇KQ(x,Kx) = 2(H⊤12 +H22K)xx⊤ (5.16)

We note that the gradient depends on global information and set out to show
that, in our setting, the partial derivative ∂Q(x,Kx)/∂ [K]i j can be approximated by
Agent i only using local information. First of all, the matrices H12 and H22 are not
known and have to be replaced with the estimates Ĥ12 and Ĥ22. Equation (5.14)
tells us that these estimates are sparse, more specifically that [Ĥ12]i j, [Ĥ22]i j = 0
if j /∈N 2κ−1

i . Combining this knowledge with the fact that K ∈K κ , we get

[Ĥ22K]i j =
N

∑
l=1

[Ĥ22]il [K]l j = 0mi×n j if j /∈N 3κ−2
i (5.17)

Using this in Equation (5.16) with the definition of partial derivative gives

∂ Q̂(x,Kx)
∂ [K]i j

= 2
N

∑
l=1

[Ĥ
⊤
12]il [xx⊤]l j +2

N

∑
l=1

[Ĥ22K]il [xx⊤]l j (5.18)

= 2 ∑
l∈N 2κ−1

i

[Ĥ
⊤
12]il [xx⊤]l j +2 ∑

l∈N 3κ−2
i

[Ĥ22K]il [xx⊤]l j (5.19)

From Equation (5.13), we see that in order to update Agent i’s parameters us-
ing Equation (5.19) it is sufficient for Agent i to have access to Ĥ j12 and Ĥ j22 for
all j ∈N κ

i . Agent i also needs to calculate [Ĥ22K]il for l ∈N 3κ−2
i and from Equa-

tion (5.14) and (5.17), we see that Agent i needs access to [K] j: for j ∈N 2κ−1
i . Ac-

cording to Equation (5.15), the final step in finding the gradient of the cost function
is taking the expected value of the gradient in Equation (5.16). The actor achieves
this by sampling a trajectory and estimating the mean of the gradient over this trajec-
tory. The actor’s procedure for Agent i is described in pseudocode in Algorithm 3.
As mentioned for the critic architecture, Algorithm 3 is then run for each of the
agents.
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Algorithm 3 Actor: UPDATEK

Require:
Kk ∈K κ : Current controller

Ĥi: Estimated Q-function parameters for all i

Ta: Trajectory length

α: Step size

κ: Neighbourhood size
1: procedure UPDATEK(Kk, Ĥi, Ta, α , κ)
2: Generate on-policy data {xa

i (t)}
Ta
t=1 by following policy Kk.

3: Share {xa
i (t)}

Ta
t=1 with the (3κ − 2)-neighbourhood and share [Kk]i: with

the (2κ−1)-neighbourhood.
4: Use [Ĥ12]i j and [Ĥ22]i j from ESTIMATEQ together with Equation (5.19) to

estimate the partial derivative Gi j := ∂J(K)/∂ [Kk]i j using the standard estima-
tor for expected value

Ĝi j :=
1
Ta

Ta

∑
t=1

∂ Q̂(xa(t),Kkxa(t))
∂ [Kk]i j

.

5: Update parameter [Kk]i j by taking a negative gradient step

[Kk+1]i j = [Kk]i j−αĜi j ∀ j ∈N κ
i .

6: return Kk+1
7: end procedure
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5.4 Scalable MARL for Network LQR

The critic and the actor are standalone procedures and we formulate Algorithm 4
for distributed learning of network LQR by combining Algorithm 1, 2 and 3.

Algorithm 4 Scalable MARL for Network LQR

Require:
κ: Neighbourhood size

K0 ∈K κ : initial stabilising controller

kmax: Number of policy iterations

Tc: Critic trajectory length

σ2
η : Exploration variance

Ta: Actor trajectory length

α: Actor step size
1: DN κ

i
← COLLECTCRITICDATA(K0,Tc,σ2

η , κ) for all i
2: for k = 0, . . . ,kmax−1 do
3: Ĥi← ESTIMATEQ(DN κ

i
, Kk, Tc, κ) for all i

4: Kk+1← UPDATEK(Kk,Ĥi, Ta, α , κ)
5: end for
6: return Kkmax

Algorithm 4 is a off-policy algorithm that returns a localised policy K ∈K κ

after a set number of iterations specified by the user. It assumes access to an initial
stabilising controller. For each policy update, the actor has to collect a trajectory of
length Ta to estimate the expected value, it is thus not offline even though the critic
part of the algorithm is designed to run in an offline manner. In practice, Ta can be
small compared to Tc making the online data collection negligible.

