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Abstract

A generalizable skill which is able to open a door operated by a button is specified
and implemented on an autonomous robot. This is achieved using ROS and
SkiROS on a mobile robot called Heron. A skill which lets Heron pass the door
while ensuring that the door stays open is also specified and implemented. A
building is described with a graph structure which enables Heron to plan a path
which will let it navigate to a goal location from any start location in the building.

Physical experiments have been performed to verify that the expected behaviour
matches the actual behaviour of the skills. These experiments were successful,
recorded and included in the appendix.
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Chapter 1

Introduction

1.1 Background

Autonomous systems can be defined as “systems that can change their behavior in response
to unanticipated events during operation” [28]. Compare this to the majority of robots on
production lines which may struggle to manage unforeseen circumstances or even be unaware
that such situations have occurred. Autonomous robots possess a greater level of adaptability
and can respond effectively in dynamic environments.

Industrial robots are able to consistently perform the same task but do not sense their gen-
eral surroundings, for this reason they are confined to operating in closed environments free
of humans. Autonomous robots can be used where traditional non-perceiving robots could
never be utilized. They can be used in environments where inconsistencies are unavoidable.
For example the robot can not expect an object to stay exactly where it was previously de-
tected.

Any task an autonomous robot needs to perform can be broken up into three parts, sensing,
planning and acting. A simpler robot often uses sensing and acting but leaves the planning
part to a human, this plan is often pre-specified and can not be changed at runtime. A
fully autonomous robot is able to sense it’s surroundings and depending on the results it can
plan how it should achieve a certain goal and then act in the environment to reach that goal
without any human intervention. [24]

Autonomous robots can be utilized in many situations and help humans with tasks that they
themselves can not perform. The need for autonomous robots can be due to a number of
different reasons. These robots should not require new environments for us to be able to
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1. Introduction

utilize them, they should meet humans where they are [4, p.52]. The majority of human
activities occur within buildings. It follows that for a robot to be able to complete tasks
there they must possess the capability to navigate through these structures.

Traversing a building requires a robot to posses many different skills e.g. using an elevator or
walking up a flight of stairs. The skills the robots use to navigate with exist purely in service
of the bigger task, they do not directly help it complete the task but could be a necessity for
reaching the goal. This because many actions require movement, sometimes between rooms
and or floors.

1.2 Problem Description

From the previous discussion it is clear that a collaborative autonomous robot needs to posses
several different skills which enable it to navigate. Of these a door opening skill is one of the
most useful to navigate in a building. This project will focus on implementing a general door
opening skill for a specific type of door and a specific robot.

A door opening skill can be very different depending on what the door looks like and how it
is operated. For this project the chosen door can be opened by pressing a button. The specific
task the robot should complete will be to navigate to the button, press the button, verify that
the door is open and go through it.

The robot we will use is called Heron and consists of a MiR platform, a realsense D435 depth
camera and a UR5e arm with a WSG 50-110 gripper (an end-effector). Heron can be seen in
Fig. 1.1.

1.3 Research Questions

For us to program a robot such that it has a door opening skill we first need to define what
a door opening skill is or even what it should look like. What factors are important for the
robot when opening a door? What conditions should hold before the skill is executed and
what conditions should be true after the skill has been executed?

In this specific scenario we need to implement a skill that Heron can execute that opens the
specific door we have in mind. The skill should however be generalized so that it is able to
open other doors.

From this the following research questions can be formulated:

• How should a door opening skill be specified?

• What conditions does a door opening skill need to be satisified?

• How can a door opening skill be implemented for Heron?

10



1.4 Related Work

Figure 1.1: The robot, Heron, which will be used in this project.

• Can we utilize fiducial markers to reliably detect the button?

• How consistent and precise is the manipulation of the arm?

• How consistent and precise is the robot navigation?

• How reliable is the force sensing?

• How reliable is the button pushing as a whole?

• Can Heron itself plan how a door opening skill should be utilized to help it navigate
in the environment?

1.4 Related Work

Robust and Adaptive Door Operation with a Mobile Robot

Using robots to support humans means that the robot should be reliable and efficient. Ar-
dungo et al. have, in their research paper used YOLO on RGB-D images together with effi-
cient point-cloud processing to detect doors and handles. [3]

They additionally propose a Bayesian framework that enables the robot to infer how the door
is operated, if it is a cabinet you pull open or a door which swings open. Arduengo et al. have
then combined these techniques to perform real-world experiments using a robot.

11



1. Introduction

Force-Vision Sensor Fusion Improves Learning-Based Approach for Self-Closing Door Pulling

Opening a self-closing door is considerably harder than opening a door which does not close
on its own. As the robot passes through the door it needs to hold the door open and make
sure that it has passed the door before the door closes.

Sun et al. have used deep reinforcement learning and vision sensor fusion to simulate what
pulling and passing a self-closing door could look like. [25]

OpenD: A Benchmark for Language-Driven Door and Drawer Opening

Assisting humans does not only include traversing a building, it can entail fetching things.
This could make it necessary to open things other than doors.

OpenD is a simulation environment which includes many different door and drawer opening
environments with different types of grippers. Zhao et al. desribe a multi-step plan for how
a cabinet opening skill could be formulated and train several models which are able to open
different kinds of doors and cabinets. [29]

Planning for Autonomous Door Opening with a Mobile Manipulator

Chitta et al. recognize that determining a skill sequence for opening a general door at runtime
involves a search space which is so large that the problem becomes intractable. By discretizing
the problem and introducing a graph structure they are able to decrease the search space and
efficently determine the sequence of skills which needs to be executed to achieve their goal.
[6]

Door Manipulation with the Spot Arm

Boston Dynamics have produced the famous Spot robot which is able to perform many dif-
ferent tasks. One of these tasks is a door opening task for a very specific type of door with a
door handle. [9]

12



Chapter 2

Theory

2.1 Perception

2.1.1 Homogeneous Coordinates

Homogeneous coordinates are a useful representation of vectors from projective geometry
that are defined up to scale. This is especially useful in computer vision where projections of
points to a camera plane can be simplified greatly with homogeneous coordinates. The space
Pn is defined to be the n-dimensional projective space. This can be identified with the n + 1
dimensional real space Rn+1 with the origin removed [12, p.29].

A very important note about projective space is that it is defined up to scale, we say that
points are equal if they only differ in scale, i.e.

x ∼ y x, y ∈ Rn+1 ⇐⇒ x = λy for some λ ∈ R, λ ̸= 0 .

This space can be defined for any amount of dimensions but in computer vision one uses P2

to represent points on the camera plane and P3 to represent points in the world. We can map
vectors in Rn to and from Pn with the following functions

f : Rn → Pn,

g : Pn → Rn.

