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Abstract

The extraction of date expressions in documents is a time-consuming task if
done manually. For computers, automating this process can be achieved through
various methods. In this thesis, I compare a regular expression system that ex-
tracts date expressions from receipts to a machine learning system based on the
transformer architecture. The idea is that a machine learning system has the pos-
sibility of being more robust to spelling errors and OCR misses. The machine
learning system consists of two pre-trained transformers. To train the machine
learning models, I collected training data from the regular expression system. I
also generated synthetic data to complement the training dataset. The final per-
formance of the machine learning system reached a test set accuracy of 94.62%
compared to the regex systems 96.79%. While having a slightly inferior accuracy,
the machine learning system was occasionally able to ignore OCR misses and
extract date expressions on formats with variations relative to the training data.

Keywords: Natural Language Processing, Transformers, Data Extraction, Data Genera-
tion, Receipts
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Chapter 1

Introduction

Within most companies, employees can make purchases that are reimbursed by the com-
pany. For example, if an employee makes a trip to meet with a potential client, the company
may pay for the travel expenses, the hotel, and some restaurant visits. To keep track of the
expenses that the employee makes, s/he will save the receipts and hand them into their com-
pany’s financial department. The financial department will then post these expenses for
accounting purposes. In smaller companies, these events may be handled manually through
spreadsheets, where expenses are typed in and paid out, and posted once a month. However,
when companies scale and the number of receipts grows, systems to handle these expenses
may be required.

Systems that handle expense reporting are often automated in many ways and may utilize
machine learning in different capacities. This helps the financial department of companies
to make the posting of expenses faster. The Company, where this thesis was carried out, pro-
duces one such system which is sold to other companies to help them post expenses for their
employees. With their specific system, employees can report expenses by uploading an image
of a receipt. What information a receipt is required to contain may differ from country to
country. The system implemented by The Company handles receipts from various countries
but to give an example, In Sweden a receipt has to contain:

• Company Name, including contact information

• List of products, including price per product.

• Total price, including VAT

• Date of sale.

• Date of when the receipt is written.

How this information is presented on the receipt is not determined, and the format can vary
a lot.
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1. Introduction

After an image of a receipt is uploaded to The Company, the expense report software
attempts to extract the following information:

• Total (Amount) of the purchase.

• VAT (Amount) of the purchase, which may
be tax deductible.

• Currency of the purchase.

• Date of when the purchase was made.

• Country of where the purchase was made.

• Category which corresponds to which ac-
count the company should book the ex-
pense to.

Figure 1.1 illustrates an example of how this extraction may look to a customer.

Figure 1.1: Example of uploaded receipt in the app.

Currently, these values are extracted from the receipt image by utilizing machine learning
and rule-based systems.

10



1.1 Motivation

1.1 Motivation
In the system, which is currently in use at The Company, the first step of the expense reporting
software is to convert the images to text data by performing optical character recognition
(OCR). The resulting text is then used by multiple subsequent modules. Currently, to extract
the date value from the receipts text data, The Company uses a regular expression module to
find all text sequences on the receipt which may refer to a date. The potential dates are then
given to a machine learning model to classify which date, if multiple dates were given, was
the date of purchase.

Regular expression (regex) is a rule-based system that matches patterns in text strings. It
can be utilized for extracting data from documents with well-defined structure. However, if
the structure of the data to be extracted is not in a rigid format, regular expressions quickly
struggle. For this project, the dataset available and the task to be solved in practice is that
of receipts from different countries and industries, making the dataset very diverse and the
regular expression technique could potentially have shortcomings. This has made The Com-
pany interested in investigating if machine learning techniques can extract this information
more efficiently instead.

1.1.1 Research Questions
Specifically the questions I am investigating in this thesis are:

• How to construct a machine-learning system that identifies and extracts date expres-
sions from the text content of a receipt?

• While the dataset may be large and diverse, it may not be properly/fully labeled for
this task. As such I will also investigate the second question: Can we improve the
performance of the system by generating synthetic data to train on?

1.2 Proposed System
In this thesis, I constructed a system of two machine-learning models based on the trans-
former architecture. The first model identified which parts of the text content of the receipt
contain date expressions by performing token classification. The second transformer model
takes the date expressions and formats them to a standardized format (ISO8601, 2019) by
viewing the task as a sequence-to-sequence text generation problem. Figure 1.2 shows an
image of a receipt and how the system works. On a subset of the dataset provided by The
Company, this system finds the correct date, i.e. the purchase date, on 94.6% of receipts com-
pared to the regex modules 96.79% on the same subset.

11



1. Introduction

Figure 1.2: A receipt with bounding boxes of OCR segments. Dates
are extracted by the first transformer model and converted to ISO
format by the subsequent model.

12



Chapter 2

Background

This chapter gives a theoretical background and describes some relevant concepts and theo-
ries which are used in this thesis.

2.1 Tasks in Natural Language Processing
Natural language processing (NLP) is an interdisciplinary research domain that utilizes Com-
puter Science, Statistics & Machine Learning, etc. to enable computers to understand human
languages e.g. English, Swedish & French, etc.

Applying machine learning for NLP tasks can be done in various ways. Some problem
formulations which will be applied in this thesis are:

Sequence Classification: The machine learning model is provided with a text sequence. The
complete sequence is classified into a range of predefined categories. An example of
sequence classification is sentiment analysis where a model can be trained to, for ex-
ample, categorize movie reviews as either ‘positive’ or ‘negative’.

Token Classification: Similar to sequence classification. However, the difference is that each
word, or character, in the input text sequence is classified individually. This task is also
referred to as named entity recognition (NER) as it is often used for identifying what
words, or characters, of an input text sequence describe entities such as person names,
locations, organizations, etc. These entities are usually labeled with a BIO-scheme.
The individual tokens are tagged in this scheme to identify the beginning (B), inside (I)
& outside (O) of the entities. The BIO-scheme was first introduced by Ramshaw and
Marcus (1995).

Sequence-to-Sequence Generation: The machine learning model generates a new output
text sequence based on the input text sequence. The strength of this task lies in the fact
that the input and output sequence lengths can be different from each other. This task

13



2. Background

can be utilized in translation, for example, from English to Swedish. Summarizing text
documents is another example where the sequence-to-sequence task can be applied.

These tasks have in common that the machine learning model takes input in the form of
text. In contrast, the dataset available in this thesis is a collection of images. As such, the first
step before applying any of these NLP tasks will be to convert these images to text.

2.2 From Images to Text: Optical Character
Recognition

Consider the case where we have an image of a text document. For this situation, a common
approach is to first extract the text contents from the image. This is called Optical character
recognition (OCR). Then, a computer can read the characters in the image. The concept has
been around for a very long time but has become more useful in recent decades. OCR rose in
popularity as computers dominate most fields and converting paper documents to a digital
format is common practice (Eikvil, 1993).

Modern OCR systems rely on deep learning to recognize text in fuzzy images and hand-
written text. In this project, I used one such system produced by Google (2023) which is
applied to the images of receipts to extract their text content.

2.3 Regular Expressions
Once we have recognized the characters with the OCR module, regular expressions (regex) can
be applied to interpret patterns in the text. It is a rule-based system that extracts specific
patterns from sequences of characters (Kleene, 1951). When using regular expressions we
define a pattern that we want to match in a sequence of characters. For example, consider
the string "I’m typing this the 13th of March 2023", If we want to extract all numbers
from the string we can use a regular expression pattern that finds all numbers which would
then match and extract "13" & "2023". The patterns for a regular expression can match any
given set of characters, for the example above we match any continuous sequence of digits
[0-9]+.

Regular expression patterns can also be built to match different combinations of multiple
character sets, hence building very complex matching patterns. An example of matching a
combination of sets could be to find any date written in ISO-standard format. A date written
in ISO format can be represented as YYYY-MM-DD, which can be found in a text by a regex
pattern that matches:

• a continuous sequence of four digits

• followed by a dash

• followed by a continuous sequence of two digits

• followed by a dash

• followed by a continuous sequence of two digits.

14



2.4 Tokenization

The regular expression module which is currently in production at The Company uses a
variety of patterns like this one to extract date expressions from receipts on different formats.

2.4 Tokenization
In contrast to regex, a machine learning system requires that the inputs are in a numeric
format. The conversion from text to a numeric representation first needs to be tokenized i.e.
breaking the text string into tokens. There are two trivial ways of tokenizing a text sequence,
word-level and character-level:

character-level tokenization: the sequence is split on every single character which is tok-
enized individually.

word-level tokenization: the sequence is split on every word. Every word is then tokenized
as a single token.

Both variations have pros and cons. For example, while character-level tokenization
creates a small index for the computer to keep track of it makes the input sequences for a
machine-learning model longer, and vice versa for word-level tokenization.

A popular alternative to word & character tokenization that has arisen is subword tok-
enization which has various implementations (Sennrich et al., 2016; Kudo and Richardson,
2018). The overall idea of subword tokenization is to combine common character sequences
and tokenize them together, while more uncommon character sequences are split. This results
in a reasonably sized vocabulary comprising a combination of characters, common words &
sub-words. Figure 2.1 illustrates an example of subword tokenization, where the color boxes
represent where the input sequence is split into individual tokens.

Figure 2.1: Example of subword tokenization, using a tokenizer pub-
licly available at Open AI.

However, in some situations, subwords may not be the ideal choice as word-level and sub-
word tokenizations are somewhat sensitive to noise like typos, spelling mistakes, and OCR
failures. In the case of multilingual problems, the vocabulary can also become larger than de-
sired when using word or subword tokenization. Hence, in some situations, a character-level
or even byte-level tokenization may be preferable (Xue et al., 2022).

In this thesis, I utilized subword-, character- & byte-level tokenization for the different
models.

