
MASTER’S THESIS 2023

Study of bug detection tools on
Ethereum smart contracts
Edward Axlund, Frans Sjöström

ISSN 1650-2884
 LU-CS-EX: 2023-40

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2023-40

Study of bug detection tools on Ethereum
smart contracts

Studie av säkerhetsverktyg för Ethereums
smarta kontrakt

Edward Axlund, Frans Sjöström

Study of bug detection tools on Ethereum
smart contracts

Edward Axlund
edaxlund@gmail.com

Frans Sjöström
fr5536sj-s@student.lu.se

August 28, 2023

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Niklas Fors, niklas.fors@cs.lth.se

Examiner: Cristoph Reichenbach, christoph.reichenbach@cs.lth.se

mailto:edaxlund@gmail.com
mailto:fr5536sj-s@student.lu.se
mailto:niklas.fors@cs.lth.se
mailto:christoph.reichenbach@cs.lth.se

Abstract

Blockchains were introduced through the creation of Bitcoin in 2008. Since then,
many projects have been launched in the area, including Ethereum, which in-
troduced the smart contract for blockchains, a computer program that can be
deployed to a blockchain with public functions for interactability. These con-
tracts aim to automate some current financial services like lending, swapping, or
investing. With the introduction of these smart contracts, there have been a lot
of different kinds of hacks exploiting vulnerable code for the attacker’s financial
gain. The hacks have created much focus on software security within smart con-
tracts and the development of automated software auditing tools. The field is
very young and has yet to reach the maturity we might be used to in Java or C.

This report shows an overview of bugs on the Ethereum blockchain a goes
more into depth in a comparative study between the symbolic execution tools
Maian and Mythril and the static analysis tool Slither. Comparing the different
tools ability to find reachable self-destruct vulnerabilities. Also shows some of
the strengths and weaknesses of static analysis and symbolic execution. This
project builds upon an earlier study that evaluated smart contract security tools
on the source code of smart contracts. Our study details true/false positives and
true/false negatives about both methods and in which circumstances one might
be better to use.

We find that Mythril is best on finding reachable selfdestruct vulnerabilities,
performing the best on our benchmark dataset. Slither has the best complete-
ness, finding more of the true positives that Mythril sometimes misses. Maian
lacks a lot in analyzing newer contracts where it fails; this because Maian is no
longer maintained, with the latest update in 2018.

Keywords: Blockchain, smart contracts, program analysis, static analysis, symbolic exe-
cution, solidity, self-destruct

2

Acknowledgements

We want to thank Mikkel Jensen our supervisor from Chainalysis that have supported us
throughout the project and added an industry perspective to the project.

We like to thank Niklas Fors for taking the time to supervise the project and making sure
we are creating a contribution.

We would like to thank Sundas Munir for her insight in static analysis tools and her
curiosity about what is pushing the boundaries for smart contract analysis tools.

We would like to thank Martina Rossini for creating the data-set we have used for the
smart contract source code.

3

4

Contents

1 Introduction 9
1.1 Contribution . 10
1.2 Research questions . 11
1.3 Outline . 11
1.4 Remark . 11

2 Background 13
2.1 Blockchain and Smart Contracts . 13

2.1.1 Definitions . 13
2.1.2 Blockchain Technology . 14
2.1.3 Ethereum . 14
2.1.4 Smart contracts . 14
2.1.5 Transactions and Smart Contracts 15
2.1.6 EVM - Ethereum Virtual Machine 15
2.1.7 Solidity . 16
2.1.8 Short about reachable self-destruct 16

2.2 Program analysis methods . 17
2.2.1 Symbolic execution . 17
2.2.2 SMT solvers . 18
2.2.3 Static analysis . 18
2.2.4 Program analysis on smart contracts 19

2.3 Tools used . 20
2.3.1 Selection of tools . 20
2.3.2 Maian . 20
2.3.3 Mythril . 21
2.3.4 Slither . 21

3 Vulnerabilities on the Ethereum blockchain 23
3.1 Datasets . 23
3.2 Setup of experiments . 24

5

CONTENTS

3.2.1 Tools . 25
3.3 Activity on the Ethereum blockchain . 25
3.4 SWC-id . 25

3.4.1 Integer Arithmetic bugs (SWC: 101) 26
3.4.2 Reachable/Unprotected self-destruct (SWC: 106) 27
3.4.3 Delegatecall to user-supplied address (SWC: 112) 27
3.4.4 Write to an arbitrary storage location (SWC: 124) 28
3.4.5 Reentrancy exploit (SWC: 107) . 30
3.4.6 Dependence on predictable environment variable (SWC: 116, 120) . 31
3.4.7 Jump to an arbitrary instruction (SWC: 127) 32
3.4.8 Hardcoded guards (No SWC) . 32

3.5 Results and Discussion . 33
3.6 Closing remarks and zooming in on self-destruct 39

4 Self-destruct within the Ethereum blockchain 41
4.0.1 Introduction to the self-destruct function 41

4.1 Definition of reachable self-destruct . 42
4.2 Access Control . 42

4.2.1 Composite vulnerabilities . 43
4.2.2 Flawed Access Control . 43
4.2.3 Intended reachable self-destruct 45

4.3 Slither’s static analysis of reachable self-destruct 45
4.4 Detecting reachable self-destruct with Mythril’s symbolic execution 46
4.5 Method . 46
4.6 Results and Discussion . 47

4.6.1 Manual review . 47
4.6.2 Closing remarks on reachable selfdestruct 52

4.7 Benchmark dataset . 52
4.8 Limits of tools and possible improvements 55

4.8.1 Can you detect intended reachable self-destruct 55
4.8.2 Slither . 55
4.8.3 Mythril . 59

5 Related work 61
5.1 Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart

Contracts . 61
5.2 A critical comparison on six static analysis tools: Detection, agreement, and

precision . 62
5.3 Ethainter: A Smart Contract Security Analyzer for Composite Vulnerabilities 63

6 Conclusion 65
6.1 Future work . 66

6.1.1 Surveying more . 66
6.1.2 Implementing improvement of tools 66
6.1.3 Detecting vulnerabilities using neural networks 66
6.1.4 Implementing static analysis into the Solidity compiler 67

6

CONTENTS

References 69

7

CONTENTS

8

Chapter 1

Introduction

Blockchain has been a word introduced to the world through the recent rise of Cryptocurren-
cies. Cryptocurrencies are digitally distributed currencies meant to be transferred without a
central authority controlling them. Since the release of the first cryptocurrency, Bitcoin [29],
in 2008, a lot of development has occurred and now in 2023 there exist many cryptocurren-
cies. The presence of the strong economic incentive of being early in a new type of world
economy has led to a fast and hasty development of products where security is not always
prioritized.

Blockchains such as Ethereum are used to develop decentralized applications, dAPPS,
with some common applications being financial services, NFTs, and collectibles. These ap-
plications use cryptocurrency as the monetary asset needed to interact with them. The
blockchain works as a decentralized ledger where nodes interact with each other and verify
transactions in order to keep the blockchain safe without having to involve a central author-
ity. A block in a blockchain refers to an ordered record, linked to both the previous one and
succeeding one. Blocks are cryptographically linked through hashing. The transactions of the
blockchain is recorded in blocks, forming a chain of blocks that cannot be altered without
the consensus of the network, secured by the hashing algorithm verifying that the next block
is valid.

To facilitate decentralized financial services, some blockchains have enabled program-
mers to write code that gets deployed to storage on the blockchain. This code can then
execute when transactions on the blockchain trigger them. This is done without human in-
volvement when conditions in the code are met. These programs are often referred to as
smart contracts. Ethereum is the blockchain currently holding the most monetary value that
utilizes this type of technology. It was launched in 2015 and was the first blockchain to make
smart contracts available. Smart contracts are meant to enable users to interact directly with
each other without involvement of a central organization while still being assured that the
transactions are safe, i.e that they have not been tampered with. Ethereum has a virtual ma-
chine where bytecode gets executed when transactions have been validated. For this virtual
machine many languages have been created, with the most commonly used one being solidity

9

1. Introduction

which is an object-oriented language similar to JavaScript in syntax [18].
Smart contracts being in their infancy combined with the large assets stored within them

have created incentive for malicious users to look for vulnerabilities that can net them mon-
etary gains. Large sums of money has been stolen through finding vulnerabilities in contract
code, the exact sum is hard to estimate but is in the hundreds of millions of dollars . A well-
known incident is the parity wallet-hack, where attackers took advantage of faulty access
control of a smart contract and gain access to approximately 30 million USD [22]. Another
instance where a large sum of money was stolen was the Wormhole hack, where attackers
managed to obtain cryptocurrency through faulty version control of the developers [22]. This
illustrates that even code from well-known actors within the crypto eco-system can be faulty.

Because of the high stakes of uploading code that has control over millions of dollars onto
a blockchain, many have tried to develop tools to find faulty code. For Ethereum numerous
tools can find different types of vulnerabilities. The most commonly used techniques for
automating smart contract vulnerability detection are static analysis or symbolic execution.
Many tools have made big claims to be able to find faulty code, but they still are far behind
many tools for traditional languages such as Java and C [6].

1.1 Contribution
The main goal of this project is to present the current state of bug-detecting tools on the
Ethereum blockchain. We run the tools to estimate the number of bugs on the Ethereum
blockchain over time. We also present a more in-depth review of the tools by analyzing how
accurate and precise the three tools are at detecting reachable self-destruct and the chosen
tools weaknesses. Reachable self-destruct was chosen as a common access control vulnerabil-
ity to be able to more accurately describe the tools capabilities.

The goal from this research is to increase users’ awareness of smart contracts, what tools
they can trust, and to what extent. It also aims show some of the flaws of the different program
analysis methods and recommend in what cases to use each. The report creates recommenda-
tions for improving Slither, Maian, and Mythril without going into specific implementations.

The symbolic execution tools used in the research are Mythril and Maian, and the static
analysis tool used is Slither. Slither and Mythril could be counted as state-of-the-art tools
since they are maintained open-source projects with well-known backers such as Consensys
and Trail of Bits, two prominent players in the Ethereum space.

10

1.2 Research questions

1.2 Research questions
To be able to contribute as described in previous section, six research questions were solidi-
fied.

RQ1: Which of the tools has the best accuracy and precision based on the datasets used?

RQ2: Can a better benchmark dataset than currently available, be created for reachable self-
destruct?

RQ3: What favors the use of symbolic execution tools compared to static analysis tools when
analyzing smart contracts?

RQ4: How can the chosen tools, Maian, Slither, and Mythril be improved?

RQ5: What general trends exist for smart contracts deployed on the Ethereum blockchain?

RQ6: Is there a difference in the number of vulnerabilities present between contracts with ver-
ified source code available and contracts with only bytecode available?

1.3 Outline
The thesis is structured as follows. Chapter 2 introduces some of the basics that are needed to
understand how Solidity and the EVM work. This is where the master thesis is split into two
different parts. First, Chapter 3, where we present our insights into the Ethereum blockchain
ecosystem, what bugs are currently present and how the ecosystem has evolved over time.
Chapter 4 covers the specific reachable self-destruct vulnerability and goes into depth on
how effective Maian, Slither, and Mythril are when trying to detect reachable self-destruct.
In chapter 5 conclusions are drawn from insights from the earlier two chapters and reasons
for future work.

1.4 Remark
This thesis tries not to take a stance if cryptocurrency and DeFi are good or bad. It highlights
new technology and shows how it has changed over time, it also demonstrates the importance
of writing safe code and how classifying code as safe can have its inaccuracies.

11

1. Introduction

12

Chapter 2

Background

This chapter is divided into three parts. First, a description of blockchain technology is
presented and how Ethereum utilizes its virtual machine, the EVM to enable the use of smart
contracts. Second, the two major program analysis methods that are used in this project are
produced static analysis and symbolic execution. Finally, the tools used in the report are
introduced and a brief description of their inner workings is given.

2.1 Blockchain and Smart Contracts

2.1.1 Definitions
Here are some definitions that relevant for the understanding of blockchain technology.

• Address: An address refers to a unique identifier used to represent a participant or entity on a
blockchain network. It is typically associated with a specific cryptocurrency or token and is used
for sending, receiving, and storing digital assets within the blockchain. Each smart contract on
the Ethereum blockchain has its own address.

• Block: A block refers to a data structure that contains a collection of transactions or
other types of information. It serves as a fundamental building block of a blockchain.

• Ledger: A ledger refers to a decentralized and distributed database that records and
stores all the transactions and data within a blockchain network. It serves as a transpar-
ent and immutable record of all the activities and changes that occur on the blockchain.

