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Abstract

Maps-services providers use vast amounts of geometric data to represent the
structures of the world. With increasing amounts of data, the required storage
and transmission capacities increase.

Existing compression algorithms can reduce the size of the data at the
cost of operability. Namely, any operation requires the entire compressed
geometry to be unpacked, resulting in an overhead that may be longer than
the operation itself. When performing enormous amounts of operations, such
as when validating map fragments, the overhead can be significant.

This thesis aims to create a compression format that reduces the data size
of geometries, beyond general-purpose algorithms, while maintaining speed
on some specific operations.

The implemented format utilizes delta encoding, a maps-specific coordi-
nate structure, and entropy encoding to reduce the size. In addition, the coor-
dinates are divided into independent blocks, allowing for partial decompres-
sion. Partial decompression can be used to avoid decoding irrelevant sections
of the geometries. For example, when calculating the intersection between
two shapes, only the overlapping blocks can contain an intersection point.

During testing, the implementation achieved an average compression fac-
tor of 2.56, compared to the WKB standard format. Additionally, with partial
decompression enabled, it achieved an average speedup of 3.6 times faster
execution when calculating the intersection over large geometries, compared
to full decompression. Partial decompression of geometries is largely unex-
plored in academia, but the results of the thesis indicate that the area may be
of interest to investigate further.

Keywords: geometry compression, maps, partial decompression, compressed com-
putation
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Chapter 1

Introduction

1.1 Background
Geometric data is a powerful tool for describing spatial relationships between physical
objects. In online maps services, geometries are frequently used to represent various
structures on the map, such as roads and buildings. By modeling an area as geometric
objects, spatial relationships can be inferred directly or explicitly stated, enabling analysis
and querying of the data. However, due to the inherently extensive information size for
creating a detailed map, minimizing the needed data storage and transmission capacity
while maintaining optimal performance is of great interest to map service providers.

Compression algorithms can reduce the size of modeled maps by eliminating redun-
dancies in the data. However, conventional algorithms transform the data to an inoperable
state, requiring the data to be decompressed before it can be operated on. Additionally,
operations that involve modifications to the map require the compressed data to be recom-
pressed to maintain a coherent representation. Since these steps can be time-consuming,
integrated operability of compressed geometries could reduce the overhead of needing to
fully decompress the data while still allowing for a reduction in size by utilizing compres-
sion methods. This way, a balance between reducing storage space and efficient opera-
tions can be established.

Furthermore, general-purpose compression algorithms are not tailored to operate on
maps data. Therefore, it may be possible to increase the size reduction beyond common
compression algorithms by exploiting the maps domain and combining existing compres-
sion schemes.

AFRY is working on enhancing maps services and would like to investigate potential
improvements in the geometry pipeline with regard to space and time efficiency. For map
applications, being able to perform operations, such as determining intersections between
objects in the map, allows for further validation checks and relationships. For instance,
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1. INTRODUCTION

determining where a house polygon intersects with a lake polygon in order to classify the
area.

1.2 Problem Definition
Considering the background, the following research questions have been established:

Q1: Is it possible to perform operations on compressed geometric data without decom-
pressing the entire geometries?

Q2: How can domain-specific constraints and structures, in the context of maps, be ex-
ploited to improve the performance of operations and geometry compression?

This also includes being able to decompress the data back to its original form without loss
after compression has been applied.

Modern compression algorithms are usually improvements or combinations of prior meth-
ods. The investigation will similarly modify different compression schemes to embody
unary operations on single geometrical objects, as well as binary operations where two
geometrical objects interact.

The project is anticipated to make a scientific contribution by exploring how existing
compression algorithms can be adapted to a niche datatype, while preserving or improv-
ing operation performance. Research regarding operating on compressed geometric data
is currently limited.

1.3 Scope & Limitations
The project’s domain will be maps data where geometrical forms such as points, poly-
lines, and polygons are used to describe different objects. The investigation will focus
on the more frequent operations made on map data and be limited to two-dimensional
geometries. In order to limit the scope, three operations: intersection, bounding box, and
adding vertices to a shape, are primarily optimized in the thesis.

Furthermore, existing compression schemes will be used, and the goal of the thesis is not
to invent a principally new compression algorithm but to combine existing compression
schemes, data structures, and algorithms to improve operational efficiency and compres-
sion efficiency in terms of size in the spatial data domain.

The algorithm implementations in the thesis are written in Python. The reason for the
choice is to enable fast iterations and high productivity in a project which requires much
exploration of different implementation designs. Due to Python being an interpreted lan-
guage, lacking compilation and extensive optimization, Python is not an ideal language in
terms of speed. In order to counter this, a comparison baseline is written in Python, and
the relative difference in performance between the implementations is used as a means of
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1.4 RELATED WORK

evaluation. The resulting compression size is language-independent and thus unaffected
by Python’s limitations.

1.4 Related Work
There are little to no earlier attempts in the investigation of doing operations on com-
pressed geometry data. However, compression algorithms are still at the foundation of
this thesis, and the structure of creating a compression format, and supporting operations,
rely heavily on previous work and ideas.

Spatial Parquet: A Column File Format for Geospatial Data Lakes

In a paper by Saeedan and Eldawy [26] in 2022, the column-based storage format Parquet
is extended with efficient support for spatial data. In column-based storage, homogeneous
values are grouped together, making it possible to use their redundancies to create efficient
storage. Delta encoding is a well-known method for storing differences between values
rather than the complete values. However, for spatial data, with coordinates consisting
of floating-points, a small floating-point value does not necessarily mean that fewer bits
are needed. To tackle this, the paper suggests floating-point delta encoding, which inter-
prets the underlying structure of floating-point values as integers and calculates the delta.
The paper also proposes a method to partition the column values into independent data
sections, allowing for separate compression of the units [26].

Floating-point delta encoding and partitioning of compressed data are two concepts
that are useful for the thesis. The prior allows for a compact representation of a sequence
of coordinates, while the latter enables indexing and fractional compression opportunities
by dividing regions within geometries into independent chunks.

Fast and Efficient Compression of Floating-Point Data

Lindstrom and Isenburg [16] proposes a state-of-the-art lossless compression scheme tar-
geted at floating-point data concerning bottlenecks where the growth of the dataset ex-
ceeds the available I/O bandwidth. The essence of the algorithm is to store the residuals
between the actual floating-point values and their corresponding predicted value, where
the prediction is accomplished using a subset of previously encoded data. Similarly to
Saeedan and Eldawy [26], the bit sequence of the floating-point value and the predic-
tion are interpreted as sign-magnitude binary integers before calculating their difference.
The reason is a possible loss of information due to underflow when using floating-point
subtraction. Furthermore, when the residuals have been computed, they are subject to en-
tropy range encoding, a variant of arithmetic encoding leading to even higher compression
ratios.

Besides the concept of using residuals between actual values and predicted ones, this
paper gives insight into how multiple compression methods can be combined into a longer
pipeline. Also, noticing similarities between different sources gives an understanding of
what is considered good practice in the industry.

11



1. INTRODUCTION

RasterZip: Compressing Network Monitoring Data with Sup-
port for Partial Decompression

RasterZIP, proposed by Fusco et al. [6], is a lossless encoding scheme for network traffic
data with support for partial compression and decompression. The format exploits pat-
terns in traffic data, such as the common prefixes in IP addresses, to compress beyond
the limits of general-purpose algorithms. By using partial compression, RasterZIP has
the ability to compress more than half a million traffic records per second, while only
targeting compression and decompression on tiny fractions of the dataset.

When integrating operations into a compression scheme, partial decompression is an
excellent method for only unfolding relevant dataset fractions for the operation. The
concept of partial decompression is at the core of many of the operation implementations
in this thesis.

A Simple Algorithm for Boolean Operations on Polygons

Polygon clipping is a geometrical operation that constrains a polygon to fit within a de-
fined region. Specifically, one polygon defines the area to be clipped, while another de-
termines the clipping boundaries. Algorithms for boolean operations on polygons, with
their basis in polygon clipping, are typically accompanied by geometrical constraints. For
example, disallowing internal holes within the polygons or requiring the clipping bound-
aries to be either convex or rectangular. Martínez et al. [18] proposes an efficient way of
performing boolean operations on polygons, even in degenerate cases. The foundation of
the algorithm is to subdivide the edges at their intersection points and categorize the edges
as lying either inside or outside the other polygon. Depending on the boolean operation,
edges with similar inside-outside statuses are selected and interconnected. The algorithm
uses many efficient techniques, such as an extended version of the sweep lines algorithm
by Bentley and Ottmann [3] for finding intersection points in O((n+k) log(n)) time, where
n is the number of line segments and k is the number of crossings.

This paper helped to understand how intersections between different geometries can
be calculated in more advanced cases without constraints. Even though the algorithm this
thesis proposes for intersection only uses a subset of all the edges in the geometry, many
of the ideas are based on Martínez et al. [18].

1.5 Disposition
Introduction In the outline, the section describes the background and context of the the-

sis. Subsequently, the research questions are stated together with the scope and
limitations. Lastly, related work with closely connected research papers and contri-
bution statements are presented.

Theoretical Background Provides the necessary theoretical background on spatial data
and compression to understand the subsequent parts of the thesis.

Methodology Introduces the methodology used to answer the research questions and
conduct a robust investigation.
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1.6 CONTRIBUTION STATEMENT

Algorithm Implementations Describes the implementation phase of the thesis, with de-
tails about the created compression scheme and how support for several operations
was integrated.

Results Presents and reasons about the various results made from the previous sections.

Discussion Consists of a further evaluation of the obtained results. Additionally, the
research questions are explicitly answered, followed by potential future work.

1.6 Contribution Statement
The work for this thesis, including writing the report, research, planning, implementing
algorithms, and brainstorming ideas, was completed in full cooperation between the au-
thors. Most of the implementations were completed in office, with frequent discussions,
pair programming, and switching between individual tasks. When not working phys-
ically together, all individual work was processed and discussed internally. This also
includes the study of literature, where the material was thoroughly discussed to provide
both authors with the same background knowledge. In conclusion, both authors con-
tributed equally and played crucial roles in the finalization of this thesis.

The original work of the thesis includes the code available in Appendix, along with most
of the ideas and structures proposed in Chapter 4. For example, the proposed algorithms
for adding vertices and calculating intersection through chunk-based local decompression
are original ideas. Furthermore, integrating and evaluating existing compression tech-
niques into a format that supports local decompression combined with the exploitation of
the maps domain to further reduce the data size, such as by utilizing integer decomposed
coordinates, is original work of the authors.
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Chapter 2

Theoretical Background

This section introduces existing algorithms, data structures, and metrics relevant to the
thesis. First, various types of geometries and common encoding schemes for singular ge-
ometries are introduced. Next, descriptions of some compression algorithms in different
categories are provided, followed by in-depth details on floating-point representations and
delta encoding. Finally, additional compression schemes, some evaluation metrics, and
an introduction to spatial indexing are presented. The sections marked with an asterisk
(*) are not directly referenced in the thesis and are therefore optional, but may provide
a deeper knowledge of existing compression algorithms and understanding of the design
choices made in Chapter 4.

2.1 Geometries & Encoding

2.1.1 Geometry Types

Figure 2.1: Descriptions of different geometry types.
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2. THEORETICAL BACKGROUND

Four primary types of geometries are commonly used in geometry frameworks: Point,
LineString, Polygon, and GeometryCollection. Multipart alternatives consisting of sev-
eral primitive geometries, such as MultiLineString, are also often included [26].

Point is represented by a pair of the (x, y) coordinates in the plane.

LineString also referred to as Polyline, is a sequence of points ⟨(x1, y1), ..., (xn, yn)⟩,
where two adjacent points in the sequence form a straight line segment.

Polygon is similar to LineString, but the last point is always equal to the first point, such
that the line segments form a closed path. As seen in Figure 2.1, a polygon may
include additional closed paths within the shell, forming holes in the shape. The
paths, called rings, are represented by a sequence of closed LineStrings, where the
first ring is the shell.

GeometryCollection is a set of geometries, where each geometry can be of any type sup-
ported by the framework, including another GeometryCollection. The collections
can therefore be used to categorize shapes into a tree-like structure.

Furthermore, as seen in Figure 2.1, shapes may consist of multiple combined ge-
ometries of the same type, namely MultiPoint, MultiLineString, and MultiPolygon. The
approach for storing those geometries is similar to GeometryCollection, but without re-
cursive types [26].

2.1.2 Geometry Encoding

{ "type": "FeatureCollection",
"features": [
{ "type": "Feature",

"geometry": {
"type": "Point"
"coordinates": [55.2517, 12.6543]},

"properties": { "map_type": "POI" }
}]}

Figure 2.2: GeoJSON format representing a point.

Three commonly used data formats for storing geometries are well-known text (WKT),
well-known binary (WKB), and GeoJSON. GeoJSON stores geometry information in a
JavaScript Object file, with the geometries starting in a collection called FeatureCollec-
tion, as shown in Figure 2.2. For each feature, the type of geometry is indicated in the
type field, along with additional attributes such as coordinates [7].

The more straightforward WKT format, as seen in the example in Figure 2.3, repre-
sents each geometry in plain text with the geometry type followed by an ordered sequence
of coordinates. The ordered sequence of coordinates can be divided into groups, notated
by encapsulating parenthesis, to maintain the geometry structures. For instance, in a poly-
gon with holes, each ring’s coordinates are held within separate parenthesis [9].

16



2.2 INTRODUCTION TO COMPRESSION

GEOMETRYCOLLECTION (POINT(1.25 3.47), LINESTRING(8.2 2.3, 5.5 1.8))
POINT (2.2 88.1)
POLYGON ((10 60, 70 30, 20 20, 10 20, -30 -10))

Figure 2.3: Well-known text (WKT) format representing a Ge-
ometryCollection, LineString, Point, and Polygon.

Well-known binary is information-wise equivalent to well-known text, but it is rep-
resented in a more compact binary form and is better served for data transportation [8].
Even though these three geometry representations vary in size, they are all considered to
be in uncompressed form.

2.2 Introduction to Compression

The following section explains some of the principle concepts used in compression, while
Table 2.1 provides a brief overview of some of the most commonly used compression
schemes.

2.2.1 Lossy and Lossless Methods

Compression algorithms can be divided into two categories; lossy and lossless methods.
Lossless methods allow for the compressed data to be fully restored by decompression.
In contrast, lossy methods allow some data to be permanently lost to achieve a higher
compression ratio.

Lossless methods are usually purely algorithmic, focusing on structuring the data in a
clever way such that the algorithm can be performed backwards to restore the data back
to its original form.

On the other hand, lossy methods are often statistically based, where an approxima-
tive model is created, which can be used to predict the original data based on features and
context. For example, neighboring pixels in an image are likely to be similar in color. By
accepting some, often indistinguishable, loss, a higher compression ratio can be achieved
since small variations in the data can be ignored. Furthermore, domain-specific optimiza-
tions, such as removing frequencies that are out of the human hearing range and reducing
the color palette in images, are considered lossy methods.

Some areas which use lossless methods are scientific research data, general file com-
pression algorithms (ZIP, RAW, FLAC), and databases. Lossy compression is used in, for
example, images and video, voice communication, and audio files (MP3) [1].
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2. THEORETICAL BACKGROUND

Is Lossless Compression Type Algorithm Description

Yes

Dictionary-based

LZ77 Sliding window to find repeated patterns

LZ78 LZ77 with dynamic dictionary

LZMA LZ77 with range coding

LZMA2 LZMA with chunking for multithreading

LZW Faster version of LZ78

LZS LZ77 with sliding window and stack

Entropy-based

Deflate LZ77 followed by Huffman coding

bzip2 Several stacked compression techniques.

Huffman coding Encode common values with fewer bits

ZStandard Deflate with improved speed

Arithmetic coding Fractional encoding of symbol sequences

Statistical Modelling

PPM Context modelling and prediction

Sequitur Uses a context-free grammar to encode repetitions

Re-Pair Recursively constructs a context-free grammar

Transform-Based

DCT Transform to frequency domain

Burrows-Wheeler Rearranging symbol in a reversible manner

Move to front Rearranging symbols based on their frequency.

Other
RLE Remove sequential repetition

Delta encoding Store value differences

Both NN-based
MLP Compression using Multi Layer Perception

CNN Compression by Convolutional Neural Networks

No

Transform-based
JPEG Discard unnoticeable differences in images

MPEG Discards unnoticeable differences in video

NN-based
GAN Compression by Generative Adversarial Networks

Deep Coder Code compression by Neural Network techniques

Table 2.1: Descriptions of common compression schemes di-
vided into various categories.