13



2. Theory

We define these functions in the following way

f :


v1
v2
...

vn

 7→

v1
v2
...

vn
1


,

g :


v1
v2
...

vn
vn+1


7→

1
vn+1


v1
v2
...

vn

 .
If we use homogeneous coordinates the Euclidean coordinates of points in the camera frame
are related to the homogeneous coordinates of their projections to the camera plane with the
following equation xpix

ypix

1

 ∼
Xcam

Ycam

Zcam

 .
To recover xpix and ypix we can apply g, i.e. compute the following [12, p.27]

xpix =
Xcam

Zcam
,

ypix =
Ycam

Zcam
.

In projective geometry we refer to vectors that are normalized, such that the last coordi-
nate is 1, as inhomogeneous vectors, while vectors that are not normalized in this way are
homogeneous vectors [26, p.36].

Homogeneous coordinates are a powerful way to describe coordinates and are widely used in
computer vision and photogrammetry. This is due to the fact that imaging points requires
projecting them to a plane which can be done efficiently with this framework.

2.1.2 Coordinate Transformations

Given a three-dimensional vector, x, and two bases {ei}
3
i=1 and {fi}

3
i=1, we can represent x by

coordinates in these bases in the following way

x = x1e1 + x2e2 + x3e3

= x′1f1 + x′2f2 + x′3f3 .

The coordinates are not necessarily equal but describe the same point. Clearly there is no
reason to choose one basis over the other as a canonical basis, but both of these bases have
the same origin. To see this consider how both of these bases would represent 0.
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2.1 Perception

By the same token there is no reason to choose any point as the origin over any other. This
decoupling of points from their coordinate system leads to the theory of homogeneous coor-
dinate transformations.

Since a point in three-dimensional space still exists and has a known position relative to other
points even if we do not give it explicit coordinates, one usually introduces coordinate frames
which act as a fixed frame of reference. With these we can record how points relate to each
other in the physical space. When noting the coordinates of a point this is always in relation
to some frame which we can see in Fig. 2.1.

A

B
xA

xB
x

Figure 2.1: One point in physical space described in coordinate
frame A and coordinate frame B. The vector xA ∈ R3 is the co-
ordinates of x in frame A and xB ∈ R3 is the coordinates of x in
frame B.

The point x in Fig. 2.1 has a representation in frame A given by a set of coordinates denoted
by the vector xA as well as a representation in frame B denoted by xB [8, p.5]. Note that the
coordinates xA and xB are not literally equal yet still describe the same point with respect to
different frames.

We can also record the relation between different frames by recording where the origin of
frame B gets placed in the coordinates of A. We call this vector tA

A→B where A→ B denotes
the translation that takes frame A to frame B and the superscript denotes which frame the
translation has been recorded in. The orientation of the axes in coordinate frame B can also
be recorded in frame A in a matrix RA

A→B which is an orthogonal matrix since its columns
form an orthonormal basis. [15, p.35]

Given the translation, tA
A→B, and rotation, RA

A→B that relate frame A to frame B we can con-
vert the coordinates of a point from the coordinates in frame B to coordinates in frame A
with the following formula

xA = RA
A→BxB + tA

A→B ,

note that this is an affine transformation i.e. not linear. This coordinate transformation can
be reframed to a matrix product in homogeneous coordinates in the following way [15, p.36].
This rewriting turns the change of frame into a linear transformation in Pn.[

xA

1

]
=

[
RA

A→B tA
A→B

0 1

] [
xB

1

]
.

The coordinate transformation from frame B to A can thus be described by the translation
and rotation that moves the origin of frame A to frame B and aligns the axes of frame A with

15



2. Theory

the axes of frame B. This with a single matrix [8, p.7]

TA
A→B =

[
RA

A→B tA
A→B

0 1

]
. (2.1)

When using homogeneous coordinate transformations there are some important rewrite rules
that can be used to combine and modify coordinate transformations. Two of these rewrite
rules are the following [15, p.37] (

TA
A→B

)−1
= TB

B→A ,

TC
C→A = TC

C→BTB
B→A .

In Fig. 2.2 we can see that computing the coordinates of x in frame A given the coordinates
in frame B is similar to traversing the arrows from point x to frame A. From this path we can
reconstruct the formula xA = TA

A→BxB. This way of viewing coordinate frames as nodes and
coordinate transformations as connections between nodes is very powerful for computing
coordinate transformations.

A

B
TA

A→B

x

xA
xB

Figure 2.2: Computing the coordinates of x in frame A can be done
by traversing the graph from x to A and reconstructing xA from the
determined path.

Another problem that can be effectively solved with this viewpoint is the problem of deter-
mining the transformation between two base frames if a single frame has been determined
in both frames. The problem setup can be seen in Fig. 2.3.

Coordinate transformations can be determined by finding paths between frames in the graph
of coordinate transformations. From this we can conclude that starting from frame B and
going in a circle is identical to converting from frame B to itself, the identity transformation.
This gives the following formula

TB
B→C

(
TA

A→C

)−1
TA

A→B = TB
B→B .

From this we can determine the unknown transformation, TA
A→B, in the following way

TB
B→C

(
TA

A→C

)−1
TA

A→B = TB
B→B

TB
B→C

(
TA

A→C

)−1
TA

A→B = I

TA
A→B = TA

A→C

(
TB

B→C

)−1
.
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2.1 Perception

A

C

B

TA
A→C

TB
B→C

TA
A→B

Figure 2.3: Graph of the problem of determining the transformation
between two frames given that one frame is described in both base
frames.

If we now use the definition of the transformation matrices which were introduced in Eq. (2.1)
we can compute the above matrix multiplication to get that

TA
A→B =

[
RA

A→C tA
A→C

0 1

] (RB
B→C

)T
−
(
RB

B→C

)T
tB
B→C

0 1

 ,[
RA

A→B tA
A→B

0 1

]
=

RA
A→C

(
RB

B→C

)T
tA
A→C − RA

A→C

(
RB

B→C

)T
tB
B→C

0 1

 .
In this way the pose of B has been described in the frame of A as desired.

2.1.3 Camera Calibration

When imaging a point in three-dimensional space we can use the pin-hole camera model [26,
p.55] to map a point to a pixel position. An example of this can be seen in Fig. 2.4.

Figure 2.4: Example of imaging the corners of a square according to
the pin-hole camera model.

Consider the inverse problem of mapping a pixel position back to the world. Since the
projection to the camera plane is not invertible we are not able to determine which three-
dimensional point this image position was mapped from, but we can determine which line
the three-dimensional point must have existed on.

To perform this inverse mapping we must know the focal length of the camera as well as the
pixel position of the image center. If we do not know these parameters we have no way to
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2. Theory

determine the line on which the projected point must have existed. Examples of these lines
for different values of the focal length and pixel center can be seen in Fig. 2.5.

