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Abstract

Given the increase in electricity prices in recent years due to two
reasons; the rebound effect after the initial corona outbreak and the
Russian invasion of Ukraine, the burden of paying the rising monthly
expense for electricity has become an unwelcome reality for a signifi-
cant part of society. The electricity trades on the open market called
Nord Pool for the Nordic countries, among others, where buyers and
sellers come together to find a market price for electricity each day. By
forecasting future electricity prices using the machine-learning model
XGBoost and a select number of features, the use of electricity can be
optimized in the near future with respect to cost. Two different XG-
Boost models were constructed and evaluated on their ability to predict
future prices. Each model was trained on a unique dataset, where the
datasets are of different characteristics in terms of volatility. The first
model, trained on historical electricity prices with less volatility showed
a much more reliable forecasting ability than the second model, trained
on historical electricity prices with much more inherent volatility. The
optimizations were executed in Matlab with two different optimization
solvers. The cost-optimization with the forecasted electricity prices is
compared to other charging patterns, in order to determine if the fore-
casted prices are accurate enough to save cost. Each optimization prob-
lem had a number of defined objectives and a number of constraints
assigned to it. The result of this thesis showed that the charging proto-
col incorporating the forecasted electricity prices while minimizing the
cost produced a more cost-efficient solution in comparison to the other
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charging protocols brought up.

4



Acknowledgements

I would like to thank my supervisor Emma Tegling who has guided
and supported me through all the obstacles faced in writing this thesis.

5





Contents

1. Introduction 11
1.1 An Electricity Market in Turmoil . . . . . . . . . . . . 11
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Forecasting through a statistical time series model 16
1.4.2 Forecasting through an artificial neural network . 16
1.4.3 Forecasting through XGBoost . . . . . . . . . . . 17
1.4.4 Price forecasting & power cost optimization . . . 19

2. Background 20
2.1 Machine-learning Preliminaries . . . . . . . . . . . . . . 20

2.1.1 Error metric . . . . . . . . . . . . . . . . . . . . 20
2.1.2 ARIMA . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Gradient descent . . . . . . . . . . . . . . . . . . 22

2.1.3.1 Gradient Boosting . . . . . . . . . . . . 23
2.1.4 XGBoost . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4.1 Regularized object in XGBoost . . . . . 25
2.2 The electricity market . . . . . . . . . . . . . . . . . . 37

2.2.1 Electricity sources . . . . . . . . . . . . . . . . . 38
2.2.2 Nord Pool . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 Bidding areas . . . . . . . . . . . . . . . . . . . . 40
2.2.4 Import & export . . . . . . . . . . . . . . . . . . 41
2.2.5 European Emission Allowances . . . . . . . . . . 43
2.2.6 Renewable sources . . . . . . . . . . . . . . . . . 43

7



Contents

2.2.7 Market manipulation . . . . . . . . . . . . . . . . 44
2.2.8 ”Inefficient” pricing . . . . . . . . . . . . . . . . 45

2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Branch-and-bound . . . . . . . . . . . . . . . . . 46
2.3.2 Pareto Front . . . . . . . . . . . . . . . . . . . . 49

3. Prediction of electricity prices 51
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Hyperparameters . . . . . . . . . . . . . . . . . . 57
3.1.2 Hyperparameter tuning . . . . . . . . . . . . . . 59

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 Extrapolating to patch gaps in data . . . . . . . 66

3.2.1.1 Series extrapolated . . . . . . . . . . . 66
3.3 Manipulating data to assemble features . . . . . . . . . 68

3.3.1 Moving averages . . . . . . . . . . . . . . . . . . 68
3.3.2 Shift operation . . . . . . . . . . . . . . . . . . . 68

3.4 Baseline models . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Mismatched distributions . . . . . . . . . . . . . 68
3.4.2 Preprocessing & feature engineering . . . . . . . 69

3.4.2.1 Weather . . . . . . . . . . . . . . . . . . 70
3.4.2.2 Commodities . . . . . . . . . . . . . . . 72
3.4.2.3 Miscellaneous . . . . . . . . . . . . . . . 73

3.4.3 Forecasting prices with baseline models . . . . . 81
3.5 Primary models . . . . . . . . . . . . . . . . . . . . . . 85

3.5.1 Preprocessing & feature engineering . . . . . . . 85
3.5.1.1 Weather . . . . . . . . . . . . . . . . . . 85
3.5.1.2 Commodities . . . . . . . . . . . . . . . 85
3.5.1.3 Miscellaneous . . . . . . . . . . . . . . . 85

3.5.2 Forecasting prices with primary models . . . . . 93

4. Optimization of charging protocols 97
4.1 Charging scheduler . . . . . . . . . . . . . . . . . . . . 100

4.1.1 Optimization problem . . . . . . . . . . . . . . . 101
4.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . 102

4.2 Implementation in Matlab . . . . . . . . . . . . . . . . 103
4.2.1 Variables . . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Global constraints in Matlab . . . . . . . . . . . 107
4.2.3 Defining an optimization problem . . . . . . . . . 109

8



Contents

4.2.4 Input of driving pattern . . . . . . . . . . . . . . 109
4.3 Different charging protocols . . . . . . . . . . . . . . . 110

4.3.1 Cost of different charging protocols . . . . . . . . 112
4.3.1.1 First charging protocol . . . . . . . . . 113
4.3.1.2 Second charging protocol . . . . . . . . 115
4.3.1.3 Third charging protocol . . . . . . . . . 117
4.3.1.4 Fourth charging protocol . . . . . . . . 119
4.3.1.5 Fifth charging protocol . . . . . . . . . 121
4.3.1.6 Sixth charging protocol . . . . . . . . . 123
4.3.1.7 Seventh charging protocol . . . . . . . . 125
4.3.1.8 Cost-efficiency . . . . . . . . . . . . . . 127

5. Discussion 130
5.1 Forecasting electricity prices . . . . . . . . . . . . . . . 130

5.1.1 Assessing performance with previous research . . 132
5.1.2 Comparing the baseline models and primary

models . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Optimization of charging patterns . . . . . . . . . . . . 135

5.2.1 Charging protocols & limited sampling . . . . . . 135
5.2.2 The driving routine . . . . . . . . . . . . . . . . 137
5.2.3 Time intervals . . . . . . . . . . . . . . . . . . . 137

6. Conclusion & future work 138
6.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Future research . . . . . . . . . . . . . . . . . . . . . . 140

References 142

9





1
Introduction

Electricity is a vital part of everyday life, from households to indus-
tries. Lifestyles have more and more became dependent on electricity.
If electricity magically disappeared, the world would change overnight.
Given the significance of electricity, it is a necessity for every individual
requires access. Without it, the majority of daily tasks would become
a burden to perform. Therefore, it is of utmost importance that every
party has the ability to afford access to electricity. Unfortunately, a
number of compounding factors have arisen recently, sending the elec-
tricity price skyrocketing.

1.1 An Electricity Market in Turmoil

Since the outbreak of the COVID-19 pandemic, energy systems
worldwide have experienced volatile movements in pricing. Initially,
energy demand decreased rapidly all over the world in mid-March-
April of 2020 [Buechler et al., 2022]. Cutbacks in electricity demand
coincided with lockdowns being established and enforced in European
countries. A majority of the reduction in electrical demand originated
from the reduction in industrial and commercial operations [Werth et
al., 2021]. The unexpected decrease in demand yielded low electricity
prices. By July 2020, the cumulative number of hours where the day-
ahead price in Germany traded in negative territory, i.e. below zero,
surpassed any other year on record. The previous record was 211 hours
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Chapter 1. Introduction

set in 2019 [Halbrügge et al., 2021]. Trading in negative territory indi-
cates an imbalance between buyers and sellers in the energy market as
sellers desperately compete to dispatch their energy holdings. By 2021,
the demand for energy swiftly rebounded to surpass previous levels of
2019 and 2020 [Lorenczik and Copier, 2022]. The unexpected reversal
in demand, partly due to unusual weather conditions and the economic
recovery of 2021 as lockdowns were phased out, propped up the en-
ergy price by +470% in the Nordic countries, by +239% in France, and
by +218% in Germany in comparison to 2020 day-ahead prices. The
weather conditions depleted natural gas storage in Europe to lower-
than-expected levels since the first months of 2021 were unusually cold.
At the same time, the gas flow through Nord Stream had yet not
reached pre-pandemic levels. The combination led to an explosive de-
mand for natural gas as the gas reserves now required more gas than
usual [Jääskeläinen et al., 2022]. While there were lower levels of nat-
ural gas in Europe, the invasion of Ukraine by Russia induced chaos
and fear in energy and commodity markets as Russia is a large sup-
plier of commodities, mainly crude oil and natural gas. Crude oil from
Russia accounted for 45% of crude oil imports to the European Union
(EU) and the United Kingdom (UK) while natural gas accounted for
35% of natural gas imports to the EU and the UK in 2020. The energy
imports from Russia to the EU constituted 25% of all energy imports
for the year 2021. The uncertainty of natural gas and crude oil supply
triggered a five-fold increase in the price of natural gas and a doubling
of the price of crude oil at the price top of 2022 [Celasun et al., 2022].

Before the pandemic, the percentage of European citizens unable to
pay their energy bills or faced delays in paying them, measured at 52
million (11%), according to estimates. Furthermore, an estimated 57
million (12.7%) suffered from cold homes in the winter, and 104 mil-
lion (23%) could not keep their house comfortable during the summer.
[Beläıd, 2022]. The estimates are calculated before the pandemic. The
numbers are undeniably elevated today, given the energy crisis and the
aftermath of the pandemic. Energy poverty, also denoted as energy vul-
nerability, is an umbrella term used to declare a household’s inability to
acquire energy for essential services such as cooking, heating, cooling,
and household lighting [Beläıd, 2022]. The definition of energy poverty
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1.1 An Electricity Market in Turmoil

Figure 1.1 The annual rate of change of energy, gas, fuel, and electric-
ity prices. In March of 2021, all of the aforementioned categories have risen
extremely fast. The picture is taken from [Energy inflation rate continues
upward hike, hits 27% n.d.]

varies between countries [Beläıd, 2022], however, given its broad inter-
pretation, the brief conclusion is that 52 million live at risk of energy
poverty in the EU. In response to the growing concern of strained eco-
nomics of households, the European Commission has adopted multiple
measures to address gas and electricity prices [EUROPEAN COMMIS-
SION, 2021], introduced a proposal to phase out the dependency of
Russian fossil fuels [EUROPEAN COMMISSION, 2022] and to assist
countries in the European Union to deal with rising prices [COMMIS-
SION, 2022]. In addition, The European Commission has in collabora-
tion with The Internal Energy Agency (IEA) developed a manual on
how to reduce energy use and save cost [Playing my part n.d.] for Eu-
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Chapter 1. Introduction

ropean citizens. Other governmental bodies have dealt with the crisis
differently. The UK has since October implemented a package named
’Energy Bills Support Scheme’. The package provides a one-time pay-
ment of £400 allocated to pay off energy bills [Help with your energy
bills n.d.] Spain has announced a temporary windfall tax for profits in
the fiscal years 2022 and 2023 of electric utility companies. The revenue
from windfall taxes is allocated to attenuate the strain on vulnerable
households and firms originating from high energy prices [Baunsgaard
and Vernon, 2022]. There is a long list of countries implementing similar
solutions to restrain the effects of rampant energy prices. Recently, the
EU adopted an additional proposal to offset the high price of natural
gas. Energy ministers representing countries from the EU came to the
agreement of enacting a price cap of 180 €/MWh on gas prices [Staff,
2022a]. If the natural gas price were to rise above 180 €/MWh, the
price difference is compensated by the EU.

1.2 Problem

High energy prices are an issue relevant to all, independent of so-
cietal class, given how dependent all parts of society are on electricity
being operational. In this thesis, the problem tackled is whether it is
possible to reduce energy costs for an individual consumer by forecast-
ing the electricity price and utilizing electricity during the expected
cheapest periods. The problem is answered by producing a solution
that attempts to minimize the cost of electricity consumption. The
solution consists of two parts, the first part is forecasting electricity
prices 5 days in the future. The second part is calculating the most
cost-efficient pattern of electricity consumption, with the assumption
of knowledge regarding future electricity prices. The forecast is done
by analyzing contributing factors to the electricity price and training
machine-learning models on collected data stretching back to 2015-01-
06. In the collection, the models output a prediction for the electricity
price every hour for 1 day ahead up to 5 days ahead. Calculating the
most cost-efficient pattern of electricity usage is constructed with an
optimization problem. The objective of the optimization problem is to
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1.3 Contribution

find the lowest minimal value while ensuring the required electricity is
provided to the object in question.

Summarized, the topics addressed are

1. Forecasting price of electricity with a 5-day window

2. Model optimization for electricity usage and present cost-
reductions

1.3 Contribution

The contribution of this thesis will firstly be a tool that is applicable
to individual consumers with the goal to minimize electricity costs, and
secondly, the corresponding research is done to develop the tool. Fore-
casting as a category is a large body of research and is used in multiple
sectors; weather, population, and economy. Hence, any new revelation
and insight possible to improve performance are of great value. One
other contribution is the experimentation if it is feasible with limited
resources, data, and time to produce a reliant forecasting model that
performs accurately. When forecasting the weather, the number of pa-
rameters influencing future weather is immense and the forecast is done
by multiple models and multiple meteorologists. The computational re-
quirements to forecast weather are vast. One could argue that the same
is true for forecasting energy prices. Hence, it would be valuable to de-
tail if it is feasible to produce a reliable forecast model for energy prices
with one single person working with one model. Additionally, a contri-
bution is the analytic results of what factors have the greatest influence
on the electricity price.

1.4 Related work

Forecasting electricity prices is a well-researched area, the literature
is rich with multiple papers analyzing the potential to forecast prices
with different time horizons. The number of distinct techniques used in
predictions is diverse, some names are [Javier, 2017]:

• Statistical time series models
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Chapter 1. Introduction

• Artificial Neural Networks

• Wavelet transform models

• Regime-switching Markov models

• Fundamental market models

• Equilibrium models

• Ensemble and portfolio decision models

Two papers that are closely related to the subject of this thesis are
outlined below.

1.4.1 Forecasting through a statistical time series model

In the paper [Contreras et al., 2003], Javier Contreras, Rosario
Eśınola, Francisco J. Nogales, and Antonio J. Conejo attempt to fore-
cast the day-ahead price of electricity in markets using a time-series
model by the name of ARIMA. The study is performed on power mar-
kets of mainland Spain and California, USA, where daily trading of
electricity occurs. The writers of the paper studied the day-ahead elec-
tricity prices over three non-consecutive weeks selected in the calendar
year 2000 when analyzing the Spanish market. The number of weeks
selected for the Californian market analysis is only one. The findings
from the paper are that the error between the forecasted price and the
actual price is on average 10% for the Spanish market. The same num-
ber for the Californian market is around 5%. More about the ARIMA
model is presented in Section 2.1.2.

1.4.2 Forecasting through an artificial neural network

In the research paper [Singhal and Swarup, 2011], Deepak Singhal
and K.S. Swarup applied an artificial neural network to predict future
electricity prices up to 48 hours in advance. The pair collected eights
month of electricity price data and trained the neural network on six
months’ worth of data. It is common knowledge that there are some
factors that drive the electricity price more than others. The authors
bring up the following attributes as significant factors that impact the
price.
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1.4 Related work

1. Historical market closing prices (MCPs)

2. System loads

3. Fuel prices

The attributes of data collected for the study were time information, i.e.
day of the week and the time slot of the day, load demand for electricity
in the grid, and finally historical price information. By utilizing feature
engineering, the number of features as input to the network was a total
of 13. Some features established by applying feature engineering are the
change in demand and the electricity price x number of hours in the
past. For the final model, the RMSE metric for the forecast was 0.525
over 48 hours in the case of a ’normal trend’ of price history. In the case
of a ”small spike”, the RMSE was measured at 1.129. When studying
the forecasting result where the electricity had a large spike in price,
rising from ∼ 50 $/MWh to ∼ 300 $/MWh in a short amount of time,
the RMSE was measured at 4.105

1.4.3 Forecasting through XGBoost

In the paper [Wu et al., 2022], Kehe Wu, Yanyu Chai, Xiaoliang
Zhang, and Xun Zhao evaluate the ability to forecast electricity prices
with multiple models. To name a few, ARIMA, XGBoost, and PSO-
XGBoost are used. PSO, an acronym for particle swarm optimization,
provides assistance in adjusting the hyperparameters for the XGBoost
model. The dataset used in the paper is electricity price data from
the Australian power market. The data stretches from January 2019 to
December 2019. The models are evaluated based on each month in the
dataset. For each month January to June, each model is trained on the
first 24 days of the month and the remaining 7 days are used for testing
the models. For each month July to December, each model is trained
on the first 27 days, and the remaining 3 days are used for testing
the models. The models are quite simplistic in the feature aspect, only
having 4 features. Two of the features are classified as ”time” features,
being the day of the week and the hour of the day. The other two
features are classified as ”price data” features, being the ”electricity
price at adjacent time points” and the ”electricity price at the same
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Chapter 1. Introduction

time point on adjacent days”. The error metric RMSE is one of the
metrics used to determine the forecasting ability of the models. Since
the XGBoost models are relevant to this paper, they are mentioned
below with their corresponding RMSE metrics for each month.

RMSE
Month PSO-XGBoost XGBoost
January 0.6081 4.0098
February 2.5083 4.9329
March 1.3374 3.0893
April 2.9208 3.9655
May 39.2473 38.4477
June 15.3014 16.3771
July 6.9651 10.2248

August 2.3113 3.5036
September 1.2072 2.5119
October 24.2422 30.5328
November 1.5541 2.4317
December 29.2056 31.4767

Table 1.1 Table assembled with RMSE metrics from [Wu et al., 2022]

The authors establish that XGBoost with particle swarm optimiza-
tion is able to produce predictions relatively close to the actual value.
They mention that the particle swarm optimization of XGBoost has
some details that need to be improved, which may improve the predic-
tion accuracy of the model. [Wu et al., 2022].
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1.4 Related work

1.4.4 Price forecasting & power cost optimization

In the research paper [Albahli et al., 2020], Saleh Albahli, Muham-
mad Shiraz, and Nasir Ayub attempt to forecast electricity prices and
perform cost-optimization with the forecasted prices in the context of
cloud computing. The companies that provide cloud computing are de-
pendent on the availability of cheap electricity to power the hardware.
The authors propose the use of XGBoost in order to ”offload or move
storage, predict electricity price, and as a result reduce energy con-
sumption costs in data centers”. The real-world data is sourced from
the Independent Electricity System Operator in Ontario, Canada, with
the data sampled between 2003 and 2018. The XGBoost model is fed
features with laggards of the electricity price, the electricity price itself,
the hour of the day, the day of the month, the month of the year, the
year, and an additional feature denoted ’DateAsNum’. When examin-
ing the proposed models’ ability to predict on the test set, the authors
achieved an RMSE of 9.25. With the optimization model defined in the
paper, Albahli, Shiraz, and Ayub are able to reduce the electricity cost
by 25.32% by using the forecasted electricity prices.
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2
Background

2.1 Machine-learning Preliminaries

There are subjects and concepts that have to be understood to com-
prehend how the modeling works and to grasp some of the reasoning
done in the thesis. In this chapter, a number of subjects and terms are
brought up and defined to allow the reader to understand later chapters
in the thesis.

2.1.1 Error metric

The machine learning model used in this thesis has the objective to
predict a value ŷ and is trained by minimizing the error between the
predicted value ŷ and the true value y, also said to be the observed
value y. The error metric to express the degree of error is Root Square
Mean Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.1)

where n is the number of observations, ŷi is the predicted value and
yi is the observed value. RMSE is a good measurement of accuracy to
compare forecasting errors of various models or model configurations
for a specific variable. It is however not a good measurement between
variables, as the RMSE is scale-dependent. [Christie and Neill, 2022].
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2.1 Machine-learning Preliminaries

The following metric is not utilized when training the model, but
to concretely measure the overall performance of the models. A metric
that builds upon RMSE is Mean Column-Wise Root Mean Square Er-
ror (MCRMSE). It is used when having multiple RMSE values which
occur when using multivariate models since the RMSE is calculated
independently of each variable, and MCRMSE averages accumulated
RMSE over the number of variables. The MCRMSE is defined as [Chze
and Abdullah, 2022]

MCRMSE =
1

m

m∑
j=1

√√√√ 1

n

n∑
i=1

(yij − ŷij)2 (2.2)

which is equivalent to

MCRMSE =
1

m

m∑
j=1

RMSEj (2.3)

where m is the number of independent RMSE values.