2.2.2 Entropy Encoding
In information theory, the entropy quantifies the expected number of bits required to hold
the information in a sequence of symbols H(X) with the formula:

H(X) = −
∑

x

P(x) · log2(P(x)) (2.1)

where X is a random variable on the symbols and P(x) is the probability of a symbol x.
The insight behind it is that more predictable information requires less storage on average,
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and for symbols with a probability distribution, each character has a predictable code
length. Accordingly, Shannon’s Source Coding Theorem states that the entropy provides
a lower bound for the average number of bits required to represent a discrete sequence of
symbols, denoted as C [32].

H(X) ≤ C (2.2)

Additionally, an assumption for the theorem is that the symbols in the discrete sequence
are independent and identically distributed.

Entropy encoding is a lossless compression scheme that utilizes this insight, and each
symbol in the input is assigned a particular variable-length prefix code according to its
probability. In other words, frequent symbols are encoded with fewer bits than infrequent
ones. The most common entropy encoding schemes are arithmetic encoding and Huffman
encoding [12, 17].

2.2.3 Local Decompression
Local decompression refers to the action of only decompressing a fraction of the data. A
prerequisite for local decompression is the ability to query for specific parts of the data
and, in turn, specify and extract only the necessary sections for decompression [6].

The advantages of local decompression become evident when performing operations
on compressed data, as such operations often experience delays caused by the overhead
of making the data operationally available through decompression. One way to reduce the
unnecessary overhead is by pre-computing the operation’s result and storing it separately
from the compressed data. However, this is only beneficial when the operation adds only
an insignificant amount of data. For operations resulting in large-size data, local decom-
pression followed by executing the operation may be better suited. With this approach,
the delay is shortened by only decompressing the sections necessary for the operation.

Another use case for local decompression is allowing random access on compressed
data, where only some indexable parts of the uncompressed data are accessed. Random
access can be implemented by applying local decompression on indexed data fragments.

2.3 Delta Encoding

2.3.1 Zigzag Encoding
Zigzag encoding is a transformation of two’s complement such that the positive and nega-
tive representation of a value share initial symbols. The transformation ensures that small
magnitude numbers, regardless of their signedness, have leading zeros. In contrast to
two’s complement, where the most significant bit represents signedness, Zigzag encoding
uses the least significant bit instead. Following that, the integer’s absolute value is shifted
one position to the left [13]. The encoding is particularly useful when dealing with neg-
ative integers of small magnitude, as evident by the 16-bit example given in Equation
2.3.

−5dec = 1111 1111 1111 1011two′s = 0000 0000 0000 1011zigzag (2.3)
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Functions for converting between zigzag and two’s complement representation using
two’s complement arithmetic are given by Equation 2.4 and Equation 2.5 [13]:

zigzag_encode(n) =
2n, if n ≥ 0
2|n| − 1, if n < 0

(2.4)

zigzag_decode(n) =
 n

2 , if n even
−n+1

2 , if n odd
(2.5)

2.3.2 Integer Delta Encoding
One way to reduce the file size of integer data is by using delta encoding, which en-
codes the differences between consecutive numbers instead of the absolute values. This
approach can be effective because the bit-length of an integer is directly proportional to
its value, so reducing the value can lead to a reduction in the number of required bits.
Delta encoding can achieve a high compression ratio when consecutive integers are close
in value and a compression technique for small integers is used [4].

Variable-Byte encoding is one example of a coding technique that compresses small
integers effectively. This technique works by reserving one bit in each byte to indicate
whether the current byte is the last byte in the integer. By using this method when the
most significant bytes in an integer contain all zeros, the encoder can eliminate some of
the leading zeros, which can significantly reduce its size [4].

2.3.3 Floating-Point Delta Encoding

Figure 2.4: The representation of a float32, according to the IEEE
754 binary32 standard. The IEEE 754 binary64 (double64) is
analogous, with the exponent being 11 bits, and the mantissa be-
ing 52 bits.

When dealing with geometries, floating-point numbers are frequently used instead of in-
tegers. Unlike integers, a smaller floating-point magnitude does not mean that the repre-
sentation uses fewer bits. The most commonly used floating-point standard is IEEE 754,
and as illustrated in Figure 2.4, it consists of three parts: the sign, exponent, and mantissa
[11]. The mantissa holds the fractional part and contributes to the precision, while the ex-
ponent scales the value of the mantissa and determines the position of the decimal point.
To convert a binary32 representation to its decimal value, the formula in Equation 2.6 can
be used.

Vdec = (−1)S · 2E−127 · (1 +
M
223 ) (2.6)
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Floating-point delta encoding is a technique that exploits the fact that two points in
proximity tend to have the same or similar sign and exponents in their coordinates [26].
Moreover, if the exponents are equal, the fractions are also likely to be close in value. To
calculate the FP-delta encoding, two consecutive floating-points’ IEEE 754 representa-
tions are interpreted as integers, and their difference is calculated. If the sign and expo-
nents are the same, they cancel each other, leaving the difference between the fractions.
Zigzag encoding can then be applied to map negative deltas to positives, resulting in a
representation with leading zeros.

When the encoding is initialized, the encoder outputs the initial value and the bit count
n∗, which indicates how many bits are used to encode each delta. Subsequent values are
then processed until encountering a delta that cannot be represented by n∗ bits. When this
occurs, a reset marker consisting of the highest possible zigzag-delta value is output, and
the encoding process restarts from the new value. Furthermore, the thesis significantly
uses the concept of chunks. In this context, a chunk is defined as the sequence from the
reset point to the last local delta. Thus, the FP-delta encoding consists of one or multiple
chunks, depending on the values of the deltas.

The value of n∗ is, consequently, a trade-off between the number of bits per delta and
the number of delta overflows, which requires the encoder to output the reset marker and
initial value again. Saeedan and Eldawy [26] presents a method for calculating an optimal
n∗ by scanning the entire dataset and logging the number of bits required to encode each
delta. With this approach, it is also possible to calculate the final compressed size to
determine whether the use of delta encoding is worthwhile or not.

2.3.4 An Example of Floating-Point Delta Encoding
This section provides an illustration of the process and potential benefits of FP-delta en-
coding a sequence of points. To demonstrate the process, a sequence of three points,
coded with 64-bit double precision, is randomly selected from the OSM dataset [21].
Since the x- and y-values are typically unrelated, the pairs are encoded separately. For
the demonstration, 64-bit floating-points are used, but the process is analogical for 32-bit
floating-points.

As described above, one way to indicate the end of a chunk is to use a reset marker.
However, for this example, an alternative approach is used in which each chunk header
contains the number of deltas within the chunk. This approach is better suited for local
decompression, as further explained in the implementation part of the report. Only the
x-axis is encoded in the example, and the coordinates are listed in Equation 2.7:

(x(dec)
0 , x(dec)

1 , x(dec)
2 ) = (13.2027968, 13.2029830, 13.2027077) (2.7)

The objective is to calculate the floating-point delta representation of the coordinate
sequence using the encoding function in Equation 2.8. The encoding consists of the se-
quential sum of all chunks, where each chunk includes the delta count, reset point, and an
arbitrary number of deltas, as shown below:

fpd([x0, . . . , xn]) =
∑
c∈C

mc, xc,

i=c+mc∑
i=c

[d(zigzag)
i, i+1 ]

 (2.8)
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where C is the sequence of index offsets for all chunks, and mc is the number of deltas
within chunk c.

The next step is to find the zigzag encoded representation of the deltas d(zigzag), along
with n∗ to determine the chunk borders. To calculate the optimal n∗, the data is iterated
over once while storing the properties for the deltas. More precisely, for all coordinates,
the integer representation difference between the current and previous coordinate is cal-
culated, and the number of bits required to represent the difference is noted as a histogram
function [26].

Let D be the set of all zigzag encoded deltas in the dataset. The histogram function
h[i] can be defined using the len-function, which returns the number of bits required to
represent a zigzag encoded delta, as shown below in Equation 2.9;

len(d) =
⌈
log2 (d + 1)

⌉
h[i] = | d ∈ D : i = len(d) |

(2.9)

Using the histogram function, it is possible to calculate the resulting size (excluding
the first point) for the different n (Equation 2.10):

S(n) = (br + 64) ·
i=64∑

i=n+1

h[i]︸ ︷︷ ︸
reset points

+ n ·
i=n∑
i=0

h[i]︸ ︷︷ ︸
deltas

(2.10)

where br is the bit-length of the header for the chunk. In this example, the br bits are
used to store the count of deltas which are part of the next sequence.

Using Equation 2.11, n∗, which is the optimal n such that S(n) is minimized, is obtained:

n∗ = arg min{S(n)} (2.11)

To calculate the deltas, the coordinates are interpreted as integers. If 64-bit floating-points
are used, the x-values are interpreted according to Equation 2.12:

d(two′s)
01 = x(int)

1 − x(int)
0 = 4623622236719630774

− 4623622131898349447 = 104821280768
(2.12)

Next, the delta values are zigzag encoded using the function in Equation 2.4, resulting
in Equation 2.13:

d(two′s)
01

zigzag encode
−−−−−−−−−→ d(zigzag)

01 ⇐⇒ d(zigzag)
01 =

2 · d(two′s)
01 , if d(two′s)

01 ≥ 0
2 · |d(two′s)

01 | − 1, if d(two′s)
01 < 0

d(zigzag)
01 = 2 · d(two′s)

01 = 209642561536
(2.13)

Or equivalently, in binary representation:
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x(int)
1 = 01000000 00101010 01100111 11101101 01100011 01000101 01001001 10110110

− x(int)
0 = 01000000 00101010 01100111 11010100 11111011 01101111 01110111 10000111

d(two′s)
01 = 00000000 00000000 00000000 00011000 01100111 11010101 11010000 00000000

d(zigzag)
01 = 00000000 00000000 00000000 00 110000 11001111 10101011 10100000 00000000︸ ︷︷ ︸

38 bits

For d(two′s)
12 , in binary representation:

x(int)
2 = 01000000 00101010 01100111 11001001 01001101 10111100 01001011 01110101

− x(int)
1 = 01000000 00101010 01100111 11101101 01100011 01000101 01001001 10110110

d(two′s)
12 = 11111111 11111111 11111111 11011011 11101010 01110111 00000100 00000000

d(zigzag)
12 = 00000000 00000000 00000000 0 1001000 00101011 00010001 11111000 00000000︸ ︷︷ ︸

39 bits
Using the resulting delta values from above, h[i] is defined according to Equation

2.14:

h[i] =
1, if i = 38 or i = 39
0, otherwise

(2.14)

The values for S(n) are calculated for n ∈ Z : h[n] ̸= 0 and the endpoints, as shown in
Equation 2.15:

S(0) = (br + 64) · 2 + 0 = 128 + 2br

S(38) = (br + 64) · 1 + 38 · 1 = 102 + br

S(39) = 0 + 39 · 2 = 78
S(64) = 0 + 64 · 2 = 128

(2.15)

The values in Equation 2.15 show that using 39 bits to encode the deltas will result
in a total size of (br + 64) + 78 = 142 + br bits. Here, the first br + 64 bits correspond
to the first point (which cannot be delta encoded) and the initial chunk header. Assuming
that br is chosen optimally in terms of size, this results in a smaller total size than the
uncompressed 64 · 3 = 192 bits.

Once n∗ has been found, the resulting output stream can be generated by enumerating
the deltas. If a delta fits within the n∗ bits, it is directly output. Otherwise, a reset point
consisting of the delta count and coordinate is output. With n∗ = 39, the resulting output
stream is as expressed in Equation 2.16:

fpd([x0, x1, x2]) = [2, x0, d(zigzag)
01 , d(zigzag)

12 ] (2.16)

where x0 and d(zigzag) are encoded using 64 and 39 bits, respectively. Therefore, for the
given example, the smallest size is achieved by using only one chunk.

The process of decoding is similar to encoding:

1. Load the 64-bit reset point, corresponding to x(dec)
0 .

2. Zigzag decode the next delta d(zigzag)
01 , resulting in d(two′s)

01 .

3. Interpret the reset point and the delta as integers, x(int)
0 .

4. Add the reset point and delta, x(int)
1 = x(int)

0 + d(two′s)
01 .
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5. Interpret the sum as a 64-bit floating-point value, x(dec)
1 .

6. The absolute coordinate x(dec)
1 becomes the reset point in (1), and the process is

repeated from (2) until all deltas have been processed.

2.4 Entropy Encoding Techniques

2.4.1 Huffman Encoding

Figure 2.5: Huffman tree for encoding characters. The numbers
represent frequencies for the characters in the leaf nodes or al-
ternatively the combined frequencies of the characters in the sub-
trees.

Huffman encoding is a form of entropy encoding where the number of bits used to
encode an element is inversely proportional to the logarithm of its probability. Frequent
elements are thus encoded with fewer bits, resulting in a reduction in size when the en-
coding benefits are larger than the overhead. An example of a Huffman tree can be seen
in Figure 2.5.

The methodology used for creating a Huffman binary tree goes as follows [33]:

1. Count the frequency for each of the elements and add all the elements, with their
corresponding frequency to a set S.

2. Create two leaf nodes of the two least frequent elements in S and connect them with
a new parent node p assigned with their joint frequency value.

3. Remove the two leaf nodes from the set S and add p to it.

4. Repeat from (2) until there is only one element left.

5. Encode the paths down the tree by, from the root, assigning each left step as 0 and
right step as 1.
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6. Convert the elements in the input to their corresponding path code in the Huffman
tree.

Some characteristics of Huffman encoding are that the tree creation has time com-
plexity O(n), assuming that the leaf nodes are already sorted by frequency, and that it is a
lossless and optimal encoding scheme [33].

2.4.2 Golomb-Rice Encoding
Golomb-Rice encoding is a parameterized entropy encoding scheme that assumes that
small integers are more frequent than large ones. The encoding uses a straightforward
method called unary encoding, where a number n is encoded as n ones followed by one
terminating zero. For example, 5 is represented as 111110.

When encoding an integer using Golomb-Rice encoding, the first step is to select a
parameter k and calculate m = 2k. For the input n, the quotient and remainder of n
divided by m are then extracted using Equation 2.17.

q = ⌊
n
m
⌋ and r = n − qm (2.17)

The next step is to encode the quotient q using unary encoding, the remainder r as
an unsigned integer using ⌊log2(m)⌋ bits, and then concatenate the bit results into a final
Golomb-Rice code [29]. The scheme is straightforward, but since the result of the encod-
ing is heavily dependent on the parameter k, it is essential to select a suitable value. If the
data follows a geometric distribution P(X = i) = (1 − p)i−1 p where 0 < p ≤ 1, a suitable
parameter k can be calculated using the formula in Equation 2.18, which only requires the
estimated mean value µ∗ of the data [34].

k∗geo = max

0, 1 +
log2

 ln(θ − 1)
ln( µ

∗

µ∗+1 )



 ,where θ =

√
5 + 1
2

(2.18)

Golomb-Rice encoding is optimal in the case where the probability P(k) = 2−k for the
parameter k.

2.4.3* Arithmetic Encoding
Arithmetic encoding is a technique for entropy encoding symbols, considering the prob-
abilities of their occurrence. To do arithmetic encoding, a table of the probabilities of the
symbols in the character space is constructed. Each character is then assigned a unique
interval with a width equal to its probability; corresponding to the upper left diagram in
Figure 2.6.

To encode a sequence, the probability intervals are recursively subdivided in the exact
ordering as the sequence to be encoded. For example, in the lower diagram of Figure 2.6,
the first recursive step assigns the character C to the interval (0.3, 0.5]. The algorithm then
subdivides and assigns C’s interval to all characters again, with an exact fractional width
proportional to their probabilities. When the sequence interval has been created, binary
search is used to encode the sequence by recording left (0) or right (1) in the search until
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the binary search falls within the sequence interval [24]. Since interval sizes are propor-
tional to their probability of occurrence, common symbols are assigned wider intervals.
Fewer binary search partitions are required to fall within a wide sequence interval, and
thus words that mostly contain frequent symbols can be stored using fewer bits.

Figure 2.6: Arithmetic encoding of the character sequence
CAEE$ in the character space ABCDEF$.

2.5* Additional Compression Techniques

2.5.1* Run-Length Encoding
Run-Length encoding (RLE) is a lossless encoding scheme that performs well when iden-
tical elements frequently appear sequentially. In the sequence AAAABCCCC for exam-
ple, the characters A and C have adjacent repetitions. Run-Length encoding couples the
elements with a number that represents the count of repeated characters. For the example
above, the encoding scheme creates the pairs (A, 4), (B, 1), (C, 4) and RLE concatenates
the pairs, resulting in an encoding of 4A1B4C.

