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Abstract

Benchmarks are important to developers and give them a frame of reference
for how a change could affect the project they are working on. Therefore, it is
important that the benchmarks developers use give a realistic representation of
their environment.

This thesis aims to examine the heavily cited benchmark suite for Java called
DaCapo to determine how well it represents the Java Virtual Machine. This is
revealed by using the code instrumentation tool called “Did My Code Execute”
developed at Ericsson. An important observation made was that parts of the Java
Virtual Machine do not get exercised by any DaCapo benchmark. The answers
were found by looking at the total amount of Java Virtual Machine code that was
covered by the benchmark suite and by analyzing how many times specific lines
of code were executed. The thesis also produced logistic regression models used
to tell how important different parts of the Java Virtual Machine are to specific
benchmarks.
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Chapter 1

Introduction

Benchmarks are tests that can be used to measure the performance of different properties in
software or hardware. Researchers typically use benchmarks to evaluate new system features
and optimizations. In the case that an idea does not improve a set of relevant benchmarks,
then that idea might not be accepted by the community and will probably not be explored
any further [10]. Because of this, benchmarks can both encourage and discourage new ideas
to be explored. Given this, it is important that the benchmarks that researchers use when
developing new software evaluate as much as possible that is relevant to that software.

In contrast to other programming languages, Java programs are first statically compiled
into bytecode, which is the same for all computers [12]. The Java Virtual Machine (JVM) is an
abstract computing machine that has an instruction set and handles memory management
at runtime. When executing a program the only information that the JVM has is a binary
formatted file called a class file. The contents of a class file are instructions for the JVM
(called bytecodes), a symbol table, and other ancillary information [11]. Therefore, the JVM
is a vital part of the Java platform, it is the reason why Java is independent of hardware and
operating systems. A widely used benchmark suite that tests the performance of Java is the
DaCapo benchmark suite, which has an official release called DaCapo Bach [5]. There also
exists an experimental Github repository branch with newer versions of the benchmark suites
and several new benchmark suites called DaCapo Chopin [2].

1.1 Research questions
To tell what implications our measuring method has and how accurate the answers to our
following research questions (RQ:s) are, we would first like to answer this research question
and its sub questions:

• RQ1: What implications does our measuring method have?

RQ1.1: What are the challenges of our measuring method?
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1. Introduction

RQ1.2: How does the measuring affect execution speed of benchmarks?

RQ1.3: How stable are our measurements on different executions of the same program?

This master’s thesis work then answers the following research questions:

• RQ2: How much of the JVM code is covered by state of the art benchmark suites?

• RQ3: To what degree are our state of the art benchmarking suites exposing the performance of
the JVM?

RQ3.1: Are there any parts of the JVM code that get executed by other Java programs that
do not get hit by the benchmarks?

RQ3.2: Does the distribution of JVM code executed by the benchmarks reflect that of other
Java programs?

• RQ4: To what degree do the different benchmarks exercise different JVM code?

RQ4.1: For each individual benchmark, what degree of importance do different parts of
the JVM code have for that benchmark?

RQ4.2: To what degree are different parts of the JVM code heavily exercised by all bench-
marks?

1.2 Contribution
The results of our research may be used to create more accurate benchmark suites for Java in
the future or improve the existing ones. Also, all of our results and everything we have used
to produce them have been uploaded to Zenodo [1], making it possible to review and use our
work for continued research.

The tool Did My Code Execute (DMCE), developed and used at Ericsson, is an open
source code instrumentation tool for C and C++ [3]. DMCE can see what part of the code
that is executed when running a program. This work could also be used as a demonstration
of how DMCE can be used to evaluate Java programs and as an example of using DMCE on
a large scale project. Our findings when exploring the OpenJDK using DMCE also yielded
important feedback to the developer of DMCE (Patrik Åberg) who in turn produced several
patches for DMCE.

We have created logistic regression models that take DMCE data from a benchmark as
input and predict what benchmark was executed to create the input data. These models can
also be used to tell what parts of the JVM code are important for certain benchmarks.

When we worked with DaCapo Chopin the benchmark h2o did not function correctly
due to the fact that it pointed to a non existing URL. Our supervisor Christoph Reichenbach
created a fix for this1.

We have worked together and helped each other with everything regarding this thesis
work, including the report. However, we have written down who we consider had the most
responsibility for different sections of the report in appendix A

1https://github.com/creichen/dacapobench, git hash: 1c746ae37b9a4c38b2179165635e8163a50d5e50
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1.3 Related work

1.3 Related work
DaCapo and the OpenJDK have been analyzed and tested. For example, there is a paper
that explores how the DaCapo benchmarks’ memory allocations work [8]. There also exists a
paper exploring the coverage of different Java benchmarks [9], but this paper did not analyze
DaCapo. While DaCapo and the OpenJDK have been analyzed and tested, our work will
explore the inner workings of the JVM and how well DaCapo covers it in a way that we
believe has not been done in this manner before.

Apart from DaCapo, there are many other benchmarks. XCorpus [6] is another bench-
mark suite for Java that claims to have a higher branch coverage than DaCapo. Therefore, it
would have been interesting to also analyze XCorpus and compare the results to that of Da-
Capo. We did, however, not manage to get the XCorpus benchmarks to work on our system
and therefore could not analyze them.
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Chapter 2

Background

This chapter will explain all the information needed to understand the following chapters of
the report.

2.1 How Java works
Even though it is possible for Java to execute the bytecode using an interpreter, it is more
common to first compile the bytecode to native code, which can be executed directly. This
compilation is done using a Just-In-Time (JIT) compiler. An important aspect of JIT compi-
lation is the trade off between initial performance loss and later performance gain due to the
execution of the compilation and the resulting compiled code. Therefore, the JVM is selective
about submitting code for JIT compilation, only methods that have been executed enough
times are compiled with complex optimizations. The precise result of JIT compilation de-
pends on numerous timing factors. Therefore, several executions of the same benchmark
may not result in the same JIT behavior, meaning the same code may not always be used [12].
Oracle’s Java Development Kit (JDK) contains a compiler, which compiles Java source code
to bytecode, and a run-time system that implements the JVM [11].

2.2 The OpenJDK structure
OpenJDK is an open source code version of a JDK. The different OpenJDK versions can be
found on the OpenJDK GitHub1. The OpenJDK consists of everything needed to create a
working JDK as well as tests for the JDK. The source code that is used to build a JDK is located
in a folder called “src”, where the code for the "hotspot" and other Java functionality can be
found. One aspect that turned out to be important for this project is that the “src/hotspot”
folder contains the CPU specific and OS specific code. The source code of the OpenJDK

1https://github.com/openjdk/
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2. Background

is mainly written in C++ and C, which means that DMCE instrumentation is well suited
for the OpenJDK. When the build is finished, a folder is created containing the newly built
JDK. The contents of this folder can vary depending on what build options were used. For
example, you can use the build option “–with-jvm-variants” to build a certain variant of the
hotspot. You can choose between server, client, minimal, core, zero, and custom. The built
folder should contain a “java” and “javac” application in the “jdk/bin/” folder, which can be
used to run and compile code.

2.3 Did My Code Execute (DMCE)
DMCE is a source code level instrumentation tool that works off of git repositories, this
means that DMCE can only be used on code that is inside a repository. DMCE works by di-
rectly editing the source code inside all eligible expressions it finds. Which can be done due
to a functionality in C and C++ where an expression can be nested before another expres-
sion, for example: (INSERTED_CODE(x),ORIGINAL_CODE). This will not modify the
result of the original program in any way, except if the inserted code has any side effects.

The main idea behind DMCE is to create what we define in this report as "probes", which
are essentially snippets of C code that you design to run at every relevant expression from
the source code. These probes will then instrument the code and give information depending
on how the probe was implemented. DMCE includes some examples of probe code, which
include printing the probe number whenever a probe is executed or creating a heatmap de-
pending on what probes are executed.

Using DMCE usually involves two steps: The first is setting up the configurations and
probe behavior for DMCE. The configuration options not only allow the user to tell DMCE
what folders or files to exclude or include when probing but also give the option to write
regular expressions that DMCE will use to exclude insertion of probes in the code. These
settings can be specified when using the “dmce-set-profile” command or by editing the DMCE
configuration files. The second step is to insert the probes into the desired source code.
DMCE decides where to insert the probes depending on a couple of factors. Firstly, DMCE
can only insert probes around expressions, and secondly, if an eligible expression is found, it
will check it against the excluded configurations that are set up. This is done automatically
by DMCE, but one can change what files that are to be probed depending on git commits as
well. This is useful when one wants to only probe code that was recently added.

Probing generates a "probe-reference" file that keeps track of all the generated probes.
This file is important for DMCE when generating data from runs and is located in a Linux
specific temporary folder that will disappear if the computer is turned off. Therefore, it is
important to save this file locally if the probing takes significant time.

After the execution of the compiled modified source code, DMCE will generate data
inside a binary file located in the Linux temporary folder, along with the previously men-
tioned probe-reference file. For heatmap probes, the binary file will keep track of all probe
hits, increasing the number of hits for probes when a program containing probes is executed.
Therefore, the binary file needs to be deleted to reset the probe hits count. Readable data
is obtained by running a command specifying the "probe-reference" file and the binary file.
This generates a file with data depending on the probe behavior.

We learned this information about DMCE by reading in the DMCE Github repository
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2.4 The DaCapo benchmark suite

[3], but also by exploring the tool ourselves

2.4 The DaCapo benchmark suite
The DaCapo benchmarks are a set of open source Java benchmarks that were made to im-
prove the way Java was benchmarked at the time [10]. In the paper, which is heavily cited,
the benchmarks are described to be general purpose, realistic, and freely available applica-
tions for Java to evaluate how well Java performs on different computers. DaCapo was made
specifically for Java 8, but still works for later releases of Java, although not all benchmarks
are guaranteed to function. The latest stable release, as of this paper, of DaCapo is called Da-
Capo Bach, released in 2009. There is also an experimental branch on the DaCapo git called
DaCapo Chopin, which contains several new benchmarks as well as updates to the old ones
from DaCapo Bach. DaCapo Chopin has received continuous updates up until the release of
this report.

The way DaCapo operates is quite simple. Any of its benchmark can be executed by
running the DaCapo jar-file, the file we used was called dacapo-9.12-MR1-bach.jar. To run
a benchmark, you execute the command: java -jar dacapo-9.12-MR1-bach.jar ‘benchmark’.
Here ’java’ can be replaced by the path to any Java executable, which can be an executable
produced when building an OpenJDK, and ‘benchmark’ is replaced by the benchmark you
want to run. You can also add options such as -n, which tells DaCapo how many iterations of
the benchmark to run. To be able to run a DaCapo Chopin, you have to build it from source
code, which can be found here [2]. The benchmark h2o did not build successfully, therefore,
we used a fix for this, see 1.2. When DaCapo Chopin is built, you can run a jar-file in the
same way as the jar-file for DaCapo Bach.

2.4.1 DaCapo Bach and its benchmarks that works
On our setup using Java 17, 10 out of the 15 benchmarks in DaCapo Bach work. The bench-
marks that do not work get runtime errors when we execute them. Therefore, in this paper,
only benchmarks that work on our setup with Java 17 have been used to collect data on. Here
is a table that shows which DaCapo Bach benchmarks that work on our setup:

avrora batik eclipse fop h2 jython luindex lusearch
x x x x x x

lusearch-fix pmd sunflow tomcat tradebeans tradesoap xalan
x x x x

2.4.2 DaCapo Chopin and its benchmarks that works
DaCapo Chopin includes all previous Dacapo Bach benchmarks and more. DaCapo Chopin
also fixes some of the old benchmarks when using later Java versions. In total, DaCapo
Chopin contains 22 benchmarks, of which 18 work on our setup. The 4 benchmarks that
do not work on our setup receive runtime errors and will therefore not be used to collect
data on. Here is a table that shows which DaCapo Chopin benchmarks that work on our
setup:

13



2. Background

avrora batik biojava cassandra eclipse fop graphchi h2
x x x x x x x

h2o jme jython kafka luindex lusearch pmd
x x x x x x

spring sunflow tomcat tradebeans tradesoap xalan zxing
x x x x x

2.5 Logistic regression models
Logistic regression can be used to tell how one aspect affects the probability of a certain out-
come. In our case, given a probe’s number of invocations received after running a benchmark,
we will use a logistic regression model to see how that number affects the probability of the
benchmark that was executed to have been a certain benchmark.

