


Avdelningen for
FASTIGHETSVETENSKAP
Lunds Tekniska Hogskola
Lunds Universitet

Box 118

221 00 LUND

Integration of

Department of

REAL ESTATE SCIENCE
Lund Institute of Technology
Lund University

Box 118

SE-221 00 LUND
SWEDEN

Icon and Text Positioning Algorithms
in Web Map Service

Master of Science Thesis written by:

Peter Ringberg

Education Programme in Engineering, Land Surveying and Management
Lund Institute of Technology

Supervisor:
Lars Harrie, Department of Real Estate Science, Lund Institute of Technology

Examinator:
Klas Ernald Borges, Department of Real Estate Science, Lund Institute of Technology

June, 2005

ISRN LUTVDG/TVLM 05/5116 SE

Keywords: real-time maps, icon and text placement, WMS servers, WMS clients

Language: English







Preface

This Master of Science thesis completes my studies in land surveying at the Lund Institute of Technology. I must
say that I am happy that I got the chance to enter the exciting GIS world through this study. The work has been
interesting and the atmosphere at the GIS-centre has been inspiring.

Firstly I would like to thank my supervisor Lars Harrie for all his help and excellent feed-back throughout the
process. Mehmet Bozkurt, Tobias Lennartsson and Peter Segerstedt (they are all referred to later on in this study)
have played a major role throughout the project. Thank you! Roger Groth and Hanna Stigmar have provided
valuable support at work. This study’s examinator, Klas Ernald Borges, and opponent, Rasmus Lindberg, have
presented good suggestions in order to complete the report. Jessika Nilsson improved my English with good
proof-reading. Thank you.

Finally, I would like to thank everybody at the GIS-centre and all friends in Lund for a really enjoyable autumn
semester. My memories from Lund will remain happy!

Hirnosand, June, 2005

Peter Ringberg




I



18

Abstract

A map is nowadays more often a digital product than a paper product. Digital maps demand a standardized way
of communication between the map provider and the user. There is also a need for maps that are of good
cartographic quality. Since digital maps are automatically rendered and presented on a screen or a display the
map-making process has been altered. The making of a paper map concentrates on a good overview and
excellent cartographic quality. A digital map is restricted to its presentation device and therefore loses the
overview property and resolution of a paper map. On the other hand it enables a set of new functions on a map,
such as zooming between scales and different levels of interaction.

Well-defined, standardized interfaces between servers and clients are necessary when digital maps are rendered
in real-time. The Open Geospatial Consortium (OGC) is an international standardization organization, which has
developed standards that define the interface between a map-providing server and a client. Two of these are Web
Map Service (WMS) and Web Feature Service (WFS). Briefly, WMS defines requests on the layer level whereas
WFS defines requests on the feature level. There are several implementations of both servers and clients
featuring these standards. Examples of both WMS servers and clients are given in this report.

The positions of icons and text are essential for the readability of a map. When a map is automatically generated
in real-time, algorithms need to optimise these positions so that icons and text do not overlap objects in the map.
This study works with symbol and text placing algorithms. These algorithms were developed within the
GiMoDig project and this study documented them and made some modifications of the algorithms’ programme
structure.

Neither the WMS nor the WFS standard deals with icon and text placement matters. Thus, it is a task for
developers of WMS servers to include such functionalities. The algorithms used within this study are effective
and guarantee a high map quality. This report discusses an approach on how these algorithms could be
implemented in a WMS/WFS service.




v



Contents
BN 1 1o Yo 10 [ (o o T 4
IS N = F: Ted (o £ o 1 11 o o O 4
1.2 ODJECHVES ...ceeceiiiicitiecie e cere e s e e s ar e se s s e e s ee s s aen e s smn e s e smn e samneansmnns 4
P T 11 1Y 1 £ o Yo [ 4
I S 3 0T o Yo a8 o T o o 5
2 Internet fundamentals........coccociimiiiiim i e 6
2.1 The Internet...... it renm e s e s s s ans s s e resasrasensssnmsnsnmnnnnn 6
211 URI/ URL 6
2.1.2 Common Gateway Interface (CGl) 6
2.2 Hypertext Transfer Protocol (HTTP)......ccccoiivceiiiiinrccemnccmreinescseceeressaeeenenaes 7
2.21  The HTTP and the World Wide Web ....... 7
2.2.2 Request methods....... 7
2.3 The Extensible Markup Language (XIML).....ccccccoviirrerceisrercmmreessssseerssnneen 7
2.31 An introduction to the XML based on HTMLI 7
2.3.2 XML Structure 8
2.3.3  Parsing XML .......ueeiiiiinineininsmrensseses s ssesscssess s ssssssnnanns 9
2.3.4 XML applications......ccccccrvireremrninisscrincccennsnnne 10
2.4 Client/ Server Model............cciricrrireeeere e se s e s asasasnsssssesessnennnen 10
3 Maps and GIS.......... e 12
3.1 Map PropPerties .....ccuiimiiinicmerricsnenissssssssmse s sssamne s e sssnne s sssnessesnnesesassesnne 12
3.2 Map ODBJECES....cceeii ittt e e e s e s 12
BT T 1T/ To TR {0 4 1 1 T- 1 PO 12
3.31 Features of raster formats..............cccccovvmrreereeniccienissenenns 13
3.3.2 Features of vector formats ...... 13
3.4 GIS fundamentals...........ccceiiiimiecmcrrerr e e asnnanss s s aaaranaen 14
3.5 Development towards Internet GIS .........ccccciriecerrecmerrrccsereceerecccneeeenas 14
3.6 Examples of Browser GIS ............cccoiecemreinccrnennsneccenssc e ersssesesscsssnnenss 14
4 Standardization of Internet GIS .........coovcvreeiririmmciirreme s reeeeees 16
4.1 Open Geospatial Consortium (OGC).......cccceeceerrreriisscrrrecsmrrcsmeresseressens 16
4.2 Web Map Service (WMS)........ccccccrercmminsniecnnmessnmsressenssmsssssenssesssssssssssssessses 16
4.21 Introduction....... 16
4.2.2 GetCapabilities 17
423 GetMap 18
4.2.4 GetFeatureinfo 19
4.3 Web Feature Service (WFS).........ccccccmesccrsnmmressnrrscssmsncsssessansssessssesssnessnns 20
4.3.1 Structure 20
4.3.2 Operations 20
4.4 Combining WMS and WFS (Distributed GIS).........cccccerveererrecenrrsccrecccnnne 21

5 Text and Icon Placement ........coceiireeciiriemirrmeremcereeeenneasrrsnsssssssenes 22




5.1 Cartographic theory ... s ane e 22
5.2 Avreal-time approach.......cccccciiriivmmrerinssmiinsne e 22
5.21 Icon placement . 22
5.2.2 Text placement 23
5.2.3 Text and icon placement simultaneously 24

6 Introduction to the practical part of the study..........ccccceeeenennnnn. 28
T WMS Clients ......coccciiiiiicecicececcceensesssen s sr s s essessssssssssssessssssssssssssmnnsnssnnns 30
7.1 Anadvanced web client................rieicc e, 30
5% T TR = - Vo <o o T T O 30
7.1.2  Structure of new client 31
7.1.3  Status of project w31

7.2 Sony-Ericsson WMS client ...........iiinirccceeecccccccrrnr e scscemee e sesanes 31
7.21 L= 2= T e 10TV Lo SR 32
7.2.2 Properties of client.... .32
7.2.3  Special remarks 32

8 WMS SeIVEIS.....ciccciiiiieeeeeeencesneeesesnneeenersrsseeseseesesesessssesensneessssassnnnnnnns 34
£ 700 TR 114 (T LT3 1 ) 1 0 34
20 € =Y o =T - PO 34
8.2.1  Configuration 34
8.2.2 Encountered problems 35
T T B =T o | (- 35
8.3.1 Configuration 36
8.3.2 Encountered problems within this study 36

9 Program for Text and Icon Placement ..............merirreccceneeccnenes 38
9.1 Programming Developing Environment ...........cccooeeiiiiiiirnrccccnrcscccneeenennen 38
9.1.1 Program structure 38
9.1.2 Program Workflow 39
9.1.3 INitial STAtUS....coericrt e e 40
9.1.4 Modifications made within this study 40

9.2 An Implementation of Simultaneous Text and Icon Placement.............. 41
9.21 GlobalPlanPOIOptimisation Class ........ccccvriiirnenriinnssmecenres s s s re e e e sareenenas 41
9.2.2 Workflow of the OptimisePlacementAlgorithm class 42

9.3 Testofthe program..............ccoiiiiiiiciiiiiisr e s e s s srases s e e s s annanens 44
10 Model of Integration.............ooociie e e 46
11 DISCUSSION ....cciiiciiisicrircecer s e s e res s s s e s e e s e s sr s ee e s e e e s s e s s e e s nsesssssneseeessnsnnnn ---950
111 WMS servers and Clients........coccccmmmmniiiiiccccsssssscsssssssceccceseesssnssesernas 50
11.2 WMS for mobile appliCatioNnS..........cccccecerircrreeerrrrcce e resree e sseeeeseneees 50
11.3 Icon and text placement..............co oo ————. 51
12 CONCIUSIONS ......ceeicriccrre et s e e s s e s re s e e e s e s e e asasnsaannsneererenennnnen 52
Literature ..........ccooccciiimimmciiiiirsece s se s s n e s s s e e s s e mnns s e e s e s anmnnnnnnnsnnnnnnnnn 54
BOOKS and artiCles.......ccceemireeiiiiiiiiiiinicccscsssnensssecsccocneesnerenessnsseessesssssssnsesseessnnnnsnns 54

=Y 1= 54



ViI

Appendix
An input file for ParmeterReader







Part |

Theory







1 Introduction

1.1 Background

Maps have been important for hundreds of years. Often, they were reserved for the king or commander-in-chief.
In the course of time maps started to play a greater role for a larger amount of users. The increasing mobility of
people made road atlases and hiking maps essential. On a public level, maps became more important in the fields
of e.g. land registration and urban planning.

Today, with the introduction of Internet technologies, maps are more used than ever. The number of applications
and situations where maps are used is diverse. Maps are used for presentation purposes, but also as a base for
decisions. The Internet provides several different ways to present cartographic information. Most often, a single
map image is presented in a browser, but it might as well be presented in tables or in other ways. Depending on
the technique, different level of interaction can be used.

Aleady developed and recognized standards for the exchange of cartographic data are important when several
actors want to interact with each other. The standardizing organisation Open Geospatial Consortium (OGC) has
developed the Web Map Service (WMS) and the Web Feature Service (WFS) interfaces. These are standards for
a client-to-server dialogue that define how maps can be requested, rendered and transferred over the Internet.
WMS deals with whole maps whereas WFS deals with the data that constitute a map.

The WMS and WFS interfaces do not define rules of generalising or placing map objects in a certain order. This
could be a problem since a map is always rendered from scratch each time that it is requested. This rendering
process has to be fast and result in understandable maps. Therefore, adjustments might have to be carried out by
the map service provider. Examples of such adjustments are that only a selection of important objects is shown
on amap and that symbols and text are placed in a logical manner.

This study concerns firstly the WMS interface. A WMS server has been set up. A mobile phone WMS client
developed within a master thesis study at Sony-Ericsson has used this server to acquire maps. Sony-Ericsson has
then informed which improvements they expect from the server-side. This study also concerns the modification
and integration of two web WMS clients.

Secondly, this study has worked with implemented algorithms for text and icon placement. These
implementations were carried out through the Geospatial Info-Mobility service by real-time Data-Integration
and Generalisation project (GiMoDig), founded by the European Union. The contribution of this study is a
better structure of the programme containing the algorithms. A future task would be to integrate this programme
into a WMS service.

1.2 Objectives

The main objectives of this master thesis are to set up a functional WMS server and to modify a program
handling icon and text placement algorithms. A secondary objective is to describe how to integrate these
algorithms in a WMS service.

1.3 Methods

This master thesis is divided into a theoretical and a practical part.

A literature study concerning the standards and the techniques used within this project was carried out. Used
sources were e.g. specifications from OGC, technical articles, books and websites. The first part of this report
contains some of the literature study.

The practical part was divided into three main areas: The installation and maintenance of a WMS server, the
development of a new WMS client and some work with text and icon placing algorithms. For the WMS server,
this meant installing a server software and adjusting cartographic data to it. The development of a new WMS
client was partly carried out in a team, where the author of this thesis played a role as constructor of a java script
file. The final result of this part was therefore submitted the time that the others could engage to this. Most of the




practical work was carried out on a programme for text and icon placing algorithms. The structure and the
usability of the programme were improved. For example, values of constants and variables were lifted out from
the code in order to enable an easy testing environment of the algorithms. The program was also documented
through new comments in the code and through this report.

1.4 Report form

This report consists of three major parts: theory, practical part and final analysis.
Part I — Theory - concerns the literature study carried out. It contains the following chapters.
1 Introduction: (This introduction.)