2.1.2 ARIMA

Forecasting of a particular variable y is often done with time se-
ries. Time series, as the name hints, consists of a series of time inter-
vals and the corresponding measurement of the response variable y.
Instances of common time series forecasting models are future stock
market prices, future supply and demand curves, and future economic
conditions [Taslim and Murwantara, 2022]. Time series forecasting at-
tempts to predict future trends by analyzing previous data and patterns.

ARIMA, an acronym for Autoregressive Integrated Moving Aver-
age, is a model frequently used for forecasting time series. The ARIMA
model combines Autoregressive (AR) and Moving Average (MA) with
an ”Integrated” part. The ”I”, short for ”Integrated”, represents an
instrument to convert a non-stationary time series to be stationary
[Siami-Namini et al., 2018]. The ARMA model is unable to be applied
to non-stationary data.

The ARIMA model has three parameters, p, d, q, and is often written
as ARIMA(p, d, q). ARIMA is an extension of ARMA(p, q) (Autore-
gressive Moving Average), which is only designed to process stationary
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Chapter 2. Background

time series, aside from ARIMA, which has the capability of processing
non-stationary time series. The parameters p, q are terms for the Au-
toregressive(p) part and the Moving Average(q) part respectively [Zang
et al., 2019].

2.1.3 Gradient descent

Gradient descent (GD) is an optimization algorithm that is often
used in machine learning models to find the minimum of a loss func-
tion. The iterative algorithm will approach and localize the local min-
imum of a function. In order for gradient descent to be applicable, the
function must be differentiable and have the property of being convex.
The gradient descent is applicable for functions that are univariate or
multivariate.

The ”standard” gradient descent is named ”Batch gradient descent”,
to separate it from other types of gradient descent, such as stochastic
gradient descent. Batch gradient descent works by iteratively computing
the gradient for a function with respect to parameters θ.

θ = θ − η∇θJ(θ) (2.4)

Here, J(θ) is an objective function that is supposed to be minimized.
The variable η is the learning rate for the algorithm. ∇θ is the gradient
of the function J . [Ruder, 2016]. If a too-small value of η is chosen,
it will take a longer time to arrive at the minimum. However, if a too
large value is chosen for η, there is a chance of gradient descent never
reaching the minimum [Optimization in ML n.d.] η∇θ is called the step
size and decreases the closer to the minimum the algorithm is due to
∇θ decreasing. In the beginning, gradient descent will perform relatively
large steps compared to the steps in the end. If gradient descent reaches
the minimum, ∇θ is equal to zero and the step size equals zero based
on θ = θ− [η∇θ = 0]J(θ) = θ. Consequently, the algorithm stays in the
same position.

A drawback of gradient descent is the inability to locate the global
minima for non-convex cost functions. Functions with non-convex prop-
erties may have a local minimum, where the gradient for the cost func-
tion is zero, ultimately terminating the algorithm. The same scenario
is possible with saddle points as the cost function with only locate a
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2.1 Machine-learning Preliminaries

local maximum on one side and a local minimum on the other side of
the cost function. [What is gradient descent? N.d.]

2.1.3.1 Gradient Boosting. Gradient Boosting applies gradient
descent to obtain improved model predictions [How gradient boosting
differs from gradient descent n.d.] In order to understand the machine-
learning model in this thesis, it is necessary to understand the founda-
tion upon which the model is built on. Gradient Boosting is the heart
of the machine-learning model’s foundation.

Gradient boosting builds additive regression models by fitting an
initial function F0(x) (base-learner) to the current ”pseudo”-residuals
by the least-square metric. The ”pseudo”-residuals are equal to the gra-
dients of the loss function. The residuals are called ”pseudo”-residuals
because they are not conventional residuals, i.e. the difference between
the predicted value and actual value, but instead the gradient of the
loss function being minimized.

With Gradient Boost, the goal is to estimate a function based on
the output variable y and a set of input variables x = {x1, x2, ..., xn}.
Provided with the data {yi,xi}N1 of known values (y,x), the objective is
to find a function F ∗(x) that maps x to every y, F ∗ : x 7→ y, such that
the expected value Ey,x(Ψ(y, F (x))) is minimized, where Ψ(y, F (x)) is
the loss function. All of the equations are gathered from the paper on
Gradient Boosting [Friedman, 2002].

F ∗(x) = argmin
F (x)

Ey,xΨ(y, F (x)) (2.5)

An appropriate loss function has to be selected by the category of the
problem. The boosting generates an approximation F ∗(x) by adding
M number of functions together where β are expansion coefficients, the
parameters a are fit to training data, and the functions h(x; a) are base
learners composed of trivial functions of x.

F (x) =

M∑
m=0

βmh(x;am) (2.6)

The first step is to start with a guess F0(x), then for m = 1, 2, ...M ,
βm and am is given by
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(βm,am) = argmin
β,a

N∑
i=1

Ψ(yi, Fm−1(xi) + βh(xi,a)) (2.7)

with
Fm(x) = Fm−1(x) + βmh(x;am) (2.8)

The function h(x, am) is fit by using the squared error as a metric

am = argmin
ρ,a

N∑
i=1

[ỹim − ρh(xi;a)]
2 (2.9)

where ỹim is the residual (”pseudo”-residual) given by the partial
derivative of the loss function Ψ with respect to F (xi)

ỹim =

[
∂Ψ(yi, F (xi))

∂F (xi)

]
F (xi)=Fm−1(xi)

(2.10)

Then, βmw is given by

βm = argmin
β

N∑
i=1

Ψ(yi, Fm−1(xi) + βh(xi;am)) (2.11)

When the Gradient Boost is used for constructing trees, denoted
Gradient Tree Boosting, the function h(x;a) for the base learners is
replaced with regression trees. [Friedman, 2002].

2.1.4 XGBoost

XGBoost is the machine-learning model that will be applied in this
thesis. Therefore, it is explained to a great extent to ensure that the
reader has a deeper insight into the model.

XGBoost is a machine-learning model built on gradient tree boost-
ing, also known as Gradient Boosting Machine (GBM) or Gradient
Boosted Regression Tree (GBRT). A regularized learning objective is a
method to assist the optimization and reduce the likelihood of overfit-
ting [Deep Learning Basics Lecture 3: Regularization I n.d.] All equa-
tions and variables in this section are taken from [Chen and Guestrin,
2016]. The regularized learning objective in XGBoost is derived from a
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2.1 Machine-learning Preliminaries

tree ensemble model regularized learning objective. A regularized learn-
ing objective for a tree ensemble model is the sum of K additive func-
tions. Assume there exists n data points {(xi, yi)}ni=1 where xi consists
of m features, then the prediction ŷi is defined as

ŷi =

K∑
k=1

fk(xi), fk ∈ F (2.12)

fk is a unique regression tree in the space F where F is the set of all
regression trees (known as CARTs). A regression tree has the structure
q and consists of leaf weights w. Each leaf is assigned a score and the
score of the i-th leaf is given by wi. The relation between each regres-
sion tree and the weight wi in the tree structure q is f(xi) = wq(xi).
The prediction ŷi is, therefore, the sum of K distinct regression trees.
Each tree is called a base learner, also referred to as a weak learner.
XGBoost combines multiple weak learners to form a strong learner.
The idea of combining multiple weak learners into a strong learner is
the idea is referred to as ”boosting”. Each individual regression tree is
considered a weak learner since it only marginally improves the ability
to predict the outcome variable. A strong learner is an algorithm that
achieves peak accuracy of the outcome variable for supervised learning.
[Chapter 5 XGBoost n.d.]

2.1.4.1 Regularized object in XGBoost. The regularized objec-
tive supposed to be minimized in the XGBoost is defined as L(ϕ)

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2.13)

Ω(f) = γT +
1

2
λ||w||2= γT + λ

1

2

T∑
i=1

w2
i (2.14)

where the variable T is the number of leaves in a regression tree f . γ
is a regularization parameter that has the default value γ = 0 [XG-
Boost Documentation n.d.] λ is a parameter to control how much l2
regularization there is [XGBoost Documentation n.d.]
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l is a differentiable and convex loss function, two properties required
for performing gradient descent. The default loss function [XGBoost
Documentation n.d.] is given by

l(ŷi, yi) = (ŷi − yi)
2 (2.15)

The function Ω(f) is a gauge to measure the complexity of a given
tree f . By adding Ω(f) to the regularization function L, the model is
penalized for trees with high complexity. The l2-norm is the squared
sum of all the weights in the tree f . The added Ω(f) is introduced to
prevent overfitting and smooth out the weights of the tree.

Let L(t) be the regularized objective at the t-th iteration of the

model. The variable ŷi is the prediction of the i-th instance and ŷ
(t)
i

is the prediction of the i-th instance at the t-th iteration. The L(t)

objective can be expressed as

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (2.16)

The added term ft is chosen in a greedy manner such that the L(t) is
minimized. Equation 2.16 can be rewritten using second-order approxi-
mation of Taylor expansion [Sheng and Yu, 2022] under the assumption

that (yi, ŷi
(t−1) + ft(xi)) is close to (yi, ŷi

(t−1)).
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(2.17)l(yi, ŷ
(t−1)
i + ft(xi)) ≃ l(yi, ŷ

(t−1)
i ) +

∂l

∂yi
l(yi, ŷ

(t−1)
i )(yi − yi)

+
∂l

∂ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )(ŷ

(t−1)
i + ft(xi)− ŷ

(t−1)
i ))

+
1

2!

∂2l

∂y2i
l(yi, ŷ

(t−1)
i )(yi − yi)

2

+
1

2!

∂2l

∂ŷi(t−1)2
l(yi, ŷ

(t−1)
i )(ŷ

(t−1)
i + ft(xi)− ŷ

(t−1)
i ))2

= l(yi, ŷ
(t−1)
i )

+
∂l

∂ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )(ft(xi))

+
1

2

∂2l

∂ŷi(t−1)2
l(yi, ŷ

(t−1)
i )(ft(xi))

2

As described in [Chen and Guestrin, 2016], introduce two variables
gi and hi to simplify the expression. gi is the first partial derivative
of the loss function and hi is the second partial derivative of the loss
function.

gi =
∂l

∂ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) (2.18)

hi =
∂2l

∂ŷi(t−1)2
l(yi, ŷ

(t−1)
i ) (2.19)

With gi and hi, the objective function becomes

L(t) =

n∑
i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (2.20)

The expression can be simplified by removing the constant
l(yi, ŷ

(t−1)) and writing Ω(ft) as the entire expression

L(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT + λ

1

2

T∑
i=1

w2
i (2.21)
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Define the set Ij as the set of indices where the tree structure q with
input xi is the leaf with the leaf number j , i.e.

Ij = {i|q(xi) = j} (2.22)

A concrete tree with Ij written out is shown in Figure 2.1. With Ij ,
L(t) is rewritten to

L(t) =

T∑
j=1

∑
i∈Ij

gi

wj +
1

2

∑
i∈Ij

hi + λ

w2
j

+ γT (2.23)

The best weight w∗
j for a leaf is now computable by

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(2.24)

and the best value for the regularization objective at the t-th itera-
tion for a tree structure q is computed by

L(q) = −1

2

T∑
j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γT (2.25)

Example 1 Constructing a regression tree (CART)

A CART may be a foreign subject never approached be-
fore. To understand the fundamental pillars of XGBoost,
the knowledge of how CARTs are constructed heavily in-
fluences the capability of understanding the algorithm. To
illustrate how a CART can be constructed, follow the ex-
ample displayed in this section.

From a dataset randomly constructed on the fly, assume
that we have the following properties as portrayed in Table
2.1 and the goal is to predict the electricity price based on
the properties.
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The average electricity price from the data entries are:

µ′ =
1

6

6∑
i=1

Ei = 81.33 (2.26)

Based on Table 2.1, the best guess we could come up with
is µ′, as it would be the guess that generates the minimum
error with respect to all values in the ’Electricity price’ col-
umn. Is this the best guess we could come up with? No!

The residual r for each data entry is the electricity price
of each data point minus the average electricity price. The
residual column is added in Table 2.2

It is now possible to construct a regression tree. For this
example, the number of leaves allowed is restricted to 4 to
reduce the complexity of the tree. If the number of residuals
in a leaf is greater than 1, the average is calculated for that
leaf.
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Figure 2.1 A constructed regression tree from the dataset. The cutoff val-
ues have been chosen arbitrarily. On how to construct the tree, inspiration
from [Statquest, 2019] has been used.32
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By using the simple tree in Figure 2.1, it is possible to pre-
dict the electricity price when the windspeed is 3.2 m/s, and
the demand is 1200 MW. Let ri be the i-th residual. The
predicted electricity price is

ŷ1i = µ′ + ri = µ+ (−15) = 66.33 (2.27)

It is also possible to predict the electricity price when the
windspeed is 1.5 m/s and the price of natural gas is 20 EUR.
The predicted electricity price is

ŷ2i = µ′ + (−7.33) = 74.00 (2.28)

A learning rate α is often used in the prediction, such that
ŷi = µ+ αri. Assume α = 0.1, then the corresponding pre-
dictions above become

ŷ1
′

i = µ′ + 0.1 · (−15) = 79.83 (2.29)

and

ŷ2
′

i = µ′ + 0.1 · (−7.33) = 80.60 (2.30)

With the tree, the residuals are updated. When calculat-
ing the new residuals, the average income is no longer used,
instead, the predicted electricity prices are used when cal-
culating the residuals.

The new table with updated residuals is shown in 2.3
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Generally, the residual decreased overall except for row 2
where the residual increased from 38.66 to 40.16. The RMSE
for the residuals in column residual1 is

√
r21,1 + r21,2 + r21,3 + r21,4 + r21,5 + r21,6

6
= 43.25 (2.31)

The RMSE for the residuals in column residual2 is

√
r22,1 + r22,2 + r22,3 + r22,4 + r22,5 + r22,6

6
= 40.83 (2.32)

An improvement in only one iteration. The RMSE decreased
marginally, which is why each respective tree is referred to as
a weak learner. The constructed CART is only one of many
possible trees that can be built. This could be a possible tree
fk constructed by XGBoost where the number of leaves is
equal to 4, and the depth of the tree is equal to 2.

Assume that we have the following K different regression
trees where each ci is a conditional statement based on fea-
tures of the model.
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2.2 The electricity market

To calculate x4, the value of x4 in each respective tree is
summed up, as f(x4) = f1(x4) + ... + fK(x4) = 0.7 +
... + (−1.5) = δ4. In the paper about XGBoost [Chen and
Guestrin, 2016], there is a similar visualization of how the
value of an input xi is determined. Inspiration from that
paper has been used here.

2.2 The electricity market

A power market, synonymous with an electricity market, is a much
more intricate marketplace than a market trading stocks or commodi-
ties. The electricity sold by suppliers is dispatched via the electrical
grid that consumers connect to in order to obtain their purchased elec-
tricity. The electrical grid is a delicate system that requires constant
surveillance and requires much more precision in comparison to when
transporting and delivering commodities.

The Swedish electrical grid’s balance between production and con-
sumption is maintained by Svenska Kraftnät, which ensures a frequency
of 50Hz. However, the responsibility to meet demand lies with the elec-
tricity suppliers, who are held liable under the Electricity Act for not
delivering enough power or supplying too much. [Balance responsibility
n.d.] Imbalances can arise from factors such as weather, and overloading
transmission lines poses a blackout risk. To mitigate such imbalances,
Sweden and Finland maintain reserves that can act as both supply and
demand [Khodadadi et al., 2020].

Deregulation of several sectors has been a common economic policy
since the 1980s, prevalent in sectors such as energy, telecommunications,
aviation, financial services, and railways. The proponents of deregula-
tion reason that deregulation improves the efficiency of infrastructures,
making the sectors behave more like ’normal’ industries. [Högselius and
Kaijser, 2010]. The electricity market in Sweden underwent deregulation
in 1996, establishing a wholesale market with Norway under the name
Nord Pool where customers are able to select the supplier of electric-
ity. Before, consumers would purchase electricity from local companies
that either produced their own electricity or purchased it from other
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producers. There was no competition in the electricity market at the
retail level, only at an industrial level [Niclas Damsgaard, 2005].

2.2.1 Electricity sources

Today, the electricity generated in Sweden is composed of hydro,
nuclear, wind, thermal, and lastly solar. The distribution for 2021 was
43% hydro, 31% nuclear, 17% wind, 9% thermal and 1% solar. Solar
represents a minor generation source. In total, approximately 60% of
electricity generation came from renewable sources. [Elproduktion och
förbrukning i Sverige n.d.] The electricity in Sweden today originates
from both domestic and international sources [The electricity market
n.d.]

Figure 2.2 The different sources of electricity in Sweden for 2021. The
large majority comes from three sources: Water, nuclear, and wind. Picture
taken from [Elproduktion och förbrukning i Sverige n.d.]
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2.2.2 Nord Pool

For the Nordic (Norway, Sweden, Denmark, Finland) and Baltic re-
gions, the UK, and Central Western Europe (Belgium, Germany, the
Netherlands, Luxemburg, France, and more [Uddin et al., 2022]) elec-
tricity can be traded on Nord Pool [About us n.d.] Nord Pool is one
of the dominating markets in the Nordics and is one of the oldest ex-
changes in the world for electricity. Svenska Kraftnät jointly owns Nord
Pool in partnership with Svenska Kraftnäts’ Nordic and Baltic counter-
parts [Operations and Electricity Markets n.d.] The large majority of
power available for sale on Nord Pool is supplied by the Nordic coun-
tries, e.g. Denmark, Sweden, Finland, and Norway. [Uddin et al., 2022].

On Nord Pool, buyers and sellers of electricity place hourly bids for
the coming day. Market participants submit orders stating what quan-
tity they are willing to sell or buy, and at what prices. The trading
occurs on the spot market Elspot where suppliers and consumers are
paired together on a sale supply curve and demand curve to find a spot
price. The term spot price signals that the price reflects the current
Short Run Marginal Cost (SRMC) at a given spot in time and space.
The SRMC represents the cost to increase production by one marginal
unit, without performing any new investments [Wangensteen, 2007].
The spot price is calculated frequently, in this case hourly, to reflect the
operational state of the network. It also has to reflect the marginal cost
including generation to where the customer is located. At the intersec-
tion of the supply curve and demand curve, the market-clearing price
is calculated [Hjalmarsson, 2000]. The electricity traded on Nord Pool
is physically delivered.

There exists a short-term market on Nord Pool called Elbas. The
market allows for trading all hours of the year and serves as a sec-
ondary market to the spot market Elspot. Power market participants
on Elbas are able to adjust their balances closer to the electricity being
delivered. [Wangensteen, 2007]. The spot price on Nord Pool is deter-
mined as depicted in 2.3. The figure is taken from [Bang et al., 2023].
The system price is the unconstrained price in the spot market where
it is assumed that there are no transmission restrictions in the grid.
The system price serves as a reference for other financial trades in the
Nordic market.[Wangensteen, 2007]. It means that if a producer has
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sold a number of MWh units in a forward contract for 10 EUR/MWh
and the system price is realized at 9 EUR/MWh, the producer collects
the difference in cash, i.e. 1 EUR/MWh [Lundin, 2021]. The price also
acts as a reference for bilateral contracts that are established outside of
power markets [Jablstrok;onacute;ska et al., 2012].

Outside of Nord Pool, there exists a futures market on NASDAQ
OMX, the Stockholm exchange. In the futures market, consumers can
trade contracts of electricity that stretch multiple years and offer long-
term security rather than short-term security of supply [Electricity trade
n.d.]