The logistic regression model is based on the odds of a 2-level outcome of interest. For one
event of interest, the odds of that event happening is the probability of the event happening
divided by the probability of that event not happening. This means that if the odds = 1, the
event will happen half of the time. The logistic regression model uses the natural logarithm
of the odds as a regression function [14]. scikit-learn’s logistic regression model contains a
function fit, which takes a matrix X and a vector y as input data [4]. Where row number i in
the X matrix corresponds to the input values that produced the value of the element at index
i in y. After running this fit function with X and y values, you can predict output values given
inputs using the predict function. If you want to know how important different inputs are
to produce different outputs, you can check the .coef_ attribute on the Logistic Regression
model. This attribute contains a matrix where each row represents a possible output value
and each column represents a certain input value. To give an understanding of what the
coefficients in this matrix mean, here is an equation:

result = c00 ∗ iv00 + c00 ∗ iv01 + ... + c0max ∗ iv0max (2.1)

What “result” in 2.1 tells us is how likely the output is to be zero, given max number of input
values, iv, and max number of coefficients, c, where the coefficients are received from the
first row in the .coef_ matrix.
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Chapter 3

Approach

This chapter explains the approach we took for each research question and answers we found
along the way.

3.1 Instrumenting the OpenJDK
We used DMCE to probe the source code of an OpenJDK with heatmap probes. After this,
we built the OpenJDK using the default build options, resulting in an OpenJDK with the
name “linux-x86_64-server-release” containing 192244 probes. This means that our built
OpenJDK has a server variant of the Hotspot and is built for the operating system Linux
and the CPU architecture x86_64. With this probed OpenJDK we could measure the impact
benchmarks have on the execution of JVM code. One important thing to mention is that we
excluded all folders with OS and CPU versions our system was not running on in order to
not have probes in code that will not be used by our system. Another aspect that is impor-
tant to mention is that our probed OpenJDK has probes inside code that is specific to the
compiler and will therefore never be invoked when we execute a benchmark or another Java
program. Ideally, we would have liked to exclude code that only regards the compiler from
being probed, but we do not know what parts of the source code in the OpenJDK that only
regards the compiler. Since the number of probes for the OpenJDK may vary depending on
DMCE setup, version of OpenJDK, the machine the probes are inserted on, etc., we used this
same probed OpenJDK, built with OpenJDK version 17.0.6 and DMCE version 1.7.4, for all
our data collection, meaning 192244 is a constant number for all our calculations. Then, us-
ing this probed OpenJDK, we ran the benchmarks and collected "heatmap data", i.e. data on
what probes were executed and how many times. One advantage with this approach is that
we got all of the relevant code instrumented automatically without having to insert any code
manually. Another advantage was that it was easy to collect the data using existing DMCE
commands.
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3. Approach

3.2 Measuring performance
In order to answer RQ1.2(How does the measuring affect execution speed of benchmarks?) we also
built the same version of the OpenJDK without any probes. We then ran all the DaCapo Bach
and DaCapo Chopin benchmarks using both the OpenJDK with probes and the OpenJDK
without probes and collected all the average execution times.

3.3 Collecting DMCE heatmap data
RQ1.3(How stable are our measurements on different executions of the same program?), RQ2(How
much of the JVM code is covered by state of the art benchmark suites?), RQ3(To what degree are our
state of the art benchmarking suites exposing the performance of the JVM?), and RQ4(To what degree
do the different benchmarks exercise different JVM code?) all require heatmap data to be answered.
The heatmap data that we needed to collect was data for both individual benchmarks being
run and the full benchmark suites, i.e. running all benchmarks consecutively in DaCapo Bach
or DaCapo Chopin and then saving the heatmap data. When running the benchmarks, we
always used the option -n 20, which means that each benchmark is executed 19 times and
then one final time, on which the performance is measured. We did this in order to make the
JVM able to use JIT compilation on all methods in the benchmarks that have been executed
enough times during the first 19 iterations of the program. This in turn means that we will
have invoked probes in the OpenJDK source code regarding JIT compilation that we would
not have had, had we only used the default options. In order to collect data regarding the JIT
compilation, we collected DMCE data for all the 20 iterations. This is done automatically
by DMCE, as the binary file will add the number of probe invocations during each iteration
of the benchmark. In the rest of the report, when we mention a benchmark run or an exe-
cution of a benchmark, we mean running a benchmark with the -n 20 option, meaning, for
example, that when we say we used data for 20 different benchmark runs, we mean that a
benchmark has been executed with the -n 20 option 20 times. We also collected heatmap
data from running our own Java programs, Lambda.java, SealedClasses.java, and SwingCom-
ponents.java (see Appendix B). We created Lambda.java as it contains features added in Java 8
[13], SealedClasses.java as it contains features added in Java 17 [7] and SwingComponents.java
as it uses a library that is common in Java programs. All of these programs had a for loop
iterating the entire program 20 times to achieve the same effect as using -n 20 when running
the DaCapo benchmarks. In order to collect all this data, we wrote different bash scripts that
we used.

3.4 Measurement variations
To answer RQ1.3 (How stable are our measurements on different executions of the same program?) we
analyzed heatmap data from different runs of all DaCapo Bach and DaCapo Chopin bench-
marks. We first wrote Python code that, for each benchmark, checked how much each probe’s
number of invocations would vary for different runs of that benchmark. To get an estimate
of how much the JVM code that gets executed varies for different benchmarks, we added all
these numbers for all probes for each benchmark. Then, for each benchmark, we calculated
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the average number of total probe invocations based on the same runs as the variations were
calculated in order to be able to compare against the variation. We also wanted to know a bit
more about how much different probes’ numbers of invocations varied on average. To do this,
we created a plot for each benchmark showing how many probes had a certain percentage of
probe variation using Python.

3.5 Evaluating the DMCE heatmap data
Our approach to answer RQ2(How much of the JVM code is covered by state of the art benchmark
suites?) was to analyze heatmap data received from running all DaCapo Bach and DaCapo
Chopin benchmarks. For both DaCapo Bach and DaCapo Chopin, the amount of probes
invoked at least once was collected for several runs of all individual benchmarks, then for
each benchmark, the minimum and maximum value were collected. Furthermore, for both
DaCapo Bach and DaCapo Chopin, the amount of probes invoked at least once after running
every single benchmark was collected, and this was repeated several times, and minimum
and maximum values were kept. Lastly, based on mean values, percentages of the coverage
were calculated by dividing the mean values with 192244, the total number of probes in our
OpenJDK.

To answer RQ3.1(Are there any parts of the JVM code that get executed by other Java programs
that do not get hit by the benchmarks?) we wrote a Python program which checked if any probes
were invoked by our Java programs but not by any DaCapo Bach or DaCapo Chopin bench-
marks.

We answered RQ3.2(Does the distribution of JVM code executed by the benchmarks reflect that
of other Java programs?) by comparing heatmap data for our own Java programs and the full
DaCapo Bach and DaCapo Chopin benchmark suites. We did this by generating an Excel
document showing probe invocations for all folders using Python.

To answer RQ4(To what degree do the different benchmarks exercise different JVM code?) we
started with writing Python code generating two Excel Documents, one for DaCapo Bach and
one for DaCapo Chopin. These documents show the average number of probe invocations
each directory had for all the different benchmarks.

3.6 Creating a model for our heatmap data
We decided to use scikit-learn’s logistic regression model [4], in order to answer RQ4.1(For
each individual benchmark, what degree of importance do different parts of the JVM code have for that
benchmark?). We used two separate logistic regression models, one for DaCapo Bach and one
for DaCapo Chopin. The models take the number of probe invocations for all probes as input
and predict what benchmark has been executed given these numbers. To train the DaCapo
Bach model, we used the fit function with heatmap data from 360 DaCapo Bach benchmark
runs (40 runs per benchmark), where data from runs 180 (20 runs for each benchmark) were
collected by two machines, see 4.1 for details on these machines. We also noted that lusearch-
fix contains a bugfix for lusearch [5]. This resulted in the model having a hard time telling the
difference between lusearch and lusearch-fix because of their similarities. Therefore, we de-
cided to exclude lusearch from the data used to train the model. In order to train the DaCapo
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Chopin model, we used the fit function with heatmap data from 360 DaCapo Chopin runs
(20 runs per benchmark), all this data was collected on the same machine. We transformed
the heatmap data from the benchmark runs into arrays, where element number j represents
the number of times probe number j was invoked. These arrays were combined to produce
the X-matrix, where each row, i represented a benchmark run. We also gave each benchmark
a number and kept track of what benchmarks were run for all runs and stored the number
for benchmark run number i in the y array as element number i. You could train on this
data directly and get a logistic regression model that can predict, given heatmap data, what
benchmark had been run. However, you can also preprocess the data in X in several ways to
get different predictions. One way we used to check how good different ways of preprocess-
ing the data were was to check how many correct predictions we would get using test sets
we produced. For DaCapo Bach, the test set contained heatmap data from the same number
of runs, collected on the same machines, as we used to train our models, but the runs were
separate from what we used to train our models. The test set for DaCapo Chopin contained
heatmap data for the same number of runs as the training set, but it was collected on the
other machine. The test set was also preprocessed in the same way as the data we had used to
train our model had been preprocessed. Then, for each run in the test set, we predicted what
benchmark had been executed using our models and compared it against our validation set,
containing the correct answer to what benchmark had been executed. The only way of pre-
processing that we tried that got 100% correct predictions for all DaCapo Bach and DaCapo
Chopin benchmark runs in the test set was first adding 1 to each element in the X-matrix
and then using its 10 logarithmic value instead, and lastly normalizing each row in the ma-
trix using sklearn.preprocessing.normalize with norm=max. The other ways of preprocessing
data also had a high prediction rate, and not preprocessing the data at all had 99.4% correct
predictions. We believe that first transforming the data to logarithmic values is good as it
makes differences in smaller values have a higher importance than for larger values, for exam-
ple, the difference from 1 to 100 will be valued higher than the difference from 1000000 to
2000000 when using logarithmic values, which we believe is good for our case. Normalizing
the data is also good, as it removes any possible data redundancy and minimizes possible data
modification errors. With all this in mind, we decided to use this way of preprocessing X .
Given this, we used the coefficient matrix received by using the coef_ attribute in the logistic
regression models to tell how each probe’s number of invocations affect the likelihood of all
all different benchmarks being predicted.

3.7 Identifying important parts of the JVM
code

To answer RQ4.1 (For each individual benchmark, what degree of importance do different parts of
the JVM code have for that benchmark?) we first have to answer the question: what makes parts
of the JVM code important for a certain benchmark? To answer this question we start by di-
viding the JVM Code into lines represented by the probes. We consider a specific line to be
important for a benchmark if that line has significantly more invocations for that benchmark
than for others. The coefficients in the coefficient matrices, received from our logistic regres-
sion models, tells us this exactly, the probe with the highest coefficient will be the probe that
has the highest number of probe invocations in relation to the number of probe invocations
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3.7 Identifying important parts of the JVM code

for all other benchmarks.
In order to answer RQ4.2(To what degree are different parts of the JVM code heavily exercised

by all benchmarks?) we first analyzed which probes had the same number of invocations for all
benchmarks for both DaCapo Bach and DaCapo Chopin. Then we aggregated these probes’
number of invocations to their corresponding directories. This gave us a result that told
us how many invocations, only counting probes with an equal number of invocations, each
directory had.
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Chapter 4

Evaluation

In this chapter, we will discuss the results we got from the approach we took and also the
details of the machines that gathered the results. The main goal of the evaluation is to present
our results, then discuss how we can answer our research questions with them and the threats
to validity we found.

