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Abstract

PFAS contamination in drinking water is a current problem, and new regulations for
drinking water limits were recently implemented in each member country of the EU in
January this year. Understanding the spread of PFAS in groundwater is therefore im-
portant to prevent it from reaching drinking water sources. Groundwater modeling is a
valuable tool for this purpose. However, due to the specific characteristics of PFAS, such
as sorption, there is a knowledge gap regarding the optimal implementation of this tool.
Therefore, this thesis aims to investigate the currently used modeling strategies and ex-
amine the parameters that seem to have the most significant impact on PFAS transport.
This research also seeks to understand the importance of identifying the specific PFAS
compounds present in the contaminant.

A literature review was conducted, revealing that the most commonly used method in-
volved transport simulations using MODFLOW. As a result, a similar approach using
FEFLOW was adopted with the aim of conducting a sensitivity analysis to identify which
parameters are most crucial in determining the obtained PFAS concentration in each
node. A total of 500 simulations were performed for four different scenarios, considering
two different aquifers and the transport of two different PFAS compounds. The results of
these simulations were used to train a random forest regression model, which exhibited a
high level of accuracy in predicting the resulting concentration at specific nodes. A sen-
sitivity analysis was conducted on the model, revealing that hydraulic conductivity was
the most important parameter in steady-state modeling, followed by recharge for sandy
aquifers and longitudinal dispersivity for sand and gravel aquifers. Sorption did not have
a significant impact on the results in this context. However, in transient modeling, sorp-
tion was found to be of great importance, suggesting that the specific PFAS compound
may play a significant role in such scenarios. Lastly, the results differed significantly be-
tween steady-state and transient-state modeling, indicating that the choice of modeling
approach is also of great importance.

Keywords: PFAS, Groundwater modeling, FEFLOW, Python, Machine learning
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Introduction

1 Introduction

Per- and Polyfluorinated Substances (PFAS) cover a wide range of approximately 5,000
different chemicals that are produced within industrial environments. The production of
PFAS began in the late 1940s, and since then, these substances have been extensively
used in various products and chemicals. Examples of such products include cosmetics,
textiles treated with water and grease repellents, fire extinguishing foam, non-stick coated
cookware, and cleaning agents (Swedish EPA, 2023).

A PFAS molecule typically consists of a hydrophobic part, known as the fluorinated car-
bon chain, and a hydrophilic part, represented by its functional group (such as carboxylic
or sulfonic acid). This unique chemical structure provides PFAS both hydrophobic and
oleophobic properties, making them effective at repelling both water and grease (Swedish
Chemical agency, 2021). However, the environmental downside of PFAS lies in their sta-
bility, attributed to the strong carbon-fluorine bond. This stability prevents their natural
degradation, leading to accumulation in soil, water, and biota, as well as long-distance
transport (Swedish Chemical agency, 2021). Consequently, PFAS can be detected almost
everywhere in the environment, even in locations where no intentional emissions or use
have occurred (Swedish EPA, 2023).

The main pathways through which PFAS enter groundwater include the use of fire ex-
tinguishing foam during fire drills and accidents, which directly emits PFAS into the
environment. Additionally, PFAS can leach into groundwater from landfills, wastewa-
ter treatment plants, and industrial sites (Swedish EPA, 2023). Once PFAS contaminates
groundwater, it can be transported over considerable distances, potentially reaching drink-
ing water wells. Furthermore, PFAS can also be airborne and deposit into lakes and rivers,
which are important sources of drinking water (Haug et al., 2011). In a study conducted by
the Geological Survey of Sweden (SGU) from 2016 to 2017, which examined the presence of
environmental toxins in municipal groundwater resources, PFAS was found in two-thirds
of the groundwater resources, although at relatively low levels. A more comprehensive
assessment conducted under the Swedish Water Framework Directive identified around
250 groundwater resources at a significant risk of PFAS impact (SGU, 2021). Starting
from the beginning of 2023, the limit values for PFAS in Swedish drinking water will
be lowered to 4 ng/L for PFAS-4 and 100 ng/L for PFAS-21 (Livsmedelsverket, 2022).
This highlights the relevance of addressing PFAS contamination in drinking water and
emphasizes the importance of understanding its groundwater transport to anticipate and
prevent further contamination.

Groundwater modeling serves as an effective tool for tracking the spread of PFAS contam-
ination. However, due to the specific characteristics of PFAS, there is limited knowledge
regarding the application of this tool for simulating the transport. Furthermore, there are
many uncertainties associated with determining several of the input parameters used in
groundwater modeling. Therefore, it would be highly valuable to understand the extent
to which these different parameters impact the resulting outcomes.
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Introduction

1.1 Objectives

Due to the aforementioned reasons, it is important to gain an understanding of how
groundwater modeling can be used for simulating the transport of PFAS in groundwater.
Therefore, the objective of this thesis is to investigate the modeling of PFAS transport
in groundwater. The study aims to explore both the current modeling methods used and
the choice of parameter values, as well as to assess the importance these parameters have
on the resulting concentration in the model.

Thereby, this thesis seeks to address the following research questions:

• What are the commonly used methods for modeling PFAS transport?

• Which parameters significantly influence the simulation of PFAS transport within
the groundwater?

• Do the specific characteristics of different PFAS compounds impact the results, or
can they simply be modeled as a single compound?

By addressing these questions, the thesis aims to contribute to the understanding and
improvement of PFAS transport modeling in the groundwater.

1.2 Structure

Chapter 2 presents the background, starting with an overview of PFAS characteristics
and the previous and current regulations. Additionally, it provides an introduction to
modeling strategies in both FEFLOW and Python.

Chapter 3 describes the conducted literature review, including the methodology used and
the obtained results.

Chapter 4 explains the methodology employed for the modeling and analysis.

Chapter 5 presents the obtained results.

Chapter 6 discusses and analyzes the results, and proposes further areas for investigation.

Finally, Chapter 7 presents the conclusions drawn from the study.

2



Background

2 Background

In this section, the necessary background is provided. First of all, some theory about PFAS
is given. The classification of PFAS molecules, as well as their chemical structure, is in-
vestigated. Furthermore, various properties of PFAS, such as surfactants, transformation,
degradation, and solubility, are reviewed. The spreading and exposure of PFAS are also
presented, along with the current regulations of PFAS in both the European Union and
Sweden. Moreover, the transport and fate of PFAS are examined. Lastly, some theory of
modeling strategies, both in FEFLOW and in Python, is presented.

2.1 Per- and Polyfluorinated Substances

2.1.1 Classification

PFAS is an abbreviation for Per- and Polyfluorinated Substances, which are character-
ized by the partial (poly) or complete (per) fluorination of their alkyl chains. This means
that some or all of the hydrogen atoms on the carbon chains are replaced with fluorine
atoms (Swedish EPA, 2023). PFAS can be classified into two main groups: polymers
and non-polymers, each with additional subcategories. Polymers include fluoropolymers
(FPs), side-chain fluorinated polymers, and perfluoropolyethers (PFPEs) (OECD, 2015).
Non-polymers can be further categorized into perfluoroalkyl acids (PFAAs), perfluoro-
hexylperfluorooctylphosphinic acid (PFPIA), pentafluoropropionic anhydride (PFPA),
and perfluoroalkane sulfonyl fluoride (PASF) (Ambaye et al., 2022). Figure 1 provides
the classification of per- and polyfluoroalkyl substances.

Figure 1: General classification of per- and polyfluoroalkyl substances (PFAS). Figure
modified from Ambaye et al., 2022.

Polymers are formed by connecting several small, identical molecules together in a repeat-

3
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Table 1: Some om the most important groups of PFASs and their chemical structure(ITRC,
2020b). Molecular structures taken from Ahrens, 2011.

Group
Functional group
and molecule
structure

Substance Acronym
Chemical
formula

Perfluoroakyl
carboxylic acid
(PFCA)

COOH

Perfluorobutanoic acid PFBA C3F7CO2H
Perfluoropentanoic acid PFPeA C4F9CO2H
Perfluorohexanoic acid PFHxA C5F11CO2H
Perfluoroheptanoic acid PFHpA C6F13CO2H
Perfluorooctanioc acid PFOA C7F15CO2H
Perfluorononanoic acid PFNA C8F17CO2H
Perfluorodecanoic acid PFDA C9F19CO2H
Perfluorounddecanoic acid PFunDA C10F21CO2H
Perfluorododecanoic acid PFDoDA C11F23CO2H
Perfluorotridecanoic acid PFTrDA C12F25CO2H

Perfluoroalkyl
sulfonic acids
(PFSA)

SO3H Perfluorobutanesulfonic acid PFBS C4F9SO3H
Perfluoropentanesulfonic acid PFPeS C5F11SO3H
Perfluorohexanesulfonic acid PFHxS C6F13SO3H
Perfluoroheptansulfonic acid PFHpS C7F15SO3H
Perfluorooctanesulfonic acid PFOS C8F17SO3H
Perfluorononanesulfonic acid PFNS C9F19SO3H
Perfluorodecanesulfonic acid PFDS C10F21SO3H
Perfluorododecanesulfonic acid PFDoDS C12F25SO3H
Perfluorotridecanesulfonic acid PFTrDS C13F27SO3H

Fluorotelomer
alcohols
(FTOH)

CH2CH2OH Fluorotelomer alcohol 6:2 FTOH C8H5F13O
Fluorotelomer alcohol 8:2 FTOH C10H5F17O
Fluorotelomer alcohol 10:2 FTOH C12H5F21O

Fluorotelomer
sulfonic acids
(FTSA)

CH2CH2SO3H

Fluorotelomer sulfonate 6:2 FTS C8H4F13SO3H

Perfluoroalkane
sulfonamides
(FASA)

SO2NH2

Perfluorooctane sulfonamide PFOSA C8F17SO2NH2

ing pattern. Compared to non-polymer PFAS (ITRC, 2020b), polymers are often larger
molecules. The classification of polymer PFAS is based on their distinct chemical struc-
tures. Fluoropolymers, for instance, have a carbon-only polymer backbone with fluorine
atoms directly attached to the carbon (ITRC, 2020b). PFPE, on the other hand, feature
a carbon and oxygen polymer backbone with fluorine atoms directly attached to the car-
bon. This group of PFAS is relatively less known (ITRC, 2020b). In side-chain fluorinated
polymers, the backbone is a nonfluorinated polymer, while the fluorinated carbon chains

4
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act as side chains branching out from the backbone. Some of these substances can serve
as precursors to PFAA, as they can degrade into PFAA (ITRC, 2020b).

PFAA represent some of the simplest PFAS molecules. Under normal conditions, they are
generally non-degradable, hence often referred to as ”terminal PFAS” since the degrada-
tion of longer PFAS halts once they break down into a PFAA (ITRC, 2020b). Precursors
are polyfluoroalkyl substances that can degrade into PFAA (ITRC, 2020b). Furthermore,
PFAA can be further classified into two major groups: Perfluoroalkane sulfonic acids
(PFSA) and Perfluoroalkyl carboxylic acids (PFCA), distinguished by their functional
groups, which is either sulfonic or carboxylic acid (ITRC, 2020b).

Moreover, Table 1 provides an overview of some of the most significant PFAS groups,
including their chemical formulas and molecular structures.

2.1.2 Regulations

Until 2021, there were no legally binding limit values for PFAS in drinking water in Swe-
den or the European Union (EU). However, the updated EU Drinking Water Directive
(2020/2184) now includes monitoring requirements for PFAS in drinking water. The di-
rective sets minimum standards, allowing member countries to adopt stronger regulations
if desired. The new regulations had to be implemented in each member country by Jan-
uary 2023 at the latest (Livsmedelsverket et al., 2021). The directive includes two limit
values: one for the sum of a group of PFAS compounds known as PFAS20, with a thresh-
old value of 100 ng/L, and one for the total amount of PFAS, with a threshold value of
500 ng/L. The specific substances to be included in the ”total amount of PFAS” are yet
to be decided, and each country can choose whether to implement both or just one of the
limit values (Livsmedelsverket et al., 2021).

In Sweden, the Swedish Food Agency (Livsmedelsverket) has had an action limit value
for PFAS in drinking water since 2014. Initially, this limit included seven different PFAS
compounds (PFAS7), but it was later expanded to include eleven (PFAS11). In 2016, an-
other action limit value was introduced, which included four different PFAS compounds
(PFAS4) (Livsmedelsverket et al., 2021). Currently, Sweden has implemented the EU di-
rective by establishing two threshold values: one for PFAS4 and one for PFAS21. PFAS21
includes the 20 PFAS compounds specified in the EU directive, along with the substance
6:2 FTS. The threshold value for PFAS4 is set to 4 ng/L and for PFAS21 to 100 ng/L
(Livsmedelsverket, 2022).

Table 2 presents the historical and current threshold values for various groups of PFAS
in Sweden. The predominant PFAS compounds found in the environment are PFOS and
PFOA, followed by PFHxS and PFNA (Agency, 2019). PFOS has been commonly utilized
in fire-fighting foam, cleaning detergents, and as an impregnating agent, whereas PFOA is
primarily employed as an auxiliary chemical in the production of polytetrafluoroethylene
(PTFE), well-known through trademarks such as Teflon and Gore-Tex (ALS Europe,
2023).
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Table 2: Previous and current threshold values for different groups of PFAS in Sweden
(Livsmedelsverket, 2022; Livsmedelsverket et al., 2021).