• Node: A node refers to a computer or device that participates in the blockchain network
by maintaining a copy of the entire blockchain ledger and actively contributing to the
validation and verification of transactions

13

2. Background

2.1.2 Blockchain Technology
A blockchain is a distributed ledger that is tamper resistant and tamper evident, making
it ideal for transaction security. Tamper resistant ad evident meaning that it can not be
tampered with without it being evident through the records of the chain. Blockchains en-
able users to record transactions on a shared distributed ledger without the involvement of
a central authority. Transactions on the blockchain cannot be changed and are stored on the
blockchain facilitating privacy while still upholding security against tampering and main-
taining openness without revealing identity of users. Blockchain combines cryptograhpy,
distributive networks and database technology to create electronic currency, i.e crypto cur-
rency. Bitcoin, launched in 2008, was the first crypto currency and is still the largest currency,
with a market cap of 457 billion USD. [18] [37]

Blockchains function through protocols. The protocols decide how transactions get vali-
dated within the network and how new currency is produced and are continously updated to
adhere to new functionality and standars. Heavy calculations needed to run the blockchain
are divided in the network to maintain security and decentralisation. When a transaction
get validated by the blocks on the chain, it is referred to as reaching consensus, a variety of so-
lutions among different blockchains permit this to be achieved. To reach consensus all nodes
involved in the next block need to agree on what transactions occurred. [37]

2.1.3 Ethereum
In this report, Ethereum, launched in 2015, will be in focus because it is the blockchain with
the most monetary value that facilitates the use of smart contracts, an automatic way of exe-
cuting transactions when specific conditions are met, on the blockchain using code. A simple
example can be a lottery, where a random seed has determined the winning number. If a user
buys the winning ticket, the winnings will be transferred to the winning user without any
involvement of a central authority. Ethereum is a distributed ledger, like other blockchains
but can also be viewed as a state machine, where data such as account balances or evidence
of ownership from the real world can be stored. These features are made possible by the
Ethereum blockchain’s Turing-complete virtual machine, The EVM, short for Ethereum vir-
tual machine, which allows for code to be programmed on the blockchain. All new blocks
added to the Ethereum blockchain can be seen as state changes performed through a state
transition function. There are rules for how states can change like an account balance can
not go up without another going down. That is how the integrity of the transactions of the
Ethereum blockchain is managed. [18] [37]

2.1.4 Smart contracts
Smart contracts are simple programs written to a blockchain to execute automatically when
certain conditions are met. They provide the tools necessary to create an automated financial
ecosystem with distributed ledgers and are used in cryptocurrency facilitating blockchains
like Ethereum.

Since smart contracts can hold large sums of cryptocurrency, with some of the wealth-
iest contracts containing hundreds of millions of US dollars, security is essential for smart
contracts. Several times since the launch of the Ethereum blockchain has smart contracts on

14

2.1 Blockchain and Smart Contracts

the blockchain been taken advantage of by malicious users, often for large sums of money.
One example is the Parity Wallet Hack, where hackers managed to steal Ether to a value of
30 million US dollars because of faulty code from the developers [22].

Smart contracts can today be divided into two groups, verified and unverified. The di-
vision is not a fundamental feature built into the Ethereum blockchain but rather a reac-
tion. Because people run bytecode when interacting with smart contracts on addresses on
the Ethereum blockchain, it is hard to know what the bytecode a user is interacting with
does. Here independent organizations started to provide a service of verifying smart con-
tracts by letting developers post their source code onto a website for everyone to see the
logic. Available source code is convenient because it is hard to decompile bytecode and make
it readable for humans. When posting the source code to a site, it can easily be checked
by compiling it and comparing that bytecode to the code on the blockchain. There is no
rules for anyone to verify their bytecode, but most serious projects do to be transparent with
their users. Contracts where the sourcecode is made available is considered verified, while
contracts where it is not is considered unverified.

2.1.5 Transactions and Smart Contracts
The Ethereum blockchain works a bit differently compared to for example Bitcoin. Ethereum
is a blockchain that on top of having accounts at different addresses also host smart contracts
on different addresses. These smart contracts are created and interacted with through trans-
actions. Created with a transaction containing the bytecode for the smart contracts logic.
The variables in the smart contract are stored in all nodes on the blockchain, and can be in-
teracted with through further transactions to the address where the smart contract is stored.
The transaction can have a payload of what functions and potential data the invoker wants
to send to a specific smart contract function [37].

2.1.6 EVM - Ethereum Virtual Machine
The EVM is a simple stack based architecture with a word-address byte array memory model.
The machine has an independent non volatile storage model where the system state is kept.
When a smart contract is deployed, its variables get stored in the blockchains nodes. Each
node in the blockchain has a local copy of the system state where it keeps the hash of the
current system state. When a transaction is conducted, each node validates the new state
through the hash copy of the state included in the new block. This ensures that computations
are consistent throughout all nodes of the chain. [37]

The Ethereum Virtual machine is the machine that makes code runnable on the Ethereum
blockchain. It is quasi-turing complete, with the quasi part referring to that the computations
performed on the blockchain are fixed to the cost of running it. To avoid overloading the
network with heavy computation, a fee for transactions and computation is imposed, referred
to as gas. With infinite gas available, the EVM would be considered turing-complete. A
gas fee is imposed on creating contracts, utilizing and accessing account storage, executing
operations on the EVM and making message calls. The flow of Gas throughout the EVM can
be seen in figure 2.1, where it shows which operations impose a gas fee. The usage of gas has
its own sets of vulnerabilities that are outside the scope of this thesis.[37]

15

2. Background

Figure 2.1: Overview of the EVM architecture, showing how gas is
used throughout the architecture. Taken from Ethereum Foundation
at Ethereum website.

2.1.7 Solidity
Solidity is the most commonly programming language used to write code that can be com-
piled into the EVM compatible bytecode. It is a high-level language that is designed to be
easy to read and write, with syntax similar to that of JavaScript. It is statically typed, i.e vari-
ables are bound to their language specific types at compile time. It also supports inheritance,
libraries, and user-defined types. Solidity code needs to be compiled in order to be executed
on the Ethereum blockchain. The compilation process involves converting Solidity source
code into bytecode, that can be executed by the EVM.[3]

In this report, the code examples are provided in Solidity since it is the most commonly
used language for contracts on the EVM. Since the syntax is very similar to many mainstream
programming languages, we do not go into detail about how to use the language, but some
common Solidity specific functionality is explained when necessary in Section 3 and 4 of the
thesis.[18]

2.1.8 Short about reachable self-destruct
Reachable self-destruct is our own vulnerability term that encompasses all Solidity code that
enables an unauthorised user to call on a self-destruct function. This is not to be confused
with unreachable code where an unreachable self-destruct according to us can be reached
with the right access. More about reachable self-destruct is explained in chapter 4 where we
evaluate Maian, Mythril and Slither on how well they can find reachable self-destruct.

16

https://ethereum.org/en/developers/docs/evm/

2.2 Program analysis methods

2.2 Program analysis methods

2.2.1 Symbolic execution
Symbolic execution is a method to analyze programs in a way that makes it possible to see
what sections of the code are reachable. It has been used since the 1970s and has been used
to find vulnerabilities in code such as null pointers, division by 0, and access control. [9]
Symbolic execution generalizes testing by variables in a program as abstract values. Using
the abstract values, it is possible to analyze if code blocks are reachable or not. They execute
the code symbolicly running the symbolic values To do this SMD solvers are used to see if
there is a viable value for the variables to reach the proper code. Here is a visual example
taken by Aldrich and Le Gouse. [7].

The program in Figure 2.2 has multiple paths that can be taken, that can be made into a
control flow graph representing the control flow of the program. In the example, the variables
a, b is given symbolic values representing the possible inputs. The execution will then be
tracked based on these inputs. If a branch is dependent on one of the unknown symbolic
values, the symbolic execution engine will arbitrarily choose a path to take and record this
using the symbolic values. After the execution is complete, the engine will go back and try
other paths of the program, until all of the possible paths have been checked. In the example
the program will check all possible paths when the symbolic values of a is false and then
checking all paths when a is true. It will then do this with every symbolic variable and its
possible values, either until it finds all possible paths or run out of time. It can use this same
mechanism to identify critical parts of the code being reached or trying to find out if an
assertion like the one on line 8 in figure 2.2, can be true.

1 int x=0, z=0;
2 if(a) {
3 x = 1;
4 }
5 if (b < 5) {
6 z = 2;
7 }
8 assert (x + z == 3);

Figure 2.2: For what values on a, b is the assertion true? This is a
question a SMT solver answers. a ∈ [true, false,Z], b < 5 and the
assertion will hold true. [7]

To manage exploration of all the different paths and evaluating reachability to critical
code, the symbolic execution applies SMT solvers to the logical expressions to see the neces-
sary input for reaching the section. See SMT-solvers subsection for further understanding.

One of the big upsides of symbolic execution is that if it labels something as dangerous,
it means that it has found a specific input that can reach a critical area with certainty. The
problem is that there can be a lot of paths in a program, if not an infinite amount; infinite
loops can cause this problem. Therefore Symbolic execution needs to have a max depth to
make sure it comes to a result and also limit its running time. The restriction of the number

17

2. Background

of paths becomes weakness, since the symbolic execution might miss critical paths that can
lead to a vulnerability.

Smart contracts introduce a new set of vulnerabilities apart from traditional programs in
Java or C, which can be found using symbolic execution such as TOD-vulnerabilities (Trans-
action Order Dependencies) and new types of reachable self-destruct [33]. In this report, two
symbolic execution tools, Maian and Mythril, are used to identify reachable self-destruct vul-
nerabilities in smart contracts.

2.2.2 SMT solvers

Satisfiability Modulo Theories or SMT solvers are mathematical solvers that can calculate
first-order logic. Building upon SAT solvers that use more simple boolean logic (true∧(false∨
true)). SMT solvers can use mathematical representations called first-order logic (x ̸= y ∧
z ∧ x > 4). By creating mathematical constraints representing the program’s data flow using
a control flow graph; the SMT solver can calculate if there is a possible solution where all the
constraints are met and output a range or possible values for the condition to be meet. In
that way a SMT solver combined with constraints can calculate if a critical code instruction
is reachable and with what values on the different variables [20] [16].

2.2.3 Static analysis

Static analysis is a name for methods to analyze run-time code without actually executing the
code. It can be done on both source code and run-time bytecode. Some common static analy-
sis techniques are Syntactic Pattern Matching, Data Flow Analysis, Abstract Interpretation,
and Constraint-Based Analysis. With the help of these techniques, errors like memory leaks,
null pointer references, invalid arithmetic operations, and non-terminating programs can be
found. It can also be useful for type checking. Static analysis often utilizes abstraction to
transform complicated programs into simpler representations that share key properties with
the original program. An intermediate representation of the source code is often used for
this purpose [21].

A static analysis can not be both fully precise and fully accurate while still being guar-
anteed to terminate. Therefore developers of static analysis tools have to prioritize one of
the two. A tool can also be sound or unsound. A sound analysis guarantees that the analysis
holds for all executions of the program, whereas an unsound analysis does not. This comes
back to the dilemma if you want the tool to be fully accurate since a sound analysis is not
guaranteed to terminate if it is. One example is when checking for integer overflow. If all
numbers were to be checked, the analysis is guaranteed to be accurate and precise but not
guaranteed to terminate. Developers then have to decide whether finding all true positives
while including some false positives is more suitable or if knowing that all the flagged code is
actually vulnerable. In the case of smart contracts having a conservative analysis, i.e finding
all bugs including false positives, should be preferred since the stakes of faulty code can be
so high [21] [26].

18

2.2 Program analysis methods

!

Figure 2.3: The spectrum of program analysis methods from static
to dynamic and manual to automatic. [13]

2.2.4 Program analysis on smart contracts

There are two kinds of data to use for program analysis of smart contracts: bytecode and
source code. As mentioned above, according to our numbers, even if all the data on the EVM
is public, only 12 percent of it is verified. That makes tools that use bytecode more relevant
because of their wider useability. There exists different program analysis methods that can
be used for smart contracts; see Figure 2.3. This report only covers symbolic execution and
static analysis. As seen in Figure 2.3, static analysis is both a method and a type of program
analysis. In this report, static analysis is a concept summarizing all the different static analysis
methods like dataflow analysis, control sensitive analysis, and call sensitive analysis, among
others, that can be done during compile time.

The creator Cohen of the figure 2.3 puts program analysis methods in comparison to each
other of how automatic or dynamic a program analysis method is. The process of symbolic
execution for example does not execute code but executes a program with symbolic values.
The program is not running but you simulate the running of code. Therefore is symbolic exe-
cution put as either static or dynamic program analysis. Where debugging is a highly manual
and dynamic program analysis method, and more dynamic then a crash analysis because a
crash analysis does not necessarily include running the code.

There exists tools that can detect a variety of different bugs. Many of them detect various
bugs and vary in approach to catching them. No tool has yet become the industry standard,
and the surge of new active addresses [34] might be why so many new tools have emerged up
in recent years [27].

19

2. Background

2.3 Tools used
2.3.1 Selection of tools
The tools were selected based on four criteria:

• Including at least one tool from the two major techniques of program analysis tools
for smart contracts, static analysis and symbolic execution.

• Tools that are considered state of the art in detecting access control vulnerabilities

• The tool being capable of finding reachable selfdestruct

• Being able to run the tool locally and the tool being fast enough to analyze enough
contracts within our limited time-span. This means that tools have to be open-source
or available in another way.

Slither and Mythril were choosen because the T.Durieux et Al. suggested this combi-
nation to cover as many vulnerabilities as possible and they could both detect reachable
self-destruct. Maian was chosen because it was developed to find composite self-destruct
vulnerabilities, such as the parity wallet hack.