Algorithm 4 also require several parameters that, in practice, need to be tuned
to the problem at hand. Because of this, we have not investigated specific parameter
choices, but instead leave that to the algorithm’s implementer.
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6
Simulation Study

This section evaluates the algorithms introduced in the previous section through a
simulation study. First, Lemma 4.1 is visualised for a fabricated example satisfying
the assumptions of the lemma. Then, the performance of Algorithm 4 is evaluated
by applying it to the problem of controlling the temperature in a building.

6.1 Lemma 4.1 for a Toy Problem

We visualise Lemma 4.1 using a toy example. We let the graph be a chain of N = 20
agents as in Figure 3.1 and we take

L =


.5 .2
.2 .5 .2

. . . . . . . . .
.2 .5 .2

.2 .5

 , [Mi]l j =

{
1 if l = j ∈Ni

0 otherwise
(6.1)

L is banded, symmetric and stable with τ = 1. Obviously it is also SED with for
example, cL = 0.5 and γ = .9. For Mi, we can take cMi = e.9 and γ = .9 to make
it (cMi ,γ)-SED away from i. Using MATLAB’s built-in functions we solve the Lya-
punov equation from Lemma 4.1. The decay of Pi, as defined in Lemma 4.1, is
visualised in Figure 6.1.

We continue to visualise a case when Lemma 4.1 fails to give an informative
bound. Once again consider the graph topology given by Figure 3.1 with N = 20
agents and take

L =


0 e

0 e
. . . . . . . . .

0 e
0

 (6.2)
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Figure 6.1 Decay of the solution Pi to the Lyapunov equation Pi = L⊤PiL+Mi with L,Mi
specified by Equation (6.1). In (a) and (b) the decay is shown for i = 1. In (c) and (d) for i =
10.

Let Mi be as before, specified in Equation (6.1). L is still (cL,γ)−SED with γ = .9
and cL = e2. Moreover, L is stable as all its eigenvalues are zero. However, it is easy
to see that

max
k
||Lk||= eN−1 = e19

meaning τ > e19 in Definition 3.4. For this example, this means cPi > e38 ≈ 3 ·1016

in Lemma 4.1 which is a non negligible constant. Figure 6.2 show that there is
indeed no decay away from i with L as in Equation (6.2).

To give some intuition into why this example fails, we notice that L is a Jordan
matrix with upper diagonal elements larger than 1. Every time L is multiplied by
itself it’s elements both grow and move towards the upper right corner, this pattern
holds up until L20 which is the zero matrix and makes cPi huge for agents early in
the chain. Before continuing we once again remind the readers that this is in fact
not a counter example to Lemma 4.1, it is just an ill-conditioned example.
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Figure 6.2 Heatmap and decay plot of Pi with i = 1 when L is given by Equation (6.2)
and Mi by Equation (6.1). Note the scale. This L does not break the assumptions of
Lemma 4.1, nor does it give an informative bound on the decay rate of Pi.

6.2 Scalable MARL for Thermal Control

We consider the problem of controlling the temperature in a building, more specif-
ically keeping the temperature at the desired steady state. The building is mod-
elled as an undirected connected graph where each room has an agent (node in the
graph) that controls the temperature in that room. If rooms i and j are adjacent the
edge (i, j) exists. We consider a one-story building with N = 25 rooms arranged in
a 5 by 5 square, see Figure 6.3.

Figure 6.3 Schematic over the 25 room one-story building. Dashed lines represent walls in
the building and solid lines the model’s graph topology.

We assume the thermal dynamics model studied in [30] and [31] and add Gaus-
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sian noise. In [30] they model the problem as a continuous-time LQR model where
the state and control variables are expressed as deviations from the desired steady
state temperature.

min
{u(t)}

∫
∞

0

N

∑
i=1

sixi(t)2 +ui(t)2

ẋi = ∑
j∈Ni, j ̸=i

1
viζi j

(x j− xi)+
1
vi

ui

Here vi is the thermal capacitance of room i, ζi j the thermal resistance between two
neighbouring rooms and si the relative cost of deviating from the desired tempera-
ture. We assume ζi j = 0.5◦C / kW, vi = 200+20×N (0,1) kJ/◦C and si = 5. Fur-
thermore, we define the dynamics and and cost matrices for the continuous problem
as

[Ac]i j =


−∑r ̸=i,r∈Ni

1
viζi j

if i = j
1

viζi j
if i ̸= j, j ∈Ni

0 otherwise

,

Bc = diag(
1
vi
), Sc = diag(si), Rc = I

Using ∆t = 1/4 we discretise the system using the scheme in [30] yielding the
discrete-time LQR matrices A, B, R and S.