2 Internet fundamentals: Introduces some basic Internet concepts, as well as brief presentations of
standards used within this study.

3 Maps and GIS: Introduces the reader to digital maps in general as well as different approaches how to
use Internet as a platform for geographical information systems.

4 Standardization of Internet GIS: Describes the WMS and WFS interfaces, two standards for
geographical information transfer on the Internet.

5 Text and icon placement: Summarizes the theory behind the implemented algorithms for text and
icon labelling.

Part II - Practical Part — describes what this study has accomplished practically.

6 Introduction to practical part: Describes how the different parts of the study are related and how
they should be seen from an overview perspective.

7 WMS clients: Presents two clients; one developed within this study and one developed by a master
thesis at Sony-Ericsson.

8 WMS servers: Presents the servers used within this study.

9 Programs for Text and Icon Placement: Presents the developing environment for the used
algorithms and what modifications have been accomplished by this study.

10 Model of integration: Describes how integration methods (like text and icon labelling) can be
integrated with a WMS server.

Part III - Final Analysis — Summarizes the report and discusses the results of this study.

11 Discussion: presents some thoughts on WMS in general, WMS as a means for mobile applications
and text and icon placement..

12 Conclusions: Concludes the study.

Each chapter begins with a short introduction where the content of the chapter is very briefly summarized.



2 Internet fundamentals

In this chapter, information about some of the most important Internet standards used in this project are
presented. The goal of this chapter is to provide the reader with enough basic information for the understanding
of the following chapters. It deals with what the Internet is, the HTTP protocol, the XML metalanguage and the
client-server model.

2.1 The Internet

The history of the Internet goes back to the 1960s, when the first protocols for transmitting data through a
telephone line were created. In 1969 four computers (at Stanford Research Institute, University of California in
Los Angeles, University of California in Santa Barbara and University of Utah) were connected, and the first
configuration of the Internet’s predecessor APRANET saw the light of the day. The birth of the Internet, as we
know it, is usually considered to have taken place on January 1, 1983. Then, the APRANET switched its
protocol to the TCP/IP (Transmission Control Protocol/Internet Protocol), which is still used today. However,
the exact definition of the term ‘Internet” was formed as late as 1995. Then the Federal Network Community
agreed that Internet is computers linked with IP addresses and that these computers support communication
through the TCP/IP with derived protocols. (ISOC 2003)

The Internet is to be seen as a fundamental infrastructure, on which information is distributed in several ways.
The visiting of web pages, downloading of files and emailing are examples of different information channels that
use the Internet. Certain standards are therefore developed to facilitate the exchange of information. The most
common standards are the Hyper Text Transfer Protocol (HTTP) to request and send a web page, the File
Transfer Protocol (FTP) to download a file and the Simple Mail Transfer Protocol (SMTP) to send and receive e-
mails.

2.1.1 URI/URL

URI stands for Uniform (or Universal) Resource Identifier. It is a global naming scheme that contains
information about where all different Internet Resources are to be found. Normally, a URI consists of four parts:
the name of the protocol, the server name or domain name, the port number and the location of target resources.
The server name is either given as its IP-address, consisting of four numbers between 0 and 255, separated by
decimal points, or as a domain name. Through the Domain Name Servers (or System) — DNS — logical and
hierarchical domain names are used instead of IP-addresses. However, a computer connected to the Internet
always has an IP-address, and the DNS is a system that redirects domain names to their corresponding IP-
addresses. (Peng and Tsou 2003).

URL stands for Uniform (or Universal) Resource Locator and is often used instead of URI when HTTP is the
protocol. Even though it is an informal term, it is commonly used. In this text, the notation URL is used.

http://www.someserver.com/resource/file.html
http://100.150.200.250/resource/file.html

Figure 2.1: Example of two URLSs leading to the same resource.

2.1.2 Common Gateway Interface (CGl)

CGl is a standard that is used so that a client can transfer parameters to a (CGI) program on the server. Once the
server executes this program, it will respond with the processed result according to the transferred parameters.
Mostly, this is in the form of a real-time generated document. (NCSA)

The two methods HTTP-GET and HTTP-POST (see 2.2.2) use the CGI parameters transfer. A CGI-string begins
with a question mark (?) at the end of the URL. After the question mark the parameter names follow with their
values. If there are two or more parameters, they are separated by a &. The equal sign is the separator between
the parameter and its value.




| http://www.domain.xx/page.cgi?parameterl=valuel&parameter2=value2

Figure 2.2: An example of a CGI query string

2.2 Hypertext Transfer Protocol (HTTP)

2.2.1 The HTTP and the World Wide Web

The HTTP is a standard developed by the World Wide Web Consortium (W3C) and its purpose is to offer a
standard way of requesting data over the Web. The first version was used in 1990. With the version of 1.1 the
standard is considered fully developed (W3C 1999). A browser requests a certain page using the HTTP notation
in the URL. Thus, the providing server replies with a document (most often HTML).

Two nouns that are often used synonymously are the Internet and the World Wide Web (WWW, ‘the Web’).
However, this is not quite correct. As described above, the Internet is to be seen as a fundamental (base)
infrastructure. The WWW runs on top of the Internet. To request a page on the WWW, a browser, for example,
requests a URL using the HTTP as protocol. Thus, the WWW is to be seen as the part of the Internet that uses
the HTTP whereas, e.g., FTP-services are a part of the Internet, but not a part of the Web.

2.2.2 Request methods

For the concern of this study, there are two methods to request the server. Those are the HTTP-GET and HTTP-
POST methods.

The HTTP-GET method consists of an ordinary URL followed by a query string (see figure 2.2). A long string
in the address field of a web browser (with several &-characters) is often an example of a get method. Chapter 4
about WMS shows specific examples of such strings.

The HTTP-POST method is not visible in the address field in a web browser. It is hidden in the head of the
message. The post method is used when a lot of text has to be transmitted, e.g. on an Internet guest book. Thus, a
post method is preferred when a request is either long or consists of special characters.

2.3 The Extensible Markup Language (XML)

2.3.1 An introduction to the XML based on HTML

The hypertext markup language (HTML) is a standard developed by the W3C (W3C 2004b). Its purpose is to
standardize the presentation of a document. An HTML document will have the same (or almost the same)
appearance whatever software is used to present it.

HTML consists of different tags, used as markers. There are two types of tags that always appear in pairs: an
opening tag followed by a closing tag. Whatever is written in between will be presented according to the
specification of the tag. In figure 2.3 <H1>Canadian provinces</H1>, means that ‘Canadian provinces’ will be
presented as a headline (the font size will be larger and bold). Some other basic tags are also shown in the figure.
The browser displays the document according to the tags. This is shown in figure 2.4.




<HTML>
<TITLE>Canadian provinces</TITLE>
<BODY bgcolor=#FFFFFF>
<H1>Do you know all the provinces’ capitals?<H1>
<IMG SRC="Canada_map.gif”>
<P><A HREF="test.html”>Click here</A> to evaluate your skills.</P>
</BODY>
</HTML>

Figure 2.3: An HTML document

Do you know all the provinces® capitals?

Sk e o evabute vour thole.

Figure 2.4: How the browser displays the HTML document.

Even though HTML is a well-spread and stable standard, it has several disadvantages. One is that the tags are
pre-defined and there are no means to create new tags with new meanings, because there is just one set of tags
defined (Hunter et al. 2001). Another disadvantage is that the structure is not hierarchic. Thus, it is the author’s
choice how to place his or her tags, e.g. by first placing a small headline followed by a big headline. Note, that
this might sometimes be the intention of the author, so why refer to this as a big disadvantage for the HTML?
For several presentation purposes HTML is the proper approach. However, when the data has to follow a certain
structure, the distributor of the data needs to define her or his own tags, HTML is not enough. For these
situations the Extensible Markup Language (XML) has been developed.

2.3.2 XML Structure

XML is developed under the authority of the World Wide Web Consortium. Their recommendation on XML
(W3C 2004a) is a stable document and should be considered as a standard. XML — like HTML — is a part of the
ISO standardized Standard Generalized Markup Language (SGML). In this, XML follows the syntax and rules
of the much wider SGML (Hunter et al. 2001).

The XML allows hierarchic storage of data. Whatever data are needed, the XML author is free to define special
elements for this data in each single XML document. The relationship between the elements is specified in either
a Document Type Definition document (DTD) or an XML schema document. The latter document was
introduced by W3C in 2000 and it has several advantages. Unlike DTD, an XML schema is written using XML
notation, and therefore it supports almost any XML tool. The schema is at the same time stronger, more stable
and more extensible (since it is XML) (Hunter et al. 2001).

Basic example documents of XML, DTD and XML schemas are found in figures 2.5 — 2.7. The document itself
(figure 2.5) consists of a parent element called country. This element also has a name attribute. The parent
element in this example consists of two child elements, province_or_state, which in their turn consist of two
additional child elements, these are name and capital. The document is valid to the DTD shown in figure 2.6.
The DTD states that the country element consists of a province_or_state element and the attribute name. Figure
2.7 shows the corresponding XML schema. Note that it uses hierarchic tags (XML notations).



<?xml version="1.0?>

<country name="Canada”>
<province_or_state>
<name>
Nova Scotia
</name>
<capital>
Halifax
</capital>
</province_or_state>
<province_or_state>
<name>
Newfoundland
</name>
<capital>
Saint John'’s
</capital>
</province_or_state>
</country>

Figure 2.5: A simple XML-document

<!DOCTYPE country [

<!ELEMENT province_or_state (name, capital)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT capital (#PCDATA)>

<!ATTLIST country name #PCDATA>
1>

Figure 2.6: Corresponding DTD to figure 2.5

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="country" type="province_or_state"/>

<xs:complexType name="province_or_state">
<Xs:sequence>
<xs:element name="name" type="xsd:string"/>
<xs:element name="capital" type="xsd:string"/>
</Xs:sequence>
<xs:attribute name="name" type="xsd:string"/>
</xs:complexType>

</xs:schema>

Figure 2.7: Corresponding XML Schema to figure 2.5

2.3.3 Parsing XML

As showed in figure 2.5, an XML document is plain text. Therefore it can be read in an ordinary text editor. If
the names of the data are meaningful, an XML document should be rather self-explaining. It is easy to get an
overview of the content just by viewing it in a text editor. But this is of course only to learn what an XML
document looks like. The purpose of this standard is to enable transfer of data over the web. Therefore, a XML
document is parsed by a special program (an XML parser). The parser utilises the XML schema in order to

obtain the special rules it has to follow.



10

The parser goes through the XML document and could, for example, store the data in another environment. With
this approach, powerful web applications can be created. Ordinary HTML documents could be rendered from the
data environment that the parser has created.

Since the parsing of an XML document is one main task in dealing with XML, the concept of well-formed XML
is important. A well-formed XML document has to follow the following rules (Hunter et al. 2001):

e  Every start-tag must have a matching end-tag
e Tags can not overlap
XML documents must have one and only one root element

If an XML document violates any of these rules, a parser will not be able to proceed its parsing. However, the
other way round should be emphasized: As long as an XML document follows these simple rules, any parser
should be able to parse that document.

2.3.4 XML applications

Since the XML syntax allows everybody to name their own elements and create rules of the relations between
the elements, different standards within the XML have been developed to mark up special types of data. These
“XML dialects” are specified by DTD or XML Schema documents. Thus, it becomes easier to transfer data since
the receptor knows in advance how to interpret it. Any one of these standards within the XML could be parsed
by an ordinary XML parser. However, with standardized element names and rules, it is much easier to create
applications that know how to treat the expected data.

Two of these “dialects” are of concern to this study. The Geography Markup Language (GML) describes both
the geometry and properties of geographic features. It was developed by the OGC to enable transfer and storage
of geographic information (OGC 2003). Scalable Vector Graphics (SVG) is a language developed to describe
two-dimensional graphics and graphical applications. It was developed by the W3C. (W3C 2004d)

2.4 Client / Server Model

A fundamental concept within this study is the client / server model. Also it is a concept commonly used on the
Internet. The name refers to a situation where a client demands something from a servant. One example is when
a web browser (the client) through a URL requests a web page from a web server that responds by sending the
page to the browser.

Figure 2.8: The Client / Server Model

A client / server model contains three elements or units: a presentation unit, a logical unit and a storage unit for
data. To the presentation unit, some kind of user interface is often attached. This enables a (human) user to
interact and to demand changes in the presentation of the material. The logical unit works as a link between the
storage unit and the presentation. It receives responses from the presentation unit and it requests data from the
storage unit. Here, data are processed so that a presentation can be accomplished. (Peng and Tsou 2003)

It is not always obvious which part of a large system acts like a server, and which does not. In fact, many
computer programs (e.g. Microsoft Access) have the client / server model structure - with a presentation
interface, a logical element and a data storage unit - and everything is physically located on the same computer.
However, since most computers today are connected to a network, these three units are often located at different




11

computers. One advantage with this is that the data only need to be stored at one place (that is on a server),
whereas several users through client applications can access these data. The logical work is either carried out on
the client (which is then called a heavy client) or on the server. In the latter case, the client is referred to as a thin
client. Figure 2.9 shows the three elements without defining which constitutes the client or the server.