Other tools considered was Securify, Ethainter and teEther. Securify and teEther did not
meet our speed limitations and Ethainter was not available to us, even though we tried to get
hold of it.

2.3.2 Maian
Maian is one of the two symbolic execution tools used in this report. It was released in
2018 by Nikolic el at [30]. In their paper named “Finding The Greedy, Prodigal, and Suicidal
Contracts at Scale” they describe how the tool was created and what results they got from it
when testing. The tool can identify three types of vulnerabilities in smart contracts, they call
them greedy, prodigal, and suicidal. This thesis solely focuses on the contracts called suicidal
in their paper and is a sub category of our wider defenition of reachable self-destruct [30].

In the paper, the authors tested almost a million contracts, finding 34 200 unique vulner-
abilities. 3,759 of these contracts were sampled for concrete validation and manual analysis,
which resulted in the conclusion that the tool had an 89% true positive rate. The authors
claim an average execution time of 10 seconds per contract, which is inconsistent with the
results from the Smartbugs study [6], where Maian had an average execution time of 5 min-
utes and 16 seconds. This can also be due to overhead in the Smartbugs framework [17][30].

Maians aim was to be able to identify composite vulnerabilities which are in short vul-
nerabilities that can happen through multiple invocations of a contract. In theris paper they
discussed the term as trace vulnerabilities, in our thesis we have used the word composite
vulnerability that is explained in chapter 4. This Since the state of the blockchain can change
when you invoke a contract, contracts can appear safe if you check one invocation. The parity
wallet hack is an example of this type of behavior. To achieve this, the authors first classified
the three types of vulnerabilities they aimed to investigate. The authors also defined two
violations that can make a contract vulnerable to composite vulnerabilities, safety violations,

20

2.3 Tools used

which make contracts vulnerable through a composite that has been on the blockchain that
causes the contract to violate safety properties and liveness violations which are determined
by which actions cannot be taken from a certain state on the chain [30].

To achieve this, Maian first uses symbolic analysis using an EVM-like language inspired
by ETHERLITE [1]. The goal of the analysis is to find a state where one of the safety or
liveness properties are met. Candidate values are found to then try to reach a vulnerable
state through multiple invocations of the contract. If such a path is found, Maian uses the
Z3 SMT solver to find the concrete values to reach this state [16]. To verify that the contract
is vulnerable Maian creates a private blockchain that then verifies that this vulnerable state
can be reached in practice [30].

2.3.3 Mythril
Mythril is one of the two symbolic execution tools for detecting reachable self-destruct in this
paper. It can find an array of different vulnerabilities in most EVM-compatible blockchains.
It does this by running symbolic execution on EVM bytecode, hence making it compatible
with all blockchains that use it. Mythril, similarly to Maian, goes through all the possible
states of the contract within the call depth. It does this by generating a control flow graph,
checking for pre defined vulnerabilities that be detected inside the graph. As later will be
shown the generation of the control flow graph has it’s flaws having trouble with simple
recursion, seen in table 4.5. Mythril was developed by the organisation Consensys in 2019,
which was founded by one of the creators of Ethereum. We

It uses the Z3 SMT solver just like Maian and has also developed its own symbolic virtual
machine, LASER, for generating the symbolic values needed. The analysis generates symbolic
values for the Ethereum bytecode and then regenerates the EVM opcode to then be able to
execute the opcode when looking for vulnerabilities. [34]. The difference between Maian
and Mythril is that Mythril has a wider range of detectors and is still maintained by it’s
open-source community. It is used in a smart contract security service named MythX that is
a subscription based and used multiple methods to identify vulnerabilities and inefficiencies.

2.3.4 Slither
Slither is a framework for static analysis on Ethereum source code. It is designed to provide
analysis of smart contract code and to be flexible enough to build upon. It was released
in 2019 by the organisation Trail of Bits. It is right now used for automated vulnerability
detection, automated optimization detection, code understanding, and assisted code review.
Slither uses the abstract syntax tree generated by the EVM compiler to build an intermediate
representation called SiltherIR that it uses to build its control flow graph. The methods of
built-in code analysis that Slither then uses are read/write, protected functions, and data
dependency analysis. The full architecture of Slither can be seen in this source [19].

Slither is open-source, written in Python and comes with more than 20 bug detectors,
including a check for unprotected self-destruct. Slither was chosen over similar programs
such as Securify since it has been proven to be more accurate and faster than many other
tools, see source for the comparison [19] [17].

21

2. Background

22

Chapter 3

Vulnerabilities on the Ethereum blockchain

This chapter presents an overview of the current state of the Ethereum blockchain and pro-
vides a time perspective on bugs present on the Ethereum blockchain. Since the crypto space
has not existed for very long (first crypto currency Bitcoin in 2008), it is still under rapid
change, both regarding the technical aspects and in the case of Ethereum what types of con-
tracts are deployed. We present how common bugs have been over time and how active the
contracts flagged for vulnerabilities are by measuring the number of transactions these con-
tracts have been a part of. This chapter aims to give insight into how relevant different bugs
are today and how their presence in the Ethereum ecosystem has changed since the launch of
Ethereum. Analyzing the vulnerabilities present helped us confirm the relevance of reachable
self-destruct, described more in-depth in Chapter 4.

There are two datasets used in this chapter, unique bytecodes deployed on the Ethereum
blockchain and a subset of this, verified contracts where the source code is also available. The
same code can be deployed multiple times onto the blockchain, but the first time is counted
as a data point.

3.1 Datasets
Smart contracts on the Ethereum blockchain can be divided into two categories, verified
and unverified. Verified contracts meaning that the developers have shared their source code
to provide transparency and make users more comfortable in interacting with the contract.
Unverified contracts are contracts where the source code is not available. Currently in May
2023, 13% of the smart contracts on the Ethereum blockchain are verified. This is done by
uploading code onto a website where address, bytecode and source code is published together.
The largest website for verified smart contracts in May of 2023 is etherscan.io, which is a
website that stores all verified contracts.

23

https://etherscan.io

3. Vulnerabilities on the Ethereum blockchain

Amount
Unique bytecodes 850037

Unverified bytecodes 734185 (87%)
Verified source codes 115852 (13%)
Sampled bytecodes 85004 (10%)
Verified in sample 11711 (1.4%)

Table 3.1: The table describes the the diffrent types of bytecodes on
the Etherium blockchain. Describing how we partitioned the data
for the two different parts of the thesis.

The source code for the verified smart contracts in table 4.1 was taken from huggingface.co
and was a way to get a head start on the project. It was created by Martina Rossini and de-
scribes the state of the verified smart contracts in July 2022 [31]. The results of Rossini’s work
can be seen at https://github.com/mwritescode/smart-contracts-vulnerabilities The unveri-
fied smart contract bytecodes 4.1 are publicly available and can be downloaded by anyone
for example through Infura, a company that provides an API to get information from the
Ethereum blockchain.

The original 850 000 unverified smart contracts would take too long to analyze with
the chosen tools. To handle this problem a selection of 10% (85 thousand) contracts were
sampled for reducing the run-time on our remote Linux server to around a week. To both
have verified and unverified smart contracts was important for us to be able to understand
the different presence of bugs in the two categories. Also, it was important to have the source
code of contracts with bugs, since then we could understand how the tools reasoned when
classifying a contract as containing a vulnerability.

3.2 Setup of experiments

Chainanalysis provided us with a remote Fedora Linux server on which we could run the
different tools on. It has an AMD Ryzen 9 3900 12-core processor that the processes were
running on.

To run each tool we wrote scripts using Python and its data analysis library Pandas. All
the datasets were stored in .parquet files which is a column-oriented way of storing data in
compressed form [4]. When using the data the file was first decompressed into a pandas
data frame and then all the necessary data was collected. For the symbolic execution tools,
a timeout was decided for each run for two purposes, to limit runtime over the big datasets
and to collect data on how many of the contracts took significantly longer to run than an
average contract. The relevant contracts, i.e the contracts that either timed out or flagged,
were saved back into .parquet file format for easy handling.

All graphs in this chapter and the following were made with Matplotlib, which is a
Python library for creating graphs.

24

https://huggingface.co/

3.3 Activity on the Ethereum blockchain

3.2.1 Tools
This section shows an overview of the tools illustrating the different analysis methods, sym-
bolic execution, and static dataflow analysis, and the requirements for input data. Slither only
takes source code, and the symbolic execution tolls take both source and byte code shown in
table 3.2.

Tools Type of analysis Verified sourcecodes Sampled bytecodes
Maian Symbolic Exectuion X X

Myhtril Symbolic Execution X X
Slither Static dataflow analysis X

Table 3.2: Tools and which datasets they ran on

3.3 Activity on the Ethereum blockchain
The activity on the Ethereum blockchain can be analyzed with a lot of different parameters.
We decided to look at the following parameters:

• Overview of the number of verified and unverified smart contracts with self-destruct
- Showing how many of the smart contracts with source code could possibly have a
problem with reachable self-destruct. Figure 4.1

• Number of unique smart contracts deployed - Visualizing a perspective on when smart
contracts were deployed and how many of them had publicised source code.

• Number of transactions to unique bytecodes - Illustrating the relevance of our research.
If the contracts we were looking at had no transactions it meant that no one used these
contracts that we found vulnerable. If that was the case we would not have dug any
deeper into this area. Figure 3.10

• Number of bytecodes flagged by bug detection tools - Showing what ratio of smart
contracts contained bugs to bring a metric of how mature the space is and have devel-
oped Figure 3.3 Figure 3.13

• What bugs are most present over time - Understanding what bugs are dying out and
what bugs are still relevant to this day Figure 3.14

These graphs are used for comparing different tools, what findings the tools have, and
seeing overall trends for vulnerabilities present in verified and unverified contracts.

3.4 SWC-id
When looking into software security vulnerabilities it is a good idea to index known vulner-
abilities into a registry for spreading awareness of the flaw and minimizing the presence of
it. The largest registry of software vulnerabilities is Common Weakness Enumeration (CWE)
which contains a lot of software weaknesses from older languages than Solidity.

25

3. Vulnerabilities on the Ethereum blockchain

SWC stands for Smart contract weakness classification and is an open-source registry for
bugs in Solidity code maintained by the team behind MythX.[35] MythX is a tool that uses
Mythril, and therefore the SWC-id and Mythril are closely connected. SWC-id is loosely
aligned with CWE, which is a more well-known community-developed list of vulnerabilities
in hardware and software systems. They are similar because they both use IDs to serve as
common ground when talking about different kinds of security vulnerabilities and in this
report, SWC-id is used. [5] [35]

In this section, bugs classified with high or medium severity are briefly explained, and
simplified examples are provided. The examples are written by us but inspired by the exam-
ples provided by the SWC website. [35]

• Integer Arithmetic bugs (SWC: 101)

• Reachable Unprotected self-destruct (SWC: 106)

• Delegatecall to user-supplied address (SWC: 112)

• Write to an arbitrary storage location (SWC: 124)

• Reentrancy exploit (SWC: 107)

• Dependence on predictable environment variable (SWC: 116, 120)

• Jump to an arbitrary instruction (SWC: 127)

• Hardcoded guards (No SWC)

3.4.1 Integer Arithmetic bugs (SWC: 101)
These bugs utilize that an integer has limited storage space. This can cause integer overflow
or overflow where a variable gets rewritten to an undesired value since the value is outside
the possible value of the storage space. For a short example see 3.1.

1 contract IntegerOverflow {
2 uint public count = 1;
3

4 function run(uint256 input) public {
5 count -= input;
6 }
7 }

Figure 3.1: A simple example of how integer underflow could hap-
pen. Subtracting count with 2 until the value goes out of memory
range would cause an integer underflow.

26

3.4 SWC-id

3.4.2 Reachable/Unprotected self-destruct (SWC: 106)

Unprotected self-destruct is when anyone can destroy a contract at any time. This results in
the funds will be transferred from the contract to the address specified in the function, and
the contract’s functionality and memory will not exist anymore. In the case of 3.2, the funds
contained in the contract will be sent to the caller of the function.

These can vary in complexity everything from very simple ones, see code in Figure 3.2 to
more advanced examples shown in Chapter 4.

1 contract SimpleSuicide {
2 function sudicideAnyone () {
3 selfdestruct (msg. sender);
4 }
5 }

Figure 3.2: A simple example of an unprotected selfdestruct call,
msg.sender is the developer that called the function of the contract

3.4.3 Delegatecall to user-supplied address (SWC: 112)

With DELEGATECALL, the called contract’s code is executed in the context of the calling
contract, and any storage updates are made to the calling contract’s storage. The execution
of external code allows for shared libraries and code reuse, as well as reducing the gas cost of
the operation. Executing logic from another contract can compromise the security of a smart
contract. With a delegate call to a user-supplied address, an attacker can introduce new logic
to a contract that makes it vulnerable to attacks[3]. As seen in 3.3, the owner can be changed
outside the context of the original contract.