A = e∆tAc , B =

(∫
∆t

0
esAcds

)
Bc, S = ∆tSc, R = ∆tRc

Before testing our algorithms, the SED assumption on A and B is verified in
Figure 6.4. We test the critic architecture by running Algorithm 1 and 2 for different
trajectory lengths Tc. We set K = Kplay =−I, system noise w(t)∼N (0,1) and run
10 trials. In Figure 6.5 the relative error for H and its submatrices H11, H12 and H22
is shown for different values on Tc and constant ση = 10.

We now evaluate Algorithm 4 by comparing its output to the optimal controller.
First the optimal controller is calculated with Equation (2.1) and then our algo-
rithm is applied to problem (P) with system noise w(t) ∼ N (0,1). We initialise
the algorithm with K0 = −3I, Ta = 10000, exploration noise ση = 10 and actor
step size α = 0.005. We first run the algorithm using the real, but truncated action-
value function for κ = 1,3,5 which was calculated using Equation (2.7) and then
truncated using Definition 4.1. The full algorithm was then run with Tc = 30000
and Tc = 100000. The relative cost J(K) for different values on κ can be seen in
Figure 6.6.
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Figure 6.4 Decay of system matrices A and B in Example 6.2. In (a) the maximum norm of
the submatrix [A]i j is seen when the distance between i and j is at least d varying from 0 to
8 which is the maximum distance between any agents in the graph. Similarly in (b) for the B
matrix.

We continue by studying a similar system but with faster dynamics. Keeping
everything else as before, we run the same experiments on a system with vi scaled
down by a factor of 10 such that, vi = 20+ 2×N (0,1) kJ/◦C. Both Ac and Bc
are inversely proportional to vi and thus decreasing this parameter has the effect of
increasing the speed of the dynamics. The critic’s performance for this system can
be seen in Figure 6.7 and the relative cost achieved by running Algorithm 4 can be
seen in Figure 6.8. In the next section, we proceed to discuss our findings further.

6.3 Results and Discussion

Section 6.1 illustrates how Lemma 4.1 can be used to ensure decay in Figure 6.1
and the importance of checking parameters’ dependency on N in Figure 6.2 for
chained agents. However, this experiment also visualises that even if L is SED and
stable, if the stability constant τ has a strong dependence on N, it is not certain
Lemma 4.1 provides a useful bound. When applying Lemma 4.1 to a system it is
therefore important to verify that τ in Definition 3.4 for the L matrix does not have a
exponential dependence on N, that is verifying that Lk does not grow exponentially
with the size of the system. For normal matrices, the spectral norm coincides with
the maximum eigenvalue of the matrix. Therefore, in the case when L is normal and
stable, Defintion 3.4 holds with τ = 1, and thus no further calculations are needed
to check dependence on N.

More importantly, in Section 6.2 both the critic and the full actor-critic frame-
work are evaluated on a thermal control problem. First the critic was evaluated and
as can be seen in Figure 6.5, the relative error in the parameters of the Q-function
decreases with longer trajectory length, except for the κ = 1 case. The smallest rel-
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(a) (b)

(c) (d)

Figure 6.5 Median relative error for the estimated submatrices Ĥ11, Ĥ12 and Ĥ22 shown
by the solid lines. The shaded regions represent 90 % confidence intervals of the estimate.

ative error is achieved for the estimate of H22, which is due to the scaling of the
problem. In Figure 6.6, the relative cost is shown and the lowest cost is achieved
for κ = 3 for both values of the trajectory length Tc. With Tc = 100000 and κ = 3,
Algorithm 4 finds a distributed controller with a cost that is around 2 % higher
than the optimal. From this figure one can also see that a larger κ does not mean
lower cost, and thus, if possible, κ should be fine tuned to the problem. In theory, a
larger κ should never increase the cost as irrelevant parameters can be set to zero.
However, in practice more parameters can decrease the performance as was shown
in [14] for the centralised critic case. This is also clear from Figure 6.6 (a) where
the real, truncated, action-value function was used. This figure also visualizes the
part of the error due to truncation. If we now combine Figure 6.5 and Figure 6.6 it
is clear that our algorithm can be robust to bad critic estimates.

When considering the system with smaller vi, both the critic and the full algo-
rithm perform better compared to the case with larger vi as shown in Figure 6.7
and 6.8. As previously discussed a smaller vi means faster dynamics which intu-
itively means fewer samples are needed as the state space is explored faster. How-
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Figure 6.6 Relative cost of learned thermal controllers. In figure (a), the real, but truncated,
Q-function was used. In (b) and (c) the Q function was also learned using Tc = 30000 in (b)
and Tc = 100000 in (c).