Figure 2.3 The demand and supply curves dictate where the system price
ends up. At the intersection, the system price is found. Picture taken from
[Bang et al., 2023]

2.2.3 Bidding areas

The Nord Pool markets are divided into distinct bidding areas since
available transmission capacity may vary which has an impact on the
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amount of power that can be transmitted. Therefore different areas pre-
dominantly have different prices for a given day. The number of bidding
areas per country is not fixed, Finland and Latvia both constitute one
bidding area. Sweden constitutes four bidding areas (SE1, SE2, SE3,
SE4). Germany constitutes four bidding areas, however, they always
have the same price no matter what. [About us n.d.] Bidding zones of
predominantly Nordic countries are displayed in 2.4.

Figure 2.4 The bidding zone, primarily showing the zones in the Nordic
countries. Picture gathered from [Kuosmanen and Johnson, 2021].

2.2.4 Import & export

Sweden conducts electricity imports and exports with Norway, Fin-
land, Denmark, Poland, Germany, and Lithuania. Sweden is a net ex-
porter, regularly exporting more electricity than importing. [Exchange
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n.d.] Since the trading is conducted between borders, the overall de-
mand for the Swedish electricity system is not merely the demand from
the Swedish customers but the sum of demand from all countries trad-
ing with Sweden. One influence on the electricity price in Sweden is
Germany.

Germany has a power market of greater size than the power markets
of the Nordics combined. As a result, Germany influences a significant
demand on the Nordic power markets by trading with Denmark, Swe-
den, and Norway, and therefore impacts the price formation for the
entire region. [Jääskeläinen et al., 2022]. The country has to a high de-
gree maintained its dependency on commodities such as oil and natural
gas to obtain a secured electricity supply. Moreover, the country does
not have a high share of natural resources and relies on imports from
other countries for the electricity supply to meet the demand. The cir-
cumstances of the German power market sway the electricity price in
the direction of natural gas and coal commodity prices, as there are
little to no other options for producing electricity in the magnitude re-
quired. The dependency is beneficial when commodity prices are low,
and conversely, when the commodity prices are high, the dependency is
detrimental to consumers as electricity prices rise due to increased pro-
duction costs. In addition to the dependency on commodities, Germany
has also made it increasingly dependent on specific countries to deliver
the commodities, instead of diversifying the source of the commodities.
[Germany - Country Commercial Guide n.d.]

When Russia ceased operations of the Nord Stream pipelines, 60%
of the total gas supply to Germany was cut off [“Ukraine war: How
Germany ended reliance on Russian gas” 2022], driving the demand for
electricity from other sources upwards. As Germany deals with the off-
set in supply, the country explores other options, and since Germany is
desperate for any kind of solution, they are likely more willing to bid
higher for electricity than other actors to ensure that Germany receives
the required supply. As a result, electricity prices in Nordic countries
rose sharply in line with Germany’s supply issues. On the 19th of Au-
gust, Gazprom, a Russian state energy giant stated that it will halt
natural gas flow to Europe for 3 days by the end of the month for main-
tenance [Staff, 2022b]. Russia shut down the Nord Stream pipelines at
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the end of August [“Nord Stream 1: How Russia is cutting gas supplies
to Europe” 2022] for good.

2.2.5 European Emission Allowances

By 2005, Nord Pool introduced the trading of European Emission
Allowances (EU Allowances, EUA). Emission allowances are a market
tool to restrict pollution in a manner such that an agent cannot re-
lease more pollution than the EAUs held by the agent. The allowances
are ”an entitlement to emit one tonne of carbon dioxide equivalent
gas.” [EUA Futures n.d.] The allowances provide an economic stim-
ulus to reduce emissions as the number of EAUs needed decreases.
Previously, it was known that the trading of emission allowances in-
fluenced the price of the power market [Jablstrok;onacute;ska et al.,
2012]. [Jablstrok;onacute;ska et al., 2012] showed that the introduction
of EAU trading has injected more irregularity in the price. The extent
to which EAUs have an impact on the power market stretches beyond
adding a new cost factor to the electricity price. There is greater specu-
lation about the electricity price that has been present since the trading
of EUAs was established.

2.2.6 Renewable sources

Over the last two decades, the share of energy from renewable
sources has increased from 9.6% to 21.8% in the EU [Renewable en-
ergy statistics n.d.] A challenge that grid operators, buyers, and sellers
on the market face are the irregular supply of renewable energy. Wind
turbines only generate energy while the wind is blowing, and solar pan-
els only generate energy while the sun is shining. For grid operators,
this means that they cannot simply adjust the feed-in from the wind
turbines and the solar panels as there is not a steady supply. Therefore,
there has to be sufficient stored capacity to deal with the shortcomings
of renewable energy.

An important term is merit-order. The marginal cost for wind tur-
bines is low, hence why a higher wind generation may push the electric-
ity price lower, which is called the merit-order effect of wind generation
[Mulder and Scholtens, 2013]. Study Figure 2.5 to see a visual illustra-
tion of how the merit-order effect works [Setting the power price: the
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merit order effect n.d.] In [Ketterer, 2014], Janina C. Ketterer studied
the link between wind generation and electricity prices in Germany. C.
Ketterer establishes that the feed-in to the grid from renewable sources
affects the electricity price by adjusting the merit-order curve to the
right which excludes the most expensive generators of electricity. The
outcome of the study showed that ”intermittent wind generation” de-
creased the electricity price in Germany and boosted price volatility.
[Ketterer, 2014].

In [Maciejowska, 2020], Katarzyna Maciejowska performed a similar
study to [Ketterer, 2014] on the electricity price in Germany. Katarzyna
Maciejowska also included solar energy in conjunction with wind energy.
Maciejowska came to the conclusion that both wind and solar exert a
dampening effect on the electricity price, a conclusion in line with the
study by C. Ketterer. Evidently, as renewable sources become more
prevalent in the market, the electricity market has to adapt to the
changing environment. Energy from renewable sources evolves into an
increasingly important component of the market and the pricing of
electricity. [Maciejowska, 2020].

2.2.7 Market manipulation

As with any market, the ability to execute market manipulation
exists. Nord Pool has a team allocated to oversee the trading taking
place on the platform. The team is responsible for detecting unusual
activity due to insider trading or market manipulation [Market surveil-
lance n.d.] One exemplary case of market manipulation is the case of
Barclays Bank PLC. Barclays Bank, by employing complex financial
instruments, placed a multi-million dollar bet on electricity prices ris-
ing above a set price by a set time in the future. The bank then made
trades on the electricity market to boost the price, even though most
of the trades were unprofitable. As the purchasing of electricity inflated
the price, Barclays Bank would win on its bet, collecting a sum far out-
sizing the losses from the unprofitable trades. Barclays was ultimately
forced to pay $435 million in civil damages and $34.9 million in unjust
profits. [Schöne, 2009].
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Figure 2.5 An illustration of the merit-order effect. When more sources of
electricity with cheaper operating costs are introduced, the most expensive
sources of electricity are pushed out. The effect reduces the overall cost of
electricity, as the prices for producing electricity are lowered. Picture gathered
from [Setting the power price: the merit order effect n.d.]

2.2.8 ”Inefficient” pricing

A meaningful point to bring up is that the market price does not
necessarily have to rely on variables that normally influence the elec-
tricity price. A study conducted in 2014 by Katarzyna Maciejowska, the
same author as in [Maciejowska, 2020], found that fundamental drivers
such as gas price, wind generation, and demand played a minor part in
the pricing action for the UK market, instead, speculation or spot price
shocks were responsible for up to 95% of the price volatility [Weron,
2014].
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2.3 Optimization

There are two different solvers in Matlab used for optimization. The
first one, ’intlinprog’, is a Mixed-Integer Linear Programming (MILP)
solver and builds on Branch-and-bound. The solver ’intlinprog’ is used
for the optimization of a single objective. The second solver, ’gamulti-
obj’, finds the optimal values on the Pareto Front. The solver ’gamul-
tiobj’ is used for the optimization of multiple objectives.

2.3.1 Branch-and-bound

Branch-and-bound is a divide-and-conquer algorithm that divides a
problem into subproblems over a tree structure, called the branch-and-
bound tree. To illustrate how branch-and-bound algorithms operate, it
is a good idea to define an example function that is supposed to be
maximized. Given z, the goal is to find the input x in the domain S
such that f(x) is maximized.

z = max{f(x) : x ∈ S} (2.33)

If the subproblems are defined as zk = max{f(x) : x ∈ Sk} for the
indices k = 1, 2, such that S = S1 ∪ S2, then the original problem can
be expressed as

z = max
k

zk (2.34)

In Figure 2.6, the branching of the feasible region S, also called problem
S, is located at the root node, and then branching from the root node is
performed. Each zk is said to be a node of the tree. From the root node
S, when the problem is divided into subproblems S1 and S2, the process
is called branching. S1 and S2 are said to be branches of node S. If the
branching were to continue indefinitely, the problem S would only be
divided into further explicit enumerations of the feasible region S. To
avoid explicit enumeration, the branch-and-bound algorithm prunes a
branch whenever possible, meaning that a subproblem is not branched
into further nodes. A branch is pruned by utilizing bounds on the ob-
jective value of the subproblem. The use of branches and bounds details
why the algorithm is called branch-and-bound. A node can be pruned
if it fulfills any of the following scenarios
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• Pruning by infeasibility. If a feasible region of a node subproblem
is empty, the node will be pruned.

• Pruning by bound. If the upper bound calculated for a node sub-
problem is not greater than the lower bound on z, then the node is
pruned because there is no point in searching for a feasible region
of that node when we know that the best objective value we can
obtain is not better than a solution we already know.

• Pruning by optimality. When it is possible to find the optional
solution to a node subproblem Si, then the node is pruned and
its solution is stored as the incumbent if its objective value is
better than the best we know so far.

If none of these conditions are fulfilled, branching of the node is
done, to decompose the problem into smaller problems. [Kianfar, 2011]
have been used as a source of information for this entire subsection
about branch-and-bound.
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Figure 2.6 Tree fragmented down into subproblems. Each subproblem is
a node itself. Inspiration taken from [Kianfar, 2011]
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2.3.2 Pareto Front

In multi-objective optimization, there exist two or more objectives,
which may or may not be in conflict with each other, that are tasked to
be optimized. Since the optimization is done with respect to multiple
objectives, there is no solution that specifically only optimizes a single
objective. Instead, there have to be trade-offs between the objectives
themselves, to obtain the solution where the optimization of the ob-
jectives themselves is as optimal as possible. There can be a finite or
infinite number of optimal solutions, depending on the problem. [Tian
et al., 2023]. Assume there exists an objective f(x), where the objec-
tive itself consists of multiple different objectives f1, f2, ...fm, which are
supposed to be optimized. Then the multi-objective optimization can
be expressed as

f(x1, ..., xn) 7→ (f1(x1, ..., xn), ..., fn(x1, ..., xn)) (2.35)

where f : X → F , where X is a n dimensional decision space and F
is a m dimensional objective space.

To find the optimal optimization, multi-objective evolutionary algo-
rithms are used to find the approximation between trade-offs such that
the solution with respect to every objective is optimal. The approxima-
tion is said to be the Pareto Front. [Tušar and Filipič, 2015].
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Figure 2.7 An illustration of the optimal solutions on the Pareto Front,
from [Tian et al., 2023]. In the plot, The solutions between the objective f1
and f2 are displayed.
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3
Prediction of electricity
prices

To be able to forecast future electricity prices, which are numerical
values, a machine-learning model is applied that trains on relevant data
and outputs predicted electricity prices for the future. In this chapter,
the focus is on forecasting future electricity prices. The two parts that
will have the most focus are the configurations of the model that is used
to forecast, and the dataset the model trains on. The model is to enable
prediction of the electricity price 24 hours, 25 hours, 26 hours, all the
way up to 120 hours, in advance.

The configurations of the model can have a large impact on the
result, hence, it is necessary to understand what each parameter does
and what combination of values results in the optimal solution. Having
any parameter too large or too small drastically influence the ability of
the model to train.

The dataset consists of multiple variables, some of which have a
more apparent effect on electricity prices than others. Some variables
are derived from others, not being an independent measurement of their
own but instead various measurements between one or more variables.
The variables have been gathered from different sources, later discussed
in this chapter.
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3.1 Model

A machine-learning model works by taking in unlabeled or labeled
data. The data the model learns from is denoted as training data. If
the training data is labeled, it is classified as supervised learning, and
if the training data is not labeled, it is classified as unsupervised learn-
ing. During supervised learning, the model adjusts its weights until it
has been fitted to the most optimal solution found, which occurs in
the cross-validation during training. During unsupervised learning, the
model attempts to discover patterns to solve association or clustering
problems. A prime example of an area where supervised learning is used
is predictive analytics. In predictive analytics, analytic systems can pro-
vide insight into business data points. It describes what enterprises can
expect from enacting a specific business decision. [Supervised Learning
n.d.] In Figure 3.1, the architecture of a supervised model is displayed.
The model in this thesis takes supervised data as input, meaning it uses
supervised learning.

Figure 3.1 How a supervised machine-learning model is assembled, picture
taken from [XGBoost n.d.] An unsupervised model would take data without
labels, skipping the step for adding features toX1, X2 as shown in the picture.

The data is divided into two sets, training, and test data. The terms
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are defined as [Training and Test Sets: Splitting Data n.d.]:

• Training data - a subset to train a model

• Test data - a subset to test the trained model

A common split is 80-20 for the training and test set, respectively
[Training and Test Sets: Splitting Data n.d.] The same split between
the training set and test set is used in this thesis.

The machine-learning model used in predicting the price of electric-
ity is XGBoost, described in Section 2.1.4. The XGBoost model was
primarily chosen based on its status as a leading machine-learning li-
brary for multiple sorts of problems [XGBoost n.d.] and its flexibility
with regard to hyperparameter tuning [XGBoost versus Random Forest
n.d.] A hyperparameter is a parameter to the model that is adjustable
by the user [Parameters and Hyperparameters in Machine Learning and
Deep Learning n.d.] and regulates the learning process during train-
ing. XGBoost supports classification, regression, and ranking problems
[XGBoost n.d.] The problem categorization in this thesis is a regression
problem.

Besides its status as a leading library for machine learning for its
superior prediction performance [XGBoost n.d.], XGBoost comes with
features and performance boosts other libraries lack, some examples of
superior aspects are [Dhaliwal et al., 2018]:

1. XGBoost is able to deal with missing data. XGBoost detects miss-
ing data and takes care of it.

2. XGBoost is optimized and is approximately ten times more effi-
cient than other similar existing models, allowing for more experi-
mental work such as adjusting parameters to be done in the same
time frame as in comparison with other models.

3. Parallel processing is enabled, taking advantage of all available re-
sources on the machine on which it’s running. It is highly effective
in classifying and preprocessing data.

4. Regularization enables efficient prevention of data overfitting.
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To construct the model in this thesis, python is used as the pro-
gramming language. Below is the XGBoost package imported into the
python environment. The XGBoost library contains 6 different modules,
and the module best fitting for the task at hand has to be chosen.

import xgboost as xgb

model = xgb.

XGBRFRegressor ()

XGBRegressor ()

XGBModel ()

XGBClassifier ()

XGBRanker ()

XGBRFClassifier ()

The task of forecasting numerical values, based on predictor variables,
is said to be of regression character. There exists another very common
characterization of some problems, said to be a problem of classifica-
tion. With classification, the goal is to predict discrete class labels. In
this thesis, the goal is to predict discrete continuous values, hence the
problem is a regression problem. [What is regression? N.d.]

Since the task at hand is a regression problem, the XGBRegressor
is used.

model = xgb.XGBRegressor ()

In this chapter, there will be two different types of model catego-
rizations discussed. The first type of models will be referred to as the
’baseline models’ and works on data from 2015 to 2018. The second type
of models will be referred to as the ’primary models’ which work on data
from 2020 to 2023. Both models attempt to predict the electricity price
from 24 hours up to 120 hours in advance.

There are mainly two approaches to dividing the problem into con-
crete applications. The first way is to train one model for each respective
hour, t+24, t+25, ..., t+120 hours out. The result is 97 different models.

The second approach is to use one single model to predict 97 values
in total, each for the respective hour in the future. When applied to
XGBoost, XGBoost builds 97 different models internally, each model
for each respective target variable [Multiple Outputs n.d.] However, to
the user, it only appears to be one model.
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Algorithm 1 Train 97 different models with one target variable

1: function Forecast(N = 97)
2: for i← 1 to N do
3: X, yi ← Features and target variable for modeli
4: Xtrain, ytraini,Xtest, ytesti ← X, yi
5: modeli ← initialize with hyperparameters
6: modeli.fit(Xtrain, ytraini)
7: end for
8: end function

Algorithm 2 Train 1 model

1: function Forecast
2: X, y ← Features and target variables for model
3: Xtrain, ytrain,Xtest, ytest← Features and target variables for model,

divided into train and test sets
4: model ← initialize with hyperparameters
5: model.fit(X, y)
6: end function

The first approach is applied in this thesis. There is no technical
aspect to why the first approach is used, as the two alternatives are
equivalent. It is rather a personal reason, as it appears to be a much
more flexible approach to processing the results of the models.

A target variable is a variable that the model attempts to predict
[Target Variable n.d.] To show what the input to the model is, and
what the model outputs, assume that there exist feature values for 6
individual hours, and for each respective hour, the goal is to forecast
the electricity price 24 hours up to 120 hours in the future. For each
hour as input to the models with the corresponding feature values,
the output is one single value. The number of hours in the future the
prediction is done for depends on which of the 97 different models are
utilized. Hence, if the input to the model is six different instances in time
with the corresponding variable values, and each of those six inputs is
evaluated by all models, predicting 24 hours in advance up to 120 hours
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in advance, the output is 97 different lists, where each list contains
6 values. Each model produces a list of six different predictions, one
prediction for each input. Each index in the output from the model
corresponds to the index of the input. In the output from the model
predicting the price x hours out, index 1 in the output list represents
the predicted price x hours from hour 1. In the same output, index 2
would represent the predicted price x hours from hour 2.

The scenario can be illustrated as shown underneath in Figure 3.2.

Figure 3.2 A visualization of how the input is processed to the individual
models and what the output of each model is. The number of outputs from
each model is dependent on how many inputs are fed to it.
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3.1.1 Hyperparameters

The XGBoost model comes with a wide range of hyperparameters.
The hyperparameters are valuable since it allows the operator to adjust
the model according to individual needs. Data is different in every case,
and the model is not a one-fits-all by default. With the number of
hyperparameters being so great, only a collection of the most relevant
hyperparameters are brought up. The hyperparameters discussed in this
section are listed in the entry below.