PFAS4 PFAS7 PFAS11 PFAS20/21

PFOA PFOA

PFOS PFOS

PFHxS PFHxS

PFNA PFBS

4 ng/L PFPeA

PFHxA

PFHpA

90 ng/L PFNA

6:2 FTOH

PFBA

PFDA

90 ng/L PFUnDA

PFDoDA

PFTrDA

PFPeS

PFHpS

PFNS

PFDS

PFDoDS

PFTrDS

6:2 FTS

100 ng/L

2.1.3 Chemical structure

The chemical structure of PFAS varies among different types of compounds. In addition
to having a partly or fully fluorinated carbon chain (tail), PFAS also consist of a functional
group (head) that varies between different PFAS, giving the molecules different properties.

Branched and linear

Depending on the manufacturing process used, different types of PFAS isomers may be
produced. The structure of the PFAS molecule can be either branched or linear, which
may impact the fate and transport of the molecules (ITRC, 2020b). A linear PFAS isomer
has a straight carbon backbone, where the carbon atoms are solely bound to one or two
other carbons. This results in only one possible linear isomer for each compound with the
same number of carbons (ITRC, 2020b). However, there are several possible variations
of branched isomers for each PFAS substance. In a branched isomer, at least one carbon
is bonded to two or more carbon atoms, giving it a branched backbone structure (ITRC,
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2020b). Studies have found that linear isomers have a greater sorption affinity than
branched isomers, suggesting that branched isomers are more mobile (Xiao et al., 2022).
Furthermore, the manufacturing process may also influence the types of PFAS formed
through the transformation of precursor PFAS (ITRC, 2020b). Therefore, understanding
the manufacturing process of emitted PFAS can be important when investigating their
environmental fate and transport.

Chain length

PFAS, especially PFAA, can be categorized into short- or long-chain PFAS. The cate-
gorization varies among different types of PFAA, where long-chain PFCA contain 8 or
more carbons, while long-chain PFSA contain six or more carbons. Short-chain PFCA
have seven or fewer carbons, while short-chain PFSA have five or fewer carbons (ITRC,
2020b). The chain length has a significant impact on the molecules’ affinity to sorb onto
the soil, which will be discussed further in section 2.2.

Charge

Depending on the functional group, different PFAS molecules can possess different charges
under natural environmental conditions. PFAS with an acid functional group commonly
have a low acid dissociation constant, pKa, due to the strong electron-withdrawing nature
of fluorine atoms (Xiao et al., 2022). PFAA and other anionic PFAS have small pKa values,
resulting in them being deprotonated and negatively charged under normal pH levels in
the environment. However, cationic PFAS have a positively charged functional group
and remain positively charged under normal environmental conditions. Furthermore, the
charge of zwitterionic PFAS strongly depends on the surrounding pH conditions, as their
molecular structure encompasses both negative and positive charges, allowing them to
exhibit anionic, cationic, or neutral characteristics (Xiao et al., 2022).

2.1.4 Surfactants

Another notable property of PFAS molecules is that they contain both a hydrophilic and
a hydrophobic part. This characteristic makes PFAS surfactants, meaning they are often
found in the surface layer between a solid surface and a liquid, or between a fluid and the
air (Swedish Chemical agency, 2021). As a result, PFAS molecules have the ability to repel
both water and greases, which is desirable for applications such as impregnating textiles
and paper. This property is also the reason why PFAS is commonly used in products
like non-stick pans. Additionally, PFAS can create a film between two different surfaces,
making them useful in products like fire extinguishing foams and cosmetics, where they
act as a barrier between two surfaces. However, this property also makes it challenging to
determine the relationship between octanol and water (Kow) for PFAS substances, which
is an important parameter for describing the solubility of organic compounds (Swedish
Chemical agency, 2021).

2.1.5 Transformation and degradation

The carbon-fluorine bond in PFAS is the strongest bond in organic chemistry, with an
average bond energy of approximately 104.6 kJ/mol (Xiao et al., 2022). Due to the pres-
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ence of multiple carbon-fluorine bonds, PFAS is highly persistent and does not naturally
degrade. The only possible decomposition is the formation of more stable variants of
PFAS molecules. This persistence contributes to the widespread use of PFAS, as they can
withstand high temperatures, oxidation, and low pH values (Swedish Chemical agency,
2021). However, it is also a major environmental concern, as persistent molecules do not
degrade in nature and instead accumulate in soil, water, and living organisms (Swedish
Chemical agency, 2021). PFAS molecules have half-lives ranging from hundreds to thou-
sands of years, depending on whether they are precursors or not (Raschke et al., 2022).
Furthermore, their persistence allows them to be transported over long distances through
water flows or by wind dispersion (Swedish Chemical agency, 2021).

2.1.6 Solubility

The solubility of different PFAS molecules can vary greatly due to their diverse molecular
structures (Swedish Chemical agency, 2021). However, compared to other organic com-
pounds, PFAS is generally more soluble. Solubility depends mainly on two factors: the
length of the hydrophobic carbon chain and the properties of the hydrophilic functional
group. In general, longer carbon chains (longer hydrophobic parts) lead to lower water
solubility (Swedish Chemical agency, 2021). The ability of PFAS to dissolve in water,
combined with their persistence, allows them to be transported over long distances in
water environments such as rivers, streams, and groundwater, eventually reaching drink-
ing water sources (Swedish Chemical agency, 2021). However, due to their hydrophilic
and hydrophobic properties, a significant amount of PFAS compounds accumulate at the
interface between air and water, resulting in lower concentrations in soil pore water (Lyu
et al., 2021).

At room temperature, PFAS molecules are typically in a solid state. However, there are
several short-chain PFAS molecules that are in a liquid phase at these temperatures and
are easily dissolved in water (Xiao et al., 2022). Although long-chain PFAS compounds are
solid, they can still dissolve in water to a limited degree (USEPA, 2014). Generally, PFAS
with shorter chains are more soluble in water compared to those with longer carbon chains.
The solubility of PFAS is still a subject of uncertainty, but according to USEPA, 2014,
two of the most common PFAS compounds, PFOS and PFOA, have solubilities of 550-
570 mg/L and 9500 mg/L, respectively. Under normal conditions of room temperature
and normal pressure, PFAS are thermally and chemically stable. However, there are
exceptions where certain compounds may be sensitive to light or heat or can interact
with the air (Lyu et al., 2021).

2.1.7 Spreading and exposure

PFAS can enter the environment through primary, secondary, or diffuse sources. Primary
sources include businesses that handle and store firefighting foams or use PFAS in the
manufacturing process (Swedish Chemical agency, 2021). Secondary sources are busi-
nesses that handle products or waste containing PFAS. Diffuse sources arise from the use
and wear of PFAS-containing products (Swedish Chemical agency, 2021). In surface and
groundwater, the main source of PFAS contamination is firefighting training sites where
direct emissions to the environment have occurred due to the use of PFAS-containing
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firefighting foams (SGU, 2021). Due to the chemical properties of PFAS, groundwater
is an important pathway for their spreading. Local hydrogeology and substance-specific
properties play a significant role in controlling the spread of PFAS (SGU, 2021; Swedish
Chemical agency, 2021).

The most significant sources of human exposure to PFAS are contaminated seafood, drink-
ing water, inhalation of contaminated indoor air, and contact with contaminated media
(Sunderland et al., 2019). The health effects of PFAS exposure in humans are not yet
fully understood. However, multiple studies suggest that high levels of PFAS may be
associated with various health issues, including an increased risk of kidney or testicular
cancer, elevated cholesterol levels, liver damage, and thyroid disease. Additionally, several
health risks are linked to pregnancy and the developing fetus, such as delayed mammary
gland development, reduced response to vaccines, lower birth weight, and an increased
risk of pregnancy-induced preeclampsia or high blood pressure (ATSDR, 2022; European
Environment Agency, 2022; Swedish Chemical agency, 2021).

2.2 Transport and fate of PFAS

2.2.1 Advection, Dispersion and Diffusion

Advection is the transport of substances which are entrained in the water flow. Conse-
quently, the substrate is moving due to the fact that the water is moving, according to
the hydraulic gradient. However, since the distribution of the water flow velocity is not
uniform, advection also tends to spread out or disperse the substrate along the way (Fitts,
2013). The movement with the water is not the only process that affects the contami-
nant moving, thus using the advection method alone would most often be insufficient.
Other processes that may need to be taken into consideration are dispersion, diffusion,
and sorption. These processes may also affect the groundwater flow, which in turn affects
the contaminant transport (Postigo et al., 2018).

Diffusion is the transport of a contaminant along the chemical gradient, moving from a
high gradient to a low, in order to equalize the differences in concentration (Postigo et al.,
2018). The diffusion through a cross section can be described by Fick’s first law, Equation
(1) (Larsson, 2003).

qM = −DM
dc

dx
(1)

where qM is the solutes mass flow [kg m-2s-1],
DM is the molecular diffusion coefficient [m2s-1],
dc
dx

is the concentration gradient [kg m-3 m-1].

If it were possible to exactly define the three-dimensional flow pattern in the aquifer,
advection and diffusion would be enough to describe the transport of solute particles in
the groundwater. However, since this is not possible, a new transport process, dispersion,
has to be introduced to account for the uncertainties in groundwater velocity through the
aquifer (Pickens and Grisak, 1981). Dispersivity is incorporated to capture the variations
within the aquifer, which can occur at both microscale and macroscale levels. At the mi-
croscale, variations may include misaligned pore directions, differences in pore size, and
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friction against pore walls. On the macroscale, unknown variations within the aquifer
play a prominent role in influencing dispersivity (DHI, 2023a). As a result, dispersion
occurs in the x, y, and z directions, leading to increased spreading of PFAS molecules
within the aquifer (ITRC, 2020a).

Contaminant spreading to the clean areas of the aquifer, together with an overall decreased
concentration of contaminants, are both results of hydrodynamic dispersion (Postigo et
al., 2018). Figure 2 shows the phenomena behind dispersion as well as the effect disper-
sion has on the concentration plume.

Figure 2: The left image illustrates the phenomena behind dispersion, due to the different
path length possible for a contaminant to travel. The right image shows the effect of disper-
sion on the concentration plume, where S represents the source, Adv represents the transport
that would occur with only advection, DL represents the dispersion in the longitudinal direc-
tion, and DT represents the transport in the transversal direction.

To conclude, the spreading of PFAS is strongly influenced by all the aforementioned
processes. However, due to the small diffusion rate compared to the advection rate, diffu-
sion is often neglected in groundwater modeling (ITRC, 2020a). Furthermore, in reality,
advection is identified as the primary process driving the transport of contaminants in
groundwater. However, when modeling contaminant transport in groundwater, relying
solely on advection would be insufficient, as it does not account for the uncertainties in
groundwater velocity through the aquifer. To simulate a more realistic spreading within
the aquifer, dispersion is incorporated to consider the effects of spatial variability and to
ensure a more accurate representation of the transport process. By combining advection
and dispersion, the groundwater modeling approach achieves a more comprehensive and
realistic representation of a contaminant movement in the aquifer.

Due to the characteristics of PFAS, it is essential to understand the interactions between
PFAS and the surrounding media when modeling the transport of these substances. Ad-
vection is based only on the properties of the media and does not account for the prop-
erties of the transported molecule. Therefore, other processes, such as sorption, needs
to be taken into consideration when modeling the transport of PFAS. Sorption is a pro-
cess that depends on both the characteristics of the transported contaminant and the
characteristics of the surrounding media (ITRC, 2020a).
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2.2.2 Sorption

Sorption is the process in which a molecule is adsorbed to the solid surface of the aquifer.
One example is positively charged ions being adsorbed to the solid surfaces of certain min-
erals in the aquifer. This can happen due to the oxidation of the solid surface of organic
matter, leaving behind negatively charged organic matter, causing the positive ions in the
water to be adsorbed to the walls primarily through electrostatic forces, and sometimes
even through covalent bonding. This is an important process in contaminant hydrology
since it decreases the concentration of contaminants in the water (Postigo et al., 2018).

The distribution or partition coefficient Kd describes the affinity of a pollutant to sorb
onto the solids in the aquifer. The expression for this coefficient is described by Equation
(2):

Kd =
Cs

Cw

(2)

where Cs is the contaminant adsorbed concentration [mg/kg],
Cw is the contaminant dissolved concentration [mg/L].

A high value of Kd implies that a large amount of the pollutant is adsorbed to the solid
surface in the aquifer, while a low value indicates that the pollutant prefers to remain in
the water (Postigo et al., 2018).

However, adsorption is a reversible process, meaning that the pollutant can revert into the
aqueous phase. For that reason, the sorption/desorption processes trends to slow down
the transport of pollutant (Postigo et al., 2018). The retardation factor describes this
effect and is expressed as seen in Equation (3) (Postigo et al., 2018):

R =
Vx

Vcont

= 1 +
(
Kd ·

ρ

θ

)
(3)

where Vcont is the advective velocity of the contaminant [m/s],
Vx is the average linear velocity of the groundwater [m/s],
Kd is the soil-water distribution coefficient of the contaminant [L/kg],
ρ is the soil bulk density [kg/m3],
θ is the volumetric water content [m3/m3].