27

3. Vulnerabilities on the Ethereum blockchain

1 contract Exploitible {
2 address owner;
3

4 constructor () public {
5 owner = msg. sender ;
6 }
7

8 function forward (address callee , bytes _data) public {
9 require (callee . delegatecall (_data));

10 }
11 }
12

13 contract ExternalOwnerChange {
14 function changeOwner (address new_owner){
15 owner = new_owner ;
16 }
17 }

Figure 3.3: Example of how a user is able to supply the address to use
in the delegatecall(address a, data d) function. By calling another
contracts logic, the owner of the contract can change if a function
with owner changing functionality is called.

3.4.4 Write to an arbitrary storage location (SWC:
124)

This bug can occur when an attacker is able to rewrite sensitive valuables such as the owner
of a contract by overwriting it using another variable. Since each variable has limited storage,
a write outside of this storage space can change another variable and hence make all sensitive
variables of a contract vulnerable. This can manipulate call functions to bypass requirements
and checks [35]. An example of this can be seen in Figure 3.4

28

3.4 SWC-id

1 contract Wallet {
2 uint [] private bonusCodes ;
3 address private owner;
4

5 constructor () public {
6 bonusCodes = new uint [](0);
7 owner = msg. sender ;
8 }
9

10 function UpdateBonusCodeAt (uint idx , uint c) public {
11 require (idx < bonusCodes . length);
12 bonusCodes [idx] = c;
13 }
14

15 function Destroy () public {
16 require (msg. sender == owner);
17 selfdestruct (msg. sender);
18 }
19 }

Figure 3.4: Example of an arbitrary write where the bonuscodes ar-
ray bonuscodes is used to rewrite the owners adress. This gives acces
to the Destroy() function.

29

3. Vulnerabilities on the Ethereum blockchain

3.4.5 Reentrancy exploit (SWC: 107)

1 contract SimpleDAO {
2 mapping (address => uint) public credit ;
3

4 function donate (address to) payable public {
5 credit [to] += msg.value;
6 }
7

8 function withdraw (uint amount) public {
9 if (credit [msg. sender]>= amount) {

10

11 // Here is where the external call is done before the
12 // state change
13 require (msg. sender .call.value(amount)());
14

15 #This part will not be reached until the contract is empty
16 credit [msg. sender]-= amount ;
17

18 }
19 }
20 }
21 contract Attack {
22 IEtherVault public immutable etherVault ;
23

24 constructor (IEtherVault _etherVault) {
25 etherVault = _etherVault ;
26 }
27

28 receive () external payable {
29

30 // This is the fallback functions that handels the reciving
funds from row 11

31 //In the vulnerable contract . That calls upon the widraw
function once more

32 if (address (etherVault). balance >= 1 ether) {
33 etherVault . withdrawAll ();
34 }
35 }
36

37 // This is first called then the fallback function will reenter
the

38 // contract untill empty
39 function attack () external payable {
40 require (msg.value == 1 ether , " Require 1 Ether to attack ");
41 etherVault . deposit {value: 1 ether }();
42 etherVault . withdrawAll ();
43 }
44 }

Figure 3.5: Example of code that can be exploited using reentrancy
and the attacking contract using it’s fallback function to reenter the
attacked contract

30

3.4 SWC-id

The reentrancy exploit is when the state changes in improper order after an external call,
which might cause the contract to obtain an invalid state. The best practice is to always do
the external calls last to avoid this hazard. The weakness is introduced when doing a state
change after an external call as seen in the code in Figure 3.5. When not changing the balance
of the caller before in this code example the attacker can use their fallback function to call
the withdraw function multiple times before their balance is reduced.

3.4.6 Dependence on predictable environment vari-
able (SWC: 116, 120)

There are multiple SWC-ids for this error because of the different environment variables that
are present and how they are used in the logic. Two types of dependencies on environment
variables are SWC-120 and SWC-116. SWC-116 uses block.number or block.timestamp to
get a time reference. This is not good practice because nodes can only synchronize their
time to a limited extent and malicious nodes can alter the time on a block to work to their
advantage.

120 describes when a smart contract uses blockchain attributes for deriving randomness
see 3.6 for examples of both SWC 120 and 116. Deriving randomness from predictable vari-
ables or time from variables controlled by the nodes is bad practice [35].

1 contract GuessTheRandomNumberChallenge {
2 uint8 answer ;
3

4 function GuessTheRandomNumberChallenge () public payable {
5 require (msg.value == 1 ether);
6

7 // Example of Dependence on a predictable environment
variable

8 // where block. timestamp is used SWC -116
9 require (block. timestamp >= 1546300800) ;

10

11

12

13 // Example of Dependence on a predictable environment
14 // variable with a predictable source of randomness SWC -120
15 answer = uint8(keccak256 (block. blockhash (block. number - 1),

now));
16 }
17

18 function guess(uint8 n) public payable {
19 require (msg.value == 1 ether);
20

21 if (n == answer) {
22 msg. sender . transfer (2 ether);
23 }
24 }
25 }

Figure 3.6: Code used showing bad dependencies on environment
variables

31

3. Vulnerabilities on the Ethereum blockchain

3.4.7 Jump to an arbitrary instruction (SWC: 127)
Code in 3.7 gives the opportunity for the user to update a chosen memory slot and execute
assembly code. This makes the contract vulnerable since it is not provided what assembly
code is used. If the assembly code for instance changes the owner of the contract, the contract
becomes vulnerable to all the different types of vulnerabilities associated with bad access
control. Because of the possibility of a malicious user overwriting critical information like
the owner seen in 3.7, this bug makes the contract vulnerable to reachable self-destruct among
other access control vulnerabilities.

1 contract FunctionTypes {
2 address private owner;
3

4 constructor () public payable {
5 require (msg.value != 0);
6 owner = msg. sender ;
7 }
8

9 function withdraw () private {
10 require (msg.value == 0, ’dont send funds !’);
11 address (msg. sender). transfer (address (this). balance);
12 }
13

14 function frwd () internal
15 { withdraw (); }
16

17 struct Func { function () internal f; }
18

19 function breakIt () public payable {
20 require (msg.value != 0, ’send funds !’);
21 Func memory func;
22 func.f = frwd;
23 assembly { mstore (func , add(mload(func), msg.value)) }
24 func.f();
25 }
26

27 function destroy (address addr) public {
28 require (msg. sender == owner)
29 }
30 }

Figure 3.7: Code that makes the user able to write to an arbi-
trary location in the memory and can therefore might overwrite the
owner. Line 23 calls assembly code,which is where this vulnerability
is present.

3.4.8 Hardcoded guards (No SWC)
All data stored and executed on the Ethereum blockchain is public. This includes transac-
tions and their associated payloads, as well as the bytecode that is executed using the EVM.
Although the bytecode may be less comprehensible than the source code, decompilers ex-

32

3.5 Results and Discussion

ist for bytecode. Therefore, hardcoding passwords or keys on the Ethereum blockchain is
strongly discouraged as these values will be visible to anyone, as illustrated in Figures 3.8 and
3.9. The same security concerns apply to hashed keys, as front-running attacks can exploit
any visible transaction not yet completed. Front running is not the focus of this thesis but is
an interesting topic that can be read more about following this source [36].

Hard coded guards are something that may not be used that much on the Ethereum
blockchain but we still think is relevant for Solidity security tools to check for since the
security concerns it brings are of high severity and can cause serious financial losses.

1 contract CompositeSuicide {
2 bool locked ;
3

4 constructor () public {
5 locked = true;
6 }
7

8 function unlock (int key) public {
9 require (key == 8765);

10 locked = false;
11 }
12

13 function restritctedSudicide () external {
14 require (locked == false)
15 selfdestruct (msg. sender);
16 }
17 }

Figure 3.8: Example of hard coded passwords

Figure 3.9: Password 8765 visible in bytecode, hex representation
223D

3.5 Results and Discussion
This section contains all the data collected from the Ethereum blockchain with Slither, Ma-
ian, and Mythril. The graphs represent the surveys that have been done during the project.

The project has focused on high-severity bugs since they can have the largest negative
impact and be the most dangerous. Some medium- and low-severity vulnerabilities have also

33

3. Vulnerabilities on the Ethereum blockchain

been included to see trends in the ecosystem and present more data to track the overall trends.

Figure 3.10: The number of unique transactions sent to smart con-
tracts that were flagged my Mythril to have a bug. Disclosure this
chart does not represent all transactions read more about transac-
tions in the approach.

Figure 3.11: Showing how many percent of contracts get flagged for
vulnerabilities each year, showing a decrease since the launch of the
Ethereum blockchain.

As can be seen in 3.14, the number of contracts flagged for vulnerabilities have decreased
since the launch of the Ethereum blockchain. This shows that the ecosystem is maturing. It
does however showcase a steady increase between 2019 and 2022 which might indicate that
the change might only have to do with the updates done to the Solidity compilation which
prevents a lot of simple bugs that were common early in the development of smart contracts.

34

3.5 Results and Discussion

Figure 3.12: Unique bytecode of smart contracts been deployed per
month, Since October 2015, showcasing the distribution of the ran-
dom sample taken

Figure 3.13: Showcasing how many of the sampled contracts were
flagged as vulnerable

35

3. Vulnerabilities on the Ethereum blockchain

Bugs reported by Mythril on sampled contracts
Error Severity Verified Unverified SWC-id
Exception State Medium 411 8516 110
Dependence on predictable environ-
ment variable

Low 195 1592 116

Dependence on predictable environ-
ment variable

Low 12 163 120

Dependence on tx.origin Low 25 2109 115
Integer Arithmetic Bugs High 4 242 101
Unprotected self-destruct High 2 490 106
Unchecked return value from external
call

Medium 1 1025 104

Multiple Calls in a Single Transaction Low 1 484 113
Delegatecall to user-supplied address High 0 4 112
State access after external call Medium 0 2 107
State access after external call Low 0 4 107
External Call To User-Supplied Ad-
dress

Low 0 11 107

Write to an arbitrary storage location High 0 1 124
Jump to an arbitrary instruction High 0 7 127

Table 3.3: Bugs detected by Mythril and their severity from the sam-
ple contracts divided on verification status.

A hypothesis of ours was that the verified contracts would have fewer bugs than unveri-
fied ones. This holds up for all of the bugs not taking severity into account according to table
3.4. But if we consider only the high-severity bugs we can see a smaller difference between
the two. This tells us that there are fewer bugs in the verified contracts but the really danger-
ous bugs are still present even if they are verified. This can also be concluded by Figure 3.14
where reachable self-destruct (106 found) is still very present and its presence even increased
in 2021 compared to 2020.

Summary of Mythril bugs
Type of contract Contracts in sample Contracts with bugs High severity

Verified 11711 651 (5.6%) 6 (0.05%)
Unverified 85004 14650 (17.2%) 744 (0.9%)

Table 3.4: Summarizing the results from table 3.3 for comparing ver-
ified and unverified smart contracts

36

3.5 Results and Discussion

Bugs reported by Slither on sampled contracts
Error Severity Verified SWC-id
Unprotected self-destruct High 46 106
Delegatecall to user-supplied address High 201 112
Reentrancy exploit High 1784 107
Dependence on predictable environ-
ment variable

High 295 116

controlled-array-length - 275 -
shadowing-state - 229 -
unchecked-transfer - 1447 -
uninitialized-storage - 20 -
array-by-reference - 10 -
name-reused - 37 -
uninitialized-state - 485 -
public-mappings-nested - 1 -
incorrect-shift - 109 -
delegatecall-loop - 20 -
controlled-array-length - 275 -
arbitrary-send - 1036 -

Table 3.5: Bugs detected by Slither in the verified contracts within
the sampled smart contracts. Slither only works on source code and
therefore unverified column is excluded. Only included bugs with
high severity and that where able to be mapped to a SWC-code.

Summary of Slither bugs
Type of contract Contracts in sample Contracts with bugs High severity

Verified 11711 6270 (53.5%) 2326 (19.9%)

Table 3.6: Summarizing the results from table 3.5for comparing ver-
ified smart contracts. This table does only classifies bugs as high
severity if they are able to be mapped to a SWC-id. This is because
Slither labels a lot as severe, so to make the tables comparable only
common SWC-ids where included.

Comparing the numbers from tables 3.6 and 3.4 gives drastically different pictures of
these contracts. Slither the static analysis tool flags around 390 times more contracts to have
a high severity bug. And to clarify this is only taking to account the bugs that have a SWC-
id. If counting more bugs that Slither itself counted as high severity this number would be
greater. If excluding reentrancy vulnerabilities this is the one most flagged by Slither then it
still flags 50 times more often. According to Slither, see table 3.6, 53% of all verified contracts
contain bugs and 20% of them are severe.

The question, which one of these should you trust, still remains. This is a hard question
that we are not able to answer just by looking at how contracts are flagged. More specific
examples and numbers for accuracy and precision is presented in chapter 4, where we zoom
into reachable selfdestruct.

37

3. Vulnerabilities on the Ethereum blockchain

Figure 3.14: The prevalence of bugs classified as high or medium
severity over time flagged by Mythril

38

3.6 Closing remarks and zooming in on self-destruct

3.6 Closing remarks and zooming in on self-
destruct

The Ethereum blockchain is continuously evolving with new users and new smart contracts.
This process goes in waves and depends on external factors like trends and the general fi-
nancial markets. As seen in Figure 3.11, many early smart contracts have a clear tendency
to have bugs in them. Many different things can cause this, but we believe the main reason
was the youth of the domain and the Solidity compiler allowing more faulty code to com-
pile. Since the ecosystem still contains all contracts since the launch of Ethereum 9 years ago,
all older bugs are still present. When the blockchain launched, many bugs were unknown
and used in many contracts. Smart contracts are still in their infancy compared to other
technologies, such as the traditional internet. This brings along growing pains that are still
prevalent within the ecosystem. Some errors were not classified as mistakes until long after
the creation, causing many old contracts to contain those types of vulnerabilities.