1. n estimators

2. seed

3. eval metric

4. max depth

5. learning rate

6. objective

7. gamma

8. alpha

9. lambda

n estimators is the number of gradient-boosted trees constructed
when calculating the predicted value ŷi [Python API Reference n.d.]
Rewinding back to Equation 2.12, n estimators sets the value of the
constant K.

seed is a random number used to enable reproducibility. It means
that with the same input, the output will always be identical. Gradient
boosting methods are non-deterministic and the result is different each
time. It is especially important when performing benchmarking. [How
to Use Random Seeds Effectively n.d.] Without a set seed, it would
be impossible to tell if removing or adding a feature decreased or in-
creased the accuracy of the model. With a fixed number set as seed, the
reproducibility of XGBoost is possible.
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eval metric is as the name hints, the evaluation metric for the model.
The metric provided to the XGBoost model is used for observing the
training result and early stopping [Python API Reference n.d.]

max depth is the maximum depth of the base learners [Python API
Reference n.d.], otherwise known as the decision trees [XGBoost Doc-
umentation n.d.] The default value of max depth is 6. Increasing the
maximum depth will make the model more complex, and hence more
likely to overfit [XGBoost Documentation n.d.]

learning rate is the step size for the regularized object being min-
imized. The learning rate also goes under the name ”eta” in the doc-
umentation [XGBoost Documentation n.d.] [XGBoost Documentation
n.d.] describes it as the ”step size shrinkage in update to prevents over-
fitting. After each boosting step, we can directly get the weights of the
new features, and eta shrinks the feature weights to make the boosting
process more conservative”. This is where gradient, described in 2.1.3.1,
emerges in XGBoost. The learning rate has to be chosen under certain
conditions in order to ensure that the algorithm finds the optimal solu-
tion, i.e. the minimum. The default learning rate, or eta, is 0.3 [Python
API Reference n.d.]

objective is the parameter deciding which loss function to be used
in the model. The loss function is described under 2.1.4.1 in Equation
2.15.

gamma is the parameter γ in Equation 2.13. It regulates how the
number of leaves in the tree is penalized as it is the constant in front
of T , the number of leaves in the tree. γ = 0 tells the model not to
penalize the complexity based on the number of leaves. The higher the
value of γ, the more trees with fewer leaves are promoted. [XGBoost
Documentation n.d.] states that gamma is the minimum loss reduction
to justify creating further partitions of a leaf node in the tree. The
higher the value of gamma, the higher the loss reduction has to be
in order to expand a leaf node. As a result, the model produces more
conservative estimates. [XGBoost Documentation n.d.]

alpha is the regularization of the first order, l1, of the tree weights wi

[Python API Reference n.d.] [XGBoost Documentation n.d.] Regular-
ization of the first order is referred to as ”Lasso regression” [Guestrin,

2021]. The regularization is calculated as l1 = ||wi||1 =
∑T

i=1 |wi| and
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with α, it becomes l1 = α
∑T

i=1 |wi|. The higher the value of alpha, the
more conservative estimations are produced from the model [XGBoost
Documentation n.d.] α = 0 is the default value [XGBoost Documenta-
tion n.d.]

lambda regulates the regularization of the second order, l2, of the
tree weights wi [Python API Reference n.d.] [XGBoost Documentation
n.d.] The second regularization of the second order is called ”Ridge
regression” [Guestrin, 2021]. The regularization is calculated as l2 =

||wi||2 =
∑T

i=1 w
2
i and with lambda, it becomes l2 = λ

∑T
i=1 w

2
i . The

expression appears in Equation 2.13 with a constant 1
2 in front. The

higher the value of lambda, the higher the requirements are for reducing
the loss. [XGBoost Documentation n.d.]

3.1.2 Hyperparameter tuning

The tuning of hyperparameters has been performed on the primary
models. The baseline models have the exact same parameters as the
primary models. However, since the primary models are used for later
application in this thesis, the hyperparameters have been tuned based
on the result of RMSE gain or loss of the primary models, not the
baseline models.

The first parameter that was tuned is learning rate, i.e. the learning
rate.

The learning rate, as previously discussed, is a delicate parameter
that has to be chosen with care in order to achieve the best possible
result. In Figure 3.3, the RMSE of the 24th hour is depicted, showing
how the RMSE is variate based on the learning rate. The minimum
RMSE is found at a learning rate of 0.22, different from the value used
in this thesis. The reason why is that the learning rate of 0.22 fits well
when looking at the 24th hour forecasted and not hours 25, 26, up to
120. It only looks at one single hour and ignores the rest. A learning
rate of 0.08 is used due to the following two reasons

1. 0.08 has shown to be a valuable learning rate when testing models
while continuously adding new features to its input

2. 0.08 reduces the overall error of forecasting
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Figure 3.3 RMSE for the 24th-hour primary model dependent on the
learning rate. The RMSE quickly descends and stabilizes for a while, starting
to trend higher after 0,4.

There isn’t any set of values for the seed that enables the model to
produce more accurate results. As long as any number is chosen, and
remains constant, the seed fulfills its duty. The seed was set to 14.

The eval metric is set to ’rmse’, being the most appropriate evalu-
ation metric for the model. ’rmse’ equals the equation under 2.1.1.

The number of n estimators was initially set to 40 when experiment-
ing with different features. It takes vast time to train models, therefore
n estimators being set to 40 gives a faster depiction of how the model
performs, without having to wait for all 150 estimators to finish. When-
ever the best version yet of the model was found based on 40 estimators,
it was then trained on 150 estimators.

early stopping rounds was set to 30. With the early stopping rounds
parameter, the n estimator can essentially be set to anything above the
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number Kc where Kc is the number of iterations required to reach the
most optimal solution. This is because the model will stop training after
adding 30 trees without seeing any improvement and not necessarily
continue until it reaches n estimators iterations.

The max depth was set to the default value of 6 [XGBoost Doc-
umentation n.d.] Having a max depth less than 6 does not produce
sufficiently complex trees to improve the accuracy of the model. On
the other hand, having a max depth of more than 6 resulted in the
model producing trees with too high of complexity, adding noise to the
predictions and depreciating the accuracy.

The objective is the most straightforward hyperparameter, being
set to the default loss function stated in 2.1.4 under Equation 2.15. The
value of the objective hyperparameter is ’reg:squarederror’ where ’reg’
stands for regression [XGBoost Documentation n.d.]

Gamma is untouched and set to the default value of γ = 0 [XGBoost
Documentation n.d.]

Alpha is left unchanged at α = 0.
Lambda is untouched and set to the default value of λ = 1 [XGBoost

Documentation n.d.]

3.2 Dataset

The data used for training the models are gathered from multi-
ple sources. The data collected consists of different attributes that are
thought to contribute to the electricity price.

The different attributes of data are listed below.

• Energy data
Energy data is the historical hourly price of electricity. It has the
unit EUR/MWh. The data have been gathered from [Dashboard
n.d.] The reason for collecting the data and feeding it as a feature
of the model is that future prices may have a correlation with
historical pricing movements. The writers in [Uribe et al., 2022]
used the same source for collecting data about electricity markets.

There are good arguments for analyzing historical data. For ex-
ample, the entire foundation behind ARIMA is built on analyzing
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past data by constructing moving averages models (not the same
thing as a simple moving average) and autoregression.

There are numerous factors that can help with forecasting. Quan-
tifiable factors such as historical prices affect the electricity price
[Kuo and Huang, 2018].

• Historical weather data
The historical weather data contains information about hourly
temperature, windspeed, and precipitation. The data have been
gathered from open-meteo.com [Free Weather API n.d.] The idea
is that the wind, precipitation, wind gusts, temperature, and
weather code may have an impact on the electricity price. The
wind is especially considered important since it accounts for quite
a large portion of all electricity generated in Sweden. The wind is
measured in m/s, the precipitation is given in mm/h, wind gusts
are in m/s, the temperature is in Celsius, and the weather code
is a numeric value corresponding to some weather state, given by
the values in Table 3.2.

Authors in [Weron, 2014], [Chang et al., 2019], [Lehr and Valdes,
2021], and [Jääskeläinen et al., 2022] all agree that weather-related
factors play an important role in the electricity price.

• System demand for Sweden
The system demand for Sweden is the hourly demand on the elec-
trical grid in the entire of Sweden. It is provided in units of MW.
The data have been gathered from [Dashboard n.d.] The idea is
that the demand for electricity is a factor in determining the elec-
tricity price.

Authors in [Weron, 2014] agree that demand is a factor in pric-
ing. Deepak Singhal and K.S. Swarup showed that the load de-
mand is a strong factor determining the electricity price [Singhal
and Swarup, 2011], corresponding to what the authors in [Weron,
2014] claimed.

Authors in [Stéphane et al., 2019] evaluated the long-term elastic-
ity of demand in France and found the price elasticity in relation
to demand is -0,8. The finding is in line with previous research.
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The negative elasticity implies that there is an inverse relation-
ship between the electricity price and the demand, i.e. when the
electricity price is low, the consumption rises, and vice versa.

• System demand for Germany
The system demand for Germany is the hourly demand for elec-
tricity in the entirety of Germany. It is provided in units of MW.
The data has been gathered from [Dashboard n.d.]

The reason for using system demand in Germany follows the same
conclusion in the bullet-point above, i.e. the system load in Ger-
many impacts the electricity price in Germany. As previously
stated, Germany has an impact on the entire price formation in
the region. One additional point is that if the price is high in
Germany, the incentive to import from neighboring countries is
higher, driving up the demand in related countries. Therefore, the
current demand in Germany could play a contributing factor to
the price of electricity in Sweden.

• System generation in Sweden
System generation in Sweden is the hourly generation of electricity
provided to the electrical grid. It is provided in units of MW. The
data has been gathered from [Dashboard n.d.]

The electricity price is susceptible to changes in short-term de-
mand contra supply and can rapidly sway the market in either
direction depending on the variable setting off the imbalance
[Afanasyev et al., 2021]. Therefore, it is important to capture both
sides of the spectrum.

• System generation in Germany
System generation in Germany is the hourly generation of elec-
tricity provided to the electrical grid. It is provided in units of
MW. The data has been gathered from [Dashboard n.d.]

It follows the same reasoning between Sweden and Germany as
previously discussed.

• Oil data
Oil data contains information about daily historical prices of
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Crude, WTI, and Brent oil. It is provided in units of US dol-
lars/barrel.

Mauro Castelli, Aleš Groznik, and Aleš Popovič conducted fore-
casting of electricity prices on the German energy exchange by
using novel genetic programming. In their paper, they claim that
the spot price of crude oil, in dollars, impacts the spot electricity
price in the model they built. [Castelli et al., 2020].

The authors in [Weron, 2014] also agree that oil price is a funda-
mental driver of the electricity price.

• Natural gas data
Natural gas data contains information about daily historical prices
of natural gas prices. The natural gas price is collected from the
ICE Dutch TTF Natural Gas Futures - Apr 23 [ICE Dutch TTF
Natural Gas Futures - Apr 23 (TFMBMc1) n.d.] It is provided in
EUR/MMBTU.

The authors in [Weron, 2014] agree that the natural gas price is
a fundamental driver of the electricity price.

[Uribe et al., 2022] demonstrated that natural gas has a greater
impact on the electricity price than the weather in the countries
analyzed.

• Natural gas flow from Russia to Germany
Natural gas flow from Russia to Germany contains information
about how much natural gas is being transferred from Russia to
Germany per month. It is provided in the unit of Mm3/h.

Considering 60% of the natural gas to Germany was imported
from Russia, the idea is that the pipeline shutting down would
have a considerable influence on the price of electricity.

• Unavailable electricity to the grid
Unavailable electricity to the grid contains information about out-
ages to the electrical grid, both planned and unplanned. It is pro-
vided in MW. The data has been gathered from [Dashboard n.d.]
It is provided in units of MW.
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The authors in [Weron, 2014] agree that forced outages are a
fundamental driver of the electricity price.

• Scheduled energy exchange with countries
Scheduled energy exchange with countries contains information
about the scheduled exchange of electricity with other countries
from and to Sweden. It is provided in MW. The data has been
gathered from [Dashboard n.d.]

If a country has a large quantity of electricity being exported, the
supply is inherently lower pushing prices higher. The scheduled
exchange is available for the following day on [Dashboard n.d.]

• Physical energy exchange with countries
Physical energy exchange with countries contains information
about the physical exchange of electricity with other countries
from and to Sweden. It is provided in MW. The data has been
gathered from [Dashboard n.d.]

The physical exchange is the actual flow of electricity between
borders, and the number is supposed to be the same quantity as
the scheduled exchange.

• Reservoirs of Sweden
The levels in the reservoirs are being tracked and the information
contains details about the water levels in Sweden. It is provided
in units of TWh.

The authors in [Huisman et al., 2014] found that hydro supply
has a decreasing effect on the day-ahead electricity prices.

The data was provided by Nord Pool through a joint account for
students on their file-sharing platform.

• Pricing of carbon emission rights
The carbon emissions limit how much carbon a party can emit.
Most companies receive an annual allocation of free allowances
[What is emissions trading? N.d.] It is provided in units of EUR.

Pricing of carbon emission rights influences the price according to
[Jablstrok;onacute;ska et al., 2012].
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• EUR/SEK currency pair
While the Euro trends higher versus the Swedish crown, more
purchasing power is afforded to Germany. In reverse, Germany
loses purchasing power. The feature of the EUR/SEK pair evalu-
ates if the purchasing power of Germany has an influence on the
electricity price.

• Coal prices
The unit is provided in EUR/MWh. Germany is reliant on coal,
which begs the question if high coal prices promote Germany to
reduce electricity production from coal and pivot to alternative
sources, where one source consists of imports.

The authors in [Weron, 2014] agree that the coal price is a fun-
damental driver to a lesser extent of the electricity price.

3.2.1 Extrapolating to patch gaps in data

The time series is ideally built without gaps between two points
in time. If there were to be gaps in the time series, it could make it
harder to capture the relationship between variables. The reason is that
there might be a change in the price that could be explained by a set
of variables, however, if the model is never given the opportunity to
analyze it, it will unfortunately not find the association. Another reason
why there are not supposed to be any gaps in the time series is that
the model should be able to perform electricity prices for any day of
the week and for all hours of the week. If the pricing behaves differently
during weekends and there is no data for it, it cannot be captured.

The datasets with patches in data have missing data that come in
different forms. Some data sets are missing values for weekends, while
other datasets only have one datapoint for an entire month. There are
5 datasets that do not contain continuous data and would inject gaps in
the final dataset used for training the model. The solution to extrapolate
data is tersely illustrated below.

3.2.1.1 Series extrapolated.

1. Oil prices
The first such dataset is the time series for oil prices. The oil
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markets only trade during weekdays, so the oil price remains the
same as the last closing price on Friday. The data was extrapolated
such that Saturdays and Sundays had the same oil price as the
last closing price on the preceding Friday.

2. Natural gas prices
The second dataset is the price of natural gas. Natural gas trades
during the same hours as oil does, so the same issue occurs here
with missing prices for weekends. The data was extrapolated such
that Saturdays and Sundays had the same natural gas price as the
last closing price on the preceding Friday.

3. Carbon emission prices
The third dataset is the price of carbon emission units. Carbon
emission units are strictly only traded Monday through Friday.
Here, the last closing price on Friday was extrapolated for Satur-
day and Sunday with the preceding Friday.

4. Magazine content
The fourth dataset is the dataset of magazine content. The mag-
azine contents gathered from Nord Pool are only recorded once a
week, so the data have been extrapolated to all hours from Mon-
day through Sunday for each respective week.

5. Natural gas imports
The fifth dataset is the dataset for natural gas imports from Rus-
sia to Germany. The values are only prompted monthly which
means that the data first has to be extrapolated to a daily time
frame, and then lastly to an hourly time frame.

The extrapolation of data may be a deviation from the truth, which
may add some instability to the model. However, considering the option
of more data to train on, in contrast to potential small errors, it is worth
it.
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3.3 Manipulating data to assemble features

3.3.1 Moving averages

The moving average used in this thesis is called a simple moving av-
erage, which calculates the average in a sliding window of size k starting
at index j, such that the moving average is

MA(k, j,y) =
1

k

j∑
i=j−k

yi (3.1)

sampled from the vector y consisting of numbers.

3.3.2 Shift operation

The shift operation in Python within the package ”pandas” moves
the values k steps forward if k is negative and backward if k is positive.
The table below shows how different values of shift rearrange the values.
A positive shift tells index i the value of k steps back in history, i.e.
backward-looking. A negative shift tells index i the value of k steps
forward in history, i.e. forward-looking. If there is no value accessible,
the column takes on the value NaN.

3.4 Baseline models

The data which the primary models train on are extremely volatile.
It may produce some instabilities and skewed results. Hence, the idea
of a baseline model was prompted, where the idea was to construct
similar models of XGBoost to the primary models but train on data
with less volatility. If the implementation of the baseline models was
proven to be efficient with reasonable results, the possible instabilities
and skewed results in the primary models could be explained by the
inherently volatile data. Data from 2015 to 2018 were fetched and used
to represent the scenario of less volatility in the electricity market.

3.4.1 Mismatched distributions

To showcase the difference in the price behavior of what is now
referred to as the baseline models, being trained on data from 2015
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Index Value k = −1 k = −4 k = 2
1 x1 x2 x5 NaN
2 x2 x3 x6 NaN
3 x3 x4 x7 x1

4 x4 x5 x8 x2

5 x5 x6 x9 x3

6 x6 x7 x10 x4

7 x7 x8 x11 x5

8 x8 x9 x12 x6

9 x9 x10 x13 x7

10 x10 x11 x14 x8

11 x11 x12 x15 x9

12 x12 x13 x16 x10

13 x13 x14 x17 x11

14 x14 x15 x18 x12

...
...

...
...

...

Table 3.1 How shifting works in Python.

to 2018, and the primary models, being trained on data from 2020 to
2023, see Figure 3.4. The distribution curves of the electricity price
for both 2015-2018 and 2020-2023 are shown in Figure 3.4, where the
spread of values in the 2020-2023 case is much larger than in the 2015-
2018 scenario. The table below illustrates data points showcasing the
differences between the two datasets.

Dataset Maximum price (€/MWh) Mean (€/MWh) Standard deviation (€/MWh)
2015-2018 255.02 32.6 14.4
2020-2023 799.97 87.1 103.9

The ratio of the standard deviations, 103.9
14.4 , is close to 7.2, showing

the difference in volatility between the two datasets.

3.4.2 Preprocessing & feature engineering

The features supplied to the baseline models are provided in Tables
3.3, 3.4, and 3.5. The scoring of the models is evaluated based on the
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Figure 3.4 Distribution curves of electricity prices in the two different time
periods examined. Evidently, 2015-2018 has a lower degree of volatility than
2020-2023, having a higher level of concentrated density around its mean.
The data of electricity prices are taken from [Dashboard n.d.]

MCRMSE metric of the predicted test data.

3.4.2.1 Weather. The first weather feature is the temperature.
The temperature dictates some degree of electricity usage, as when it
is abnormally cold, there is more electricity used for heating. In the op-
posite direction, if it is abnormally warm, there will be more electricity
used for cooling (ACs, etc). [Uribe et al., 2022] states that temperature
has a positive effect on the electricity price as more electricity is used
for cooling in warmer countries. In colder countries, temperature also
has a positive effect on the electricity price as more electricity is used
for heating. At 13.00 each day when the electricity price is determined,
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there are weather forecasts available to gather information from. The
temperature features are the current temperature, the temperature in
1 hour, 2 hours, ..., 120 hours, with the names ’Temp, Temp t+1, Temp
t+2, ..., Temp t+120’ located in Table 3.3. Generally, there is a limit to
how far out the weather forecasts are reliable. Therefore, the limitation
is set at 5 days in the future, as 5-day forecasts are right about 90% of
the time [How Reliable Are Weather Forecasts? N.d.]

With wind, the windspeed for 1 hour, 2 hours, ..., and 120 hours
in the future proved valuable. As wind turbines produce a substantial
part of the total electricity generated in Sweden, it is expected that
future wind forecasts should play a part in the electricity price auction.
The wind features ’Windspeed’, ’Windspeed t+1’, ..., and ’Windspeed
t+120’ are in Table 3.3. Wind gusts, partially linked to the windspeed
feature, record the wind gusts for 1 hour, 2 hours, ... 120 hours in the
future in Table 3.3 under the names ’Wind gusts, Wind gusts t+1, Wind
gusts t+2, ..., Wind gusts t+120’.

The precipitation for 1 hour, 2 hours, ... 120 hours in the future
showed that it was a valuable addition to the set of features. It is dis-
played in Table 3.3 under the names ’Precip, Precip t+1, Precip t+2,
..., Precip t+120’.

The last weather feature is ’weathercode’ in Table 3.3, which is a
feature for ”Weather condition as a numeric code” [Weather Forecast
API n.d.] as stated by the documentation for Open-Meteo.com [Free
Weather API n.d.] It is denoted by the names ’Weathercode, Weather-
code t+1, Weathercode t+2, ..., Weathercode t+120’.

The weathercode feature can take on multiple whole-number values
[Weather Forecast API n.d.], described in Table 3.2.