C

P1

P2

Figure 2.5: The true focal length and pixel center is denoted by C
and the imaged points are P1 and P2. Only the projection of P1 and
P2 to the camera plane is known, not the camera parameters which
results in many different choices of rays potentially passing through
P1 and P2.

The pin-hole camera model corresponds to a homogeneous transformation on the following
form xpixel

ypixel

1

 ∼
h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34



Xworld

Yworld

Zworld

1

 .
This transformation is usually written as a matrix product in the following wayxpixel

ypixel

1

 ∼
 fx fxy cx
0 fy cy
0 0 1


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



Xworld

Yworld

Zworld

1


∼ K
[
R t
] 

Xworld

Yworld

Zworld

1

 .
The camera calibration matrix K is an upper triangular matrix with the focal lengths fx and
fy and the skew fxy which is 0 for most cameras. The parameters cx and cy are the pixel
coordinates of the camera center. The matrix R and vector t describe the pose of the camera,
note that R is a rotation matrix.

Under the assumption that the pin-hole camera model applies to our camera we can estimate
the camera calibration matrix, K. For real cameras the pin-hole camera model is, however,
not exact. This can be mitigated by additionally assuming that there exists some non-linear
distortion in the imaging process induced by the lens of the camera. We assume that the
camera has some radial and tangential distortion described by the equations below

xd = x(1 + k1r2 + k2r4 + k3r6) + (2p1xy + p2(r2 + 2x2)) ,
yd = y(1 + k1r2 + k2r4 + k3r6) + (p1(r2 + 2y2) + 2p2xy) .
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2.1 Perception

This distortion model is the Brown-Conrady distortion model [1]. The parameters k1, k2,
and k3 describe the radial distortion and the parameters p1 and p2 desribe the tangential
distortion. The true coordinates are x and y while the distorted coordinates we see are xd

and yd. The variable r is the distance of the true point from the camera center.

The process of estimating this matrix, K, and the distortion parameters is called camera
calibration or intrinsic camera calibration [26, p.685].

2.1.4 Hand-Eye Calibration

Hand-eye calibration is the process of estimating the relationship between a camera frame
and an end-effector frame, i.e. the transformation between the two frames [13, p.3]. In this
case the camera either has a fixed position in relation to the environment (hand-to-eye) or
to the end-effector (eye-in-hand). Estimating the transformation can be done with the help
of calibration objects, such as an ArUco marker or a chess board.

In Fig. 2.6 the setup for eye-in-hand calibration is pictured and the transformations between
the different frames have been marked. The transformation between the base frame and the
end-effector, A, is defined since the structure of the robot and the robots position in the
world are known. The transformation between the camera and the object, B, is also known
since we use the camera to determine the pose of the calibration object in the camera frame.
The transformation from the end-effector to the camera, X, and the transformation from the
base to the object, Y, are both unknown.

X

B
A

Y

Figure 2.6: The problem setup for eye-in-hand calibration is pic-
tured above. The transformations A, and B are known and the trans-
formations X and Y are unknown.

In the transformation graph in Fig. 2.6 there are two distinct paths from the camera to the
base frame. One of these is the path which passes the end-effector and the other is the path
that passes the calibration object. Assuming that the world is consistent, i.e. the transforma-
tions that can be derived from these paths are equal since they have the same start and end
frame, gives us the following equation [13, p.2]

AX = YB .
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If we are able to find transformations X and Y such that this equality is achieved we know
that both X and Y have been determined. This tells us where the calibration object is in
relation to the base frame but in particular it also tells us where the camera is in relation to
the end-effector.

2.1.5 ArUco Markers

In computer vision pose estimation is the problem of estimating the translation and orien-
tation of a rigid body in some coordinate frame. When estimating the pose of an object one
usually wants to compare this estimated pose to some ground-truth to evaluate the estima-
tion. More often than not, for arbitrary objects, no ground truth exists. To this end one can
use ArUco markers, which are a known pattern with a known size, the pose of which can be
determined from a single image.

If an ArUco marker is attached to an object we can compute the pose of the ArUco marker
to get a ground truth for what the pose of the object should be. One also needs to record the
transformation between the ArUco marker and the object.

An example of an ArUco marker can be seen in Fig. 2.7. Each bit-pattern, the collection of
black and white squares, corresponds to a unique id [17]. In the figure we see that the marker
has no rotational symmetries which ensures that if we can determine which id this pattern
corresponds to we can canonically order the corners and determine its pose.

Figure 2.7: An example of an ArUco marker, the bit-pattern has no
symmetries to ensure that there is no ambiguity when determining
the pose of the marker.

When detecting an ArUco marker we detect the corners of the marker in the image. Since
the size of the ArUco marker is assumed to be known we can solve the Perspective-n-Point-
problem, PnP, to recover the position of the corners of the marker in relation to the camera
which took the image [11].

The PnP-problem is the problem of determining where n points lie in the world given how
they relate to each other and how they appear in an image [11]. As long as the intrinsic camera
parameters are known this problem can be solved. In Fig. 2.8 we can see this setup for an
ArUco marker. We know that the imaged corners define the rays that the true position of
the corners must exist on, this is sufficient to recover the true positions of the corners.
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Π

M

M ′

Figure 2.8: A marker M has been imaged in the camera plane Π
above. The positions of the corners relative to each other is exactly
known and they must exist along the rays that have been marked.
From this their position in the world can be determined.

Once the positions of the corners have been determined in the camera frame we can use the
fact that the corners are coplanar to describe the orientation of the marker in the camera
frame by determining an orthonormal basis that has one vector normal to the plane the
corners are defined in.

2.1.6 LiDAR

LiDAR is a type of sensor that can be used to extract length information from the environ-
ment. A laser is pointed in a direction and the time it takes for the light to move from the
light source, bounce from an object and back to the sensor can be used to calculate how far
away the object is [20].

This can be used to map an environment but it can also be used to determine where a set of
sensor readings were taken from, given a map. It is particularly useful as a safety feature for
avoiding objects such as humans.

2.1.7 Force Sensing

Many robots use some kind of force sensing to interact with the environment with precision.
By measuring the forces and torques acting on the end-effector of a robot arm, a robot can
adjust its movements and behaviours to achieve specific goals as well as making the movement
more safe, e.g. by preempting a motion if an unexpected force is sensed. This is usable for
autonomous robots that have to react without the intervention of humans, for example the
Mars Rover uses force sensing for accurate performance where responsive human control is
impossible [22].