When examining the equation, it can be seen that a large value of Kd means that the
contamination is moving slower than the groundwater, while a small value of Kd indicates
transport with the same speed as the groundwater.

Sorption is a key factor when it comes to understanding the transport and fate of PFAS
in the soil-water environment. To predict the presence and mobility of PFAS, it is impor-
tant to understand their soil-water partitioning (Nguyen et al., 2020). The value of Kd

varies for different PFAS due to the previously mentioned differences in their structure
and charge characteristics. In addition to the properties of PFAS, soil properties and
environmental conditions are also important factors that affect sorption (Nguyen et al.,
2020). PFAS can be sorbed to the sorbent through several different interactions, such
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as electrostatic, hydrophobic, ligand and ion exchange, hydrogen bonding, as well as dif-
fusion. Electrostatic and hydrophobic interactions are the two most common sorption
mechanisms for PFAS (Nguyen et al., 2020), and they can be further examined in Figure
3.

Figure 3: A schematic image illustrating how a negative charged PFAS can be sorbed to
the soil or sorbent through either electrostatic interactions or hydrophobic interactions. This
Figure is modified from Figure 1 and 2 in Du et al. (2014).

Chemical properties of PFAS

In a study conducted by Nguyen et al. (2020), a relationship was found between Kd

and carbon chain length, where an increase in the carbon chain length resulted in an
increased value of Kd. This implies that short-chain PFAS are predominantly found in
the water phase, while longer-chain PFAS tend to be absorbed into the soil phase. Con-
sequently, short-chain PFAS are more mobile in the environment. Furthermore, Nguyen
et al. (2020) observed that PFAS molecules with longer fluorinated carbon chains (≥ C6)
exhibited more fluctuations in their Kd values when the surrounding properties changed,
indicating that they are more influenced by the surrounding soil. Therefore, the fate of
long-chain PFAS is dependent on the specific characteristics of the site.

Similar findings were reported by Milinovic et al. (2015), who investigated the sorption
of three different PFAS: PFOS, PFOA, and PFBS. The results indicated that PFOS had
the greatest affinity for soils, while PFBS exhibited the lowest affinity. This supports the
results obtained by Nguyen et al. (2020), as PFBS is the compound with the shortest
carbon chain. The hydrophobic interaction between the organic matter in the soil and
the hydrophobic fluorinated carbon chain is considered to be the primary sorption process
for PFAS, explaining why a longer carbon chain increases sorption.

However, it should be noted that PFOS, despite having a shorter carbon chain than PFOA,
exhibits a greater affinity for sorption onto the soil. This indicates that the functional
group also plays a significant role in sorption (Milinovic et al., 2015). Additionally, Li,
Fang, et al. (2019) found that PFSA adsorb more strongly compared to PFCA, even
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when they have the same carbon chain length, further emphasizing the importance of
the functional group. Furthermore, the charge of the molecules affects their sorption
affinity to the soil, making it an important factor to consider when examining the fate and
transport of PFAS (Li, Fang, et al., 2019). Moreover, the effect of the charge also depends
on the properties of the surrounding soil. Carboxylic and sulfonic acids are two common
functional groups that deprotonate and acquire a negative charge. This deprotonation
reaction is favored in basic or alkaline conditions, where there is an abundance of hydroxide
ions (OH−) or other species capable of accepting protons. (Raschke et al., 2022). However,
the different functional groups in PFOS and PFOA result in varying anionic strength due
to the distribution of the negative charge. Carboxylic acids can distribute the negative
charge across two oxygen atoms, while sulfonic acids can distribute it over three oxygen
atoms. As a consequence, PFOS is more easily adsorbed to acidic soils, where soil particles
tend to have a positive charge, compared to PFOA. This difference can be attributed to
PFOS having a slightly higher negative charge due to the presence of the sulfonic acid
group. (Raschke et al., 2022).

Soil properties

Soil properties such as the cation exchange capacity (CEC), soil texture, and soil organic
carbon (SOC) also have an impact on the sorption of PFAS. Nguyen et al. (2020) found
that the sorption of a particular PFAS compound is better described by considering mul-
tiple soil properties rather than a single one. Moreover, different PFAS compounds are
influenced by different soil properties due to their distinct chemical structures (Nguyen et
al., 2020). For instance, natural aquifer and soil surfaces are typically negatively charged,
and since anionic PFAS (such as PFAA) also carry a negative charge under normal en-
vironmental conditions, the repelling force between them enhances the transport of such
PFAS in the subsurface environment (Xiao et al., 2022). However, there are aquifers or
types of soil that possess a positively charged surface, leading to increased sorption of
anionic PFAS in such environments (Xiao et al., 2022).

Furthermore, several studies have discovered a relationship between PFAS sorption and
pH (Campos Pereira et al., 2018; Nguyen et al., 2020), where an increase in pH value
leads to decreased sorption. Although PFAS such as PFOS and PFOA are deprotonated
in high pH conditions, some soil minerals and organic matter may become less protonated
at higher pH levels, reducing their overall positive charge. This change in charge on the
solid phase can also decrease the attraction between the negatively charged PFOS/PFOA
molecules and the sorbent surfaces, further decreasing sorption. It’s important to note
that the relationship between pH and sorption can be complex and may vary depending
on the specific sorbent material and the properties of the contaminants involved.

The study emphasizes the importance of pH and soil organic matter (SOM) net charge
in influencing PFAS sorption behavior. Long-chain PFAS are primarily influenced by pH,
while short-chain PFAS are more sensitive to SOM net charge. These differences in sorp-
tion behavior indicate varying binding preferences within the soil matrix. Longer PFAS
preferentially bind to humin, a stable component of SOM, due to their larger size and
complex structures. Shorter PFAS, being smaller and simpler in composition, tend to
interact more with other SOM components like fulvic and humic acids (Campos Pereira
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et al., 2018).

The sorption of PFAS is reduced in the presence of other organic compounds, such as
humic acids, natural organic matter (NOM), and dissolved organic carbon (DOC), due
to strong competition for sorption sites between these compounds (Zhang, Liang, et al.,
2019). The presence of other surfactants also affects the sorption of PFAS. However, the
effect of coexisting surfactants depends on their concentration in the solvent (Du et al.,
2014). The sorption of PFAS is decreased at high concentrations of surfactants since the
surfactants then form micelles, which increases the solubility of PFAS. On the other hand,
a low concentration of surfactants enhances the sorption because the surfactants are able
to capture the PFAS from the water when they are already adsorbed onto the sorbent
(Du et al., 2014).

Inorganic ions are another important factor affecting the adsorption of PFAS. The effects
of coexisting inorganic ions on the adsorption of PFAS are rather complex (Zhang, Liang,
et al., 2019). The presence of inorganic ions has several consequences, including com-
petitive adsorption, neutralization of surface area, and bridge formation between PFAS
anions and negatively charged groups (Du et al., 2014).

2.2.3 Micelle formation

Amphiphilic molecules, which consist of a hydrophilic and a hydrophobic part, have the
ability to form spherical aggregates where their hydrophobic parts are grouped together
in the core and the hydrophilic parts are facing outwards to the solvent. This creates a
stable colloidal system and the structure is called micelles (Aguilar, 2013). Due to PFAS
containing both a hydrophilic and a hydrophobic part, they may form micelles or hemim-
icelles, which are partial or incomplete micelles, when dissolved in water (Xiao et al.,
2022). This occurs when the PFAS molecules gather in clusters, with their hydrophobic
fluorinated carbon chain in the center and their functional group facing outwards towards
the water, creating a micelle. Hemicelles and admicelles are created when either their
carbonic chain or their functional group is attached to a particle surface, as can be seen
in Figure 4 (Xiao et al., 2022).

The formation of micelles can both enhance and, in some cases, reduce the sorption of
PFAS (Interstate Technology Regulartory Council, 2022). What is unique for PFAS is that
they can form micelles even at concentrations lower than the critical micelle concentration
(CMC). This ability is possible due to the fluorine atoms (Xiao et al., 2022). PFOA and
other long-chain PFAS are able to form hemimicelles at concentrations as low as 0.01 to
0.03 of their CMC (Xu, Liu, et al., 2020).

2.2.4 Precursors

A precursor is a chemical substance that, through a chemical process, can be converted to
another persistent substance. There are several PFAS molecules, both perfluorinated and
polyfluorinated, that can be converted to PFAA (perfluoroalkyl acids) in the environment,
including biota. These PFAS are therefore considered precursors to PFAAs. In certain
contaminated sites, the majority of the PFAS compounds found may consist of precursors
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Figure 4: Conceptual image of how the PFAS molecules can sorb to the soil or sorbent
due to the formation of different types of micelles. Figure is modified from Figure 5.2 in
Interstate Technology Regulartory Council (2022).

rather than primary PFAAs (Swedish Chemical agency, 2021). This can complicate the
assessment of the contaminant site, as the precursors may degrade to PFAAs later on.
Moreover, the presence of precursors could positively impact the longevity of the PFAS
plume in groundwater, leading to a spread of PFAS over an extended time period (Gefell
et al., 2022). Additionally, there are several PFAA precursors that can be transported by
wind in the atmosphere, ending up in locations far away from the original source. Once
deposited, they can be converted to PFAAs, resulting in the presence of PFAS even in
locations distant from the original source. Considering these facts, it becomes essential to
account for precursors when examining the fate and transport of PFAS at a contaminated
site (Swedish Chemical agency, 2021).

2.3 Modeling Strategies

2.3.1 FEFLOW

FEFLOW is an acronym for Finite Element subsurface FLOW and transport system.
It is an advanced 3D Finite-Element groundwater modeling system that can be used
for simulating heat transfer, mass transfer, and groundwater flow in both fractured and
porous media (Trefry and Muffels, 2007).

Flow modeling principles

Groundwater models based on physical processes follow two fundamental flow modeling
principles. The first principle is the conservation of mass, which states that water cannot
be created or destroyed, and any changes in water storage are a result of water entering or
leaving the system. The second principle is Darcy’s law, which assumes that flow occurs
from areas of high hydraulic potential to areas of low hydraulic potential. (Andersson
et al., 2015).

The conservation of mass can be described by Equation (4), which represents the balance
of water within the system:

∆Storage = Qin −Qout (4)
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Groundwater recharge, which refers to the portion of precipitation that infiltrates and
reaches the groundwater, plays a significant role in water input to the system (Hartmann,
2022). Recharge is therefore an important parameter in groundwater modeling. Further-
more, porosity is another crucial parameter that represents the amount of water that soil
or rock can hold, and therefore affects the total amount of water within the system (Earle,
2015).

The second principle, Darcy’s law, further describes how groundwater flow is influenced
by three key factors: hydraulic conductivity, hydraulic gradient, and cross-sectional area,
as shown in Equation (5) (Ge, 2003).

Q = −KA
dh

dl

[
m3

s

]
(5)

where K is the hydraulic conductivity [m/s],
A is the cross-sectional area perpendicular to the flow direction [m2],
dh
dl

represents the hydraulic gradient [m/m].

The primary driving force for groundwater flow is the hydraulic gradient, and the negative
sign in the Equation indicates that flow occurs from areas of high potential to areas of low
potential (Ge, 2003). Hydraulic conductivity characterizes the speed with which water
can move through the pore space of an aquifer. A higher hydraulic conductivity value
indicates easier flow. The hydraulic conductivity value varies depending on soil properties
and can differ significantly between different materials. However, even within the same
material, the hydraulic conductivity can exhibit significant variation, making it a complex
parameter to consider (Lu, 2015).

Transport and Dispersivity

As already mentioned, advection and dispersion is two of the most important processes to
use when it comes to modeling the transport of a contaminant in the groundwater. Where
the concept of dispersivity is introduced in groundwater modeling in order to account for
the inherent spatial variations within the aquifer. The transport Equation describing the
advective flux can found below, see Equation (6) (Phillips and Castro, 2014).

Jadv = CK̄∇h = Cq̄ (6)

where Jadv is the advective flux [mol/m2s],
C the volume concentration [mol/m3],
K̄ the hydraulic conductivity tensor [m/s],
∇h the hydraulic gradient [m/m],
q̄ the specific discharge [m3/m2s].

To describe the dispersive flux, the linear Fickian relationship is often used. Equation
(7) states Fick’s law, which establishes a linear relationship between the concentration
gradient ∇C and the dispersive flux J (Hassanizadeh, 1996).

Jdis = −D · ∇C (7)
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where Jdis is the dispersive flux [mol/m2s],
D is the dispersion tensor [m2/s],
∇C is the concentration gradient [mol /m3m].

By combining advection and dispersion together the advection-dispersion Equation could
be obtained, see Equation (8).

∂C

∂t
= Dx

∂2C

∂x2
+Dy

∂2C

∂y2
+Dz

∂2C

∂z2
− v

∂C

∂x
(8)

where Dx, Dy, Dz are hydrodynamic dispersion coefficients [m2/s],
C is the concentration [mol /m3],
t is the time [s],
v the advective transport in the x direction [m/s].