2.5 Vectorization & Embeddings
When the text sequence has been tokenized, we can associate each token to a corresponding
integer index.

The most trivial way of providing these inputs to a machine-learning model would be to
replace the text sequence with the corresponding sequence of token indices. However, this

15
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2. Background

will result in a major problem where the machine learning model will treat tokens differently
depending on which value they were assigned in the index. For instance, we can imagine a
case of word-level tokenization where the two words “Swedish” and “computer” are tokenized
to the respective integers 100 & 101, they will look similar to the model as the numbers are
close to each other.

A simple solution to these arbitrary dependencies between tokens when they are provided
as integer indices is “one-hot encoding”. This is a vectorization technique where each token
in the corpus is given its own input dimension, making all tokens orthogonal to each other.
However, this is not optimal for a larger corpus of several thousand different words as the
input space becomes very large and sparse. Another issue with the one-hot encoding is that
having tokens be orthogonal to each other may not be optimal either. In reality, words have
semantic relations to each other, i.e. they’re not orthogonal.

A solution to this problem is dense vector embeddings which instead map each token to
a continuous vector representation. The idea is that having a reasonable number of dimen-
sions in a continuous vector representation allows for complex relations between tokens that
are semantically coherent. These continuous vector representations are trained by neural
networks and were first proposed by Mikolov et al. (2013).

In modern machine learning models, these dense vector representations are often trained
in tandem with the model In a larger machine learning model, these dense vector represen-
tations can either be trained separately or together with the rest of the model. Figure 2.2
shows an example of dense vector representations for words that are trained separately. In
this figure, the semantic relationship between words is illustrated by showing the similarity
in the arithmetic difference between word forms for different words.

2.6 The Transformer

Recurrent neural networks (RNN) were previously a very common architecture for sequential
data, such as text. Cho et al. (2014) applied the concept of having separate encoder and
decoder parts of an RNN network. This introduced the possibility of providing an input
sequence to the encoder and producing a new output sequence from the decoder of arbitrary
length. This was a useful architecture for the task of machine translation.

The initial version of the encoder-decoder RNN architecture struggled with the process-
ing of longer sequences. This was due to the fact that the input sequence was compressed to
a fixed-length representation by the encoder. The encoded vector was then provided to the
decoder to generate the corresponding output sequence. To combat the issue of compressing
the input vector to a fixed length representation, the concept of “attention” was introduced
by Bahdanau et al. (2015).

RNNs still had the drawback compared to other neural network architectures of being
very inefficient to train. The transformer (Vaswani et al., 2017) threw away the recurrent part
of the architecture while keeping the attention mechanism, making it more efficient to train
as it could parallelize more of the computation. Today the RNN architecture has in large
part been out-competed by the transformer for NLP tasks.

16



2.6 The Transformer

Figure 2.2: Semantic relationship between different words and their
word forms in a 2D projection of word embeddings trained by Pen-
nington et al. (2014)

2.6.1 Attention

The attention mechanism is central to the transformer architecture and is implemented as:

Attention(K,Q,V ) = so f tmax(
QKT
√

dk
)V (2.1)

where K , Q & V are outputs from previous linear layers and denote Key, Query & Value
respectively.

√
dk is a scaling factor depending on the size of K & Q. The reasoning behind

the scaling factor is that for larger matrices the dot product grows large and the softmax
function produces very small gradients. The general idea of the attention equation is that it
gives each input token a numeric weight of how much it should ’attend’ to the other tokens
of the input sequence.

The attention mechanism can be, and usually is, split into what is referred to as Multi-head
attention. This means that the Key, Query & Value are projected, with individual projections,
to a number of heads where the attention mechanism is applied separately. The output from
the different attention heads is then concatenated and fed through another linear layer to
complete the algorithm. A reason for using Multi-head attention is that all the heads can be
computed in parallel.

17



2. Background

2.6.2 Encoder-Decoder
The original transformer from Vaswani et al. (2017) had the complete architecture as Figure
2.3. In the figure, the encoder is the left half of and the decoder is the right half of the image.
However, a transformer does not need to have both of these parts. In fact, a transformer
can consist of an encoder only, a decoder only, or an encoder-decoder. The choice of the
architecture will depend on the nature of the tasks it should solve. Popular models of all
three of these alternatives include:

• BERT (Devlin et al., 2019) which is an encoder only model,

• Generative Pre-trained Transformer 2 (GPT-2) (Radford et al., 2018) which is a decoder
only model and

• Text-to-Text Transfer Transformer (T5) (Raffel et al., 2019) which is an encoder-decoder
model.

Figure 2.3: The neural architecture of the transformer as it was orig-
inally proposed. Image from Vaswani et al. (2017).

18



2.7 CANINE

The Attention mechanism can be used in different ways depending on if it is applied in
an encoder or a decoder part of the transformer. In an encoder the keys, queries and values are
outputs from three linear layers with respective weight matrices Wk , Wq & Wv all operating
on the same input vector x, this is usually referred to as self-attention and can be thought of
as ’how much attention does the input sequence pay to its own respective parts?’.

When the attention mechanism is implemented in a decoder it is usually done in two
different ways according to Figure 2.3 with one respective important adjustment in both
cases. In the case of Masked Multi-Head Attention, the tokens are prevented from paying
attention to subsequent tokens in the sequence, hence attention is only allowed to ’flow’
backward in this case. Then there is the second Attention head in the decoder, see Figure
2.3, where the keys and values are produced by the encoder part of the transformer while
the query comes from the Masked Multi-Head Attention layer in the decoder itself. This
is usually referred to as cross-attention as it applies the attention mechanism between two
different inputs, combined from the encoder and decoder.

2.6.3 Positional Encodings
Another feature to note on the transformer architecture is the positional encoding from Fig-
ure 2.3. The input is given as a sequence where the order of the input is relevant, hence the
positional encoding modifies the input embeddings such that the same tokens don’t look
identical to the model if it occurs in different positions of the input sequence. The posi-
tional encoding is produced by adding a sine & cosine function to even & odd embedding
dimensions respectively where the frequency is dependent on the token position. Equation
2.2 shows the exact formula that was used by Vaswani et al. (2017) and an example visualiza-
tion is given in Figure 2.4.

PE(pos, 2i) = sin
(

pos

10000
2i

dmodel

)
(2.2)

PE(pos, 2i + 1) = cos
(

pos

10000
2i

dmodel

)
Since the inception of the transformer architecture, modifications have been proposed

to the architecture with relatively small success. In some instances, modifications may show
improvements to performance but as Narang et al. (2021) argue, most of these modifications
do not seem to transfer across tasks/domains.

2.7 CANINE
CANINE is an encoder transformer model and is available for both sequence and token clas-
sification. It is pre-trained on the multilingual Wikipedia dataset which consists of 104 lan-
guages. The model is available optimized with either subword loss (CANINE-S) or character-
level loss (CANINE-C). Both versions of the model use character-level tokenization and have
121 million parameters.

As character-level tokenization produces a longer input sequence for the transformer
stack, this results in a model which is computationally expensive to train and use. To mitigate

19
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2. Background

Figure 2.4: A visualization of positional encodings. Token Position
& Embedding Dimensions are arbitrarily chosen for clear visualiza-
tion.

this consequence, CANINE is built with a down-sampling convolutional layer before the
transformer stack and a corresponding up-sampling convolutional layer after. This results in
a model which the authors argue is computationally efficient while maintaining character-
level tokenization.

2.7.1 Sequence Classification
When using CANINE for sequence classification, the hidden state from the last layer in the
transformer stack representing, the “beginning of sentence” token (often designated as [CLS])
is extracted as shown in Figure 2.5. The extracted hidden state is given to an LM-head classi-
fier with a task-specific number of output nodes. For our case, this is a binary classification
task of labeling a sequence as containing a date expression or not, and as such only 1 output
node is required.

Figure 2.5: neural architecture of CANINE. ycls shows the state
which is extracted when using CANINE for sequence classification.
After Clark et al. (2021).
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2.8 T5: Text-to-Text Transfer Transformer

2.7.2 Token Classification
In the case of token classification, CANINE works similarly to when it’s used for sequence
classification. The difference is that the representation of the [CLS] token is not extracted
but rather the representation for all tokens in the yseq layer. The representation from these
tokens is then similarly given to a classifier which outputs a prediction for each token. As we
used a BIO-scheme for classifying if a token belongs to a date expression or not, this results
in three possible output labels per token.

2.8 T5: Text-to-Text Transfer Transformer
This model was introduced by Raffel et al. (2019) at Google. It is built as a sequence-to-
sequence, encoder-decoder transformer. The model takes a text string input and generates a
text string output as the name suggests. Figure 2.6 shows how the model is built to work as
a unifying framework that can be applied to solve many different NLP tasks.

The authors proposed five versions of the model with varying numbers of parameters
ranging from 60 million to 11 billion. For their largest model, they reported state-of-the-art
performance on multiple tasks including SQuAD, superGLUE, and MultiRC, demonstrating
strong capabilities of general language understanding. I intend to use this transformer as a
conventional sequence-to-sequence model, to generate the ISO format for a date expression
given an input string containing an arbitrarily formatted date expression.

T5 is pre-trained on “Colossal Clean Crawled Corpus” (C4) which is a data set consisting
of 750 gigabytes of English text data based on Common Crawl. It was trained on a denoising
objective, which means that for an input sequence a number of tokens are masked and the
objective for the model is to predict the masked tokens; see Figure 2.7. This was done by
randomly replacing 15% of tokens in an input sequence with a specified placeholder token
and letting the model predict the tokens that were removed. Note that the authors of T5 call
this denoising but it is the same as masked language modeling, described in section 2.9.