With its simplicity, RLE provides fast execution, but in most cases RLE results in a
lower compression ratio as compared to other algorithms [33]. One drawback, as evident
by the example above, is that the absence of repetition has to be encoded as well. For
text with few repetitions, using RLE will likely increase the size since the gain will be
negligible in relation to the overhead.
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2.5.2* LZ77
LZ77 is a lossless compression algorithm created by Abraham Lempel and Jacob Ziv in
1977. The intuition behind the algorithm is to remove redundancies of repeated sequences
by using pointers to an earlier occurrence of the repetition.

Figure 2.7: Example of LZ77 encoding of the word sequence
abracadabrad.

As illustrated by the example in Figure 2.7, the algorithm uses two sliding windows
of predetermined size: a lookahead buffer and a search window. The two windows are
aligned, such that the start of the lookahead window is successive to the end of the search
window. The idea with the windows is to match the longest sequences in the lookahead
buffer, starting at its beginning, with a pointer to the same sequence in the search window.
When a match has been found, the two windows shift 1 + len(match) characters along
the sequence. A match results in a 3-tuple (match offset, match length, next nonmatching
character), which is the output of the algorithm. Decompression is done by performing
the process of creating the compressed sequence in reverse [28]. LZ77 is used in cur-
rent compression algorithms, such as in DEFLATE where it is combined with Huffman
encoding.

2.5.3* Burrows-Wheeler Transform
Burrows-Wheeler transform is a method to reorder a string, so the same characters appear
sequentially more often. The transformation is invertible, making it possible to go back
and forth between the original input string and the transformed version. The invertible
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property makes it appropriate as a pre-processing step for compression algorithms. For
example, Run-Length encoding may perform better when BWT is applied beforehand.
To create the Burrows-Wheeler transform, all permutations of the input string, with an
inserted marker for the beginning and ending of the string, are generated. The permuta-
tions are sorted based on lexical ordering and a sequence containing the last character for
each permutation is extracted. As shown in Figure 2.8, the sequence ∧BANANA |, with
∧ and | notating the start and end of the sequence, is Burrows-Wheeler transformed into
BNN∧AA|A [5].

Transformation
Input All Rotations Sorting Rows Taking Last Column Output Last Column

^BANANA| ANANA|^B ANANA|^B
|^BANANA ANA|^BAN ANA|^BAN
A|^BANAN A|^BANAN A|^BANAN

^BANANA| NA|^BANA BANANA| ^ BANANA| ^ BNN^AA|A
ANA|^BAN NANA|^BA NANA|^BA
NANA|^BA NA|^BANA NA|^BANA
ANANA|^B ^BANANA| ^BANANA|
BANANA| ^ |^BANANA |^BANANA

Figure 2.8: Example of Burrows-Wheeler transformation of the
sentence BANANA.

2.6 Evaluation Metrics
The most frequently used evaluation metrics for compression are the compression ratio
and the compression factor, presented in Equation 2.19. The compression ratio describes
the output size of a compression algorithm relative to the input data size. For instance, a
compression ratio of 0.5 means that the compressed data is 50% the size of the input. The
compression factor is simply the inverse of the compression ratio [27]. In the industry,
it is also common to denote the performance by X:1, where X is the compression factor
[15].

Compression Ratio =
1

Compression Factor
=

Size of output stream
Size of input stream

(2.19)

Execution time is a metric that is used when evaluating the performance of compres-
sion schemes and operations. A problem with simply using the absolute execution time is
that it can be influenced by factors that are unrelated to the implementations, such as hard-
ware performance [27]. To ensure a fair comparison, the relative execution time between
different runs under the same circumstances can be compared instead. For this to be reli-
able, a mean of multiple runs should be considered to filter out noise in the measurements.
Calculating the relative execution time can be done as in Equation 2.20.

Relative Execution Time =
Time for implementation

Time for baseline
(2.20)
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2.7 Spatial Indexing
One common challenge when dealing with large amounts of data is efficiently retrieving a
subset of the data at an arbitrary location in storage, referred to as random access queries.
Indexing reduces access time by providing a pointer to the relevant data section based on
the input data in the query. Spatial indexing is a subfield that focuses on retrieving data
based on a geographic location.

2.7.1* Quadtrees

Figure 2.9: An illustration of a quadtree structure in a plane of
points. The notation of nw, ne, sw, and se in the tree structure
corresponds to the top left, top right, bottom left, and bottom right
quadrants, respectively [31, Figure 13.6].

A quadtree is a hierarchical tree structure where each node has zero or four children.
The hierarchical structure enables indexing and makes querying for specific regions of the
two-dimensional space convenient.

In a quadtree, each node describes a section of a two-dimensional plane, where the
root node describes the section in its entirety. The intuition behind the quadtree is that for
a non-leaf node, its four children divide the parent node’s two-dimensional section into
four quadrants [28], see Figure 2.9.

If a quadrant does not split the data, there is no reason to further divide the section of a
node, and it can be assigned as a leaf node. Additionally, the algorithm can stop creating
quadrants when a node contains a specified maximum number of data points [28].
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Chapter 3
Methodology

In this chapter the iterative work process, data collection, and the technical tools used
during development are explained.

3.1 Work Process
The methodology used for the thesis is a mixture of reading prior literature on common
compression algorithms, spatial operations, and floating-point representations. Along
with data collection and preprocessing, implementing benchmarking and validation en-
vironments, and iteratively implementing and evaluating ideas obtained through brain-
storming and combining existing literature. When ideas were proposed, the potential
gain and estimated implementation complexity were used to rank the development order.
Thus, some ideas were never implemented due to time constraints, but the ideas are still
documented in the report for future reference.

A rough overview of the process used during the 20 weeks of the thesis is presented
below:

1. Look into different sources for open-source map data where the geometrical object
format is known. When decided, incorporate the data into an existing geometric
framework, such as Shapely, and become familiar with the formats. Set up an en-
vironment for testing, developing, and evaluating implementations of compression
algorithms performing geometric operations on the processed data.

2. Conduct a literature review of compression concepts and encoding of geometries
consisting of floating-point coordinates. Investigate what kind of algorithms are
suitable for geometrical map data.

3. Implement one baseline algorithm which can be extended. The baseline should
perform the geometric operations by decompressing the whole geometry, and the
algorithm should be relevant in the field of maps compression.
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4. Change the underlying structure of the baseline to enable unary and binary op-
erations by partial decompression. Performed by iteratively coming up with new
ideas, implementing them, and measuring the performance difference between the
algorithms in terms of efficiency and storage space.

5. Examine how the compression ratio can be optimized while preserving the oper-
ability, by exploiting the maps domain and applying a combination of known com-
pression strategies. Also, improve execution time by utilizing profiling tools and
optimizing the implementation.

3.2 Establishing the Baseline
Due to the significant performance differences between programming languages, such as
C and Python, programming language consistency is critical to ensure a fair comparison
between implementations. As mentioned in Section 1.2, the implementation of our com-
pression format is written in Python, and for conducting fair performance assessments,
an appropriate baseline was re-implemented in Python. The baseline provides a base for
evaluation, and by comparing the relative performance scoring between different imple-
mentations, an idea of their general performance can be extrapolated.

For instance, if implemented in the same programming language, comparing the exe-
cution time of a baseline that decompresses an entire geometry with the execution time of
an operation-integrated compression format with support for partial decompression, valid
data on the performance benefits of partial decompression can be obtained. However, if
the operations are done in different languages, the effect of the different languages cannot
be controlled.

Nonetheless, there are situations where valuable insights can be gained by comparing
operations written in partially different languages. If an operation-integrated compres-
sion format outperforms the complete operation, which includes decompression and a
library function in the baseline, and both use the same programming language for the
decompression, despite the possibility that the baseline might utilize a more efficient li-
brary function, the operation-integrated compression format demonstrates its superiority
by outperforming the baseline in overall time.

3.3 Supported Operations
There exist many operations which can be used to manipulate or extract information from
geometries. To narrow the scope of the thesis, the supervisors proposed some operations
that are often performed on GIS data. Three distinct operations were chosen as the pri-
mary goals of optimization: bounding box, add vertex, and intersection (both predicate
and boolean). The operations are characterized by being constant, modifying, and binary
operations, respectively.

During meetings with the supervisors, the following unary operations were proposed as
interesting and while only a few are in focus for the thesis, the others may be integrated
and optimized in future work:
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Vertex Count Number of total vertices.

Area For polygons, the total area minus the area of the holes.

Length Total length for linestrings, circumference for polygons.

Modify Vertices Add, remove, edit individual vertices.

Bounding Box Returns the corners of the minimum axis-aligned rectangle such that all
vertices in the shape are contained.

Buffering/Scaling Change the size of the geometry while preserving the center of mass
and proportions.

Convex Hull The smallest convex set containing the shape.

Center of Mass Average position of all vertices.

End-Points For linestrings only.

For binary operations, the spatial predicates which can be derived from the DE-9IM
model, such as intersects and contains, along with the boolean operations of intersection,
and union, returning a shape, were proposed as operations to be optimized.

3.4 Datasets & Preprocessing
Spatial datasets are used to evaluate the performance of the implementations. This section
provides an overview of the data sources used and the preprocessing steps performed on
them.

(a) Buildings in red
and roads in blue.

(b) Administrative
borders.

Figure 3.1: Excerpts from the datasets used for benchmarking.
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3.4.1 OpenStreetMap

OpenStreetMap (OSM) is an open-source database for spatial data covering the whole
world. It is licensed under Open Database License (ODBL), which allows the user to use
the data with little restrictions to copyright and ownership rights. The flexibility of ODBL
implies that it is permitted for users to create, share and modify the data [19].

The format of OSM can be divided into four categories: nodes, ways, relations, and
tags. Nodes describe specific coordinate points of a map; ways is a polyline or a polygon
of an ordered sequence of nodes; relations combine nodes, ways, and recursive relations
to form larger map-related structures; and lastly, tags are metadata to any type containing
extra information about objects [22].

Due to OSM containing shapes covering a large portion of the world, it is imprac-
tical to work with the entire dataset. Instead, extractions from the dataset were down-
loaded through Geofabrik, an OpenStreetMap data extract provider. Different extracts
were considered to investigate how the performance of the implementation is affected by
the characteristics of the datasets.

Four datasets: Sweden Buildings, Sweden Roads, Sweden All, and China Water were
selected to be used in the evaluation. Buildings and roads were selected since they are
both common geometries, but the shapes are usually different. China Water was selected
because geometries representing water (lakes, rivers, streams) usually have a high vertex
count, and using data from different countries can reduce the bias induced by geographical
differences. Characteristics and images of the datasets are available in Table 3.1, Figure
3.1, and Figure 3.2.

3.4.2 Database of Global Administrative Areas

The Database of Global Administrative Areas (GADM) is a maps data provider with the
goal of mapping all administrative areas of all countries, at all levels of sub-division [38].
GADM is freely available for academic use and other non-commercial use. Due to the
number of vertices in the shapes, the borders of all administrative areas, as visible in
Figure 3.1b, are used in the evaluation.

Table 3.1: Characteristics of datasets.

Type Distribution (%) # Vertices

Dataset # Geometries LineString Polygon MultiPolygon Total Average

Sweden Buildings 2.8M - 99.9 0.1 17.8M 6.3
Sweden Roads 1.9M 100 - - 24.1M 12.7
Sweden All 6.4M 31.9 68 0.1 104.5M 16.4
China Water 367K - 99.7 0.3 21.8M 59
Admin Borders 4596 - 85.8 14.2 1.3M 282
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Figure 3.2: Cumulative distribution of the vertex count for the
geometries based on the dataset. The right plot is weighted by the
number of vertices, indicating how the overall size is distributed.
For example, the size of one shape containing 30 vertices is equal
to 6 shapes containing 5 vertices.

3.4.3 Intersection Data
In order to benchmark the operations of intersection, datasets consisting of pairs of shapes
resulting in the different cases of intersection are needed.

OSM & GADM

The common case for intersection, if picking two geometries at random, is that no inter-
section occurs. To collect the queries of interest, the bounding boxes of all shapes were
pairwise tested for intersection, and the queries containing an intersection were kept. In
addition to the case of no intersection, the possible distinct cases when the bounding
boxes intersect are no intersection, intersection with crossing segments, and intersection
by contains.

The testing was performed for all shapes in Admin Borders, for all shapes of type
building or highway (used for identifying any kind of road, street or path) in the city of
Lund (subset of Sweden All), and random subsets of 100 000 queries from Sweden All and
China Water.

Manually Created Special Cases

Since the shapes can consist of polylines, polygons, polygons with holes, and multipoly-
gons, there exist numerous possible relations between the types of the intersecting shapes.
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Furthermore, a number of edge cases, such as shapes consisting of parallel lines, have to
be accounted for when implementing intersection. In order to test for those, along with the
possible worst- and best-case scenarios, the GIS editing tool QGIS was used to manually
create a dataset of such shapes.

3.5 Validation & Benchmarking Environment
A test bench was created in order to evaluate and verify the different implementations of
compression algorithms and their operations. Due to Python’s large number of existing
modules and community support, the test bench was written as a Python Jupyter Note-
book. By being able to split code into cells and have the output from each cell presented
directly under the code, Jupyter Notebooks can be used to present both code and plots of
results in a structured manner.

To allow for fast integration of new or altered algorithm implementations, the test bench
was written in a generalized manner, being as decoupled from the algorithm implemen-
tation as possible. This was achieved by having an abstract base class that consists of
the methods for compression, decompression, and the corresponding operations. Each
algorithm derives from the base class and provides implementations of the abstract meth-
ods. With this setup, a new algorithm can be added by simply changing one line in the
test bench. Furthermore, the dataset used in the benchmarking can also be specified by
changing one configuration variable.

3.5.1 Validation of Operations
Test-driven development is a common strategy used to maintain system correctness over
time. By shortening the feedback loop in the form of automated testing, bugs in imple-
mentations can be caught in a matter of seconds [2].

For lossless compression algorithms, one obvious test case is verifying that the de-
compressed data is equal to the original data. When dealing with geometric data, it is
also the case that all operations should exhibit the same behavior in the geometry space,
regardless of the algorithm used. When modifying geometries, one way to validate oper-
ation correctness is to perform the operation on the compressed data using the untested
algorithm and then decompress the data altogether and compare the output with a trusted
implementation.

To ensure the correctness of the implemented algorithms in the thesis, a validation section
is included in the test bench. During benchmarking, each query and its corresponding
result are logged. After executing all queries, the queries are re-run using a verified im-
plementation, and the outputs are compared to ensure consistency.

3.5.2 Shapely
Comparison fairness is essential when benchmarking different compression algorithms.
Therefore, all algorithms assume the same input and output format. The Python GEOS
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library Shapely is used as the algorithms’ start and end point format. Shapely comes
with a spatial data model supporting common functionalities. The premise of Shapely is
its convenience for working with and operating on spatial objects without the need for
relational databases [30].

All the geometries described in the theoretical background, such as Point, LineString,
Polygon, and MultiPolygon, are available as geometric Python objects supporting various
spatial operations. Additionally, Shapely is compatible with common formats, such as
WKT, WKB, and GeoJSON, making working with online datasets convenient [30].

Figure 3.3: Visualization overview of the benchmarking pipeline.
Orange boxes indicate values passed to benchmarking or valida-
tion and ALG is the current algorithm to test.

3.5.3 Benchmarking
For benchmarking the algorithms, it is assumed that all the input data for the algorithms
are stored in RAM, and benchmarking does not include the overhead of reading and writ-
ing data to storage. This enhances a fair comparison by removing the impact on perfor-
mance caused by the storage solution. The compression, decompression, and operations
assume three different starting and ending premises:

• Compress: Shapely object
output
−−−−→ Binary String

• Decompress: Binary String
output
−−−−→ Shapely Object

• Operations: Binary String
output
−−−−→ Value/Binary String

Since the third-party library Shapely is used for the algorithms, consistency of its
use between the different algorithms must be considered. For instance, there are various
ways of instantiating Shapely objects. Suppose that different Shapely object creation
strategies are used for different algorithms. In that case, the benchmarking comparison
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might be unfair since the relative efficiency differences between the methods in the third-
party library are unknown.

The common benchmarks for compression, decompression, and operations are run-
ning time. For compression and decompression, the size differences in bytes for the
different algorithms are also investigated. In Figure 3.3, the pipeline for benchmarking
the algorithms can be seen.