ever, it is worth noting that, in reality vi is a physical parameter which cannot be
chosen freely. Interestingly the error for κ = 1 does not decrease suggesting the
error in this case is due to truncation and not due to too few samples. On the other
extreme with κ = 5 the critic’s performance is better than for other values of κ if
enough samples are used. The error is also much smaller compared to the slower
system in Figure 6.5 for both κ = 3 and κ = 5. Considering the relative cost, in the
case of Tc = 100000 and κ = 5, after 100 iterations our algorithm finds a controller
with a 0.3 % higher cost than the optimal controller.
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(a) (b)

(c) (d)

Figure 6.7 Median relative error for the estimated submatrices Ĥ11, Ĥ12 and Ĥ22 shown
by the solid lines. The shaded regions represent 90 % confidence intervals of the estimate. In
this example the thermal capacitance for room i was scaled down by a factor of 10 compared
to the one used in Figure 6.5.
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Figure 6.8 Relative cost of learned thermal controllers. In figure (a), the real, but truncated,
Q-function was used. In (b) and (c) the Q function was also learned using Tc = 30000 in (b)
and Tc = 100000 in (c). Compared to Figure 6.6 the thermal capacitance for room i was
scaled down by a factor of 10.
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7
Conclusions and Future
Work

7.1 Conclusions

This thesis extends previous work on the structure of the optimal controller for net-
worked LQR with spatially decaying structure, to the problem of using samples to
learn a distributed controller. First, the individual agents’ value and action-value
functions were defined and their structure investigated. It was shown that, it is in-
deed possible to bound the error when truncating these functions. These results
were then used to design a scalable reinforcement learning algorithm for finding
distributed controllers for the network LQR problem. Finally, the algorithm’s per-
formance was evaluated through a simulation study. These simulations show, that
although the algorithm requires a lot of samples, near optimal cost can be achieved.

7.2 Limitations and Directions for Future Work

Below we list the main limitations of Algorithm 4 and suggestions on how to handle
these. Furthermore, future directions which we believe to be fruitful are discussed.

First of all in Lemma 4.1 the decay parameter γPi , always depends on N and
similar to the discussion in [30] it would be interesting to see if this dependence is
fundamental or a consequence of the proof. By carefully going through the proof
of Lemma 4.1, one can see that the provided bound is not tight. In this work we
prioritized simplicity over tightness and thus leave tightening the bounds to future
work. The results in Section 4 could also potentially be extended to the continuous-
time setting and the case of an infinite number of agents (N→ ∞).

If we instead consider Algorithm 4, one of the most significant drawbacks is that
it is sample-inefficient. Although, this work has focused on spatial locality and per-
formance loss due to truncation, sample efficiency is important in the real world. If
it is possible to simulate the system, the number of samples might not be a problem.
However, it is possible that model-based methods can outperform our algorithm in
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this case. Sample inefficiency is typical for reinforcement learning algorithms [29]
and a different approach would probably be needed in order to avoid this problem.

In its current form the algorithm is also offline in the sense that we first collect
data for the critic and then use the same data throughout the algorithm. By small
adjustments to the algorithm, an online version could be implemented which might
be more beneficial if it is possible to continuously collect data from the system. An
online version of Algorithm 4 would however require the collection of Tc samples
for each policy iteration which might be unreasonable if Tc is large. The actor cur-
rently collects Ta samples each iteration in order to estimate an expected value. With
the current actor architecture, this is needed as the actor needs access to on-policy
samples in order to estimate the gradient.

To avoid resampling each iteration, a greedy actor could be used instead. In the
centralised case, a greedy actor updates the policy by solving a linear system of
equations. In [18] they propose a technique to solve sparse linear systems distribu-
tively and it would be interesting to investigate if their techniques could be used to
implement a scalable greedy actor. Designing and evaluating such an architecture
against our gradient based actor is an interesting future direction.

Another limitation of Algorithm 4 is its dependence on parameters such as
neighbourhood size κ and step size α . These require fine tuning to achieve good
performance which might mean trial and error based search. Similarly, the system
assumptions can be hard to validate in practice and, as has been shown, this can lead
to poor performance.

In this work we have also not considered effects of measurement errors and
effects of long-range-correlated noise. These will almost surely affect the perfor-
mance of Algorithm 4 and should be considered when implementing the algorithm.

Ignoring the algorithm’s limitations, another important direction of future work
is analysis of the algorithm. Such analysis could potentially lead to guarantees re-
garding performance and sampling complexity. Performance analysis is, at the time
of writing, being investigated by initially ignoring errors stemming from sampling.
On a high level, the idea is to first bound the estimation error for the Q-function.
Step two would then be to prove gradient descent convergence, at least a station-
ary point, when using the approximated Q-function for estimating the gradient. A
first approach would to this problem would be to try and use techniques from the
similar work in [17]. Hopefully these results could then be extended to show conver-
gence to local minima. Finally, it would be interesting to investigate the algorithm’s
performance in practice, by applying it to other problems in network learning and
control.
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