Figure 2.6: An illustration of how T5 is intended to work as a uni-
fying framework for different NLP tasks.

There are also two subsequent models based on the original T5 architecture which are of
interest to this project. mT5 (Xue et al., 2020) and byT5 (Xue et al., 2022).
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2. Background

Figure 2.7: Illustration of the pre-training objective for training T5
model family. After Raffel et al. (2019).

2.8.1 mT5
About one year after T5 was created, another team at Google Research created mT5 (Xue
et al., 2020), a multilingual counterpart. This family of models is built to be similar in ar-
chitecture to the original T5 and with the same goal in mind of creating a unifying model
for most NLP tasks. Like the original T5, they made 5 versions with different numbers of
parameters.

To train mT5, the authors used a variation of the C4 dataset named mC4. This dataset
contains text in 101 different languages. Unsurprisingly the most frequent language in the
mC4 dataset is English. To mitigate the fact that some languages are much more common
in the dataset than others, the less common languages are oversampled and vice versa more
common languages are undersampled. Figure 2.8 shows the probability of sampling different
languages depending on their frequency in the mC4 dataset. The probability of sampling a
language is proportional to the number of examples in that languages to the power of α, i.e.
P(L) ∝ Lα where L is the number of examples for a given language.

Figure 2.8: Language distribution of the mC4 dataset. the red lines
show the sampling rate of over the languages while the blue his-
togram shows the occurrence of documents from each respective
language. For the published models, the authors chose α = 0.3 for
the sampling rate. Image from Xue et al. (2020).

Because the model is multilingual, the vocabulary sizes of these models are larger, 250,000
for mT5 compared to 32,000 for the original T5. As a consequence of this, the number of
parameters for the mT5 models is also larger, ranging from 300 million to 13 billion.
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2.8.2 byT5
The idea of this model is to address issues with subword tokenization which it does by con-
verting all input text to its byte-level representation before feeding it into the model. One
trade-off with this approach is that the byte-level sequence length is longer than the sub-
word tokenized sequence length, resulting in the input lengths being on average 4 times that
of mT5 depending on the language. Because of this, the authors expect the model to perform
well on shorter sequences, which generally fits our task well in this thesis.

Another consequence of the byte-level inputs, which the authors noted is that the model
required a larger encoder, resulting in an overall larger model. Similarly to T5 and mT5, they
released 5 models ranging from 300 million to 13 billion parameters. Note that this range
of model sizes is the same for byT5 as for mT5. While byT5 has a deeper encoder stack
compared to mT5 the byte-level vocabulary is much smaller than the subword vocabulary,
which compensates and saves a lot of parameters in the input embeddings. The family of
byT5 models is pre-trained on the mC4 dataset like mT5, also making them multilingual.

2.9 Transfer Learning
The concept of transfer learning in machine learning can loosely be expressed as a model that
is trained on some, often general, task and then reused and trained for another more specific.
This is referred to as pre-training and fine-tuning.

This is widely applied for transformer models in natural language processing (Wolf et al.,
2019) and as research is showing, scaling up the size of models generally gives improved per-
formance for NLP models (Raffel et al., 2019). Hence a reason for using transfer learning is
that training a very large model from scratch can be computationally expensive and using a
pre-trained model often saves time and resources.

A more formal definition of transfer learning is given by Zhuang et al. (2019) in the paper
"A Comprehensive Survey on Transfer Learning which states:

Definition 1. Given some/an observation(s) corresponding to mS ∈ N+ source domain(s) and task(s)
(i.e. , {(DSi ,TSi )|i = 1, ...,mS}) and some/an observation(s) about mT ∈ N+ target domain(s) and
task(s) (i.e. , {(DS j ,TS j )| j = 1, ...,mT }), transfer learning utilizes the knowledge implied in the source
domain(s) to improve the performance of the learned decision functions f T j ( j = 1, ...,mT ) on the
target domain(s).

A couple of general tasks for pre-training a model for text processing include masked
language modeling (MLM) or auto-regressive generation. These tasks are unsupervised and
can therefore be trained on very large datasets.

• Masked language modeling: From a tokenized input text, a certain percentage of to-
kens are masked with a placeholder token. The model is tasked with predicting what
the specific tokens that were removed were. This task is sometimes also referred to as
‘denoising’.

• Auto-regressive generation: In an input text, a continuous subsequence is given to the
model. The model is tasked with predicting which token comes after the given input
subsequence in the text.
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2. Background

In this thesis, there are two somewhat different ways I am going to utilize transfer learn-
ing. The first way is to load an encoder model and further feed the hidden states output to
a LM-head (linear model head) which I train for our specific task. In this setup, I can either
choose to train the parameters of the base encoder model, i.e. fine-tune it, or save the com-
putational cost and only train the LM-head on top of the transformer stack. The second way
I am going to utilize transfer learning is on encoder-decoder models where no layers will be
added to the model but rather fine-tune the pre-trained transformer stack to our specific
task.

2.10 Model Parallelism
As shortly mentioned above it has been shown that scaling up model size tends to give better
performance for machine learning models in general and not least for language models. As
a natural consequence of this fact, together with computing power evolving according to
Moore’s Law (Moore, 1965), machine learning models have generally grown larger and larger
in size over the years. Especially in recent years, the number of parameters in language models
has grown significantly. This was demonstrated quantitatively by Villalobos et al. (2022) In
the article Machine Learning Model Sizes and the Parameter Gap, where they analyze the trend
in model size of different machine learning fields over the years.

With the “Parameter Gap” the authors refer to that there seem to be fewer models trained
in the range between 20 and 70 billion parameters than both the ranges below and above this
interval, which is illustrated in Figure 2.9. They hypothesize that this gap in the number
of parameters is due to the fact that training models beyond 20 Billion parameters require
multiple techniques of model parallelism to train effectively.

In this thesis, I am limited in model size by the fact that I want to avoid model parallelism
as much as possible due to time constraints during implementation and the fact that it’s not
desirable to use such a powerful computer during inference for The Company.

Even though the models that will be used are significantly smaller than 20 billion param-
eters the GPUs I have available will run out of memory before reaching this order of mag-
nitude in parameters. Among other things, during training the computer also has to keep
track of optimizer states and gradients beyond just the model parameters, which saturates
the available memory.

2.11 CRISP-DM
In this thesis, I have access to a dataset and a regex module from The Company which is in-
tended to be used when constructing a machine-learning system to extract date expressions
from receipts. How this system should be designed is not entirely decided beforehand, but
rather is to be determined during the process. CRISP-DM (Wirth and Hipp, 2000) (Cross-
Industry Standard Process for Data Mining) is a framework that can be utilized for this.

Figure 2.10 shows the reference model presented by Wirth and Hipp (2000). This model
highlights the most important dependencies between the different stages of a data mining
project. The action taken at each stage of this figure can also be dependent on the previous
step. This means that parts of the methodology for the project can be adapted during the
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2.11 CRISP-DM

Figure 2.9: Number of parameters in published machine learning
models for different fields over the years. Illustrating the hypothe-
sized parameter gap. Image from Villalobos et al. (2022).

process and informed by partial results.
The model proposed in the paper is represented in Figure 2.10. The authors emphasize

that the sequence of each part in the figure is not strict but provides a general guideline for
Data Mining. The focus for this thesis will mainly lie in the phases of Data Understanding,
Data Preparation, Modelling, & Evaluation for building and improving the machine learning
system. The Business Understanding & Deployment part of the model are outside the scope of
this thesis and will be considered up to The Company.
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2. Background

Figure 2.10: CRISP-DM reference model for Data Mining. Image
from Wirth and Hipp (2000)
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Chapter 3

Previous Work

There are several examples of attempts and solutions to identify dates from natural text on
arbitrary formats. For instance, HeidelTime (Strötgen and Gertz, 2010) is a rule-based system
that tags temporal expressions in natural text according to the TIMEX3 annotation standard
(Boguraev et al., 2002) . In their 2010 paper, the authors discuss the alternatives of either
building a rule-based or a machine-learning system. However, they decided to go with the
rule-based approach due to the relative simplicity of formatting the values of date expressions
from rule-based extraction compared to machine learning.

Since 2010, there have been huge advancements in the field of machine learning. Vaswani
et al. (2017) introduced the transformer in the paper “Attention is all you need”. It was ini-
tially proposed as a machine-learning architecture for translation. Due to the success of the
transformer architecture, it was quickly adopted for various other natural language processing
(NLP) tasks. Later the transformer has also seen successes in other domains such as computer
vision where transformer-based models have achieved state of the art (SOTA) results in tasks
such as optical character recognition (OCR) for example Li et al. (2021). In this thesis, however,
I will work with transformers on text input to find date expressions on the text data from
receipts.

“BERT got a Date” by Almasian et al. (2021) is a recent attempt for identifying dates
in natural text which utilize a transformer. In this work, they used the encoder part of the
architecture and attempted to solve the problem with two different approaches. In the first
approach, they used token classification to classify each token of an input sequence to either
belong to a TIME, SET, DURATION, or DATE with a standard BIO-scheme. For example,
in an input sequence containing a date expression the BIO-scheme could tag it as follows:

Remember, remember the fifth of November
O O O B-DATE I-DATE I-DATE

In the second approach, they annotated sequences with the TIMEX3 format. This was
performed by viewing the problem as sequence-to-sequence text generation. Annotating
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the same example string as above with the TIMEX3 format transforms it into "Remember
remember the <TIMEX3 type="date">fifth of November</TIMEX3>". They achieved
their best performance with the sequence-to-sequence, text generation solution. This work
partially solves our problem with two different approaches, however, we are not only inter-
ested in identifying dates in this thesis but also extract the exact date value.