3.5.4 Performance Profiling
Due to Python being an interpreted language and lacking an optimizing compiler, profiling
is essential for finding implementation bottlenecks. The Python profiling tool Kernprof,
together with its complement line_profiler, can be used to extract line-by-line statistics for
different functions. For each line, the statistics contain the number of hits, the accumu-
lated execution time, and its corresponding time percentage relative to the encapsulating
function [25].

In addition to locating slow code, profiling provides algorithmic insight. When devel-
oping algorithms, understanding which parts are logically flawed or time-consuming is
valuable for creating efficient and robust algorithms.
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Chapter 4

Algorithm Implementations

This chapter consists of implementing support for the standard geometry file formats, re-
implementing the baseline, and descriptions of extensions that provide operability support
for the baseline.

4.1 WKT, WKB & Gzip
WKB is used as the reference when verifying the correctness of the implementations, and
for size benchmarking, while WKT is convenient to use when debugging. Additionally,
due to its smaller size and higher performance, WKB is commonly used in the indus-
try. Therefore, classes utilizing Shapely for parsing and serializing WKT and WKB were
written to support the benchmarking environment.

Python includes support for working with most common compression formats, includ-
ing the general-purpose formats gzip, zlib, and bzip2. Classes consisting of serialization
to WKB and WKT followed by compression using algorithms provided by the Python
library were implemented in order to compare the compression ratios.

4.2 Baseline: Floating-Point Delta
As described in the related work section, floating-point delta (FPD) encoding is a com-
pression algorithm suited for spatial data. Due to its simplicity while still being related to
the spatial domain, the algorithm [26] serves as the baseline in this thesis.

Our implementation of FP-delta encoding, similar to Saeedan and Eldawy’s imple-
mentation Spatial Parquet, consists of one pre-iteration over the geometry in order to
determine the optimal bit-length of the deltas, followed by interpreting the floating-point
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values as signed integers, and zigzag encoding the consecutive differences between the
corresponding (x, y) pairs. If either the x- or y-value overflows, a new chunk is created.

Figure 4.1: Visualization overview of the bit structure of the FP-
delta baseline format.

Due to the differences between the underlying file formats, where Spatial Parquet
is based on the Parquet standard, and the thesis on standalone files for each geometry,
the encoding of the different geometry types differs between the implementations. The
baseline format, as outlined in Figure 4.1, starts with two integers; the delta size and the
geometry type, followed by a number of chunks that contain chunk metadata, required
for parsing the geometry structure, and coordinate pairs. During parsing, the metadata is
used to determine the context and length of the corresponding chunks, allowing for the
reconstruction of the individual parts of the geometries. As also seen in the figure, the
metadata differs between the geometry types and consists of:

• LineString: the number of deltas in the current chunk.

• Polygon: + the number of chunks for the current ring.

• MultiPolygon: + the number of rings for the current polygon.

The geometric operations are implemented by decompressing the entire geometries,
followed by executing either Shapely’s built-in functions when it is sufficient to make
a conclusion, or a self-made Python implementation of the operation. The latter is the
approach utilized for Add Vertex, Is Intersection and Intersection.

4.3 Floating-Point Delta Extended
In this section, we propose and implement enhancements to the geometric operations
based on the FP-delta encoding. One motivation for the placement of the baseline’s chunk
metadata is to allow for further extension of the algorithm, enabling local decompression
to improve the effectiveness of the operations. Throughout the report, our implementation
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is referred to as Floating-Point Delta Extended, and abbreviated as FPDE. Some of the
ideas proposed below were not implemented due to time constraints, but may be of interest
when conducting future research; they are marked with an asterisk (*) in the title of the
section and can be skipped if the reader is only interested in the implemented concepts.

4.3.1 High-Level Structure of the Format

Figure 4.2: Visualization of the implemented structure for our
solution. Extending the structure in Figure 4.1.

The final structure of the compression format, as seen in Figure 4.2, is similar to
the baseline, but both the global and chunk headers have been extended to allow for
compressed computation. In summary, the implementation consists of a global header
including the delta size, geometry type, entropy coding parameter, chunk count, chunk
bounding boxes, and the shape bounding box. The global header is then followed by a
sequence of chunks, where the chunk headers as previously contain the parsing data. If
entropy encoding is applied, the size of each delta may vary, and to allow for skipping of
irrelevant chunks, the total number of bits in each chunk is stored in the chunk header.

A high-level flow chart is presented in Figure 4.3 below, illustrating the sequential
steps involved in the compression and decompression operations of the format. As for
the baseline, the resulting size of different delta bit-lengths are calculated and the size
optimal bit-length is assigned to the shape during compression. Two examples of how
the resulting shape size varies with the delta bit-length can be seen in Figure 4.4. The
chunk bounding boxes, required for the optimized intersection operations, and the global
bounding box are calculated during compression. In addition, a maximum chunk size,
which forces the creation of a new chunk when a certain number of deltas have been
reached, can be specified as a configuration variable. As also visible in the flow chart, the
format can configured to use one of three different floating-point encoding techniques,
which are explained later in Section 4.7.1.
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Figure 4.3: High-level flow chart of the compression and decom-
pression operations in FPDE.

(a) Shape from
Sweden All.

(b) Shape from
Admin Borders.

Figure 4.4: Combined size of all coordinates and chunk headers
divided by the vertex count for different delta bit sizes. The fig-
ures show the data for two random geometries.
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4.4 Bounding Box

Figure 4.5: The red rectangle is the bounding box of the shape.

The minimal axis-aligned rectangle such that all points within the shape are contained
is commonly referred to as the bounding box. The bounding box can be used as a first
step to filter out candidates for further operations. Since all points belonging to the shape
are per definition within the bounding box, it can be used as a spatial upper bound for
approximating the shape, implying that the shape is at maximum as large as the bounding
box. For instance, the intersection operation can be optimized if there is no intersection
between the bounding boxes, since this implies that no intersection can possibly occur
between the shapes. An example of a bounding box can be seen in Figure 4.5.

Due to the bounding boxes commonly being used as a first filtration step, it is of great
importance that the latency for fetching the bounding box is the lowest possible. Below,
a number of implementations for storing and retrieving the bounding boxes are proposed.
In FPDE, only the first approach is implemented and evaluated (Section 4.4.1).

4.4.1 Store Full Coordinates
The first approach is to pre-compute the bounding box and store the bounds, essentially
storing two diagonal corner points of the box, resulting in a total of four coordinates. As
seen in Equation 4.1, the coordinates of the bounding box are calculated by finding the
minimum and maximum values of the X- and Y-vectors of the shape’s vertices.

bounds(s) = [min(xs(s)), max(xs(s)), min(ys(s)), max(ys(s))] = [xl, xr , yb, yt] (4.1)

The added overhead from the four coordinates results in a total space of 4 · b f where
b f is the number of bits required to store one coordinate. The value of b f depends on the
format used for serialization of the floating-point coordinates. If using double-precision,
the resulting size is 4 · 64 = 256 bits.

Since the coordinates are stored in full, obtaining the actual bounding box from the
memory address can be done in O(1).

4.4.2* Store Indices for Spanning Points
As seen in Equation 4.1, the bounds are defined by a maximum of four unique vertices
spanning the bounding box. Instead of storing the full coordinates separately, the over-
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head can be reduced by storing the indices of the vertices, resulting in Equation 4.2.

bounds(s) = [arg min(xs(s)), arg max(xs(s)), arg min(ys(s)), arg max(ys(s))]
= [ixl, ixr , iyb, iyt]

(4.2)

The bounding box can be calculated by retrieving the points based on the indices and
taking the x- or y-coordinate based on the position within the bounds data.

This approach usually requires less space compared to storing the full coordinates, but
has a slower query time. To store the indices 4 · ⌈log2(V )⌉ bits are required. Meaning that
with a larger number of vertices, more bits are required. Calculating the bounding box
can be done in 4 · T (random_access) operations.

4.4.3* Utilize Sorted List
If the compressed shape’s data structure already includes two lists with indexes or coordi-
nates sorted by x- and y-values, the bounding box can be easily retrieved. Obviously, the
sorted lists should not be included for the bounding box alone, but some other operations,
such as the first method presented for intersection in Section 4.6, require sorting.

In this case, no additional overhead is added, and if the sorted lists contain indices,
retrieving the actual bounding box can be done in 4 ·T (random_access) operations. If the
sorted lists contain delta encoded coordinates, the time complexity becomes 2 · O(1) + 2 ·
T (random_access); where the accesses to xl and yb are constant, since they are stored in
full at the very beginning of the sorted lists. For xr and yt, which are stored at the very
end of the lists, the accesses are the worst-case for random access. In this case, the access
has to loop over all chunk headers and decompress the entire final chunk. Resulting in
T (random_access) = cs + mc, where cs is the number of chunks, and mc is the number
of deltas within the last chunk. An improved approach for random access is discussed in
Section 4.5.5.

4.4.4* Quadtree Approximation
If the exact bounding box is not required, storing it directly can be avoided by using a
quadtree. In this case, each bounding box in a set of bounding boxes is part of one of the
nodes within the tree. Namely, the node with the largest depth such that the bounding box
is fully contained within the quadrant. In libraries for storing and retrieving geometries,
spatial indexing commonly uses a tree-like structure based on the bounding boxes of the
shapes [35]. In such cases, it may be possible to retrieve which quadrant the shape is
assigned to from the library. The bounds of the quadrant can then be used as the bounding
box approximation.

As this thesis focuses on singular geometries, no spatial indexing is available for the
shapes. However, Section 4.6.3 proposes a method to reduce the query time and data
overhead of operations by employing a quadtree. In this approach, the quadtree approxi-
mation of the bounding boxes of the individual chunks within a shape is used, as opposed
to storing the coordinates of all the chunks’ bounding boxes in full.
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4.5 Add Vertex
In this thesis, Add Vertex refers to the operation of inserting a point at a specific index in
the shape, with a binary string as output. This represents the operation in 4.3:

Add_Vertex(binin, idx, point)
output
−−−−→ binres (4.3)

4.5.1 Indexing Scheme
For shapes representing at least one polygon, simply using the vertex’s index to deter-
mine the location of the new vertex can result in ambiguities. Two problems cause the
ambiguities to arise:

1. Irregular standards regarding if the first point should be equal to the last point in
each ring, such that the coordinates form a closed path. Otherwise, the last line
segment in each ring is formed implicitly.

2. Between two rings, it is not clear whether the index is a part of the predecessor- or
the successor ring.

Add Vertex is implemented with rules such that a point can be inserted anywhere in the
shape, but it is not possible to extend the shape with new rings or polygons. In theory, this
can be solved by having separate operations Add Ring and Add Polygon, or extending the
indexing scheme further. Implementation-wise, the ideas are very similar.

The indexing scheme used assumes:

• The start- and endpoint is only represented by the first vertex in the ring.

• After the last vertex of a ring, an additional "ghost"-index exists in order to allow
for insertion at the end of a ring.

4.5.2 Random Access & Chunk Iteration
Random access is essential in order to implement the addition of vertices. In this sense,
random access is the operation of retrieving a subset of the data, based on an indexing
parameter. For adding a vertex, both the surrounding context, such as neighboring points
and chunk headers, along with the data offset in the binary string corresponding to the
insertion index, is needed for the operation.

One way to achieve faster random access querying is through the avoidance of reading un-
related data. Additionally, when dealing with compressed data, decompression involves
further operations which should be avoided when possible.

Conveniently, the chunks in FPD are isolated, and the only required information in
order to parse a chunk is the location (offset) of its header. Furthermore, the sequential
encoding ensures that each chunk contains a contiguous slice of the index vector. It is
therefore trivial to check whether a chunk contains an index by checking if the index is
within the chunk bounds, as shown in Equation 4.4.
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contains_index(i, c) =
c ≤ i ≤ c + mc + 1, if last_chunk_in_ring(c)
c ≤ i ≤ c + mc, otherwise

(4.4)

where c is the index of the first vertex in the chunk, and mc is the number of deltas
within the chunk.

Using the function above, it is possible to avoid reading and decoding irrelevant
chunks. Instead, only the chunk header is read and the delta count is extracted. Then,
the index bounds check is performed, and if the chunk is irrelevant, jumping to the next
chunk and ignoring the deltas within the current chunk is done by adding mc ·2 ·delta_size
to the data offset variable. This process is further illustrated by the second jump in Figure
4.6.

In addition, the implementation employs caching based on temporal locality, stating
that recently accessed data will likely be accessed again soon. By storing the accessed
chunks dynamically in memory, each chunk and vertex is only retrieved once for a com-
plete query. For example, intersection usually involves multiple random access calls, and
can benefit from caching. This is however unrelated to adding a vertex, since a complete
query only accesses each chunk once.

4.5.3 Insertion Procedure for the General Case
In order to combat possible special cases, a general suboptimal approach in terms of size
is used to insert the vertices. In this section, the general procedure is described, and
possible improvements are listed in the following section.

Figure 4.6: An illustration of adding a vertex at index 6, while
exploiting the locality of indexing within chunks.

Conceptually, the idea of the insertion procedure is to split the chunk currently con-
taining the vertex corresponding to the insertion index into two chunks, along with placing
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the inserted vertex into an additional chunk. The existing chunk will therefore contain the
left part of the previous chunk, followed by a new chunk containing only the added vertex,
and an additional new chunk containing the right part of the old chunk.

First, the offset pointer to the chunk currently containing the corresponding vertex is
found using the random access method described above, and the data offset location of
the corresponding vertex is calculated. A new chunk, containing only the new vertex,
is created and inserted at the old vertex’s offset. The predecessor (left) chunk and the
successor vertex are altered in order to preserve the neighboring vertices.

The procedure is illustrated in Figure 4.6. In detail, the restoration of the structure for
the neighboring vertices is done by additionally examining:

• If there are vertices to the left of the inserted chunk, i.e. the insertion caused the
surrounding chunk to be split, then the count of deltas in the predecessor chunk is
updated to only include the deltas to the left of the insertion point.

• If there are vertices to the right of the inserted chunk, an additional chunk is created
to the right, and the vertex immediately after the inserted vertex becomes the reset
point for the new chunk.

Additionally, the ring header, i.e., the integer containing the number of chunks for the
ring, has to be updated to account for the added chunks.

4.5.4* Merging the Created Chunks
The algorithm works in the general case, however it is not optimal in terms of size. In most
cases, two additional chunks are created, resulting in a larger overhead and the avoidance
of delta encoding. When handling the left and right part of the old chunk, the creation of
additional chunks can be avoided:

• If the delta between the inserted point and its predecessor point is smaller than the
maximum delta size, then let the new point be a part of the left chunk instead of
creating the middle chunk.

• If the delta between the inserted point and its successor is smaller than the maximum
delta size, then let the new point be a reset point for the right part of the old chunk
instead of creating an additional right chunk.

Additionally, if a point is inserted at the end of an existing chunk, it may be possible to
merge the two existing neighboring chunks into one. This is only possible if the distance
between the inserted vertex and the two chunks is less than the maximum delta size, so
that the new point bridges the current gap between the chunks.

The benefits of the optimizations are greater when the geometry has repeated adds,
since in the limit the unoptimized implementation will result in all vertices being in their
own chunks, i.e., all coordinates are represented in full. FPDE does not currently imple-
ment merging of the chunks, but implementing the proposed solutions should be straight-
forward.
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4.5.5* Improving Random Access
An efficient structure for random access would allow for access to the requested data
section in constant time. In the format proposed above, the relevant chunk is first found
through iteration over the chunk headers, and then the chunk is decompressed until the re-
quested vertex is obtained. Therefore, requesting a vertex at an arbitrary position requires
additional indexing overhead and, due to the use of delta encoding, decompression of all
preceding vertices in the chunk.

Finding the relevant chunks can be addressed by having a lookup table, mapping the
indices of vertices used as chunk reset points to offsets within the binary string. The
offset for an arbitrary vertex can then be found by a binary search, where the first value
less than or equal to the index is found. This approach requires the table to be stored, and
is therefore a trade-off between space and time.

The requirement of processing all preceding vertices within the chunk is a trait of
the sequential delta encoding scheme. Due to the scheme consisting of the difference
between consecutive values, a chain of dependencies is created. An alternative is to delta
encode each value from the chunk’s reset point, resulting in the chunk header being the
only dependence. However, this may impact the resulting compression size, since the
deltas from the chunk header may be larger than sequential deltas.

4.6 Intersection
The operation of intersection can be divided into two binary sub-operations, Is Intersect-
ing and Intersection. Is Intersecting returns a True/False value, whether the geometries
intersect or not. Intersection, is a more complex operation, returning the shape of two
geometries’ overlapping area.