In FEFLOW, the default approach for describing macroscale dispersion is through the lin-
ear Fickian relationship. This relationship divides dispersion into longitudinal dispersion
(along the flow direction) and transverse dispersion (perpendicular to the flow direction)
(DHI, 2023a). Generally, longitudinal dispersion is more significant, while transverse dis-
persion is relatively less important (Jonasson et al., 2007).

The determination of dispersivity values is a complex task, and the underlying theory is
not well understood. However, Schulze-Makuch (2005) discovered a relationship between
the scale of the plume and the longitudinal dispersivity, which can be utilized to estimate
dispersivity for a given aquifer. This suggests that dispersivity depends on the scale of the
flow distance. In other words, if the flow distance is long, greater dispersion is expected.
Equation (9) represents the relationship identified by Schulze-Makuch (2005). Compared
to the dispersion tensor, D, α only describes the dispersion in one direction.

α = cLm (9)

where α is the longitudinal dispersivity [m],
c is a parameter characteristic of the geological medium [m],
L is the flow distance [m],
m is the scaling exponent [-].

The scaling exponent was found to range between 0.4 and 0.94, with a mean value of
0.5. Additionally, the parameter c is dependent on the geological media. For example,
sandstone and unconsolidated media had a value of approximately 0.01 m, while carbon-
ate rocks had a value of 0.8 m. This is a reasonable finding since carbonate rocks can
be extremely heterogeneous on small scales (Schulze-Makuch, 2005). As demonstrated
in Equation (9), the longitudinal dispersivity increases with a greater flow distance, in-
dicating that it grows with an increasing measurement scale (Schulze-Makuch, 2005).
Dispersivity is not a constant value; instead, it increases with the length of flow transport
due to the heterogeneity of the aquifer. Dispersivity can vary between 10-2 and 104 m
(Jonasson et al., 2007).
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Additionally, another expression for longitudinal dispersivity was proposed by Xu and
Eckstein, 1995. This expression also describes the dependency of longitudinal dispersivity
on the plume length and is shown in Equation (10).

αL = 0.83(logLs)
2.414 (10)

where αL is the longitudinal dispersivity [m],
Ls is the plume length [m].

Sorption

As previously mentioned, sorption is a crucial process to consider when modeling the trans-
port of PFAS, given the specific characteristics of PFAS compounds. Common methods
used to quantify the sorption of PFAS in nature include the Freundlich isotherm, the
linear isotherm, and the Langmuir isotherm (Sima and Jaffé, 2021).

The Freundlich isotherm is an empirical relationship that is ideal for expressing non-ideal
sorption. It can be expressed as (Sparks, 2003):

Cs = Kf · Cn (11)

where Cs is the concentration in the solid phase [mol/kg],
C is the concentration in the fluid phase [mol/m3],
Kf is the Freundlich adsorption constant [m3/kg],
n is the Freundlich exponent [-].

The Freundlich isotherm describes the nonlinear sorption of a substance and is suitable
for describing PFAS sorption. This is because the sorption of PFAS is typically nonlinear,
with the adsorption constant decreasing as the concentration of PFAS increases. The
value of Kf is greatly influenced by both the specific PFAS compounds and the properties
in the surrounding soil (Sima and Jaffé, 2021).

By assuming the Freundlich exponent (n) to be equal to 1, we obtain a specific case of
the Freundlich isotherm known as the linear isotherm. The linear isotherm sorption can
be described by Equation (12):

Cs = Kd · C (12)

where Cs is the concentration in the solid phase [mol/kg],
C is the concentration in the fluid phase [mol/m3],
Kd is the equilibrium distribution coefficient [m3/kg].

The value of Kd is influenced by various factors, including the chemical properties of the
specific PFAS, soil characteristics, and environmental factors such as pH (Sima and Jaffé,
2021).

The Langmuir isotherm is another nonlinear model frequently used to describe the sorp-
tion of PFAS. Unlike the previous isotherms, the Langmuir isotherm incorporates the
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concept of sorption capacity. The sorption capacity can vary significantly depending on
the soil characteristics and the interactions between PFAS and the soil (Sima and Jaffé,
2021).

The Langmuir isotherm is based on the idea that sorption can only occur at specific ho-
mogeneous sites within the sorbent. Once a site is occupied by a compound, no other
compound can sorb to that same site. Additionally, there are no interactions between
neighboring adsorbed compounds (Ho et al., 2002). The driving force for sorption in this
model is the concentration of compounds in the solution (Ho et al., 2002).

The Langmuir isotherm is expressed as follows (Sima and Jaffé, 2021):

Cs =
bLSmC

1 + bLC
(13)

where bL is a constant [-],
Cs is the concentration in the solid phase [mol/kg],
C is the concentration in the fluid phase [mol/m3],
Sm is the maximum sorption capacity [µg/g].

Due to the limited number of sorption sites in the Langmuir isotherm model, the number
of adsorbed molecules at equilibrium is equal to the number of molecules leaving the ad-
sorption sites (Sahu and Singh, 2019). In FEFLOW, the product of bL and Sm is expressed
as k1, and bL is represented by k2 (DHI, 2023a). The sorption capacity, Sm, is influenced
by solution conditions such as pH and temperature, as well as the characteristics of both
the PFAS and the adsorbent (Sima and Jaffé, 2021).

One advantage of using the Langmuir isotherm over the Freundlich isotherm is its abil-
ity to account for the sorption capacity when multiple PFAS coexist. In such cases, Sm

represents the total sorption capacity for all the present PFAS (Sima and Jaffé, 2021).
However, it is not possible to conclusively determine whether the Langmuir or Freundlich
isotherm is more accurate for simulating PFAS adsorption (Zhang, Liang, et al., 2019).

However, in FEFLOW, a different sorption isotherm is used, called the linear Henry
sorption isotherm. Henry’s sorption isotherm has a similar expression as Equation 12
except that the constant Kd is replaced with the dimensionless Henry’s constant KH. To
obtain the Henry’s constant for a substance, the Kd value is multiplied by the density of
the solid (DHI, 2023a). Equation (14) shows the expression for the linear Henry sorption
isotherm.

Cs = KH · C (14)

where Cs is the concentration in the solid phase [mol/m3],
C is the concentration in the fluid phase [mol/m3],
KH is Henry’s constant [-].
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Oscillation Damping

One common issue in transport processes described by the advection-dispersion Equation
(Equation (8)) is the occurrence of negative concentrations in the solution, which arises
due to false numerical oscillations in the discretization scheme (Wendland and Schmid,
2000). This problem can occur when the time steps are too long or when the mesh is too
coarse. The sharp fronts of concentration plumes, which are not smooth and continuous,
contribute to this issue.

To address this problem, FEFLOW offers several methods that can help smoothen out
the concentration gradient. These methods include mesh refinement, upwinding tech-
niques, and increasing the dispersivity values (DHI, 2023a). By applying these methods,
the numerical oscillations can be mitigated, resulting in more accurate and physically
realistic solutions for concentration distribution in groundwater flow simulations. These
approaches aim to mitigate or eliminate the false numerical oscillations and prevent the
presence of negative concentrations in the solution.

A simple solution to the problem is to refine the mesh, which leads to fewer numerical os-
cillations. However, a fine mesh implies a more complex model, and therefore this option
may not be applicable for all models (DHI, 2023a).

A way to investigate the stability of the advection-dispersion transport process is to ex-
amine the Péclet number. The Péclet number describes the relationship between diffusive
and convective mass transport and is defined as (DHI, 2023a; Rapp, 2017b):

Pe =
v · Lchar

D
=

convection transport

diffusion transport
(15)

where D include both the mechanical dispersion and the molecular diffusion [m2/s],
Lchar is the characteristic length of the system [m],
v is the velocity of the flow field [m/s].

A high Péclet number indicates that mass transport is dominated by convection, while a
low number indicates the dominance of diffusion transport (Rapp, 2017a). If Lchar is set
as the characteristic length of the element size in the direction of flow, the grid Péclet
number can be obtained. A rough rule of thumb often used is that the value of the grid
Péclet number should not be higher than 2 (DHI, 2023a).

Another method used to smoothen the concentration gradient is to use upwinding op-
tions, which not only reduce the risk of oscillation but also improve numerical stability.
Upwinding is a technique used to solve hyperbolic partial differential Equations. It in-
volves estimating derivatives in a flow field by using a set of data points biased to be more
”upwind” of the query point with respect to the direction of the flow. This approach en-
sures that the derivatives are calculated based on information flowing towards the point
of interest, enhancing the accuracy of the solution (Wikipedia, 2023b). However, the
use of upwinding techniques introduce additional numerical (artificial) dispersivity to the
transport model (DHI, 2023a).
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FEFLOW offers various upwinding options, including:

1. No upwinding: This is the default setting in FEFLOW, where no upwinding is
applied.

2. Streamline upwinding: This technique smoothes the concentration gradient primar-
ily in the flow direction, helping to mitigate oscillations.

3. Full upwinding: Full upwinding smoothes the concentration gradient in all direc-
tions.

4. Shock capturing: This technique selectively applies upwinding only where necessary,
targeting areas with sharp gradients.

5. Least-squares upwinding: This method uses a least-squares approach to determine
the optimal amount of upwinding in each direction.

It’s important to note that when using upwinding techniques, artificial dispersivity is
added to the model. This can potentially result in a smoother representation of the con-
taminant plume compared to the actual physical behavior. Therefore, the selection and
application of upwinding techniques should be done carefully in order to find the balance
between capturing the true behaviour of the plume but at the same time to avoid diffusion
or over-smoothing which may lead to incorrect results. (DHI, 2023a).

A third way to solve the problem is simply by increasing the dispersivity values used in
the model (DHI, 2023a).

Transport Equations

In FEFLOW, it is possible to choose between two different formulations of the transport
Equation. The chosen transport Equation has a significant impact on the interpretation
of transport boundary conditions for well types and on the flux. The default formulation
used in FEFLOW is the convective form, where dispersion is the driving force for the
assigned maximum flux. In an attempt to achieve the assigned mass flux, FEFLOW will
adjust the concentration along boundary sections, resulting in a lower concentration at
these sections. Consequently, additional mass enters the model through advective trans-
port, leading to a discrepancy between the assigned boundary condition and the obtained
mass flow budget (DHI, 2023c).

The second option is the divergence form, where both advective and dispersive flux are
represented in the assigned mass flux. By using this transport Equation, a lower and
more realistic concentration is obtained at the boundary sections. This results in a lower
mass influx, which in turn ensures that the mass flow budget and the assigned boundary
conditions are identical (DHI, 2023c).
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State

In FEFLOW, simulations can be conducted in two different states: steady state or tran-
sient. In a steady state simulation, the obtained solution represents the system’s state
when it has been exposed to constant material properties and boundary conditions for
an infinitely long time (DHI, 2023b). On the other hand, in a transient simulation, the
simulation starts from an initial condition and covers a specified time period, rather than
an infinite time duration. Both transient and steady state simulations can be used for flow
and transport simulations, either by having the same state for both flow and transport
or by having a steady state flow with transient transport (DHI, 2023b).

2.3.2 Analysis of modeling results

One approach to gaining insight into the importance of each parameter in groundwater
modeling is by using a machine learning algorithm known as random forest regression.
This algorithm can be trained using the data obtained from the simulations, which in-
cludes various input parameters and the corresponding resulting concentration. If the
algorithm achieves accurate predictions, it becomes valuable to analyze the factors it re-
lies on for making those predictions. This analysis can provide a deeper understanding of
the relative importance of each parameter in influencing the model’s outcomes. All this
can be done in Python and the theory behind this will be presented in more detail in the
following sections.

Random Forest

Random Forest is an algorithm mainly used for regressions or classification problems
(Sruthi, 2023). A simple schematic overview over how the algorithm works can be seen
in Figure 5. In the Figure, three decision trees are presented. Each decision tree consists
of a root node, internal nodes (also known as decision nodes), and leaf nodes. The de-
cision nodes make choices about whether to go left or right based on available features.
For each decision tree, a subset of data points (in this case, concentrations of PFAS in
each node) and a subset of features (the input parameter values that generate the given
concentration) are selected (Sruthi, 2023).

Each decision tree in the random forest regression algorithm starts with a root node and
forms a tree-like structure through multiple feature-based splits, ultimately reaching the
leaves. These leaves represent the possible outcomes resulting from a series of decisions.
It is important to note that in Figure 5 each decision tree takes different routes down
the tree structure, as each tree is unique and makes decisions based on different features
(Saini, 2023).

The random forest regression algorithm builds up its decision trees using the training
data provided. The training data is divided into multiple subsets, and for each subset,
a decision tree is created. At each node of the tree, the algorithm selects the best fea-
ture to split the data based on a specific criterion, such as minimizing the mean square
error. Once the algorithm reaches a leaf node in the decision tree, it has made a predic-
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tion for the target variable, which, in this case, is the concentration of PFAS. (Saini, 2023).