Generally force sensing will be affected by different factors that can make it inaccurate. The
weight of the end-effector might have to be accounted for or it will compromise the accuracy
of the force-torque sensor. Since sensors are affected by noise it can be hard to get an accurate
reading. This can be fixed by filtering. [14]
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2.2 Navigation

2.2.1 Mapping & Offline Planning

Many robots are able to navigate autonomously to a goal location if one is specified. This
is most often achieved by introducing a map of the environment. There are many different
ways to construct a map and a multitude of ways to represent it. A map can be represented
as continuous shapes via equations, but it can also be represented with discrete shapes, e.g.
an occupancy grid [18].

When a map is described with the help of an occupancy grid, the world is divided into a
discrete set of cells. Each cell can have one of two states, occupied or not, which helps the
robot figure out where it can move as well as determine where it is [23, ch.9].

A map enables the robot to both plan a path to the goal before the robot starts moving as well
as recognize when the goal has been reached. Fig. 2.9 shows an example of a map with a robot
that needs to plan a path to reach a goal within the environment. Prior to movement, the path
is planned while taking into account the size of the robot and any obstacles present in the
map. As the robot navigates through the environment, it must determine its position through
sensor readings. This localization process helps the robot identify when it has reached its goal.
[23, ch.10]

G

Figure 2.9: A set of rooms is represented in the map above. A path
from a robot in the environment to a goal, G, is also drawn.
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2.2.2 Online Planning

While traversing a pre-planned path sensor readings can reveal unmapped objects. These
obstacles can then be introduced to the map and taken into account when navigating in the
future. If the obstacle makes the pre-planned path invalid, suitable recovery behaviours can
be used. Recovery behaviours are different techniques to reassess and handle situations as
they appear [10].

In Fig. 2.10 an initial path to the goal has been planned which intersects with an unmapped
object. The replanned path which avoids the object is marked as a dashed line.

G

Figure 2.10: Example of an initial path which needs to be replanned
when the unmapped obstacle is perceived.

LiDARs are commonly used for sensing the environment, although it is also possible to use
cameras or radars for this purpose.

2.3 Actuation

2.3.1 Kinematics

When talking about kinematics in robotics one usually talks about the kinematics of robot
arms. These consists of multiple links. Each joint of an arm is controlled by a motor which
controls the angle of the joint.

There are two ways of looking at a robot arm, an outer and an inner perspective. The outer
viewpoint looks at the pose of each link of the arm in the world. This viewpoint is impor-
tant for determining if the arm will collide with itself or with the environment. The inner
viewpoint looks at the pose of each link of the arm from inside the robot, that is to say, the
state of the arm can be described by the angle of each joint. The inner viewpoint is used to
control the robot since when controlling the robot we control the joint angles. Forwards and
inverse kinematics is the bridge between these perspectives. [27, p.9].

23



2. Theory

Forward Kinematics

A robot arm consists of multiple links that are serially connected. The position of these
links are related to each other by coordinate transformations that are parameterized by the
angle at that joint. An example of an arm with the corresponding angle for each joint can be
seen in Fig. 2.11. The transformations between the links can be expressed with homogeneous
coordinate transformations defined in section 2.1.2.

θ1

θ2

θ3

�1
�2

Figure 2.11: A robot arm which has joint angles θ1, θ2 and θ3 is de-
picted above. The length of the first link is �1 and the length of the
second link is �2.

The robot arm has some base frame which the first link is defined in relation to. This can
then be used to determine where each link will be located for some specific joint angles with
these homogeneous transformations. [27, p.26].

The purpose of forward kinematics can most easily be understood with the help of an ex-
ample. Consider an arm with two links as in Fig. 2.11. To determine where the end-effector
is located in the base frame given some joint angles we can consider the transformation be-
tween each link separately. In Fig. 2.12 the problem of determining where the frame of the
first link is located given some angle can be seen.

A

B

θ1

�1

Figure 2.12: The transformation from frame B to frame A needs to
be determined.

The origin of frame B can be described in frame A with the following formula

OB
A =

[
�1 cos θ1
�1 sin θ1

]
.

The new basis vectors of frame B can be described in frame A in the following way

x̂B
A =

[
sin θ1
cos θ1

]
, ŷB

A =

[
− cos θ1
sin θ1

]
.
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Once the origin and axes of frame B have been described in the coordinates of frame A we
can assemble the homogeneous transformation matrix which computes the change of frame
from frame B to frame A

TA
A→B =

[[
x̂B

A ŷB
A

]
OB

A
0 1

]
=

 sin θ1 cos θ1 �1 cos θ1
− cos θ1 sin θ1 �1 sin θ1

0 0 1

 .
We are interested in determining the pose of the end-effector in frame A. The pose of the
second link in frame B can easily be determined in a very similar way to the previous trans-
formation. In Fig. 2.13 this problem is presented.

B

C

θ2

�2

Figure 2.13: Here the homogeneous transformation from frame C to
frame B needs to be determined.

The transformation matrix from frame C to frame B is identical to the transformation matrix
from frame B to frame A. Since homogeneous transformations can be composed to recover
a new homogeneous transformation we can see that the transformation from frame C to A
becomes the following

TA
A→C = TA

A→BTB
B→C =

 sin θ1 cos θ1 �1 cos θ1
− cos θ1 sin θ1 �1 sin θ1

0 0 1


 sin θ2 cos θ2 �2 cos θ2
− cos θ2 sin θ2 �2 sin θ2

0 0 1

 .
The transformation matrix for the last link, the end-effector, thus has the following form

TC
C→D =

 sin θ3 cos θ3 0
− cos θ3 sin θ3 0

0 0 1

 ,
where the frame of the end-effector is frame D. These transformation matrices completely
describe the kinematics of this robot arm. This can be extended in the same way to arms
with multiple links and higher dimensions.

Inverse Kinematics

Inverse kinematics is the problem of determining the joint angles of the arm given a pose.
When controlling the arm we are not specifically interested in controlling where each link
should end up, we are mainly interested in positioning the end-effector correctly. Therefore
inverse kinematics calculates what joint angles an arm must have for the end-effector to end
up at a given pose in the world.
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The number of joints determine how many degrees of freedom (DOF) the arm has. The pose
of the end-effector has three DOF in two dimensions and six DOF in three dimensions. If an
arm has less than or the same amount of DOF as the pose there will either be finitely many
or no solutions to the problem. If the arm instead has more DOF than the pose there can be
any number of solutions to the problem, finitely many, inifinitely many or none. [27, p.27].

This can be seen in Fig. 2.14 where two solutions are presented for an arm with 3 DOF in
two dimensions.

Figure 2.14: The same pose of the end-effector has been achieved
with different joint angles.

2.3.2 Control

In robotics, control is essential for accurate robot motion. There are two primary types of
control methods: feedback and feedforward. They are used for the same goal but in different
circumstances depending on what the situation looks like.

Feedback Control

Feedback control is a control method that compares the output variables of a process to
some desired values to create a control signal. Such variables could be angles, velocities and
accelerations.