For both operations, several techniques were applied to ensure that as few vertices as
possible were unfolded from their original compressed state. A common first step is to
check if the two geometries’ bounding boxes overlap. This can be determined using the
separating axis theorem, which states that if an axis that separates the two polygons can
be found, then they do not collide. In two dimensions with axis-aligned bounding boxes,
it can be calculated using the predicate:

no_horizontal_overlap : (xmax(bb1) < xmin(bb2) ∨ xmin(bb1) > xmax(bb2))
no_vertical_overlap : (ymax(bb1) < ymin(bb2) ∨ ymin(bb1) > ymax(bb2))
no_overlap : (no_horizontal_overlap ∨ no_vertical_overlap)

If the bounding boxes do not overlap, it can be concluded that no intersection occurs
[37]. In that case, Is Intersecting returns False and Intersection returns the None-shape.
The unique bounding box cases are demonstrated in Figure 4.7.

The methods below are based on the assumption that, for the domain of maps, line
segments of geometries should not self-intersect, and any occurrence of such is considered
an error [20]. Therefore, if there exists a crossing between any two line segments, it can
be concluded that an intersection exists between the two different geometries.
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(a) (b) (c)

Figure 4.7: Possible intersection cases between bounding boxes.
The common bounding box is in red. (a): None, (b): Partial, (c):
Contained.

4.6.1 Initial Intersection Algorithm
The first algorithm to calculate the predicate intersection is presented below. The algo-
rithm is constrained to not include line segments without an endpoint in the common
bounding box and assumes that no shape is fully contained. Due to the constraints be-
ing violated in certain intersection contexts, the algorithm described in Section 4.6.2 is
instead implemented in FPDE to allow for more use cases.

Figure 4.8: Working case for the first intersection method. Green
vertices are part of the intersecting shape, black are intersection
points, red are unnecessarily decompressed, and cyan are ignored.

When investigating two different geometries, the only area in which they can co-exist
is inside the overlap of the bounding boxes. Consequently, an intersection between the
two can only occur inside this overlap. The first method tries to avoid local decompression
of points outside this area using the following steps:

1. Check if the two geometries’ bounding boxes overlap; if yes, continue to (2), else
return False.

2. Extract all the points within the overlap of the bounding boxes and add them to a
set S.
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3. Create a set L of all line segments with an end point in S.

4. Check for intersections between any two line segments from each shape.

5. Return True if an intersection is found in (4), otherwise return False.

Step (1) is trivially checked using the separating axis theorem, while extracting all the
points inside the overlap of the bounding boxes in (2) is more involved and requires addi-
tional data in the format header. One solution to finding the points is to store two sorted
indices lists for the points based on their respective x- and y-value in the compressed for-
mat. Since an index can be saved with a maximum of ⌈log2(n)⌉ bits, where n is the total
number of points in the geometry, the additional per-point overhead is relatively small.

When the indices lists sorted by x- and y-values are accessible, the points inside the
intersecting area of the bounding boxes can be found in O(log2(n)) · T (random_access)
time using four binary searches over the sorted indices list for each geometry. The binary
search finds the closest points to each of the bounding box overlap’s perimeters; denoted
as xle f t, xright, ybottom, ytop. When these points are found, the points with x-values between
the range (xle f t, xright) and (ybottom, ytop) can be extracted by slice indexing the sorted index
lists and taking the set intersection. The last step in extracting all points within the area
is to use random access, described in Section 4.5.2, to get the actual points corresponding
to the remaining indices.

Step (3) of the algorithm creates all line segments with the points found in (2) over
the set of points in the bounding box overlap. Lastly (4) can utilize the sweep lines
algorithm to efficiently find any line segment intersection, as opposed to comparing each
line segment of each geometry with each other.

Figure 4.8 demonstrates the algorithm. Only the vertices on a segment which is inside
the common bounding box are decompressed, with some exceptions during the binary
searches.

(a) The red
intersection points

are not found.

(b) Intersection with
no crossing line

segments.

Figure 4.9: Example of failing cases for the first intersection
method.

This algorithm works efficiently since it usually operates on a fraction of the geome-
tries’ points and line segments. However, it is limited in the sense that certain cases are
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not processed correctly. Since the algorithm is centralized around creating line segments
with any endpoint inside the bounding box overlap, the algorithm does not consider line
segments that cross the geometry bounding box overlap area but have both endpoints out-
side it. Another case in which the algorithm can fail is when the geometries’ line segments
never cross each other, but one is entirely contained in the other. Figure 4.9 shows an ex-
ample of such cases. Due to these constraints, additional algorithms supporting more use
cases for Is Intersection and Intersection are proposed below.

4.6.2 Chunk Based Intersection
By utilizing the automatic chunking of FP-delta, the implementation for intersection can
be improved further. Below, a method that uses the chunk’s bounding boxes for reducing
the size of the required local decompression is presented.

Since the chunks contain a continuous sequence of points, the spatiality of the chunks
is localized. As seen in Figure 4.10, the bounding boxes of the chunks divide the geom-
etry into a set of mostly non-intersecting rectangles. By examining the bounding boxes
of the chunks, the relevant chunks which are within the common geometry bounding box
can be extracted.

Figure 4.10: Bounding boxes of the chunks when including the
first point in the following chunk. Dashed line is the bounding
box if only containing the points within each chunk.

When all chunks within the bounding box have been found, additional filtering is
applied to reduce the number of decompressed chunks. As outlined in Section 4.6, the
separating axis theorem can be used to check if two bounding boxes overlap. This theo-
rem is applied between the chunk-local bounding boxes between each of the geometries.
If a chunk is found to have no bounding box overlap to any of the chunks from the other
geometry, assuming no self-intersecting geometries, an intersection point can not exist on
the segments in that chunk. For Is Intersection, there is no meaning in decompressing
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such a chunk, but for Intersection, it cannot be dismissed yet. In Intersection, the seg-
ments in a chunk that does not have a bounding box overlap with any of the chunks in the
other geometry might still be a part of the output polygon, as they may link the chunks
containing intersecting segments. Due to this, these chunks are marked with mock seg-
ments and are lazily decompressed at a later stage when it is definite that its segments will
be used.

Once the filtering has been completed, the chunks are decompressed and all points
within them are used to form line segments. Each chunk forms one linestring consisting
of the chunk’s line segments. Furthermore, all linestrings filtered from geometry g1 are
checked for intersection with all linestrings filtered from geometry g2. This procedure
results in a set S that contains the intersecting points. If S ̸= ∅ then there exists an
intersection between the shapes, otherwise additional steps are required to determine the
intersection status.

Fully Contained
As stated in the previous algorithm, when one shape is fully contained within the other,
there is an intersection between the shapes, even though there are no intersecting points
between the shape’s line segments. By looking at the relationship between the shapes’
global bounding boxes, it can be determined whether it is possible for one shape to be
fully contained within the other. Namely, in order for a shape to be fully contained, its
bounding box must also be fully contained within the other shape’s bounding box. The
reason for this is that since the shapes are contiguous (if not dealing with multipolygons),
there must exist a path between the points spanning the bounding box. This path will be
outside the bounding box of the other shape, and since the geometry is at least as small as
its bounding box it can be concluded that the shape cannot be fully contained.

Figure 4.11: A query where a ray, visible as the dotted red line,
is used to determine intersection. Only the chunks in black (red
and green points) are decompressed for the complete query.
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However, if the bounding box bounds(g1) is fully contained in bounds(g2), further
evaluation is needed. Since there are no point intersections, the whole geometry is either
inside the other shape, or completely outside (but still within its bounding box), as in
Figure 4.7c. The crossings test can be used to determine whether a point is within a shape
[14]. The test works by sending a ray from the point along an axis, and counting the
number of crosses over the shape. If the number is odd, then the point is within the shape,
otherwise outside. By picking a random vertex from g1 and performing the crossings test
between the vertex and g2, it can be determined that if the point is inside g2, then g1 is
fully contained within g2 and g1 is the resulting intersecting shape. An example of an
intersection query where the test is performed can be seen in Figure 4.11.

Implementation wise, the ray test in FPDE is implemented by constructing a linestring
between the point and the other shape’s bounding box. The direction is chosen such as
to minimize the length of the line segment. The above steps for finding the intersecting
points are then executed for g2 with the common bounding box being the linestring. The
number of intersecting points is then equal to the number of crossings.

Figure 4.12: One example from the Admin Borders dataset. Only
the chunks in black (red and green points) are decompressed.
Green vertices are part of the intersecting shape, red vertices are
unnecessarily decompressed, and cyan vertices are ignored.

As seen in Figure 4.12, the algorithm has the benefits of local decompression being
restricted to the chunks that overlap between the geometries and that are within the com-
mon bounding box, with the possible exception of chunks that cross the ray used to test
for fully contained shapes. But it also has drawbacks, such as requiring the bounding
boxes of the chunks to be quickly accessible and that all points within the overlapping
chunks are decompressed.
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4.6.3* Quadtrees for Chunk Based Spatial Indexing
This section introduces a storage-efficient alternative to spatially indexing chunks. Due
to time constraints, implementing the indexing is left as future work.

The overhead for the method presented above comes from the need to find all the
chunks possibly involved in an intersection. In the FPDE implementation, all chunks’
bounding boxes are stored as full coordinates, adding an additional four floating-point
coordinates per chunk to the compressed file, and finding the relevant chunks is done
through a linear search.

Section 4.4.4 describes how the chunks’ bounding boxes can be approximated by
utilizing a quadtree. With this approach, the bounding boxes of the chunks are essentially
snapped to the smallest quadrant in the quadtree in which they are fully contained.

(a) Chunks belong to
the smallest quadrant

in which they are
fully contained.

(b) Chunks can
belong to multiple

quads.

Figure 4.13: Two configurations of using quadtrees to spatially
index chunks.

As seen in Figure 4.13(a), the quadtree introduces a hierarchy of bounding boxes.
The hierarchy allows for a reduction in storage overhead since encoding the bounds of the
chunks is done through the tree structure, and the tree structure likely requires less storage
space as opposed to storing the coordinates in full. Using a quadtree makes it possible
to calculate the bounds of the chunks based on the shape’s global bounding box and the
position of the quadrants containing the chunks.

Furthermore, since the tree is hierarchically structured, intersection-filtering can be
performed on multiple zoom levels. The quadtree can either be based on the geometry’s
bounding box or on a global grid. In both cases, the traversal of the nodes in geometry g1
can be stopped early if a quadrant in g1 only intersects with leaf nodes without chunks in
geometry g2. Since if all the intersecting quadrants from g2 are empty leaf nodes, there can
be no chunks in those quadrants, and thus no line segments can possibly intersect between
the shapes in g1’s quadrant. Expanding the quadrant’s subtree further is unnecessary.

One problem with assigning each chunk to one quadrant only is that the approximation
errors may be big. As seen in Figure 4.13, allowing chunks to be part of multiple quads
results in a more detailed tree. However, this comes at the expense of storing more nodes.
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4.6.4 Constructing the Intersecting Shape
Implementing the intersection operation which returns the resulting shape is an involved
task, largely due to the numerous possible combinations of shapes and corner cases. The
method presented below is an adaptation of the Weiler Atherton and Greiner–Hormann
polygon clipping algorithms, extended to work with spatially separated chunking and
linestrings.

Figure 4.14: Finding the intersecting shape illustrated. Black
vertex is the current intersection point, green is the current path
(traversing from dark to light), and red is the resulting shape.

The steps for the implemented algorithm are the following (illustrated in Figure 4.14):

1. The common bounding box is calculated. If no common bounding box exists, then
the resulting shape is the None-shape. Otherwise, all chunks inside the common
bounding box are found.

2. Chunks with a bounding box that overlaps any of the chunks of the other geometry
are immediately decompressed, while the rest are subject to lazy decompression.

3. All segments within each decompressed chunk are merged into a linestring. The
linestrings of overlapping chunks are pairwise, one from each shape, checked for
intersection. Two dictionaries are created, one that enables finding all segments
which cross a given intersection point, while the other is used to go in the other
direction, i.e., retrieving all intersecting points which lie on a segment.

4. Create a set S = {intersecting points}. One intersection point ci is removed from
S and the valid edges from ci are traversed and added to the resulting shape. The
traversal is stopped when encountering another intersection point. The procedure is
repeated until S = ∅.
This step can be implemented by first calculating the possible paths from ci. At most
four possible paths can exist since it is assumed that holes do not lie on the polygon
border, and that there are no self-intersecting shapes. The paths are, for both shapes,
traversed in both directions originating from ci. Since at most two of the four paths
are valid, the invalid paths are removed by verifying that the midpoint of the paths’
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first segment is within both shapes, using the crossings test as explained in Section
4.6.2. By traversing both directions, it is ensured that if the resulting shape is a
linestring, that is, if no closed path is formed, then both ends are discovered.

When the resulting shape is a polygon, both traversal directions can reach all points,
and thus two paths can share the same edge. To avoid unnecessary calculations and
duplicate segments in the final shape, it is also verified that the first segment in the
path has not yet been visited.

5. As explained for the predicate operation in Section 4.6.2, intersection can occur
even though there exist no intersecting points between the linestrings. In that case,
the contained shape is returned.

When verifying the paths, it is also verified that no two paths from one ci are parallel.
This is done to avoid adding identical segments when two shapes share an edge.

4.7 Optimizing the Compression Ratio
In this section, additional ideas and implementations that extend FPDE to improve the
compression ratio are discussed. First, the alternatives between different formats for rep-
resenting the coordinates are presented, followed by entropy encoding of the deltas.

4.7.1 Floating-Point Coordinate Representation
As described in Section 2.3.1, the standardized way to represent floating-point values is
according to the IEEE 754 standard. The standard supports either 32 or 64-bit precision,
where high-precision coordinate values can be stored losslessly using the latter, as in the
WKB format. Maps data may consist of coordinates with a precision below the need
for 64-bit double precision. When this is the case, reducing the number of bits used to
represent the floats will decrease the overall size of the geometry format. Two floating-
point coordinate representations specific to maps data are presented below.

Variable Precision Float

Figure 4.15: Structure of the variable precision float format with
a minimal exponent allowing an integer part between ±180.

The structure for representing floating-point values proposed in Figure 4.15 is a mod-
ification of the IEEE 754 standard, with a variable exponent and mantissa size. The perk
of having variable exponent and mantissa bit-lengths is that it allows for domain-specific
optimizations.
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For instance, the standard exponent size of IEEE 754 with 64-bit precision allows val-
ues ranging between ±9 007 199 254 740 992. While for the domain of maps, coordinates
are within the range of ±180, so there is no need to use an exponent part that allows inte-
ger ranges outside of that. Therefore, it makes sense to either remove those bits to lower
the format size or dedicate some of the unnecessary exponent bits to the mantissa part for
a higher floating-point precision.

OpenStreetMap data coordinates use at maximum seven decimal points. Therefore,
using the variable precision float format with a 4-bit exponent and 32-bit mantissa is
enough to represent all coordinates for such data, resulting in a decrease of 27 bits per
coordinate from the original 64-bit representation. If full double precision is required, the
decrease of bits in the exponent part reduces the total size by 7 bits.

32-Bit Integer Decomposed Coordinate

An alternative format that also takes advantage of the limited range of the integer part
of the floating-point values in the domain of geographic coordinates is 32-bit integer de-
composed coordinate, illustrated in Figure 4.16. The encoding of the format is performed
by adding 180 to the floating-point value, to convert the coordinate to the positive space,
followed by concatenating the integer and decimal part into one large unsigned integer
value. The integer value is then converted to its corresponding bit sequence.

Figure 4.16: Illustration of converting from floating-point value
to a 32-bit integer decomposed coordinate sequence.

The latitude and longitude values of geographic coordinates range between ±90 and
±180, respectively [10]. Thus, the number of possible values for the longitude, when
using X decimals of precision, is 2 · 180 · 10X . This is strictly greater than the amount
of possible combinations of latitude values with the same decimal precision. For this
expression to fit in a 32-bit integer, the precision of the coordinate can not transcend
seven decimal points, or else they need to be truncated in a compression-lossy manner.
However, since the seventh longitude decimal point corresponds to a real-time accuracy
of 1.11 cm at the equator and an even higher accuracy when deviating from it [10], the
loss of precision above this limitation may be considered acceptable. For instance, as
previously noted, OSM operates on coordinate points with up to seven decimal points of
precision [23], which supports the adequacy of the format for general-purpose mapping
applications.

When calculating the deltas for coordinates in the IEEE 754 format, only the exponent
and sign parts are usually similar between the bit sequences of two adjacent values. Con-
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sequently, only those bits systematically cancel out. The mantissa, which covers a great
fraction of the bits in IEEE 754, is still generally significantly different.