4.1 Experimental setup
The experimental setup involved two identical virtual machines provided by Ericsson. All
the heatmap data was collected after running benchmarks or our own Java programs on these
machines.

For the DMCE setup, clang-check15 and DMCE release 1.7.4 is used to gather as many
probes as possible. The OpenJDK used is the OpenJDK 17.0.6+10 release. The virtual ma-
chines have Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-25-generic x86_64) as operating system.
They are running on machines with the CPU model Intel(R) Xeon(R) CPU E5-2670, which
have a frequency of 2.60 GHz and 16 cores. The virtual machines have access to at most 4
of these cores at a time and have 15.6 GB of RAM available in total. The JVM in our built
OpenJDK has a maximum heap size of 3.9 GB on the virtual machines.

4.2 Results
To answer RQ1.2(How does the measuring affect execution speed of benchmarks?) we ran every
DaCapo Bach and DaCapo Chopin benchmarks 20 times each using both the probed and
unprobed OpenJDK and collected the execution times for several runs on the same machine.
We then used these times to calculate an average execution time for each benchmark and 95%
confidence interval for the execution times, this we did for both the probed and unprobed
OpenJDK. See 4.1 and 4.2.
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Table 4.1: Execution times of DaCapo Bach benchmarks for both
probed and unprobed OpenJDK, and the percentile slowdown for
the probed version (negative if the probed version is faster). The
table also includes the confidence interval with a confidence level
of 95%, the maximum and minimum slowdown based on the con-
fidence intervals is also shown. (*The slowdown use the geometric
average of the other benchmarks)

avrora fop h2 jython luindex lusearch
Average Unprobed Times (ms) 22121.7 604.0 6722.2 2830.3 1230.1 1215.0
Average Probed Times (ms) 27045.1 657.5 6325.3 3357.9 1354.8 1826.9
Average Percentage Slowdown 22.26% 8.85% −5.90% 18.64% 10.14% 50.36%

Unprobed Confidence Interval (ms) 21161.0 563.8 6500.4 2785.3 1160.9 1192.4
23082.3 644.2 6943.9 2875.3 1299.2 1237.6

Probed Confidence Interval (ms) 26042.3 638.1 6081.8 3289.5 1259.7 1765.9
28047.8 676.8 6568.8 3426.4 1449.9 1887.8

Min-Max Percentage Slowdown 32.55% 20.04% 1.05% 23.02% 24.90% 58.32%
12.82% −0.95% −12.41% 14.41% −3.04% 42.68%

lusearch-fix pmd sunflow xalan average
Average unprobed Times (ms) 1188.8 2154.3 2447.2 1253.0 4176.6
Average Probed Times (ms) 1769.8 2765.6 3093.6 1447.8 4964.4
Average Percentage Slowdown 48.87% 28.37% 26.42% 15.55% *21.25%

Unprobed Confidence Interval (ms) 1167.0 2081.4 2368.4 1203.9 4018.4
1210.6 2227.2 2526 1302.1 4334.9

Probed Confidence Interval (ms) 1739.7 2684.0 3033.5 1396.9 4793.1
1799.9 2847.1 3154 1498.7 5135.7

Min-Max Percentage Slowdown 54.24% 36.79% 33.17% 24.49% *29.90%
43.70% 20.51% 20.09% 7.28% *13.20%
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Table 4.2: Execution times of DaCapo Chopin benchmarks for both
probed and unprobed OpenJDK, and the percentile slowdown for
the probed version. The table also includes the confidence interval
with a confidence level of 95%, the maximum and minimum slow-
down based on the confidence intervals is also shown. (*The slow-
down use the geometric average of the other benchmarks)

avrora batik biojava eclipse fop
Unprobed Times (ms) 35757.6 3008.5 23891.0 33049.3 1595.2
Probed Times (ms) 48198.0 3623.0 24045.3 35715.1 2042.3
Percentage Slowdown 34.79% 20.42% 0.65% 8.07% 28.03%
Unprobed Confidence Interval (ms) 33884.0 2920.8 23712.8 32463.2 1571.2

37631.1 3096.2 24069.2 33635.4 1619.2
Probed Confidence Interval (ms) 47376.9 3584.5 23967.2 35458.2 2031.8

49019.1 3661.4 24123.4 35971.9 2052.8
Min-Max Percentage Slowdown 44.67% 25.35% 1.73% 10.81% 30.66%

25.90% 15.77% −0.42% 5.42% 25.48%
graphchi h2 h2o jme jython

Unprobed Times (ms) 15182.1 6399.1 12602.8 7256.9 7642.2
Probed Times (ms) 19411.6 6813.3 12301.1 7712.7 9671.4
Percentage Slowdown 27.86% 6.47% −2.39% 6.28% 26.55%
Unprobed Confidence Interval (ms) 14971.5 6111.5 12142.7 7219.1 7507.0

15392.6 6686.6 13062.8 7294.6 7777.4
Probed Confidence Interval (ms) 19319.3 6687.3 12099.4 7696.1 9612.1

19503.9 6939.3 12502.7 7729.2 9730.6
Min-Max Percentage Slowdown 30.27% 13.54% 2.96% 7.07% 29.62%

25.51% 0.01% −7.38% 5.50% 23.59%
luindex lusearch pmd spring sunflow

Unprobed Times (ms) 11965.8 19096.5 5591.8 14740.5 19267.5
Probed Times (ms) 11580.3 19147.2 8126.7 16062.9 23330.7
Percentage Slowdown −3.22% 0.27% 45.33% 8.97% 21.09%
Unprobed Confidence Interval (ms) 11727.0 18690.1 5370.0 14465.0 18693.3

12204.5 19502.9 5813.5 15015.9 19841.7
Probed Confidence Interval (ms) 11475.6 18969.1 8029.5 15942.2 23079.0

11684.9 19325.3 8223.9 16183.6 23582.4
Min-Max Percentage Slowdown −0.36% 3.40% 53.15% 11.88% 26.15%

−5.57% −2.74% 38.12% 6.17% 16.32%
tomcat xalan zxing average

Unprobed Times (ms) 38706.2 6874.6 7385.5 15000.7
Probed Times (ms) 41395.0 7440.1 9834.0 17025.0
Percentage Slowdown 6.95% 8.23% 33.15% *14.58%
Unprobed Confidence Interval (ms) 38396.7 6690.4 7149.8 14649.2

39015.6 7058.7 7621.2 15352.2
Probed Confidence Interval (ms) 41259.3 7359.3 9730.7 16871.0

41530.6 7520.8 9937.3 17179.1
Min-Max Percentage Slowdown 8.16% 12.41% 38.99% *18.51%

5.75% 4.26% 27.68% *10.85%
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4. Evaluation

To answer RQ1.3 (How stable are our measurements on different executions of the same pro-
gram?) we analyzed heatmap data from 20 different runs of all DaCapo Bach and DaCapo
Chopin benchmarks. First, we wrote Python code that, for each benchmark, checked how
much each probe’s number of invocations would vary for different runs. This was done by
comparing the number of probe invocations for all possible pairs of runs for a benchmark,
where a possible pair is, for example, run number 1 and run number 2. Given 20 runs which
we had for each benchmark, we could create

(
20
2

)
= 190 number of pairs for each benchmark.

For each probe, we added the difference of probe invocations for all possible pairs, and then
divided by the number of pairs, 190. By doing this, we got an estimate of how much each
probe’s number of invocations would vary on average. To get an estimate of how much the
JVM code that gets executed varies for different benchmarks we added all these numbers for
all probes for each benchmark. Then, for each benchmark, we calculated the average number
of total probe invocations based on the same 20 runs as the variations were calculated, in
order to be able to compare against the variation. The results from this can be seen in 4.3
and 4.4. All the data used to produce these tables was collected on the same machine.

Table 4.3: The average total number of probe invocations and the
average variations for the number of invocations for DaCapo Bach.
The percentages of the average number of probe invocations that
varies is also shown

avrora fop h2 jython
Average probe invocations 3181923199.5 5481397634.1 12629513326.4 15898056286.3
Average probe variation 145192479.1 249019260.4 756858448.0 1093660699.0
Percentage 4.56% 4.54% 5.99% 6.88%

luindex lusearch lusearch-fix pmd
Average probe invocations 3344329049.2 4351301627.1 4424622432.4 15587484381.6
Average probe variation 219457749.7 418370144.4 383476702.1 932686630.6
Percentage 6.56% 9.61% 8.67% 5.98%

sunflow xalan
Average probe invocations 5554413737.4 9056625827.4
Average probe variation 262010965.2 711095627.1
Percentage 4.72% 7.85%
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4.2 Results

Table 4.4: The average total number of probe invocations and the av-
erage variations for the number of invocations for DaCapo Chopin.
The percentages of the average number of probe invocations that
varies is also shown

avrora batik biojava eclipse
Average probe invocations 4765682213.9 9463672238.2 3713944553.4 81275756431.5
Average probe variation 193704804.8 951911642.8 188593948.0 3419337444.1
Percentage 4.06% 10.06% 5.08% 4.21%

fop graphchi h2 h2o
Average probe invocations 15832968792.5 14311784501.4 19368821546.2 22003813066.9
Average probe variation 563707616.4 244697791.0 1506900734.4 1711119381.1
Percentage 3.56% 1.71% 7.78% 7.78%

jme jython luindex lusearch
Average probe invocations 5047796547.7 35312533978.4 7872287266.6 8688996106.1
Average probe variation 227699083.2 1396043582.39 524513142.1 699090156.3
Percentage 4.51% 3.95% 6.66% 8.05%

pmd spring sunflow tomcat
Average probe invocations 42155531491.9 60630586543.4 34978523971.4 50509264373.8
Average probe variation 1304857786.7 2601593864.0 1169258297.5 2505911317.6
Percentage 3.10% 4.29% 3.34% 4.96%

xalan zxing
Average probe invocations 10307077601.7 20776158719.7
Average probe variation 578644499.4 804979306.0
Percentage 5.61% 3.87%

In order to further answer RQ1.3 (How stable are our measurements on different executions of
the same program?) we also wanted to know a bit more about how different probes’ number
of invocations varied on average. To do this, using the same heatmap data used to produce
table 4.3 and 4.4, we created a plot for each benchmark. On the y-axis, we had the average
percentage invocation variance for a probe, and on the x-axis, we had the percentage of all
probes that had at least one invocation in any run of the benchmark. We decided to exclude
the probes that only had zero invocations for all runs because they only represent code that
never gets executed by that benchmark, and we are interested in how the number of probe
invocations varies for code that gets executed by the benchmark. To explain the meaning of a
plot, say, for example, that a plot would pass through (10, 25), that would mean that for that
benchmark, 10% of the probes invoked at least once have an average percentage invocation
variance of 25% or more. The resulting plots are found in figure 4.1 and 4.2.
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4. Evaluation

Figure 4.1: Plots what percentage of probes have a certain number
of invocation variation percentage on average for all DaCapo Bach
benchmarks
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4.2 Results

Figure 4.2: Plots what percentage of probes have a certain number of
invocation variation percentage on average for all DaCapo Chopin
benchmarks

0 20 40 60 80 100
Percentage of probes

0

25

50

75

100

125

150

175

200

Pe
rc

en
ta

ge
 o

f a
ve

ra
ge

 in
vo

ca
tio

n 
va

ria
tio

n 
fo

r p
ro

be

DaCapo Chopin
avrora
batik
biojava
eclipse
fop
graphchi
h2
h2o
jme
jython
luindex
lusearch
pmd
spring
sunflow
tomcat
xalan
zxing