Figure 5: A schematic overview of the basis behind the random forest regression model is
shown. The dark grey nodes indicate the path down each decision tree. At each internal
node, a decision is made whether to go left or right down the tree. Finally, one of the leaf
nodes is reached, which provides a prediction of the resulting concentration. The random
forest regression algorithm derives its final prediction from the average value obtained from
all the created decision trees.

The random forest algorithm works by creating multiple decision trees based on the pro-
vided dataset. Once all the decision trees are created, the Random Forest algorithm
examines the predicted values from each decision tree in order to do the final prediction.
If the algorithm is used for classification the value of the majority is used, however, if
the algorithm is used for regression the average values of all predictions is used (Sruthi,
2023). In this case, when dealing with concentrations, the regression model is employed
to predict the resulting concentration.

A way to validate the accuracy of the created Random Forest model is to examine the
mean squared error (mse), the root mean squared error (rmse) and the coefficient of
determination (R2) values. The mse value describes the average square difference between
the value predicted by the model and the actual value obtained from the simulations in
FEFLOW (Wikipedia, 2022). The rmse measures the averages difference between the
actual values and the predicted ones. A lower rmse indicates a better model since the
predicted value then are very close to the actual ones (Wikipedia, 2023a). Lastly, the R2

value is a parameter used for regression models in order to describe to which extent the
variance of one variable can explain the variance of another, second variable. In other
words, a R2 value of 0.5 means that the model’s input can describe about half of the
observed variations (Fernando, 2023). The R2 value can range between 0 and 1, with
values between 0.85 and 1 indicating that the model performs relative in line with the
actual values.
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Shapley values

In machine learning, Shapley values can be used to analyse the importance of the different
inserted features or how much the input features will impact the model’s predicted out-
put (Bagheri, 2022). Shapley values originate from game theory which models complex
human behaviours mathematically, with the aim of being able to understand and predict
it (Choudhary, 2019). More specifically, Shapley values originates from cooperative game
theory. A cooperative game is a game where the competition is between groups of players
rather than individuals.

The game in this case is to predict the output value (concentration of PFAS in a certain
node) and the players are the different input parameters (such as hydraulic conductivity,
sorption, porosity, etc.) (Choudhary, 2019). In machine learning, the predicted values
often differ from the expected ones. The contribution that each input parameter has on
creating this difference is presented by the Shapley values, where a high value indicates
a greater importance. In other word, the Shapley values for each output concentration
aim to determine the appropriate weights for the model parameters so that when all the
Shapley values are combined, they add up to the difference between the expected (or
average) value and the predicted value (Choudhary, 2019). In this way it is possible to
get an indication of which parameter that has the greatest impact on the output concen-
tration. Which could be of interest since it can tell which parameters that are important
to use/have a correct value of when simulating the transport of PFAS in the groundwater.

Random Forest Importance

The random forest regression algorithm use a three-base strategy which naturally rank
how well each parameter improve the accuracy of the obtained result (Gupta, 2020). Pa-
rameters that cause a great decrease in the accuracy of the results will end up in the start
of the trees. Furthermore, parameters that have a less impact on the accuracy of the
result will end up at the end of the tree. Due to this structure, it is easy to obtain the
most important parameters according to the created Random Forest model (Gupta, 2020).
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3 Methods for simulating transport of PFAS in the

literature

3.1 Method

A comprehensive literature review was conducted to explore previously employed methods
for simulating the transport of PFAS in groundwater. The main objective of the review
was to identify documented modeling approaches. Additionally, the study aimed to assess
whether the parameter values used in these models were supported by scientific literature
or based on assumptions.

The literature review encompassed scientific articles, reports, and Master’s Theses. The
search was conducted using databases such as LUBSearch and Google Scholar, employ-
ing keywords such as PFAS, Modeling, Transport, MODFLOW, FEFLOW, PFOS, and
PFOA.

In addition to the literature review, experts in the field were consulted via email to gain
insights into their preferred modeling methodologies. The following research questions
guided the literature review:

• What modeling tools and methods were employed in previous studies?

• Which transport processes were considered in these models?

• What parameter values were utilized for PFAS-specific properties?

• Were the chosen parameter values based on scientific findings?

3.2 Results

The overall result from the literature review was limited; not many articles and reports
were found where the modeling was described in depth. Instead, most of them sim-
ply mentioned that modeling was conducted without providing specific details about the
chosen model or parameter values. However, some information was still found, and sev-
eral different modeling approaches were discovered. Brusseau (2020) used a Multiprocess
rate-limited mass transfer (MPMT) model, while Silva, Guelfo, et al. (2022) and Silva,
Šimůnek, et al. (2020) utilized a modified version of the HYDRUS model, which, among
other things, included the air-water interface (AWI) adsorption. Furthermore, Wallis et
al. (2022) employed an extended version of the LEACHM (Leaching estimation and chem-
istry model) numerical model, which incorporated the sorption of PFAS compounds to the
AWI. However, these methods were all used for groundwater modeling in the unsaturated
zone, which was not the focus of this study since the emphasis was on the saturated zone.

Regarding the saturated zone, the most commonly used modeling tool was MODFLOW.
In an email received from Prommer (2023), he described using MODFLOW/MT3DMS
tools to simulate PFAS fate in saturated groundwater zones. He also mentioned that they
only considered equilibrium sorption as the reactive process, neglecting other reactive
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processes for simplicity.

Similarly, Pettersson (2020) used MODFLOW/MT3DMS to model the transport of PFOS,
PFPeA, and PFBA. Sorption was included in the modeling, with the following Kd values:
15 L/kg for PFOS, 0.49 L/kg for PFPeA, and 0.01 L/kg for PFBA. The Kd values for
PFOS and PFPeA were obtained from literature, while the value for PFBA was assumed.

Moreover, MODFLOW was also used by Persson and Andersson (2016) for the simula-
tion of PFOS transport. Due to the lack of data regarding PFOS chemical properties,
they used the default setting for very parameter value in MODFLOW, except for sorption
were they adjusted the Kd value, which was set to 17 L/kg based on values found in the
literature.

Boonraksasat (2019) also employed MODFLOW for the simulation of PFAS transport,
specifically investigating PFOS, PFOA, 6:2 FTS, and PFPeA. Similar to other studies,
the only reactive process considered in their modeling was sorption, and the Kd values
used were based on literature findings: PFOS - 15 L/kg, PFOA - 1.1 L/kg, 6:2 FTS - 0.65
L/kg, and PFPeA - 0.49 L/kg.

Edvinsson (2015) utilized MODFLOW with the MT3D99 tool to simulate the transport
of PFOS in groundwater. They conducted simulations with and without sorption, setting
the Kd value to 0.44 L/kg for sorption based on a value found in the literature.

Gefell et al. (2022) conducted a more comprehensive simulation, examining both PFOA
and its precursors. They also used MODFLOW/MT3D with linear sorption and desorp-
tion. The Kd values were calculated by multiplying the organic-carbon-based partition
coefficient (Koc) with the fraction of organic carbon in the soil (foc), both obtained from
the literature. For PFOA, the Kd values ranged from 0.0108 to 0.108 L/kg, while for the
precursors, the range was 1.349 to 13.49 L/kg. Unlike previous MODFLOW modelings,
Gefell et al. (2022) assigned the Kd values on a cell-by-cell basis.

Overall, the literature review did not yield many well-described modeling approaches. It
seems, from the lack of documentation and the extensive use of simplifying assumptions,
that the field of modeling PFAS transport is still relatively unexplored. Furthermore,
sorption is commonly included as the only reactive process, with the sorption coefficient
often based on literature findings.

Because the literature review provided limited findings, the initial modeling approach,
which aimed to test various methods for simulating PFAS transport, could not be ex-
ecuted effectively. As a result, an alternative modeling approach was adopted, and its
details will be further discussed in the subsequent section of this report.
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4 Methodology

This section presents the methodology used for modeling and sensitivity analysis.

4.1 Modeling

As mentioned before, the literature review did not yield satisfactory results, necessitating
a different modeling approach. Since the literature review did not provide detailed de-
scriptions of how the transport of PFAS has been previously modeled, it was not possible
to use the approach of comparing different methods and evaluating their performance.
Consequently, the focus shifted to identifying the parameters that have the greatest im-
pact on the resulting concentrations. Additionally, the impact of the modeling state on
the results was investigated. Two different modeling strategies were employed: steady
state modeling and transient modeling. The methodology used was the same for both
strategies, with differences only in the FEFLOW model setup and the number of simula-
tions conducted. Four different scenarios were modeled using the steady state approach:
PFOS in a sandy aquifer, PFOA in a sandy aquifer, PFOS in a sand-gravel aquifer, and
PFOA in a sand and gravel aquifer. Due to time constraints, only the scenario of PFOS
in a sandy aquifer was modeled in the transient state.

Figure 6: Flowchart describing the methodology used for the modeling.

Figure 6 provides an overview of the methodology employed. The method begins by
defining the intervals for the six input parameters. The final intervals used for each of
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the four scenarios can be found in Table 10. Based on these intervals, an input file is cre-
ated and fed into Python. Python then conducts the simulations by inputting parameter
values into FEFLOW, where the simulations are executed. A total of 500 simulations
are performed for each of the four scenarios in steady state, and 200 simulations for the
transient modeling. The output consists of the concentrations of PFAS obtained for each
node after a single simulation. After conducting 500 simulations, a total of 500 different
output files were generated. The output files were divided into training and test datasets.
The training data is used to build a random forest regression model, which can predict
the output concentration in a given node based on specific input parameter values. The
random forest regression model is evaluated by testing it on the test data and comparing
its predictions with the output obtained from the simulations. Finally, a model analysis
is conducted on the random forest regression model. Each of these steps will be described
in more detail in the following sections.

4.1.1 FEFLOW model

A 3D model of the examined area was constructed in FEFLOW. The model included a
source of PFAS and three observation wells, where PFAS concentrations were measured.
The model was divided into two layers: an upper layer and a lower layer. Additionally,
each layer was replicated to accommodate changes made to different parameters during
the simulation, resulting in separate upper and lower layers for each parameter. This was
done in order to be able to change several parameters at once during the simulation. The
model and its two layers can be seen in Figure 7. In the final analysis, for simplicity, the
two layers were not distinguished from each other; instead, they were assumed to consist
of exactly the same material.

Additionally, the visible edge in Figure 7 represents the shoreline and is treated as a
hydraulic constant head boundary condition in the model. Both steady-state and tran-
sient simulations were conducted using the same model. The transport Equation was
formulated in the divergence form, and oscillation damping was implemented through full
upwinding to stabilize the model. Based on the findings from the literature review, where
it was observed that in all cases sorption was the only reactive process considered, the
same assumption was adopted in this study as well.

Isotropic conditions were applied to simplify the model. However, there were differences
between the two modeling strategies. In the steady-state model, a PFAS source concen-
tration of 1 mg/L was utilized, while in the transient model, a higher concentration of 10
mg/L was used. The higher concentration in the transient model was chosen to observe
transport phenomena within a reasonable timeframe without the need for an excessively
long simulation period. The total run time of the transient model was set to 18,250 days,
corresponding to 50 years, with an initial simulation time of 0 days and an initial time
step length of 100 days.

Several assumptions were made when the model was created. Firstly, the aquifer was
assumed to be isotropic, meaning that the hydraulic conductivity was considered to be
the same in all three directions in both of the layers. Secondly, the aquifer was assumed
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Figure 7: The 3D model used in FEFLOW is divided into two layers: an upper layer
(blue) and an underlying layer (grey). However, for the simulations, these layers were
treated as one homogeneous layer. The red area represents the source of contamination.
Three observation points are marked by flags: the blue flag represents observation point 1,
the red flag indicates observation point 2, and the black flag signifies observation point 3.
The edge of the model represents the shoreline.

to be homogeneous, implying that the material properties, such as porosity and hydraulic
conductivity, were assumed to be uniform and consistent throughout the two layers in the
entire aquifer. These are commonly used assumptions in groundwater modeling; however,
they are a significant simplification of the reality where aquifers in general are anisotropic
and heterogeneous.

4.1.2 Parameters

In the simulations made, eight parameters were alternated: longitudinal and transversal
dispersivity, hydraulic conductivity in all three directions, Henry’s sorption coefficient,
porosity, and groundwater recharge. All the parameters used in the simulation can be
found in the Tables presented below. The data for which the parameters are based on
come from the literature study conducted and can all be obtained in the Appendix A, B
and C.

Dispersivity

The values for the longitudinal dispersivity can be found in Table 3. The ”eq” label
indicates that these values were calculated using the obtained scale, which represents
the length of the plume, in conjunction with Equation (10). This Equation describes
the relationship between the plume length and the longitudinal dispersivity. The values
in Table 3 represent the minimum, maximum, and average values of the collected and
calculated values, which can all be found in Appendix B. The minimum and maximum
values were used in the modeling to create an interval from which the numbers were
randomized.
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Values for the transversal dispersivity can be found in both Table 4 and Table 5. Table

Table 3: Minimum, maximum and average values found for the longitudinal dispersivity in
two different types of soil. eq indicates that the values have been calculated by using Equation
(10) together with the values of the scale, belonging to the obtained values of αL. The values
of αL, together with the belonging scale, were obtained from Schulze-Makuch, 2005.