One of the most used feedback control methods is proportional-integral-derivative (PID)
control. The PID control bases the control signal on the error between the current and the
desired state. The proportional term adjusts the control signal based on the current error,
the integral term adjusts the control signal based on the accumulated error over time and the
derivative term adjusts the control signal based on the rate of change of the error. [27, p.139].

Feedforward Control

Feedforward is a control method that uses the modelled dynamics of a system to predict how
it will behave. The model takes information such as mass, lengths and friction and create a
control signal using the following equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ
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2.3 Actuation

where q is the vector of joint positions, q̇ is the vector of joint velocities, q̈ is the vector
of joint accelerations, M(q) is the joint-space inertia matrix, C(q, q̇) is the Coriolis and
centrifugal matrix, G(q) is the gravitational torque vector, and τ is the vector of joint torques
that should be applied at each joint. [27, p.141].

2.3.3 Controllers

The previous section describes specific ways to control a dynamic process. This section in-
stead describes how a process can be controlled, which space we control the process in and
what properties the controller might have.

Joint/Linear

The arm can be controller both in joint space and in Cartesian space. Controlling the arm
by specifying what joint values it needs to reach is the easiest option. As we control the arm
we need to make sure that there are no self collisions or any collisions with the environment.

If a path is constructed in joint space we only know where the arm will end up, not where it
will be while it moves there [2]. A path can also be constructed in Cartesian space, then we
will know exactly where the end-effector will go, but how the rest of the arm will move as it
reaches the goal is unknown.

Stiff/Compliant

In traditional control we are usually interested in controlling a state to some reference value
as quickly and safely as possible. In robotics control is only a tool for performing tasks like
picking an object or assembling a product.

For industrial robotics it is natural that the control should be precise since many interlocking
processes need to complete their tasks in unison. This means that the controller which moves
the robot needs to be very stiff, i.e., the controller should have a low error threshold to ensure
that it always stays at the reference point.

For autonomous robots in the real world there is no need to be so precise since objects that
might need to be manipulated cannot be expected to exist exactly where we expect them to
be. For autonomous robots it is also not important that the arm follows a trajectory exactly,
it is just important that the trajectory is followed closely enough. This means that we can use
a compliant controller which does not have large gains.

The advantage of using compliant control over stiff control is that stiff control follows the
reference trajectory with no regard for what might be in the way. For example a human might
be by the door you want to open, or the button might not be where the robot expected it to
be. With compliant control following the reference is not as important and thus if something

27



2. Theory

appears in the way of the arm when it’s moving the consequences will not be as severe as if
stiff control was used [5].

2.4 Ontologies and World Models

Ontologies and world models are tools to organize the world into semantically meaningful
objects and their relationships. A door does not exist in a vacuum for example, it connects
two rooms to each other. By specifying how objects in the world relate to each other and what
properties they have they gain a semantic meaning, e.g. a room can be uniquely characterized
by how it is related to other objects in the world.

A world model can thus be defined as a graph with relations between objects in the world. For
many applications this is not a sufficient model, one should also keep track of the properties
and types of the objects and their relations in the world model. A door is very distinct from
a robot arm for example. For this reason we construct a ontology [19] of properties, types
and relations which can be seen in Fig. 2.15.

Relation

Relation 4

Relation 1 Relation 2

Relation 3

Property

Property 1 Property 2

Type

Type1 Type 4

Type 2 Type 3

Figure 2.15: An example of an ontology.

A world model enables a robot to semantically interpret the world around it and infer ob-
jectives and how skills should be executed [16]. In the world model one needs to specify the
robot and everything that the robot needs to know to operate correctly.

An example of a type is DoorButton and an example of a property could be IsStationary. Finally
an example of a relation could be a contain relation, i.e. object is contained in room.
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2.5 Robot Skills

A robot is used to perform or assist with some kind of task. From a higher level perspective
many tasks have overlapping aspects. For example a pick task and a place task both require
the robot to detect a suitable location to move the arm to, move the arm to that location and
the gripper needs to be actuated.

The breakdown of tasks into independent parts that can be repurposed can be formalized
with the help of skills. A skill can be defined to be an action which applies a state transition
to the world, i.e. the state of the world is somehow changed by the robot executing the
skill. This action can be generalized to different hardware, i.e. a pick skill can be uniquely
described without specifying of how it should be implemented on a robot.

Two different types of skills that will be used throughout this report, compound skills and
primitive skills. A compound skill is a skill which executes other skills while a primitive skill
is more simple and can deal with the specifics of the robot.

A skill can not be executed at any time. For example a pick skill can only (or rather should
only) be executed if the gripper is empty, if there is an object to pick and so on. This can be
translated into what we refer to as pre-conditions. These need to be satisfied before the skill
can be applied.

Additionally some conditions need to hold while the skill is being executed, these can be
translated into hold-conditions. For a pick skill the object should not be moving in an unex-
pected manner while the robot is grasping it.

Similarly to pre-conditions we can formulate post-conditions. These are conditions that
are expected to be true if the skill has been executed correctly. After an object has been
successfully picked we expect it to be located in the gripper for example.

For any skill an arbitrary amount of conditions can be specified. Some pre-conditions of a
pick skill could be the following:

• The position of the object is known.

• The surface of the object has a large enough friction coefficient.

• The object is close enough to the robot for the arm to reach it.

• The object has an orientation which makes it graspable.

Many more subtle pre-conditions can be specified. For any reasonable implementation of
skills we make some reasonable assumptions to avoid specifying an endless amount of in-
creasingly obscure pre-conditions.
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2.5.1 Coordination of Skills

The execution of skills can be coordinated with the help of a behaviour tree (BT). BTs are
structures that help formalize how a skill should be executed. With BTs one can choose if
skills should be executed in parallel or sequentially, if skills should be restarted if they fail
and so on [7, p.9].

→

? ⇒ Grasp Ball

Detect Ball Move ArmBall Detected Detect Ball

Figure 2.16: A pick skill realized with the help of a behaviour tree.

An example of a compound skill which makes a robot pick up a ball can be seen in Fig. 2.16.
The→ symbol denotes that all the children of that node should be executed in that order.
The question mark denotes that if the condition is true (Ball detected) the skill is executed,
otherwise the other child of that node should be executed. The ⇒ symbol denotes that all
children of that node should be executed in parallel.

This particular pick skill starts by detecting the position of the ball if it is not known. It then
moves the arm to the ball while continuously detecting where the ball is. Finally the ball is
grasped.

By constructing primitive skills and other compound skills and then coordinating them with
the help of behaviour trees one can easily build compound skills from smaller building blocks
in a natural way.

2.5.2 SkiROS

SkiROS is a package built on top of ROS that enables one to program robot-agnostic skills
that make use of a world model [21]. This package implements a lot of base functionality
which needs to be present when coordinating skills.