To answer RQ2(How much of the JVM code is covered by state of the art benchmark suites?)
we collected the number of unique probes invoked for 80 runs of every single benchmark
for both DaCapo Bach and DaCapo Chopin and calculated the averages. Data from 40 of
the 80 runs were collected on one machine and 40 from the other for both DaCapo Bach
and DaCapo Chopin. We also, for both DaCapo Bach and DaCapo Chopin, collected the
amount of unique probes invoked after running every benchmark consecutively and repeated
this 20 times. All of this data collection was done on one machine. From these 20 values, we
collected the minimum and maximum amount of unique probes invoked for both DaCapo
Bach and DaCapo Chopin. Lastly, for all the benchmarks’ values and the values for running
all benchmarks in DaCapo Bach and DaCapo Chopin, averages were calculated and used to
calculate what percentage of probes were invoked at least once, see table 4.5 for DaCapo Bach
and table 4.6 for DaCapo Chopin.
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Table 4.5: Coverage data from heatmap data for DaCapo Bach
benchmarks, where the maximum and minimum of probes invoked
at least once is shown for every benchmark. The average coverage
shows the mean number of probes invocated at least on for all runs
of the benchmarks divided by the total number of probes, 192244,
resulting in average coverage percentages for all benchmarks. The
"all benchmarks" column refers to runs where all the benchmarks
has been run consecutively

avrora fop h2 jython luindex lusearch
maximum 42884 44815 44619 45701 44366 43469
minimum 41954 43930 44425 45424 43407 43192
average coverage(%) 21.97 23.00 23.17 23.71 22.98 22.54

lusearch-fix pmd sunflow xalan all benchmarks
maximum 43485 45214 42691 43880 48620
minimum 43134 44235 41964 43740 48482
average coverage(%) 22.53 23.43 21.99 22.79 25.25

Table 4.6: Coverage data from heatmap data for DaCapo Chopin
benchmarks, where the maximum and minimum of probes invoked
at least once is shown for every benchmark. The average coverage
shows the mean number of probes invocated at least on for all runs
of the benchmarks divided by the total number of probes, 192244,
resulting in average coverage percentages for all benchmarks. The
"all benchmarks" column refers to runs where all the benchmarks
has been run consecutively

avrora batik biojava eclipse fop
maximum 42859 45882 44848 48178 47219
minimum 41886 45627 43948 47948 46808
average coverage(%) 21.88 23.81 23.20 25.0 24.48

graphchi h2 h2o jme jython
maximum 44679 44453 48953 45881 46903
minimum 44325 44263 48489 45546 46502
average coverage(%) 23.12 23.07 25.35 23.82 24.29

luindex lusearch pmd spring sunflow
maximum 44833 45790 47665 49068 42228
minimum 44021 45374 47122 48909 41815
average coverage(%) 23.27 23.72 24.65 25.46 21.86

tomcat xalan zxing all benchmarks
maximum 48388 44378 46624 54092
minimum 48199 44183 45743 53985
average coverage(%) 25.12 23.05 24.05 28.10

To answer RQ3.1(Are there any parts of the JVM code that get executed by other Java programs
that do not get hit by the benchmarks?) we started with writing a Python program which checks
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4.2 Results

if any probes were hit by our Java programs but not by any DaCapo Bach or DaCapo Chopin
benchmarks. This analysis was performed on the average values of 20 runs for each program
and 20 full DaCapo Bach and DaCapo Chopin runs, the result can be found in table 4.7 and
4.8. To get an understanding of where these probes are located, using Python, we created lists
of what files the probes were located in, resulting in: 4.9 and 4.10. We also wanted to know
which of these files that had no probes in them invoked by any benchmark, we wrote Python
code that calculated this and marked these files with an asterisk in the tables. All the data
used to create these tables was collected on the same machine.

Table 4.7: Unique number of probes and total probe invocations for
all probes hit by program but not by any DaCapo Bach benchmarks

Program Unique Number Probes Total Average Probe Invocations
Lambda.java 90 105.25
SealedClasses.java 90 105.25
SwingComponents.java 313 2402.90

Table 4.8: Unique number of probes and total probe invocations for
all probes hit by program but not by any DaCapo Chopin bench-
marks

Program Unique Number Probes Total Average Probe Invocations
Lambda.java 2 2
SealedClasses.java 2 2
SwingComponents.java 141 2096

Table 4.9: Files containing probes hit by Java programs but not by
any DaCapo Bach benchmark (*This file was exclusively hit by the
program)

Lambda SealedClasses SwingComponents
src/hotspot/share/ci/ciInstance.cpp x
src/hotspot/share/ci/ciMethodData.cpp x
src/hotspot/share/memory/universe.cpp x x x
src/hotspot/share/oops/accessBackend.cpp x
src/hotspot/share/prims/jni.cpp x x x
src/hotspot/share/runtime/synchronizer.cpp x x x
src/hotspot/share/runtime/thread.cpp x x x
src/hotspot/share/runtime/vmThread.cpp x x x
src/hotspot/share/services/threadService.cpp x x x
src/java.base/share/native/libjli/java.c x x x
src/java.base/share/native/libnet/net_util.c x
src/java.base/unix/native/libjli/java_md.c x x x
src/java.base/unix/native/libnet/Inet6AddressImpl.c * x
src/java.desktop/share/native/libfontmanager/DrawGlyphList.c * x
src/java.desktop/share/native/libfontmanager/freetypeScaler.c * x
src/java.desktop/share/native/libfontmanager/sunFont.c * x
src/java.desktop/unix/native/common/awt/fontpath.c * x
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Table 4.10: Files containing probes hit by Java programs but not by
any DaCapo Chopin benchmark (*This file was exclusively hit by
the program

Lambda SealedClasses SwingComponents
src/hotspot/share/oops/accessBackend.cpp x
src/hotspot/share/prims/jni.cpp x
src/java.base/share/native/libjli/java.c x x x
src/java.desktop/share/native/libfontmanager/freetypeScaler.c * x
src/java.desktop/share/native/libfontmanager/sunFont.c x
src/java.desktop/unix/native/common/awt/fontpath.c x

To answer RQ3.2(Does the distribution of JVM code executed by the benchmarks reflect that
of other Java programs?) we compared the heatmap data for our own Java programs, the full
DaCapo Bach and DaCapo Chopin benchmark suites. We did this using Python code that
generated an Excel document showing how many probe invocations each directory had on
average for 20 full DaCapo Bach runs, 20 full DaCapo Chopin runs, 20 Lambda.java runs,
20 SealedClasses.java runs, and 20 SwingComponents.java runs. The cells were color coded
in a way such that for each benchmark suite or program, the directory with the maximum
number of probe invocations is black and directories with zero probe invocations are white,
and all other directories are colored using a logarithmic scale. We sorted each row in the
document based on the total number of probe invocations for the rows starting with the
most invocations, the full document can be found published here [1]. We created an excerpt
showing the first 15 rows from this document. These rows contain 97.6% of the total number
of probe invocations, see 4.3. All the data used to create this figure was collected on the same
machine.
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4.2 Results

Figure 4.3: An excerpt of the Excel document showing average num-
ber of probe invocations for directories after running the DaCapo
benchmark suites or our Java programs

DaCapo Bach DaCapo Chopin Lambda SealedClasses SwingComponents

src/hotspot/share/opto/ 51,128,546,281 299,211,224,209 27,136,479 28,320,477 69,531,323

src/java.base/share/native/libfdlibm/ 3,882,928,370 32,981,249,219 0 0 0

src/hotspot/share/runtime/ 7,600,642,300 16,818,060,280 2,346,575 2,340,525 4,631,542

src/hotspot/share/code/ 3,638,621,999 20,231,020,687 1,461,159 1,434,388 3,681,075

src/hotspot/share/gc/shared/ 1,807,535,578 12,913,296,073 270,125 271,088 765,786

src/hotspot/share/c1/ 2,710,843,003 11,576,809,845 11,365,492 10,987,589 28,891,065

src/hotspot/share/gc/g1/ 1,079,912,641 8,335,316,009 102,340 101,959 157,235

src/hotspot/share/classfile/ 3,351,679,554 5,428,827,239 1,825,668 1,821,723 4,207,544

src/java.base/unix/native/libnio/ch/ 5,396 8,565,366,761 438 438 935

src/hotspot/share/oops/ 618,718,453 5,804,698,906 3,369,660 3,366,733 6,718,972

src/hotspot/share/ci/ 694,469,087 3,944,923,492 1,125,501 1,112,838 2,878,369

src/java.base/share/native/libjava/ 416,748,600 2,979,190,791 23,887 24,351 135,577

src/hotspot/share/memory/ 739,612,136 2,255,696,179 1,344,266 1,337,764 2,871,480

src/hotspot/share/utilities/ 415,545,569 2,293,752,160 768,757 751,895 1,749,918

src/hotspot/share/libadt/ 395,420,407 2,204,424,076 510,888 515,903 1,124,283

For RQ4(To what degree do the different benchmarks exercise different JVM code?) we compiled
the information we got from 80 DaCapo Bach runs and 80 Chopin runs to create Excel
tables that show how many invocations each folder in the OpenJDK gets on average for the
benchmarks. Data for 40 of these 80 runs were collected on one machine and the other 40
on the other machine, for both DaCapo Bach and DaCapo Chopin. The cells are also colored
using the same coloring method we used for 4.3. Using Excel, we also sorted the benchmarks
depending on the total invocations for the folders. The data for DaCapo Bach can be seen
in 4.4 and this shows an excerpt of the whole Excel document. For DaCapo Chopin, see 4.5,
in this case, DaCapo Chopin had too many columns to present them all in one row, hence
the repeating folders. The figure shows the top ten folders in regards to the highest amount
of invocations for the folder across all benchmark runs. For DaCapo Bach, the invocations
shown represent 96.3% of all invocations, while the top ten in DaCapo Chopin represent
96.4% of all its invocations. The full Excel table and calculations can be found published
here [1].
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Figure 4.4: An excerpt of the Excel document that shows the number
of invocations for every folder in the OpenJDK depending on the
benchmark from DaCapo Bach

avrora fop h2 jython luindex lusearch lusearch-fix pmd sunflow xalan

src/hotspot/share/opto/ 1,374,939,543 4,579,074,973 4,709,589,787 11,894,421,629 2,872,921,571 766,490,142 766,438,412 11,591,794,674 3,864,694,842 7,588,489,888

src/java.base/share/native/libjava/ 82,238,378 147,284,975 7,141,653,956 326,645,578 32,478,179 661,945,004 658,876,121 909,103,337 1,316,018,026 132,701,737

src/hotspot/share/code/ 68,220,267 36,612,758 57,009,386 248,511,037 23,904,016 1,629,055,353 1,630,300,143 189,829,016 48,822,668 208,033,660

src/hotspot/share/libadt/ 1,190,732,443 35,303,022 392,122,857 663,725,610 66,807,608 163,584,350 163,524,119 835,629,151 63,899,566 57,996,479

src/hotspot/share/runtime/ 12,174,837 59,508,173 175,952,344 781,144,977 19,090,869 469,374,522 469,412,560 526,732,033 11,638,425 209,443,029

src/hotspot/share/ci/ 20,869,904 324,782,012 100,657,345 1,051,445,932 34,233,048 48,567,878 49,661,067 115,957,454 27,528,863 92,800,260

src/hotspot/share/gc/shared/ 14,898,031 66,326,370 81,159,122 116,093,454 33,361,223 241,227,931 242,413,715 112,720,074 106,673,236 83,503,262

src/hotspot/share/utilities/ 37,371,368 44,198,246 48,697,629 197,808,762 15,339,890 105,388,343 105,361,138 353,463,815 12,361,800 36,241,571

src/hotspot/share/memory/ 13,223,454 13,687,336 270,466,564 157,452,878 21,101,130 25,672,631 25,026,551 129,419,129 11,501,720 46,816,128

src/hotspot/share/oops/ 25,480,463 26,988,206 13,317,184 133,409,142 3,047,229 4,822,309 4,829,799 337,184,390 7,054,839 38,292,170