Longitudinal Dispersivity (m)

Soil type
αL

(avg.)

αL

(avg. (eq))

αL

(min)

αL

(min (eq))

αL

(max)

αL

(max (eq))

Sand 0.187 2.30 0.047 0.007 0.550 7.04

Sand and

Gravel
5.57 2.83 0.600 0.732 350 7.91

4 displays the minimum, maximum, and average values of the transversal dispersivity for
two different types of soil. The values on which this is based can be found in Appendix C.
Table 5 shows the ratio between transversal and longitudinal dispersivity, also based on
the collected values found in Appendix C. Typically, the transversal dispersivity is never
larger than the longitudinal dispersivity. Therefore, to prevent this from happening in the
simulations, the transversal dispersivity was set to 1/10 of the longitudinal dispersivity,
as this is a commonly used fraction.

Table 4: Minimum, maximum and average values found for the transversal dispersivity in
two different types of soil. The data which this is based on can be found in Appendix C.

Transversal dispersivity, αT (m)

Soil type Min Max Average

Sand 0.005 0.760 0.158

Sand and Gravel 0.020 27.4 6.90

Table 5: Minimum, maximum and average values found for the relationship between longi-
tudinal and transversal dispersivity (αT / αL) in two different types of soil. The data which
this is based on can be found in Appendix C.

Transversal dispersivity (αT / αL)

Soil type Min Max Average

Sand 0.040 0.500 0.234

Sand and Gravel 0.019 0.600 0.286
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Porosity

Table 6 shows the dry density, along with the maximum and minimum porosity values
for two different soils. The porosity values were used as input in FEFLOW and were
different for each simulation, while the density values were used for calculating Henry’s
sorption coefficient from Kd values (see Appendix B) and remained constant throughout
the simulations.

Table 6: Dry density, together with minimum and maximum values for porosity for two
different types of soil. Values are obtained from: 1 Yu, Loureiro, et al., 1993, 2 Yu, Cheng,
et al., 2023 and 3Zhang, Xiao, et al., 2017.

Soil Density and Porosity

Soil type Dry density g/cm3 Porosity (min) Porosity (max)

Sand 1.541 0.2502 0.5002

Sand and Gravel 2.13 0.2502 0.5002

Sorption

Values for Henry’s sorption coefficient for two different PFAS can be found in Table 7.
The values represent the calculated minimum, maximum, average, and median based on
collected data, which can be further examined in Appendix A Tables A and B. Addi-
tionally, the 10th and 90th percentile values were calculated. These values defined the
upper and lower bounds of the interval used to randomize the sorption coefficient for each
simulation.

Table 7: Maximum, minimum and mean values of Henry’s sorption coefficient for two
different PFASs: PFOS and PFOA. Together with 10th and 90th percentile values. The data
which this is based on can be found in Appendix A.

Henry’s sorption coefficient

KH

(min)

KH

(max)

KH

(mean)

KH

(10th percentile)

KH

(90th percentile)

PFOS 7.60E-10 1.90E+03 8.66E+01 2.60E-03 2.99E+01

PFOA 8.30E-09 3.70E+02 1.67E+01 4.69E-03 2.81E+00
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Hydraulic conductivity

To simplify the calculations, the aquifer was assumed to be isotropic, meaning that the
conductivity is the same in all directions (KX = KY = KZ). The values used in the
modeling can be found in Table 8. These values represent the minimum, maximum, and
average values based on collected data, which can be found in Appendix C. The minimum
and maximum values were used in the modeling to create an interval from which the
numbers were randomized. The default unit of hydraulic conductivity in FEFLOW is
m/day, so the values in Table 8 need to be converted to the same unit before they are
inserted into FEFLOW.

Table 8: Minimum, maximum and average values found for the hydraulic conductivity in
two different kinds of soil. The values where obtained from Gelhar et al., 1992.

Hydraulic conductivity (m/s)

Soil type Min Max Average

Sand 1.00 · 10−6 2.00 · 10−4 7.34 · 10−6

Sand and Gravel 8.10 · 10−5 3.00 · 10−2 5.25 · 10−3

Groundwater recharge

Values for the groundwater recharge for three different soil types can be found in Table
9. In FEFLOW, groundwater recharge is inserted as inflow/outflow on the top/bottom.
The standard unit for groundwater recharge in FEFLOW is 10−4 m/d, so the values in
Table 9 had to be converted to match the unit. The minimum and maximum values were
used as inputs in the Python script to create the input file. For a sandy aquifer, the value
for till was used, and for the aquifer consisting of sand and gravel, the value for coarse
soil was used.

Table 9: Values for estimated maximum and minimum groundwater recharge in Sweden
for three different soil types. Data is obtained from Rodhe et al., 2006.

Groundwater recharge (mm/year)

Soil type Min Max Average

Coarse 300 600 450

Till 225 650 438

Fine-grained 150 650 400

4.1.3 Parameter interval

The parameters inserted into Python for the simulations of the transport of the two
different PFAS in the two different types of aquifers can be found in Table 10. From these
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intervals, a file was created containing 10,000 different combinations of the parameters
ranging between their maximum and minimum values. Each row in the file represents one
simulation, and due to time constraints, only the first 500 rows were utilized to conduct
500 simulations.

Table 10: The range of the parameter values entered into Python for the simulation of the
four different scenarios.

Simulations

PFOS in Sand PFOA in sand
PFOS in sand

and gravel

PFOA in sand

and gravel

Min Max Min Max Min Max Min Max

Hydraulic

Conductivity

(m/s)

1.00E-6 2.00E-4 1.00E-6 2.00E-4 8.10E-5 3.00E-2 8.10E-5 3.00E-2

Porosity

(-)
2.50E-1 5.00E-1 2.50E-1 5.00E-1 2.50E-1 5.00E-1 2.50E-1 5.00E-1

Longitudinal

dispersivity

(m)

4.70E-2 5.50E-1 4.70E-2 5.50E-1 6.00E-1 3.50E+2 6.00E-1 3.50E+2

Transversal

dispersivity

(m)

4.70E-3 5.50E-2 4.70E-3 5.50E-2 6.00E-2 3.50E+1 6.00E-2 3.50E+1

Sorption

(-)
2.60E-3 2.99E+1 4.69E-3 2.81E+0 2.60E-3 2.99E+1 4.69E-3 2.81E+0

Recharge

(mm/yr)
2.25E+2 6.50E+2 2.25E+2 6.50E+2 3.00E+2 6.00E+2 3.00E+2 6.00E+2

4.1.4 Python

In Python, coding was done to execute multiple simulations with small variations in
the input parameters. The previously created file containing the parameter values was
used as an input in Python. Furthermore, code was written to easily perform multiple
simulations. For steady state modeling, 500 simulations were conducted for each of the
four scenarios, whereas for transient modeling, 200 simulations were performed. The four
scenarios explored in the steady-state modeling were PFOS in a sandy aquifer, PFOA
in a sandy aquifer, PFOS in a sand and gravel aquifer, and PFOA in a sand and gravel
aquifer. For the transient modeling, only the scenario of PFOS in a sandy aquifer was
simulated due to time constraints.
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4.1.5 FEFLOW simulations

The simulations were conducted using FEFLOW in conjunction with Python. This part
presented some challenges and proved time-consuming, as ensuring the proper function-
ality of the Python code to achieve the desired results was complex. Once the code began
functioning, each simulation also required a considerable amount of time to execute, par-
ticularly in the case of transient state simulations. Consequently, only 500 simulations
were carried out for each steady-state scenario, and a total of 200 simulations were com-
pleted for the transient state. The outcomes of each simulation were obtained as files
containing the resulting concentrations in every node of the model. This meant that, for
500 simulations, a corresponding 500 output files were generated.

4.1.6 Random forest regression model

As mentioned earlier, 500 different output files were obtained from the simulations for
each scenario in the case of steady state simulations. To create a random forest regression
model, the data was processed to create a new file containing all 500 different concen-
trations of PFAS obtained at a certain observation point. This file, along with the file
containing the values of the input parameters, was then used to train the random forest
regression model. The model was trained on 375 data points (training dataset), which
included both the input data and the output concentrations. The remaining 125 data
points (test dataset) were used to evaluate the model. This was achieved by providing
the model with the input parameters and allowing it to predict the output concentration.
The model’s predictions were then compared with the actual values. All of this was im-
plemented in Python using the sklearn package. In the scenario of transient modeling,
where 200 simulations were performed, the training dataset comprised 150 data points,
while the remaining 50 constituted the test dataset used for evaluation purposes.

To assess the model’s performance, metrics such as mean squared error (MSE), root mean
squared error (RMSE), and R2 value were examined using the same package, sklearn.
The MSE was calculated using the mean squared error method, which takes the pre-
dicted values and the actual values as inputs. The RMSE was obtained by taking the
square root of the MSE. Finally, the R2 value was calculated using the r2 score method,
with both the predicted and actual concentrations as inputs. All of these assessments
were conducted on the test data set.

4.1.7 Sensitivity analysis

A sensitivity analysis is a technique used to determine how changes in independent vari-
ables will impact a target variable (EduPristine, 2020). In the context of this study, a
sensitivity analysis is conducted to identify which input parameters have a significant im-
pact on the resulting concentrations obtained in the simulations. The sensitivity analysis
is performed using the random forest regression model. To achieve this, the algorithm is
trained on 75% of the obtained results from the FEFLOW modeling and then tested on
the remaining 25% to assess its performance.
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By carefully examining the model’s performance on the test data, a comprehensive sensi-
tivity analysis can be conducted to understand the basis of its predictions. This analysis
helps us determine the importance of each parameter according to the regression model,
shedding light on the significant factors that influence the resulting concentrations.

Shapley values

The Shapley values were calculated in Python using the SHAP package. The input data
included the previously trained random forest regression model and the input parameters
from the test dataset. The result was obtained in a Shapley plot which visualize each
feature’s impact on a specific prediction. The obtained Shapley plots and an explanation
of how to read them will be provided in the result section.

Random Forest Importance

The Random Forest Importance was calculated and plotted using the feature importances
method on the trained random forest regression model. The output was obtained as a
plot, illustrating the relative importance of each parameter as well as the percentages
associated with their importance.
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5 Result

In this section, the results from both steady state and transient state simulations will be
presented.

5.1 Steady state vs Transient state

Figure 8 displays the results obtained from a steady state simulation and a transient
state simulation. The parameter values were the same for both simulations, with the only
difference being the state in which the simulation was conducted. The transient state
simulation was carried out over a duration of 50 years, with an initial time step of 100
days.

The obtained results show similarities, but there is a more distinct contaminant plume
visible in the right image, indicating the temporal evolution of the contaminant distribu-
tion.

Figure 8: The result obtained from one simulation in steady state and one simulation in
transient state. The left image shows the result from the steady state model and the right
image show the result from the transient state model (running time of 50 years).

The validation of the created random forest regression models can be done by examining
the R2 values, which are a measure of the model’s performance. The R2 values for the
models are presented in Table 11.

From the table, it can be observed that the R2 values for the steady state modelsare
generally very high, with all of the values exceeding 0.94. This indicates that the random
forest regression models perform very well in predicting the concentration in a given node
based on the input parameter values, based on the results obtained from the steady state
modeling.

However, the random forest regression model, based on the results from the transient
modeling, demonstrates only moderate performance. The obtained R2 values for observa-
tion points 1 and 2 are significantly lower compared to the other values and also exhibit
substantial differences from each other. A low R2 value of 0.502 suggests poor predictive
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performance, while a value of 0.767 indicates relatively decent performance. The rela-
tively poorer performance in the transient state can be attributed to the limited amount
of data available for the algorithm to train on. With fewer data points, the random for-
est regression model may struggle to capture complex patterns and relationships, leading
to less accurate predictions compared to when it has a more extensive dataset to train on.

Table 11: The R2 values for all the different created random forest regression models.

Obs. 1 Obs. 2 Obs 3

Scenario R2 R2 R2

PFOS - Sand 0.978 0.974 0.973

PFOA - Sand 0.940 0.940 0.925

PFOS - Sand/Gravel 0.951 0.968 0.979

PFOA - Sand/Gravel 0.976 0.978 0.983

Transient PFOS - Sand 0.502 0.767 0.958

Since the models perform so well, it is interesting to see what they general base their
predictions on. This will be investigates further by examining the Shapley values and the
random forest importance values.

5.2 Shapley values

The obtained Figures for the Shapley values at the three different observation points were
rather similar; therefore, only the ones obtained for point 1 will be presented. The Shap-
ley values for observation point 2 and 3 can be found in Appendix D.

Figure 9 shows the Shapley values for the six different parameters in observation point 1.
These values are based on the Random Forest model that was made for the 500 simulations
of each of the four scenarios. Several observations can be made from the Figure. Each
point in the Figure represents a Shapley value for a parameter and one simulation. The
position of the points on the y-axis is determined by the parameter, while their position
on the x-axis is determined by the Shapley value. The points are color-coded to indicate
whether the parameter value is low or high. The pink color indicates a parameter value
higher than the average, while the blue color indicates a value lower than the average.
Due to the color-coding, it becomes possible to visualize how the parameters impact the
results based on whether they have a low or high value. However, in some cases, there
is no clear pattern. Instead, the color-coded points may be spread on both sides of the
Figure, making it challenging to draw any definitive conclusions about how the parame-
ter values impact the resulting concentration. If multiple points are located at the same
position, they are spread out around the y-axis to show the distribution of Shapley values
for each parameter. The parameters are ordered according to their importance, with the
most important parameters at the top of the Figure. Points located on the left side of
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the y-axis indicate a negative contribution to the predicted output concentration, while
points on the right side indicate a positive contribution.