By using 32-bit integer decomposed coordinates instead, the number of leading zeros
in the zigzag encoded deltas is inversely proportional to the distance between the coordi-
nates, and hence the deltas have the possibility of being significantly smaller. However,
it is worth recalling that using 32-bit integer decomposed coordinates is not as general as
using the IEEE 754 format, as the coordinates are limited to seven decimal points.

4.7.2 Entropy Encoding of Deltas
When using delta encoding, a distribution of the different delta values emerges. If the dis-
tribution is not uniform, there is an indication of possible entropy encoding, where more
frequent deltas are encoded with fewer bits than infrequent ones. This section presents
how Huffman and Golomb-Rice encoding, explained in Section 2.4.1, can be applied to
the deltas in the format.

Huffman Encoding
Huffman encoding maps a symbol to a bit sequence, and in the context of FPDE each
zigzag encoded delta is a symbol.

One way to create a Huffman encoding tree is to use the frequencies of the delta
symbols over all geometries in a dataset. However, if the Huffman encoding tree is based
on multiple geometries with different delta bit-lengths, a suboptimal Huffman tree will be
created since the character space contains deltas of all the combined bit-lengths.

Instead, as the geometries in FPDE have different but fixed delta bit-lengths, a more
efficient approach is to construct a set of smaller Huffman trees, each built with deltas of
equal bit-length. This strategy avoids using a Huffman tree where certain values cannot
occur because of the fixed delta bit-lengths of the geometries. Furthermore, the frequency
distribution of the deltas may vary depending on the specific bit-length involved.

Golomb-Rice Encoding
Similarly to Huffman encoding, Golomb-Rice encoding can be used to decrease the size
of the delta values. As for Huffman encoding, the possible delta values are used as sym-
bols in the encoding. Golomb-Rice encoding performs particularly well when the delta
values are clustered around small values and if the frequency decay follows a geometric
distribution.

The advantage of Golomb-Rice encoding compared to Huffman encoding is that the
overhead is lower. While Golomb-Rice encoding only requires the parameter k to be
saved, Huffman encoding requires the entire Huffman tree to be stored, either locally in
the geometries or globally as a library variable.

A suitable value for the parameter k can be calculated using Equation 2.18.
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Chapter 5
Results

In this chapter, the results for our implementation and the baseline are presented for vari-
ous configurations. Compression time and execution time for the operations are presented,
along with the achieved compression factor.

The datasets used for the evaluation are described in Section 3.4 and consist of: Swe-
den Buildings, Sweden Roads, Sweden All, China Water, and Admin Borders. For in-
tersection, a subset of Sweden All, combined with China Water, and Admin Borders are
used.

The computer used to benchmark was a MacBook Pro 2018 with a 2.9 GHz 6-Core
Intel Core i9 processor and 32 GB 2400 MHz DDR4 RAM.

5.1 Compression Factor & Overhead
In the following section, the compression factor is discussed with regard to various set-
tings for the dataset and algorithm used. The compression factors are presented in Figure
5.1 and Table 5.2. When a limit is enforced on the number of deltas within a chunk to
support faster random access, a maximum chunk length of 13 deltas is used. Furthermore,
due to its widespread application in the industry, WKB is used as a reference for compar-
ing the size of various configurations.

The configurations used for the algorithm are described below and summarized in Ta-
ble 5.1:

WKB (Uncompressed) Well-known binary to represent the shapes.

FPD 64-bit floating-point delta encoding without support for efficient operations.

FPDE The implementation referenced throughout the thesis. Consists of 32-bit integer
decomposed coordinates and extensive metadata to allow efficient operations.
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FPDE: Arbitrary Precision FPDE using 64-bit floating-point delta encoding, i.e., the
default encoding if not using 32-bit integer decomposed coordinates. The configu-
ration has efficient support for operations.

FPDE: Entropy Encoding FPDE with entropy encoding for the deltas. Each geome-
try is assigned the most size efficient entropy encoding method; either Huffman
encoding, Golomb-Rice encoding or no entropy encoding.

FPDE: Size Optimized FPDE using 32-bit integer decomposed coordinates, without any
extra metadata for the operations. No limit on the number of deltas per chunk and
entropy encoding is applied without the size overhead, which disables random ac-
cess.

WKB: gzip WKB, followed by gzip compression.

WKB: bzip2 WKB, followed by bzip2 compression.

Compression
Method

Floating-Point
Encoding Scheme

Support for
Operations

Max Chunk
Length

Entropy
Encoding

WKB (Uncompressed) 64-bit IEEE 754 ✓ - ✕

FPD 64-bit IEEE 754 ✕ ✕ ✕

FPDE: Arbitrary Precision 64-bit IEEE 754 ✓ ✓ ✕

FPDE
32-bit integer

decomposed coordinates
✓ ✓ ✕

FPDE: Entropy Encoding
32-bit integer

decomposed coordinates
✓ ✓ ✓

FPDE: Size Optimized
32-bit integer

decomposed coordinates
✕ ✕ ✓

WKB: gzip 64-bit IEEE 754 ✕ - ✓

WKB: bzip2 64-bit IEEE 754 ✕ - ✓

Table 5.1: The methods used for compression with their respec-
tive configurations summarized.

Figure 5.1 and Table 5.2 show that the compression factor is affected by the compres-
sion algorithm used and the attributes of the datasets. The order of the algorithms with
the highest compression factors remains consistent across the various datasets, where the
general-purpose algorithms perform the worst, and FPDE with disabled partial decom-
pression performs the best. As shown in the same figure, some configurations generally
perform better on certain datasets than others. In the following section, a comparison
between the results for the different algorithm variations is presented, followed by an
analysis of the effects that the attributes of the datasets have on the compression ratio.
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Figure 5.1: Compression factor for various configurations. 30
000 random samples from each dataset were used. Average of all
shape’s factors. WKB is used as the uncompressed representation
and the factor is thus in relation to WKB.

Table 5.2: Compression factor and ratio (%) when calculated over
all samples, i.e., the combined size of all shapes in WKB repre-
sentation divided by the combined compressed size.

Dataset WKB FPD Arbitrary FPDE Entropy Size Opt WKB: gzip WKB: bzip2

Sweden Buildings 1.0 (100) 1.85 (54) 0.88 (113) 1.82 (54) 1.8 (55) 4.45 (22) 0.75 (133) 1.07 (93)
Sweden Roads 1.0 (100) 1.57 (63) 0.95 (105) 2.11 (47) 2.11 (47) 4.22 (23) 0.79 (126) 1.05 (95)
Sweden All 1.0 (100) 1.65 (60) 1.04 (96) 2.34 (42) 2.39 (41) 4.64 (21) 0.92 (108) 1.2 (83)
China Water 1.0 (100) 1.67 (59) 1.2 (83) 2.78 (35) 2.85 (35) 4.73 (21) 1.09 (91) 1.31 (76)
Admin Borders 1.0 (100) 1.39 (71) 1.07 (93) 2.21 (45) 2.64 (37) 4.22 (23) 1.18 (84) 1.3 (76)

Average 1.0 (100) 1.62 (61) 1.03 (97) 2.25 (44) 2.56 (39) 4.45 (22) 0.95 (105) 1.18 (84)
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Algorithm Comparison
According to Table 5.2, the order of the average compression performance is: WKB: gzip,
WKB, FPDE: Arbitrary Precision, WKB: bzip2, FPD, FPDE, FPDE: Entropy Encoding,
followed by FPDE: Size Optimized. The general-purpose algorithms are expected to per-
form the worst, as they do not exploit domain-specific structures and are based on general
ideas. When comparing the performance between the FPDE configurations, they seem
to be ordered by the format of the floating-point coordinates, the overhead of supporting
optimized operations, and whether entropy encoding is utilized or not.

Figure 5.2: The total size distribution within average geometries
from the datasets using FPDE. Chunk BBs is the overhead of the
bounding boxes of the chunks, required by the optimized inter-
section operation. A maximum chunk length of 13 deltas and no
entropy encoding was applied. 100 000 random samples were
used.

The distribution of various components in FPDE is visualized in Figure 5.2, where it
can be seen that the overhead of the operations in FPDE occupies a significant amount
of space. This is the main reason why FPDE: Size Optimal yields superior compression
compared to FPDE, along with the utilization of entropy encoding. Additionally, since
FPDE: Size Optimal does not require additional overhead to support operations with en-
tropy encoded deltas, the format gains the full effect of entropy encoding, shown in Table
5.6. On the contrary, when comparing FPDE: Entropy Encoding to FPDE in Table 5.2, it
is discovered that the extra overhead, which allows the former to perform operations with
entropy encoded deltas, offsets the gains of the entropy encoding.

Another observation is the effect of using different formats for representing the ge-
ometry coordinates, where algorithms that utilize 32-bit integer decomposed coordinates
outperform those using 64-bit IEEE 754 floating-point coordinates. However, while the
effect is self-evident, using the former comes at the cost of its coordinate precision con-
straint of 7 decimals, as outlined in Section 4.7.1. Additionally, it is essential to note that
for configurations that use 32-bit coordinates, the compression factor is directly increased,
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due to the halving of the bit representation from 64 to 32 bits. Thus, in those cases, if oper-
ation speed is lacking and the compression factor is close to the effect of just changing the
floating-point representation, it would be unnecessary to utilize the integrated operation
support. Instead, it might be beneficial to store the geometries directly using the 32-bit
format without additional compression, and run the operations directly to avoid the extra
decompression overhead. Therefore, to representatively compare the effect caused by the
induction of operability on the compression ratio, the algorithm configurations that use
the same coordinate format should be compared, such as FPD versus FPDE: Arbitrary
and FPDE: Size Optimized versus FPDE: Entropy Encoding. As evident by Figure 5.2,
the operation overhead represents a significant portion of the data, resulting in a decreased
compression ratio. However, it is worth noting that the overhead varies greatly on a per-
shape basis, and that the overhead of the chunk bounding boxes likely can be significantly
reduced in future work by, for example, using a quadtree.

Influence of Dataset Attributes

As evident by Figure 5.2, the distribution between various components in FPDE varies
heavily between the datasets. Alongside the # Vertices column in Table 5.3, it is apparent
that there is a correlation between the number of vertices in the geometries and the pro-
portion of deltas in its compressed form. As deltas are the essence of compression, they
contribute to an increased compression factor. The reason for the increase in proportion
of deltas is that with more complex shapes, the overhead of the global bounding box data
diminishes in relation to the coordinate data. Additionally, as seen in Table 5.3, the av-
erage number of vertices in each chunk is higher for datasets with a higher vertex count,
causing more deltas in relation to coordinates represented in full.

Table 5.3: Chunking statistics based on an average of 100 000
random samples with a maximum chunk size of 13 deltas.

# Vertices in Chunks

Dataset # Vertices Delta Bit Size # Chunks Average Standard Deviation Median

Sweden Buildings 6.3 12.3 1.0 5.0 0.1 5.0
Sweden Roads 12.7 13.7 1.6 6.5 1.0 6.7
Sweden All 16.3 13.2 1.9 6.4 0.8 6.5
China Water 63 14.1 5.8 9.7 2.4 10.2
Admin Borders 278 20.2 30.4 9.8 4.2 11.1

The compression factor is also affected by the efficiency of the deltas, specifically
how many bits each delta occupies. The average number for this across the different
datasets is outlined in the Delta Bit Size column in Table 5.3. This observation clarifies
why, although Admin Borders have a higher fraction of deltas compared to China Water
and Sweden All, the average compression factor is lower.

The variance for the compression ratio between different shapes also differs between
the datasets. For example, as shown in Figure 5.1, while the geometries in the Sweden
Buildings dataset seem to achieve a consistent compression factor, it varies greatly in the
Sweden Roads dataset. The reason for the variance is the homogeneity of shapes within
the datasets, where buildings tend to be more similiar than roads.
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5.2 Execution Time for Operations

5.2.1 All Operations
To achieve a fair comparison of the timing of the operations, with as little influence by
implementation details as possible, both the baseline and FPDE use the 64-bit IEEE 754
floating-point representation with no entropy encoding of the deltas. These configurations
are previously referred to as FPD and FPDE: Arbitrary Precision, respectively. However,
the results are expected to generalize to 32-bit integer decomposed coordinates with en-
tropy encoded deltas when used by both the baseline and FPDE, as the decompression
stage will be more complex and result in an increased execution time of the decompres-
sion stage. The gains of partial decompression are greater when the compression stage
of the operation accounts for a larger fraction of the complete operation compared to the
actual operation; since then, decreasing the number of decompression operations has a
greater impact relative to the baseline. Note that, when evaluating partial decompres-
sion, it does not make sense to compare with a baseline that uses a different compression
scheme (for instance FPD versus FPDE: Entropy Encoded), as it is likely that the compar-
ison will be influenced to a greater extent by the effectiveness of the compression scheme,
as opposed to the use of partial decompression.

Figure 5.3: Mean relative execution time (per geometry) in re-
lation to the baseline (dotted black line) for different operations
using FPDE.

The execution time of FPDE is presented in relative proportion to the execution time
of the baseline. When evaluating, 100 000 random samples were taken from both the
Sweden All and China Water datasets, and 5 000 samples were taken from the Admin
Borders dataset. For the binary operations, an equal number of sample pairs were used.

Examining Figure 5.3 and Table 5.4, it appears that except for compress and decom-
press, performing operations on random samples using the extended format outperforms
the baseline setting. The speed of compress and decompress is entirely determined by the
amount of input data, and for FPDE, the additional overhead to enable support for the
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Dataset Algorithm Compress Decompress Bounding Box Add Vertex Is Intersection Intersection

Sweden All
FPDE 301 104 3 27 8 19

Baseline 299 103 87 574 121 131

China Water
FPDE 642 234 3 35 8 18

Baseline 562 218 200 962 381 394

Admin Borders
FPDE 3168 1236 3 61 9 24

Baseline 2866 1205 1138 4237 2394 2349

Table 5.4: Table of absolute execution time (µs) for different
datasets and operations when using the baseline and FPDE.

operations leads to a relative execution time above 100%. As depicted in Figure 5.2, the
overhead fraction of the datasets varies, and conclusively the compress and decompress
operations will have relative execution times deviating between the datasets.

For the Bounding Box operation, the constant cost of extracting a fixed number of
bits from a given offset in FPDE is clearly more efficient than decompressing the entire
geometry and performing the bounding box calculation. The reason why the relative
speed differs between the datasets is due to the decompression stage of the baseline. For
geometry datasets that contain complex shapes, such as Admin Borders, decompression
takes longer than for Sweden All and China Water, which have a lower average vertex
count per shape.

For Add Vertex, the reasoning is similar; modifying a fixed number of bits at a given
offset is faster than complete decompression. Similarly to the Bounding Box operation,
the relative execution time varies between the datasets due to the difference in the decom-
pression time of the baseline.

Moreover, for the binary operations Is Intersection and Intersection, as outlined in
Section 4.6, the initial stage of both algorithms checks for a shared bounding box be-
tween the shapes. If such a common bounding box is absent, no intersection can occur,
and the operations return. For a random pair of geometries in a large dataset, the likeli-
hood of intersection is very low, and for the great majority of cases a common bounding
box will not exist. In these cases, the execution terminates quickly and, conclusively, the
mean of the relative execution time for the binary operations in Figure 5.3 does not fully
reflect the situations where the pair of shapes intersect. Section 5.2.2 includes a more ex-
tensive analysis of how the binary operations perform in different contexts and geometry
complexities.

5.2.2 Intersection
In this section, additional intersection cases in terms of context and vertex count of the
involved shapes are examined in more detail. As mentioned in Section 5.2.1, the per-
formance of both intersection operations is heavily dependent on the geometries’ context
and sizes, and therefore it is not sufficient to look at a global mean value when making
conclusions about the execution time.

When two geometries’ bounding boxes overlap, we differentiate between the cases
where one geometry is fully contained in the other (Contained), two geometries bound-
ing boxes overlap but there is no intersection (Disjoint), and lastly, the geometries have
crossing line segments (Crossing). Furthermore, the size category refers to the number of
vertices in the shape. Large geometries have at least 100 vertices, medium have between
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50 and 100, and small have less than 50. Large and small geometries are also referred to
as complex and simple shapes, respectively. For the results below, 100 000 geometry pairs
from each of the Admin Borders, China Water and Sweden All datasets were used.

The subsequent reasoning is in the context of Intersection, but the same logic can be
applied to Is Intersection.

Figure 5.4: Average execution time for FPDE for different con-
texts and geometry sizes.