SkiROS implements a world model which can be interfaced with. We can also extract and
infer information from the world model. Skills can be written as plain python code and
behaviour trees can easily be utilized to coordinate the execution of skills.

30



Chapter 3

Implementation

This chapter will cover what we developed to enable Heron to navigate in a building. To
ensure that each part of the project works separately and can be combined to create the final
skill we have evaluated each part separately.

3.1 Perception

In this section we collect everything related to Herons perception. We have performed cam-
era calibration, pose estimation, door state classification as well as filtering of Heron’s force-
torque sensor.

3.1.1 Camera Calibration

To perform precise ArUco detection we need accurate calibration parameters. The cameras
we have available are the RealSense RGBD cameras, L515 and D435. These cameras keep track
of their own calibration parameters but the true values might change over time, therefore it
might be necessary to verify them.

Camera calibration is performed with a calibration pattern, most often a checkerboard. The
three-dimensional relationship between the intersections of the squares is exactly known
since they are coplanar and equidistant.

The intersections between the squares in the checkerboard are localized in every image, this
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together with the fact that the three-dimensional relationship between the intersections is
known gives us enough information to compute the calibration parameters.

3.1.2 ArUco Marker Pose Estimation

Pose Estimation

Detecting an ArUco marker and determining the pose of the ArUco marker in the camera
frame can be done with the help of pre-written functions in OpenCV that use the attributes
of a marker to find its pose [17]. We specifically want to determine the pose of an object
which has some known transformation to one or several ArUco markers. This is a fairly
simple problem with the derivation from Section 2.1.2. The problem setup we have can be
seen in Fig. 3.1 where O is the frame of the object, A1 and A2 are the ArUco markers, B is the
object base frame, and C is the camera frame.

B

O
A1

A2

C

. . .

Figure 3.1: The pose of the object with frame O needs to be deter-
mined in the object base frame B. The pose of each ArUco marker
Ai in the object frame is known and the poses of some ArUco mark-
ers have been determined in the camera frame C.

The coordinate transformations between the camera and some, or all, of the ArUco markers
on the object have been determined by solving the PnP-problem. The coordinate transforma-
tion between the camera and the object base frame is known and the constant transformation
between the object and the ArUco markers is known.

To simplify the problem we start by computing the transformation from the object base
frame to every ArUco marker that has been determined in the camera frame. This is possible
because all transformations from the ArUco markers to the base frame are known, i.e. a path

32



3.1 Perception

must exist in the graph of transformations. To see why this path must exist note that hand-eye
calibration has been performed, which determines the position of the camera in the world
with respect to the robot.

Once the poses of the ArUco markers have been determined in the base frame the problem in
Fig. 3.1 can be simplified to the problem in Fig. 3.2. The transformation from the base frame
to ArUco marker i, TW

W→Ai
, is determined by the ArUco detection and the transformation

from the object to ArUco marker i, TO
O→Ai

is fixed and known. Now the transformation from
the base frame to the object can easily be determined.

W

Ai

O

TW
W→Ai

TO
O→Ai

TW
W→O

Figure 3.2: Graph of the simplification of the ArUco marker prob-
lem.

Note that we have now transformed the problem of determining the pose of the object in
the object base frame to the problem in Fig. 2.3. By this restatement of the problem we can
determine the pose of the object in the object base frame with the following formula

TB
B→O = TB

B→Ai

(
TO

O→Ai

)−1
.

For each ArUco marker a separate estimate of the object pose is computed which can then
be averaged to get a better estimate of the object pose. The pseudo-code for determining the
pose of the object in the base frame can be seen in Algorithm 1.
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Algorithm 1 Pseudocode for ArUco marker detection.

procedure ArUcoDetection(I ,O) ▷ I , image; O, object to localize
MO ← all ArUco markers associated with O
Me ← find all markers in I and their corners. Make sure the marker ids are in MO
for every marker m in Me do

RO
O→A, tO

O→A ← get the known pose of the current marker in the object frame
Undistort the pixel position of the corners of m with the camera parameters
R̂C

C→A, t̂C
C→A ← recover pose of marker by solving the PnP-problem

R̂B
B→A, t̂B

B→A ← transform the pose of the ArUco marker to the object parent frame

R̂B
B→O ← RB

B→A

(
RO

O→A

)T
t̂B
B→O ← tB

B→A − RB
B→A

(
RO

O→A

)T
tO
O→A

end for
compute the average of the estimated pose of the object for every arcuo marker
return R̂B

B→O, t̂B
B→O

end procedure

Pose Estimation Evaluation

Evaluating the accuracy of the pose estimation requires knowing the ground-truth, i.e. the
true physical position and orientation of the ArUco marker and the object it is attached to.
In the real world we do not know the true physical pose so in absence of this ground-truth
one could instead evaluate the consistency of the pose estimation.

This evaluation can be done by keeping an object to be detected fixed and taking several
images. This gives a set of estimates of the true pose {T̂i}i and while we are not able to
compute the mean deviation from the true pose, T, we can instead compute the standard
deviation of the estimated poses. If the pose estimation is correct and unbiased the standard
deviation will be small.

Computing the standard deviation gives in each coordinate σx, σy and σz. We can then
compute the final error measure in the following way

σ =
√
σ2

x + σ
2
y + σ

2
z .

By moving the camera in different ways, or indeed not moving it at all, we can evaluate the
pose estimation for several use cases. One experiment is to keep the camera stationary and
estimate the pose for many images. Another is to keep the distance from the object constant
while moving the camera around the object.

In the first experiment we evaluate how noise in the image might affect the estimate as well
as how consistent it is. In the second experiment we evaluate both how well the translation
is estimated as well as the orientation.

If the standard deviation of the estimated poses is small for both of these experiments we can
conclude that the pose estimation algorithm gives the correct answer unless there is some
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constant offset. This constant offset would then be zero if the hand-eye calibration has been
performed correctly.

3.1.3 Door State Classification Using LiDAR

The LiDAR measurements of the robot can be leveraged to determine if a door is open or
closed which will help us detect if the robot can go through the door or not.

The position of the door is expected to be known, from this we can specify two bounding
boxes in the map. The first and smaller bounding box is the region of the map within which
we expect LiDAR measurements if the door is closed. The second and larger bounding box
is the region of the map within which we always expect to see LiDAR measurements if the
door is present. An example of the two bounding boxes for a door can be seen in Fig. 3.3.

Door

Figure 3.3: The location of the door has been specified as well as two
bounding boxes. The smaller one, with solid lines, denotes where
we expect the door to be when it is closed. The larger bounding
box, with dashed lines, denotes where we expect LiDAR readings to
always exist even if the door is open.

By using the larger bounding box which should include the door frame we can tell the differ-
ence between not being able to see the door and seeing an open door.