Figure 2.9: The three elements of the client / server model.



12

3 Maps and GIS

This chapter presents some terms that are used later on in this study. It begins with describing properties of a
map and map formats. After that it presents GIS and the impacts on GIS from the Internet.

3.1 Map properties

This section presents map properties that have to be known in order to be able to fully interpret a map. These are
projection, coordinate systems, scale and geographical extent. For a map producer it is important to choose the
most suitable properties, which depend on the application of the map.

A map is supposed to represent parts of the real world. Since the earth is a sphere (or, to be more precise, an
ellipsoid) the representation on a plane paper or a screen cannot be exact. There are different kinds of projections
with different properties. Depending on projection, a map can represent angles correctly, represent areas with
correct size or represent the distances of a number of lines correctly.

The next important property is the coordinate system. There are several coordinate systems, both local and
global systems. Often, there is a separate horizontal system and a separate vertical (height) system. Depending
on which system is used, the coordinates can be presented in degrees (with minutes and seconds) or in Cartesian
coordinates; X, y and z.

The scale indicates the relationship in size towards the real world. The geographical extent could be given as the
coordinates of the left-lowest and right-highest corners in a map. Thus, this property indicates the area that is
covered in a map.

3.2 Map objects

Special objects in the real world are often symbolized in a similar way in different maps. For example, a lake is
often symbolized as a blue-filled area, a road with a coloured line and towns on a small-scale map as point
objects. Text and icons are often used to add important information to the map. This study will use the following
terms when describing digital maps: Features in a map constitute single objects such as a building or a road.
Buildings and roads are two feature types. Digital maps are often rendered from different layers, where each
layer contains features from one or more feature types. The layers show the separation from original paper maps.
The digital map user can often select only the layers he or she is interested in.

3.3 Map formats
For digital maps there are two categories of map formats. These are raster and vector formats. A raster format is
an image whereas a vector format constitutes coordinates of lines and points.

In raster format, a value for each pixel is stored. If a basic map only consists of four feature types, e.g. gardens,
open fields, buildings and roads, each pixel has the value of one of these types (see figure 3.1). The same map in
vector format could e.g. set the background to constitute gardens. Then there is a set of tables. One table
constitutes the node coordinates of a line. A column indicates if the line is a limit of an open field or a building
or if it is a road. In the former case, the whole open field or urban area polygon is found in another table, which
contains references to the constituting lines. A vector format does not become an image until a program renders
the lines in the tables and fills the polygons with specified colours (see figure 3.2).




13

Figure 3.2: A map in vector format. Only the coordinates of the constituting nodes in a line are stored.
Links to other tables determine if the line constitutes a side in a polygon of a special feature.

3.3.1 Features of raster formats

One advantage with raster formats is that they are easy to handle. Many programs support several raster formats.
A map in the commonly used GIF format is easily displayed in a web browser or inserted in a text editor
program such as Microsoft Word. Thus, the raster format (and especially a well-known format) reaches a wider
audience more easily.

An advantage compared to the vector format in GIS applications is that raster formats is ideal for logical overlay
analysis. It is easy to implement operations to overlay features from two images with conditions through the use
of arithmetical operation (as long as the two images have the same map properties).

An often mentioned disadvantage with raster formats is probably the resolution. When a zooming-in operation is
performed several times, the pixels become large and the image vague. Another disadvantage is the file size.
Generally a raster map demands a larger file size since each pixel is stored. The larger garden area in the
example above describes this when it is compared to the vector format. It should be mentioned that several raster
formats have (built in) compressing algorithms that decrease the file size.

3.3.2 Features of vector formats

Unlike raster formats, vector formats depend on programs that render a map according to the specifications in
the tables. This is a disadvantage because the format cannot be easily distributed since fewer programs can
handle the format. Also when zooming and panning operations are performed on a vector formatted map, a new
map must be rendered (or fetched from a cache memory). Common vector formats are SVG (briefly mentioned
in section 2.3.4.) and shape file. SVG is an XML application describing geographical data. The shape-file is its
own format, developed by ESRI. It is used or at least understood by almost any GIS programme.

An advantage with the vector format is that it does not depend on the resolution. A thin line between two nodes
remains thin independent of the zooming factor.

The features of vector formats could also lead to a smaller file size (as in the example given above). This is,
however, not the case if the map contains a large number of features and if these features are not generalised. An
example: A building rendered as a rectangle demands less size than if all its 16 corners constitute nodes in the
polygon that symbolizes the building.



14

3.4 GIS fundamentals

A common definition of a geographical information system (GIS) is a computerized information system, for
management and analysis of geographic data (Eklundh et al. 1999). There are three main tasks for a GIS:

Input and output of data. The system has to understand several data types (e.g. different file types). Thus it can
utilize data from a variety of data providers.

Data management. The data storage follows a certain structure that enables easy access and selection of data, as
well as updating and deleting operations on the data.

Presentation. The final result of an analysis could be presented in different ways, e.g. by map images, diagrams
or tables.

GIS serves several fields of application. Therefore the use of GIS is spread among several professions and fields
of science.

3.5 Development towards Internet GIS

Desktop GIS is a program that resides on a personal computer. Since the use of personal computers increased,
Desktop GIS became the traditional GIS utility. Today, Desktop GIS still serves many applications. However,
with the impact from Internet technologies, the physical location of the system is not bound to one location.

According to Peng and Tsou (2001), the Internet affects traditional GIS in three major areas.

GIS data access: It is easy to acquire data from different data providers and it is easy to keep the data up-to-
date.

Spatial information dissemination: Spatial information can be made accessible to a much wider audience. The
general public can access and analyze geographical information from their browsers.

GIS modelling/processing: Also in this field, the Internet allows new means. Web services can be created,
where modelling and processing are executed on the server-side, through the interaction of a user. Furthermore,
the Internet enables faster access to new GIS processing components for advanced GIS users.

3.6 Examples of Browser GIS

A map image in an HTML document does not constitute a GIS. As described in chapter two, HTML only serves
the means to present texts and images. It is not possible to do enquiries and analyses in such a document unless
other techniques are linked to it.

A browser GIS is created when query- and selection operations on a map are enabled. This constitutes
management and analysis of data. Below follows three approaches to form GIS functionalities in a browser
(Peng and Tsou 2001):

1) Through the use of easy (java-) scripts in the document shown in the browser, some level of interaction
between the user and the system can be achieved. However, the scripts running in the browser are
restricted to carry out easier operations. The major advantage is that scripts are simple and can be used
by any user as long as he or she has an Internet connection and a standard browser.

2) With plug-in programs to a browser, the level of interaction is dramatically increased. The disadvantage
is that it requires the user to download and install an extra program, which both takes time and demands
that the user has control over the computer, e.g. it is his or her personal computer and not a public one.

3) Much of the functionality is handled by the server-side. This approach enables a big level of interaction,
because more advanced operations are implemented on the server-side. Though, a disadvantage is that
often the client (the browser) and the server must have a stable connection, since many calls can be
made between them. The client transfers parameters using CGI (see section 2.1.2). An example of this
is a web page that contains a WMS client, which connects to a WMS server (see chapter 4).




15



16

4 Standardization of Internet GIS

This chapter introduces two standards developed by the OGC. These standards provide interfaces handling
geographic data on the Internet. They are developed to serve as an open alternative in contrast to GIS vendors’
own interfaces.

4.1 Open Geospatial Consortium (OGC)

OGC is an organisation consisting of over 200 active members from universities, research institutions and
commercial organisations that works on developing standards concerning geographic information (OGC 2005).
OGC works closely together with the International Standarization Organisation (ISO). Some of the standards
developed by OGC have been included in the ISO specifications. One example of a standard that has been
adopted by the two organizations is GML, Geography Markup language, which is briefly mentioned in section
2.3.4. Standards developed by OGC are available free of charge.

The organization has developed both WMS and WFS. WMS handles maps on the Internet and WFS handles
geographical data. Using terms presented in chapter 3, WMS is mostly raster formatted whereas WFS is vector
formatted.

4.2 Web Map Service (WMS)

4.2.1 Introduction

The Web Map Service is a standard developed by the OGC. The current version is 1.3. This text is based on the
document OGC (2004). The standard enables transfer of maps on the Internet. It is based on a tight connection
between a server and a client; both implementing and following the WMS interface. Since it is recognized as a
worldwide standard, WMS plays an important role in the development of different map services on the Internet.
It is also an important free alternative to vendor specific formats. There are today several WMS applications
developed. Many of them have been developed as open source projects.

A WMS session consists of several requests from a client and, to each request, a response action from the server.
There are three different requests, GetCapabilities, GetMap and GetFeaturelnfo. The first two are mandatory for
all WMS servers to support (so called Basic WMS), whereas the latter one is optional. A WMS that also supports
the GetFeaturelnfo-request is called a Queryable WMS.

Figure 4.1 shows a WMS session. Such a session begins with a GerCapabilities request, followed by one or
more GetMap requests. The third possible request, GetFeaturelnfo, is also shown in the figure. See sections
422-424.




17

Reguest=CetCapahilities

lest_capabilities xoml

1D 32434

Name Lunds domkyrka

Figure 4.1: Operations during a WMS session

A request to a server is easily accomplished by a normal HTTP-GET request, followed by a query string,
containing the following parameters: service - defines that it is a WMS service which is requested (the server
could support other services as well, e.g. WES); version - states the used WMS version; request - states the type
of the request.

4.2.2 GetCapabilities

The purpose of a GetCapabilities request is to provide the client with information about what data the server can
provide and what operations it supports.

http://www.some.server.com/wms?
SERVICE=WMS&
VERSION=1.1.1&
REQUEST=GetCapabilities

Figure 4.2 A GetCapabilities request. Normally, the whole request is on one single line. It is here
separated into three lines for the readability. Furthermore, the parameter names are written in upper
case for clarity reasons. WMS makes no difference between lower- and upper-case in parameter names,
however it makes a difference in parameter values, e.g. “WMS’ does not equal ‘wms’.

There are also other, optional, parameters that could be used in this request. For example, with the
updatesequence parameter, the client can compare the datum status of the requested document with the datum
for the same latest requested document. In this way, the client can avoid parsing the same document twice.

The response from the server is an XML document. This document contains metadata formatted as the specific
XML schema specified by the OGC. Below is a short summary of how the document is constructed. The
document starts with some elements that present general information about the service and the data provided.
After that the actual operations that are supported by the server, the output formats and the URL prefix for each
operation are introduced.

The rest of the document deals with describing the properties of and attributes to layers. All the geographic
information contents of the service are ordered into layers. They could either be listed one by one, or several



18

child layers could be nestled inside a parent layer (layer-nestling). This latter case could often be recommended
when the server contains data over different areas, where layers covering the same area are all children to the
same parent layer. The parent layer contains properties that are inherited by all children. Examples of layer
properties are the reference system (SRS) and geographical extent (BoundingBox).

A style is the property of a layer that tells the WMS server how to render a layer on a map. A layer can provide
several possible styles. Furthermore, a layer can have zero or more of six attributes. The default value of all of
these attributes is “0”. For example, if the attribute querable is “1” (true) the server supports the GetFeaturelnfo
operation.

4.2.3 GetMap

The GetMap operation returns a map. Nine parameters are mandatory in a GetMap request to a WMS server. In
figure 4.1 the session begins with the GetCapabilities request. Upon receiving the XML-document, the client
parses it in order to enable a user to choose the values of these parameters. If the client requests a parameter with
an invalid value, rules decide what action the server may take. Most often, it will respond with a service
exception.

Through the layers parameter, the client requests what layers the map will present. The order of the layers in the
parameter list is then the order in which the actual map layers are rendered. Thus, the leftmost layer in the
parameter will be the bottom layer in the map. Furthermore, each layer could be presented in one or more styles.
The styles parameter serves for this purpose, and is organized in the same manner as the layers parameter.

The SRS (Spatial Reference System) parameter states the wanted reference system. The value is a code provided
by the European Petrol Serving Group (EPSG 2005). For example, EPSG:32633 corresponds to coordinates
given in UTM Zone 33 (north) projected on the WGS-84 ellipsoid. The Bbox (bounding box) parameter enables
the client to request the area it is interested in. The values of this latter parameter are found in a list, where the
minimum X and Y values are followed by the maximum X and Y values. BBox values must of course be
included in the range of the SRS of the request.

The format parameter in the request decides in what format the map will be rendered. Several WMS servers
provide a wide range of possible formats; GIF, PNG, JPEG, BMP, SVG and so on. The two parameters width
and height state the pixel size of the requested map. If the size does not correspond to the BBox values, e.g. if the
Bbox is a square and width and height together make a rectangle, the map will be stretched. This is rarely an
advantage and therefore it is recommended (by the OGC) that the client should be implemented in a way that
minimizes the risk of requesting distorted maps.

http://www.some.server.com/wms?
SERVICE=WMS&
VERSION=1.1.1&
REQUEST=GetMap&
LAYERS=buildings, roads, railways, lakes,woods&
STYLES=normal, special,normal, normal, greenwood&
SRS=EPSG:32633&
BBOX=385857,6174780,386236,6175159&
WIDTH=300&
HEIGHT=300&
FORMAT=image/svg+xml

Figure 4.3: Mandatory parameters in a GetMap request .