As previously mentioned, Maian was the first tool to detect the parity wallet hack men-
tioned in the background, where a non-authorized user could destroy a smart contract and
empty it of its funds. Since then, the type of access control used in the Parity wallet has been
deemed unsafe and is no longer commonly used, showing one example of how contracts on
the blockchain have evolved.

39

3. Vulnerabilities on the Ethereum blockchain

40

Chapter 4

Self-destruct within the Ethereum blockchain

This chapter delves deeper into the results obtained from the previous chapter’s analysis,
with a focus dive assessing the classification performance of different tools for identifying
reachable self-destruct instructions, including identifying gray areas such as intended reach-
able self-destruct. Additionally, an attempt is made to estimate Maian, Slither, and Mythril’s
false-positive ratio and the reason why contracts are vulnerable to reachable self-destruct.
Also, the number of false negatives is tried to be estimated through examining a sample of
not flagged smart contracts. A manual review of contracts flagged as being vulnerable to
reachable self-destruct was conducted to assess the accuracy of the tools.

The knowledge gained in the manual review creates a small benchmark dataset to discuss
where the tools succeed and fall short. The chapter then uses the results from the manual
study and benchmark dataset to propose improvements to Slither, the static analysis tool
used during the survey.

4.0.1 Introduction to the self-destruct function
The self-destruct functions purpose is to remove the smart contract and its functionality
from the EVM and send all the funds of the contract to a specific address named as the
input argument to the function. Any funds sent to the contract from that point on will be
accessible someone creating a new smart contract to that specific address using the relatively
new CREATE2 opcode that was introduced in February of 2019[24].

The purpose of including a self-destruct instruction varies between developers. The top
3 motivations were security, cleanup, and quick withdrawal of funds according to a study
conducted in 2021 Jiachi et Al. The surveys results also concluded that gas refunds also were
a reason to include self-destruct. Gas refunds is a coded incentive for users of the EVM to
remove stored variables and smart contracts to free up space and getting a small portion of
gas back. [15] [12].

Self-destruct can be included because of concerns that there might be bugs in the smart
contract so that the owner/deployer wants to quickly be able to remove any funds from the

41

4. Self-destruct within the Ethereum blockchain

contract and mitigate the damage if a security loophole is discovered. Because the code is
immutable when on chain it is hard to make updates, hence self-destruct becomes a way of
updating your contract is by deleting the old one and deploying a new one.

4.1 Definition of reachable self-destruct
Our definition of "reachable self-destruct" refers to any sequence of functions triggered by
an arbitrary user that executes a self-destruct instruction. Therefore, contracts with condi-
tional statements that nonauthorized users cannot bypass are deemed safe. The question of
identifying reachable self-destruct instructions thus becomes an access control issue, which is
discussed further in the next section. We use the term "reachable" rather than "unprotected"
self-destruct to account for the possibility that the self-destruct instruction may be protected
but circumvented through alternative means.

The only other source we have found discussing reachable self-destruct or, in other terms,
composite unprotected self-destruct is Ethainter [10]. They focused on tainted guards that
overlap with our work but are more of a general case. They did not have a specific definition
focused on self-destruct, and because this thesis focuses on that particular access control case,
we chose to introduce the term. In the paper describing Maian, these contracts are called
suicidal, which refers to the same type of contracts we refer to as reachable self-destruct, i.e.,
contracts that can be killed by an arbitrary user[30]. Mythril refers to all of these contracts
as unprotected self-destruct[14].

A smart contract might be intentionally designed in a way that it is deemed vulnerable
to reachable self-destruct. In our understanding, separating intentional and non-intentional
is very hard. Therefore, intentional and non-intentional are considered true positives. It is
a critical perspective when analyzing contracts that may appear vulnerable but are inten-
tionally designed to be transparent for legitimate reasons, which will be discussed in a later
subsection.

4.2 Access Control
Access control encompasses various methods of regulating access to resources, with the over-
arching goal of determining who can access what and how access is enforced [2]. Access con-
trol works differently on the Ethereum blockchain than on a computer or on the web, where
a usual method for identification is with a username and password. Because everything is
public on the blockchain, there is no possibility of sending a password or username without
revealing it to everyone. The unique identifier used for access control on the blockchain is
the individual’s address.

Access modifiers in Solidity provide a fundamental mechanism for imposing restrictions
on the usage of a specific function. As illustrated in Figure 4.1 and documented in [3], the
access control logic is encapsulated in a separate modifier function rather than implemented
using an if statement. In practice, using if statements as access control are frequently re-
placed by the require() function. Among the manually reviewed contracts, the most com-
mon modifier used was onlyOwner, as exemplified in Figure 4.1, where it is shown how
onlyOwner is often used in real-world contracts.

42

4.2 Access Control

1 contract Purchase {
2 address public owner;
3 mapping (address => bool) public Sellers ;
4

5 constructor () payable public {
6 owner= msg. sender ;
7 // msg. sender represents address that is being called
8 }
9

10 modifier onlyOwner () { // Modifier
11 require (
12 msg. sender == owner ,
13 "Only owner can call this ."
14);
15 _;
16 }
17

18 function assign_seller (address addr) public view onlyOwner {
19 // Modifier usage
20 Sellers [addr] = true;
21 }
22 }

Figure 4.1: Example of how a modifier can be used to secure a smart
contract. See how the modifier onlyOwner on row 10 is used in row
18. [23]

Role-based access control (RBAC) is an alternative approach to managing access. It in-
volves assigning distinct roles to different users that can have distinct access rights. This
method may be implemented using modifiers, as outlined in the following source [2].

The require() function operates in a similar manner to a database transaction. If the
specified requirement is not met, the contract is reverted to its prior state, as explained in
the Solidity documentation [3].

Subsequent subsections discuss potential weaknesses in access control mechanisms.

4.2.1 Composite vulnerabilities
Access control vulnerabilities that appear through state changes of a program that then lead
to security holes in the programs access control. This is a term we have used from the Ethain-
ter paper [10] that they explain as "composite attacks that involve an escalation of tainted informa-
tion, through multiple transactions,leading to severe violations.". Composite vulnarbilities include
any of the vulnerabilities mentioned in chapter 3 that depends on access control to be safe.
For example as "delegate call to arbitrary instruction", self-destruct or "jump to arbitrary in-
struction".

4.2.2 Flawed Access Control
The first type of vulnerability is called "Unprotected self-destruct." It occurs when the self-
destruct function is not protected with any require(), modifiers, or if statements. This

43

4. Self-destruct within the Ethereum blockchain

vulnerability can be easily identified by Mythril and Slither.
The second type of vulnerability is a composite vulnerability [10]. This vulnerability arises

when user privileges can be altered to circumvent security requirements through multiple
invocations of the contract, making the contract susceptible to attacks. See Figure 4.2 how
the owner can be changed. We have defined unprotected and composite self-destruct under
one concept, reachable self-destruct.

Another example of composite self-destruct can be made with "Write to arbitrary storage
location" (SWC:124) from Chapter 3, where the owner in the case of Figure 4.2 could be
changed to circumvent the access control, of course, needs the logic for writing to an arbitrary
memory location, seen in figure 3.4.

"Jump to an arbitrary instruction" (SWC: 127) is also a way to circumvent access control
where a user can execute an arbitrary instruction without fulfilling a function’s requirements.
For example, see Chapter 3, figure 3.7.

1 contract CompositeSuicide {
2 address owner;
3

4 constructor () public {
5 owner = msg. sender ;
6 }
7

8 modifier onlyOwner {
9 require (owner == msg. sender);

10 _;
11 }
12

13 function changeOwner (address newOwner) public {
14 owner = newOwner ;
15 }
16

17 function sudicideByOwner () public onlyOwner {
18 selfdestruct (msg. sender);
19 }
20 }

Figure 4.2: Example of a composite self-destruct, where anyone can
change the owner of the contract making it possible the destroy the
contract and steal the funds.

44

4.3 Slither’s static analysis of reachable self-destruct

4.2.3 Intended reachable self-destruct
Determining whether a feature represents a vulnerability or legitimate functionality requires
a nuanced evaluation that the Solidity security tools in this paper are not able to do. An
example of this can be seen in figure 4.3 where if a person guesses the right number, the
person shall be able to destroy the smart contract and receive the funds currently belonging
to it. These kinds of contracts have been chosen to call true-positives since an arbitrary user
can kill them under the right conditions.

1 contract Lottery {
2 // creates random number between 0 and 1 on contract creation
3 uint256 private randomNumber = uint256 (keccak256 (now)) % 2;
4
5 function play(uint256 _number) public payable {
6

7 // if player guesses correctly , transfer contract balance
8 // else transfer to owner
9 if (_number == randomNumber){

10 selfdestruct (msg. sender);
11 }else{
12 selfdestruct (owner);
13 }
14 }
15
16 }

Figure 4.3: Example of an intended reachable self-destruct in the
context of a lottery. Side note this contract contains another vulner-
ability when it uses a predictable environment variable; see Chapter
3 "Dependence on predictable environment variable" for further de-
tails.

4.3 Slither’s static analysis of reachable self-
destruct

The analysis performed by Slither for determining whether a program is vulnerable to self-
destruct involves two hard-coded steps.

Firstly, it examines if the modifier’s name is "onlyOwner" or if msg.sender is employed
directly in the modifier’s require() statement. Relying on a function name is not advisable
since it is an unreliable source of information. For instance, the modifier_faulty_onlyOwner in
the benchmark table 4.5 is incorrectly classified as safe when it is protecting its self-destruct
with an always true statement, require(1 == (2/2)). Slither classifies functions using this
modifier as safe, but the team acknowledges that this type of method results in false positives
and false negatives.

Secondly, Slither checks if msg.sender is utilized directly in the modifier’s require()
statement. As a result, the test case modifier_faulty_requirement from the benchmark dataset

45

4. Self-destruct within the Ethereum blockchain

4.5 passes even though the requirement is always true, as seen in require(msg.sender ==
msg.sender).

Currently, Slither does not perform any analysis to determine if external users can alter
permissions. Consequently, it cannot handle composite vulnerabilities where the owner of
the contract can be changed [19].

4.4 Detecting reachable self-destruct with
Mythril’s symbolic execution

Symbolic execution allows Mythril to create a comprehensive model of the smart contract’s
behavior, including its possible states, inputs, and transitions. By analyzing this model,
Mythril can identify instances where a self-destruct instruction can be executed, thus poten-
tially destroying the contract and causing a loss of funds or other undesired consequences.

The process of detecting reachable self-destruct vulnerabilities with Mythril’s symbolic
execution can be outlined as follows:

• Create a control flow graph of the smart contract’s different states. This graph encom-
passes all possible states and inputs, as well as the resulting transitions.

• Analyze the graph to identify any instances where the self-destruct instruction can
be executed. This includes checking for conditions that allow any user to trigger the
self-destruct instruction, such as unprotected function calls or faulty access control
mechanisms.

• Generate a detailed report of the identified vulnerabilities, along with the correspond-
ing transaction traces that can lead to the execution of self-destruct. This report assists
developers in understanding the root cause of the vulnerability and provides guidance
on how to remediate the issue.

By employing symbolic execution, Mythril can detect reachable self-destruct vulnerabil-
ities in Ethereum smart contracts, enabling developers to address these security risks before
deploying their contracts on the blockchain [14].

4.5 Method
To evaluate the results from the smart contract security tools, we needed to be able to read
the contracts ourselves. Therefore we chose to evaluate only verified contracts for which
we had the corresponding source code. After obtaining the verified contracts, we filtered
out the smart contracts that contained at least one self-destruct instruction to minimize the
time for analysis, see table 4.1. After filtering out the relevant contracts, we ran the tools
on them and got their results. Every flagged contract was manually reviewed to find false
positives; see figures 4.4 4.6 to see results. Some of the true positive contracts were also
cross-referenced. We tried to find out why the other tools did not flag contracts containing a
vulnerability. To find out the ratio of false negatives, a random sample of 10% of the contracts
with a self-destruct that had not been flagged were selected and manually reviewed to find

46

4.6 Results and Discussion

any vulnerabilities that were not detected; see figures 4.5 4.8 to see results. Finally, we created
a benchmark dataset with smart contracts that summarized the weaknesses of the different
security tools, see table 4.5.

Type Amount
Verified smart contracts 115852

Verified smart contracts with self-destruct Instruction 2231

Table 4.1: Showing the amount of self-destruct instructions in the
smart contracts with source code.

4.6 Results and Discussion
This section presents true/false negatives and true/false positives, and the reason for them is
discussed. An overview of the overlap of the different tools is shown to visualize how much
the tools agree. Lastly, we present our benchmark dataset with some of the lessons learned
from this deep dive. The results of Maian will be briefly discussed but no tables are presented
since it did not flag enough contracts for the result to be significant.