The model in this work was based on the successful transformer BERT (Devlin et al., 2019)
which reported many SOTA results. Although it did not report SOTA results for the CoNLL-
2003 Shared Task: Language-Independent Named Entity Recognition (Tjong Kim Sang and
De Meulder, 2003), it came close. It has also later been shown that the transformer ar-
chitecture generally performs well on Fine-Grained Named Entity Recognition (FN-NER)
(Lothritz et al., 2020). Following these results I will also use the transformer architecture to
approach the problem in a similar manner.

Seker and Ahn (2022) describes another study entitled “A generalized framework for
recognition of expiration dates on product packages using fully convolutional networks” that
not only identifies dates but also extracts their exact values on multiple formats from images.
In their approach, they use image data as input to train a three-step pipeline of convolutional
neural networks (CNNs) to identify expiration dates on product packages. The three steps
were as follows:

1. The first network identifies the region of the image which contains the mention of an
expiration date,

2. The second network identifies which sub-parts of the identified region belongs to the
mention of a year, month & day, and

3. The last network identifies the values of the three sub-parts for a year, month & day
respectively.

Unlike this work, I will use text data directly instead of the corresponding image, I will also
rely on the transformer architecture rather than CNNs. However, similar to this work I draw
inspiration from the possibility of splitting the task into sub-tasks for a series of machine
learning models.
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Chapter 4

Dataset

As of January 2023, The Company has a dataset of 852,333 receipts. Each receipt is initially
obtained as a camera image or print screen which is sent to Google (2023) from which a .json-
file is returned with OCR elements. Each element has a position on the receipt defining
a bounding box. These bounding boxes are categorized into word, paragraph, block & page
elements. Figure 4.1 shows an illustration of two receipts where the bounding boxes of word,
paragraph& block elements are drawn. The elements are structured such that each page element
encloses a number of block elements which in turn encloses a number of paragraph elements
which lastly encloses a number of word elements.

Each receipt has also been manually annotated with six labels and their corresponding
values: [Total Amount, VAT, Purchase Date, Country, Currency, Category]. In some cases, one or
more values on a receipt may be missing and as such the receipt is only partially labeled. The
three latter labels are used for classifying receipts as a whole while the former three are used
to classify a bounding box on the receipt containing the labeled data. In this thesis, we will
focus on the labels corresponding to the classification of bounding boxes and the Purchase
Date-label specifically.

4.1 Exploratory Data Analysis
Currently The Company uses regex modules to extract features from the OCR results of each
receipt to find candidates for Amount, VAT, and Date. In this section, I will use the regex
module which identifies date expressions to evaluate how it performs on the dataset from
The Company for finding the labeled purchase date.

4.1.1 Purchase Date
From the dataset, there are 57,554 receipts where the label for a purchase date is missing.
These receipts were excluded from the evaluation in this section. I used the regex code that
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4. Dataset

Figure 4.1: An example image of the dataset where the bounding
boxes containing ocr elements are illustrated. The Blue boxes are
block elements, the yellow boxes are paragraph elements and the red
boxes are word elements. Any personal information, or information
that can be used to extract personal information, has been redacted.

The Company currently has in production to calculate whether or not any OCR element on
a receipt was parsed to a date matching that of the labeled purchase date. For the 852,333
- 57,554 = 794,779 tested receipts, I found that for 63,038 receipts the regex code could not
find a date matching the manually labeled purchase date resulting in a failure rate of 7.93%. I
further inspected the receipts where no correct date could be found, to get an understanding
of where the failure was caused. These failures could generally be categorized into three
different types:

• The manually produced label for the receipt was wrong.

• OCR misses. A few examples which were identified were: “5” in one image was wrongly
identified as “7” and in another image “11” was identified as “M”.

• The date is written in a format that is not recognized by the regex module.

4.1.2 Total Amount
From the dataset, there are 25,288 receipts where the label for the total amount is missing.
These receipts were excluded from the evaluation in this section. Again I used the regex that
The Company currently has in production to calculate whether or not any OCR element on
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a receipt was parsed to a number that could be interpreted as an amount. In the dataset,
852,333 - 25,288 = 827,045 receipts had a labeled total amount. Among them, I found that
for 8,783 receipts, the regex output did not match the manually labeled total amount. This
resulted in a failure rate of 1.06%. As the failure rate of the regex module is significantly
lower for the total amount compared to the purchase date, I did not investigate it further.

4.1.3 VAT
Lastly, I did the same procedure for the VAT label for which 382,402 out of 852,333 receipts
were missing a labeled VAT amount. For the remaining 852,333 - 382,402 = 469,931 receipts
which have a labeled VAT amount, I found that the regex module did not find the correctly
labeled VAT amount on 17,380 receipts, resulting in a failure rate of 3.72%.

4.2 Datasets From the Regex Module
Each of these three regex modules serves two purposes. They both classify a bounding box
to potentially contain the labeled Total Amount, VAT, or Purchase Date and then also ex-
tracts/parses the value.

In this thesis, I aim to replace the regex module that identifies date expressions with
a transformer-based machine learning system. To this goal, I need to process the dataset
provided by The Company for the machine learning models. This processing will consist of
labeling sequence of text from the receipts in the dataset for both sequence and token classi-
fication. Performing this will, in large part, utilize the existing regex module.

An important feature of the regex module is that it attempts to match word elements
as date expressions from a set of defined regular expression patterns. However, there is also
some logic built into the module which concatenates up to four word elements within a text
paragraph to match as a date expression if none was identified from individual word ele-
ments. Ignoring this, I will refer to the regex module as identifying date expressions from
word elements in the rest of this report for the sake of simplicity.
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Chapter 5

Method

In this chapter, I outline how I built a machine-learning system to extract date expressions
and format them according to the ISO standard.

First I process the dataset provided by The Company for the machine learning models as
well as construct a purely synthetic dataset. Then I outline the two possible architectures for
my system which will be considered. I then performed some fine-tuning tests on different
versions of CANINE & T5 to make an informed guess as to which architecture to implement.
Lastly, When my system is implemented I inspect the results and produce some attempts at
improving it.

All pre-trained transformer models are downloaded from huggingface transformers li-
brary as their PyTorch version. For fine-tuning, I used a virtual machine on Amazon Web
Services, EC2. The virtual machine had 4 Tesla T4 GPUs, resulting in a total of 16x4GB
VRAM.

The T5 model families consist of 5 model sizes in each family. These are named as small,
base, large, xl and xxl. I used base, base and small for T5, mT5 and byT5 respectively.

5.1 Processing & Building Dataset to Fine-
Tune machine Learning Models

To train the machine learning models I needed a dataset labeled for their respective tasks. To
this end, I both processed the receipts provided by The Company and also produced a synthetic
dataset. Both these datasets are labeled for sequence and token classification.

5.1.1 Date Classification Dataset
I constructed this dataset by using the regex module to label where date expressions were
found on the OCR response of receipts. For this dataset, each individual token was labeled as
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either belonging to a date expression or not. Each sequence was also labeled for sequence clas-
sification i.e. the sequence either contains a date expression or not, with the ISO-formatted
date as the label.

The dataset was constructed by the following procedure where I applied the regex module
to sequences of word elements in the receipt:

1. I gathered a set of positively labeled examples of date expressions that the regex module
had identified.

2. For each date expression identified by the regex module, I concatenated a left and
right context of up to a maximum of 64 characters in total. For this sequence, the
regex module produced the ISO-formatted date as the label and each token from the
identified date expression was also individually classified as belonging to a date.

For negatively labeled examples which do not contain a date expression:

1. I removed the word elements which the regex module identified as date expressions
and split the remaining OCR response on these indices to a list.

2. Sequences were constructed from the list by randomly selecting a word element and
padding to a max length of 64 characters or until the list of word elements was empty.
For these sequences, all tokens were individually labeled as O for ’outside’.

I now had a dataset of 3,986,293 sequences. From these 2,165,992 were positively labeled
and contained a date expression and 1,820,301 were negatively labeled. As plotted in Figure
5.1, there are some differences in length distributions between the positively and negatively
labeled examples due to how the dataset was built.

Figure 5.1: Histogram showing the distribution of sequence lengths
for both sequences containing dates and those that do not.
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For this dataset, I also inspected the distribution of lengths for the date expressions within
the sequences. This is illustrated in Figure 5.2. It is worth noting that these numbers are in-
fluenced by how the regular expression patterns are constructed and may not be an exact
correspondence to how long the ’actual’/’true’ date expressions in the dataset are. Nonethe-
less, I will assume that this is still relatively representative even if not exactly correct.

Figure 5.2: The lengths, in the number of characters, of date expres-
sions that are identified by the regex module. PDF is the probability
distribution of a date expression having a specific length. Similarly,
CDF represents the cumulative distribution.

I saved this dataset to roughly 1,100 .csv-files containing approximately 4,000 lines each.
When storing this dataset I separated the part of the sequence which was padded from the
original word element. This way I had access to both the full sequences and the word element
which the sequence was constructed around, for each example. One of these files was removed
from the dataset to be manually reviewed. The removed file contained 4,571 sequences from
which 1,003 examples were manually inspected and labeled. Table 5.1 shows the results of this
manual inspection. This gives an estimate of the regex modules’ performance on finding date
expressions, and will also be used as a testset when evaluating the machine learning models.

Date? precision recall F1-score
Yes 0.94 1 0.97
No 1 0.94 0.97

Table 5.1: Results for 1003 manually labeled sequences to evaluate
the performance of the regex module.

When inspecting the sequences I discovered some systematic problems with the regex
module. A clear problem was that the module often recognized addresses as dates. This was
due to the regex module matching months by either a number from 1 to 12 or by looking in
a file of month names and abbreviations. In Italian January is called gennaio and abbreviated
as ’gen’ which caused the module to match all Swedish addresses ending in the suffix ’vägen’
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as months. If the street name is also accompanied by a street number within the range of 1
to 31 it caused the regex to identify a date. For instance, the address ’Möllevångsvägen 31 222
40 Lund’ is matched by the module as the date 2023-01-31. The year can be inferred by the
module from the metadata of when the receipt image is uploaded.