There are also some optional parameters that could be useful in a GetMap request. If the chosen format supports
transparency, e.g. the gif-format, the transparent parameter could be used to define whether or not the
background is to be transparent or not. The bgcolor parameter states the colour of the background, and is
generally described in the hexadecimal encoding of an RGB value, e.g. OXFFFFFF for white, which also is the
default value. The default value of the exceptions parameter is “XML”, even if this parameter is absent from the
request. When this parameter is used in a request, it defines another value, e.g. ‘text’. Finally, there are two other
optional parameters. The time parameter is to be used if data for a specific time can be requested (e.g. a weather




19

map) and the elevation parameter if data for a specific elevation can be requested (e.g. ozone concentration at
different heights in the atmosphere).

Request parameter Mandatory/ | Description
Optional

VERSION=1.3.0 M Request version

REQUEST=GetMap M Request name

LAYER=layer_list M Comma-separated list of one or more map layers

STYLE=style_list M Comma-separated list of one rendering style per requested
layer.

SRS=namespace:identifier M Spatial reference system (often in EPSG)

BBOX=minx,miny,maxx,maxy M Bounding box corners

WIDTH=output_width M Width in pixels of map picture

HEIGHT=output_height M Height in pixels of map picture

FORMAT=output_format M Output format of map

TRANSPARENT=true|false [6) Background transparency of map

BGCOLOR=color_value (6] Hexadecimal red-green-blue colour value for the background
colour.

EXCEPTIONS=exceptions_format | O The format in which exceptions are to be reported by the
WMS

TIME=time [6) Time value of desired layer

ELEVATION=elevation [6) Elevation of desired layer.

Other vendor-specific parameters | O A vendor can implement own parameters. These must
however always be optional, since a client does not have to
understand them, yet still be able to request a map from the
server.

Figure 4.4: Possible request parameters to a GetMap request. (From OGC 2004)

The response to a GetMap request is of course a map in the specified format. This map contains the requested
spatial data and has the requested properties. If the request is not correct or if the server can not process the
request correctly, an error output is sent to the client.

4.2.4 GetFeaturelnfo

The GetFeaturelnfo request is optional. When being used, it is only supported for layers with the attribute
queryable=1 (true). If the server does not support this service, it will be mentioned in the GetCapabilities
document and respond with a service exception upon such a request.

The purpose of this service is to provide the client with additional information about features in the map returned
by the previous GetMap request. To receive this information, the GetFeaturelnfo request includes most of the
parameters from the GetMap request along with the layer(s) it wishes to query, the desired output format and the
position of the user’s choice (I, J). For example, the user might want to have extra information about a specific
building and clicks on it. Then, with a database query based on the user’s coordinates, the server can provide the
client with the additional information about that building (if there is any).




20

http://www.some.server.com/wms?
VERSION=1.1.1&
REQUEST=GetFeatureInfo&
LAYERS=buildings, roads, railways, lakes, woods&
STYLES=normal, special,normal, normal, greenwood&
SRS=EPSG:23033&
BBOX=385857,6174780,386236,6175159&
WIDTH=300&
HEIGHT=300&
QUERY_LAYERS=buildings&
INFO_FORMAT=text/plain&
I=385600&
J=6175000

Figure 4.5: An example of a GetFeatureInfo request.

4.3 Web Feature Service (WFS)
4.3.1 Structure

The Web Feature Service is to be seen as a compliment to WMS. WFS communicates more at the level of layers
(feature types) and specific geographic objects (features), whereas WMS mostly operates on an overview level
(a whole map). A server response in WFS is an XML document. Most of them must use GML notations. Section
4.3.2 is based on the document OGC (2002).

4.3.2 Operations

There are five defined operations for WFS. These are GetCapabilities, DescribeFeatureType, GetFeature,
Transaction and LockFeature. A Basic WFS only needs to support the first three mentioned operations.

WES supports both the HTTP post and get methods. The requests (apart from the GetCapabilities) use XML
notation. That is why it is strongly recommended to use the post method. A WFS request in a URL (get method)
could be far too long. An even greater problem is that special characters like ‘<’ and backspace often cause an
invalid URL.

GetCapabilities

This operation is the first request a WFS client makes to a server. The server responds with an XML document,
in which the server describes the feature types it can service. It is also mentioned which operations are supported
for each feature type. It is constructed in the same way as the GetCapabilities request for WMS.

DescribeFeatureType

This operation is used when the client needs information about the properties of one or more specific feature
types and which queries it can process on the feature types. This information is returned as an XML schema. The
schema defines how the service expects feature instances to be encoded, both for output and input.

GetFeature

After paring a schema describing some feature types, the client can specify one or more features and also do
queries on these features through the GetFeature request. It contains a query element, which defines what
features to query and - if a filter element exists within the query element - how to constrain the query. The filter
element uses another standard from the OGC, Filter Encoding, which is defined XML syntax for spatial, logical
and other operators on features.

Transaction

This operation enables the client to modify features; that is to create, update and delete geographic features. A
response message, in form the of an XML document, is to follow, in which the server indicates the termination
status of the operation.




21

LockFeature
LockFeature is used to prevent other users from accessing data during a transaction operation. It is not a
mandatory operation for a Transaction WFS, but due to practical reason, it is often implemented.

There is a difference between a Basic WFS and a Transaction WES. The former only allow read-only operations
(GetCapabilities, DescribeFeatureType and GetFeature), whereas the latter also allows writing operations
(Transaction and LockFeature).

4.4 Combining WMS and WFS (Distributed GIS)

Section 4.2 gave a somewhat detailed, yet still basic overview of WMS, whereas section 4.3 summarized the
WEFS more briefly. The main reason is that WMS will be used in the practical part of this study.

Both WMS and WFS are machine-to-machine interfaces. The WMS serves maps and the WFS serves features in
a map. This distinct separation clearly states how the two standards should be used together. Seen from the
outside (the user-side), a map is the desired result most of the time. Thus, the user uses a WMS client to request
a map from a service. This map generating service could then use a combination of WFS and WMS to get a
desired map. This is the concept of distributed GIS.

Many of the WMS server applications available today support requests to other WMS and WFS servers. This
offers a wide variety of possibilities to render maps.

Figure 4.6: A normal configuration for a map rendering service. A client requests a map from a WMS
server, which acts as a client to fetch additional data from another WMS server or WFS servers.

Segerstedt (2005) shows four prototypes of distributed GIS. The study uses a simple WMS client to request
different configurations of WMS and WFS services. In the first prototype the client connects directly to different
WMS servers and tries to overlay maps from each one of them. In the second prototype, the client connects to a
WMS server that connects to other WMS servers (remote WMS) to fetch the requested data. The same approach
is used in the third prototype, but here the WMS server connects to WFS servers and therefore it requests data
using GML notations. The last prototype in the study shows that it is possible to control the appearance of maps
using the third prototype’s configuration combined with SLD (styled layer description) documents.

The results of the tests differ. Not all WMS support remote requests and it is difficulties to get a map with the
same properties from different services. The result is often that the maps cannot be combined. But as long as the
client connects to “correct” services this kind of distributed GIS works satisfactory.



22

5 Text and Icon Placement

A good map contains text and symbols (icons) that are placed carefully next to or around the objects they
represent. However, if the text and icons are not placed in this way, it could be hard to identify to which object
the icon or text belongs. It could also be hard to interpret the map if text and icons are the only things visible.
This chapter starts with a brief introduction to cartographic theory concerning text and icon placement matters.
Thereafter, methods for icon and text placement on real-time maps are summarized.

5.1 Cartographic theory

The text-icon placement problem is one of many constraints in cartographic science. The preferred positions of
different objects’ icons and descriptive texts are often in conflict. However, a map without informative text or
icons is often hard to understand. Thus, the descriptive text is of great importance on a map. But the text must be
clearly presented and readable. At the same time, it must not overlap or hide any important cartographic
information.

The approach to solve the text and icon labelling problem in the paper map design was to let rules guide the
decision. However, the cartographer’s subjective ideas and his or her experience had the final decision. In this
way, an experienced cartographer could create a really good-looking map, even though the presumptions of the
presentation of different cartographic data were tough. With computer-generated maps, this final human
evaluation is of course not possible. But to improve the quality of digital maps, they can be tested by an
automated evaluation, where the quality of the map is expressed by a number, calculated after a more or less
complicated formula.

As mentioned, the placement of the text (and icon) in relation to the object it represents is important. There are in
this case three sorts of objects; point, line or area objects. For a point object, e.g. a city, the preferred position is
intuitively just to the right above the point, but it could be placed anywhere around the point (following a
decreasing scale of preferences). For a line object, e.g. a river, the position of the text should be placed
alongside, and preferably above, the line. Finally, for an area, e.g. a county, the descriptive text should cover the
whole area. This is often done with wide spaces between the letters. (Robinson et al. 1995)

5.2 A real-time approach

This chapter aims at summarizing the theory for icon and text placement presented in Harrie et al. (2004), Zhang
and Harrie (2005a) and Zhang and Harrie (2005b). The algorithms from these articles have been implemented as
part of the GiMoDig project (Gimodig 2005) at the GIS-centre, and this study has modified some of its code (see
chapter 8).

The concept of real-time mapping means that a map is created until it is requested. In this case there are no
ready-made maps. This also means that a map service (e.g. a routing service with GPS) never knows in advance
which maps it will request. Through the GPS-coordinates it can then request a map covering the area around the
user’s position. The requested maps are generated at a server and directly sent back to the user. The concept of
real-time indicates that something should be carried out at once. Thus the user should not have to wait more than
a few seconds until the map is presented. Here, big requirements are put on both the map rendering process and
the data transfer process.

The methods presented below are developed in order to be fast and to render good-looking maps. However, they
have some prerequisites that state that if the rendering process exceeds an acceptable time limit, a map with
lower quality will be accepted.

5.2.1 Icon placement
The placement of an icon is a classical cartographic problem. The approach used here is to find the least
disturbing position of an icon. To computerize this problem, the following variables must first be defined:

- original position of the icon. This could mean the centre coordinate of its corresponding
feature, but it might as well be defined in another way.




23

- size of the icon (squares and rectangles are allowed).

- search distance. This value states the permitted movement of the icon from its original
position.

- resolution of search space. This could be the distance between two neighbouring search
positions.

- cartographic objects. The objects that will be labelled and other objects that will be
presented on a map.

- importance/weight. Each cartographic type of objects has an importance or weight value.
This value states the disturbance of when an icon overlaps an object of this type.

The algorithm works as follows: A grid is placed so that its centre covers the original position. The size of the
grid corresponds to twice the search distance. The pixel size of the grid is calculated as an integer fraction of the
icon size. Then, the disturbance value for each pixel is calculated. This value is the sum of the weight of the
cartographic objects that reside in the pixel. As a last step, the total sum for each possible position is calculated
by summing up the weights of each pixel covered. The positions with the lowest values are the least disturbing
positions and are called candidate positions. The final position for the icon is chosen among these candidate
positions.

5.2.2 Text placement

For text placement (also called text labelling) a different approach is used. Also, as mentioned above in section
5.1, different cartographic objects represented by a point, a line, an area, etc., need slightly different methods to
decide where the label should be placed. The implemented algorithms concern point and line labelling.

The central concept here is the range box. The range box constitutes an area in which the text itself could be
placed. If within this box cartographic objects are intersecting, the range box will be reduced so that no
conflicting object is overlapped. This part is called conflict detection. If this leads to a box of a size that cannot
include the text label, another box must be created and the same tests will be carried out on this other box.

For point labelling, four range boxes are created around the point (top, bottom, left and right). Here, conflict
detection is carried out on all four range boxes and they are reduced if conflicts occur. Then, following the
cartographic rules of where the text should be placed, the best possible position is chosen. First, the top box is
examined if its size is big enough for the label to reside within it. If not, the right box is examined, followed by
the bottom one and at last the left one.

Figure 5.1: The four range boxes around a point. The grey areas correspond to the text label. In the last
figure, the only possible positions are shown. (From Zhang and Harrie 2005a.)

As for line labelling, the approach is more flexible. Infinite candidate positions for a label could exist. However,
the best position is chosen in a quick and effective way. First, the line is generalised through the Douglas-
Peucker algorithm. From this generalised line, all the segments long enough for label placement are stored
separately. A range box is created at the longest segment. Conflict detection is carried out in the same way as for
point labelling. If the range box is still big enough for the label, the label’s position is decided. If the range box is
too small, the same procedure is carried out on the second longest segment and so on.

The final result of the text labelling is a set of candidate positions for each text label.