Number of Vertices in Geometries
Figure 5.4 and 5.5 show that the gain of using FPDE for intersection is more significant in
scenarios involving complex geometries. This is because complex geometries consist of
more chunks, which potentially enables the filtering step in the algorithm to be more fine-
grained. In contrast, if a geometry only contains one single chunk, the filtering step has no
flexibility in selecting only a subset of the vertices. This reasoning is further supported by
Figure 5.6 showing that on average, calculating the intersection of two simple geometries
involves decompressing almost all available chunks, while only a tiny fraction is unfolded
for complex geometries.

Intersection Context
The execution time of the intersection operation also depends on the context of the ge-
ometries. For example, in the Contained case, the performance gain of using FPDE de-
pends on the complexity of the contained geometry. Figure 5.4 shows that when a simple
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Figure 5.5: Fractions for the relative execution time of the de-
compression and the intersection algorithm stage for FPDE.

Figure 5.6: Fraction of chunks partially decompressed grouped
by context and dataset.
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or medium-sized geometry is contained within a complex geometry, FPDE significantly
outperforms the baseline. This is because FPDE only has to decompress the smaller inner
geometry and a tiny fraction of the complex outer geometry, when performing the testing
for contains, described in Section 4.6.2.

In contrast, when the geometries’ size categories are equal, the relative execution time
and the fraction of chunks unfolded are relatively high, as shown in Figure 5.5 and 5.6. In
these circumstances, it is likely that the shapes are tightly arranged, which causes many of
the chunk bounding boxes to overlap, resulting in unnecessary decompression for some
of the outer geometry’s chunks.

When averaging the relative execution time for FPDE in contexts with two large ge-
ometries in Table 5.5, FPDE achieves an execution time faster by a factor of 3.6 relative
to the baseline, which uses full decompression.

Context Size FPDE
RME (%)

FPDE
PD (%)

Baseline
PD (%)

Crossing L/L 34 17 36
M/L 50 19 41
M/M 76 18 30
S/L 7 25 52
S/M 80 18 30
S/S 89 17 23

Contained L/L 39 52 60
M/L 10 65 82
M/M 86 44 54
S/L 8 61 81
S/M 61 39 52
S/S 82 36 42

Disjoint L/L 10 61 85
M/L 14 49 77
M/M 52 43 66
S/L 14 45 75
S/M 61 40 59
S/S 83 39 48

Table 5.5: Table with the relative difference of the mean exe-
cution time for FPDE in relation to the baseline, along with the
percentage of time spent on partial decompression versus the in-
tersection operation for FPDE and the baseline.

Decompression & Actual Intersection Operation Relationship
In Table 5.5, the relative execution time of FPDE relative to the baseline is presented,
together with the corresponding fractions of time dedicated to the decompression or inter-
section stage. Figure 5.5 is a complementary visualization to the table focusing on FPDE.
The table shows that the baseline spends more relative time of its execution on decom-
pression in general. Furthermore, it can be inferred that a low relative execution time for
FPDE is closely correlated with the proportion of decompression in the total execution.
For instance, intersection contexts with low values for the relative mean execution time
are coupled with a high ratio of time spent on partial decompression.
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5.2.3 Intersection: Deltas Size–Time Trade-Off

The variable partitioning into chunks impacts both the compression ratio and the execu-
tion time of operations utilizing partial decompression for random access, explained in
Section 4.5.2. As FPDE has the ability to set a maximum number of deltas allowed per
chunk, the partitioning of the chunks can vary depending on the parameter value.

Figure 5.7: The left axis (red line) shows the relative mean execu-
tion time between FPDE and the baseline with a moving average
window of three to compensate for noise, and the left axis (green
line) shows the average bit size by the max chunk size parameter.
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Impact on Compression Ratio
Figure 5.7 shows how the resulting bit size varies with the maximum chunk size. In-
creasing the parameter results in a higher average compression factor due to fewer chunk
breaks, requiring less coordinates to be represented in full, whereas a small parameter
value decreases the compressibility and introduces additional overhead.

The ratio between the number of full coordinates and deltas, if assuming no automatic
chunking, can be described with the expression r(d) = 1

d+1 , where d is the maximum
number of deltas in a chunk. As the formula and Figure 5.7 suggests, the ratio decays
rapidly, and the effect of the parameter is most significant at lower values.

When setting the parameter to zero and using integrated operability with the default
floating-point format, i.e., disabling 32-bit integer decomposed coordinates, the size be-
comes larger than WKB. This is because setting the value to zero essentially disables delta
encoding and introduces additional overhead since each coordinate also includes a chunk
header.

On the contrary, when setting an unlimited chunk size, a new chunk is only created
when a delta does not fit within the shape’s delta bit-length. For homogeneous shapes,
the number of chunks is therefore lower since the automatic splitting of the chunks occurs
less frequently.

Impact on Execution Time of Intersection
As observed in the same figure, the relative mean execution time for intersection also
depends on the selection of the maximum number of deltas in each chunk. For intersec-
tion queries, the parameter affects two stages, jumping to the correct chunk start and the
chunks’ decompression time. When increasing the max chunk size, the chunks become
fewer and so does the number of jumps required to reach a chunk. On the contrary, when
the parameter increases, the chunks also get bigger, and the decompression of each chunk
takes longer.

The maximum chunk size also affects the spatial filtering of relevant chunks in the op-
eration. As depicted in Figure 4.12, intersection queries only extract the relevant chunks
through pairwise comparison of the chunks’ bounding boxes. For larger chunks, the
bounding box will be bigger and, if chunks are too large, irrelevant segments are fre-
quently decompressed due to being in relevant chunks.

In Figure 5.7, it also seems that datasets with complex shapes have a slower decay
in relative mean execution time with an increased chunk size, compared to datasets with
simpler shapes. This is likely due to the fact that complex shapes are able to utilize more
chunks, since they have more vertices. The reason for the asymptotic stabilization in exe-
cution time when greatly increasing the max chunk size is likely due to deltas overflowing,
forcing new chunks even though the chunk max size is not reached.

Size-Time Trade-Off
Combining the results above, it is apparent that setting the parameter of maximum chunk
size has a large effect on both the size and performance. For the evaluation of the thesis,
the value resulting in the highest speed has been chosen. But in a real-world setting, the
value can be tweaked to prioritize either size or speed.

70



5.3 ENTROPY ENCODING OF DELTAS

5.3 Entropy Encoding of Deltas
For the entropy encoding and analysis of the deltas 32-bit integer decomposed coordi-
nates, as described in Section 4.7.1, were used to encode the coordinates. All deltas within
the datasets presented in Section 3.4 were combined and used for the entropy encoding
and evaluation. Note that since the delta values are zigzag encoded integer decomposed
coordinates, the values represent the doubled distances between consecutive vertices with
alternating signedness. For example, the floating-point decoding of zigzagged values 2,
3, and 10000 is +0.0000001, −0.0000001, and +0.0005000.

Figure 5.8: Frequency distribution of the zigzag encoded delta
values interpreted as unsigned integers for the combined datasets.
Only the delta bit-lengths accounting for more than 1% of the
combined datasets are visible. 80 bins are used.

When analyzing the deltas, it can be concluded that the distribution of values is not
uniform. As seen in Figure 5.8, the values are heavily concentrated around zero, with
some spikes in specific values. It is also evident that the decay follows a distribution
that closely resembles a geometric distribution, where the slope of the distribution in-
creases for larger delta bit-lengths. According to Figure 5.8, it seems that the spikes are
not present for large delta bit-lengths, but manual analysis concludes that the absence in
the graph is instead a result of the binning used when plotting and that the spikes are
persistent.

After manually examining the combined frequencies for all bit-lengths, it can be con-
cluded that the most common delta value is 0, followed by ±0.0001145 and additional
seemingly random small values. 0 accounts for 1.5% and +0.0001145 for 0.97% of the
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values. The spikes then decrease rapidly, where the ten most common values amount to
6%, and the ten to hundred most common values amount to 8% of all values.

Zero being the most common value is expected since when a shape only has a change
in one axis, i.e., only the x- or y-coordinate is updated, the delta for the other axis becomes
zero. Since GIS data is commonly generated by a combination of image processing and
manual editing, snapping and procedural generation of the vertices are likely the causes
of the spikes. Snapping can occur in several situations, possibly resulting in vertices with
standard spacing; for example, when utilizing tools for simplifying or generalizing shapes.
Generation environments can also utilize a grid, where the deltas correspond to distances
between the cells. This is further supported by the occurrence of pairwise common values,
such as 2290 and 2289, which represent the same magnitude with different signs after
zigzag decoding.

Table 5.6: Results when applying entropy encoding for all deltas
in Sweden All, China Water, and Admin Borders.

Compression
Entropy Encoding Ratio (%) Factor Average Size (bits/delta)

Huffman 89.4 1.119 12.59
Sparse Huffman 89.5 1.117 12.61
Golomb 94.5 1.058 13.32
Golomb + Huffman 94.4 1.059 13.30
FpZip 93.4 1.071 13.17

Global Optimal 92.1 1.086 12.98
Per Delta Optimal 89.2 1.121 12.56
None 100.0 1.000 14.09

As seen in Table 5.6, the total size of the deltas can be reduced further by utilizing
entropy encoding. The limit induced by Shannon’s source coding theorem, i.e., the the-
oretical value calculated by utilizing Equation 2.1, corresponds to Global Optimal and
Per Delta Optimal in the table. Per Delta Optimal has one frequency table per delta bit-
length, whereas Global Optimal consists of one large table. However, it is important to
note that the coordinates of shapes might not be entirely independent of each other, and
consequently, the delta values may also exhibit dependence. This violates the assumption
of independent and identically distributed symbols in Shannon’s source coding theorem,
leading to a potential under- or overestimation of the lower bound. Nevertheless, the
theorem still provides a reasonable approximation for the lower bound.

The Huffman encodings, both Huffman and Sparse Huffman, where sparse includes a
symbol for representing a missing delta, perform the best. In fact, the Huffman encoding
is only 0.2 percent units worse than the lower bound. Golomb encoding, both when coding
the quotient using unary encoding and Huffman encoding, reduces the size by around 5%,
as compared to 11% when only using Huffman encoding. The encoding which utilizes
the method proposed in FpZip [16] performs around one percent unit better than Golomb.

Huffman performing better than Golomb is probably a result of the previously dis-
cussed spikes, which are deviations from the geometric distribution required by Golomb.
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The encoding proposed in FpZip is a variant of Golomb encoding and therefore also suf-
fers from an irregular distribution.

Despite this, Golomb encoding or the FpZip variant can be useful when storing the
frequency and Huffman table is infeasible. For instance, the possible value range is large
when dealing with large delta bit-lengths. Therefore, using Sparse Huffman encoding
combined with Golomb encoding for missing values is a good way to compress the deltas.
With this approach, the Huffman encoding can catch the spikes, while the Golomb encod-
ing approximates the distribution for missing values.
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Chapter 6
Discussion

The following chapter consists of an evaluation when combining the obtained results,
followed by a discussion of the generalizability of the datasets, the correctness of the
implementation, and future work.

6.1 Evaluation of Results

6.1.1 Execution Time Analysis
As evident by FPDE’s performance, compressed data should not be seen as merely disor-
ganized, as there are several opportunities to create structure and optimizations for various
purposes.

The results indicate several advantages of using FPDE in terms of execution time,
and, on average, all investigated operations perform better using FPDE compared to the
baseline. However, the operation’s execution time is highly dependent on contexts such
as geometry sizes, intersection type, add vertex index placement, among others. Since
FPDE outperforms the baseline in all of these cases, it implies that if the aim is mini-
mal execution time, even though the variability in performance is extensive, it is more
beneficial to utilize a scheme like FPDE over conventional compression schemes.

Nevertheless, increased operability comes at the expense of compressibility. As shown
in the results, the size proportions between the induced overhead and the original shape
data vary significantly between the datasets, from around 25% to 63%, decreasing with
the average vertex count of the datasets. Likewise, the relative execution time gains for the
operations are higher for complex geometries. However, while simple geometries only ex-
perience a speedup of approximately 19% for intersection when the geometries’ bounding
boxes overlap, they still achieve an average speedup by a factor of 35.7 when extracting
the bounding box. Considering these variations, the balance of the time-space trade-off
relies on the geometry size and the type of operation. While the additional overhead for
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simple geometries might not be worth the tiny gain in execution time for intersection,
it may be worth it when getting the bounding box. Alternatively, it can be practicable
to toggle the operability support on a per-operation and per-shape basis, allowing the al-
gorithm to utilize partial decompression for situations where the performance gains are
most significant and, otherwise, prioritize size and avoid the metadata overhead. It is
also worth noting that the overhead induced in the thesis can probably be well reduced in
future work, such as by using a quadtree as proposed in Section 4.6.3.

However, some operations do not interfere with time and space trade-offs. Add Ver-
tex achieves a similar execution time gain as the bounding box operation, without any
additional metadata needed. In this case, the operation is considered a two-way benefit
and can thus be used without any trade-off considerations. As a side note, in practice,
the partial "re"-compression when adding a vertex is likely very beneficial in GIS editing
tools since modifying individual vertices in shapes is a frequent operation.

6.1.2 Compressibility Analysis
As concluded in the results section, maps data has the potential to be compressed beyond
the limits of general-purpose compression algorithms, such as gzip and bzip2, by exploit-
ing the domain. This section reasons about why the implemented compression scheme
performs well and proposes additional ideas, in accordance with the conclusions obtained
through the thesis, which may improve the compression further.

Firstly, using arbitrary precision floating-points is probably not needed since a pre-
cision higher than a certain decimal digit is likely noise due to the limited accuracy of
the data collection methods. By instead quantizing the coordinates to integers, higher
compression ratios can be achieved. However, if 64-bit double precision is required, the
results indicate that compression by delta encoding the integer representation may still be
worthwhile.

(a) Chosen delta bit
size per geometry.

(b) Required bit size
per delta.

Figure 6.1: Bit sizes for the deltas and chosen delta bit size in
100 000 random geometries from the Sweden All dataset.

The delta encoding likely performs well since geometries usually only span a small
area of the world, while the integer decomposed coordinates can store distances across
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the globe.
For map data with seven decimal digits of precision, an accuracy of 1.11 cm is stored,

and with each digit removed, it is scaled by a factor of ten. Because maps data is based
on several collection methods, with varying precision, it is unlikely that most of the data
uses centimeter-level precision and is thus noise in the data. Noise is unsuitable for com-
pression, as it is uniformly distributed and thus no statistical redundancy can be utilized.
If those cases can be stripped of the least significant bits containing the noise, entropy
coding can be enhanced. One proposition is to infer the precision of the sampling from
the data collection method to determine the needed decimal accuracy. Depending on the
maps data provider, it might be of interest to perform lossy compression dependent on
the geometry size. As seen in Figure 6.1, the average delta bit-length for Sweden All is
13.2 bits, corresponding to approximately half a meter in real-world measurements. For
Admin Borders, with a delta bit-length of 20.2 bits or approximately 800 m, it is unlikely
that centimeter-level precision is required, and thus some of the least significant bits can
be removed.

With a size of 13.2 bits, a total of 9400 deltas, and the highest precision of±0.0004700,
longitude/latitude degrees can be represented. Thus, a reduction to 4705 deltas is required
to scale down one bit, corresponding to halving the distance in real-world measurements.
Here, predictor functions can be used to estimate the deltas and then code the residuals.
Since some map structures are very similar, such as buildings and roundabouts, storing
the structure as a global model and assigning each shape to a specific model by a constant
in the header could likely reduce the size further.

An interesting observation is that chunks are formed when a delta is large compared to
its geometry context, which means that the distances between the chunks are larger than
the deltas. This can also affect the execution time, since the chunk bounding boxes get
inflated when they span to the next linked chunk. Instead, the linking segments between
chunks could be placed in their own bounding boxes.

It may be interesting to investigate whether shapes having an uneven distribution of
deltas may result in less compression, such as shapes clustered in certain regions but
otherwise sparse. One solution may be to have a variable delta bit-length, where each
chunk header contains an extra bit specifying whether a new delta bit-length follows.

Additionally, it is possible to describe the deltas in polar coordinates, where the error
of the angle scales with the radius. In this case, the radius is delta encoded as is, while the
angle is delta encoded followed by a truncation of decimals, depending on the tolerated
error margin. This makes implementing approximation of large distances trivial.

6.1.3 Relevance in the Real World
The thesis has demonstrated that it is possible to reduce the size of maps data from the
commonly used WKB to a compressed format by applying quantization, delta encoding,
and entropy encoding. If sacrificing compression ratio and embedding metadata, oper-
ability support can be added to improve the querying speed of common operations.