The original idea was that the weather forecasts would provide the
values for the weather features. However, finding a service that provides
historical weather forecasts were either inapt because it did not provide
weather forecasts for the dates needed, or wanted monetary compen-
sation for the data. To circumvent the hurdle, the weather data points
are shifted backward to simulate a forecast. The problem with this ap-
proach is that the ’forecasts’ in the model are always guaranteed to
be true, as opposed to how weather forecasts operate in the real world,
without a guarantee. This is different from how the model originally was
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Code Description
0 Clear sky
1,2,3 Mainly clear, partly cloudy, and overcast
45, 48 Fog and depositing rime fog
51, 53, 55 Drizzle: Light, moderate and dense intensity
56, 57 Freezing Drizzle: Light and dense intensity
61, 63, 65 Rain: Slight, moderate and heavy intensity
66, 67 Freezing Rain: Light and heavy intensity
71, 73, 75 Snow fall: Slight, moderate, and heavy intensity
77 Snow grains
80, 81, 82 Rain showers: Slight, moderate, and violent
85, 86 Snow showers slight and heavy
95 * Thunderstorm: Slight or moderate
96, 99 * Thunderstorm with slight and heavy hail

Table 3.2 The weather codes and their descriptions from [Weather Forecast
API n.d.]

supposed to operate, by taking data from a point in time with historical
data and the current weather forecast to forecast the electricity prices.
However, it will have to suffice given the inability to access historical
weather forecasts.

The ’forecasted’ (the true value in reality) value for x hours in ad-
vance is shifted backward by x steps, k = −x, and so on for all values
1, 2,..., 120 for windspeed, precipitation, weather code, wind gusts, and
temperature.

3.4.2.2 Commodities. Performing feature engineering quickly
showed that there is no positive correlation between the electricity
price and the oil price, both the Brent and WTI variants. The differ-
ence between WTI and Brent is that Brent is extracted from the North
Sea and WTI is extracted primarily in the US, Texas [Brent vs WTI:
Which crude to trade in 2022? N.d.] Feeding the daily change in price
for both variants to the model proved helpful, denoted ’Brent change
%’ and ’WTI change %’ in Table 3.4. The idea here is that the trends
of oil prices tend to follow a change in energy demand in terms of oil,
and a part of that energy is used to convert into electricity. Hence, if
the price of oil is expensive, the result is that electricity prices rise. The
idea is the same for when the oil prices tend downward, i.e. the en-
ergy demand is relatively low. Sweden has very little if any, generation
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of electricity by utilizing oil. However, as previously discussed in 2.2,
Sweden’s electricity price depends on the neighboring countries Sweden
conducts imports and exports of electricity with.

The price of natural gas, instead of only derivatives of the price (i.e.
daily change in percentage), plays a role in predicting the electricity
price and improves the prediction accuracy. The price itself, with the
daily price change in percentage and the mean and standard deviation
of the daily change expressed in percentage of natural gas prices, are
supplied to the model, making the prediction accuracy better.

3.4.2.3 Miscellaneous. The total aggregated electricity supplied
to the grid, feature ’Supply SE4’ in Table 3.5, gives off an indication of
how much supply there is on the supply side. The buyers on the spot
market can then determine how aggressive the pricing should be from
their side, based on the current trend of how much amount of supply is
available.

The hour of the day plays an important role when examining the
electricity price. It is injected by the feature ’Hour’ in Table 3.5. The
demand for electricity in MW per hour during the day is plotted in
Figure 3.5 and the average price per hour during the day is plotted
in Figure 3.6. The figures show that both the demand and price vary
depending on the hour of the day.

Providing the feature with the hour of the day allows the model to
pick up the obvious pattern that the price is generally higher for some
hours during the day and generally lower for some hours during the day.

The feature ’Net MW scheduled’ in Table 3.5 says how much elec-
tricity is being imported minus how much electricity is being exported,
on a scheduled basis. When more electricity is being exported than
imported, the supply of electricity diminishes, pushing prices higher if
the demand remains constant. If there is more being imported than ex-
ported, the supply expands, pushing prices lower if the demand remains
constant.

The feature ’Cheapest hour percentage’ is the probability of each
hour of the day statistically being the most expensive hour of the day,
over the period 2014-12-31 to 2018-12-31. The probabilities are gathered
by analyzing at what hour the lowest electricity price occurs for all days
in the dataset and then dividing each hourly count by the total days
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Figure 3.5 Average demand in Sweden per hour during the day during
2014-12-31 - 2018-12-31. The demand pikes around 09.00 and is at its lowest
point during the evening/night.

analyzed. The result is a probability in the range [0, 1] for each hour.
The distribution is shown in Figure 3.7. The probabilities have been
calculated by analyzing the prices from [Dashboard n.d.]

The feature ’Exp hour percentage’ follows the same logic but for the
most expensive hour of the day instead of the cheapest, over the period
2014-12-31 to 2018-12-31. The probabilities are gathered in the same
way as with the cheapest hour, but now analyzing what hour during
the day the most expensive electricity price occurs. The probability of
hour x being the most expensive hour is shown in Figure 3.8. The prob-
abilities have been calculated by analyzing the prices from [Dashboard
n.d.]

While the moving averages provide a historical mean, the slope of
the curve says how fast a given curve changes over time, hourly in this
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Figure 3.6 Average price per hour during the day during 2015-01-01 -
2019-01-01. The graph has two distinct peaks, one at 07.00 and the other at
16.00.

case. The information is useful as it tells the model how the electricity
price behaves in relation from hour to hour. For example, if the slope
is significant in any direction, it lets the model derive that with the
current values of features to the model, the price is more volatile and
there is a greater level of uncertainty. Then, hopefully, after studying a
number of scenarios with changing slopes and fluctuations in electricity
price, the model finds a valuable relationship between the two variables.
There are two different features that involve the slope of the electricity
price curve. The ’Slope 3 days mean’ in Table 3.5 looks at the mean
of the slope of the last 72 data points. ’Slope day before’ is simply the
slope of the day before.

The feature ’Price 2 days ago’ in Table 3.5 is the value of the elec-
tricity price 48 hours ago, hence the feature is shifted by 48 hours. It
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Figure 3.7 Probability of an hour being the cheapest during the day, be-
tween 2014-12-31 - 2018-12-31. 01.00 is statistically most often the cheapest
hour of the day.

can be viewed as a laggard that takes advantage of the properties, in
the same way, the ARIMA model does with the parameter p detailed
in 2.1.2.

’Load Germany’ in Table 3.5 is the electricity in demand for Ger-
many. It covers the entire country which is divided into multiple bidding
zones. The demand for electricity in Germany proving to increase the
accuracy of the model supports the argument made in [Jääskeläinen
et al., 2022], of Germany having an impact on the pricing formation in
the nearby region.

’Supply Germany’ in Table 3.5 increasing the accuracy of forecast-
ing also naturally support the argument in [Jääskeläinen et al., 2022].
It shows that the supply of electricity in Germany impacts the price
formation.
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Figure 3.8 Probability of each hour being the most expensive during the
day, between 2015-01-01 - 2019-01-01. 16.00 is statistically the most expensive
hour of the day, with 06.00 coming in at a close second.

’Load SE4’ in Table 3.5 is the demand for electricity in the SE4
region. The demand naturally impacts the concluded price.

’Price’ in Table 3.5 is the current electricity price. Inserting the fea-
ture of the current electricity price in order to forecast future electricity
prices improve the model by a considerable degree, supporting the state-
ments made in [Kuo and Huang, 2018] of quantifiable factors such as
historical prices affecting the electricity price.

As discussed before, the electricity price for the following day is
determined at 13.00 on the preceding day. The features introduced that
represent the next day’s prices are called ’Price next+1, Price next+2,
Price next+3, ..., Price next+24’. The next 24 hours all have the same
value for ’Price next+1’, ’Price next+2’, ..., ’Price next+24’. ’Price
next+1’ is not the price in the next hour, but simply the price for the

77



Chapter 3. Prediction of electricity prices

next day at 00.00. ’Price next+2’ is simply the price for the next day at
01.00 and not the price in two hours. The model can now take advantage
of the upcoming prices to make better predictions about the upcoming
future.

At the same time, the model is fed the hourly electricity prices of
the last 24 hours, in features by the name ’Price last-1, Price last-2,
Price last-3, ..., Price last-24’. The model can now utilize the last 24
hours’ worth of prices, and the upcoming 24 hours of prices, to make
much better predictions.

The main reason why multiple rolling averages have been experi-
mented with as features and possibly why it has improved the model
is that moving averages smoothen out the curve by removing noise
that makes it difficult to find a meaningful relationship. In doing so, it
maintains the main movement of the curve, without all of the minor
fluctuations. [Hyndman, R.J., Athanasopoulos, G. (2021) Forecasting:
principles and practice, 3rd edition, OTexts: Melbourne, Australia. N.d.]
The reason why values related close in time are sampled is that they
are thought to share trend-cycle components similar in value. The trend
component can then be calculated by taking the average of observations
surrounding the data point. [MATH6011: Forecasting n.d.]
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Feature Description

Windspeed The current hourly windspeed in
m/s

Windspeed t+1 Windspeed in 1 hour
Windspeed t+2 Windspeed in 2 hours
Windspeed t+3 Windspeed in 3 hours
...

...
Windspeed t+120 Windspeed in 120 hours
Precip The current hourly precipitation

in mm
Precip t+1 Precipitation in 24 hours
Precip t+2 Precipitation in 25 hours
Precip t+3 Precipitation in 26 hours
...

...
Precip t+120 Precipitation in 120 hours
Wind gusts The current hourly wind gusts in

m/s
Wind gusts t+1 Wind gusts in 1 hours
Wind gusts t+2 Wind gusts in 2 hours
Wind gusts t+3 Wind gusts in 3 hours
...

...
Wind gusts t+120 Wind gusts in 120 hours
Weathercode The current hourly weather code
Weathercode t+1 Weather code in 1 hour
Weathercode t+2 Weather code in 2 hours
Weathercode t+3 Weather code in 3 hours
...

...
Weathercode t+120 Weather code in 120 hours
Temp The current temperature in Cel-

sius
Temp t+1 The temperature in 1 hour
Temp t+2 The temperature in 2 hours
Temp t+3 The temperature in 3 hours
...

...
Temp t+120 The temperature in 120 hours

Table 3.3 Weather features for the baseline models.
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Feature Description

Natural gas price Price in EUR/MWh
Change natural gas % Change in natural gas price over the

last 24 hours in percent
Change natural gas mean The mean of the moving average of

natural gas price changes over the last
7 days

Change natural gas std The standard deviation of the moving
average of natural gas price changes
over the last 7 days

Brent change % Change in Brent oil price over the last
24 hours

WTI change % Change in WTI oil price over the last
24 hours

Table 3.4 Commodity features for the baseline models.
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Feature Description

Hour The hour of the day (0,1,....23)
Dayofweek The day of the week (Monday, Tuesday, ...)
Cheapest hour percentage The chance of the current hour being the cheap-

est for the entire day
Exp hour percentage The chance of the current hour being the most

expensive hour for the day
Price mean 6 days The mean of the electricity price the last 6 days
Price std 6 days The standard deviation of the electricity price

the last 6 days
Slope 3 days mean The mean of the moving average of the gradient

of the electricity price over the last 3 days
Slope day before The gradient of the electricity price of the day

before the current day
Load Germany The demand for electricity in Germany
Supply Germany The supply of electricity in Germany
Supply SE4 Total MW electricity produced to the grid in

SE4
Load SE4 The demand of electricity in SE4
Net MW scheduled Net MW of electricity exported and imported

to SE4
Price last-24 Price 24 hours ago
...

...
Price last-3 Price 3 hours ago
Price last-2 Price 2 hours ago
Price last-1 Price 1 hour ago
Price The current electricity price
Price next+1 Price at 00.00 the next day
Price next+2 Price at 01.00 the next day
Price next+3 Price at 02.00 the next day
...

...
Price next+23 Price at 23.00 the next day

Table 3.5 Miscellaneous features for the baseline models.

3.4.3 Forecasting prices with baseline models

The baseline models are trained on data from 2015-01-07 22:00:00
to 2018-03-12 12:00:00 which is 80% of the entire dataset, conforming to
the common 80-20 ratio described in [Training and Test Sets: Splitting
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Data n.d.] The MCRMSE for the test dataset is 12.942 EUR/MWh,
which is the average value for RMSE over the entire dataset.

The figure in 3.9 shows the average RMSE error for each forecasted
hour. It is evident that the 24th hour is easily the best predicted hour.
The RMSE then climbs with different rates of speed upwards, having
some brief declines before resuming the uptrend. There is a spike at the
110th hour, making it the hardest hour to forecast. Therefore, it will
be used to graph how the predictions compare to the true values for
electricity prices. Why the worst forecasted hour is chosen to graph the
forecasting ability is due to every other hour forecasted is guaranteed
to the better, showing the worst result provides a worst case and every
other case is better.

Figure 3.9 The average RMSE error per hour forecasted. The highest av-
erage RMSE is found at the 110th hour.

The RMSE for the test dataset with respect to the 110th hour in
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advance is 15.987 EUR/MWh, and the values for the 110th hour are
depicted in 3.10 for both the test set and the predicted set.

Figure 3.10 How the baseline models perform on the test data. In the
graph, only the 110-hour projections are shown. The red line is the contin-
uously projected electricity price 110 hours out, and the yellow line is what
the electricity prices turned out to be.

Graphically, it is hard to tell how well the model performs by look-
ing at Figure 3.10 since it spans a longer time horizon. Therefore, a
sample from the test dataset has been taken in order to show how the
model performs in a shorter time frame. The values between 2018-04-
05 00:00:00+00:00 and 2018-04-09 00:00:00+00:00 have been picked as
a sample. In Figure 3.11, the 110th hour in advance for the predicted
dataset and the test dataset have been plotted. The RMSE in this case
is 4.371 EUR/MWh.

Now, in order to see how the model performs by forecasting 24
hours to 120 hours in advance, which is the entire idea with the
model, one hour from the test dataset is picked. The hour is 2018-06-
011 00:00:00+00:00. The result is a forecast starting from 2018-06-12
00:00:00+00:00 until 2018-06-16 00:00:00+00:00. The forecast is shown
in Figure 3.12. The RMSE value, in this case, is 9.246 EUR/MWh.
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Figure 3.11 Repeatedly projecting the price in 110 hours, from 2018-04-05
to 2018-04-09. The yellow line is the prices that later turned out to be true
and the red line is the projected prices.

Figure 3.12 The projected price for the coming 5 days when the forecast
is executed on 2018-06-11 00:00:00+00:00. The yellow line is what the price
turned out to be. The red line is the projected coming prices.
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3.5 Primary models

The baseline models, trained on data from 2015-2018, showed to
be not too bad at forecasting electricity prices. With the observation
of the result from the baseline, it is possible to deduce that applying
the same methodology to the primary models, being trained on data
from 2020-2023, should hopefully yield a reasonable result, given the
circumstances. Since the baseline models showed somewhat of a good
ability to forecast, the hope is that the RMSE for the primary models
is to a majority attributed to the unstable price action, and is not
attributed to the ’imperfections’ in the model. Naturally, the RMSE
will be several times higher for the primary models compared to the
baseline models.

3.5.1 Preprocessing & feature engineering

The baseline and the primary models share a number of identical
features. The identical features already explained in 3.4.2 are there-
fore not brought up here as they operate with the same intentions as
described previously.

3.5.1.1 Weather. The weather features are almost the same as in
the baseline model. For the weather features, instead of starting 1 hour
out, 2 hours out, and up to 120 hours out, it instead starts at 24 hours
out, all the way up to 120 hours. The table of features is found in Table
3.6.

3.5.1.2 Commodities. For the table of commodities, 3.7, the table
is extended with two additional features to the already existing features
from 3.4. The ’WTI USD’ feature is the price in U.S. dollars for a barrel
of West Texas Intermediate (WTI) oil. The ’Brent USD’ feature is the
price in U.S. dollars for a barrel of Brent oil. Oil prices have a greater
impact on the electricity price in 2020-2023 than in 2015-2018 based on
how the primary models respond to the data in comparison to how the
baseline models respond to the data.

3.5.1.3 Miscellaneous. The model has of course been fed the fea-
ture ’hour’ and ’dayofweek’, which enables the model to find relation-
ships between the price and the hour of the day, and the day of the
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week. As presented in Section 3.4.2, the demand for electricity depends
on the hour of the day, and so does the electricity price. Below are the
same statistics presented but for 2020-2023.

Figure 3.13 Average electricity price in EUR/MWh between 2020-01-01
00:00:00 and 2023-01-24 23:00:00. The price usually peaks in the morning at
06.00/07.00 and in the afternoon at 17.00.

The primary models also take a look at the distribution of the prob-
ability of each hour being the cheapest and most expensive during the
day, respectively. Figure 3.15 shows the probability of each hour being
the cheapest over the day, while Figure 3.16 shows the probability of
each hour being the most expensive over the day.

The feature ’Supply Germany slope 7-day mean” calculate the mean
of the last seven days’ worth of values in terms of the available supply
of electricity in Germany.

There are numerous features dependent on the supply and demand
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Figure 3.14 Average demand for electricity in MW between 2019-12-31
23:00:00+00:00 and 2023-01-19 23:00:00+00:00. During the day, the demand
rises, and during the night, the demand diminishes.

of electricity in Germany. In addition to ’Supply Germany slope 7-
day mean’, there exists the features ’Supply Germany 5-day mean’,
’Supply Germany 1-day mean’, ’Supply Germany’, ’Load Germany 10-
day median’, ’Load Germany 10-day mean’, and ’Load Germany s-7 1
day mean’. The feature ’Supply Germany 5-day mean’ takes the mean of
the supply over the last 5 days. ’Supply Germany 1-day mean’ does the
same thing over a day. ’Supply Germany’ is the last recorded electricity
supply in Germany. Feature ’Load Germany s-7 1-day mean’ shifts all
values backward by 168 steps and then takes the mean over a 24-hour
period. Feature ’Load Germany 10-day median’ calculates the median of
all the demand for electricity in Germany over the last 10 days. Feature
’Load Germany 10-day mean’ calculates the mean of the demand for
electricity in Germany over the last 10 days.
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Figure 3.15 Probability of an hour being the cheapest during the day, be-
tween 2019-12-31 and 2023-01-19. 23.00 is statistically most often the cheapest
hour of the day.

The features ’Supply SE4’, ’Load SE4’, ’Net MW scheduled’, ’Price’,
’Price last-24, Price last-23, ..., Price last-1’, ’Price next+1, Price
next+2, ..., Price next+23’ is exactly the same as in Table 3.5.
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Figure 3.16 Probability of each hour being the most expensive during
the day, between 2019-12-31 and 2023-01-19. 17.00 is statistically the most
expensive hour of the day.
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Feature Description

Windspeed The current hourly windspeed in
m/s

Windspeed t+24 Windspeed in 24 hours
Windspeed t+25 Windspeed in 25 hours
Windspeed t+26 Windspeed in 26 hours
...

...
Windspeed t+120 Windspeed in 120 hours
Precip The current hourly precipitation

in mm
Precip t+24 Precipitation in 24 hours
Precip t+25 Precipitation in 25 hours
Precip t+26 Precipitation in 26 hours
...

...
Precip t+120 Precipitation in 120 hours
Wind gusts The current hourly wind gusts in

m/s
Wind gusts t+24 Wind gusts in 24 hours
Wind gusts t+25 Wind gusts in 25 hours
Wind gusts t+26 Wind gusts in 26 hours
...

...
Wind gusts t+120 Wind gusts in 120 hours
Weathercode The current hourly weather code
Weathercode t+24 Weather code in 24 hours
Weathercode t+25 Weather code in 25 hours
Weathercode t+26 Weather code in 26 hours
...

...
Weathercode t+120 Weather code in 120 hours
Temp The current temperature in cel-

sius
Temp t+24 The temperature in 24 hours
Temp t+25 The temperature in 25 hours
Temp t+26 The temperature in 26 hours
...