24

5.2.3 Text and icon placement simultaneously

To take both text and icon placement into account at the same time, an objective function is introduced. It could
be written as:

f (label positions) = w;* 2 placement properties + w;, *2 cartographic disturbance + ws* 2 label overlap

where w; constitute the weight of each sum. The significations of the terms are recognized from the previous
sections.

It is important to first have a search space for the icons and text labels. The search space constitutes a reduced
number of candidate positions, each enabling a possible position for the icon/text. However, many of the
candidate positions could overlap. Therefore, the selection of the search space is of importance. Zhang and
Harrie (2005b) and Harrie et al. (2005) discuss two ways of selecting the search space; either a stratified or a
random selection is chosen. A stratified selection aims at obtaining evenly distributed positions.

After search spaces for icons and text are computed, an optimization process is performed, based on the
objective function. The optimization is performed through the use of simulated annealing. This is an iterative
improvement algorithm, which could be illustrated as a search process on a surface of a landscape, and the
lowest spot would correspond to the best solution. In this specific problem, a “landscape value” corresponds to
the sums of the terms of the objective function above. The simulated annealing procedure moves around in the
landscape towards a position with a lower value. There is of course a risk that the found solution is a local
minimum and a better solution could be found elsewhere. This is partly avoided by the means of incorporating a
probabilistic element in the procedure. The more of the landscape computed, the less the probability that a better
solution is to be found elsewhere. Because there is a risk that some icons and/or texts overlap each other, as a last
step, these are simply removed.

To summarize:

1) (A reduced number of) candidate positions for icon placement are computed (as described in 5.2.1).

2) (A reduced number of) candidate positions for text placement are computed (as described in 5.2.2).

3) A combinatorial optimization is performed on the candidate positions. Simulated annealing is used to
find the minimum of an objective function, where label overlap, cartographic disturbance and
placement properties act as parameters. This step results in a proposed position for each icon and text
label and this solution is either accepted or the procedure continues.

4) If the combinatorial optimization could not prevent overlaps from occur, the overlapping texts or icons
are simply removed in this last step.

Examples of text and icon placement are given in section 9.3.




25



26

Part Il

Practical part




27



28
6 Introduction to the practical part of the study

Figure 6.1 The practical part of the study

The practical part of this study has concerned three different parts.

WMS client (chapter 7)

A smaller project within this study was to combine two existing WMS clients. The two clients were developed
by Lennartsson (2004) and Segerstedt (2005). The project was carried out on the spare time of the two
mentioned authors, whereas the author of this study used time within this study. Due to lack of time, a final
result of this project can not be presented within this study; therefore chapter 7 only describes the progress so far.

Chapter 7 also features a brief description of a mobile WMS client (Bozkurt 2005). This description is placed in
the practical part because this study provided data to this client (chapter 8), and discussions were continuously
held about possible improvements of the WMS service a well as general discussions about WMS as a means for
mobile applications.

WMS server (chapter 8)

In the course of this study, two WMS servers were set up. The purpose of these has been to provide data to
clients and in the future they can hopefully serve as a base in an integrated WMS service (see below). Sony-
Ericsson uses one of these servers for their WMS client.

Program for text and icon positioning (chapter 9)

The main part of this study consists of modifying the code that implements the text and icon positioning
algorithms described in chapter 5. Some improvements of the structure, usability and documentation of the code
were made.

Integration of text and icon positioning routines in WMS services (chapter 10)

The three parts presented in chapter 7, 8 and 9 should be seen from a greater perspective. What this study has not
accomplished is to integrate the text and icon positioning routines with a WMS service. This service should be
suitable for clients using small displays. Chapter 10 describes a possible model of how this service could be
structured (also see figure 6.2).

Integrated WMS
Service

Figure 6.2. Model of possible structure of the different parts carried out in this study.



29



30

7 WMS Clients

This chapter presents a project within this study where two existing WMS clients were combined in order to
create an improved client. It also describes a WMS client for a mobile phone, developed by Sony-Ericsson. The
mobile client used data from a WMS-server set up within this study (see chapter 8).

7.1 An advanced web client

7.1.1 Background

The purpose of this smaller project was to combine the advantages of the two different clients developed by
Lennartsson (2004) and Segerstedt (2005).

Lennartsson’s client consists of a graphical user interface (GUI), where the user can choose and perform
operations such as zooming, panning and measuring distances. There is also a tool to enable queries with the
GetFeaturelnfo method. The client does not support the GetCapabilities method (compare to figure 4.1). Thus,
the user has to add the first GetMap request manually. This is done in the controlling script file. Additional
GetMap requests depend on the new bounding box, which is created based on the properties of a zooming or a
panning function. The main disadvantage of the client is that a user is restricted to one server and the properties
of the first, raw coded GerMap request.

On the contrary, Segerstedt’s client enables the user to choose between different WMS servers, stored in an
XML file. From a drop-down menu, one of the available servers is chosen and a GerCapabilities request is
immediately performed. The client extracts the available layers and enables the user to compose a map at the
layer level. A disadvantage is that the user has to know the bounding box, since these values are not extracted
from the GetCapabilities document. This client’s GetMap method uses the parameters chosen by the user. While
the map is displayed it is possible to hide layers. Panning or zooming functions as well as the GetFeaturelnfo
method are not supported.

An improved client based on these models should therefore consist of a combination of Lennartsson’s GUI and
Segerstedt’s GetCapabilities handling part.

Figure 7.1: Screenshot from Lennartsson’s client (left) and Segerstedt’s client (right).

Therefore, a (spare time) project was therefore initialized where the two developers and the author of this study
took part. The chosen solution to improve the client was to create an XML file serving as a parameter object
between the two parts and a script file that provided both update and get methods on this file.

Technically, these two clients are quite different. The Segerstedt client renders a layer in the map for each
chosen layer, whereas the image element in Lennartsson’s client does not consist of separable layers, but an
image object.



31

7.1.2 Structure of new client

The structure of the client is shown in figure 7.2. The figure shows three horizontal levels. It also shows that the
client is vertically separated into two parts, where the left one origins from Lennartsson’s client and the right one
from Segerstedt’s.

The presentation level consists of three HTML files. The index file consists of two frames, where the left frame
contains a map image, a tool panel and selectors of which layers are enabled (compare to figure 7.1, left). The
right frame contains a form, similar in appearance to the Segerstedt client.

The logical level is situated in the middle of the figure. The two top script files control the corresponding HTML
file. They communicate to each other through the third script file, which gets values from and sets values in a
context document, an XML file found on the bottom level.

The context document contains the current configuration shown in the map, e.g. the actual values for the
bounding box and chosen layers. Apart from the context document, the storage level also features an XML
document where URLSs to the GerCapabilities request at different servers are found.

Presentation
level
Logical level
Storage level cnnlexhum:l services.xml
r

Figure 7.2: Proposed client structure

To summarize the proposed structure, this is how it should work: First, the user selects a WMS service and
information from the GetCapabilities request is shown in the client. The user now chooses layers and a special
bounding box as a first step in a GetMap request. These properties are then set in context.xml. The GUI part
starts to request these layers and their bounding box from context.xml. The map is rendered and the GetMap
request is terminated. The user is now free to request another map, either by performing zooming or panning
actions on the map, or using a completely different request (perhaps from another service). In both cases, the top
script files have to request context.js to update the properties in the context.xml file. This is done before a new
map is rendered. In this way context.xml always keeps the current configuration.

7.1.3 Status of project

The project is not terminated. Initial work was carried out during some days in October 2004. The context
document and script file were created (the author of this study implemented the context script file). Some
additional work has been carried out within the gui script file, but after that not much has been done. The reason
for this is scarcity of time for the team members.

7.2 Sony-Ericsson WMS client

This part aims to describe an implementation of a WMS client in a mobile phone. It was developed within a
master thesis study (Bozkurt 2005) at Sony-Ericsson/Lund Institute of Technology.



32

Figure 7.3 Sony-Ericsson WMS client in action. (From Bozkurt 2005)

7.2.1 Background

The purpose of Bozkurt’s thesis was to evaluate WMS as a means for map services on a mobile phone. The
theoretical part discusses the advantages and disadvantages of the standard. The practical part is a developing
process, where the final goal is a WMS client with integrated GPS positioning.

Bozkurt’s study was carried out at the same time as this study. Continuously, specific wishes about data
provided by the server as well as general point of views about WMS were discussed.

It should be mentioned that this is probably the first implementation ever of a mobile phone WMS client.

7.2.2 Propetrties of client

This part briefly presents the properties of the client and some of the problems that were discussed. For more
detailed information see Bozkurt (2005).

The client features a selection tool where layers are enabled or disabled. Furthermore, panning and zooming
functions are implemented. Also, a SVG-player, implemented by Sony-Ericsson is used to render the maps. This
format is chosen to put more control on the map rendering process in the client. A mobile map application
should include the user’s own position. Therefore, a GPS receiver is connected to the client. As long as the
requested map from the WMS server uses the same coordinate system as the GPS, the client adds the position of
the user on the map. The client also enables automatic GetMap-requests when the user’s position approaches the
map border. In this way, the user is always guaranteed to have a map that includes his or her position.

7.2.3 Special remarks

In the process it was discovered that the size of the requested maps from the WMS server often was too large.
For example, if the coordinates are given in large float numbers, the result is a larger file. This is a clear




33

disadvantage for mobile applications of WMS, since both the bandwidth and the computational capacity often
are smaller compared to an Internet WMS client. Therefore, the smaller capacity of a mobile client should be
taken into account by a server. A suggestion is that the server response includes an extra parameter stating the
size of the file (see Bozkurt 2005).

When integrating the GPS with this client, the need for maps in the same coordinate system was discovered. This
demonstrates a problem of WMS. Even though it is a stable standard, sometimes a server and a client have to be
developed in accordance with each other for a special service, e.g. mobile maps with a GPS position.

Due to the small display of a mobile phone, the map should be free from disturbing symbols and cartographic
objects should rather be generalised than displayed in all their detail. Therefore a mobile map is not really good
until an icon and text placing routine (described in chapter 9), as well as generalising routines, are integrated
within the WMS server. For more interesting remarks on the limitation of WMS for mobile application see
Bozkurt (2005) and Bozkurt et al. (2005).




34

8 WMS Servers

This chapter deals with the experiences of two implementations of WMS servers

8.1 Introduction

Several implementations of WMS servers exist on the market. Many of them are developed as open code
projects and are available for free (for private use). Other studies, e.g. Lennartsson (2004), show that from a
client perspective, the majority of WMS servers works fine and conform well to the standard. However, if a
problem exists, it is often in the GetFeaturelnfo method, where supported formats (annotated in the
GetCapabilities document) cannot be resolved upon request.

In this study, two WMS servers from two different vendors were set up. The servers have provided Sony-
Ericsson with some test data. It is possible that these two in the future will act as a cascading service (see chapter
10), where the icon and text placement routines are integrated.

Below, a description of the two servers used within this study follows. The configuration procedures are briefly
described as well as some of the problems encountered while setting up the servers.

8.2 Geoserver

Geoserver is an implementation of the Web Feature Service and has an integrated WMS server in it. It is a free
software, developed by a number of persons with financial support from The Open Planning Project (Geoserver
2004). Geoserver offers two ways of storage of data. It is possible to store data either as shape files (see section
3.3.2) or in databases. Four types of databases are supported, among them PostGIS, which was used within this
study. PostGIS is an extension to the PostgreSQOL relational database, which expands the database with tools for
queries and other operations on geographical data (PostGIS 2004).

8.2.1 Configuration

Geoserver in this study was set up on a Linux machine by Roger Groth at the GIS-centre. It is run under a
Tomcat servlet container. Data are stored in a PostgreSQL database. (See figure 8.1.)

In order to store new data in the database, a program, shape2pgsql, in combination with scripts written by Groth
were used. This program dumps skape files (the original dataset) into the database and the scripts convert them
into PostGIS format. This is annotated with the converter symbol in figure 8.1. The database was physically
located on the same machine.

Geoserver includes a web administration tool. It consists of forms that enable changes of the descriptive parts of
the WFS and WMS GetCapabilties documents. These documents are then automatically generated. The
administration tool also has forms where data are added. Thus, a new layer could easily be added through a drop-
down menu that contains layers represented in the database. Thereafter parameters could easily be changed, e.g.
style, title, SRS and BoundingBox.




35

Linux server

Figure 8.1: Structure of configuration

8.2.2 Encountered problems

It was discovered that the Java Advanced Imaging (JAI) package did not work. This lead to a situation where the
GetCapabilities document declared that the WMS supported several image formats (JPEG, TIFF, PNG, etc.), but
a GetMap request with another format than SVG always returned errors. The reason for this might be that the
path to the JAI package is not correct (some different placements of the JAI package were tried unsuccesfully).
However, since neither Sony Ericsson nor the GIS-centre used any other formats than the SVG (see section
3.3.2), this was not further investigated.