By transforming the LiDAR measurements to coordinates in the map we can verify that the
door frame is visible, then we can determine if the door is open or not by choosing a threshold
amount of points for each state.

3.1.4 Force Sensing

The force sensing signal includes both noise as well as an offset. These issues can be mitigated
by filtering the signal in an appropriate way. The methods that have been chosen for filtering
the signal are the following

• Computing a moving average.

• Offsetting the force by a constant vector.
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• Turning force sensing on and off completely.

The moving average was computed by averaging the last n sensor readings. When choosing
the size of the window, n, one should take the update rate of the sensor signal into account.

A more general filtering technique can be applied by investigating what the force-torque
signal looks like in the time-domain as well as in the frequency domain. By investigating this
we can choose a more appropriate filtering technique if a moving average is not sufficient.

The offset of the force-torque readings was computed by assuming that the sensor is not
experiencing any force other than gravity and a bias. The signal was recorded for a short
time-period and the average of the forces and torques during that time was used as the offset.

By turning the force sensing off the controller can not react to forces experienced by the
gripper which turns it into a stiff controller. This is not desirable when interacting with
objects that could break or similar but can help the controller reach its goal by removing the
bias from the force-torque sensor.

Under the assumption that turning off the force sensing helps the controller move the arm
correctly a natural extension is to scale the force up or down instead of turning it off com-
pletely. By scaling the force sent to the controller it becomes more or less sensitive to external
forces. For some tasks the gripper should be more delicate and for other tasks the gripper
does not have to worry about breaking anything.

When pressing the button to open the door the robot should feel for a sufficient force before
stopping the button press. The force-torque sensor might include a bias which changes over
time. This would make choosing the correct force threshold for when the button should be
considered pressed difficult. Instead we choose a large initial force goal when we consider the
button pressed. This limit is then slowly decreased over time. This makes the initial choice
of force goal less important.

3.2 Navigation

3.2.1 Driving Implementation

The low-level implementation of the navigation is taken care of by an action server that plans
a path to a specified goal location and drives the robot to the goal. We interface with this
server by sending a goal and we can continually verify that the robot is navigating to the goal
and we can preempt the goal if desired.

Two recovery behaviours were implemented to handle navigation failures. The primary be-
haviour is to let the robot try to re-plan a path from where it stands. If the object is unavoid-
able from the current position of the robot or if it got stuck, a secondary recovery behavior
is used. This one continuously saves old positions and allows the robot to go back to the last
saved position and re-plan from there.
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The navigation server is capable of dealing with unanticipated objects that appear in the
robot’s path. This corresponds to online planning. The two previous recovery behaviours
are more similar to offline planning that use new information. Initially Heron plans a path
offline which reaches the desired goal, then it tries to follow that path, if the path can not be
followed for any reason Heron uses the online planner.

3.2.2 Navigation Evaluation

Similarly to evaluating the pose estimation in Section 3.1.2 evaluating Heron’s navigation
ideally requires comparing the estimated position to some known ground-truth. Again, in
the real world, we do not know the true physical location of Heron and can not verify that
Heron always navigates to the same position if given an identical goal each time.

Under the assumption that the previous algorithm for pose estimation is correct (or at least
consistent) the consistency of the navigation can be evaluated by leveraging the pose esti-
mation. An experiment that can be performed is then to place an ArUco marker at some
location, drive Heron to that location such that the marker can be seen without moving the
arm.

The estimated pose of the ArUco marker can then be saved and the standard deviation can
be estimated from several of these poses. Similarly to the pose estimation we can conclude
that the navigation is consistent if this standard deviation is small. When choosing an initial
location for Heron and a marker location it is important that these locations are quite far
from each other. This should ensure that the error in the final position is uncorrelated to the
error in the initial position.

3.3 Actuation

3.3.1 Actuation Implementation

Two different controllers were used to control the arm movement. A stiff controller which
controls the arm in joint space and a compliant controller which controls the arm in Carte-
sian space. These controllers already existed and were merely wrapped such that they could
be used as skills in SkiROS.

Both controllers were necessary to implement as skills. The joint controller is able to move
the arm large distances but is stiff and therefore not suitable for pressing the button. The
compliant controller is not suitable for moving the end-effector large distances but is suitable
for pressing the button, additionally the controller only moves the end-effector from the
starting pose to the ending pose along a line, obstacles are not taken into account when
producing this line. This is why both of these controllers needed to be used rather than just
the compliant controller.
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3.3.2 Actuation Evaluation

The evaluation of the accuracy of the arm movement is done similarly to evaluating the pose
estimation in Section 3.1.2 and the navigation evaluation in Section 3.2.2. Once again the
ground-truth is unknown and is replaced with an ArUco marker we detect.

By using the ArUco detection an experiment can be performed where the arm is moved from
an initial location to a location where ArUco detection is possible and then move back.

The estimated poses can be saved and the standard deviation be calculated. A small standard
deviation translates to a consistent actuation.

The same experiments where performed for both controllers

3.4 World Model

The world model that was used to run the skills only keeps track of the structure of the
building Heron needs to navigate in. This is not a strict limitation since objects that are
needed to accomplish additional skills can easily be added to the rooms they are present in.

The ontology which was used to specify objects and relations can be seen in Fig. A.1 and Fig.
A.2 in Section A.1 in the Appendix. An example of a small part of the specified world model
can be seen in Fig. 3.4. Note that the location that is associated with the door and the one
that is associated with the button do not have to be same one.

Region 1

Location
10

Location
11

Region 2

Location
20

Location
21

Location
22

Door 1-2

Button 1-2 Button 2-1

Figure 3.4: A part of the world model.
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The relation between a door and a region is a hasDoor relation while the relation between a
location and a door is a contain relation. Each button has a PositionKnown property which
keeps track of whether its location in the world has been determined or not.

Every region denotes a room in the building while every location represents a specific set
of coordinates in that particular room. A location is thus a set of coordinates Heron can
always move to as long as Heron’s current location and the target location are in the same
room. Doors represent some kind of transition between regions (rooms) that can be passed
through with the help of a skill. With the use of a door passing skill Heron can move between
locations that are not in the same room but have door connections between them.

3.5 Robot Skills

The implemented robot skills were generally small self-contained skills implemented as com-
pound skills. These skills are the ones described below. Many of the skills use objects in the
world model to know how and with what inputs perform the skill.

3.5.1 Button Press

The button press skill expects a button as input. This button has specific ArUco markers
related to it. With this information the arm moves, using a joint space controller, to a lookout
pose which is specific for each button. There the ArUco markers are detected and the exact
pose for the button is determined.

If the button is successfully detected the arm moves with a Cartesian controller to a position
straight in front of the button, the pre-press pose. After this the arm moves forward, pressing
the button, until a strong enough force is felt. The arm then moves back to the pre-press pose
and then the lookout pose.