5.1.2 Generating a Synthetic Dataset
To create a synthetic dataset I primarily used the library Faker (Pua, 2022). I used the follow-
ing set of generating functions from the library to synthetically generate data:

• address

• administrative_unit

• ascii_company_email

• ascii_email

• bban

• currency

• company_name

• phone_number

• ean

• url

• words

The functions were selected by items that I, provided with advice from The Company,
deemed most likely to find on a receipt.

Faker can generate data with different locale settings. Locale is a combination of language
and territory, for example, the default locale in Faker is “en_US”for English + United States.
However, the library is not fully implemented for all available locales. For example, it gener-
ates lorem ipsum text when the words function from a specified locale is not implemented.

The procedure for generating synthetic data was as follows:

1. The generator was instantiated with a randomly selected locale.

2. To generate an example I started with a 50% chance to select a function from Faker
called date_between and label the sequence as a positive example. Otherwise, I se-
lected a random function from the listed generator functions above and labeled the
sequence as a negative example.

3. For the positive examples the date_between returns a python datetime-object. To
format this string to an arbitrary format I used the package Babel (Koskela et al., 2023)
and the function format_date. With this, we could select custom formats or use
Babel’s default formats for writing date expressions that are locale-specific.

4. To extend the initially selected element to a full sequence I gave the generator a 40%
chance to pad the generated sequence with a 50/50% chance of pre/post-padding, fol-
lowed by another 30%, 20% & 10% chance to pad the sequence again resulting in gen-
erated sequences of 1 to 5 elements.

As the real data also have access to a reference date referring to when the receipt image
was uploaded, I generated another date with a random offset between [0,90] days after
the positive labeled examples, and for the negative examples, the reference date was simply
randomly sampled. The selection of this offset was chosen as we assume that most receipts are
uploaded to the system within 90 days of the purchase, however, this was not investigated but

36



5.2 Potential System Architecture

Generated sequence label date reference date locale
paezguillermo@gomez.net 3 de marzo de 2022 alias 2022-03-03 2022-04-19 es_CO

Mart 11 https://www.koruturk.org/ 2024-03-11 2022-03-12 tr_TR
soluta dignissimos New York None 2022-05-10 sq_AL

7522758688093 None 2019-08-08 or_IN
lazura22@ilikov.info YMIU01400468967145 None 2032-09-21 bg_BG

fsimmons@blair-pope.info Τετάρτη 4 Αυγούστου 2032 2032-08-04 2032-09-04 el_CY
5.10.2019 12637 Şinasi Points Türkburgh, IA 64728 2019-10-05 2019-10-19 tr_TR

7239,75Comorian franc 6334088601649 None 2033-01-20 ne_NP
arbejder specialist nylig None 2031-07-27 da_DK
30 maijs 5703934261978 2037-05-30 2037-07-06 lv_LV

Table 5.2: Instances of generated synthetic data with corresponding
labels. The synthetic data was also labeled for token classification
which is not shown in this table.

rather guessed by The Company from experience. Table 5.2 shows a few examples of generated
data points.

Similarly to the dataset of sequences built from the OCR elements I generated a synthetic
data batch and plotted a histogram to get an idea of how the length distribution of the data
points compared to the other datasets. In Figure 5.3 we can see that the sequences in this
dataset have different length distributions to the one in Figure 5.1.

Figure 5.3: Histogram plot of the length distributions of sequences
for the generated synthetic dataset.

5.2 Potential System Architecture
I considered two potential architectures for the system. Both the date classification dataset
from Section 5.1.1 and the synthetic dataset from Section 5.1.2 can produce either a single
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OCR element/generative function or a complete sequence comprised of multiple OCR ele-
ments/generative functions. From this fact, I can either apply:

• Sequence classification followed by a sequence-to-sequence model generating the ISO
formatted date from the full sequence if a date expression was found.

• Token classification followed by a sequence-to-sequence model generating the date
from the tokens classified as a date expression from an input sequence.

Consider the example of I’m typing this on the 13th of March 2023. The first potential archi-
tecture would ideally identify this as containing a date and as such send the whole sequence
to the subsequent sequence-to-sequence model in hopes that it will generate the target se-
quence “2023-03-13”. The second potential architecture would ideally, from the same input
sequence, identify 13th of March 2023 as the part of the sequence which describes a date and
hence send this sub-sequence to the subsequent sequence-to-sequence model in hopes that it
will generate “2023-03-13”.

Figure 5.4 illustrates the two potential architectures in broad terms. Note that for the to-
ken classification alternative, there is a possibility of including a post-processing step. Con-
sider the previously mentioned example of I’m typing this on the 13th of March 2023. The token
classification model might miss-classify a single character and label 13th of & March 2023 as
two separate date expressions. A post-processing step could possibly correct errors such as
this by implementing some relatively simple logic.

In both cases, the different versions of CANINE and T5 will be optimized separately to
then be applied in sequence for the full system. Beyond this, I also have a couple of different
datasets which can be applied differently to the separate transformer models. This results in
a large space of possibilities where I will have to make design choices when constructing my
system.

Using CRISP-DM as inspiration, I have a framework for selecting a design for the com-
plete system which I aim to build. This framework can also be applied after the system is
designed in attempts at improving it. Potential improvements can be performed by inspect-
ing examples where the system fails to extract the correct date expression, and then adjusting
whichever part of the system seems to cause the systematic error.

5.3 Sequence Classification With CANINE
As our dataset is multilingual and we preferred a character-level model, we found the CA-
NINE transformer by Clark et al. (2021) from Google Research to fit these preferences.

I used CANINE as described in Section 2.7.1 for classifying if a sequence of characters
contained a date or not. The dataset used here was the one produced in Section 5.1.1. The
transformer parameters themselves were not fine-tuned but rather the LM-head on top of
the transformer was trained to classify the input sequences.

Two classifiers were trained here, one when only using the word element which the regex
module had classified as a date, and the other when using the full text sequences. For these
experiments, I used the CANINE-S version optimized on subword loss.
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Figure 5.4: Flowchart illustration, outlining the two potential archi-
tectures I will consider for building the complete system.

5.4 Token Classification With CANINE
For these experiments, I used the datasets from Section 5.1.1 and synthetic training data from
Section 5.1.2. I used CANINE for token classification as described in Section 2.7.2. For this
task, I trained an LM-head, as well as fine-tuning the parameters of the transformer stack at
the same time. I also used both versions of the base model i.e. CANINE-S and CANINE-C
for this task. The LM-head had three output labels following the BIO-scheme:

• O: all tokens not belonging to a date expression

• B-DATE: token signifying the start of a date expression

• I-DATE: tokens inside a date expression

These labels were used to find subsequences of tokens in the input sequence which the model
identified as belonging to a date expression.

5.5 Formatting Dates by Fine-Tuning T5
As an initial test T5-base was fine-tuned on the dataset from Section 5.1.1. I used 100,000 ex-
amples for training and 10,000 for validation. The task was viewed as a sequence-to-sequence
problem. The input sequence was the word elements which contained a date on some arbi-
trary format and the target sequence was the corresponding ISO-formatted date. I also used
the full sequences of the dataset and not only the word elements which contained the date
expression as input with the same target sequence.
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Given a word element containing a date expression in an arbitrary format, the model
attempts to output a string of the corresponding ISO-formatted date. i.e. in the format
of YYYY-MM-DD. It can be very hard for the model to distinguish between two dates if
switching the numbers representing month and day also produces a valid date. for example,
if a word element contains the string Date: 03.11.2022, it is ambiguous whether it aims at 11th
March or 3rd November of 2022. This can depend on which country a receipt is from, where
conventions of date formats may differ. Because of this reason, I measured the accuracy of
the model on:

• the year (YYYY) part of the date matched the labeled year.

• the month (MM) part of the date matched the labeled month.

• the day (DD) part of the date matched the labeled day.

• the full date of the output matched the labeled ISO-date.

• the full date of the output matched the labeled ISO-date after a post-processing step
where the day and month are switched such that both YYYY-MM-DD & YYYY-DD-
MM are tested.

For the dataset from Section 5.1.1 the corresponding uploaded image to the software sys-
tem contains a reference_date from when it was received and also a language_code for which
language Googles OCR response suspects the text to be in. For the synthetic data, the ref-
erence date was produced as described in Section 5.1.2, and the language code was extracted
from the locale attribute of the instantiated Faker-object. I used this data to enhance the
input sequences to T5, giving it further context. The input sequences now contained a prefix
which, for example, could look as the following:
[reference_date = ’2021-01-20’, language_code = ’en’]

5.5.1 mT5
The same fine-tuning was performed on mT5-base as for T5-base where the input sequences
were enhanced with language_code & reference_date. The number of parameters for T5-base
& mT5-base are 220 & 580 million respectively. Because of this difference, I could not load
the full mT5-base into a single GPU as previously done with T5-base. For mT5-base this was
solved relatively easily with model parallelism. The model was split into 4, roughly, equally
large parts and distributed over the 4 available GPUs.

5.5.2 byT5
The number of parameters in the respective model sizes of byT5 are the same as for mT5.
However, with byT5 the same solution to perform model parallelism was not possible due to
implementation differences on huggingface. Because of time constraints, I chose to use byT5-
small instead of byT5-base which is 300 million parameters compared to 580 million. Hence
I could fit the full model into a single GPU.