Another problem with Geoserver is that it only supported the same standard style for each layer. (This will be
altered in forthcoming versions; the version used in this study was 1.2.0.) A map containing several layers did
not turn out well, because it was impossible to discern e.g. a road from a railway or a building from a water
surface. Oddly enough, it was possible to modify a layer’s style name in the administrator tool, but a new style
sheet (SLD document) could not be uploaded. This way, the administrator could let the GerCapabilities
document show that a layer could be presented in different styles. However, only the normal style would result
in a map, the other requests were answered by an exception message, stating that the server does not recognize
the desired style.

8.3 Deegree
Deegree is also a free, open-source project implementing OGC standards such as WMS and WEFS. 1t is created
by the Department of Geography at the University of Bonn (Germany) and the company lat/lon (also in Bonn).

Deegree runs under a java servlet container. It requests data from local stores (shape files or databases) but could
also be configured to fetch data from remote WMS/WEFS servers. In this study the deegree WMS (demo version
1.1.2) was installed on a Windows 2003 server under an Apache Tomcat servlet (version 4.1.31). The java
version used was Java Runtime Environment, version 1.4.2. Data were stored locally as shape files.



36

I
Raster Data

C

Figure 8.2: Architecture of Deegree WMS. The configuration in this study corresponds to the Local WFS
branch with shape files. (From Deegree 2004.)

8.3.1 Configuration

In order to get the DeegreeWMS up and running, Tomcat must be configured to look for Deegree. This is done in
the server.xml file in Tomcat’s config folder. In the Deegree file structure, the web.xml file has to be slightly
modified. This is the file that is needed by the servlet.

In this study Deegre WMS has been configured to fetch data from a local WFS datastore within the file structure
of the program. To accomplish this, firstly the shape files were added under the data folder. Then, the following
three xml-files were modified.

Sample_wms_capabilities.xml (in a non-demo version only called wms_capabilities.xml). This is the document
that is returned by Deegree upon a GetCapabilities request. Every new layer must therefore be manually added
in this document.

LOCALWFS_config.xml Here all layers (FeatureTypes) are mentioned with their data store type. The
responsible class element tells what data sort the layer is (e.g. a shape file) and its configURL attribute points to
a file where it is configured.

This configuration file is in this case demo_config.xml. It states where the data store (here: the shape file) is
found physically.

8.3.2 Encountered problems within this study

Deegree does not always understand the value ‘image/svg+xml’ to the FORMAT parameter in a GetMap
request. If that problem occurs, the notation ‘image/svg%2Bxmi’ must be used. Here the plus sign is replaced by
a percentage sign followed by its ASCII-code in hexadecimal form (base 16). If the client is not aware of this
minor problem, it will get an error message saying that the desired format is unsupported, something that does
not conform to neither the GetCapabilities document nor the reality. Worth mentioning is that this procedure has
to be performed in other cases as well. Segerstedt (2005) shows that several signs have to be substituted with the
corresponding ASCII-code, if the optional SLD or SLD_BODY parameters are used in a GetMap request.



37



38

9 Program for Text and Icon Placement

The implementation of text and icon placement algorithms was carried out in a java environment. This chapter
describes the developing environment, the structure and workflow of the program and the contributions of this
study.

9.1 Programming Developing Environment

The text and icon placement algorithms described in chapter S are written in java. The base consists of the java
runtime environment package (version 1.4.1) and open-source packages for geometries and relations between
geometries (see below). The code has been written, compiled and executed with the java developing program
Eclipse Platform from IBM.

9.1.1 Program structure

The over-all structure is shown in figure 9.1. In this figure, three main packages are identified; GiMoDig, JUMP
and JTS. Other packages are represented by the grey box marked “other java packages”. These are e.g. the java
standard package and sub packages that are of less interest in this presentation.

|

Coordinate
Geometry

I GlobalPlan P Ol Optimisation
-- other classes

I~ lconPlacementAlg orithm

[ ]
T
oo |
R |
P
R

- LabelPlacementALG
- OptimisePlacementalgothm
|- $A labelng Feature
- cther classes | FeatureCollection
-- other classe sinterfaces

. E Parameter Reader

i eother classes

Figure 9.1: Package structure

JUMP package

The algorithms are developed in a special java environment named JUMP, which stands for Unified Mapping
Platform. JUMP, developed by Vivid Solutions, contains a graphical user interface, GML parsers and classes for
features and collection of features. Features are then used as layers in the graphical representations. (Vivid
Solutions 2004b)

The JUMP package consists of several main packages of which two will be mentioned here. The Feature
package consists of two interfaces, Feature and FeatureCollection. A dozen of classes implement these
interfaces and together they constitute the layer of abstraction between the JTS geometries (see below) and
layers in the graphical user interface. This GUI is hereafter called ‘TUMP Workbench’ or just ‘workbench’. The
Workbench package contains classes that create this interface (shown in figure 9.3). Through the Workbench
plugin package, other packages can be connected to the workbench. The GiMoDig operations, such as icon and
text placement optimisations are in this way integrated into the JUMP workbench.



39

JTS package

The JTS package contains classes that implement a robust description of geometries and spatial operations
(Vivid Solutions 2004a). Classes commonly used by the GiMoDig package are Geometry and its subclasses
GeometryCollection, Point, Polygon and LineString. The most common topological and geometrical methods are
implemented on these classes.

GiMoDig package

In the scope of this study, the GiMoDig package is the most interesting. Its sub packages and classes have been
developed within the GiMoDig project, which is briefly described in sections 1.1 and 11.3. For the concern of
this study the classes handling icon and text placement were investigated and some of them were modified. A
few additional classes were also created.

GlobalPlan classes control the workflow. The classes in the datarequest package request data from pre-defined
WES services. In the io package, classes read and parse requested data. In the infegration package, classes are
found that execute a text or icon placing algorithm or that contain special help methods for the algorithm classes.

Generalisation algorithms are found in the generalisation package. An example of an implemented
generalisation is the Douglas-Peucker algorithm for the generalisation of lines. For example, the label-placing
algorithm, when operating on lines, uses this algorithm to obtain a simplified line.

9.1.2 Program Workflow

The GlobalPlan package constitutes the overall function of the algorithms. A GlobalPlan class is called from the
workbench. Once this is done, the GlobalPlan class controls the workflow in its »un method (figure 9.2). A call
is made to DataRequest to fetch data; thereafier, io is used to parse this data into the program and the special
routine (e.g. icon placement) is handled with a call to the integration package. The workflow is in detailed
described for the GlobalPlanPOIOptimisation class, see section 9.2.1.

Figure 9.2: The GlobalPlan class controls the workflow with the interacting classes (here represented by
whole packages).



40

Figure 9.3: Screenshot from the JUMP Workbench. Upon starting the workbench, calls can be made to
the GiMoDig operations. The user chooses an option in the drop-down menu, and this then makes a call to
the corresponding GlobalPlan class.

9.1.3 Initial status

The icon and text placement algorithms were fully implemented and functional. However, due to time limitations
of the project, the code showed some deficiencies.

- Several variables were raw coded. This was the case for the variables controlling the fetching
of data, as well as for the variables controlling the preferences of the algorithms. Therefore,
the testing and evaluation of an algorithm was difficult, because all the small changes had to
be performed at the right spot in the code.

- Some classes suffered from absence of clear descriptive comments in the code.

- The structure of the classes was not fully logical.

- No external documentation was available.

9.1.4 Modifications made within this study

This study has contributed to maintaining the original ideas of the class structure and to eliminate raw coded
variables and parameters. As for the effectiveness and the performance of the code, nothing was changed. More
specifically, the following was done:

1) A minor “cleaning-up” of the code in the three GlobalPlan classes MapLabeling, IconPlacement and
POIOptimisation as well as in some classes in the integration package. This means that unnecessary
lines in most cases were deleted, the code was made more “airy” in the way the author prefers it and
some extra comments were made. However, this cleaning-up was not carried out completely, and there
is still some work to do.

2) A new class, OptimisePlacementAlgorithm was added to the integration package. This class consists of
a run method, which constitutes almost the same lines of code as the former optimisePlacement method
in GlobalPlanPOIOptimisation, By doing this, the structure better conforms to the other classes and
methods found in both the gimodig. globalplans package, as well as in the gimodig. integration package.




41

3) The ParameterReader class (in the gimodig.io package) was created. This class reads a text file (an
example is found in appendice A) and stores the values as variables of a ParameterReader object.
These can then be accessed from methods taking the ParameterReader object as a parameter. Often, the
variables are numbers or text strings, but the ParameterReader also creates instances of other classes,
such as java.awt.font and jts.geom.envelope.

4) The ParameterReader object is initiated and the text file is read in the constructor of a GlobalPlan
class, thereafter it is passed on as a parameter to supporting classes and methods. Changes are made in
classes that use the ParameterReader. In a few cases some extra lines of code have been added. This
approach was used when a specific class object could not be created within the ParameterReader, but
one or more variables from the ParameterReader were used to create the object, e.g. the labelling
methods in LabelPlacementAlgorithm.

5) Name changes of methods so that they better conform to their task.
6) The documentation found in section 9.2.

This was not done, but it would be desirable to proceed with:
- commented and cleaned-up code everywhere.
- acomplete documentation of the methods.
- evaluation of the algorithms.

9.2 An Implementation of Simultaneous Text and Icon
Placement

9.2.1 GlobalPlanPOIOptimisation class

This part will give an overview of the class. The class makes calls to both text- and icon-placing algorithms. At
the end, the optimisePlacement method finds the optimal placement for icons as well as for texts. This is
achieved by a number of calls to different algorithms, found in the gimodig. integration package.

This class is an implementation of the theory presented in section 5.2. Figure 9.4 shows how the work is carried
out. It starts with finding candidate positions for icons, then candidate positions for texts and ends with an
optimisation of the placement. Below the class methods are described.

Figure 9.4: Figure of the main calls of the class.

The class consists of the following methods and internal classes:
- an empty constructor

- run method: This method executes all tasks so that icons and texts are positioned. It makes calls to all the
other methods in the class. First it initiates a ParameterReader object and reads user-defined parameters from a



42

file. Then it calls the following methods, which are also found in the file; setParameters, getCartographicData,
placelcon, placeText, optimisePlacement and, finally, addToLayerManager.

- GlobalParameters class: This class contains variables that are used by a number of methods in this class. Since
they otherwise would have been global variables, they are now enclosed in an object that is passed on where
these variables are needed. Examples of variables in this class are the vectors that contain candidate positions for
texts and icons, special context objects for the algorithms and query strings that are sent to a server.

- setParameters method: Here some of the variables of the GlobalParameter class are given new values, some
are verified to be cleared.

- getCartographicData method is used to retrieve data from a WFS server. The data is parsed into the Java
environment. During the course of this thesis, this method requested data from a local XML file instead of a
WES server. To do this the getDataFromFile method is called.

- getDataFromFile method: This method is only used for local tests of the algorithms, when the data are not of
any importance. It parses an XML file into the environment.

- placelcon method: The only thing this method does, is to make a call to iconPlacementAlgorithm, which is an
implementation of the theory presented in chapter 5.2.1. Candidate positions are chosen for each icon, and these
are herafter found in the GlobalParameter class.

- placeText method: This method creates an instance of the LabelPlacementALG class, which is an
implementation of the theory presented in chapter 5.2.2. After this, methods within LabelPlacementALG are
called. These methods define which feature/layer should be labelled, e.g. roads and governmental buildings.
After the algorithm is executed, candidate positions for each text label are stored in the GlobalParameter class.

- optimisePlacement method creates an instance of the optimisePlacementAlgorithm class. Hereafter, it calls the
run method on the created object. The result of this method is that icons and texts are placed at the best possible
position. See section 9.2.2.

- addToLayerManager method. With this method, the icons and texts are made visible in JUMP. The method
simply adds icons and texts to a LayerManager object. The method uses the context variable (PlugInContext
class) in the internal GlobalParameters class to get the right names of the layers.

- IconComparator class. This internal class defines how to compare two icons to one another; that is, to find
which of two icons is closest to the original placement.

9.2.2 Workflow of the OptimisePlacementAlgorithm class

This class is an implementation of the approach given by Zhang and Harrie (2005b), summarized in section 5.2.3
in this study. It functions as a control process to the optimization process. The optimization task is implemented
in the SA_Labeling class, where SA stands for simulated annealing. Also, other classes are requested, which all
carry out specific tasks.

This class consists of two methods, a constructor and a 7un method. The constructor is empty whereas the run
method takes six parameters. Among them only the ParameterReader is not retrieved from the GlobalParameter
class (see above section 9.2.1). The vectors theText and thelcons contain all candidate positions obtained in the
placelcon and placeText methods.

While executing the run method, a set of vectors is used as temporary storage units. Finally after repeated calls
to other help classes and iterations on these vectors, the optimised placements for text and icons are stored in a
FeatureCollection object in GlobalParameters. Figure 9.5 aims to describe the workflow.




43

Step 4

. ————

Figure 9.5: Important vectors in OptimisePlacementAlgorithm and calls to other classes.