Figure 4.5: An excerpt of the Excel document that shows the number
of invocations for every folder in the OpenJDK depending on the
benchmark from DaCapo Chopin

avrora batik biojava eclipse fop graphchi h2 h2o jme

src/hotspot/share/code/ 2,368,574,270 6,395,774,793 202,324,810 72,005,276,580 13,198,775,169 3,857,536,695 13,819,972,898 18,862,753,722 436,676,248

src/hotspot/share/runtime/ 140,019,983 1,652,093,796 2,338,688,864 1,024,968,934 416,254,014 8,400,857,694 1,869,231,324 378,673,012 2,794,186,281

src/hotspot/share/opto/ 165,302,477 280,766,443 253,602,480 1,226,677,366 99,008,835 315,964,796 1,115,252,001 125,599,024 1,210,942,621

src/hotspot/share/gc/g1/ 1,542,370,409 51,731,998 37,419,523 385,527,086 855,235,810 20,057,692 101,015,869 260,383,142 25,503,435

src/hotspot/share/utilities/ 83,469,978 46,469,273 325,713,208 396,576,755 147,914,335 76,022,978 453,658,506 439,044,795 26,217,548

src/hotspot/os_cpu/linux_x86/ 27,497,322 80,639,097 91,625,747 523,993,976 97,167,631 1,301,592,083 780,603,328 123,659,462 151,697,749

src/java.base/share/native/libjava/ 31,126,300 16,487,139 14,943,616 673,242,494 71,881,539 4,983,326 37,743,103 36,065,423 14,911,356

src/hotspot/share/gc/shared/ 21,851,410 170,213,780 113,783,457 1,292,821,939 179,691,891 13,911,240 144,391,226 802,457,557 39,273,276

src/hotspot/share/libadt/ 73,323,763 101,084,744 21,310,997 2,323,995,690 171,140,980 104,644,224 76,314,097 153,095,456 44,326,392

src/hotspot/share/classfile/ 29,765,334 121,359,014 85,195,340 369,068,706 52,817,516 15,208,280 376,701,887 212,147,899 176,786,191

jython luindex lusearch pmd spring sunflow tomcat xalan zxing

src/hotspot/share/code/ 26,644,177,792 6,995,035,836 6,595,209,415 35,419,341,709 42,492,137,499 32,591,662,631 6,628,335,015 6,876,116,005 5,037,455,160

src/hotspot/share/runtime/ 2,037,311,382 62,261,087 550,754,274 540,171,940 6,117,203,832 1,745,306,704 31,201,726,688 696,280,095 4,049,069,212

src/hotspot/share/opto/ 1,926,824,476 120,281,813 410,851,554 677,839,855 4,697,585,658 177,856,533 1,662,565,621 522,340,739 9,250,735,846

src/hotspot/share/gc/g1/ 250,281,761 32,372,322 54,947,733 232,488,969 951,955,870 16,506,147 1,257,237,308 302,055,286 209,504,318

src/hotspot/share/utilities/ 484,413,249 43,749,805 149,213,477 1,210,104,144 363,402,012 72,877,563 892,043,265 595,955,403 154,652,848

src/hotspot/os_cpu/linux_x86/ 595,393,815 90,168,676 69,381,050 265,546,490 308,524,176 66,562,454 847,237,162 106,579,663 276,160,715

src/java.base/share/native/libjava/ 90,829,052 27,843,349 227,940,068 980,099,939 1,461,168,203 3,012,880 1,634,387,464 93,268,983 182,743,925

src/hotspot/share/gc/shared/ 191,428,830 25,878,291 23,562,453 1,122,446,173 298,459,807 15,335,822 416,243,643 324,978,090 145,763,457

src/hotspot/share/libadt/ 745,457,198 213,876,629 48,747,552 375,695,917 431,204,008 19,327,891 260,327,422 90,028,323 79,733,202

src/hotspot/share/classfile/ 1,286,635,642 75,697,814 36,154,878 207,022,887 211,599,227 39,505,538 1,418,028,921 121,041,815 66,523,633

To answer RQ4.1 (For each individual benchmark, what degree of importance do different parts
of the JVM code have for that benchmark?) we wrote Python code that analyzed the coefficient
matrices from the logistic regression models for both DaCapo Bach and DaCapo Chopin.
This code created a text file for each benchmark where all lines of code, represented by a
probe, and their coefficients were printed in order of the coefficients, with the highest coef-
ficient first. We took the top three lines of code and their coefficients from each of these files
and put them into 4.11, 4.12, and 4.13.
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Table 4.11: Top three lines of codes and their coefficients, based on
their coefficients received from the coefficient matrix in the logistic
regression model for DaCapo Bach

avrora line of code coefficient
src/hotspot/share/runtime/objectMonitor.cpp:1714 0.03970
src/hotspot/share/runtime/objectMonitor.cpp:1713 0.03970
src/hotspot/share/runtime/objectMonitor.cpp:1710 0.03970

fop line of code coefficient
src/hotspot/share/oops/method.cpp:1854 0.05493
src/hotspot/share/oops/method.cpp:1864 0.05472
src/hotspot/share/oops/method.cpp:1855 0.05472

h2 line of code coefficient
src/hotspot/os/posix/os_posix.cpp:1470 0.03590
src/hotspot/os/posix/os_posix.cpp:1468 0.03590

src/hotspot/share/gc/g1/sparsePRT.cpp:320 0.03255
jython line of code coefficient

src/hotspot/share/oops/methodData.cpp:425 0.04591
src/hotspot/share/oops/methodData.cpp:426 0.04469
src/hotspot/share/oops/methodData.cpp:427 0.04469

luindex line of code coefficient
src/java.base/unix/native/libjava/UnixFileSystem_md.c:265 0.03913

src/java.base/share/native/libjava/io_util.c:219 0.03633
src/java.base/share/native/libjava/io_util.c:186 0.03633

lusearch-fix line of code coefficient
src/hotspot/share/opto/runtime.cpp:1419 0.04791
src/hotspot/share/opto/runtime.cpp:1423 0.04791
src/hotspot/share/opto/runtime.cpp:1427 0.04791

pmd line of code coefficient
src/java.base/share/native/libjava/System.c:76 0.03697

src/hotspot/share/classfile/systemDictionary.cpp:1276 0.03546
src/hotspot/share/gc/g1/g1RemSet.cpp:1816 0.03365

sunflow line of code coefficient
src/java.base/share/native/libfdlibm/e_sqrt.c:188 0.03961
src/java.base/share/native/libfdlibm/e_sqrt.c:200 0.03960
src/java.base/share/native/libfdlibm/e_sqrt.c:201 0.03959

xalan line of code coefficient
src/hotspot/share/runtime/synchronizer.cpp:705 0.04558
src/hotspot/share/runtime/synchronizer.cpp:704 0.04558
src/hotspot/share/runtime/synchronizer.cpp:936 0.04444
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Table 4.12: Top three lines of codes and their coefficients, based on
their coefficients received from the coefficient matrix in the logistic
regression model for DaCapo Chopin

avrora line of code coefficient
src/hotspot/share/runtime/objectMonitor.cpp:1714 0.03669
src/hotspot/share/runtime/objectMonitor.cpp:1713 0.03669
src/hotspot/share/runtime/objectMonitor.cpp:1710 0.03669

batik line of code coefficient
src/hotspot/share/gc/shared/referenceProcessor.cpp:1064 0.02557

src/java.desktop/share/native/libawt/java2d/loops
/GraphicsPrimitiveMgr.c:521 0.02507

src/java.desktop/share/native/libawt/java2d/loops/MaskFill.c:113 0.02507
biojava line of code coefficient

src/java.base/share/native/libjava/io_util.c:159 0.03858
src/java.base/share/native/libjava/io_util.c:157 0.03858
src/java.base/share/native/libjava/io_util.c:150 0.03858

eclipse line of code coefficient
src/java.base/share/native/libjava/io_util.c:68 0.03034

src/java.base/unix/native/libnio/fs/UnixNativeDispatcher.c:893 0.02595
src/java.base/share/native/libjava/io_util.c:62 0.02582

fop line of code coefficient
src/hotspot/share/oops/method.cpp:1854 0.03160
src/hotspot/share/oops/method.cpp:1864 0.03152
src/hotspot/share/oops/method.cpp:1855 0.03152

graphchi line of code coefficient
src/hotspot/share/oops/typeArrayKlass.cpp:120 0.03824
src/hotspot/share/oops/objArrayKlass.cpp:202 0.03624
src/hotspot/share/oops/objArrayKlass.cpp:204 0.03621

h2 line of code coefficient
src/hotspot/os/posix/os_posix.cpp:1478 0.04460
src/hotspot/os/posix/os_posix.cpp:1479 0.04459
src/hotspot/os/posix/os_posix.cpp:1476 0.04459

h2o line of code coefficient
src/java.base/share/native/libfdlibm/s_log1p.c:201 0.05676
src/java.base/share/native/libfdlibm/s_log1p.c:170 0.05675
src/java.base/share/native/libfdlibm/s_log1p.c:166 0.05674

jme line of code coefficient
src/hotspot/share/utilities/copy.cpp:280 0.02886
src/hotspot/share/utilities/copy.cpp:279 0.02886

src/java.desktop/share/native/libjavajpeg/jdcoefct.c:308 0.02722
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Table 4.13: Top three lines of codes and their coefficients, based on
their coefficients received from the coefficient matrix in the logistic
regression model for DaCapo Chopin

jython line of code coefficient
src/hotspot/share/gc/shared/referenceProcessor.cpp:436 0.03602
src/hotspot/share/gc/shared/referenceProcessor.cpp:434 0.03601
src/hotspot/share/gc/shared/referenceProcessor.cpp:444 0.03586

luindex line of code coefficient
src/java.base/unix/native/libnio/ch/FileDispatcherImpl.c:137 0.04396
src/java.base/unix/native/libnio/ch/FileDispatcherImpl.c:134 0.04396

src/java.base/unix/native/libnio/fs/UnixNativeDispatcher.c:893 0.02543
lusearch line of code coefficient

src/java.base/unix/native/libnio/ch/FileChannelImpl.c:86 0.03853
src/java.base/unix/native/libnio/ch/FileChannelImpl.c:85 0.03853

src/java.base/unix/native/libnio/ch/FileChannelImpl.c:166 0.03853
pmd line of code coefficient

src/hotspot/share/runtime/reflection.cpp:388 0.03767
src/hotspot/share/classfile/javaClasses.cpp:2954 0.03687
src/hotspot/share/classfile/javaClasses.cpp:2949 0.03687

spring line of code coefficient
src/hotspot/share/runtime/reflection.cpp:247 0.04704
src/hotspot/share/runtime/reflection.cpp:251 0.04704
src/hotspot/share/runtime/reflection.cpp:252 0.04704

sunflow line of code coefficient
src/java.base/share/native/libfdlibm/e_sqrt.c:200 0.04206
src/java.base/share/native/libfdlibm/e_sqrt.c:201 0.04205
src/java.base/share/native/libfdlibm/e_sqrt.c:188 0.04205

tomcat line of code coefficient
src/hotspot/share/interpreter/bytecodeUtils.cpp:410 0.03917
src/hotspot/share/interpreter/bytecodeUtils.cpp:385 0.03906
src/hotspot/share/interpreter/bytecodeUtils.cpp:417 0.03851

xalan line of code coefficient
src/java.base/share/native/libjava/io_util.c:69 0.03287
src/java.base/share/native/libjava/io_util.c:72 0.03287
src/java.base/share/native/libjava/io_util.c:62 0.03257

zxing line of code coefficient
src/java.desktop/share/native/libawt/java2d/loops/TransformHelper.c:498 0.03200

src/java.base/share/native/libjava/RandomAccessFile.c:108 0.03128
src/java.desktop/share/native/libawt/java2d/loops/TransformHelper.c:225 0.03057