...
Temp t+120 The temperature in 120 hours

Table 3.6 The weather features for the primary models.
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Feature Description

Natural gas price Price in EUR/MWh
Change natural gas % Change in natural gas price over the

last 24 hours in percent
Change natural gas mean The mean of the moving average of

natural gas price changes over the last
7 days

Change natural gas std The standard deviation of the moving
average of natural gas price changes
over the last 7 days

WTI USD The price of WTI in USD
Brent USD The price of Brent in USD
Brent change % Change in Brent oil price over the last

24 hours
WTI change % Change in WTI oil price over the last

24 hours

Table 3.7 Commodity features
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Feature Description

Hour The hour of the day (0,1,....23)
Dayofweek The day of the week (Monday, Tuesday,

...)
Cheapest hour percent-
age

The chance of the current hour being the
cheapest for the entire day

Exp hour percentage The chance of the current hour being the
most expensive hour for the day

Supply Germany slope 7-
day mean

The 7-day mean of the slope of the supply
of electricity in Germany

Supply Germany 5-day
mean

The 5-day mean of the electricity supply
in Germany

Supply Germany 1-day
mean

The 1-day mean of the electricity supply
in Germany

Supply Germany The total electricity supply in Germany
Load Germany s-7 1-day
mean

The demand for electricity in Germany,
shifted by 7 days, and the rolling mean
over 1 day

Load Germany 10-day
median

The demand for electricity in Germany,
rolling median over 10 days

Load Germany 10-day
mean

The demand for electricity in Germany,
rolling mean over 10 days

Supply SE4 Total MW electricity produced to the grid
in SE4

Load SE4 The demand of electricity in SE4
Net MW scheduled Net MW of electricity exported and im-

ported to SE4
Price last-24 Price 24 hours ago
...

...
Price last-3 Price 3 hours ago
Price last-2 Price 2 hours ago
Price last-1 Price 1 hour ago
Price The current electricity price
Price next+1 Price at 00.00 the next day
Price next+2 Price at 01.00 the next day
Price next+3 Price at 02.00 the next day
...

...
Price next+23 Price at 23.00 the next day

Table 3.8 The miscellaneous features for the primary models.
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3.5.2 Forecasting prices with primary models

The primary models are trained on data from 2020-01-06 00:00:00 to
2022-06-08 01:00:00. The training data represents 80% of the dataset.
The average RMSE metric for each forecasted hour is displayed in 3.17.
The average RMSE starts with a short-lived spike upwards that then
transpires into a spike downwards, finding its bottom at the 28th hour.
The lowest average RMSE is found at hour 28, meaning that it is the
easiest hour to project the price for. After the 28th hour, the average
RMSE rises steadily, with minor downturns before it swings upwards
again, reaching a top at the 120th hour. The MCRMSE for the test
set here is 130.393 EUR/MWh, quite the difference from the baseline
models.

Figure 3.17 Average RMSE for each hour forecasted

Illustrating the average RMSE for the primary models and the base-
line models side by side, the order of magnitude in difference quickly
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becomes apparent. The graphs also do have diverging patterns of how
the RMSE increases.

(a) Average RMSE for the primary
models. The highest average RMSE is
found at the 120th hour.

(b) Average RMSE for the baseline
models. The highest average RMSE is
found at the 110th hour.

Figure 3.18 Difference in the graph over the average RMSE error. The
primary models portray a slower incline in the RMSE while having a much
higher starting point. For the primary models, the average RMSE starts out
at 110, while it starts out at 9.5 for the baseline models.

Since the 120th hour is the forecasted hour with the worse score
according to the evaluation metric, it is used to show how the test set
and the predicted set differ. See Figure 3.19. The RMSE metric for the
120th hour is 152.136 EUR/MWh.

As the image portrays, the red (forecasted prices) line does not
always follow along with the spikes in the yellow (true prices) line, and
they diverge at many locations. Exactly as in the baseline models, a
shorter time period has been picked out to showcase how the forecasted
and true electricity prices differ in a more detailed view. The RMSE on
the test set for the 120th-hour forecasting is 34.981 EUR/MWh.

Looking at how it performs in forecasting the next 24 hours to 120
hours in the future, it can be seen in Figure 3.21. The forecast is done
on 2023-01-05 00:00:00 and therefore forecasts the electricity price for
2023-01-06 00:00:00 - 2023-01-10 00:00:00

The RMSE for the 5-day forecast in Figure 3.21 is 41.365. The fore-
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Figure 3.19 How the primary models perform on the test data. In the
graph, only the 120-hour projections are shown. The red line is the contin-
uously projected electricity price 120 hours out, and the yellow line is what
the electricity prices turned out to be.

Figure 3.20 Repeatedly projecting the price in 120 hours, from 2022-11-01
to 2022-11-06. The red line is the projected prices and the yellow line is the
prices that later were determined.
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Figure 3.21 The projected price for the coming 5 days when the forecast is
executed on 2023-01-05 00:00:00+00:00. The red line is the projected coming
prices. The yellow line is what the price turned out to be.

cast starts out somewhat reasonable, for the most part tracking the true
price up until 7/01/23. Then, the true prices diverge and the forecast
does not follow up on the pattern. The forecast expects the price to
stay bound in a range of 40-180 EUR/MWh over the entire forecasting
period while the actual price dips down to about 10 EUR/MWh at one
point. One noteworthy fact is that the forecasted electricity price sets a
low point for the interval, remarkably close to the point in time where
the actual electricity price also sets the lowest price for the interval. Af-
ter the forecast diverges from the real electricity price between 7/01/23
to 9/01/23, the forecast becomes much more reliable again, staying very
close to the true price up until the forecast ends on 10/01/23. Naturally,
depending on which time frame is selected, the result differs. Some time
frames generate good-looking results while some generate worse results.
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4
Optimization of charging
protocols

In this chapter, the optimization of different charging protocols is
presented. There is a total of seven unique charging protocols that are
tested for their cost-efficiency. Cost efficiency is synonymous with the
ability of a charging protocol to produce a charging pattern and measure
its cost against other charging patterns generated by other charging
protocols. If charging protocol a produces a charging pattern that is
cheaper than a charging pattern produced by charging protocol b with
the same information available, a is said to be more cost-efficient than
b. The main question that is to be answered is if the first charging
protocol, which utilizes the forecasted prices for the future, is able to
be more or less cost-efficient than the other charging protocols.

97



Chapter 4. Optimization of charging protocols

Figure 4.1 The process of producing charging patterns. The charging pro-
tocol takes future electricity prices and the output from each protocol is a
charging pattern that the charger will adhere to.
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All of the charging protocols have their origin in the same problem
definition. The problem definition is based on the ”Optimal Dispatch of
Power Generators: Problem-Based” [Optimal Dispatch of Power Gen-
erators: Problem-Based n.d.] In the optimal dispatch problem, the opti-
mization is of two gas-fired electric generators to generate the maximum
profit, the revenue minus the operational cost. Since the electricity price
varies over the day, there are times during the day when the profit is
higher to operate the gas-fired generators, and this is something that
can be taken advantage of. How the optimal dispatch problem relates
to the optimization in this thesis is its optimization of the sum of a
variable, dependent on another variable that determines how much en-
ergy is consumed. In this thesis, the variable being summed is either
the cost or the SoC over the entire period. The electricity cost or SoC
is dependent on how much the charger decides to consume in terms of
electric energy, instead of the energy from fuel sources. The fuel cost of
the generators is swapped out for the electricity cost at the same time
as the gas-powered generators are swapped out by an electrical charging
device that is used to charge an electric vehicle.

Two of the seven charging protocols are strictly focused on the cost,
where the goal is to minimize the cost.

In the five other charging protocols, the focus is heavily on the sum-
mation of the SoC over the entire time period, being either minimized
or maximized. For these five charging protocols, no definition of any
variable changes from the other two protocols focused on cost, but the
optimization objective is now dependent on the SoC rather than the
cost, except for one protocol which incorporates both the cost and the
SoC.

The motivation behind the case of maximizing the summation of
SoC is to always have the car with as full of a battery as possible, being
charged as fast as possible, due to the primary two circumstances:

1. The car has to leave before it is planned to leave.

2. A drive travels much longer than expected.

In the first case, if the car has to leave before it is planned to leave,
the car will be at the maximum SoC it had time to reach before the
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car leaves. Normally, a person follows a pre-defined schedule and knows
when to use the car. However, there are unplanned events happening
every now and then that drastically change the daily plan. If that hap-
pens and the car needs to be used earlier than planned, it is best if the
car was charging at maximum power, as it means the car will be charged
to the highest level it had time to reach. If the charger only operated at
half the maximum power, the SoC when leaving the garage with the car
may not be sufficient. The second case also involves unplanned events,
where the car needs to travel further than planned. In that case, having
as much charge as possible when leaving the garage is preferred, as the
extra distance to be traveled may be hard to determine beforehand.

The motivation behind the case of minimizing the summation of
SoC is due to:

1. Battery longevity. The state of charge status and the temperature
of the battery both have an impact on the life of the battery
[Tamura and Kikuchi, 2018]. Longer floating times at high levels
of SoC have been shown to have a negative impact on the life of
the battery [Mussa et al., 2017].

2. Less electricity required. Having the SoC at the bare minimum
reduces both cost and the impact on the electrical grid.

3. Charging efficiency. The charge acceptance of a battery is higher
at low levels of SoC. Charge acceptance reduces as the SoC of the
battery increases [Roy et al., 2022].

Having an efficient battery with a long lifetime is an optimal sce-
nario, which is why the minimization of the SoC is experimented with.

4.1 Charging scheduler

To experiment with different charging protocols, an optimization in-
strument named ”Charging scheduler” is introduced. It defines a num-
ber of constraints that apply to the charging regimes and provides a
method of calculating the cost of each charging protocol. With the in-
strument, a schedule can be built that has a focus to either reduce
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overall cost or optimize the SoC of the car, while serving the needs of
the car. The needs of the car may be that it will travel x kilometers
between 14:00 and 16:00.

4.1.1 Optimization problem

The total cost of charging in the time period T is defined as

CT =

T∑
t=0

c(t)

(
10∑
i=0

i

10
si(t)

)
(4.1)

where c(t) is a piecewise function representing the forecasted elec-
tricity price in EUR/kWh at time t. The function si(t) is defined as

si(t) =

{
1, if regime si is enabled at time t

0, if regime si is disabled at time t
(4.2)

The charger has 11 regimes, the first regime s0 represents the charger
being non-operational. Each succeeding regime represents an increase
of 1 kW in output, reaching a maximum output of 10 kW for regime
s10.

The regimes can be represented as a vector

s = [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10] (4.3)

where si(t) outputs a 0 if regime i is disabled at time t, and a 1 if
regime i is enabled at time t. The charger cannot be in two regimes
simultaneously, which can be written as

sσ(t) =

10∑
i=0

si(t) ≤ 1 (4.4)

at any time t. The subscript σ stands for the sum of all charging regimes
si at time t. sσ(t) would naturally be equal to 0 when no regime is
enabled.
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4.1.2 Constraints

To define the constraints of the optimization problem, the theory of
”State of Charge” is introduced. State of Charge is defined as

SoC(t) =
Q(t)

Qnominal
(4.5)

where Q(t) is the current charge of the battery and Qnominal is the
maximum charge of the battery [Tribioli and Bella, 2022]. In this paper,
Qnominal is set to 150kWh. The unit of the state of charge is percent.
To preserve the lifetime of the battery, it is critical to ensure that the
battery does not overcharge or over-discharge. The term SoCS˙min is
introduced to represent the minimum state of charge allowed for the
battery. A second term SoCS˙max is introduced to represent the maxi-
mum state of charge allowed for the battery. The constraint on the state
of charge is therefore [Cheikh-Mohamad et al., 2021]

SoCS˙min ≤ SoC(t) ≤ SoCS˙max (4.6)

for all t ∈ T . SoCS˙min is set to 10
150% and SoCS˙max is set to 115

150%.
When looking at the j-th interval, interval j has a state of charge

SoCj where the next state of charge SoCj+1 is dependent on the previ-
ous SoC, SoCj , such that

SoC(j+1) = SoC(j) −
Pd(j)

Qnominal
(4.7)

where Pd(j) is the change in battery charge depending on if the car is
moving, standing still, or charging during segment j.

The expression for SoC(j) at the j-th interval can be expressed as
the initial state minus all the draws of the battery, plus all the charges
to the battery. Pd(i) < 0 if the car is being charged and Pd(i) > 0 if
energy is being consumed from the battery. For Pd(i) = 0, the battery
is neither being charged nor being expended of energy.

SoC(j) = SoC(0) −
j∑

i=1

Pd(i)

Qnominal
(4.8)

SoC(0) is the initial state of charge, set to 20%.
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In this optimization problem, each interval is 10 minutes, 6 intervals
per hour. The expressions for SoC are derived from [Kusakana, 2015],
with minor changes in definitions and symbols.

With an expression for SoC(j), it can now be expressed with SoCmin

and SoCmax.
At any interval j, the following condition must hold, or else no op-

timization is feasible.

SoCS˙min ≤ SoC(j) ≤ SoCS˙max ⇐⇒ SoCS˙min ≤ SoC(0)−
j∑

i=0

Pd(i)

Qnominal
≤ SoCS˙max

(4.9)
While the car is not at rest, it cannot be charged. Let r(t) be a

function defined as

r(t) =

{
1, if the car is at rest, ready to be charged

0, if the car is not at rest, not ready to be charged
(4.10)

r(t) places a constraint on sσ(t) such that sσ(t) can only be equal
to 1 while r(t) is equal to 1. sσ(t) can be equal to 0 independent of r(t).

The energy consumption of the battery is set at 0.2kW/km. The
number is taken from an average energy consumption from multiple
models of electric vehicles [Energy consumption of full electric vehicles
n.d.] The user of the electric vehicle will have to input approximately
which hours the car will be driven, and the estimated distance. With
the average energy consumption per kilometer, Pd(j)

can be substituted
at every interval j.

4.2 Implementation in Matlab

The implementation in Matlab reflects the information in Section
4.1. As previously mentioned, two different solvers, ’intlinprog’ and ’ga-
multiobj’ is utilized to solve the optimization problems.
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4.2.1 Variables

There is a variable, denoted y, that has 11 different regimes. Each
regime corresponds to each charging regime, previously discussed in
Section 4.1.2. Each respective regime has a lower bound of 0 and an
upper bound of 1, being either off or on. Each hour is divided into 6
segments, 10 minutes each. There is a total of 121 hours in the time
frame, meaning that there is a total of 726 segments of 10 minutes
each. The variable ’y’ is a matrix of 726 rows and 11 columns. Row j
represents the j-th time segment and column i represents si, returning
a 0 if si is not enabled, and a 1 if si is enabled. Indexing the matrix by
j-th row and the i-th column would return the status of si in the j-th
segment.

y =


s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s110
s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s210
...

...
...

...
...

...
...

...
...

...
...

s7260 s7261 s7262 s7263 s7264 s7265 s7266 s7267 s7268 s7269 s72610


(4.11)

A matrix yElectricity is introduced, keeping track of the possible
values each regime assumes during all 726 segments. The yElectricity
matrix naturally also has 726 rows and 11 columns, as it is the charging
outputs for each state during each segment in time. Row j represents
the j-th time segment and column i represents si, the wattage output.
Indexing the matrix by j-th row and the i-th column would return the
wattage output for sji . Each wattage output is divided by 6 since si has
an output of i kW and each hour is divided into 6 segments.

yElectricity =


0 1

6
2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

10
6

0 1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

10
6

...
...

...
...

...
...

...
...

...
...

...
0 1

6
2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

10
6


 726 rows

(4.12)
The cost ci is taken from a vector ’yCost’ that contains the hourly

prices. In one case, ’yCost’ contains the forecasted prices plus the prices

104



4.2 Implementation in Matlab

for the initial 24 hours that are not forecasted. In that case, c1 to c24
are the initial hourly prices, c25 to c121 are the forecasted hourly prices.
In the other six cases, c1 to c121 are the true electricity prices. To divide
each hour into six segments, each element is repeated six times at every
position. If the initial vector was described as

yCost = [c1, c2, c3, ..., c121] (4.13)

After repeating each element six times, the vector consists of 726
values and is now described as

yCost = [c1, ..., c1︸ ︷︷ ︸
6 elements

, c2, ..., c2︸ ︷︷ ︸
6 elements

, ..., c121, ..., c121︸ ︷︷ ︸
6 elements

] = [c1, c2, c3, ..., c726]

(4.14)
z is the Hadamard product, otherwise called the element-wise mul-

tiplication [Horn, 1990], of yElectricity and y.

z = yElectricity ◦ y =


0
6s

1
0

1
6s

1
1

2
6s

1
2 · · · 10

6 s110
0
6s

2
0

1
6s

2
1

2
6s

2
2 · · · 10

6 s210
0
6s

3
0

1
6s

3
1

2
6s

3
2 · · · 10

6 s310
...

...
...

...
...

0
6s

726
0

1
6s

726
1

2
6s

726
2 · · · 10

6 s72610

 (4.15)

where z(j, i) = i
6si(j)

A final variable is introduced to have a final expression for the solver
when solving the optimization problem with regard to cost. The vari-
able to be optimized is named ’electricityCost’ which is declared as an
’optimexpr’ in Matlab with the same size as the previously declared
variable ’y’. As the name suggests, it is an expression to be optimized.
The size is therefore 726 rows with 11 columns. Index j of returns the
j-th segment, and the i-th index of the j-th segment is the electricity
price times the value of si at the j-th segment. The value of si at the
j-th segment is of course gathered from ’y’ and the electricity consumed
during the j-th is gathered from ’yElectricity’. Let cj be the cost at the
j-th time segment.
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electricityCost =


c1z(1, 0) c1z(1, 1) c1z(1, 2) · · · c1z(1, 10)
c2z(2, 0) c2z(2, 1) c2z(2, 2) · · · c2z(2, 10)
c3z(3, 0) c3z(3, 1) c3z(3, 2) · · · c3z(3, 10)

...
...

...
...

...
c726z(726, 0) c726z(726, 1) c726z(726, 2) · · · c726z(726, 10)


(4.16)

The expression in Matlab for the cost of electricity during the 726
segments of time is as follows:

totalCostElectricity = sum(sum(electricityCost)) (4.17)

The first sum of electricityCost returns the matrix

sum(electricityCost) =


c1z(1, 0) + c1z(1, 1) + · · · + c1z(1, 10)
c2z(2, 0) + c2z(2, 1) + · · · + c2z(2, 10)
c3z(3, 0) + c3z(3, 1) + · · · + c3z(3, 10)

c726z(726, 0) + c726z(726, 1) + · · · + c726z(726, 10)


(4.18)

and the second sum returns the sum of all the rows. The sum of all rows
be rewritten by moving the common factors of terms such that it now
looks like

(4.19)sum(sum(electricityCost)) = c1(z(1, 0) + · · ·+ z(1, 10)) + · · ·
+ c726(z(726, 0)+ · · ·+ z(726, 10))

and the equation can, in turn, be rewritten with summation and
si(t) instead of z since z(t, i) = i

6si(t)

sum(sum(electricityCost)) = c1(

10∑
i=0

i

6
si(1)) + · · ·+ c726(

10∑
i=0

i

6
si(726))

(4.20)
and since ct is the cost at the i-th segment, each ci can be replaced

by the cost function c(t). The result is
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sum(sum(electricityCost)) =

726∑
t=0

c(t)

(
10∑
i=0

i

6
si(t)

)
(4.21)

and the original equation from 4.1 with T = 726 becomes apparent.
The SoC is defined as

SoC(j) = SoC(0) +

current charge expressed in SoC excluding SoC(0)︷ ︸︸ ︷
cumsum(charge)− cumsum(carCon)

Qnominal
(4.22)

where ’cumsum’ is the cumulative summation from the start, up
to the current point in time. The definition in 4.28 is another way to
express 4.9. ’charge’ contains the charge for each segment in time and
’carCon’ contains the energy consumption for each segment in time. If
during the j-th segment, the car drives 20km, the expenditure of energy
is 0.2 ·20 = 4 kW, hence carCon(j) = 4. charge(j) is dependent on which
regime the charger is in during the j-th segment. This is the SoC term
that five of the charging protocols attempt to minimize or maximize
the summation of. The sum of the SoC term in Matlab is given by
sum(SoC).

4.2.2 Global constraints in Matlab

The constraints in this section are applied to all optimization prob-
lems. In some optimization problems, there are additional constraints
to the constraints listed in this section.

With the objective functions ’totalCostElectricity’ and the summa-
tion of SoC, sum(SoC), the constraints to the objective functions can
be set.