4.6.1 Manual review
Slither

Figure 4.4: Accuracy of Slither on verified contracts with reasons
for contracts being vulnerable of reachable self-destruct

As can be seen in figure 4.4, Slither has a 52 percent true positive rate of the flagged contracts
in the verified dataset. This number is reached through manual review and is the ground truth
we use in this thesis. More contracts could have been used and more people could have been
involved in the labeling to get a better ground truth. As can be seen in figure 4.4, most con-
tracts that contain reachable self-destruct does so on purpose. One example of this can be a
lottery contract which will be killed when a winner has been found. Out of the 155 flagged

47

4. Self-destruct within the Ethereum blockchain

contracts flagged by Slither, 95 still existed on chain in January 2023, which shows that con-
tracts containing self-destruct are often destroyed. However, from our manual review, we
deem it highly likely that this is due to their owners destroying them. The manual review
concluded that the true positive rate for the destroyed contracts was 64 percent, slightly
higher than for the alive contracts.

You could argue that smart contracts with intentional reachable self-destruct would be a
false positive but we count them as true positives because of the difficulty for smart contract
security tools to understand the intent of the author. An example of a true positive with
reachable self-destruct can be seen in the example code in figure 4.3. Further examples of
such contracts include those that are created for one-time use.

Figure 4.5: Manual review on a sample of 5 percent of verified con-
tracts containing self-destruct instructions flagged as negative by
Slither

As seen in figure 4.5, Slither mislabeled some contracts flagged as safe too. The major-
ity of the false negatives come from self-destruct in the constructor of the contract, which
Slither is programmed to label as safe. All the contracts with self-destruct in the construc-
tor are reviewed to be put there on purpose. That approach can be considered good prac-
tice implemented by Slither, but that counts on programmers knowing what they are doing,
which comes down to the tool’s usability. These contracts are still considered unprotected
self-destruct, but we understand why these contracts are not flagged.

One not flagged contract has an internal (private) function containing self-destruct reached
from a public external function, which is still flagged as safe. This refers to Slither’s problem
in handling inter-procedural functionality that needs modifiers. This example can be found
in the benchmark dataset 4.5 named internal_function.

Mythril
With increasing the call depth limit for the symbolic execution in Mythril an increasing
amount of contracts are flagged for reachable self-destruct. This made us do a small measure
of how much call depths affected Mythril’s ability to find reachable self-destruct vulnerabili-
ties; see table 4.2. This was done so that a relevant call depth could be defined before running
contracts to find the intersection between Slither, Maian, and Mythril. The conclusion was
that a depth of 15 and a timeout of 240 seconds would find most of the contract deemed
vulnerable by Mythril in the verified dataset.

48

4.6 Results and Discussion

Depth evaluation
Timeout
(seconds)

120 120 120 120 120 240 240 240 240 240

Call
Depth

3 5 10 15 20 3 5 10 15 20

Detected 1 3 9 16 14 1 3 9 16 16
TimedOut 0 0 4 7 14 0 0 0 0 0

Table 4.2: Running Mythril with different call depths and different
timeouts on 95 verified contracts containing bytecode, flagged by
Slither

Figure 4.6: Accuracy of Mythril on verified contracts with reasons
for contracts being vulnerable of reachable self-destruct

Figure 4.6 divides the reasons for flagging the true positives. The false positives shown in
figure 4.6 were all the same kind of contract; therefore, no division was needed. The prob-
lem with the contract was that it used the initialization of other contracts in function logic.
Similar to other object-oriented programs. Initialized smart contracts made the symbolic
execution unable to understand adminVault.admin == msg.sender seen in figure 4.7,
and interpret the modifier as unsafe even if it is not.

The true positives had the same trend as Slither; with it, many of the smart contracts
flagged were intentionally programmed to be self-destructed.

49

4. Self-destruct within the Ethereum blockchain

1 contract AdminVault {
2 address public owner;
3 address public admin;
4

5 constructor () {
6 owner = msg. sender ;
7 admin = 0 x25eFA336886C74eA8E282ac466BdCd0199f85BB9 ;
8 }
9 }

10

11 contract AdminAuth {
12 AdminVault public constant adminVault = AdminVault (

ADMINVAULT_ADDRESS);
13 error SenderNotAdmin ();
14

15 modifier onlyAdmin () {
16 if (adminVault .admin != msg. sender){
17 revert SenderNotAdmin ();
18 }
19 _;
20 }
21

22 function kill () public onlyAdmin {
23 selfdestruct (payable (msg. sender));
24 }
25 }

Figure 4.7: Boiled down code of all the false positives in figure
4.6. Showing a weakness of Mythril not being able to handle cross-
contract objects. The problem accrues on row 16, where an object
of AdminVault is used to access the admin address; Mythril can not
handle the interprocedural analysis.

Figure 4.8: Manual review on a sample of 5 percent of verified con-
tracts containing self-destruct instructions flagged as negative by
Slither

When going through a sample of 5% of the smart contracts not labeled positive by Mythril,

50

4.6 Results and Discussion

see figure 4.8 to approximate its false negatives, 6 false negatives could be found. The majority
of them had initialized smart contracts inside of them that made the symbolic execution not
able to process the whole control flow of the program and therefore break and classify the
contract as safe even if that was not the case.

Tool

Reachable self-
destruct found
in 480 000 smart
contracts cur-
rently on chain

Maian 674
Myhtril 480

Tool

Vulnerabilities
found in 117 000
verified smart
contracts

Maian 6
Mythril 114
Slither 155

Table 4.3: Comparsion between reachable self-destruct found in ver-
ified contracts and all contracts

In the left table of figure 4.3, all unique contracts on chain until October 2021 were
analyzed to get a general picture of how many would be flagged for reachable self-destruct.
Only Mythril and Maian were used since Slither does not take bytecode, and we did not find
any good decompiler to convert the bytecode into source code. Interestingly, Maian finds
so many contracts with reachable self-destruct since it finds the least by far in the verified
dataset and does not detect any out of the benchmark. This indicates that Maian was good at
detecting reachable self-destruct when it was released but would need maintenance to keep
up with the development of the EVM optimizations of bytecode.

Figure 4.9: Overlap of tools on the verified contracts on-chain untill
of July 2022

51

4. Self-destruct within the Ethereum blockchain

Tool Amount False Negatives False Positives
Mythril 114 6 95
Slither 160 8 43
Maian 6 - -

Table 4.4: Summarized numbers for the different security tools show
in figure 4.9 and their corresponding false positive/negative

4.6.2 Closing remarks on reachable selfdestruct
In smart contract security, a high level of certainty is required because of the stakes of losing
funds. That risk makes the completeness of a security analysis critical. Symbolic execution
flags real vulnerabilities but misses some contracts classed as unprotected self-destruct. Static
analysis over flags but also misses some of the more obvious true positives seen in figure 4.9.
The figure shows that both symbolic execution tools miss so many true positives that it be-
comes redundant to look for this vulnerability through their use of them. Even though both
Maian and Mythril had an accuracy of 100 percent, they both missed 88 of the contracts
flagged by Slither, of which 45 percent were true positives. The imperfect completeness also
gives a picture of how immature the field of analysis of smart contracts is. Maian claims to
be able to flag composite vulnerabilities, which it indeed does, but it does not flag enough
vulnerable contracts compared to other tools. Mythril has the same dilemma regarding con-
tracts susceptible to reachable self-destruct; at least, it does flag more access control problems
that Maian does not consider. The symbolic execution tools can handle more complex vul-
nerabilities, but some of their complexity makes them miss simple cases that Slither, with its
simple rules, can detect.

The contracts flagged for reachable self-destruct often contain vulnerabilities that can be
applied to more than self-destruct. More bugs in the access control category have the same
type of problems within the code. One simple example is being able to change the owner
of a contract since if an attacker can become the owner, many vulnerable functions become
available to the attacker. Other vulnerabilities this can be applied to are Jump to an arbitrary
instruction and Delegatecall to user-supplied address as can be seen in figures 3.3 and 3.7.

To note is that from Solidity 0.8.18 and up, including self-destruct instruction in your
code will generate a deprecation warning because it might be removed or replaced in a later
fork [3]. This does not make this report irrelevant because the principles apply to every smart
contract deployed to date and the analysis method for finding reachable code can be applied
to other critical instructions, as well on possible replacements of self-destruct instruction.

4.7 Benchmark dataset
We derived the benchmark dataset from our prior expertise in program analysis, coupled
with the insight from the study in Chapter 3 and the manual review of the contracts flagged
for having reachable self-destruct by the Maian, Slither, and Mythril. Some contracts were
also taken from the Smartbugs benchmark dataset for access control vulnerabilities.[6] The
benchmark dataset can be accessed on https://github.com/Frallan97/reachable_self_destruct_benchmark.
[8]

52

https://github.com/Frallan97/reachable_self_destruct_benchmark

4.7 Benchmark dataset

Tools on created contracts
(x detected bug) Slither Mythril Maian Inspired

by manual
review

Taken from
smartbugs
dataset

composite_selfdestruct_password
composite_selfdestruct _recur-
sion
composite_selfdestruct _trans-
fer_ownership

X X

modifier_faulty_onlyOwner X
modifier_faulty_requirement X
double_modifier X X
cross_contract_variable X X
cross_contract_selfdestruct X X
forloop_selfdestruct X X
password_selfdestruct X X
recursive_selfdestruct X X
simple_selfdestruct X X X X
suicidal_fake_guard X X X
arbitrary_jump X X
arbitrary_write X X
internal_selfdestruct_function X X
delegatecall_arbitrary_address X X
parity_wallet_hack_1 X
parity_wallet_hack_2 X

Table 4.5: A table of what cases of reachable self-destruct Slither,
Mythril, and Maian can catch. A hint of what kind of flaw is present
can be seen in the name. The Solidity code can be found on here.
"Inspired by manual review" column represents boiled-down smart
contracts that were inspired by our manual review.

• composite_selfdestruct_password - contains a change owner function that can be unlocked
with a password. Similar to the code in figure 3.8 but with a separate change owner
method.

• composite_selfdestruct_recursion - contains a change owner function with recursion lim-
ited to a depth of two.

• composite_selfdestruct_transfer_ownership -

• modifier_faulty_onlyOwner - a modifier named only owner but will always return true.

• modifier_faulty_requirement - modifier have a requirement containing msg.sender ==
msg.sender.

• double_modifier - Containing multiple modifiers that are dependent on each other.

53

https://github.com/Frallan97/reachable_self_destruct_benchmark

4. Self-destruct within the Ethereum blockchain

• cross_contract_variable - instantiating a contract inside another one, similar to instanti-
ating a class in java. Checking if tools can handle cross-contract analysis.

• cross_contract_selfdestruct - Instantiating a smart contract and using a function with un-
protected self-destruct.

• forloop_selfdestruct - checks if the tool can analyze for loop correctly.

• recursive_selfdestruct - self-destruct inside recursion

• simple_selfdestruct - open public self-destruct instruction

• suicidal_fake_guard - a guard that is always true based on hard-coded values.

• arbitrary_jump - user is able to execute arbitrary smart contract instructions and skip
requirements.

• arbitrary_write - Can overwrite arbitrary memory, for example making a contract vul-
nerable to reachable self-destruct.

• internal_selfdestruct_function - exposing self-destruct using an internal (private) func-
tion.

• delegatecall_arbitrary_address - Might expose the smart contract to selfdestruct through
logic from other smart contracts.

• parity_wallet_hack_1 & 2 - Are example contracts of the parity wallet bug that occured
in 2018. It is explained in more depth in the text below.

Looking at the results we can see that Slither and Mythril flag a lot of the benchmark
dataset, see table 4.5 but Maian can not find any of the built-in vulnerabilities, witch may
not be that strange because it is not maintained anymore, with it’s last update in 2018 [25].

This dataset focuses on ways to create false-negatives for the Solidity security tools it
might not always be the case that many of their kind are present on the Etherium blockchin.

A study conducted in 2019 about the treewidth of Solidity control flow graphs examined
the existing verified smart contracts and concluded that none of them contained instances of
recursion [11]. It is important to note that this conclusion only pertains to verified contracts.
Actors with bad intent seeking to defraud users would not want to have their smart contracts
verified and, therefore composite vulnerabilities with recursion matters. Our own research
did not specifically focus on the presence of recursion, so it is unclear how frequently such
smart contracts are deployed today or are currently present on the Ethereum blockchain.
However, it is worth noting that if recursion was combined with the composite vulnerability
of allowing the owner of a contract to change, a malicious user could conceal the vulnerability
from both static and symbolic execution analysis tools. It is meant to be a collection of
contracts to evaluate current and future tools’ ability to detect reachable self-destruct.

To be noted is that two versions of the previously mentioned parity-wallet hack are in-
cluded in the data-set. This bug is, to this day, the case where reachable self-destruct has had
the largest monetary impact. The vulnerability is an access control issue where the number
of owners can be set to 0 so that anyone is allowed to call on protected functions.