First I performed the same fine-tuning procedure for byT5 as for mT5. Then I also in-
vestigated the impact of the synthetic data during training. This was performed by inserting
different fractions of synthetic data shuffled into the training dataset from Section 5.1.1.
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5.6 Complete Pipeline
Based on the results of Tables 6.11, 6.12 & 6.13 the formatting of an input sequence seems
to be significantly easier for a model when the input sequence is shorter and contains less
‘noise’/‘context’ around the characters which represents a date expression. In practice the
post-processing step of trying to switch the digits expressing the day and month is always
tried, hence the post-processed metric is the one I value most here . Because of this and also
the first results of token classification with CANINE from Table 6.3, I decided that going
forward I would use the “Token Classification Alternative” architecture of the full system,
illustrated in Figure 5.4.

To get a system that could extract ISO-formatted dates from the text content of a receipt
I now used CANINE-S for token classification and byT5-small. CANINE first identified
where in a sequence of characters a date was found and then byT5 transformed the date
expression to our preferred ISO format. The input sequences to CANINE were segmented
by splitting the full OCR-response of the receipts on paragraph level. Because the accuracy
on chunks of the CANINE model was not optimal, see Table 6.5, a post-processing step
was introduced between CANINE for token classification and byT5. The post-processing
procedure was initially as follows:

• For a sequence of characters identified as a date, which is at most 20 characters long
in total. Check if another identified date is less than 4 characters away.

• If this other sequence of characters is identified as a date with less than 4 characters
in total: merge the two sequences of dates to a single date, including the characters
between them classified as ’O’.

• recursively repeat pattern until no more merges of identified dates occur.

The numbers in this algorithm were chosen from manual inspection of results from CANINE
for token classification but without any quantitative analysis.

Figure 5.5 shows a full representation of all the steps of the system from the uploaded
receipt image to the extracted dates found on the text contents of the image.

Figure 5.5: Flowchart representation of the components of the built
system.

Figure 5.6 shows an example of how the final system worked. In the image on the right
side, we can see that the system extracted a wrong date from a very unusual format. The re-
ceipt from this example is Dutch and the wrongly extracted date is from the text line “AS-tijd
29.01. 08:59”. This date format excludes a representation for the year and ‘confuses’ CANINE,
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which misses the first character of the day and includes a character from the representation
of the time of day.

Figure 5.6: A couple of receipts where the dates are extracted using
the built transformer system. Any personal information, or infor-
mation that can be used to extract personal information, has been
redacted.

5.7 Attempted Improvements for the Com-
plete Pipeline

I inspected the failures of the transformer system for systematic errors which could possibly
be solved by changing the post-processing, synthetic data generation, etc. The results of how
these attempts affected the accuracy of the system can be found in Table 6.15

5.7.1 Data-Augmentation: "date"
I found that CANINE, somewhat counterintuitively, ignore dates that are found after the
word "date" is explicitly written out. This was attempted to counteract by modifying the
synthetic training data to sometimes write out the word "date" explicitly in front of a date
expression.
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5.7.2 Multiple Dates per Sequence
The training data for CANINE only contained either zero or one date expression per input
sequence, possibly making it overfitted to only find a maximum of one date expression per
input sequence. This problem is exemplified in Figure 1.2 where CANINE recognizes "Mar
31 - Apr 30, 2021" as a single date. An attempt to make CANINE more susceptible to finding
multiple dates in an input sequence was made by modifying the synthetic dataset to possibly
contain up to three dates per input sequence.

5.7.3 Improving the Post Processing
While I had a post-processing step after CANINE that merged subsequences tagged as date
expressions which were suspected to belong to the same date expression, the model also
showed problems of missing trailing characters of date expressions. This was attempted to
counter by including another post-processing step where all date expressions found by CA-
NINE are extended to be at least 8 characters long or include the full input sequence if it was
shorter than 8 characters. I also tried extending to 10 characters which were initially chosen
by inspecting Figure 5.2, but this gave very poor results (84.17% system accuracy) and was
scaled back.

In addition to this, I also made the merging algorithm a bit more generous, increasing the
size of the smallest possible date expression, to five instead of four, before merging it with
an adjacent found date expression. Figure 5.2 that there should be very few date expressions
with fewer than five characters.

5.7.4 Token Classification Dataset
CANINE for token classification in the complete system now used the paragraphs in the OCR
response as input sequences. These input sequences are not segmented in the same manner as
the dataset described in Section 5.1.1. I built another dataset which splits the OCR response
on paragraph-level and matches how I decided to input the text sequences to CANINE in
the system. This dataset might also solve the above mentioned problem of CANINE being
overfitted to only find at most one date expression on each input sequence, as this dataset
can contain multiple dates on each input sequence.

The procedure for building this dataset was as follows:

1. Extract a list of all word elements from the OCR response.

2. Create a corresponding list of token labels of the same length as the full text which by
default was set to ’O’ for “other” according to the standard BIO-scheme.

3. Apply the regex module to the OCR response, resulting in a subset of word elements
which the module identified to represent a date expression. I found the corresponding
index in the labels list and flipped the values from O to ’B-DATE’ & ’I-DATE’.

4. Split the full text and token labels on the indices where the paragraph changed in the
OCR response.
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Corresponding to Figure 5.1, this dataset had length distributions shown in Figure 5.7.
We can note that the number of sequences not containing a date expression is significantly
larger than the number of that sequences that contain date expressions. This dataset contains
16,065,509 sequences from which 1,197,907 contains an identified date expression.

Figure 5.7: Length distribution of sequences in the dataset specifi-
cally built for token classification. Note the ’peak’ at sequence length
256, all sequences longer than 256 are gathered at this length to avoid
further squeezing the x-axis of the graph. During training, this is also
the max sequence length to which inputs are truncated.

5.7.5 Fine-tune CANINE Without Synthetic Data
The proportion of generated vs real data which CANINE for token classification was fine-
tuned on, was decided from the results of fine-tuning byT5 for formatting date expressions,
i.e. another task. To ensure that this proportion was optimal for the token classification step
as well, I removed the synthetic data to fine-tune CANINE again. Due to time constraints,
this was not as thoroughly tested as with byT5, and only 100% real data versus the original
50% real data + 50% synthetic data was tested.
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Chapter 6

Results

In this chapter, I first present all the training results of fine-tuning versions of CANINE and
T5. I then present the results from putting CANINE-S for token classification and byT5
together to evaluate how they perform versus the regex module in finding the correct date
on a whole receipt, as described in Section 5.6.

6.1 Sequence Classification With CANINE
For this section, CANINE for sequence classification was evaluated on the manually labeled
1003 sequences from Section 5.1.1. The classifiers trained as an LM head on CANINE as
described in Section 5.3 gave the following results:

Date? precision recall F1-score
Yes 94% 100% 97%
No 100% 94% 97%

Table 6.1: Evaluation of sequence classification when predicting if
a word element contained a date expression or not on the testset
produced in Section 5.1.1.

Date? precision recall F1-score
Yes 78% 80% 79%
No 82% 80% 81%

Table 6.2: Evaluation of sequence classification when predicting if
a full sequence contained a date expression or not on the test set
produced in Section 5.1.1.
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6.2 Token Classification With CANINE
This section is not evaluated on the manually labeled sequences as they were not labeled on
token level. For evaluating CANINE for token classification I extracted a subset of 10,000
sequences instead from the training dataset, which were not included during training. The
results of this section are hence presented with the regex module as a reference for ground
truth.

6.2.1 Training on the Date Classification Dataset
The results of fine-tuning CANINE with an LM-head on top of the transformer stack with
the dataset from Section 5.1.1 combined with synthetic data are presented in Tables 6.3 &
6.4.

BIO-label precision recall F1-score
Out 99% 99% 99%

B-DATE 88% 87% 87%
I-DATE 89% 86% 87%

Table 6.3: Evaluation of token classification for CANINE-S opti-
mized on subword loss. Trained on 500,000 examples from Section
5.1.1 and 500,000 synthetic examples.

BIO-label precision recall F1-score
Out 99% 99% 99%

B-DATE 87% 86% 86%
I-DATE 89% 85% 87%

Table 6.4: Evaluation of token classification for CANINE-C opti-
mized on character loss. Trained on 500,000 examples from Section
5.1.1 and 500,000 synthetic examples.

Although the difference in results between Tables 6.3 and 6.4 are very small I decided to
only use CANINE-S (optimized on subword loss) further.

CANINE-S was also evaluated using conlleval to measure the performance on classifying
chunks, i.e. a sequence of characters representing a full date expression, in comparison to
table 6.3 & 6.4 where the metrics are measured on individual characters.

precision recall F1-score
76.35% 78.39% 77.36%

Table 6.5: Chunk-score measured by conlleval. The same fine-tuned
version of CANINE-S is evaluated in Table 6.3 on each token indi-
vidually.
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6.2.2 Training on the Token Classification Dataset
The results of fine-tuning CANINE-S with the dataset specifically made for token classifica-
tion as described in Section 5.7.4 combined with synthetic data, are presented in table 6.6 &
6.7.

BIO-label precision recall F1-score
Out 100% 100% 100%

B-DATE 95% 96% 96%
I-DATE 98% 97% 97%

Table 6.6: Evaluation of token classification for CANINE-S opti-
mized on subword loss. Trained on 500,000 examples from Section
5.7.4 and 500,000 synthetic examples.

precision recall F1-score
89.90% 93.87% 91.85%

Table 6.7: Chunks-score from conlleval. Evaluating CANINE-S for
token classification on the dataset from Section 5.7.4 and synthetic
data.

6.2.3 Training Without Synthetic Data
The results of fine-tuning CANINE-S without any generated synthetic data, i.e. only the
dataset from Section 5.7.4 are presented in Tables 6.8 and 6.9.