(a) PFOS in a sandy aquifer (b) PFOA in a sandy aquifer

(c) PFOS in a sand and gravel aquifer (d) PFOA in a sand and gravel aquifer

Figure 9: The Shapley values for the four different scenarios modeled in steady state, in
observation point 1. Blue color indicates low values of the parameters, while the pink color
indicates high values (as the scale to the right present). The points located on the left side
of the y-axis indicated a negative contribution to the predicted output concentration, while
points on the right side indicates a positive contribution.

As can be seen in all four Figures, the parameter with the greatest importance seems to
be the hydraulic conductivity. For the two scenarios with a sandy aquifer, high values of
the hydraulic conductivity (pink dots) end up far on the left side, which indicates that
high values have a high negative contribution to the predicted concentration. It can also
be seen that some low values of the hydraulic conductivity (blue dots) end up far to the
right in the Figure, which indicates that low values have a high positive contribution to
the predicted concentration. When examining the Shapley values for the hydraulic con-
ductivity in a sand and gravel aquifer, not much can be said about the low values of the
hydraulic conductivity since they are present on both sides of the y-axis. However, the
high values are all located on the left side, and therefore it is possible to state that high
values of the hydraulic conductivity have a negative contribution to the prediction also
in a sand and gravel aquifer.

Furthermore, for the two scenarios with the sandy aquifer, the recharge is clearly the
second most important parameter according to the Shapley values. Here it is also clear
that low values have a negative contribution and high values have a positive contribution.
The Shapley values for the remaining four parameters are all located close to or on the
y-axis and therefore do not seem to contribute to the prediction at all.
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For the sand and gravel aquifers, the second most important parameter, according to the
Shapley values, is the longitudinal dispersivity. High values for the longitudinal dispersiv-
ity consistently appear on the right side of the y-axis, indicating a positive contribution
to the prediction. On the other hand, low values tend to be located on the left side or
close to the y-axis on the right side, suggesting a negative contribution.

Additionally, recharge also demonstrates some level of importance, although its contribu-
tions appear relatively small. High values of recharge show a slight positive contribution,
while low values exhibit a small negative contribution.

Furthermore, the Shapley values for the transient modeling of PFOS in a sandy aquifer
can be seen in Figure 10. These values are obtained from the model based on observation
point 3, which exhibited the best performance and thus holds the greatest interest for
analyzing Shapley values. The Shapley values for observation point 1 and 2 can be found
in Appendix D.

Compared to Figure 9, a notable difference is the importance of sorption. In the transient
modeling of observation point 3, sorption emerges as the most influential parameter.
High values of sorption make a significant positive contribution to the prediction, while
low values have a substantial negative contribution. Hydraulic conductivity also retains
its importance in this case, with low values exhibiting a positive contribution and high
values showing a negative contribution to the predicted concentrations. The remaining
parameters appear to have negligible contributions to the prediction.

Figure 10: The Shapley values for the four different scenarios modeled in transient state,
in observation point 3. Blue color indicates low values of the parameters, while the pink color
indicates high values (as the scale to the right present). The points located on the left side
of the y-axis indicated a negative contribution to the predicted output concentration, while
points on the right side indicates a positive contribution.

5.3 Random forest importance

The random forest importance provides valuable insights into the parameters considered
most important by the created random forest regression model. Figure 11 presents a heat
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map of the random forest importance for five different modelings conducted in observation
point 3. The heat map is structured as a matrix, where each row represents a different
input parameter and each column represents one of the five models. The sum of each
column is equal to 1. The colors of the squares in the heat map indicate the range of
values, with dark red indicating high values and dark blue indicating low values. A high
value signifies a parameter of great importance, while a small value suggests a parameter
of low importance.

Upon examining the Figure, one notable observation is that hydraulic conductivity holds
significant importance in all five models. However, the magnitude of its importance varies
across the models, with the highest importance observed in the steady state models of
sandy aquifers. In the steady state models of sand and gravel aquifers, hydraulic con-
ductivity remains the most important parameter, although its importance is slightly lower.

In contrast, the column representing the transient model stands out from the others.
While hydraulic conductivity remains an important parameter, sorption emerges as the
parameter with the highest importance, indicating its significant role in predicting the
concentrations. Additionally, across all five models, both porosity and transversal disper-
sivity exhibit importance values close to zero, indicating that these parameters have little
influence on the predictions made by the random forest regression model.

Figure 11: The heat-map for the random forest importance values obtained for the five
different models in observation point 3.

Figure 12 presents the heat-map of the random forest importance values for observation
point 1. The heat-maps for both observation points exhibit similarities, but there are
notable differences as well. In the column representing the transient model, sorption
is of less importance at observation point 1 compared to observation point 3. Another
difference is observed in the importance values of hydraulic conductivity for the steady
state models of a sand and gravel aquifer, which are higher in point 3 compared to point
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1. Furthermore, it can be seen that the longitudinal dispersivity is more important at
point 1 compared to point 3. The differences observed between Figure 11 and 12 for the
simulations conducted in steady state indicate that the importance of certain parameters
may vary depending on the observation point and its location relative to the source.

Figure 12: The heat-map for the random forest importance values obtained for the five
different models in observation point 1.

The heat-map for observation point 2 are quite similar to others and can be found in
Appendix E.

5.4 Concentration

Figure 13 and 14 illustrate the concentrations obtained at the three observation points
during the first 50 simulations of PFOS transport in a sandy aquifer. Figure 13 cor-
responds to the steady state modeling, while Figure 14 represents the transient state
modeling.

A notable distinction between the two Figures is that, in the case of steady state modeling,
the concentrations at the observation points exhibit more similarity compared to the
transient state modeling. Additionally, in the transient state modeling, the concentrations
are consistently highest at point 3 and lowest at point 1. Conversely, in the steady state
modeling, point 2 tends to have the highest concentration levels when concentrations are
generally high, while point 3 dominates when concentrations are generally low.
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Figure 13: The concentration of PFOS in the observation points for the 50 first simulations
of PFOS in a sandy aquifer modeled in steady state.

Figure 14: The concentration of PFOS in the observation points for the 50 first simulations
of PFOS in a sandy aquifer modeled in transient state.
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6 Discussion

6.1 Methodology

Since the literature review did not yield the desired results in evaluating various modeling
strategies for PFAS, a change in the methodology was necessary. Initially, the intention
was to compare different modeling approaches employed for PFAS modeling. However,
it became apparent that most models followed a similar approach, limiting the scope for
meaningful comparisons. As a result, the focus shifted towards identifying the input pa-
rameters with the greatest influence on the resulting concentration.

To achieve this, various methods could have been employed, but the selected approach
involved the use of a machine learning algorithm trained to predict concentrations. By
training the algorithm to predict the concentration in a specific node, it became possible
to analyze the algorithm and gain insights into which parameters have the most signifi-
cant impact on the resulting concentration. This approach was chosen due to its potential
to provide valuable information regarding parameter importance, utilizing random forest
importance and the SHAP library, otherwise unavailable in conventional sensitivity analy-
ses.

The random forest regression models based on steady-state simulations exhibited excellent
performance, with R2 values consistently above 0.9. This observation is meaningful as it
indicates the feasibility of utilizing machine learning algorithms to predict concentrations
in a FEM model. Given the strong performance of the random forest regression models,
it became of great interest to investigate the factors underlying their predictions.

However, the R2 values obtained from the random forest regression models based on
transient modeling were not as favorable, particularly for observation points 1 and 2. The
relatively limited number of data points available for training these models may have
contributed to their lower performance. In general, a larger dataset enables the algorithm
to perform better. Due to time constrains, in the transient modeling, only 200 data points
were obtained, with only 150 of them used for training. This is significantly lower than the
steady-state scenario, where 500 data points were obtained, with 375 used for training.

6.2 Concentrations

Steady-state and transient simulations yield different results, as shown in Figures 8, 13,
and 14. A steady-state simulation assumes an infinite time frame, whereas the transient
modeling in this case was conducted over a period of 50 years. Consequently, it is ex-
pected that the results between these two models would differ.

In the steady-state model, where time is set to infinity, the concentrations observed in
the observation points are relatively similar. This can be explained by the diminished
significance of distance from the original source over an infinite time frame.

On the other hand, the concentrations observed in the observation points of the transient
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model exhibit noticeable differences. Particularly, the concentrations at observation point
3 are significantly higher compared to the other two points. This variation can be explain
by the location of the observation points within the model. In the transient model, the
finite time frame makes the position compared to the original source more influential in
determining the resulting concentrations.

6.3 Importance of parameters

The great performance of the random forest regression model makes it interesting to iden-
tifying the key parameters on which the predictions are based. Figure 9 illustrates that
hydraulic conductivity significantly impacts the resulting concentration in the steady-state
model. The same observation is evident in Figure 10, depicting the Shapley values for
transient modeling. While not the most critical parameter in this case, hydraulic conduc-
tivity remains of considerable importance. In the case of a sandy aquifer (both in steady
state and transient state modeling), higher values of hydraulic conductivity are associated
with lower concentrations of PFAS, while lower values lead to increased concentrations.
This can be explained by two main effects of a high value of hydraulic conductivity in a
steady-state model: dilution and faster transport, both of which may have a decreasing
impact on the obtained concentration at observation points.

Higher hydraulic conductivity results in more water flowing through the system, leading
to the dilution of PFAS concentrations and, consequently, lower observed concentrations
at the observation points. Additionally, the increased flow velocity through the aquifer
facilitates faster transport of the PFAS plume from the source to the downstream obser-
vation points. As a result, the PFAS spends less time in the subsurface, leading to lower
concentrations at the observation points compared to when the flow velocity is lower.

Based on the observed Shapley values for hydraulic conductivity in sand and gravel
aquifers (see Figure 9, it can be concluded that this parameter significantly affects the
resulting concentration. However, due to the distribution of data points on both sides
of the Figure, with low values (blue dots) appearing on both sides, it is challenging to
analyze the impact of hydraulic conductivity on the results in these scenarios. However,
it can be observed that high values (pink dots) are only found on the left side of the
Figure. This implies that high hydraulic conductivity values tend to lead to decreased
concentrations of PFAS. This conclusion aligns with the findings from the scenarios based
on a sandy aquifer.

Figure 9 suggests that sorption does not have a significant impact on the resulting con-
centration in the case of steady state, as the Shapley values associated with sorption
are relatively low compared to other parameters. This observation is consistent with the
comparison of Figures, where changes in the composition of the aquifer appear to have a
greater influence on the resulting concentration than the variations in the specific PFAS
compound being modeled. However, it is important to note that these conclusions are
based on the specific model and data analyzed, and further investigations and analysis
may be required to fully understand the role of sorption in the transport and fate of PFAS
compounds in groundwater.
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In contrast to the steady-state model, the transient model reveals that sorption plays a
crucial role in determining the resulting concentration of PFAS, as indicated by the Shap-
ley values obtained from observation point 3. The higher the sorption values, the higher
the concentrations observed at point 3, while lower sorption values lead to decreased
concentrations. These findings are further supported by the results from the random for-
est importance analysis, which highlight sorption as the most influential parameter for
predicting the concentration, as shown in Figure 11. Sorption is the processes where a
fraction of the contaminant present in the water adsorb to the soil. This, in turn, affects
the transport, since some PFAS molecules become trapped in the soil along their journey,
leading to increased PFAS concentrations in those areas. Moreover, adsorbed PFAS can
also be desorbed, introducing a delay in the transport process. With all these factors con-
sidered, it’s reasonable that sorption emerges as an important parameter for predicting
concentrations.

These results underscore the significance of sorption and the importance of specifying the
specific PFAS compound being modeled in order to obtain accurate results. As mentioned
in the background, sorption is one of the unique characteristics of PFAS. Therefore, it is
not surprising that this characteristic plays a major role in simulating PFAS transport.
However, it is important to note that these results are based on one specific node in the
FEM model and only 200 simulations. Further investigations in this area are required to
draw more definitive conclusions.

6.4 Modeling Insights and Uncertainties

In general, steady-state models do not perform as well as transient models in simulations
of contaminant transport. This conclusion can also be drawn from the results, as the
sorption factor does not seem to impact the outcome at all in the steady-state simula-
tion, which is an unexpected finding. Consequently, it can be concluded that transient
modeling is the preferred method for obtaining the most accurate results. However, it’s
important to note that transient modeling is more intricate and time-consuming. Hence,
steady-state modeling still holds value as a quicker and simpler method to attain an initial
understanding of the situation. Nonetheless, when considering the time scales—50 years
compared to infinity - 50 years is more representative of real-life scenarios. Given this
perspective, steady-state simulations might prove overly simplistic.