54

4.8 Limits of tools and possible improvements

Note that Slither cannot detect this since it is a composite vulnerability. Maian does not
detect this either, but it has another version of the same bug that it detects included in its
own example dataset. This can be explained through that it is an older bug that Maian can
handle, as well as that Maian was built to find composite vulnerabilities like the parity wallet
hack. The examples of the Smartbugs dataset were taken from the smart bugs repository. [6]

4.8 Limits of tools and possible improvements

4.8.1 Can you detect intended reachable self-destruct
Whether to label intended reachable self-destruct as a true positive or a false positive comes
down to what expectations to put on tools. We decided to label the intended reachable self-
destruct as a true positive since it is hard for both symbolic execution and static analysis to
distinguish if the contract developers put the reachable self-destruct as a feature or if it should
be considered a bug. Many of these contracts depend on hard-coded variables such as time
or a random number generator for organizing a lottery. To label these contracts correctly,
the tools would need to understand the purpose of the analyzed contract, which is outside
the current state of static analysis and symbolic execution and therefore intended reachable
self-destruct should be labeled as a true positive. This labeling can even be seen as a tool
feature since developers intending to implement a reachable self can see that they succeeded.
This can also ensure detection in cases where developers have a reachable self-destruct in a
contract which might seem intentional but is not.

One way to approach this problem would be to use a machine learning model with a
neural network trained to find code. This has not been done yet. Machine learning to find
vulnerabilities in smart contracts has been attempted, with the model being based on results
produced by Slither and using the byte code from these [32]. The study tried using both
models of CNN (convolutional neural networks) and one model of LTSM(Long term short
memory neural networks). The results showed enough accuracy to prove that this approach
can be viable when using CNNs. However, the training of this neural network was based on
the results of Slither and is therefore limited to the tool’s capacity. To be able to outperform
tools, a dataset with more reliable ground truth is needed [32].

4.8.2 Slither
Slither is the tool that is the quickest and most reliably flags vulnerable contracts. This does
not mean that Slither does not have flaws or possible improvements. It does not handle inter-
procedural vulnerabilities where the contract calls its own
internal (private) functions. Slither fully relies on its check if a function is protected or
not, and if a function is protected it is classified as safe. However, it does not check for in-
ternal calls (calls to private functions), which makes this an issue. We propose that the tool
implement some pointer-to or taint analysis to solve this. This would make the tool interpro-
cedural and able to handle more complex programs. We acknowledge that this would create
new false negatives and increase the run time of the analysis, but for the severe vulnerabili-
ties it could prohibit, it would be worth the trade-off. This type of analysis could also reduce
the total amount of false negatives if it were implemented instead of the current modifier

55

4. Self-destruct within the Ethereum blockchain

detection to determine if a function is protected by the access control implemented in the
contract.][18]

As mentioned in Slither’s paper it uses taint analysis for some of its analyses [19], but not
in the case of finding unprotected self-destruct. For Slither to be able to find the composite
vulnerabilities in the benchmark dataset, taint analysis could be the solution. Taint analysis
is a program analysis technique that, in summary, contains three steps.

56

4.8 Limits of tools and possible improvements

1. Identify the tainted data, in other words, the data that can be set or manipulated by
an external user.

2. Identify sensitive sinks like a requirement in a self-destruct function.

3. Lastly, ensure no tainted data is used in the sensitive sinks.

This type of analysis can be automated with points to analysis that builds a graph repre-
senting how data flows through a program. An illustration of the taint analysis using pointer
analysis could be implemented, which can be seen in the figures 4.10 4.11 4.12.

Figure 4.10: Identifying tainted data, data that external users can
change

57

4. Self-destruct within the Ethereum blockchain

Figure 4.11: Identifying sinks where tainted data should not be able
to reach

Figure 4.12: Doing a pointer analysis to see what different values,
in this case owner can take and check if the sink and tainted data
are connected. The result is that they are, and the program contains
reachable self-destruct

58

4.8 Limits of tools and possible improvements

4.8.3 Mythril
Mythril outperforms Slither and Maian in the benchmark dataset, detecting 11/17 reachable
self-destruct. Mythril may find a lot of different kinds of self-destructs planted inside, but it
is harder for it to handle larger, more advanced smart contracts. Even though Mythril flags
114 contracts, 95 of them are the same type of false negative, as a can be seen in figures 4.4 4.6
for reference. After analyzing the different contracts that were not labeled by Mythril but
by Slither, it was clear that Mythril had a hard time when smart contracts were being used
with each other. Also, all its false positives were contracts initialized inside contracts.

Using the default settings of recursion dept of three for Mythril, only 1 of the 95 flagged
(49 true positives) contracts by Slither was flagged to contain reachable self-destruct; this can
be seen in table 4.2. Because when the recursion depth was increased to 15, 18 smart contracts
of all verified smart contracts could be detected with 95 false positives.

The low default value of the recursion depth makes it very likely that Mythril has missed
many reachable self-destructs during its lifetime.

Mythril has the ability to analyze a program and create a transaction trace to follow the
vulnerability. But if you increase the complexity of a smart contract, for example, compos-
ite_selfdestruct_password that has a 2-step vulnerability and is not detected by Mythril. We are
unsure why this is the case and can not understand it from the source code in Mythril.

59

4. Self-destruct within the Ethereum blockchain

60

Chapter 5

Related work

Here we present articles and studies related to ours that we either took inspiration from or
investigate similar topics to our own.

5.1 Empirical Review of Automated Analysis
Tools on 47,587 Ethereum Smart Con-
tracts

The most similar study to our was done by the developers behind Smartbugs. [6]. The study is
mentioned in section 2.3.4 and is a paper that inspired us to write this thesis. It goes through
the results of running nine automated tools on two data sets, one consisting of 47 587 verified
smart contracts and one created by the team at Smartbugs with 69 annotated smart contracts
containing known vulnerabilities.

The access control part of the annotated contracts contains 18 contracts, and out of those,
four are directly related to reachable self-destruct, and 6 contain bugs that can lead to a con-
tract being vulnerable to reachable self-destruct. Three of the contracts from our benchmark
dataset were taken from these contracts, while some others were inspired by it but modi-
fied to include reachable self-destruct. Both Mythril and Slither label four contracts from
this set of contracts consistent with our results. Maian labels zero, which is also consistent
with the results achieved in our study. The only reachable self-destruct that all tools detect
in this dataset is the simple_selfdestruct, which is included in our benchmark dataset.
The authors of the Smartbugs paper propose running a combination of Slither and Mythril
to find the most bugs compared to execution time and memory requirements, which is the
combination we have analyzed in this thesis. This combination finds 31% of the bugs in their
benchmark dataset, which they acknowledge is a low number and similar to the conclusions
we drew.

61

5. Related work

The Smartbugs study presents metrics similar to ours regarding activity within smart
contracts on the Ethereum blockchain, such as different categories of vulnerabilities over
time. The graph presented for this makes it hard to compare to our results seen in figure
3.14, and no numbers were presented to back the graph. This graph mainly shows a heavy
correlation between the number of contracts deployed and the number of bugs present. The
nine tools found possible vulnerabilities in 93% of the analyzed contracts, which the authors
acknowledge points to many false positives. This has much to do with the symbolic execution
tool Oyente labeling 73% of all contracts as vulnerable. [17]

There are some differences to our own study. When describing the overall state of the
blockchain they did not investigate the amount of transactions conducted by flagged con-
tracts. We also went into more depth when analyzing the precision and accuracy of the tools,
by manually reviewing a sample, while they solely used their benchmark dataset. By taking
this sample we were also able to estimate the number of false negatives with numbers that
reflect more on how contracts on the actual chain look.

5.2 A critical comparison on six static anal-
ysis tools: Detection, agreement, and
precision

A similar study was conducted on 47 large open-source Java projects in 2023[28], where the
authors ran the projects on the bytecode of the Java classes and then analyzed the results.
Six different static analysis tools were used, and 13 554 762 issues were found. These tools
investigate code quality in general and not only security, like the tools used in our survey,
which can explain the many issues found. After the analysis, the authors took a sample just
like we did and compared the results of the tools. They defined a manual ground truth for
each issue to find the accuracy of each tool. The accuracy of the tools ranged from 19% to 86%.
This shows that static analysis can be highly accurate when analyzing faulty code. However,
these results might need to be more accurate because the tool with the highest accuracy had
a limited scope of issues that it detected. It only checked for design errors and wrong syntax.
For the tools that did take in more complex issues, such as security and bugs, the best tool had
an accuracy of 52%. The authors conclude that many of the simpler issues flagged could be
solved through re-factorization tools and therefore automated with the static analysis tools.
The authors took a sample similar to our own method by randomly selecting between 300
and 400 issues and then manually reviewing these to get accuracy numbers. However, they
did not sample for false negatives as we did.

The study showcases similar results to our own when analyzing the capabilities of current
static analysis tools. The most comparable one in our survey would be Slither, which runs on
source code and uses static analysis techniques. The study shows that tools succeed in finding
simpler issues while struggling to find more complex ones, similar to our own conclusion of
Slither.

62

5.3 Ethainter: A Smart Contract Security Analyzer for Composite Vulnerabilities

5.3 Ethainter: A Smart Contract Security
Analyzer for Composite Vulnerabilities

Another tool we wish we could have included in our study is Ethainter[10], a static analysis
tool that can run on byte-code. Ethainter can detect five types of vulnerabilities, classified
by the authors:

• Tainted Owner Variable

• Tainted delegatecall

• Accessible self-destruct

• Tainted self-destruct

• Unchecked Tainted staticcall

Our definition of reachable self-destruct can be seen as a combination between reachable
self-destruct and tainted self-destruct since they lead to unauthorized access to self-destruct
instructions. Unfortunately, Ethainter is not open source, so we could not include it in our
study.

When launched in 2020, Ethainter was presented with a paper that compared Ethainter to
other program analysis tools based on the results obtained when testing the tool. During these
tests, it was run on all 240 000 contracts with unique bytecodes on the Ethereum blockchain.
A small random sample of these contracts was taken to evaluate the tool’s accuracy. In the
sample, the tool has an accuracy of 100% on both tainted self-destruct and accessible self-
destruct. A comparison is also made to two other tools, teEther, and Securify, which can
detect similar things that Ethainter can. On a sample of 6 094 contracts, Ethainter has an
accuracy of 69% across all bugs and of 73% when it comes to self-destruct. This shows potential
for Ethainter to be the best available tool for finding reachable self-destruct, but since we
cannot run it and the data sets used are not available, we cannot investigate this further.
Compared to our numbers, where Slither achieved and accuracy of 52% and Mythril of only
16%. To keep in mind, is that Mythril has an accuracy of 61% on our benchmark dataset and
the low percentage on the verified dataset was due to Mythril mislabeling one common type
of contract many times. Slither had a an accuracy of 56% on our benchmark dataset, which
is more in line with the results on the entire verified dataset and Ethainters results.

63

5. Related work

64

Chapter 6

Conclusion

Program analysis is a complex task, and it takes a lot to cover everything. In the case of
Solidity, it is hard to tell if a smart contract has a security flaw or if it is a feature. From
writing this thesis, we can conclude that manual review of smart contracts will be around for
a while with the extensive range of different security vulnerabilities, where no tool can detect
all vulnerabilities. Smart contract security tools have their different specialized strengths and,
with them, their corresponding weaknesses.

The ecosystem of smart contracts on the Ethereum blockchain has quickly emerged as a
large holder of monetary value. The potential financial gain has attracted many malicious
users and people trying to develop serious, smart contract projects. As seen in 3.14, the num-
ber of vulnerable contracts has decreased as the space has matured. Even though the number
of bugs in newly deployed contracts has decreased, a significant percentage of contracts are
still vulnerable. The need for program analysis tools still exists to make sure smart contracts
are developed without bugs. The tools analyzed in our thesis and T.Durieux Et al. (Section
5.1) find less than 50% of the relevant security threats. In the current state, manual review is
still heavily relied upon to ensure contract safety.

Maian is a reasonably old tool that is no longer maintained, and in a fast-moving area
such as smart contracts, it can no longer be used to find bugs. Maian finds the more reach-
able self-destructs than the other symbolic execution tool, Mythril, on the unverified smart
contracts, as seen in section 4.3. These contracts do not have available source code, and it
is hard to conclude the accuracy and precision of Maian. The fact that it finds more than
Mythril might be because many of the contracts present in the unverified dataset are old,
and Maian can handle them, which shows that it was state-of-the-art when developed; the
lack of maintenance has prevented it from keeping this status.

65

6. Conclusion

6.1 Future work

6.1.1 Surveying more
To estimate what the current state of the art security tool, more tools would need to be
included in the research. The tools in this paper were chosen based on which tools could
find reachable self-destruct and because T. Diroux Et Al. [17] suggested the combination of
Slither and Mythril as the most complete way of finding bugs while still limiting time and
memory used. In particular, Ethainter should be included in a study that the author does
not write of the tool. In the case of reachable self-destruct, this would be very interesting
since the accuracy numbers claimed in the Ethainter paper, [10] are way above the accuracy
of Slither, the most accurate tool we evaluated.