Looking at the text files from which 4.11, 4.12, and 4.13 were created, we could conclude
that most of the lines having the highest importance for a benchmark were located in the
same files. This made us come to the conclusion that we would like to aggregate the impor-
tance for each line of code based on the file that line is in. The way we did this was that for
each benchmark, we would go through all probes and check what file that probe was located
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in. If the coefficient had a positive value for that probe and benchmark, we would add the
coefficient to a value that is unique for that file and benchmark. We ignored negative coef-
ficients, a negative coefficient implies that the probe having a high number of invocations
will decrease the chances of predicting a certain benchmark, this does not, however, mean
that the probe decreases the importance of a file in regards to that benchmark. Using these
unique values for each benchmark and all the files, we created text files for each benchmark
containing the files and their aggregated coefficients, sorted by the aggregated coefficients.
From each of these text files we took the top three files and created tables: 4.14, 4.15, and
4.16.
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Table 4.14: Top three files and their aggregated coefficients, based
on their aggregated coefficients for DaCapo Bach

avrora file aggregated coefficient
src/hotspot/share/runtime/objectMonitor.cpp 4.42895

src/java.base/share/native/libverify/check_code.c 2.06105
src/hotspot/share/opto/superword.cpp 1.15139

fop file aggregated coefficient
src/java.base/share/native/libverify/check_code.c 3.98178

src/hotspot/share/c1/c1_GraphBuilder.cpp 2.67638
src/hotspot/share/c1/c1_LinearScan.cpp 2.32996

h2 file aggregated coefficient
src/hotspot/share/opto/stringopts.cpp 2.83842

src/hotspot/share/runtime/objectMonitor.cpp 2.62528
src/hotspot/share/opto/parse2.cpp 1.96905

jython file aggregated coefficient
src/hotspot/share/opto/library_call.cpp 2.74016

src/java.base/share/native/libverify/check_code.c 2.64448
src/hotspot/share/opto/parse2.cpp 1.77986

luindex file aggregated coefficient
src/hotspot/share/opto/superword.cpp 3.15878

src/hotspot/share/gc/g1/g1ConcurrentMark.cpp 2.29592
src/hotspot/share/opto/loopopts.cpp 2.19105

lusearch-fix file aggregated coefficient
src/hotspot/share/gc/shared/referenceProcessor.cpp 2.04942

src/hotspot/share/c1/c1_GraphBuilder.cpp 1.69383
src/hotspot/share/opto/library_call.cpp 1.50145

pmd file aggregated coefficient
src/hotspot/share/gc/g1/g1ConcurrentMark.cpp 2.48371

src/hotspot/share/opto/parse2.cpp 2.1456
src/hotspot/share/opto/library_call.cpp 1.8409

sunflow file aggregated coefficient
src/java.base/share/native/libfdlibm/e_sqrt.c 1.76309

src/hotspot/share/opto/superword.cpp 1.57896
src/hotspot/share/c1/c1_LinearScan.cpp 1.02869

xalan file aggregated coefficient
src/hotspot/share/opto/library_call.cpp 2.42359

src/hotspot/share/opto/loopopts.cpp 2.01325
src/hotspot/share/opto/escape.cpp 1.99174
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Table 4.15: Top three files and their aggregated coefficients, based
on their aggregated coefficients for DaCapo Chopin

avrora file aggregated coefficient
src/hotspot/share/runtime/objectMonitor.cpp 4.58394

src/hotspot/share/runtime/thread.cpp 0.77141
src/hotspot/share/c1/c1_LinearScan.cpp 0.72302

batik file aggregated coefficient
src/java.desktop/share/native/libawt/java2d

/pipe/ShapeSpanIterator.c 2.1215
src/hotspot/share/gc/g1/g1ConcurrentMark.cpp 1.82246

src/hotspot/share/opto/parse2.cpp 1.41514
biojava file aggregated coefficient

src/hotspot/share/opto/library_call.cpp 1.29996
src/hotspot/share/gc/g1/g1CollectedHeap.cpp 1.09466

src/hotspot/share/gc/g1/g1RemSet.cpp 1.03669
eclipse file aggregated coefficient

src/hotspot/share/opto/library_call.cpp 2.54365
src/hotspot/share/opto/parse2.cpp 1.9177

src/hotspot/share/opto/loopnode.cpp 1.77933
fop file aggregated coefficient

src/java.desktop/share/native/liblcms/cmsio0.c 3.80062
src/java.base/share/native/libverify/check_code.c 3.31272

src/hotspot/share/c1/c1_GraphBuilder.cpp 2.2944
graphchi file aggregated coefficient

src/java.base/share/native/libverify/check_code.c 4.06274
src/hotspot/share/gc/g1/g1ConcurrentMark.cpp 3.35629

src/hotspot/share/gc/g1/g1CollectedHeap.cpp 1.91452
h2 file aggregated coefficient

src/hotspot/share/opto/library_call.cpp 1.52125
src/hotspot/share/opto/escape.cpp 1.51818

src/hotspot/share/opto/loopnode.cpp 1.2969
h2o file aggregated coefficient

src/java.base/share/native/libverify/check_code.c 5.44986
src/hotspot/share/opto/superword.cpp 2.86773
src/hotspot/share/opto/library_call.cpp 2.01223

jme file aggregated coefficient
src/java.desktop/share/native/libjavajpeg/jidctint.c 1.90426
src/java.desktop/share/native/libjavajpeg/jdcoefct.c 1.88517

src/java.desktop/share/native/libjavajpeg/imageioJPEG.c 0.97515
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Table 4.16: Top three files and their aggregated coefficients, based
on their aggregated coefficients for DaCapo Chopin

jython file aggregated coefficient
src/java.base/share/native/libverify/check_code.c 5.20012

src/hotspot/share/opto/escape.cpp 1.31626
src/java.base/unix/native/libjava/ProcessImpl_md.c 1.11529

luindex file aggregated coefficient
src/hotspot/share/opto/superword.cpp 5.56558
src/hotspot/share/opto/library_call.cpp 1.62586

src/hotspot/share/opto/loopopts.cpp 1.57152
lusearch file aggregated coefficient

src/hotspot/share/opto/superword.cpp 2.67127
src/hotspot/share/opto/library_call.cpp 2.28366

src/hotspot/share/gc/g1/g1CollectedHeap.cpp 1.76041
pmd file aggregated coefficient

src/java.base/share/native/libverify/check_code.c 5.08736
src/hotspot/share/opto/library_call.cpp 3.26336
src/hotspot/share/opto/stringopts.cpp 1.97258

spring file aggregated coefficient
src/hotspot/share/opto/library_call.cpp 3.80886

src/hotspot/CPU/x86/c2_MacroAssembler_x86.cpp 2.19304
src/java.base/share/native/libverify/check_code.c 2.13373

sunflow file aggregated coefficient
src/java.base/share/native/libfdlibm/e_sqrt.c 1.90518

src/hotspot/share/gc/g1/g1CollectedHeap.cpp 1.36276
src/hotspot/share/c1/c1_LinearScan.cpp 0.98259

tomcat file aggregated coefficient
src/hotspot/share/interpreter/bytecodeUtils.cpp 4.03587

src/hotspot/share/classfile/javaClasses.cpp 1.24428
src/java.base/unix/native/libnio/ch/Net.c 1.10328

xalan file aggregated coefficient
src/java.base/share/native/libverify/check_code.c 7.37195

src/hotspot/share/c1/c1_GraphBuilder.cpp 0.93505
src/hotspot/share/ci/ciTypeFlow.cpp 0.92353

zxing file aggregated coefficient
src/hotspot/share/opto/superword.cpp 2.89393

src/java.desktop/share/native/libawt/java2d
/loops/TransformHelper.c 2.01205

src/hotspot/share/opto/loopTransform.cpp 1.39555

In order to answer RQ4.2(To what degree are different parts of the JVM code heavily exercised by
all benchmarks?) we wrote Python code that first checked how many average probe invocations
each probe would have for each benchmark based on 20 runs of that benchmark. For each
probe, we then checked the aggregated difference of average invocations for each pair of
benchmarks. If this value was zero, we added that probes average count to the average count
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for its directory. This gave us a result showing how many probe invocations each directory
had for probes with equal number of invocations between benchmarks. We took the top ten
directories from this for both DaCapo Bach and DaCapo Chopin, and the result for this can
be seen in 4.17 and 4.18. Note that DaCapo Chopin only had invocations for the top ten
directories. The data used to produce these tables was collected on the same machine.

Table 4.17: Number of probe invocations for directories only count-
ing probes invoked an equal number of times across all DaCapo Bach
benchmarks

directory number probe invocations
src/hotspot/share/gc/g1/ 84259
src/hotspot/share/interpreter/ 18243
src/hotspot/CPU/x86/ 17281
src/hotspot/share/classfile/ 15567
src/hotspot/share/runtime/ 11123
src/hotspot/share/logging/ 7813
src/hotspot/share/memory/ 6600
src/java.base/linux/native/libnet/ 4111
src/hotspot/share/services/ 3125
src/hotspot/share/runtime/flags/ 2902

Table 4.18: Number of probe invocations for directories only count-
ing probes invoked an equal number of times across all DaCapo
Chopin benchmarks

directory number probe invocations
src/java.base/share/native/libjli/ 707
src/hotspot/share/c1/ 155
src/hotspot/share/classfile/ 111
src/hotspot/share/gc/g1/ 34
src/hotspot/share/runtime/ 22
src/hotspot/share/oops/ 5
src/java.base/unix/native/libjava/ 2
src/hotspot/os/linux/ 2
src/hotspot/os/posix/ 1
src/hotspot/share/compiler/ 1

4.3 Discussion
In this section, we discuss answers to our research questions and propose possible methods
to be used based on our experience.

40



4.3 Discussion

4.3.1 RQ1
We will answer RQ1(What implications does our measuring method have?) by answering its sub-
questions that will explain the challenges, performance, and variation of our measurement
method.

A challenge with our measuring method(RQ1.1(What are the challenges of our measuring
method?)) was to get the OpenJDK to build after being probed.

First, we encountered an error in the build process caused by the fact that DMCE some-
times declares a function that is never called. The C compiler used in the build process creates
a warning message for this, and by default, this warning results in the build process termi-
nating with an error. However, this behavior can be turned off by editing an OpenJDK build
file.

Secondly, parts of the source code of the OpenJDK were written in a way that caused
DMCE to inject code into it that caused compile errors. This was due to the fact of macros
used in a way that caused DMCE to inject probes, resulting in mismatched parentheses. For
example, the macro “CHECK” defined as “THREAD); if (HAS_PENDING_EXCEPTION)
return ; (void)(0” was used in the following way “get_user_name(vmid, &snpid, CHECK)”.
We solved this problem by giving the developer of DMCE input on these compile errors,
and he fixed most of them to the release of DMCE 1.7.4. The only ones that were not
fixed were compile errors that were received when DMCE probed the macros: CHECK,
STORE_PARAM, AWT, and JP. To avoid getting compile time errors, DMCE was config-
ured to not probe these macros. When this was done, we had an OpenJDK inserted with
probes by DMCE 1.7.4 that would build successfully.