BIO-label precision recall F1-score
Out 100% 100% 100%

B-DATE 95% 96% 96%
I-DATE 98% 97% 97%

Table 6.8: Evaluation of token classification for CANINE optimized
on subword loss. Trained on 1,000,000 examples from the dataset
described in Section 5.7.4.

precision recall F1-score
94.04% 94.95% 94.49%

Table 6.9: Chunks-score from conlleval, evaluating CANINE-S for
token classification on the dataset from Section 5.7.4.
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6.3 Formatting Dates by Fine-Tuning T5
When evaluating the different fine-tuned versions of T5 I used the manually labeled 1003
sequences from Section 5.1.1. The results in this section measure how accurately T5 generates
the ISO formatted date for the manually labeled testset.

6.3.1 T5
The initial test of fine-tuning T5 to format a date expression to ISO format is presented in
Table 6.10.

No post
processing

accuracy
on full date 70.54%

accuracy on
year (YYYY) 97.42%

accuracy on
month (MM) 75.27%

accuracy on
day (DD) 73.76%

Including
switched
DD & MM

full date
YYYY-MM-DD or
YYYY-DD-MM

93.54%

accuracy on
month (MM) 98.71%

accuracy on
day (DD) 97.20%

Table 6.10: Results for the initial test of fine tuning T5-base on
100,000 examples for 1 epoch.

The subsequent test of training on 100,000 examples again with the input sequences en-
hanced with reference date and locale can be found in Table 6.11.

6.3.2 mT5
The multilingual version of T5, i.e. mT5, was fine-tuned in a similar manner with input
sequences enhanced with reference date & locale data. The results of this experiment are
presented in Table 6.12.

6.3.3 byT5
On byT5 I first fine-tuned the model in the same manner as mT5. These results are pre-
sented in Table 6.13. Further, I investigated the impact of generated synthetic data when
ISO-formatting dates with byT5. These results are presented in Table 6.14.
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Accuracy word element Full sequence

No post
processing

full date
YYYY-MM-DD 72.26% 70.10%

year (YYYY) 98.71% 98.49%
month (MM) 75.49% 80.21%
day (DD) 74.62% 73.12%

Including
flipped
DD & MM

full date
YYYY-MM-DD or
YYYY-DD-MM

94.84% 84.30%

month (MM) 98.71% 96.77%
day (DD) 97.85% 87.74%

Table 6.11: Results of fine-tuning T5-base on 100,000 examples for 1
epoch. training on both word elements and the full length sequences.
Sequences were prefixed with reference_date and language_code.

Accuracy word element Full sequence

No post
processing

full date
YYYY-MM-DD 70.75% 70.97%

year (YYYY) 98.70% 98.92%
month (MM) 74.62% 80.43%
day (DD) 73.12% 73.76%

Including
flipped
DD & MM

full date
YYYY-MM-DD or
YYYY-DD-MM

95.27% 84.94%

month (MM) 99.35% 96.13%
day (DD) 98.06% 89.24%

Table 6.12: Results of fine tuning mT5-base on 100,000 examples
for 1 epoch. training on both word elements and the full length
sequences. Sequences were prefixed with reference_date and lan-
guage_code.

6.4 Complete Pipeline
A sample of 10,000 receipts was used for evaluation in this section. They were selected such
that CANINE or byT5 had not been trained on content from these specific receipts. In this
section, I measure the accuracy of the complete system similar to how the regex module was
evaluated in Section 4.1.

The initial system found the correct date on 9,183 out of the 10,000 receipts, i.e. 91.83%
accuracy. Evaluating the regex module on the same 10,000 receipts it found the correct date
on 9679, i.e. 96.79% accuracy.

Improvements to the system were attempted as described in Section 5.6. The results of
these changes together with the original results and comparisons to the regex module are
found in Table 6.15.

For the evaluation of the complete system where my performance achieves a 94.62% ac-
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Accuracy word element Full sequence

No post
processing

full date
YYYY-MM-DD 75.05% 77.85%

year (YYYY) 98.92% 97.20%
month (MM) 78.49% 88.82%
day (DD) 77.63% 81.94%

Including
flipped
DD & MM

full date
YYYY-MM-DD or
YYYY-DD-MM

95.25% 82.80%

month (MM) 99.14% 94.84%
day (DD) 98.05% 87.32%

Table 6.13: Results of fine tuning byT5-small on 100,000 examples
for 1 epoch. training on both word elements and the full length
sequences. Sequences were prefixed with reference_date and lan-
guage_code.

Accuracy on 10% / 111k 20% / 125k 30% / 142k 40% / 166k 50% / 200k 100% / 100k

No post
processing

full date
YYYY-MM-DD 68.17% 66.45% 62.80% 68.39% 70.96% 94.41%

year (YYYY) 98.92% 98.92% 98.92% 98.92% 98.92% 98.49%
month (MM) 71.18% 68.81% 65.60% 71.18% 73.76% 97.42%
day (DD) 70.75% 68.38% 65.16% 70.75% 73.33% 96.99%

Including
flipped
DD & MM

full date
YYYY-MM-DD or
YYYY-DD-MM

95.70% 95.70% 95.70% 95.70% 95.70% 94.62%

month (MM) 99.14% 99.14% 99.14% 99.14% 99.14% 98.28%
day (DD) 98.50% 98.50% 98.50% 98.50% 98.50% 97.63%

Table 6.14: Results of fine tuning byT5-small on different fractions
of added generated data. Note that the header of each column de-
notes how many percent of the data was generated and that it corre-
sponds to the amount of real data being fixed to 100,000 examples.

curacy, I compared the misses to the regex module. This resulted in a failure on 538 receipts
for the transformer system and 321 for the regex module. Out of these, I found that for 7 re-
ceipts the transformer system had found the correct date while the regex module had failed.
From these 7 receipts which the transformer system found the correct date, 5 contained OCR
misses which caused the regex module to fail. For the other 2, the date expressions were writ-
ten on formats that were not matched by the regex module, and hence formats that CANINE
had not seen during training either. Figure 6.1 shows two examples of these receipts where
my system extracts the correct purchase date while the regular expression module fails.
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6.4 Complete Pipeline

Baseline system Accuracy
regex module (full dataset) 92.07%
regex module (testset) 96.79%
Constructed transformer-based system
Encoder Modification to the encoder Enc./Dec.
CANINE base ByT5 91.83%
CANINE (Data-augmentation: explicit “date”) ByT5 90.15%
CANINE (multiple dates per generated sequence) ByT5 91.53%
CANINE (IPP) ByT5 92.07%
CANINE (IPP & TCD) ByT5 94.23%
CANINE (IPP, TCD & -GD) ByT5 94.62%

Table 6.15: Evaluations of the complete system with different iter-
ative modifications tried. The accuracy represents the fraction of
receipts for which each system found the correctly labeled date for
a testset of 10,000 receipts. The first line is an exception where the
evaluation is taken from Section 4.1 on the full dataset.
IPP = More inclusive post processing.
TCD = token classification dataset.
-GD = no generated synthetic data for training CANINE.

Figure 6.1: Illustration of where my system extracts the correct pur-
chase date for two receipts where the regular expression module fails.
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Chapter 7

Discussion

In general, the results show that the constructed machine learning system can achieve results
reasonably similar to the regex module, in identifying and extracting date expressions. In this
chapter follows a more detailed discussion of the results of the different parts of the system.
Further, I comment on some details which are not covered by the results directly. Lastly, I
discuss some limitations that were encountered while implementing the system.

7.1 Observations From Results
7.1.1 Sequence Classification
From the sequence classification with CANINE, it seems that when only using the OCR
elements which the regex module has classified as a date or not, it is quite a low effort to
reproduce the same behavior as the regex module with a transformer model. This can be
seen by comparing Tables 6.1 & 5.1 which produce identical results. However when including
context around these OCR elements to train on the full sequences, the dataset becomes more
noisy and the metrics suffer substantially as presented in Table 6.2.

7.1.2 Token Classification
The reason for changing the dataset when training CANINE for token classification was
to make the inference data match the training data. The general idea was that the context
surrounding the dates found by the regex module will be more relevant when defined by the
paragraph elements of the OCR-response as this has a more geometric logic on the receipt
image, compared to padding word elements to a sequence length threshold. Padding word
elements to a threshold has the possibility to span over several paragraphs and possibly make
the context less relevant. While a major factor for using machine learning models is the
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ability to generalize, having the training data match the inference data to an as large extent
as possible had a significant positive impact here.

The synthetic data was also found to not help when training CANINE for token classi-
fication. I had more control over the synthetic data in the sense that I could generate date
expressions on formats that I knew the regex did not capture. However, the context sur-
rounding the date expressions was randomly generated from a set of generator functions.
I suspect that the context tokens surrounding the date expressions are seen as noise to the
model and as such are very low-quality data which impairs the overall model performance.

7.1.3 Formatting Date Expressions With byT5
In Table 6.14 we see the impact of adding synthetic data when formatting dates with byT5.
The fraction of synthetic versus real data seems to have some effect on whether or not the
model is confused about which part of the string belongs to the month and day. This confu-
sion does not matter much for the system as the post-processing code is used to switch the day
and month during inference to test if both “YYYY-MM-DD” & “YYYY-DD-MM” produces
a valid date expression. Comparing Tables 6.13 & 6.14 there is a small gain in performance
for byT5 when including some synthetic data. Although it is hard to tell exactly how much
synthetic data should be included as most fractions gave the same performance on the met-
ric of “full date YYYY-MM-DD or YYYY-DD-MM”, which was the primary decision-making
metric.

No further investigations were made here but I suspect that the remaining 4.3% of the
wrongly formatted dates are mostly the same examples for all fine-tuned models with differ-
ent fractions of synthetic data. A possible explanation could be that the transformer model
is trained on data expressions that are extracted from the regex module as well as synthetic
examples generated from Faker and formatted by Babel. These formats may have some dis-
crepancies to what was manually labeled and used as ground truth, resulting in the 95.7%
accuracy for most tests in Table 6.14.