6.1.2 Implementing improvement of tools
This thesis studies three tools, out of which we consider two to be state-of-the-art, Mythril
and Slither. However, to be state of the art for analyzing smart contracts does not require a
high level of accuracy since the tools analyzed still have a high rate of false positives, as seen in
figures 4.6 and 4.4. Section 4.7 identifies several improvements for Slither and Mythril that
could improve the tool’s detection rate of reachable self-destruct and other access control-
related problems. If implemented, these improvements could push both tools into an accu-
racy that is above current standards.

Slither is a static analysis tool with a wide range of detection modules that is easy to
expand upon. Restarting this project that could have been a project to implement taint
analysis with the points-to analysis described in Chapter 4. Slither’s specific "unprotected
self-destruct" module is very primitive, as described in Chapter 4, but still quite effective.
For example, it handles cross-contract vulnerabilities better than Mythril, where it reads the
source code and checks for open self-destruct functions. It is simple yet effective. The trouble
comes when you are aware of how the tool works. It is super easy to trick if you know what
to do because of its hardcoded parts. For example, name the modifier onlyOwner, and your
function will always pass as safe.

Mythril can generally find the most reachable self-destruct inside one smart contract;
the problem appears when introducing recursion, multiple modifiers, or using logic from
smart contracts instantiated inside another. Mythril is harder to improve for anyone because
of the use of symbolic execution and the extra complexity it brings. Mythril needs better
documentation to help with the process of improving the tool. Improving Mythril’s ability
to handle cross-contract analysis would remove 100% of its false positives because all of them
were of the same type and were secured by values in another smart contract.

6.1.3 Detecting vulnerabilities using neural networks
In M.Rossinis’s paper about using neural networks to find vulnerabilities in Solidity code,
it is deemed feasible to do so successfully.[32] However, her results are based on the results
of Slither, meaning that it depends on the result of only one tool. Suppose a ground truth
were to be set for vulnerabilities; a neural network model could be used with success. An

66

6.1 Future work

approach that also has been suggested is to use the neural network on the control flow graphs
of a contract and train it to identify dangerous patterns. This we see as a potential way of
identifying intended reachable self-destruct or other intended vulnerable smart contracts.
As mentioned in Section 4.2.2, we do not see any straightforward ways to separate intended
reachable self-destruct from unintended. However, with machine learning, this could be
possible and, in this way, remove a lot of irrelevant (false positives).

6.1.4 Implementing static analysis into the Solidity
compiler

After seeing the completeness of Slither and it’s simple yet effective static analysis and some
discussion with Nicholas Boyd Isacsson the opponent of this thesis. An idea of including some
of these static checks in the compiler could be a good idea to minimize the amount of bugs
being set into live smart contracts. This might fit better in an external tool like Slither not
to dilute the Solidity compiler but including more static analysis into the compiler would
decrease the money being stolen on the Ethereum blockchain.

67

6. Conclusion

68

References

[1] Etherlite whitepaper. https://etherlite.org/assets/pdf/EtherLite-Whitepaper.pdf.

[2] Access control, openzeppelin. Openzeppelin.com, 2017.

[3] Solidity documentation. https://docs.soliditylang.org/en/v0.8.11/structure-of-a-
contract.html?highlight=modifier%20functionsfunctions, 2021.

[4] Apache parquet), 2023.

[5] Common weakness enumeration. https://cwe.mitre.org/index.html, 2023.

[6] Smartbugs: A framework to analyze ethereum smart contracts.
https://github.com/smartbugs/smartbugs, Mar 2023.

[7] Jonathan Aldrich and Claire Le Goues. Lecture Notes: Symbolic Execution 1 Symbolic Exe-
cution Overview.

[8] Edward Axlund and Frans Sjöström. Reachable self-destruct benchmark dataset, 2023.

[9] Roberto Baldoni, Emilio Coppa, Camil Cono D’elia, Daniele Demetrescu, and Irene
Finocchi. “a survey of symbolic execution techniques.”. In ACM Comput. Surv. 51, 3, 2018.

[10] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis.
Ethainter: a smart contract security analyzer for composite vulnerabilities. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 454–469, 2020.

[11] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady.
The treewidth of smart contracts. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, page 400–408, New York, NY, USA, 2019. Association for
Computing Machinery.

[12] Jiachi Chen, Xin Xia, David Lo, and John Grundy. Why do smart contracts self-destruct?
investigating the selfdestruct function on ethereum. ACM Trans. Softw. Eng. Methodol.,
31(2), dec 2021.

69

REFERENCES

[13] Julian Cohen. Contemporary automatic program analysis. Black Hat. Las Vegas, 2014.

[14] ConsenSys. mythril/suicide.py at develop · consensys/mythril.
https://github.com/ConsenSys/mythril/blob/develop/mythril/analysis/module/modules/suicide.py,
2023.

[15] Phil Daian. Gastoken.io - cheaper ethereum transactions, today, 2017.

[16] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and Algorithms
for the Construction and Analysis of Systems, page 337–340, 2008.

[17] Thomas Diurex, Joao Ferreira, Pedro Cruz, and Rui Abreu. Empirical review of auto-
mated analysis tools on 47,587 ethereum smart contracts. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: 2020, 2020.

[18] Nik Roby and Karen Scarfone Dylan Yaga, Peter Mell. Blockchain technology overview.
Oct 2018.

[19] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static analysis framework for
smart contracts. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), May 2019.

[20] Weiwei Gong and Xu Zhou. A survey of SAT solver. AIP Conference Proceedings, 1836,
06 2017.

[21] Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques and tools.
In Intelligent Computing and Applications: Proceedings of the International Conference on ICA,
22-24 December 2014, pages 581–591. Springer, 2015.

[22] Stephen Graves. 13 biggest defi hacks and heists. https://decrypt.co/93874/biggest-defi-
hacks-heists, Apr 2022.

[23] Hao Guo, Ehsan Meamari, and Chien-Chung Shen. Multi-authority attribute-based
access control with smart contract. In Proceedings of the 2019 International Conference on
Blockchain Technology, ICBCT 2019, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[24] Alice Henshaw. Using ethereum’s create2. https://hackernoon.com/using-ethereums-create2-
nw2137q7, Jan 2020.

[25] Prateek Saxena Ivica Nikolic, Aashish Kolluri and Aquinas Hobor. Maian.
https://github.com/ivicanikolicsg/MAIAN/tree/master/tool, 2023.

[26] Daniel Jackson and Martin Rinard. Software analysis: A roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 133–145, 2000.

[27] Satpal Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No Lee.
Ethereum smart contract analysis tools: A systematic review. IEEE Access, pages 1–1,
04 2022.

70

REFERENCES

[28] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimäki, Savanna Lujan, and Fabio
Palomba. A critical comparison on six static analysis tools: Detection, agreement, and
precision. Journal of Systems and Software, 198:111575–111575, Nov 2022.

[29] Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(: 17.07. 2019),
2008.

[30] Ivica Nikolić, Aashish Kolluri, Prateek Saxena, and Aquinas Hobor. Finding the greedy,
prodigal, and suicidal contracts at scale. 2018.

[31] Martina Rossini. Github - mwritescode/smart-contracts-vulnerabilities: [blocksys 2022]
exploring deep learning techniques for ethereum smart contract vulnerability detec-
tion., Jun 2022.

[32] Martina Rossini, Mirko Zichichi, and Stefano Ferretti. Smart contracts vulnerability
classification through deep learning. In Proceedings of the 20th ACM Conference on Em-
bedded Networked Sensor Systems, SenSys ’22, page 1229–1230, New York, NY, USA, 2023.
Association for Computing Machinery.

[33] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract: Attacks and
protections. IEEE Access, 8:24416–24427, 2020.

[34] Nipun Sharma and Swati Sharma. A survey of mythril, a smart contract security analysis
tool for evm bytecode, Dec 2022.

[35] SmartContractSecurity. Github - smartcontractsecurity/swc-registry: Smart contract
weakness classification and test cases. https://github.com/SmartContractSecurity/SWC-
registry/creating-a-new-swc-entry, 2023.

[36] Maddipati Varun, Balaji Palanisamy, and Shamik Sural. Mitigating frontrunning at-
tacks in ethereum. BSCI ’22, page 115–124, New York, NY, USA, 2022. Association for
Computing Machinery.

[37] Gavin Wood. Ethereum yellow paper. https://ethereum.github.io/yellowpaper/paper.pdf,
2022.

71

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2023-05-30

EXAMENSARBETE Study of bug detection tools on Ethereum smart contracts
Studie av säkerhets verktyg för Ethereums smarta kontrakt
STUDENTER Frans Sjöström, Edward Axlund
HANDLEDARE Niklas Fors (LTH), Mikkel Jensen (Chainalysis)
EXAMINATOR Christoph Reichenbach (LTH)

Studera säkerhetsprograms förmåga att
hitta buggar i smarta kontrakt på
Ethereums blockedja

POPULÄRVETENSKAPLIG SAMMANFATTNING Frans Sjöström, Edward Axlund

Sedan kryptovalutorna introducerades 2008 med Bitcoin har det tillkommit krypto-
valutor som stödjer programkod, kallade smarta kontrakt. Smarta kontrakt kan lik
annan kod innehålla svagheter som kan utnyttjas. I vår studie går vi igenom verktyg
som hittar sårbarheter i smarta kontrakt på blockkedjan Ethereum.

Smarta kontrakt är programkod som kan ex-
ekveras av användare runt hela jorden. Vi tit-
tar på Etheriums blockkedja. Tanken med smarta
kontrakt att de ska vara decentraliserade och
därav ska kontrakten vara tillitslösa så att du inte
ska behöva lita på någon central entitet.

I vårt arbete har vi gått igenom alla smarta kon-
trakts bytekoder för att få en förståelse över hur
svagheter och buggar har funnits i smarta kon-
trakt på Etheriums blockkedja över tid och un-
dersökt relevansen av dessa kontrakt. Runt 15%
av kontrakten med buggar hade 11-100 transak-
tioner och 5% hade 101-97000 transaktioner, kod
med bugar kan vara farligt för användaren.

Vi valde en bug; reachable self-destruct för att
fokucera på och utvärdera de olika kodanalys verk-
tygen Maian, Mythril och Slithers pricksäkerhet.
Hur stor andel kontrakt de missar och hur många
de flaggar felaktigt. Det är en jämförelse av verk-
tygen men också metoderna de använder sig av.
Statisk analys som Slither använder jämfört med
symbolisk exekvering som Maian och Mythril an-
vänder. Maian användes inte i utvärderingen då
vi ansåg att den var för dålig på att hitta buggar
i nuvarande smarta kontrakt.

Reachable self-destruct är ett access control
problem som innebär att obehöriga inte ska kunna
komma åt en viss del av koden, i detta fall self-
destruct funktionen. Vi kom fram till att Mythril
är bäst på att hitta mer komplicerade svagheter
där kontrakt kan manipuleras i flera steg. Men
att Mythril inte klarade djupare komplexitet och
i vissa fall missar enkla svagheter.

Slither hade ett mindre antal false negatives och
hittade fler av de relevanta smarta kontrakten men
kunde enkelt luras om man visste hur dess logik
såg ut, vilket visas i vårat benchmark dataset.

Sammanfattningsvis ser vi inte att manuel
genomgång kan bli ersatt av automatiska program
analys verktyg just nu men att det är ett bra
hjälpverktyg för granskare av kod.

	Introduction
	Contribution
	Research questions
	Outline
	Remark

	Background
	Blockchain and Smart Contracts
	Definitions
	Blockchain Technology
	Ethereum
	Smart contracts
	Transactions and Smart Contracts
	EVM - Ethereum Virtual Machine
	Solidity
	Short about reachable self-destruct

	Program analysis methods
	Symbolic execution
	SMT solvers
	Static analysis
	Program analysis on smart contracts

	Tools used
	Selection of tools
	Maian
	Mythril
	Slither

	Vulnerabilities on the Ethereum blockchain
	Datasets
	Setup of experiments
	Tools

	Activity on the Ethereum blockchain
	SWC-id
	Integer Arithmetic bugs (SWC: 101)
	Reachable/Unprotected self-destruct (SWC: 106)
	Delegatecall to user-supplied address (SWC: 112)
	Write to an arbitrary storage location (SWC: 124)
	Reentrancy exploit (SWC: 107)
	Dependence on predictable environment variable (SWC: 116, 120)
	Jump to an arbitrary instruction (SWC: 127)
	Hardcoded guards (No SWC)

	Results and Discussion
	Closing remarks and zooming in on self-destruct

	Self-destruct within the Ethereum blockchain
	Introduction to the self-destruct function
	Definition of reachable self-destruct
	Access Control
	Composite vulnerabilities
	Flawed Access Control
	Intended reachable self-destruct

	Slither's static analysis of reachable self-destruct
	Detecting reachable self-destruct with Mythril's symbolic execution
	Method
	Results and Discussion
	Manual review
	Closing remarks on reachable selfdestruct

	Benchmark dataset
	Limits of tools and possible improvements
	Can you detect intended reachable self-destruct
	Slither
	Mythril

	Related work
	Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts
	A critical comparison on six static analysis tools: Detection, agreement, and precision
	Ethainter: A Smart Contract Security Analyzer for Composite Vulnerabilities

	Conclusion
	Future work
	Surveying more
	Implementing improvement of tools
	Detecting vulnerabilities using neural networks
	Implementing static analysis into the Solidity compiler

	References