Upon calling the run method, theText and thelcons vectors are transferred to the method. These contain
candidate positions for ALL icons and text labels. Following the notations in figure 9.5 this is what happens
hereafter:

Step 1 — reduces number of candidate positions for icons

iconSet contains all positions of ONE icon. Each of the elements in the iconSet vector is stored as an instance of
the LabelParameter class. This class contains e.g. properties like text, width, height, coordinates (one if the icon
symbolizes a point object, two — start and end coordinate - if it symbolizes a line object) and a vector containing
the candidate positions. Furthermore, objects of the classes IconPosition, and POIPosition are used as storage
variables for each iconSet element.

Each iconSet element is stored in the POIVet vector. When this has been filled, the candidate positions are
reduced through calls to methods within the POILabelTools class.

Step 2 — reduces number of candidate positions for texts
A similar procedure is also carried out on the text. OrientedBox is used to describe the placement of a non-
horizontal text label. With this step the POIVet vector then contains both icons and texts.

The used approaches when reducing candidate positions are here partitionedPOISampling and sampleOnlLines.
The partitioned sampling method chooses evenly candidate positions in four sections around a point (up left, up
right, down left, down right). If there is a lack of points in one of the sections, extra points will be chosen in
another section. The sampleOnLines calculates the sum of the length between the first and the last line node
divided with the desired number of candidate positions. This number guarantees that the reduced candidate
positions are evenly spread along the line. In the POILabelTools class, there are also other implementations of
sampling methods. If another approach (e.g. random reduction) is preferred, that corresponding method can be
used instead.

Step 3 — optimizes the placement and deletes overlaps
An instance of the S4_labeling class is created. Through the call to the saVector method, the whole optimization
part is carried out and a vector containing only the optimal placement of all icons and texts is returned.



44

The theory of the optimization procedure is briefly described in section 5.2.3. A solution is guaranteed by an
evaluation function. Firstly, high demands are put on the quality, that is a measure of the mutual placement of
icons and text, but with decreasing execution time a solution is accepted even though the quality is not as good.
Thus, overlaps might occur between some icons and/or text labels. As a last step, the overlapping icons and text
labels are simply removed.

Step 4 — creates icons and labels and adds them to the map

Here additional tasks are carried out. The icons and labels are now stored at their optimal position. Finally, the
icons and texts labels are added to a LayerManager object and stored in GlobalParameters as result (a
FeatureCollection object). This way, texts and icons are visible as layers in the JUMP workbench.

9.3 Test of the program

This part does not evaluate the performance of the algorithms (it is beyond the scope of this study). It gives,
however, a good example of how elaboration with parameters creates quite different results.

A test was carried out where the value of a parameter controlling the simulated annealing process was changed.
The parameter controls the probabilistic element described in section 5.2.3. The probability for a fast solution
decreases the lower this initial value is. Thus, one could expect that a lower value influences the quality of the
map negatively due to an early accepted solution.

The program was executed 20 times for each configuration. The first configuration set this parameter for a
higher quality on the map, whereas the second configuration featured a lower value. The execution time for the
second configuration was almost 20 % faster than the original one. Furthermore the expectation that this resulted
in a map of lower quality was intuitively verified by a quick glance on the maps. More conflicts with
overlapping labels occurred within the second configuration. But it should be mentioned that, since the simulated
annealing depends on a probabilistic element, the variation of both the execution time and the placement of icons
and text was very large in both configurations.

Icon Text SA Total Maximum  Minimum Quality
Config 1 1394 423 14418 16235 24065 6900 better
Config 2 1360 403 11513 13292 28591 7220 good

Table 9.1: Time comparison. Figures are given in milliseconds but should just be seen as a measure of
comparison since the program ran on a very slow computer.

Table 9.1 shows the difference in time between the two configurations. The first two columns indicate the time
for the placelcon and placeText methods (see section 9.2.1). They are independent from the configuration and
should not differ. (It could be assumed that this value will converge towards a certain value with more
executions.) SA stands for the simulated annealing process. The three leftmost columns indicate maximum and
minimum total execution time and a subjective estimation of the map quality.

Figure 9.6 below shows a random map from the test. It is impossible to choose a typical map for each
configuration since the positioning of icons (squares) and texts (rectangular boxes) vary as much as the time.
Some maps rendered with the second configuration resulted in better maps, but all maps taken into account, the
first configuration generally resulted with better maps (e.g. less overlaps).




45

Figure 9.6: A map created within the first configuration. The overlaps are not removed in the figure. The
small points constitute the remaining candidate positions. They are attached to the object that they
represent through a thin line.



46

10Model of Integration

Before beginning this study, expectations were indulged that it would end up with a WMS server with text and
icon placement routines. This WMS service should have been made as ideal as possible for a client operating on
small displays (such as the SonyEricsson client). Unfortunately, these expectations could not be met. Thus, this
opens up to others to proceed with this task. Theoretically, this is how it could work:

Integrated WMS
Service

Figure 10.1: Model of an integrated WMS service.

From the client-side in the simplest model, the service functions like a normal standalone WMS. The client
requests certain layers and the server responds with such a map. But before that, the WMS fetches data from a
WES server. The WMS is then implemented to send the data to the text and icon placement algorithms, which
respond with layers containing icons and texts.

The first step in the integrated WMS service is not complicated. The most available implementations of WMS
servers today support communication with a WFS server (see sections 8.2 and 8.3. The trickiest step in this
model is the second step, the communication with the WMS server and the text and icon placement service. A
tool for this communication must be created. Since, for example, Deegree supports JTS, such a tool should not
be too hard to implement.

With a tool between the WMS and text and icon placement service the WMS has to construct a detailed request.
An example of possible parameters in such a request (that is sent using GML notations) follows.

Label_layers. A list of layers that should be labelled.

Constraint_layers. A list of layers that should not be overlapped with disturbing values for each layer.

Quality parameter. A parameter that states how accurate the placement algorithms should work. This could for
example be the parameter that controls the simulated annealing process (see sections 5.2.3. and 9.3).

Of course all the cartographic data has to be read into the text and icon placement module. The input consists of
the same GML-strings that the WMS has requested from the WFS.




47



48

Part Il

Final Analysis




49




50

11Discussion

11.1 WMS servers and clients

This study presents two implementations of WMS servers (chapter 8). These are developed as open-coded
projects, both directed from organizations that embrace the idea of sharing and improving code with others.
Also, WMS-servers are developed by traditional GIS-vendors. This interest in the standard from both non-profit
and commercial developers indicates that WMS has a future. WMS servers are stable and conform well to the
standard, yet the standard allows different technical solutions, of which one has to be aware (see below).

The WMS clients presented in this study (chapter 7) were all developed within studies like this one. They all
show that is easy to implement a client with one specific server in mind. However, more effort has to be put into
a project for a WMS client that is fully compatible with all existing servers. Such a client does not have to
constitute several packages of code, but at least it needs a well-defined library for error-handling and a flexible
parser. This is due to the fact that different servers sometimes use different technical solutions, e.g. layer-nestling
(see section 4.2.2). Developing clients for the web does not encounter any larger difficulties. This is, however,
not the case with mobile applications (see section 11.2).

But is WMS a common standard for map services on the Internet today? Which standards are its competitors?
The answer is that there exist several WMS services on the Internet, but given as a percentage of the total
number of map services, this percentage is rather small. When WMS is chosen, it is for minor projects and more
on a non-profit basis, whereas other solutions are used for larger, often commercial, projects. This is probably
due to the fact that GIS professionals are used to the GIS-vendors’ programmes. Therefore, it is natural to
continue working with these programmes, when a new service is created. Among these other solutions from GIS
vendors, ArcIMS from ESRI is probably the most widely used. But almost every GIS-vendor has its own
technical solution for (interactive) map services on the Internet. It is somehow reasonable to believe that the use
of WMS in larger applications will increase in the future. Both in Denmark and Norway, there are good
examples of public institutions using WMS in map applications. In Sweden, groups with both public and
commercial participants are looking into the possibilities of WMS (see e.g. Segerstedt 2005).

11.2 WMS for mobile applications

Throughout the work of this study regular discussions were held with personnel at Sony-Ericsson. These
discussions dealt with WMS as a means for maps in mobile phones and the special limitations such mobile
applications encounter.

Even though WMS is well defined and constructed, it is often difficult to apply a standard service to which a
standard client connects. In the case of mobile phone applications, there are two main constraints compared to
ordinary web applications. Below these are described and possible solutions are suggested. For more information
on this matter, see Bozkurt (2005) and Bozkurt et al. (2005), where these limitations or constraints are discussed
more thoroughly.

The first constraint is the limited bandwidth. WMS does not support any means, such as a special parameter, that
tells the client the file size before it is transferred. If a rendered map contains large float number coordinates (in
the case of vector formatted maps) the file size can be very large. Another factor that increases the file size is the
grade of generalisation. If, for example, a map contains lots of buildings and these are rendered with a line
between every corner instead of being generalised to a pre-defined square or rectangle, this has a major
increasing impact on the file. A solution for this problem must be taken care of on the server-side. If the service
only provides integer coordinates and if it is connected to generalising routines (an enlarged model of the one
presented in chapter 10) the file size will decrease. It is perhaps more complicated to guarantee small file sizes to
a client. Either a special WMS service to mobile phones guarantees small file sizes from the beginning, or the
WMS interface must expand with an optional file size parameter that is defined to serve e.g. mobile phone
clients. The latter option would be desirable, since one aim with of developing WMS clients for mobile phones is
to enable the use of several servers in different situations and thus not be dependent on one service only.

The second constraint is the small display on a mobile phone. This constraint demands much more of a map than
you imagine at first. Today there are quite a few research projects in this area and this study would like to refer
to the GiMoDig project and research at the GIS-centre. One thing is nevertheless certain: A small display




51

demands a rigorous selection and reduction of the cartographic objects to be shown. Furthermore, to increase the
readability, texts and icons must be used economically, and, when being used, placed in an intuitive position
clearly indicating which object they belong to. This is really the continuation of this study: to adjust WMS
rendered maps so that they conform to small displays! As for the bandwidth constraint, a solution would be to
integrate a WMS service with a combined generalisation and integration application. Another means would be
by conforming SLD (styled layer descriptor) documents for small displays. Through the combination of SLD
and filtering, a kind of generalisation can be achieved.

Is WMS really an alternative for mobile applications? The development of WMS clients should lead to a greater
freedom for mobile phone vendors to choose data distributors. However, today the main actors in mobile phone
map services use their own formats. To guarantee and improve these services, it is perhaps better for mobile
phone vendors to collaborate with these actors instead of using a new interface. For the mobile phone vendors’
point of view in this matter, see the conclusions given in Bozkurt (2005).

11.3 Icon and text placement

The main part of this study concerns icon and text placement. This section aims at putting icon and text
placement in a larger perspective. Besides good icon and text placement, generalisation and reduction of objects
are of major importance to obtain a map of high quality. The term map rendering algorithms includes all these
functionalities as well as the basic (map) image generating methods.

It is no understatement to assert that this field of research will continue to increase in importance. Digital maps
have been more accessible the last 10 years due to the wider use of the Internet, but today much more demand is
put on the map presentation and interaction. Furthermore, digital maps are today more often rendered in real-
time. This indicates the need for all kinds of effective map rendering algorithms.

Several GIS programmes have long featured built-in easy text placement functions. In an ordinary desktop GIS
environment such functionalities are rather easy to include. A simple placement algorithm in such an
environment benefits from all spatial operations that are already defined in the environment.

Text and icon placement turns out to be more complicated when it comes to Internet GIS applications. This is
often due to the fact that a large number of standards regarding storing, rendering and transferring of
geographical data and maps exist. If an automated icon and text placement function exists, it is likely to have
been developed for a certain environment. An example is the Deegree WMS server that has a built-in
functionality on text placement, which, although rather simple, improves the map quality.

The GiMoDig project is an attempt to customize a model for these matters (Gimodig 2005). The idea of
GiMoDig is a gathered a map rendering service that includes the fetching of data from different data providers. It
is an ambitious project, but it will not have an impact on standardizing text and icon placement methods. Having
all different formats and services concerning geographical data in mind, this seems hard to accomplish.



52

12Conclusions

The aim of this Master of Science thesis has been to study the WMS interface and algorithms for text and icon
placement. The title of the study indicates an integration of these algorithms with WMS. This was, however, not
accomplished by the study, but it contains a description of a possible integration approach. The study presents
WMS servers and clients, as well as algorithms for text and icon placement.

This study has shown that the WMS interface is fully functional. Within the study two different implementations
of server software were used, Geoserver and Deegree WMS. Their functionality was verified both through
manually constructed requests in an ordinary web browser and through the clients described in this study. The
configuration and the administration both differed between the two servers as well as other differences on
technical approaches.

It is possible to develop clients according to the WMS specification. However, there are a number of constraints
that have to be dealt with in order to create a flexible client. With a flexible client it is understood that it easily
communicates with different servers. Examples of such constraints encountered within this study are different
types of layer nestling, reference systems and coordinates.