To answer RQ1.2(How does the measuring affect execution speed of benchmarks?) we analyze
table 4.1 for the DaCapo Bach benchmarks and table 4.2 for the DaCapo Chopin benchmarks.
From these tables, we can see that the probed OpenJDK often leads to a decrease in average
performance, but this does not always hold, as seen in the h2 benchmark for DaCapo Bach,
which actually provided an increase in average performance. In the Min-Max Percentage
Slowdown row, which is based on the 95% confidence interval, we can see that there are many
cases in which the minimum percentage slowdown is negative. This means that there are
many cases where we cannot, with 95% certainty, be sure that the instrumentation done to
the OpenJDK causes the benchmark execution to be slower. The geometric means tell us that
both benchmark suites have an average performance slowdown using the probed OpenJDK.
For DaCapo Bach, the slowdown is between 13.20% and 29.90% and for DaCapo Chopin,
the slowdown is a little lower, with a slowdown between 10.85% and 18.51%. It is important
to note that we did not make any effort in probing the OpenJDK in a way which would
minimize the slowdown, in fact, we only focused on probing it in i way that would give us
valuable heatmap data, but we still found it interesting to see how our way of using DMCE
affected the execution speed of the benchmarks. DMCE has many different settings and
configurations you can use to make the probed code faster, and the developer of DMCE told
us that there are many cases where code probed by DMCE does not slow down the execution
at all.

When answering RQ1.3(How stable are our measurements on different executions of the same
program?), we start by analyzing table 4.3 and table 4.4. The percentage of the average number
of probe variation is between 1.71% to 10.06% for the different benchmarks, and when we
look at the number of average probe variations for each benchmark, we can see that the
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number of probe invocations that varies in between different runs of the same benchmark is
a large number for all benchmarks. This means that the variation between different runs is
significant, which can at least partly be attributed to the variation of code used by the JIT
compiler, see 2.1. As we do not know what parts of the JVM code regards the JIT compiler,
we cannot tell if this is the sole contributor to the variation in probe invocations. To try
and get a better understanding of the percentage of probes that vary a certain amount, we
can look at figure 4.1 and figure 4.2. Looking at these figures, we can see that the plots are
similar for all benchmarks with small variations, which means that the variation percentage
for different probes are similar for all benchmarks. Furthermore, given the steep downhill
in the beginning of the plots, we can conclude that a small number of probes have a high
percentage variation and that the majority of probes have a small percentage variation. With
all this in mind, we know that we have a small but significant percentage of variation for all
benchmarks and that the variation distribution across probes is similar for all benchmarks.
This makes us believe that our results in this report are trustworthy, but it still raises the
threat to validity that we might have needed more data to base our results on, given the
variation of probe invocations.

4.3.2 RQ2
To answer RQ2(How much of the JVM code is covered by state of the art benchmark suites?), we
look at the table that shows the coverage of the different benchmarks for DaCapo Bach and
DaCapo Chopin (table 4.5 and table 4.6). This shows us that about a fourth of the OpenJDK
source code gets exercised when running a full DaCapo benchmark suite. This number seems
low, and we have no definitive answer to why that is, but we have to note that some of the
probes in the OpenJDK source code are specific to the compiler and therefore will never be
invoked when only running Java programs. Another reason for why the coverage might be
low is that we only used one build of the OpenJDK with the default build options. There exist
many different build options that might result in builds using other parts of the OpenJDK
source code that our build does not use. Also, the coverage of JVM source code might not be
a good measurement for how well the benchmarks measure Java’s performance. Furthermore,
when we look at the average coverage after running every single benchmark in DaCapo Bach,
25.25%, and in DaCapo Chopin, 28.10%, we can then conclude that DaCapo Chopin has a
higher overall coverage of JVM source code than that of DaCapo Bach. This means that
running the full DaCapo Chopin benchmark suite tests more of the JVM than running the
full DaCapo Bach benchmark suite.

We then look at individual benchmarks that exist and work on our setup in both DaCapo
Bach and DaCapo Chopin, and we can see that a majority of them have a higher coverage in
DaCapo Chopin when compared to Bach. Some of these benchmarks also have a signifi-
cantly higher coverage in DaCapo Chopin, fop for example, has 24.48% average coverage for
DaCapo Chopin and 23.00% for DaCapo Bach. There are however three benchmarks that
have higher coverage for DaCapo Bach than for DaCapo Chopin, these are avrora, h2 and
sunflow, see table 4.5 and 4.6. The differences in coverage for these three benchmarks are,
however, rather small. When we compare them to all other benchmarks that have increased
coverage from DaCapo Bach to DaCapo Chopin, we can see that the smallest percentage
unit increase in coverage was xalan that had 22.79% for DaCapo Bach and 23.05% coverage
for DaCapo Chopin. This makes us believe that avrora, h2 and sunflow are very similar for
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DaCapo Bach and DaCapo Chopin. We have no definite answer to why these three bench-
marks decrease in coverage, but we speculate that this is due to how DaCapo Chopin is an
experimental branch that we built ourselves, and there could be some additional Java code
that always runs when executing a DaCapo Bach benchmark that the DaCapo Chopin bench-
marks do not contain. There is also the possibility that the decrease in coverage for these three
benchmarks is coincidental.

Then we analyzed the benchmarks that have either been added to DaCapo Chopin that
did not exist in DaCapo Bach or work in DaCapo Chopin but not in DaCapo Bach (batik,
biojava, eclipse, graphchi, h2o, jme, spring, tomcat, zxing). Looking at these benchmarks,
we can see that the coverage varies from on average 23.12% to 25.46%. This is a higher interval
than the intervals for the benchmarks working in both DaCapo Bach and DaCapo Chopin,
which are 21.97% to 23.43% for DaCapo Bach and 21.88% to 24.65% for DaCapo Chopin. With
this interval comparison, we can see that the benchmarks unique to DaCapo Chopin have a
higher average coverage overall than the other benchmarks, compared to both DaCapo Bach
and DaCapo Chopin.

4.3.3 RQ3
RQ3(To what degree are our state of the art benchmarking suites exposing the performance of the
JVM?) will be answered through its relevant subquestions: RQ3.1(Are there any parts of the JVM
code that get executed by other Java programs that do not get hit by the benchmarks?) and RQ3.2(Does
the distribution of JVM code executed by the benchmarks reflect that of other Java programs?).

For RQ3.1(Are there any parts of the JVM code that get executed by other Java programs that do
not get hit by the benchmarks?) we used our Java programs and then compared their coverage
data against the benchmarks. Table 4.7 and table 4.8 tell us that there is a small amount of
probes that our Java programs invoke that does not get invoked by any benchmarks. The
amount of probes are very small in comparison to the total amount of probes invoked during
any benchmark run, see table 4.5, 4.6, but we can see that there are significantly more probe
invocations by our programs for probes not invoked by the DaCapo Bach benchmark suite
compared to the DaCapo Chopin benchmark suite. To get more of an overview of what parts
of the JVM code that had invoked probes by our programs, not invoked by any benchmark,
we can look at table 4.9 and 4.10. From table 4.9, we can conclude that there are several files
containing probes invoked by our programs but not by any DaCapo Bach benchmark, fur-
thermore, we can see that SwingComponents.java have invoked probes in five files that does
not have any probes invoked by any DaCapo Bach benchmark. Looking at table 4.10 we can
see that there are fewer files containing probes invoked by our programs not invoked by any
DaCapo Chopin benchmark compared to DaCapo Bach. We can also see that only one file,
"src/java.desktop/share/native/libfontmanager/freetypeScaler.c", have invoked probes by our
Java programs that does not contain any invoked probes by any DaCapo Chopin benchmark.
We will not go into further detail about what parts of the JVM code that gets executed by
our programs that does not get executed by any benchmarks, but we can draw the conclusion
that it is possible to write Java programs that executes JVM code that does not get executed
by any DaCapo Bach or DaCapo Chopin benchmarks, meaning new benchmarks could be
developed to increase the JVM code coverage.

To answer RQ3.2(Does the distribution of JVM code executed by the benchmarks reflect that
of other Java programs?) we can analyze figure 4.3. This figure shows us that the directory
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"src/java.base/share/native/libfdlibm/" gets a lot of probe invocations for both the DaCapo
Bach and DaCapo Chopin benchmark suites but zero invocations for our Java programs.
Other than that, looking at the log scale color coding, our programs seems to have a similar
distribution to that of DaCapo Bach and DaCapo Chopin, with the exception of
"src/java.base/unix/native/libnio/ch/", which has a much darker color for DaCapo Chopin
compared to both DaCapo Bach and our Java programs. Because of this, our hypothesis is
that the distribution of JVM code executed by the benchmarks reflects other Java programs
well and that DaCapo Bach does this to a higher degree than DaCapo Chopin. Which would
in turn suggest that DaCapo, and specifically DaCapo Bach’s performance measurement, rep-
resent our Java programs well.

4.3.4 RQ4
When trying to answer RQ4(To what degree do the different benchmarks exercise different JVM
code?) we start with looking at figure 4.4 and figure 4.5 to see how much each directory is
exercised by each benchmark. We want to analyze differences in color between the bench-
marks to try and figure out if a directory has a higher percentage of probe invocations for a
certain benchmark. There are some differences, for example, in figure 4.4, we can see that
"src/java.base/share/native/libjava/" has a darker color for h2, lusearch, lusearch-fix, and sun-
flow, compared to the other benchmarks. This means that h2, lusearch, lusearch-fix, and
sunflow have a higher percentage of probe invocations in the directory
"src/java.base/share/native/libjava/" compared to other benchmarks. However, it is hard to
find major differences using these figures, and we can therefore conclude that the percentage
of probe invocations for each directory is rather similar for all benchmarks.

We answer RQ4.1(For each individual benchmark, what degree of importance do dif-
ferent parts of the JVM code have for that benchmark?) by analyzing the data from table
4.11 to table 4.16. We see in the tables that the most important lines of code for all of the
benchmarks in DaCapo Bach and DaCapo Chopin are different, which means that there are
significant differences in the amount of invocations for the logistic regression model to draw
these conclusions. The same statement cannot be said about the files’s aggregated coefficients,
where the three most important files for each benchmark contain the same files for several
different benchmarks. We can see an example of this in table 4.15, where biojava and eclipse
both have "src/hotspot/share/opto/library_call.cpp" as the most important file. If we look at
the aggregated coefficients, however, we can see that eclipse has a higher value for this file
than biojava, meaning "src/hotspot/share/opto/library_call.cpp" have a higher importance to
eclipse than biojava. We will not look into the difference in importance of parts of the JVM
code for different benchmarks further in this report, but we can draw the conclusion that
this data, which can be found in full here [1], is sufficient to tell us how important different
parts of the JVM code are to the different benchmarks, and it could be used in the future to
explore the importance parts of the JVM code have on different benchmarks in more detail.

To answer RQ4.2(To what degree are different parts of the JVM code heavily exercised by all
benchmarks?) we look at the tables 4.17 and 4.18. From this, we can see that when running
DaCapo Bach, the directory "src/hotspot/share/gc/g1/" has a large number of probe invoca-
tions from all probes that are invoked an equal amount of times across all DaCapo Bach
benchmarks. However, when we compare DaCapo Bach’s and DaCapo Chopin’s numbers,
we can see that DaCapo Chopin has very few probes that are invoked an equal number of

44



4.4 Threats to validity

times across all DaCapo Chopin benchmarks. This means that we can draw the conclusion
that DaCapo Bach exercises large parts of the JVM code with all benchmarks, specifically
"src/hotspot/share/gc/g1/", while the DaCapo Chopin benchmarks do not exercise the same
parts of the JVM code an equal amount with all its benchmarks.

4.3.5 Proposed methods
With this work done, we wanted to propose a couple of methods that we figured might be
useful based on what we learned. The first method we propose is how to use DMCE on large
scale projects that, in our case, use macros that need to be excluded and special build flags
that need changes. How we did this is explained briefly in Approach(3.1). This method could
help when wants to use DMCE or another code injection tool on a large or old project in
need of measurement.