If it is worth sacrificing storage for operability is difficult to decide without more
knowledge about the pipeline architecture. If billions of intersection queries are running
and I/O is not the bottleneck, then total time can be saved.

However, I/O is commonly the bottleneck in systems, and therefore compressing data
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to the fullest in order to minimize the I/O use may be preferred [16]. Although, it is
worth noting that the overhead induced in the thesis can likely be well reduced and, by
adding a toggle-bit for operability integration on a per-shape basis, only one bit is added
in comparison to full compression when integrated operability is disabled.

6.2 Dataset Properties
For the integration of operations to be beneficial, the benefits should apply to a significant
portion of the data. The results show that the improvements increase rapidly with the
vertex count, a result of having a higher number of chunks, but simple shapes also benefit
from partial compression. However, for simpler shapes, the size of the induced overhead
for operability impacts the compression ratio to a greater extent.

Figure 6.2: Cumulative distribution of the vertex count for the
geometries in Sweden All, separated by OSM-tags. The right plot
is weighted by the number of vertices, indicating how the overall
size is distributed.

The average vertex count for the geometries in Sweden All is 16.4 and 75% of all
shapes have less than ten vertices. Therefore, the percentage of shapes where the gain in
execution time significantly outweighs the size overhead is rather low.

As seen in Figure 6.2, illustrating the distribution of the vertex count for shapes of
different types within the dataset, the type of the shape correlates with the average number
of vertices. It is logical that geometries covering a large area of the world are constructed
using more vertices to increase the detail. Additionally, there are many more houses than
country borders, which means that the average is more influenced by simple geometries.
Also, complex structures are commonly split into multiple simpler geometries.
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The distribution likely also depends on how the spatial data is structured, and our
sampling of OSM data might not be a good representation of how other maps services
structure their data. For instance, other providers’ datasets may consist of many complex
geometries due to a higher resolution. It may also be that even though there are fewer ge-
ometries in which integrated operability is motivated, the gains are still important. There-
fore, it is crucial to obtain precise querying data to identify the exact bottlenecks.

6.2.1 Intersection Queries
Due to the high variance in the intersection results, one possible error source is the real-
world representativity of the intersection data used in the evaluation. As described in
Section 3.4.3, there are a number of different cases of intersection. The execution time
may vary depending on both the intersection case, characteristics of the shapes, and the
intersecting region.

Extracting queries representative of real-case use by maps service providers is not
trivial. Since intersection queries are commonly used when validating the map, the nature
of the queries depends on the validation process and the internal structure of the maps
data. A log of recent queries along with the involved geometries would be ideal, but due
to secrecy, such data is not publicly available.

It may not be as accurate to construct the intersection queries by picking one geometry
at random and finding its neighboring shapes, as done in the thesis, but the queries may
still be used as an approximation of real-use scenarios. For example, finding all intersect-
ing geometries and their type is likely frequently used to ensure that no constraints are
violated, such as a road intersecting with an ocean.

Additionally, intersection queries tend to involve one complex and one simple geom-
etry for the context Contained. For example, when calculating whether a geometry is
within a larger area, such as a state, province, or country, represented by their admin-
istrative boundaries. Such queries will benefit significantly from integrated intersection
capabilities. This is supported by Table 6.1, showing that the Contained case is most
common when a complex and a simple geometry is involved.

Size Contained (%) Disjoint (%) Crossing (%)
L/L 0.23 2.0 11
M/L 0.13 1.5 3.1
M/M 0.08 0.66 1.4
S/L 9.9 6.9 5.2
S/M 2.9 4.5 3.7
S/S 7.6 30 10

Table 6.1: Context and geometry complexity distribution for the
intersection query pairs used in the evaluation.

Table 6.1 also shows that the distribution of various intersection query types is not
uniform, and some accounts for less than 0.1%. In these situations, it is essential to collect
enough data so that even a tiny percentage is a sufficient representation of generality.

The same table shows that some of the intersection query types occur more frequently
than others. If a specific query rarely occurs, the results might not have enough support
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to draw general conclusions. For example, some types of intersection queries are very
infrequent for the M/M category, such as Contained, which only accounts for 0.08% of
the queries.

6.3 Validity and Correctness

6.3.1 Representativity of Baseline
Since the implementation is written in Python, which is a mixture of wrappers that execute
C code and interpreted Python code, comparing performance and generalizing the results
to compile-based languages, including optimizing/JIT compilers, is tricky. When devel-
oping the baseline and the extended solution, special care has been taken to ensure that
the implementations are as similar as possible in the common parts. Therefore, the results
obtained are likely to translate well to speed-optimized languages, but an implementation
of FPDE in such a language is required to further verify the results.

Due to the uncertainty regarding performance induced by the language, an alternative
language-independent metric of interest is the fraction of unfolded chunks. As discussed
in Section 5.2.2, for the intersection queries used in the thesis, the integrated intersection
operation only decompresses around 20% of the complex geometries. The only way for a
baseline implementation to be faster is if the execution time needed for filtering and find-
ing the relevant chunks is larger than the decompression time of the remaining 80% of
chunks. This is unlikely since the operations performed for finding the chunks are rather
lightweight. Additionally, irrelevant data can be discarded at an earlier stage, and there-
fore the intersection algorithm is only performed on a subset of the data. Smaller input
is expected to decrease the execution time. Also, when delta encoding is combined with
entropy encoding and predictor functions, or other compression techniques, an increase in
decompression time is inevitable, and the benefits of partial decompression increase with
the decompression time.

6.3.2 Implementation Correctness
Even though FPDE provides a robust solution to a compression format and the specified
operations, some cases can lead to unexpected behavior.

The intersection algorithm specified in Section 4.6.2 can return the incorrect result
if certain types of multipolygons are involved. Suppose a multipolygon, consisting of
polygons X1 and X2, intersects with a polygon Y by X1 being fully contained in Y , and X2
being entirely outside it. Additionally, the bounding box of the multipolygon is contained
within the bounding box of Y . The correctness of the result in this scenario depends on
whether the random point for the ray-sending strategy, outlined in Section 4.6.2, comes
from X1 or X2. If sent from the outer one, the ray crosses an even number of edges, and the
returning intersection shape will be empty. On the other hand, if the ray is sent from the
inner one, the ray will cross an odd number of edges, and it will correctly return X1. The
solution to this inconsistency is to treat X1 and X2 as individual entities in the algorithm
and return the combined result of each.
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Another case where the intersection algorithm can return incorrect results is with poly-
gons containing inner holes. Suppose a setting where two polygons X and Y intersect. X
contains an inner hole Xi, which does not intersect with any of the edges of Y but is fully
contained within the overlapping area of X and Y . Since the algorithm only constructs
the returning shape by traversing the intersection points, the area of the inner hole will
incorrectly be excluded from the returning shape. This is solved by decompressing one
point in all inner holes with a bounding box overlapping with the returned shape’s bound-
ing box and then adding the holes fully inside the returning shape using the ray-sending
strategy.

In addition, the algorithm does not support self-intersecting polygons, but as men-
tioned in Section 4.6, such geometries are commonly considered errors in spatial data. It
is also worth mentioning that the intersection algorithm passes over 99.9% of all inter-
section queries from the various datasets in Section 5.2.2, confirming that these cases of
intersection are very rare.

Furthermore, the formats for representing floating-point coordinates, described in Sec-
tion 4.7.1, can result in inaccurate delta values if calculated on coordinates with a longi-
tude degree difference greater than 180. In this case, the floating-point representations
cannot fit the delta value, and it will lead to overflow. However, this occurrence is rare in
spatial data since it would mean that geometries span half the globe or segments cross the
International Date Line. For the variable precision float format, it can be corrected by ex-
tending the exponent section by one bit, and for the 32-bit integer decomposed coordinate
format, by using modular arithmetic on immediate calculations.

6.4 Extending Supported Operations

The operations implemented in the thesis are few compared to the many operations com-
monly present in geometry libraries. For the format to be adequate for real-case use, it
must be possible to implement all operations.

All operations should be able to be implemented following the baseline approach,
where the entire geometry is first decompressed, followed by utilizing an existing library
function. Accordingly, extending a compression format with more operations can be done
iteratively. The ones that bottleneck the system, or are less challenging to implement,
could be optimized first, while the non-optimized ones utilize the baseline strategy.

Furthermore, the three implemented operations; bounding box, add vertex, and in-
tersection are characterized by being constant, modifying, and binary operations. Thus,
many of the principal components in the implemented operations can be reused to extend
the supported operations. For example, the idea of utilizing the chunks’ bounding boxes
for intersection can be used to add integrated support for union. Most non-modifying
unary operations can be pre-calculated and stored as metadata, and many modifying unary
operations can be performed on a per-chunk basis.
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6.5 Answering the Problem Formulation
Based on the results and implementation process, the research questions of the thesis can
be answered.

Q1: Is it possible to perform operations on compressed geometric data without decom-
pressing the entire geometries?

Yes, performing operations by partially decompressing geometric data is possible, as evi-
dent by the intersection queries only decompressing a fraction of all chunks, and adding a
vertex only altering the relevant data sections. The value of implementing partial decom-
pression depends heavily on the distribution of complex geometries (shapes consisting
of many vertices) within the datasets and the performance of the used compression al-
gorithm. The effects are more evident for slower compression algorithms, such as when
combining delta and entropy encoding, since the integrated format only unfolds a fraction
of the compressed coordinates.

Additionally, extra overhead is introduced both in terms of extended metadata and the
computations needed to determine which data sections to decompress. The number of
vertices affects the number of chunks, and with a larger number of chunks, the gains are
usually higher since a greater portion of the geometry avoids decompression.

Q2: How can domain-specific constraints and structures, in the context of maps, be ex-
ploited to improve the performance of operations and geometry compression?

Several domain-specific properties can be used to improve the operability and compres-
sion performance of maps data, such as representing coordinates as 32-bit integers, delta
encoding coordinates, dividing the shapes into mostly non-overlapping chunks, and as-
suming no self-intersection.

Noise in the data can be reduced by quantizing the coordinates to seven decimals (one
centimeter precision) and concatenating the integer and decimal part into a 32-bit integer,
resulting in a more compact storage form and higher compression. Delta encoding of
map coordinates also performs well, due to individual geometries usually only spanning
a fraction of the world. Additionally, simply dividing the shapes into chunks containing
a subsequence of all vertices, i.e., a continuous slice of the index vector, results in a
division that can be used to improve the performance of operations. Furthermore, by
assuming that there are no self-intersecting geometries, any found intersection must be
between two separate shapes, reducing the complexity of implementing the intersection
operations.
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6.6 Future Work
The following section contains explanations of several ideas that can be explored to ex-
tend the thesis in future research. Additionally, Section 6.1.2 also presents concepts and
motivations for improving the compression ratio further.

6.6.1 Implementation in High-Performance Language
Because the thesis implementation is written in Python, it is not applicable for practical
use in a high-performance context. As described earlier, the baseline is also implemented
in Python, and thus the results indicate a relative gain and that there exist cases where
only a fraction of all chunks need to be decompressed. In order to compete with state-
of-the-art geometry compression and further evaluate the potential applications on a large
scale, the concepts in the thesis need to be implemented in a high-performance language.
Since much of the current implementation is just logic-based and bit-operations, i.e., most
of the code for the compression format does not utilize Python libraries, the translation
should be straightforward.

6.6.2 Further Reducing Interobject Redundancies
It is clear from the results that, in terms of entropy encoding, the deltas are close to the
limit calculated using Shannon’s source coding theorem when using Huffman encoding.
Arithmetic encoding may be able to reduce the size further, by compressing whole chunks
rather than individual deltas. However, the potential additional size reduction is not ex-
pected to be groundbreaking.

Therefore, in order to further compress the deltas, which for complex geometries ac-
count for the majority of the data, alternative techniques are required. One proposition,
when working with maps data, is to differentiate between geometry types. For example,
buildings consisting of four vertices are very common, and for such buildings, the deltas
should be similar. It would be of interest to examine whether using different probabil-
ity tables for each geometry type (road/building/water) would result in a distribution that
is more skewed and beneficial for entropy encoding. Furthermore, predictor functions
based on the geometry type should, for geometries with a standardized structure, be able
to reduce the size further.

6.6.3 Parallelization of Algorithm
With the increase of parallel and distributed computing, altering algorithms to enable
compatibility with big data environments allows for both horizontal and vertical scaling
[36]. Vertical scaling utilizes multiple cores or GPUs to divide the workload locally, while
horizontal scaling distributes the workload to a number of computers.

In both cases, the workload is divided between workers, and thus it must be possible
to decompose the work into non-overlapping parallel tasks. Since FPDE consists of inde-
pendent chunks, it should be possible to parallelize both the compression, decompression,

83



6. DISCUSSION

and some of the operations. For instance, the intersection operation can be divided by as-
signing each worker to a section of the common bounding box and merging the partial
computations.

6.6.4 Extended Investigation of Chunking
While conducting the various performance assessments, it was discovered that the per-
formance of the compression and some of the operations depends on the chunking of the
geometries. For instance, Section 5.2.3 outlines the trade-off between intersection and
compression performance when adjusting a parameter that directly influences the chunk-
ing of the geometries.

In future work, it would accordingly be of interest to extend the analysis to investigate
the more general impact that chunking has on the performance of both the compression
and the various operations, as well as how to best decide the values for the parameters that
affect it. Similarly, a statistical analysis could be made to examine how various properties
of deltas in spatial data can be leveraged to optimize the chunking strategies. For instance,
using variable bit-lengths for representing deltas in geometries when there are clusters of
deltas with similar magnitudes, but the magnitudes vary between the clusters.
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Appendix A
Accessing and Running the Code

All source code written during the thesis, including the FPDE format, baseline, dataset
processing, plotting, and evaluation, is publicly available on GitHub. The repository
README contains instructions for setting up the environment and running or extend-
ing the implementation.

Repository URL: github.com/SimonErlandsson/Operable-Maps-Compression.
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Hur kan stora kartor bli både snabba
och små?

POPULÄRVETENSKAPLIG SAMMANFATTNING Simon Erlandsson, Leo Westerberg

Komprimeringsalgoritmer används ofta för att minska storleken på kartdata. Prob-
lemet med konventionella metoder är att en stor mängd data måste packas upp vid
minsta användning. Följaktligen undersöks hur stöd för effektiva operationer kan
bibehållas efter komprimering utförts.

Dagens karttjänster består av en enorm mängd
geometrisk data. Hus, stränder, länder och
vägar kan alla representeras som polygoner och
linjesegment. För att reducera storleken på
geometrier används komprimeringsalgoritmer för
att ersätta redundant data, genom att utnyttja
statistiska samband och mönster. Problemet med
konventionella algoritmer är att de komprimerade
geometrierna måste packas upp när de ska an-
vändas, oavsett vilken operation som ska utföras.
Detta kan vara tidskrävande, i vissa fall så pass
att dekomprimeringen i sig tar längre tid än själva
operationen.

Detta examensarbetet har haft som syfte att un-
dersöka om det finns en mellanväg - alltså ett sätt
att få både snabba operationer och små geome-
trier. Arbetet mynnade ut i en implementation
bestående av en kombination av befintliga kom-
primeringsalgoritmer, alternativa sätt att repre-
sentera flyttalskoordinater och integrerat stöd för
vissa geometriska operationer.

Implementationen nyttjar delta-kodning, vilket
innebär att istället för att spara varje koordi-
nat till fullo, så sparas enbart mellanskillnaden.
Denna är ofta mindre då geometrier används för
att modulera världen. Tänk att för ett hus så är
det rimligt att ange längden på väggarna, istället

för varje hörns geografiska koordinat.
Delta-kodningen bildar en kedja av beroen-

den mellan koordinaterna, eftersom den tidigare
koordinaten krävs för att avkoda värdet. Genom
att bryta kedjan ibland, alltså spara hela koordi-
naten igen, så kan geometrier delas in i oberoende
block.

Genom att hoppa över de block som är irrele-
vanta så kan prestanda förbättras och tid sparas,
eftersom enbart aktuella block dekomprimeras.
Exempelvis, för att beräkna om två geometrier
korsar varandra, så räcker det att undersöka de
block vars ytor överlappar mellan geometrierna.

Vid testning konstaterades att implementatio-
nen reducerade storleken med en faktor 2.56, jäm-
fört med WKB och var 3.6 gånger snabbare än
referensimplementationen som saknar optimerade
operationer, vid beräkningen av snittet över stora
geometrier. Partiell dekomprimering av geome-
trier är till stor del outforskat inom akademin,
men slutsatsen av arbetet är att området defini-
tivt kan vara intressant att undersöka vidare.
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