The main emphasis in this study was put on work on algorithms for text and icon placement. They are now
documented and the programme structure is improved. These algorithms minimize overlaps between text, icons
and cartographic objects. At the same time they follow rules, so that the position of a text or an icon is intuitive
in relation to the object it represents.

The map rendering process through WMS does not guarantee good text positions. However, some of the
implementations of servers support basic kinds of placement methods. The algorithms that are presented in this
study would richly enhance this process if they could be connected to a WMS service. This study shows that a
bridge between WMS and these algorithms is necessary. Such a bridge does not yet exist.







Literature

Books and articles
Bozkurt, M. 2005: WMS on a mobile phone, Master of Science Thesis, Lund Institute of Technology, Sweden

Bozkurt, M., R. Groth, B. Hansson, L. Harrie, P. Ringberg, H. Stigmar, and K. Torpel, 2005: Towards
Restricting File Sizes in Web Map Services for Mobile Applications. ICA Workshop on map generalisation, A
Coruria, Spain

Eklundh, L., W. Amberg, S. Amborg, L. Harrie, H. Hauska, L. Olsson, P. Pilesjo, B. Rystedt, and U. Sandgren
1999: Geografisk informationsbehandling: Metoder och tillimpningar, Byggforskningsradet, Stockholm,
Sweden, ISBN 91-540-5841-4

Harrie, L., H. Stigmar, T. Koivula and L. Lehto 2004: An Algorithm for Icon Placement on a Real-Time Map. In
Fisher, P. (ed.), Development in Spatial Data Handling, Springer, pp. 493-507

Harrie, L., Q. Zhang and P. Ringberg 2005: A Case Study of Combined Text and Icon Placement, XX77
International Cartographic Conference, A Corufia, Spain

Hunter, D., C. Gagle, D. Gibbons, N. Ozu, J. Pinnock, P. Spencer 2001: Beginning XML, Wrox Press Ltd,
Birmingham, UK

Lennartsson, T. 2004: Utveckling av en Web Map Service-klient, Master of Science Thesis, Lantmiiteriet, Givle,
Sweden

OGC 2002: Web Feature Service Implementation Specification, version 1.0.0. Available at
http://www.opengeospatial.org/specs/?page=specs

OGC 2003: Geography Markup Language Implementation Specification, version 3.0. Available at
http://www.opengeospatial.org/specs/?page=specs

0GC 2004: Specification  for Web  Map Service, version 1.3 Available at
http://www.opengeospatial.org/specs/?page=specs

Peng, Z.-R. and M.-H. Tsou 2003: Internet GIS, John Wiley & Sons, Inc., Hoboken, N.J., USA

Robinson, A. H., J. L. Morrison, P. C. Muehrcke, A. J. Kimerling and S. C. Gubtill 1995: Elements of
Cartography, Sixth edition, John Wiley & Sons, Inc., Hoboken, N.J., USA

Segerstedt, P. 2005: Distributed Internet GIS: Prototypes of Cascading Web Map Service (WMS) for
applications in Skdne, Master of Science Thesis, Lund Institute of Technology, Sweden

Zhang, Q, and L. Harrie 2005a: Real-Time Map Labelling for Mobile Applications, Computers, Environment
and Urban Systems, accepted.

Zhang, Q, and L. Harrie, 2005b: A Real-time Method of Placing Text and Icon Labels Simultaneously,
submitted.

W3C 1999: HyperText Transfer Protocol — HTTP1/1. Available at
http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf

Internet

Deegree 2004: Installing documentation: http://deegree.sourceforge.net/inf/wmsdoc/html/index.html accessed
2005-01-17

EPSG 2005: http://www.epsg.org accessed 2005-06-15




Geoserver 2004: The Geoserver project: http://geoserver.sourceforge.net/html/index.php accessed 2004-12-20
GiMoDig 2005: http://gimodig.fgi.fi accessed 2005-06-15

ISOC 2003: A4 Brief History of the Internet, version 3.32: http://www.isoc.org/internet/history/brief.shtml
accessed 2004-10-05

OGC 2005: http://www.opengeospatial.org accessed 2005-06-15
PostGIS 2004: http://postgis.refractions.net/home.php accessed 2004-10-25
NSCA 2004: http://hoohoo.ncsa.uiuc.edu/cgi/ accessed 2004-09-24

Vivid Solutions 2004a: Java Topology Suit documentation: on http://www.vivivdsolutions.com/jts/doc.htm
accessed 2004-11-29

Vivid Solutions 2004b: Unified Mapping Platform documentation:
http://www.vivivdsolutions.com/jump/doc.htm accessed 2004-11-29

W3C 2004a: Extensible Markup Language (XML) version 1.0, W3C Recommendation:
http://www.w3.0rg/TR/2004/REC-xml-20040204/ accessed 2004-09-16

W3C 2004b: HyperText Markup Language: http://www.w3.org/TR/html401/ accessed 2004-09-15
W3C 2004c: Extensible Markup Language (XML): http://www.w3.org/XML/ accessed 2004-09-16

W3C 2004d: Scalable Vector Graphics: http://www.w3.org/Graphics/SVG/ accessed 2004-09-17.



Appendix

An input file for ParameterReader

AR R R R 22 R I
*

* FILENAME: parameter.txt
*
* AUTHOR: Peter Ringberg
*
*

DESCRIPTION: This file enables testing of different parameter values in the GlobalPlan-
classes
as well in the algorithm classes (in gimodig.integration library).

The value of a parameter must be typed correctly.

After an instance of the class ParameterReader (gimodig.io) has read this file,
the value of the parameter is accessed through notation
(object of ParameterReader).get(Name of parameter, always starting with an upper-case
letter) ()
*

*
*
*
*
*
*
*

* The path to this file has to be stored within the InputFileName class (in gimodig.io
library) .

KRR KK KKKk IR K Ik ok kA kR Ak h ok k ok k ok ok ok ok ok ok ok ok ok ki ok ko h Ak ok ok ko kk ok kk ok ki ok ok ok k ok ko k ok ok ok h Ak Ak k ok ok ok hk ok kk ke ok kk ko k ok Kk ok >

/*********************************************************************************************
*

* GENERAL PARAMETERS

*

*

FR KKK KKk k ok ko k ok ko ko kR kA kA Kk kK kk ok ok ko ok ko kA Ak Kk Kk h ko k ok kA Ak ok ko ko h khk ok ko kkhk ok ok ok k ok hkkkhkhhkkok ko k k& &

WORK_DIR C:/Program/Eclipse/eclipse-SDK-3.0M6-win32/eclipse/workspace/peter_
OUTPUT_TEMPLATE /templates/out/GiMoDigOutputTemplate.xml
INPUT_TEMPLATE /templates/in

VR R R 2 R R R I I T
*

* DATA REQUEST PARAMETERS
*

*
KA KKKk h ok hhh ok ok kA Ak ok Kk Kk ok ok ok ok ok ko ok ko ok ok ko Kk kA Ak Ak ok ok ok ok k ok ok k ok ok ok ok ok k ko k kA ARk ok h k ok k ok k ok k k ok kkk ok kk ke &

WFS_SERVICE http://gimodig. fgi.fi/Topo-WFS/GetFeature
WFS_USERNAME gimodig

WFS_PASSWORD fubkln3-4

WFS_PREFIX <?xml version='1l.0' encoding='iso-8859-1'?>

The following parameters create a query string to send to a WFS server,

ParameterReader reads maximum nine requested features (NamedLocation-Trail).
The two parts correspond to the whole query. These are in ParameterReader
concatenated where (_1) ends before sBoundaryBox and (_2) begins after the
sBoundaryBox.

NOTE! The parameter names in this file are example of typical feature names.
Any feature from the WFS can be used to any parameter.

The values of the createWFSQueryString parameter are the names of the desired

complete query string (all features that constitute the query).

This parameter MUST always begin with 'queryPrefix queryGetPrefix' and end with
'queryGetSuffix'. The features are named according to the corresponding parameter name,
that is without _1 or _2.

[E.g. queryPrefix queryGetPrefix queryRoad queryPark queryGetSuffix]

The sBoundaryBox is typed like this:

xmin,ymin, Xmax,ymax

Note the comma and space notation! Also note that non-integer values are
written with a decimal point, e.g. '1234565.12,234567.434 124444.43,235564.12"

L T T TN S T T S S S




queryPrefix <?xml version='1.0' encoding='iso-8859-1'?>

queryGetPrefix <GetFeature xmlns='http://www.opengis.net/wfs"
xmlns:ogc='http://www.opengis.net/ogc' xmlns:gml="'http://www.opengis.net/gml'
outputFormat='GML2' handle='GiMoDigQuery'>

sBoundarybox 370085,6675194 371914,6677205

queryNamedLocation_1 <Query handle="'query00' typeName='NamedLocation'
version='1.0'><PropertyName>name</PropertyName><PropertyName>position</PropertyName><PropertyN
ame>category</PropertyName><PropertyName>orientation</PropertyName><ogc:Filter
xmlns:gml="http://www.opengis.net/gml'><ogc:BBOX><PropertyName>position</PropertyName><gml:Box
srsName="'EPSG:4258"'><gml:coordinates>

queryNamedLocation_2 </gml:coordinates></gml:Box></ogc:BBOX></ogc:Filter></Query>

queryRoad_1
queryRoad_2

queryAdministrativeBoundary_ 1
queryAdministrativeBoundary_2

queryBuiltUpArea_1
queryBuiltUpArea_2

queryBuilding_ 1
queryBuilding 2

queryLake_1
queryLake_2

queryPark_1
queryPark_2

queryRailway_ 1
queryRailway_2

queryTrail 1
queryTrail 2

queryGetSuffix </GetFeature>

createWFSQueryString queryPrefix queryGetPrefix queryNamedLocation queryRoad queryGetSuffix

*

* This line creates an Envelope object which is used ONLY when cartographic data are read

* from a local file, and not from a WFS server. Gets the extent of the viewport and clips the
dataset.

* The parameters are separated by space. In order, they constitute:

* minx maxx miny maxy

*

querybox 372000 373500 7305500 7307000

/*********************************************************************************************
*

* ICON PLACEMENT PARAMETERS

*

kkkkkkhkkhhk ko k ok h ko k kA Ak Ak k ok kkhkhk ok hkh kA Ak kA k kA A kA Ak A Ak ko k ok ko kh ok k ok khhkdhkkh ko hkkhkhkhhkkk ok k*

DEF_BUFFERT_WIDTH 1.0

DEF_BUFFERT_HEIGHT 1.0

DEF_WIDTH 20
DEF_DISTURBANCE_VALUE_TRESHOLD 0.2
DEF_TEXT_SIZE_DEFAULT 40
DEF_TEXT_SIZE_SETTLEMENT 90
DEF_SEARCH_DISTANCE_GROUND 60
DEF_DISTANCE_LIMIT_POINTS_ON_LINE_SEGMENT 5
DEF_DISTANCE_LIMIT_POINTS_ON_POLYGON 20

* This parameter determines the resolution of the search relative
* to the icon size. Must be an odd number.




Icon_search_resolution 9

/*****************************************************************'****************************
*

* TEXT PLACEMENT PARAMETERS

*
**********************************************************************************************

// double

allowedRatio 0.8
scaleDenominator 10000

* These lines create two Font objects from the java.awt font class.
* Their parameters are:
* [name of font] [font.PLAIN] [font size} ']

fontLoc Arial Font.PLAIN 12
fontRoad Arial Font.PLAIN 12

The constraints_X array contains the NAME of the FeatureCollections
(layers) chosed as obstacles for the following methods in LabelPlacementAlg:

1 labelingLocations()
2 labelingRoads ()

The valures are typed in this way:
int string string string ...
where int corresponds to the number of layers. The amount of the following
strings must equal this number.
The strings contain two parts; namespace and name of layer, seperated by a colon.

L . N

constraints_1 3 gmd:Road gmd:Railway gmd:Building
constraints_2 3 gmd:NamedLocation gmd:Building gmd:Railway

/*********************************************************************************************
*

* OPTIMISE PLACEMENT FOR TEXT AND ICONS PARAMETERS

*
**********************************************************************************************

*
* The following variable states how many candidate positions that should be selected to
remain for

* the test to find the optimal position
*

nrOfReducedCandidatePositions 8

*

* These variables conduct the behaviour of the simulated annealing process. The lower the
temperature is

* from the beginning, the faster a map will be accepted (however probably with more
defiencies).

* [1/Math.log(3)], [0.l*initial-temperature]

*

DEF_INITIAL_TEMPRATURE 2.095903274
DEF_LOW_TEMPERATURE 0.2095903274

//Evaluation value [double - 1.80]

evaluationvValue 1.80



* This will create a weight object. The values are four numbers (double) seperated by a space
* In order, the numbers are the values of:
* preference, disturbance, overlap, deletion

weight 0.001 0.01 1 10



	DOC001
	DOC