The first constraint restricts the charger from being in multiple
regimes at a time, which is infeasible. The Equation 4.4 describes the
property of this constraint at a specific point in time. To generalize the
constraint over the entire variable ’y’, it can be expressed as

10∑
i=0

sji ≤ 1, for j = 1, 2, ..., 726. (4.23)
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The constraint is called ’powercons’ in the Matlab implementation.
The second constraint on the objective function restricts the charger

from being on whenever the car is driving. Being on of course means
that the charger is on and charging the vehicle. A vector ’carDriving’ is
introduced with 0 whenever the car is not driving and 1 when the car
is driving. The vector consists of 726 elements.

carDriving = [d1, d2, d3, ..., d726] (4.24)

The constraint is defined as

dj +

10∑
i=1

sji ≤ 1, for j = 1, 2, ..., 726. (4.25)

The constraint is called ’noChargeWhenNotPossible’ in the Matlab
implementation.

A constraint that builds upon the previous constraint is to introduce
the vector ’r’ discussed in 4.1.2. r is a vector with the same size as
’carDriving’ and is 0 if the car is not at home ready to be charged and
1 if the car is at home ready to be charged.

r = [r1, r2, r3, ..., r726] (4.26)

The resulting constraint is

10∑
i=1

sji − rj ≤ 0, for j = 1, 2, ..., 726. (4.27)

meaning that the charger can only be enabled while the car is at
home, ready to be charged. The constraint is called ’chargeOnlyWhen-
Home’ in the Matlab implementation.

The SoC constraint is defined as

SoCS˙min ≤ SoC(0) +
cumsum(charge)− cumsum(carCon)

Qnominal
≤ SoCS˙max

(4.28)

The SoC constraint is split into two different constraints, with the
names ”SoCLowerBound” and ”SoCUpperBound” in the Matlab im-
plementation.
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4.2.3 Defining an optimization problem

The problem in Matlab starts with defining an optimproblem, which
instantiates an optimization problem [What is regression? N.d.] In the
line below, an optimization problem of ’ObjectiveSense’, meaning that
the problem can either be a minimization or maximization, and ’mini-
mize’ lastly means that the problem is a minimization problem.

dispatch = optimproblem('ObjectiveSense ','
minimize ');

Then, the problem given the name ’dispatch’ has two accessible
fields, Constraints and Objective. The objective field sets the relevant
function that is to be optimized.

dispatch.Objective = f;

Lastly, the required constraints can be added by accessing the Con-
straints field of dispatch. The constraints must be given an individual
name and the definition of the constraint. Some examples of two con-
straints are shown below.

dispatch.Constraints.SoCLowerBound = SoC >=

SoC_min;

dispatch.Constraints.SoCUpperBound = SoC <=

SoC_max;

If an optimproblem has two or more objective functions, one can add
multiple objects by assigning each objective a name. This will enable
the optimproblem to separate the objectives from each other.

dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective.soc = sum(SoC);

dispatch.Objective.cost = totalElectricityCost;

4.2.4 Input of driving pattern

To know when the car can be charged and when it is driving, the
operator has to input the driving schedule for the upcoming days. The
required details are during which hours the car will be operational, and
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the estimated distance the car will travel. It must also be known if the
car arrives at home at the end of the drive, to verify if it is possible
to charge or not at the end of the trip. This assumes that there is no
available charging spot when parked outside of the home. To record a
value of whether the car is at home or not, a column ’Home at end’ is
introduced. The value will be 0 if the car is not at home at the end of
the drive, and 1 if the car is at home at the end of the drive.

The structure of the information required, and example values are
provided in Table 4.1.

Start End Estimated distance Home at end
2022-04-01 13:00 2022-04-01 15:45 120km 1
2022-04-02 08:05 2022-04-02 08:35 45km 0
2022-04-02 16:10 2022-04-02 16:45 45km 1

Table 4.1 The structure of the driving pattern

With the start and finish times, and the estimated distance to drive,
it is possible to restrict whenever the car may or may not be charged,
and how much energy is consumed during the trip, going off the average
energy expenditure per kilometer stated in 4.1.

4.3 Different charging protocols

To test the cost-efficiency of the charging protocol with the fore-
casted prices from the primary models, other charging protocols are in-
troduced. The charging protocols will be compared against each other
with cost in mind. If the charging protocol which attempts to mini-
mize the cost with the forecasted prices generally outperforms any other
charging protocol, the forecasted prices can be deemed accurate enough
to produce a favorable result when it comes to scheduling the charging.

The charging protocols that will be compared against each other are
the following:

1. Cost-optimized with forecast: cost-optimization with fore-
casted electricity prices.
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2. Maximum SoC: charge such that the sum of the SoC over the
entire period is as high as possible. The charger immediately pow-
ers on with full power when the charger is plugged in. This can be
seen as the naive protocol that would be the most straightforward
way of charging.

3. Minimum SoC: charge such that the sum of the SoC over the
entire period is as low as possible.

4. Minimum SoC during 22-06: only charge during the night,
22-06. It will try to charge during these hours such that the sum
of the SoC over the entire period is as low as possible.

5. Minimum SoC during 00-12: only charge after midnight and
12 hours forward, 00-12. It will try to charge during these hours
such that the sum of the SoC over the entire period is low as
possible.

6. Cost-optimized each day: cost-optimization for the next 24
hours, with the charger updated with the new prices for the com-
ing day at midnight of that day.

7. Cost-optimized & minimum SoC: charge such that the sum of
the SoC over the entire period is as low as possible while trying to
minimize the cost for the next 24 hours. At midnight, the charger
is updated with the electricity prices for the next 24 hours.

It is important to note that not every charging protocol is developed
with minimizing cost in mind. charging protocols 3, 4, 5, and 7 are de-
veloped based on the core idea of prolonging the lifetime of the battery,
while protocol 2 attempts to reflect what is the most likely charging
pattern used by most people with electric vehicles.

Of course, in some protocols, it isn’t as simple as dividing each pro-
tocol into a single specific category, i.e. cost optimization or prolonging
the lifetime of the battery. For charging protocols 4 and 5, the goal is
to prolong the battery lifetime, while attempting to reduce cost at the
same time by charging during what is normally cheap hours. Charging
protocol 7 tries to find the optimal solution between the two objec-
tives, not reducing the cost too much at the expense of the battery
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lifetime. Charging protocol 2 attempts to reflect what is thought to be
the most common charging pattern and does not consider either cost
optimization or prolonging the battery’s lifetime.

To reiterate, if the first charging protocol is able to be more cost-
efficient than the other six charging protocols, the first charging protocol
is of use, even though the RMSE between the forecasted values and the
true values is exceptionally high.

4.3.1 Cost of different charging protocols

Ten points in the dataset have been picked as samples, which hope-
fully serve as a guide for the cost-efficiency of each charging proto-
col. With the seven listed charging protocols, only graphs for tj =
2023 − 01 − 05 are displayed, in order to keep the section as concise
as possible. The cost for each charging protocol for each point in time
will be displayed in a table, and the mean of the values will be calculated
as an indication of its average cost.

The same driving routine will be used for every evaluation, only at
different points in time. The starting point in time is denoted tj which
is the j-th point of the selected samples, where tj+i is the i-th day from
the starting point tj . The starting time for each tj will always be at
midnight. The first drive will be at 07:00 the succeeding day of the day
when the driving routine starts. The driving pattern can be expressed
in a table with the following properties:

Start End Estimated distance Home at end
tj+1 07:00 tj+1 17:00 295km 1
tj+2 14:30 tj+2 17:00 167km 0
tj+2 22:30 tj+2 23:00 50km 1
tj+3 17:00 tj+3 17:30 52km 0
tj+3 18:30 tj+3 23:30 150km 1
tj+4 19:10 tj+4 19:50 47km 1

Table 4.2 The driving routine for the experiments. The same driving rou-
tine is always applied, with different charging protocols.

Ten different values for tj are picked, displayed in the seven Tables
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4.3, 4.4, 4.5, 4.6 4.7, 4.8 and 4.9.
The driving pattern is called ’Moving’, equivalent to the vector d

aforementioned, which is shown below.

Figure 4.2 While Moving equals 1, the car is moving. Else, the car is at
rest. From the graph, there are six different driving routes scheduled.

and the vector r aforementioned is displayed below.

Figure 4.3 While r equals 1, the car may be charged. Else, it may not be
charged. r is guaranteed to be 0 when the car is driving. From the graph,
there exists 4 time intervals where the car may be charged.

4.3.1.1 First charging protocol. The first case is cost optimiza-
tion with the forecasted electricity prices. The starting point in time
is 2023-01-05 00:00. The forecast is displayed in Figure 3.21. The fore-
casted electricity price is for 2023-01-06 00:00 to 2023-01-10 00:00. The
prices for the entire day of 2023-01-05 are already known at the start.

For the first case, the objective for the optimproblem is set to
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dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective = totalCostElectricity;

The constraints are defined as

dispatch.Constraints.powercons = powercons;

dispatch.Constraints.noChargeWhenNotPossible =

noChargeWhenNotPossible;

dispatch.Constraints.SoCLowerBound = SoC >=

SoC_min;

dispatch.Constraints.SoCUpperBound = SoC <=

SoC_max;

dispatch.Constraints.chargeAtHome =

chargeOnlyWhenHome;

Figure 4.4 The charging pattern for the first protocol, tj = 2023-01-05.

Figure 4.5 The battery status in SoC for the first protocol, tj = 2023-01-
05.
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Figure 4.6 The price in EUR/MWh. The hourly electricity price for the
first 24 hours is known, for hours 25-120, the prices are projected. tj = 2023-
01-05.

Starting date of scheduled driving (tj) Projected cost (EUR) Cost (EUR)
2022-06-25 8.3652 19.6296
2022-07-05 5.5062 9.2148
2022-08-01 5.1888 1.083
2022-08-17 26.8108 37.4353
2022-09-07 12.9378 24.6793
2022-09-17 6.0011 5.6351
2022-11-17 5.4963 11.5044
2022-12-01 22.7686 37.5447
2022-12-20 12.43 16.1877
2023-01-05 7.7047 6.0663

Table 4.3 The cost for the first protocol

The ”projected cost” is the optimal value from the optimization with
the forecasted values. When applying the charging pattern from the
optimization that gave the projected cost to the true prices, the result
is stated in the column ”Cost”. The cumulative sum for all different
starting points for the driving pattern is 168.980, with the average cost
being 16.898.

4.3.1.2 Second charging protocol. The second protocol is to
charge the battery such that it maximizes the summation of the SoC
over the entire time period. This will simulate the case of always plug-
ging in the charger when the car gets home, and the car charges at
full power until it either reaches SoCS˙max or until the charger has to
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be disconnected as the car is about to leave. If the distance from the
current SoC to SoCS˙max is less than 10

6 , then the charger can’t operate
with full power and chooses the maximum charging regime out of the
possible charging regimes that are valid.

For the second case, the objective for the optimproblem is set to

dispatch = optimproblem('ObjectiveSense ','
maximize ');

dispatch.Objective = sum(SoC);

The constraints are identical to the constraints in the first protocol.

Figure 4.7 The charging protocol for the second protocol. tj = 2023-01-05.

The corresponding SoC graph over the battery status with the charg-
ing pattern is depicted below.

Figure 4.8 The corresponding battery SoC graph. tj = 2023-01-05.

The price is not utilized in the optimization, as the objective is only
to maximize the total summation of all the states of charges.
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Figure 4.9 The price in EUR/MWh. The price does not play a factor in
the optimization. tj = 2023-01-05.

Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 51.7100
2022-07-05 32.3729
2022-08-01 13.6601
2022-08-17 79.1752
2022-09-07 67.8239
2022-09-17 25.5869
2022-11-17 25.9701
2022-12-01 69.1177
2022-12-20 31.0029
2023-01-05 14.8290

Table 4.4 The cost for the second protocol

The cumulative sum for all different starting points for the driving
pattern is 411.245, with the average cost being 41.125.

4.3.1.3 Third charging protocol. The third scenario is to charge
the car only as much as is needed for the next ride(s). It is equivalent
to keeping the summation of the state of charges to a minimum. The
charger would charge the car for the next single ride if the car is able
to charge again after the ride. If there are multiple rides with no charge
in between, it has to charge for all the rides beforehand.

dispatch = optimproblem('ObjectiveSense ','
minimize ');
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dispatch.Objective = sum(SoC);

The constraints are identical to the constraints in the first protocol.

Figure 4.10 The charging pattern for the third protocol, tj = 2023-01-05.

Figure 4.11 The battery SoC graph for the third protocol, tj = 2023-01-
05.

Figure 4.12 The price in EUR/MWh. The price does not play a factor in
the optimization. tj = 2023-01-05.
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Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 39.1834
2022-07-05 23.9657
2022-08-01 2.5175
2022-08-17 59.7281
2022-09-07 49.0956
2022-09-17 31.7300
2022-11-17 27.7800
2022-12-01 49.1463
2022-12-20 32.0049
2023-01-05 13.4097

Table 4.5 The cost for the third protocol

The cumulative sum for all different starting points for the driving
pattern is 328.561, with the average cost being 32.856.

4.3.1.4 Fourth charging protocol. The fourth protocol is to
charge during the night, during the hours 22 - 06. The total summation
of SoC is minimized.

dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective = sum(SoC);

The constraints are defined as

dispatch.Constraints.powercons = powercons;

dispatch.Constraints.noChargeWhenNotPossible =

noChargeWhenNotPossible;

dispatch.Constraints.SoCLowerBound = SoC >=

SoC_min;

dispatch.Constraints.SoCUpperBound = SoC <=

SoC_max;

dispatch.Constraints.chargeForSelectHours =

chargeForSelectHours;

dispatch.Constraints.chargeAtHome =

chargeOnlyWhenHome;
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The constraint ’canChargeAtNight’ makes sure that the car is only
able to be charged during 22 - 06. The total summation of SoC is
minimized.

Figure 4.13 The charging pattern for the fourth protocol, tj = 2023-01-05.

Figure 4.14 The battery SoC graph for the fourth protocol, tj = 2023-01-
05.

Figure 4.15 The price in EUR/MWh. The price does not play a factor in
the optimization. tj = 2023-01-05.

120



4.3 Different charging protocols

Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 37.6816
2022-07-05 14.8561
2022-08-01 0.9501
2022-08-17 43.2250
2022-09-07 28.0739
2022-09-17 17.5794
2022-11-17 20.9167
2022-12-01 39.3229
2022-12-20 21.3977
2023-01-05 9.5237

Table 4.6 The cost for the fourth protocol

The cumulative sum for all different starting points for the driving
pattern is 233.527, with the average cost being 23.353.

4.3.1.5 Fifth charging protocol. The fifth protocol is to charge
during the hours 00-12 while minimizing the summation of SoC.

dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective = sum(SoC);

The constraints are defined as

dispatch.Constraints.powercons = powercons;

dispatch.Constraints.noChargeWhenNotPossible =

noChargeWhenNotPossible;

dispatch.Constraints.SoCLowerBound = SoC >=

SoC_min;

dispatch.Constraints.SoCUpperBound = SoC <=

SoC_max;

dispatch.Constraints.chargeForSelectHours =

chargeForSelectHours;

dispatch.Constraints.chargeAtHome =

chargeOnlyWhenHome;
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The constraint ’canChargeAtNight’ makes sure that the car is only
able to be charged during 00 - 12.

Figure 4.16 The charging pattern for the fifth protocol, tj = 2023-01-05.

Figure 4.17 The battery SoC graph for the fifth protocol, tj = 2023-01-05.

Figure 4.18 The price in EUR/MWh. The price does not play a factor in
the optimization. tj = 2023-01-05.
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Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 37.2157
2022-07-05 26.4858
2022-08-01 2.8345
2022-08-17 58.1893
2022-09-07 46.8930
2022-09-17 32.6274
2022-11-17 26.3367
2022-12-01 46.6908
2022-12-20 32.2013
2023-01-05 12.3623

Table 4.7 The cost for the fifth protocol

The cumulative sum for all different starting points for the driving
pattern is 321.837, with the average cost being 32.184.

4.3.1.6 Sixth charging protocol. In the sixth protocol, the ob-
jective is once again to minimize cost. In this scenario, the charger is
updated at midnight with the electricity prices for the next 24 hours.
The charger only has knowledge about the next 24 hours at midnight.
The time horizon spans five days, which means that the charger at-
tempts to minimize the cost for the current day, and does so repeatedly
five times, one time for each day in the time span.

For the sixth case, the objective for the optimproblem is set to

dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective.cost = totalElectricityCost;

The constraints are identical to the constraints in the first protocol.
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Figure 4.19 The charging pattern for the sixth protocol, tj = 2023-01-05.

Figure 4.20 The battery SoC graph for the sixth protocol, tj = 2023-01-
05.

Figure 4.21 The price in EUR/MWh. tj = 2023-01-05.

124



4.3 Different charging protocols

Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 30.8060
2022-07-05 5.8239
2022-08-01 0.5129
2022-08-17 31.8186
2022-09-07 19.6584
2022-09-17 7.4529
2022-11-17 19.1756
2022-12-01 37.4064
2022-12-20 19.3342
2023-01-05 8.7511

Table 4.8 The cost for the sixth protocol

The cumulative sum for all different starting points for the driving
pattern is 180.74, with the average cost being 18.074.

4.3.1.7 Seventh charging protocol. For this protocol, the intlin-
prog solver is replaced by ’gamultiobj’ which is a solver capable of han-
dling multi-objective optimization.

The objectives are set to the summation of SoC, and the total elec-
tricity cost. The solver attempts to minimize both objectives.

dispatch = optimproblem('ObjectiveSense ','
minimize ');

dispatch.Objective.soc = sum(SoC);

dispatch.Objective.cost = totalElectricityCost;

The constraints are identical to the constraints in the first protocol.

The Pareto fronts are
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Figure 4.22 The charging pattern for the seventh protocol, tj = 2023-01-
05.

Figure 4.23 The battery SoC graph for the seventh protocol, tj = 2023-
01-05.

Figure 4.24 The price in EUR/MWh. tj = 2023-01-05.
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Starting date of scheduled driving (tj) Cost (EUR)
2022-06-25 37.4130
2022-07-05 17.8977
2022-08-01 2.1862
2022-08-17 50.8032
2022-09-07 39.1703
2022-09-17 25.0074
2022-11-17 24.0288
2022-12-01 44.9339
2022-12-20 27.5942
2023-01-05 11.66019

Table 4.9 The cost for the seventh protocol

The cumulative sum for all different starting points for the driving
pattern is 280.695, with the average cost being 28.070.

4.3.1.8 Cost-efficiency. Displaying the average costs for each
charging protocol

1. 16.898 EUR

2. 41.125 EUR

3. 32.856 EUR

4. 23.353 EUR

5. 32.184 EUR

6. 18.074 EUR

7. 28.070 EUR

Measuring the cost-efficiency based on the averages, the first proto-
col is on average

• 58.91% cheaper than protocol 2

• 48.57% cheaper than protocol 3
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• 27.64% cheaper than protocol 4

• 47.50% cheaper than protocol 5

• 6.51% cheaper than protocol 6

• 39.80% cheaper than protocol 7

When measuring the cost-efficiency based on the averages, the sec-
ond protocol, the naive baseline, is on average

• 143.37% more expensive than protocol 1

• 25.17% more expensive than protocol 3

• 76.10% more expensive than protocol 4

• 27.78% more expensive than protocol 5

• 127.54% more expensive than protocol 6

• 46.50% more expensive than protocol 7

The Table 4.10 has a cross in the cell for the charging protocol which
is the most cost-efficient, for every tj .

From Table 4.10, the first protocol and the sixth protocol have a
charging protocol that generates the most favorable outcome in terms
of cost-efficiency. In five cases, the best charging protocol is the first
protocol. In the remaining five cases, the best charging protocol is the
sixth protocol.
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Table 4.10 Most cost-efficient protocol for each data point tj .
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5
Discussion

Reiterating the results from the two different forecast models, the
baseline models showed a much more reliable forecast ability than the
primary models. The primary models showed a less reliable forecast
ability in comparison. It was naturally expected since the data being
trained on and being tasked to forecast is much more volatile for the
primary models. It can also be motivated that the factors behind the
electricity price for the dataset the primary models are trained on are
much more difficult to capture. There are a few worthwhile points to
discuss regarding the models and the points are brought up in 5.1.