Heatmap data collected from a probed OpenJDK could be collected from running any
Java program on a probed OpenJDK, not only benchmarks. This means that one could collect
heatmap data for newly developed Java programs and analyze them in any way that gives some
useful measurement of whether the program behaves as desired.

Another method that we propose is how to analyze and categorize the heatmap data one
gets from running code probed by DMCE using logistic regression. This method involves us-
ing the data gathered to train a logistic regression model that will predict specific runs of the
code depending on the heatmap data. To find interesting parts of the code from the model,
you analyze the coefficient matrix from the model and categorize the probes accordingly, as
explained in the Approach(3.7).

4.4 Threats to validity
In this section, we will discuss possible threats to the validity of our results.

4.4.1 Varying data
Given our analysis when answering RQ1.3(How stable are our measurements on different execu-
tions of the same program?) we can see that the heatmap data have significant variation for
different runs of the same benchmark. To be sure that this is accounted for, a sufficient
amount of data needs to be used to compute our results. We believe that we have enough
data as a basis of our results, but it is a threat to validity that we might not have enough data
as the basis of our results.

4.4.2 Only one setup
All of our results are based on heatmap data as well as execution times for the benchmarks.
Heatmap data will vary depending on the system it is collected on, for example, the OpenJDK
has unique code for different CPU:s and OS:s. Keeping this in mind, all of our results can
only be trusted for the setup that we used to collect our heatmap data. The execution speed
of the benchmarks varies very much depending on what setup you have. This means that we
can only say that the performance data is accurate for the setup we used to collect it.
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4.4.3 Not able to test all benchmarks
As described in the background (section 2.4.1 and 2.4.2) we did not manage to make all the
benchmarks run successfully on our system. This means that all the data we have collected
ignores all these benchmarks, which might work on other Java versions or systems. Because
of this, we are missing some potential data that might have changed the output of our results,
where the coverage of, for example, table 4.5 might have been higher.

4.4.4 Way of preprocessing input data to logistic re-
gression model

We only preprocessed the data for training our logistic regression models in one way, by first
adding 1 to each element, then calculating its 10 logarithmic value, and normalizing it. We
did this both because it turned out to create the logistic regression models with 100% correct
predictions, which the other ways we tried of preprocessing data did not get, but also because
we believe it to be a good way of preprocessing the data. However, we did not try all possible
ways of preprocessing data, and another way of preprocessing data might also create models
that have 100% correct prediction rate and, in fact, be better suited for our situation. With
this in mind, while we believe our way of preprocessing data to be good, it might not create
the best model and, in turn, the best coefficient matrix. This means that if there is a better
way to preprocess the data, we would get better results to answer RQ4(To what degree do the
different benchmarks exercise different JVM code?).

4.4.5 When measuring performance, other things might
have been executed in the background on the
machine

When we collected data for performance on one virtual machine, we first ran every sin-
gle benchmark 20 times each using the probed OpenJDK and then repeated this using the
unprobed OpenJDK. This means that if something was running in the background on the
hardware machine our virtual machine was running on, or in the background on our virtual
machine when either the probed or unprobed OpenJDK were running it would interfere with
the results.

4.4.6 Human error
While we were careful with writing Python code that we understood and manually made sure
that the results we gained from different analyses made sense. We have analyzed a lot of data
in many different ways, making it easy to make mistakes. We believe that this is not the case,
but we cannot be 100% certain that we have not made any mistakes. This is one reason why
we have decided to publish our results and code on Zenodo [1].
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Chapter 5

Conclusion

This chapter summarizes the findings of this master’s thesis and suggests potential future
work.

5.1 Summary of findings
Here we summarize the findings from our work

• We used the Ericsson instrumentation tool called Did My Code Execute (DMCE) to
instrument the Java Virtual Machine (JVM) of an OpenJDK, and from that JVM we ran
the state of the art benchmark suite, DaCapo, as well as a modern, more experimental
branch of DaCapo.

• The instrumented OpenJDK revealed what code is run from the OpenJDK when exe-
cuting the benchmark suites, which gave us interesting data that we could gather and
analyze.

• While analyzing the data, we looked at five main aspects:

How much does the execution of JVM code vary for several runs of the same bench-
mark?

How much of the JVM does the DaCapo benchmarks cover?

Are there parts of the JVM code that do not get exercised by any benchmark?

How different are the DaCapo benchmarks from other Java programs?

How do the different DaCapo benchmarks differ in comparison to each other?

• We found that the data for the same benchmark executed several times has an average
variation between 1.71% and 10.06%.
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• The average total coverage for the regular DaCapo benchmark suite was 25.25% while
the experimental branch of the DaCapo benchmark suite had an average coverage of
28.10%.

• There is JVM code which gets executed by other Java programs that does net get ex-
ecuted by any benchmark, which implies that new benchmarks can be created to in-
crease the JVM code coverage.

• We found that the DaCapo benchmarks have a similar distribution of probe invoca-
tions to other Java programs.

• The benchmarks themselves did not differ much from each other, but we could still
find individual differences when looking closely at what code has been run using a
logistic regression model.

5.2 Future work
The data that we have collected and analyzed stems from our modified OpenJDK, which has
probed most of the source code in the OpenJDK. This includes the source code for the com-
piler. Somebody that has more knowledge than us in the OpenJDK source code structure
could create their own probed version of an OpenJDK, not probing source code that only re-
gards the compiler. Given an OpenJDK probed in such a way, our analysis could be recreated
with more accurate results.

We have only analyzed the DaCapo benchmark suites in this paper. There exists many
other benchmark suites used to test the performance of Java, for example, XCorpus. It would
be interesting to perform similar analysis to what we have done on other benchmark suites
as well.

All heatmap data we have collected has been collected on the two virtual machines pro-
vided by Ericsson. This means that our conclusions are only valid for this setup, and we
cannot tell for sure if one could draw the same conclusions if the heatmap data was collected
on, for example, another Linux distribution instead. Therefore, it could be interesting to
perform similar experiments as we have done using other setups to see if one can draw the
same conclusions for those systems as well. It would also be interesting to see what the results
would be if similar experiments were performed on different OpenJDK versions.

In this master’s thesis work, the OpenJDK have always executed Java programs with the
default options. This means that new data could be collected where special options have been
applied to the JVM. These options include, but are not limited to: Setting the initial size of
the heap, specifying which garbage collector to use, or disabling the JIT compiler. Testing
how these different options affect the heatmap data would be the basis for a new research
question, and another research question could be how the new heatmap data would compare
to the data obtained in this thesis.
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Appendix A

Contribution table

This appendix contains a table stating what author had the most responsibility for different
parts of the report and a Github repository with a fix.

Table A.1: Sections of this report and which author had the most
responsibility for each section

Section Nour Samuel
Introduction X
Research Questions X X
Contribution X
Background X
Approach X
Evaluation X
Experimental Setup X
Results X
Discussion X
Threats to Validity X
Conclusion X
Summary X
Future Work X

As the research questions is a vital part of this report and we both were heavily invested
in developing them, there are two X:s for that section.
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Appendix B

Our example programs

In this appendix, we present the Java code whose coverage of the Java Virtual Machine code
we used to check against the DaCapo benchmarks.

B.1 Lambda.java
The first Java program exercises Java’s lambda function by iterating over a list with 500 ele-
ments and doubles the value of each element.

import java.util.ArrayList;

class Lambda{
public static void main(String[] args){

for (int i = 0; i < 20; i++){
ArrayList<Integer> numbers = new ArrayList<Integer>();
for (int j = 0; j < 500; j++){

numbers.add(j);
}
numbers.forEach((n) -> {numbers.set(n, n * 2); });

}
}

}

B.2 SealedClasses.java
Our second Java program utilized a new Java feature called Sealed Classes.
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import java.util.ArrayList;

abstract sealed class Animal
permits Dog, Cat, Rabbit {

private int height;
Animal(int height){

this.height = height;
}
int getHeight(){

return this.height;
}

}
final class Dog extends Animal{

Dog(){
super(3);

}
}
final class Cat extends Animal{

Cat(){
super(2);

}
}
final class Rabbit extends Animal{

Rabbit(){
super(1);

}
}
class SealedClasses{

public static void main(String[] args){
for (int i = 0; i < 20; i++){

ArrayList<Animal> animals = new ArrayList<Animal>();
for (int j = 0; j < 100; j++){

animals.add(new Dog());
animals.add(new Cat());
animals.add(new Rabbit());

}
int totalHeight = 0;
for (int j = 0; j < 300; j++){

totalHeight += animals.get(j).getHeight();
}

}
}

}
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B.3 SwingComponents.java
The third Java program is a simple Swing program that initializes Swing components before
terminating.

import javax.swing.*;

public class SwingComponents{
public static void main(String[] args){

for (int i = 0; i < 20; i++){
JButton b = new JButton("Hello");
b.setBounds(130,100,100,40);
JLabel l = new JLabel("Hi");
JTextField tf = new JTextField("World");

}
}

}
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EXAMENSARBETE Are We Benchmarking the Java Virtual Machine Right?
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EXAMINATOR Görel Hedin (LTH)

Hur väl testar man
programmeringspråket Java egentligen?

POPULÄRVETENSKAPLIG SAMMANFATTNING Nour Salem, Samuel Fagerström

För att testa Javas prestanda finns det populära Javaprogram alla kan köra, som är
speciellt utvecklade för att testa prestanda. Vi har i detta arbete undersökt hur bra
några av dessa tester, kallade DaCapo, är. Vi har bland annat kommit fram till att
hela Java faktiskt inte testas.
För att mäta prestandan av olika versioner av Java
på olika system, t.ex. en Macbook eller en sta-
tionär dator med Windows, finns det så kallade
benchmarks som man kan använda. Ska man
kunna lita på resultaten från benchmarks är det
viktigt att veta hur bra dessa benchmarks är ur
flera perspektiv. Därför analyserade vi en pop-
ulär samling av benchmarks som heter DaCapo
vars benchmarks är Javaprogram som testar Javas
prestanda.

Först har vi kommit fram till att dessa bench-
marks inte lyckas testa prestandan för hela Java.
Detta betyder att om man kör ett program skrivet
i Java är det inte säkert att allt som detta program
gör har fått sin prestanda testad av något av dessa
benchmarks. Med detta resultat kan man därmed
se att det finns förbättringspotential för DaCapo,
man skulle kunna göra fler benchmarks som testar
mer av Java.

Sedan har vi även tittat på vilka delar av Java
som använts, och hur mycket de har använts.
Detta gjorde vi både för DaCapo benchmarks och
för våra egna självskrivna Javaprogram. Det vi
kom fram till när vi gjorde detta var att procent-
fördelningen för användningen av olika delar i Java

när vi körde DaCapos benchmarks är likt procent-
fördelning när vi körde våra egna Javaprogram.
Detta visar på att om ett benchmark har fått ett
bra prestandaresultat är det troligt att även ett
annat Javaprogram som körs på samma Java ver-
sion och system kommer ha bra prestanda.

Under analysen av benchmarks tittade vi även
på hur stor del av Java som körs lika mycket av
alla benchmarks. Vi kom fram till att den officiella
versionen av DaCapo, som kallas Bach, kör en stor
del av Java lika mycket för alla sina benchmarks.
Däremot finns det en senare experimentell version
av DaCapo, kallad Chopin, där endast en liten
del av Java körs lika mycket av alla benchmarks.
Detta betyder att om man kör alla DaCapo Bach
benchmarks så slösas resurser på att testa samma
sak i alla benchmarks.

För att kunna genomföra våra analyser har vi
använt verktyget "Did My Code Execute", DMCE.
Detta verktyg gjorde det möjligt för oss att se hur
mycket olika delar Java använts av olika bench-
marks och våra egna Javaprogram. Vårt ar-
bete skulle kunna användas som inspiration till
hur DMCE och liknande verktyg kan användas i
framtida arbeten.
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