Another interesting observation is that the chosen modeling approach has a significant
impact on the obtained result. This highlights the importance of further investigating
this matter to gain a better understanding of which method should be used to simulate
the transport of PFAS as accurately as possible.

Furthermore, as the results also indicate, it is feasible to create a random forest regres-
sion model capable of forecasting the concentration in a specific node by leveraging input
parameters. This discovery not only paves the way for additional exploration but also
implies that such a model could prove effective in scenarios where a transient model is
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necessary without compromising efficiency. Nonetheless, this assumption might be valid
due to the model’s inherent simplicity. In the event of adopting a more intricate model
involving multiple layers and an isotropic aquifer, the random forest regression model’s
performance could potentially decline as increased complexity might act as a hindrance.

Another notable observation found during the literature review is the presence of signif-
icant uncertainties when determining values for various parameters used in groundwater
modeling. These uncertainties contribute to substantial variations in the obtained re-
sults. The parameter values employed in this study were derived from diverse literature
sources, resulting in considerable variations and wide intervals for the input parameters.
Although these large intervals introduce uncertainties in the modeling process, they may
also have some advantages. The wide range of values provides a large training data for
the random forest regression model, allowing for a comprehensive exploration of each pa-
rameter’s impact on the results. Consequently, this can lead to a greater understanding
of the influence of individual parameters on the overall outcome.

6.5 Future work

These results provide an indication of the significant role of sorption in modeling the
transport of PFAS in groundwater. However, it is important to note that this conclusion
is based on a limited number of simulations, and further investigation is necessary to vali-
date and generalize these findings. This finding underscores the importance of identifying
the specific PFAS compounds present, as their varying affinities for sorption can greatly
influence their transport behavior in the groundwater system. Therefore, a comprehensive
understanding of the composition of PFAS compounds is crucial for accurate modeling
and prediction of their fate and transport in the subsurface environment.

To obtain more reliable and robust results, it is necessary to conduct and analyze ad-
ditional simulations. This includes exploring various scenarios involving different PFAS
compounds and aquifer types, beyond just the PFOS in a sandy aquifer scenario. Further-
more, to gain a better understanding of the impact of sorption, it would be valuable to
investigate scenarios where multiple PFAS compounds are modeled together and compare
them with simulations focusing on a single species.
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7 Conclusion

To conclude, MODFLOW/MT3DMS is currently the most commonly used modeling tool
for simulating the transport of PFAS in the saturated zone. Sorption is typically the
only reactive process considered, and parameter values for sorption are often based on
literature findings or experimental data.

In steady-state simulations, hydraulic conductivity appears to have the greatest impact on
the results. However, longitudinal dispersivity also plays a significant role when modeling
in a sand and gravel aquifer. For transient modeling, sorption becomes more important
compared to the steady-state model. Even though the hydraulic conductivity remains an
important parameter in this case as well.

Since sorption is the only PFAS-specific parameter and its impact is not significant in
steady-state modeling, it can be concluded that the choice of PFAS compound may not
matter when using this approach. However, in transient modeling, sorption becomes cru-
cial, indicating that specifying the compounds of PFAS to be modeled is more important.
Although, further investigation is needed to explore this aspect in more detail.

Furthermore, the results show that the chosen modeling approach has a significant im-
pact on the results, emphasizing the importance of further investigations in this subject.
In general, a conclusion that can be drawn is that using transient modeling instead of
steady-state modeling generally provides more accurate results of the situation. Tran-
sient modeling takes into account the time-dependent behavior of the system, allowing
for a better understanding of how concentrations change over time. This is particularly
important for dynamic systems where concentrations can vary significantly. Steady-state
modeling, on the other hand, assumes a state of equilibrium where concentrations remain
constant, which may not accurately capture the real-world behavior of contaminants in
the aquifer.
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Appendix A

Appendix A - Henry’s sorption coefficient

Henry’s sorption coefficient values found in the literature for PFOS can be seen in Table
A. Theses values were the base for the values used in the simulation, where the 10th and
90th were used as the input interval.

Table A: Henry’s sorption coefficient for PFOS collected from several different sources.
Density used for calculating Kh from Kd is obtained form 1 Yu, Loureiro, et al., 1993 and
2 Zhang, Xiao, et al., 2017, see table 6.

Sorption coefficient for PFOS
Kd

(L/kg)
KH

(-)
Comment References

6.78E-01 Sand1
4.40E-01

9.24E-01 Sand and Gravel2
Edvinsson, 2015

2.31E+01 Sand1
1.50E+01

3.15E+01 Sand and Gravel2
Boonraksasat, 2019; Edvinsson, 2015

2.62E+01 Sand1
1.70E+01

3.57E+01 Sand and Gravel2
Persson and Andersson, 2016

1.56E+01 2.25E+01 Loam
2.62E+00 3.77E+00 Loamy sand

Silva, Šimůnek, et al., 2020

1.90E+03 Kim et al., 2015
4.00E-03
9.00E-02

Arp et al., 2006

4.50E-01
5.00E-02
2.00E-03
4.00E-02

Zhang, Brown, et al., 2010

7.60E-10 USEPA, 2023
2.00E-02 Wang et al., 2011
1.70E-01 Xiao, 2017
4.00E-02
4.50E-01

Rayne and Forest, 2009

6.10E-06 Rayne, Forest, and Friesen, 2009
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Henry’s sorption coefficient values found in the literature for PFOA can be seen in Table
B. Theses values were the base for the values used in the simulation, where the 10th and
90th were used as the input interval.

Table B: Henry’s sorption coefficient for PFOA collected from several different sources.
Density used for calculating Kh from Kd is obtained form 1 Yu, Loureiro, et al., 1993 and
2 Zhang, Xiao, et al., 2017, see table 6.

Sorption coefficient for PFOA
Kd

(L/kg)
KH

(-)
Comment References

1.69E+00 Sand1
1.10E+00

2.31E+00 Sand and Gravel2
Boonraksasat, 2019

1.66E-02 Sand1
1.08E-02

2.27E-02 Sand and Gravel2
Gefell et al., 2022

1.66E-01 Sand1
1.08E-01

2.27E-01 Sand and Gravel2
Gefell et al., 2022

1.99E+00 2.87E+00 Loam
5.70E-01 8.21E-01 Loamy sand

Silva, Šimůnek, et al., 2020

3.70E+02 Kim et al., 2015
1.00E-03 Li, Ellis, et al., 2007
4.30E-03
2.00E-02

Arp et al., 2006

3.70E+00
4.00E-02
3.00E-02
3.60E-01

Zhang, Brown, et al., 2010

8.20E-03 Kutsuna and Hori, 2008
8.30E-09 USEPA, 2023
1.00E-02 Wang et al., 2011
1.00E-01 Xiao, 2017
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Appendix B - Longitudinal dispersivity

Table C shows the value for the longitudinal dispersivity in sand found in the literature.
Table C also shows the belonging scale and the calculated values of the dispersivity based
on the scale and Equation 9.

Table C: Values for the longitudinal dispersivity in sand found in the literature, together
with the belonging scale. Alpha(eq) are the values obtained by inserting the scale together
into equation (9).

Longitudinal dispersivity - Sand
Scale (m) Alpha (m) Alpha (eq.) Source

0.150 0.0580 -
0.460 0.0470 -
0.910 0.0760 -
1.37 0.0940 0.00681
1.83 0.0930 0.0329
0.150 0.0540 -
0.460 0.0710 -
0.910 0.0730 -
1.37 0.0750 0.00681
1.83 0.127 0.0329

Silliman and Simpson, 1987

125 0.450 4.95874 Jensen et al., 1993
5.00 0.100 0.3496
5.00 0.250 0.34962
5.00 0.050 0.3496

Mas-Pla et al., 1992

5.11 0.240 0.36114
25.8 0.190 1.9076
71.5 0.190 3.68526
80.0 0.340 3.9237
94.8 0.340 4.30067
93.4 0.210 4.2668
102 0.230 4.46038
116 0.510 4.7797
266 0.550 7.04241

Moltyaner et al., 1993

6.50 0.0700 0.5034 Palmer and Nadon, 1986
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Table D shows the value for the longitudinal dispersivity in sand and gravel found in
the literature. Table D also shows the belonging scale and the calculated values of the
dispersivity based on the scale and Equation 9.

Table D: Values for the longitudinal dispersivity in sand and gravel found in the literature,
together with the belonging scale. Alpha(eq) are the values obtained by inserting the scale
together into equation (9).

Longitudinal dispersivity - Sand and Gravel
Scale (m) Alpha (m) Alpha (eq.) Source

12.8 1.50 1.06
8.90 0.710 0.732
9.90 1.33 0.821
12.4 6.61 1.03
12.2 2.00 1.01
8.93 1.38 0.735
17.1 2.50 1.37
9.90 1.02 0.821
17.1 0.600 1.37
120 0.600 4.87
52.2 11.0 3.06
32.7 4.35 2.26
34.1 3.99 2.33
41.0 3.83 2.63
56.4 5.52 3.21
44.5 10.6 2.77
32.7 5.00 2.26
34.1 4.00 2.33
41.0 5.92 2.63
56.4 6.00 3.21
44.5 7.09 2.77

Ptak and Teutsch, 1994

350 10.0 7.91 Chiang et al., 1989
26.6 1.50 1.95
28.6 1.50 2.06
44.2 2.20 2.76
30.0 4.00 2.13
58.0 4.00 3.26
26.0 1.00 1.92
63.1 6.00 3.43
43.3 5.00 2.73
80.0 5.00 3.92
91.5 3.50 4.22
234 30.0 6.66
223 30.0 6.52

Boesel et al., 2000

200 7.50 6.21 Adams and Gelhar, 1992
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Appendix C - Transversal dispersivity and hydraulic

conductivity

Table E shows the values for transverse dispersivity and hydraulic conductivity in sand
obtained from the literature. Table E also presents the ratio between transverse and
longitudinal dispersivity.

Table E: Values for the transversal dispersivity, the ration between DT and DL as well as
the conductivity in sand. All the values were obtained during the literature review.

Transversal dispersivity and Conductivity
Sand

DT

(m)
DT/DL

Conductvity
(m/s)

Source

1.00E-04
1.00E-06

Egboka et al., 1983

0.0390 0.0907 7.20E-05 Freyberg, 1986
0.760 0.475 9.55E-05 Kies, 1981

3.10E-05
1.50E-04

Kreft et al., 1974

3.20E-05 Lee et al., 1980
0.110 0.0567
0.110 0.0403

Molinari and Peaudeceff, 1977

2.00E-05
2.00E-04

Pickens and Grisak, 1981

0.0500 0.100 7.20E-05 Rajaram and Gelhar, 1991
0.00500 0.500 4.80E-05
0.0300 0.375 7.60E-05

Sudicky et al., 1983

5.80E-05
7.20E-05

Sykes et al., 1983
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Table F shows the values for transverse dispersivity and hydraulic conductivity in sand
obtained from the literature. Table F also presents the ratio between transverse and
longitudinal dispersivity.

Table F: Values for the transversal dispersivity, the ration between DT and DL as well as
the conductivity in sand. All the values were obtained during the literature review.

Transversal dispersivity and Conductivity
Sand and Gravel

DT

(m)
DT /DL

Conductivity
(m/s)

Source

1.00E-04
1.00E-02

Adams and Gelhar, 1992

18.3 0.600 5.70E-04
3.00E-02

Ahlstrom et al., 1977

0.0180 0.0188 1.30E-03 Garabedian et al., 1988
9.20E-04
6.60E-03

Hoehn, 1983

8.10E-05
6.60E-03

Hoehn and Santschi, 1987

1.50 0.500 Iris, 1980
2.40E-04

9.10 0.298 1.00E-02
Konikow and Bredehoeft, 1974

9.00E-04 Lau and Todd, 1957
0.610 0.286
0.915 0.273

Naymik and Barcelona, 1981

4.20 0.197 7.50E-04 Pinder, 1973
27.4 0.300 Vaccaro and Bolke, 1983
0.100 0.100 Valocchi et al., 1981

5.50E-03 Wiebenga et al., 1967
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Appendix D - Shapley values

Figure A presents the Shapley values obtained for the six different parameters and at the
four different scenarios in observation point 2.

(a) PFOS in a sandy aquifer (b) PFOA in a sandy aquifer

(c) PFOS in a sand and gravel aquifer (d) PFOA in a sand and gravel aquifer

Figure A: The Shapley values for the four different scenarios in Observation point 2. Blue
color indicates low values of the parameters, while the pink color indicates high values (as
the scale to the right present).

63



Appendix D

Figure B presents the Shapley values obtained for the six different parameters and at the
four different scenarios in observation point 3.

(a) PFOS in a sandy aquifer (b) PFOA in a sandy aquifer

(c) PFOS in a sand and gravel aquifer (d) PFOA in a sand and gravel aquifer

Figure B: The Shapley values for the four different scenarios in Observation point 3. Blue
color indicates low values of the parameters, while the pink color indicates high values (as
the scale to the right present).
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Appendix E - Random forest importance

Figure C shows the random forest importance values obtained for the five different models
created in observation point 2.

Figure C: The heat-map for the random forest importance values obtained for the five
different models in observation point 2.
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