The optimization of cost with forecasted prices showed an encour-
aging result, being the most cost-efficient protocol 50% of the time. The
method of comparison is obviously not as detailed as one would prefer
since it only studies six other charging protocols, and only does so for
ten points in time, all operating with the same driving regime. There
are a few points to bring up about the cost-optimization which will be
discussed in 5.2.

5.1 Forecasting electricity prices

In the process of establishing features for the XGBoost models, the
process has primarily been to incorporate factors where other papers
have demonstrated a correlation between the factor and the electricity
price. Then, the data for these factors have been gathered and manip-
ulated in multiple ways such that it assists the XGBoost models to
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capture the behavior of the factor. In reality, factors that are thought
to have an impact on the electricity price without any specific paper
establishing the correlation can be constructed as long as the motiva-
tion for doing so is sufficient. If the feature decreases the RMSE metric
for the models, it could potentially be an underlying factor of the price.
In reverse, if the feature increases the RMSE metric, it is most likely
not an underlying factor of the price. However, the primary approach
in this thesis was to go by already established factors of the electricity
price that other papers have stated. The word ’primarily’ is used, as
not every factor has a source to a paper stating its effect on the elec-
tricity price. One example is the ’EUR/SEK currency pair’ that was
introduced in the models with a motivation to why it could potentially
make the model better, but it was later removed as it showed a deteri-
orating effect on the forecasting ability of prices.

The task of being able to forecast future values of any variable is
complex and cannot be understated, especially for variables where the
number of underlying factors is immense. Some of the most probable
factors linked to the variable itself have to be designated, which isn’t
always an easy task. Indeed, a few probable components of the elec-
tricity price brought up in this thesis and integrated with the XGBoost
model showed an improvement in the ability of the XGBoost models to
forecast future electricity prices.

There is arguably an uncountable number of components of the elec-
tricity price that have not been covered in this thesis. Not only are there
current components that have not been covered, the components them-
selves can alter over time, becoming either less or more relevant. This
means that a component of the XGBoost models at the moment could
become irrelevant in the future. A prime example of an alternating com-
ponent is the invasion of Ukraine. The component of political instability
and war evidently had an instantaneous impact on the electricity price,
changing almost overnight. In addition to the political instability, the
following consequences of the instability are hard to predict, and even
more difficult to determine the impact of. An example of a consequence
of the war in Ukraine is the abrupt end of the Nordstream pipeline. An
example of a component becoming less and less relevant is for example
the price of commodities such as gas, coal, and oil. As more and more
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countries adopt environmental measures, phasing out the use of com-
modities with high carbon prints, the electricity price would logically
become less dependent on the price of these commodities. In general,
most components of the electricity price could be categorized as soci-
etal, political, governmental, economical, or environmental in nature.
From time to time, components of these categories rapidly develop and
with it changes the outlook of future electricity prices.

Not only are there apparent components of the pricing, e.g. what
one would normally assume to have an impact on the electricity price,
but there are also obscured components, e.g. the market manipulation
of the electricity price. As late as May of 2023, a major producer of
electricity in Sweden has been accused of market manipulation [Johanna
and TT, 2023]. There are countless cases of the electricity market being
manipulated, with one specific case that has been brought up in this
thesis, and there is no reason to assume that the manipulation will cease.
It continues to operate as a ’hidden’ component, i.e. being both hard
to detect and hard to measure unless extensive research is performed.
Market manipulation is not considered to have a large impact on the
result achieved in this thesis, however, it is something to keep in mind
as it is prevalent.

5.1.1 Assessing performance with previous research

To evaluate the forecasting ability and its performance in this thesis,
the forecasting results can be compared with three other papers brought
up under Section 1.4. Without the three papers, it is hard to determine
the outcomes without personal speculation concerning the result.

The first comparison is the result obtained in [Wu et al., 2022].
Observing the RMSE values in Table 1.1, it is evident how large the
spread is between the minimum value and the maximum value, span-
ning all the way from 0.6081 for January to 39.2473 for May. The time
horizon for the test data in [Wu et al., 2022] is between 3 and 4 days
depending on the month, which is close to the time horizon in this the-
sis, being 4 days, since the forecasting is done for a total of 97 hours.
Two core properties that differ in the execution are the amount of data
the models are trained on and the number of features in each model.
The models in this thesis are trained on much more extensive data and
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the models are constructed with many more features. Regarding the
RMSE metrics, the baseline models are in the ballpark of the RMSE
range established in [Wu et al., 2022], with the MCRMSE for the base-
line models measuring in at 12.942 EUR/MWh, and the example illus-
trated in Figure 3.12 measuring in at 9.246 EUR/MWh. Unfortunately,
the paper does not include any attempts to forecast data with the same
inherent volatility that exists in the dataset the primary models are
trained on, making it hard to draw a conclusion regarding the primary
models. Lastly, the volatility in the datasets used in [Wu et al., 2022] is
for the most part higher in comparison to the 2015-2018 dataset, with
exceptions in March and April where the difference between the lowest
electricity price and the highest electricity price for the month is lower.
Conclusively, the results of forecasting ability with the baseline models
show a result in line with the results from [Wu et al., 2022], which is
encouraging.

The second comparison is with the paper conducted by Deepak Sing-
hal and K.S. Swarup, [Singhal and Swarup, 2011]. They obtained an
RMSE measurement of 0.525 when attempting to project the future
electricity prices during a ”normal trend” in the electricity price, 1.129
in the case of a ”small spike” and 4.105 in the case of a ”large spike”.
The volatility in 3.12 is around the same level of volatility as what is
considered a ”normal trend” for Singhal And Swarup. The RMSE in
figure 3.12 is more than 17 times higher than the RMSE for a ”normal
trend”, measuring in at 9.246. It is however suitable to loosely compare
the two numbers, as the numbers from Singhal and Swarup provide an
additional gauge to measure the performance of the machine-learning
models. Even though the magnitude of the RMSE is 17 times greater
in this thesis, it could be considered somewhat close in absolute terms,
since the difference is 9.246− 0.525 = 8.721. If the RMSE difference in
absolute terms was 50, one could start to question the validity of the
baseline models.

The third comparison is with the paper by Albahli, Shiraz, and
Ayub where they achieved a RMSE of 9.25, a number remarkably close
to the RMSE of 9.246 in 3.12. Having used the same architecture of
XGBoost for a similar task, it is an additional assurance to see that
the baseline models achieved a similar result, strengthening the belief
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that the baseline models are of exemplary performance in tandem with
other research conducted.

As stated, it is hard to draw any conclusion between the primary
models and previous research, as there has been no paper found yet
that attempts to perform a similar task to what the primary models
are doing.

5.1.2 Comparing the baseline models and primary models

The primary models are not in the vicinity of the result obtained
from either the baseline models or any previous research analyzed. It
could be argued that the RMSE metrics for the primary models dis-
tantly protocol some of the RMSE values from [Wu et al., 2022]. How-
ever, there is still an enormous gap. The MCRMSE metric of the pri-
mary models was expected to be much higher than the baseline models,
but not ten times higher. After all, the quote between the standard de-
viations for the two datasets was approximately 7.2, which implies a
substantial increase in the dispersion of values from the mean in the
more volatile dataset between 2020 and 2023. Considering all factors,
it sounds probable that a ten times increase is reasonable given the
circumstances.

Notably, the side-by-side comparison of the average RMSE for the
baseline models and the primary models illustrated two different be-
haviors. The trend for both models is that the average RMSE primar-
ily gauges higher, with occasional stagnation. The baseline models find
their highest average RMSE for the 110th hour, different from the 120th
hour the primary models find most difficult to forecast. The reason why
this occurs could be due to multiple reasons, having to do both with the
models and the dataset. To start off with, the models do not share the
same exact features. This will inevitably produce two distinct models.
One probable explanation is that the models capture behavior differ-
ently since they deviate from each other, not being identical. Having
different features will establish a different ability to capture patterns
and trends. Falling back to the dataset, which has been thoroughly
established to be of different characteristics, it is bound to produce
models of different capabilities and strengths. It may also be a question
of under- or overfitting, even though it has been tried to be mitigated
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as much as possible by using appropriate values for parameters to the
model.

5.2 Optimization of charging patterns

When comparing the charging pattern generated by the first charg-
ing protocol to other charging protocols, it is evident that the cost-
optimized charging protocol with forecasted prices is one of the best.
However, there are two apparent points that must be addressed. The
first point is that there are a limited number of charging protocols that
are evaluated and compared. The second point is the very limited num-
ber of samples that have been picked and used to evaluate the cost of
each charging protocol.

5.2.1 Charging protocols & limited sampling

Only having six additional charging schemes is bound not to test
the robustness of the first charging protocol. With the rise of electric
vehicle charging stations, more and more sophisticated protocols are
inevitably developed. If more time was allocated to the optimization
part of this thesis, more in-depth research could have been done to find
the currently most optimal charging schedules that currently exist on
the market.

The charging scheme number two is supposed to be the naive pro-
tocol, assuming that most people normally would plug in the car im-
mediately when they get home and let it charge at full power, until
it reaches the maximum level. The other four (excluding the first, sec-
ond, and sixth protocols) charging protocols were established based on
what was assumed to be potential cost-competitive protocols, while
also keeping the health of the battery in mind. Based on cost-efficiency,
the protocols in reality turned out to not be cost-efficient at all. For
example, charging during the hours 22-06 when the electricity price
usually trades at around its lowest point for the day was thought to
be a cost-effective implementation while not totally disregarding the
health of the battery. The fifth protocol builds upon the same idea,
but the available hours are adjusted to 00-12. Even though the hours
00-12 predominantly include some of the priciest hours of the day for
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electricity, the idea was that it may produce favorable results in some
scenarios. Admittedly, there could be the possibility of protocols four
and five being more cost-efficient in certain situations if the number of
points evaluated is vastly expanded.

One relevant question is then, if more points were sampled and eval-
uated, would it at any time beat the first or sixth protocol which cur-
rently dominates in cost-efficiency? Unfortunately, due to a shortage of
time, it was not possible to do it for more than the ones selected in the
thesis. Even though the shortcomings and obstacles in the thesis, it was
possible to produce a consistent result, at least for the random points
picked in time. The consistent result is that the first protocol and the
sixth protocol with the forecast of electricity prices always outperformed
the other charging protocols.

In hindsight, the sixth and seventh protocols could have been mod-
eled differently. At this time, the scenario is that the charger receives
the new prices for the coming day at 00.00, having the prices for the
next 24 hours forward. In reality, the electricity prices for the next day
are released at 13.00 of the current day. If the charger was updated with
the prices every day at 13.00, the charger would have access to the next
35 hourly prices, making it capable of optimizing the cost with a longer
time horizon. In the case where the charger is updated at 13.00 with
the coming days’ prices, it could determine if it should charge during
the current day or wait until the next day, depending on the prices.

One other consideration can be to allow the car to charge at other
locations that are not only at home in the garage. With the rapid ex-
pansions of fast chargers at multiple locations, it wouldn’t be a rare
scenario for a driver of an electric vehicle to use a fast charging station
if the car is traveling longer than the range of the battery.

The first protocol with the forecasted electricity prices showed on
average to be the cheapest charging protocol. It is on average 6.5%
cheaper than the second most cost-efficient charging protocol and on
average 58.9% cheaper than the most cost-inefficient charging proto-
col. The most cost-inefficient charging protocol is the charging protocol
believed to be the naive charging approach in this thesis. As the in-
troduction stated, the idea was to investigate whether it is possible to
reduce energy costs for an individual consumer. If the second charging
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protocol is what most people adhere to, then the answer to the specific
question can be answered. In this thesis, the answer is convincingly yes.

To compare the result of cost optimization in this thesis to a paper
that performed the two fundamental steps identical to this thesis, i.e.
forecasting electricity prices and performing cost optimization with the
forecasted prices, one can take a closer look at the paper [Albahli et al.,
2020] that is initially brought up in the Section 1.4. The reason why the
authors perform forecasting and optimization is similar to the reason
in this thesis, as the authors state, they do it due to ”recent spikes
in electricity prices”. The paper can provide a metric to compare the
result of the cost optimization. In the paper, the authors were able to
reduce costs by 25.32%, which is impressive. If charging protocol two
is the protocol to compare against, as that is what is seen as the naive
protocol, charging protocol one is on average 58.91% cheaper.

5.2.2 The driving routine

To make the research more consistent and bulletproof, in addition to
more charging protocols and samples in time with forecasts, the driving
pattern itself could be modified for different scenarios, not only going
by the driving routine in Table 4.2. The planned driving routine has
always been during the same hours of the day, for a fixed number of
kilometers, and with static values if the car is able to charge at the end
of the planned drive or not. Having the car operate during other hours
of the day than what is currently used to evaluate the cost-efficiency
will very likely have an impact on the final result of the cost-efficiency.

5.2.3 Time intervals

The time intervals have been divided into segments of 10 minutes
each. The number of segments an hour is divided into dictate the level
of granularity. If an hour was divided into more intervals, the charger
could have performed more granular switches between different types
of wattage outputs, most likely reducing the overall cost, at least when
minimizing the cost. To have a more granular approach, the number of
intervals each hour is divided into could be increased to for example 30,
meaning each interval corresponds to 2 minutes.
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Conclusion & future work

In this thesis, the question of whether cost optimization with fore-
casted electricity prices could reduce the financial expense of charging
an electric vehicle was evaluated. In order to answer the question, the
question was divided into two parts, one part dealing with the forecast-
ing ability and the other part dealing with the optimization.

6.1 Models

The forecasting ability was put to the test using the machine-
learning model XGBoost which is a state-of-the-art model. The models
were divided into two categories, the baseline models and the primary
models. The idea behind the baseline models was to build a model and
train it on less volatile data, in order to measure its performance. It
is then a baseline to measure against when constructing the primary
models, which are trained on much more volatile data. Both categories
of models consist of 97 models themselves, where each individual model
has the task to forecast the electricity price for a particular hour in the
future. With 97 unique models, the ability to forecast future electricity
prices for a total of 97 hours was established. The first model of each
category forecasted the electricity price 24 hours in advance and the
last model of each category forecasted the electricity price 120 hours in
advance.

Both of the models were trained on data with features that were
thought to have a link in the determination of the electricity price.
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There is a small difference in the features of the baseline models and the
primary models. The data for training and testing have been gathered
from various sources that provide information regarding weather, cross-
border trading, electricity prices, etcetera.

The baseline models performed much better at forecasting future
electricity prices in comparison to the primary models, based on the
RMSE and MCRMSE metrics. The baseline models showed a rather
positive result, being able to forecast future electricity prices quite well.
Studying related research to the machine-learning models in this thesis,
the RMSE metric of the baseline models was generally in line with the
results of the studied papers. The case of the primary models is different,
as there has not been any study found yet that attempts to forecast
electricity prices on data with the same inherent volatility. Given the
volatility and a large number of factors of the price, the assumption is
that the primary models perform well given the circumstances.

6.2 Optimization

Seven unique charging protocols, i.e. optimization of charging with
defined objectives and constraints, have been established where each
protocol outputs a particular charging pattern based on the pricing
information provided to it and its objectives to optimize. Two of the
constructed protocols stood out in terms of cost-efficiency. The first
charging protocol that excelled is charging protocol number one, uti-
lizing the forecasted electricity prices from the primary models. Even
though the forecasts from the primary models are quite diverging from
the true prices established on the electricity market in the future, the
predictions are close enough in order for the charger to determine if it
should charge during the current day or wait til the future to charge.
The second charging protocol that excelled in cost-efficiency is protocol
number six. The sixth protocol attempts to optimize the cost during the
next 24 hours, not having knowledge about the future electricity prices.
In total, it optimizes the cost for the next 24 hours for 5 consecutive
days.

Each optimization had a number of constraints placed on it. Most
of the constraints placed on the optimization problems are fundamen-
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tal, such as the car cannot be charged when it is driving, the state of
charge of the battery must remain in a defined range in order to pro-
mote battery longevity, and the charger cannot be in multiple regimes,
i.e. charging outputs in kW, at the same time. Each optimization prob-
lem had one or more objectives that it aimed to either minimize or
maximize.

Not all charging protocols that are compared to the first charging
protocol are designed with merely cost-efficiency in mind. Some proto-
cols, especially numbers three, four, and five are designed with battery
longevity in mind. Number seven attempts to minimize both the cost
and the sum of the state of charge. Protocol number one and six merely
attempts to minimize the cost of charging, i.e. the cost-efficiency, with
no regard for how the charging is performed and the impact it has on the
battery. How the charging of the battery is executed has implications
on the state and the longevity of the battery. Finding a balance be-
tween the cost and longevity of the battery would be the most optimal
solution.

The first charging protocol using the forecasted electricity prices
was measured to be the best-performing charging protocol based on
its average implementation cost. Protocols three, four, five, and seven
showed to not be cost-efficient charging protocols at all.

6.3 Future research

The XGBoost model can be used as the foundation which other
features can be integrated into. With an already diverse set of features
to work upon, more and more components of the electricity price can be
added. If features are added with a correlation to the electricity price,
the performance will be improved.

With regard to the XGBoost models, more research can be per-
formed on the optimization of hyperparameters for the model. The au-
thors in [Wu et al., 2022], cited in Section 1.4 utilized particle swarm
optimization to find the optimal parameters for their XGBoost model.
A similar method can be executed in order to find the optimal hyper-
parameters for the models in this thesis.
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6.3 Future research

With further research, the answer to the question, of whether the
first protocol and the sixth protocol are always more optimal charging
schedules, could be answered more profoundly. The idea of further re-
search would then be to establish several more charging protocols and
sample as many points in time as possible. The more evaluations being
performed, the more reliable the result is. Ideally, more cost-reduction
optimization should be performed that also considers the longevity of
the battery.
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Schöne, S. (2009). Auctions in the Electricity Market. Bidding when
Production Capacity Is Constrained. Lecture Notes in Economics
and Mathematical Systems: 617. Springer Berlin Heidelberg. isbn:
9783540853640. url: https://ludwig.lub.lu.se/login?url=
https://search.ebscohost.com/login.aspx?direct=true&

AuthType=ip,uid&db=cat02271a&AN=atoz.ebs470233e&site=

eds-live&scope=site.

Setting the power price: the merit order effect (n.d.). https://www.
cleanenergywire . org / factsheets / setting - power - price -

merit-order-effect. Accessed: 2023-04-16.

151



References

Sheng, C. and H. Yu (2022). “An optimized prediction algorithm based
on xgboost.” 2022 International Conference on Networking and Net-
work Applications (NaNA), Networking and Network Applications
(NaNA), 2022 International Conference on, NANA, pp. 1–6. issn:
978-1-6654-6131-3. url: https://ludwig.lub.lu.se/login?url=
https://search.ebscohost.com/login.aspx?direct=true&

AuthType=ip,uid&db=edseee&AN=edseee.9985004&site=eds-

live&scope=site.

Siami-Namini, S., N. Tavakoli, and A. Siami Namin (2018). “A com-
parison of arima and lstm in forecasting time series”. In: 2018 17th
IEEE International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227.

Singhal, D. and K. Swarup (2011). “Electricity price forecasting using
artificial neural networks”. International Journal of Electrical Power
Energy Systems 33:3, pp. 550–555. issn: 0142-0615. doi: https:
//doi.org/10.1016/j.ijepes.2010.12.009. url: https://www.
sciencedirect.com/science/article/pii/S0142061510002231.

Staff, R. (19, 2022a). “Eu agrees gas price cap with 180 eur/mwh trigger
- document”. Reuters. url: https://www.reuters.com/article/
ukraine-crisis-eu-gas-price-idUSP6N31E00X (visited on 2022-
12-19).

Staff, R. (19, 2022b). “Nord stream 1 pipeline to shut for three days
in latest fuel blow to europe”. Reuters. url: https : / / www .

reuters.com/business/energy/gazprom-says-nord-stream-

1-pipeline-shut-three-days-end-aug-2022-08-19/ (visited
on 2022-08-19).

Statquest (2019). Gradient boost part 1 (of 4): regression main ideas.
https://www.youtube.com/watch?v=3CC4N4z3GJc.
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