7.1.4 Post Processing Step
Date expressions are often written together with a time of day. For example, consider the
expression “27 Apr 2023 11:23”, where “11:23” is not part of the date expression, but rather
represents the time of day. This is a problem, especially for the post-processing step I in-
troduced between CANINE and byT5, where I sometimes extend identified date expression
lengths. When the date expression lengths are extended I introduce the possibility of includ-
ing the characters representing the time of day written after the date to byT5. This is not
optimal and may result in byT5 formatting the wrong date. On the other hand not extend-
ing the found date expression lengths has the converse problem of possibly missing the last
characters of a date expression, i.e. CANINE predicts ’O’ when it should predict ’I-DATE’.
Consequently, byT5 isn’t provided the full date expression with all the information needed
to format the correct date. I found that extending the found date expressions identified by
CANINE to 8 characters was the ’sweet spot’ between these two effects.

However, when inspecting the failures of my system, the issue of extracting the time of
day is still a typical error for which I did not find a good solution. Figure 5.6 also exemplifies
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this problem. The post-processing step might not be the best solution for this problem either,
rather a dataset better labeled for the task may solve this issue.

7.2 Notable Details
In Table 6.15 we can observe a significant difference in accuracy for the regex module depend-
ing on if it was evaluated on the same testset as the transformer system or the full dataset.
This is caused by a difference in the processing of the dataset. As mentioned in Section 4.1 I
removed examples that were missing the labeled feature for the three respective labels which
were investigated. However when building the dataset for training I removed all examples
which were missing any of these three labels. This results in a bias for the produced datasets
which are possibly more ’clean’ than the data which might be encountered for inference in a
production setting. As such the performance of 94.62% for the transformer should only be
compared to the 96.79% accuracy of the regex module, evaluated on the same dataset.

In this thesis, I focused on performance in terms of finding the right answer, i.e. the
purchase date on an image of a receipt. However, it should be noted that the constructed
transformer system is significantly slower compared to running the regex module. For the
testset of 10,000 receipts, the regex module runs for approximately one minute while the
transformer system takes over an hour. While these numbers were not measured precisely
and are dependent on implementation I find the difference significant enough to be men-
tioned. The inference of the transformer system was done on a CPU machine and can be
optimized to some extent by implementing batching and running it on a GPU machine in-
stead. Nevertheless, the built transformer system processes a full receipt in under a second
with the current implementation, which can be considered an acceptable delay.

7.3 Limitations
In this thesis, I had to work with training data for a machine learning system that was not
specifically labeled for the problem. This is a common problem in machine learning which
impacts the results.

The available hardware during the project was also a limiting factor. As mentioned in
Chapter 2, scaling language models has been shown to generally improve performance. In
this thesis, I chose models which I could, mostly, fit into a single GPU with 16GB of VRAM.

7.3.1 Dataset
The available dataset was labeled as an input image of a receipt having a corresponding pur-
chase date. This means that performing token classification had to be labeled by some auto-
mated procedure during the project. The solution I found to this was to use the regex module
in production to label character sequences as part of a date expression and also generate syn-
thetic data. Both the regex module and the generation of synthetic data follow strict rules.
The idea was that the models could utilize their pre-training to generalize from the strict
rules of the produced training dataset during fine-tuning. However, these rules may also just
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7. Discussion

be replicated by the machine learning model without much generalization. Specifically a few
problems I noticed with our datasets after fine-tuning were:

• Regex-generated dataset: Training a machine learning model on the datasets from
Sections 5.1.1 & 5.7.4 will likely make it reproduce the same systematic errors as the
regex-module itself. For instance, a systematic error was false positives of addresses
as mentioned in Section 5.1.1. One idea of producing a synthetic dataset was to offset
systematic errors such as this by producing similar data with the opposite label.

• synthetically generated dataset: While this gave the possibility of generating locale-
dependent date expressions on arbitrary formats to teach the models to recognize it
was very hard to produce surrounding context data in the input sequence that made
sense and not just produce extra noise for the model to filter.

7.3.2 Hardware
As already mentioned, the system created is significantly slower compared to the regex-
module which it’s compared to. However, if performance in terms of accuracy alone is to
be optimized it is possible to use larger transformer models in hopes of reaching better re-
sults. For instance, I used byT5-small which could have been exchanged for a larger version in
the same model family. CANINE has no larger version in its family but other, larger, models
for token classification could have been tested.

Strubell et al. (2019) produced a study of energy consumption and CO2 emissions from
training large machine learning models. They found that training a large transformer model
can produce CO2 emissions comparable to that of airplane travel. In this thesis, I fine-tune
already pre-trained transformer models which removes a large amount of computational cost.
Even so, the computational power required for the system I built is significantly larger than
the regex module which it is compared to. As such, further attempts at improving my system
beyond the accuracy of the regex module by possibly utilizing even larger transformer models
should not be done uncritically.
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Chapter 8

Conclusion & Future Work

To answer the first research question of How I constructed a machine learn-
ing system to extract dates on arbitrary formats from natural text, specifically pertaining to
receipts. I chose to construct a solution consisting of two transformer models connected
in sequence. The first machine learning model consisted of an encoder model of the trans-
former architecture which performed token classification. After the first model was a post-
processing that attempts to breach the gap between the character level accuracy and chunk
accuracy. Lastly, the system consisted of an encoder-decoder model which generated an ISO
formatted date expression from the expression identified by the first model.

The system was compared to a regex module which The Company currently has in pro-
duction. The regex module was also used to construct the training data for the transformer
models. The final accuracy of the transformer system was 94.62% compared to the regex-
modules 96.79%.

Regarding the second research question , generating synthetic data was a
harder task than expected. In this thesis, I found some minor success in using synthetically
generated date expressions for byT5 to ISO format. For the token classification model how-
ever it had a negative effect on the accuracy. While it gave very small successes in this work,
I suspect that it can be further improved on to achieve better results. Approaches could in-
clude more integration with the real datasets, where manipulating date expressions found
by the regex module in sequences to include formats that the regex module doesn’t catch.
Another data augmentation that could be tested is to insert OCR failures that have been
observed manually into the training data.

Due to the time constraints of this thesis, I only tested CANINE & different versions
of T5. Other models could possibly be fine-tuned and evaluated. However, the choice of
CANINE was in part due to it being a tokenization-free, character-level model which made
it easier to implement for token classification.

Further, having a manually labeled dataset, containing date expressions on a variety of
formats could potentially improve performance.
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8. Conclusion & Future Work

For a small number of receipts, the system found the correct date while the regex module
failed. I inspected these receipts individually to find typical examples of OCR failures. Hence
the built transformer system achieves an inferior accuracy compared to the regex module. The
potential upside of using a machine learning system instead is that it shows some indications
to generalize and eliminate the shortcomings of the regex module stated in Section 4.1.

The potential for machine learning systems to replace some regular expression tasks seems
to be possible but for this specific task, more improvements will have to be made. Resource
efficiency should also be considered, both for economic and environmental reasons. With
this in mind, regular expression techniques have an advantage compared to large machine
learning systems utilized in this thesis.
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Extrahering av datumsuttryck ur kvitton
med hjälp av maskininlärning

POPULÄRVETENSKAPLIG SAMMANFATTNING Axel Leander

Utläggsredovisning och bokföring är tidskrävande upgifter som har potential att au-
tomatiseras med verktyg så som maskininlärning. I detta arbetet byggde jag ett system
av transformers-modeller för att extrahera datumsuttryck ur kvitton.

Att extrahera data ur dokument är mycket tid-
skrävande om det görs manuellt. För en da-
tor finns det potential att automatisera och göra
processen snabbare. Regelbaserade verktyg, som
Regular Expression (regex) kan användas för att
matcha och extrahera data ur text som följer ett
specifikt definierat mönster. Vanlig data att extra-
hera med hjälp av regex kan vara telefonnummer,
mail-adresser m.m. Det kan dock uppstå prob-
lem av matchningen vid förekomst av stavfel och
liknande. En annan källa till fel uppstår vid skan-
ning av pappersdokument till digitalt format där
optical character recognition (OCR) används och
det förekommer avläsningsfel.

I mitt examensarbete undersökte jag extraktion
av datumsuttryck från kvitton med hjälp av mask-
ininlärning. Kombinationen av att datum kan
skrivas på många olika format tillsammans med
problemet av OCR-avläsningsfel gör att regex po-
tentiellt inte är en optimal strategi. Jag designade
ett system där två maskin-inlärningsmodeller av
transformer-arkitekturen används i sekvens. Den
första modellen extraherar vad den identifierar
som ett potentiellt uttryck för ett datum och
skickar vidare till den andra modellen som gener-
erar datumet på standardiserat ISO-format.

Ett vanligt problem
med maskininlärn-
ing är tillgång till
stora mängder rel-
evant träningsdata.
Därför undersöktes
även möjligheten att
generera syntetisk data
för att träna maskin-
inlärningsmodellerna.

Resultaten visade
att systemet kan iden-
tifiera datumsuttryck
där OCR-avläsningen
identifierat enskilda
tecken fel. Samt kunde modellen identifiera
datumsuttryck på format med små varia-
tioner från vad den tränats på. Generering
av syntetisk data visade en svag förbättring
för genereringsmodellen men lyckades inte nyt-
tjas för att förbättra klassificeringsmodellen.
Trots maskin-inlärningsmodellernas förmåga att
generalisera till nya format och förbise OCR-
avläsningsfel presterade referenssystemet, byggt
på regular expression, överlag lite bättre.
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