A simplified version of the skill can be seen in Fig. 3.5
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→

Save Gripper Pose

Move to pre-press

⇒

Move to Press Pose

Wait for Force

Move to pre-press

Move to saved pose

Figure 3.5: A behaviour tree which describes a button pushing skill.

The input which this skill needs is only the button. The preconditions are then that the
robot is standing close enough to the button to press it and that the exact coordinates of
the button are known. The post-conditions of the button pressing is only that the button
has been pressed with a sufficient force. The skill could be used for any kind of button press
which is why the correct door being open is not a post-conditions for this skill.

3.5.2 Pass Door

The pass door skill starts with the knowledge of where the robot is and which door it is
passing. From this the skill starts with finding the end location on the other side of the
door. After this the robot detects the door state while driving towards the goal. The door is
assumed to be open when the skill starts execution but if the robot detects that the door is
closed while driving towards it the skill will halt execution.

→

Retract Arm

⇒

Drive to Location

Detect Door State

Figure 3.6: A behaviour tree which describes a door passing skill.

The pre-conditions for the pass door skill requires that the robot stands in a room which is
related to the door. The target, which is just past the door, can then be inferred from Heron’s
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current position. The post-condition of this skill is that the target location has been reached.

3.5.3 Path planning

To find a path from one location to another a path planner is built. This uses a breadth-first
search to traverse the regions and region transitions, finding the final location and planning
a path how to get there. This then returns a list of locations and region transitions that the
robot has to pass to get to the goal location.

Corridor

Stairwell Elevator

Lucas
Room Robot Lab

Doo
r

Doo
r Han

dleDoor
Door Handle

Doo
r

Doo
r Butt

on

Elevator Door
Door Button

Figure 3.7: A graph representing regions of a floor in the building.

The specific graph structure which we have can be seen in Fig. 3.7. Finding a path between
any location in each region is not a very hard problem but by implementing graph search we
can very easily find a path between locations in larger buildings.

3.5.4 Final traversing skill

These three skills together with a movement skill are building blocks that can be used to
navigate in any building with doors operated by buttons. By using the planning skill the
robot can determine which doors and rooms to pass to reach a goal location.

From the planned path we can then assemble a skill sequence which achieves the intended
goal of navigating to a specified location. A behaviour tree can not be specified for this skill
since a behaviour tree is constructed for each initial and target location the robot should
reach. I.e. each time the skill is run the behaviour tree is built dynamically depending on the
starting and ending locations.
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Chapter 4

Results

4.1 Perception

4.1.1 Camera Calibration

The intrinsic camera parameters have been computed for two RealSense cameras, L515 and
D435. The L515 has a resolution of 1280x720 while the D435 has a resolution 848x480. The
result for the calibration as well as the factory parameters are presented in Tab. 4.1 and 4.2.

When calibrating the cameras 20 images were taken of the calibration pattern for each ex-
periment. This to ensure that any noise in the estimate of the parameters is kept minimal.

Linear Calibration L515 D435
Parameters Factory Calibrated Factory Calibrated

Focal Length x ( fx) 893.144 904.1047 614.979 612.3398
Focal Length y ( fy) 892.740 903.1287 615.014 612.1060
Pixel Center x (cx) 653.163 638.2549 430.603 426.4604
Pixel Center y (cy) 363.806 354.3893 237.271 233.9470

Table 4.1: Linear intrinsic parameters for the two cameras, both the
determined parameters and the pre-determined factory parameters
are reported for each camera.
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Distortion Parameters L515 D435
Parameters Factory Calibrated Factory Calibrated

1st Radial Distortion Coefficient (k1) 0.1424 0.1359 0.0000 0.1203
2nd Radial Distortion Coefficient (k2) -0.4780 -0.4213 0.0000 -0.3019
3rd Radial Distortion Coefficient (k3) 0.4445 0.3288 0.0000 0.1847

1st Tangential Distortion Coefficient (p1) -0.0021 -0.0007 0.0000 0.0002
2nd Tangential Distortion Coefficient (p2) -0.0001 -0.0012 0.0000 -0.0044

Table 4.2: Intrinsic distortion parameters according to the Brown-
Conrady distortion model. Both the determined parameters and the
pre-determined factory parameters are reported for each camera.

4.1.2 Pose Estimation

The consistency of the pose estimation was evaluated with the previously described experi-
ments. The results of this evaluation can be seen in Tab. 4.3.

The static evaluation corresponds to the experiment were Heron’s arm was held still and the
radial evaluation corresponds to the experiment where the camera was kept at a constant
distance from the object with different orientations.

Distance to Small Markers Large Markers
object (m) σp (m) σq σp (m) σq

Static
0.60 0.00333 0.0217 0.000635 0.000532
1.00 0.0248 0.110 0.00128 0.00117

Radial
0.60 0.0461 0.369 0.0379 0.0172
1.00 0.0799 0.283 0.359 0.163

Table 4.3: Standard deviation parameters for pose estimation evalu-
ation. The standard deviation of the position is denoted byσp while
the orientation is denoted by σq.

The unit of the standard deviation of the poses is meters. The standard deviation of the ori-
entations does not have a simple interpretation but it is computed from a set of quaternions.
The side length of the small markers is 30 millimeters and the side length of the large markers
is 174 millimeters.

For the static experiment with the pose estimation 50 images were used to compute the
standard deviation while for the radial experiments 10 images were used to compute the
standard deviation.
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4.1.3 Door State Classification

The LiDAR signal can include noise which makes it so that the door might be detected as
closed for a single LiDAR reading. To stop the door detection skill from preempting the
navigation skill early a threshold was added. This threshold required that the door must have
been detected as closed for at least n LiDAR readings.

4.1.4 Force sensing

The time domain of the unfiltered force sensing signal can be seen in the left plot of Fig. 4.1
and the right plot of Fig. 4.1 shows the smoothed signal. The filter which additionally offsets
the bias is not plotted but this filter purely offsets the signal by the estimated mean of each
separate coordinate.

Figure 4.1: Force-Torque signal before and after filtering.

The frequency domain of the same force sensing signal can be seen in Fig. 4.2. The left plot
shows the discrete Fourier transform of the unfiltered signal while the right plot shows the
discrete Fourier transform of the filtered signal.
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Figure 4.2: Discrete Fourier transform of the force-torque signal be-
fore and after filtering.

4.2 Navigation Evaluation

The navigation was also evaluated by estimating the consistency. Only the static experiment
was performed without any arm movement. The standard deviation of the translation and
orientation of the poses were the following:

σp = 0.158 (m) , σq = 0.0501 .

For this experiment 20 images were taken to compute these values.

4.3 Actuation Evaluation

To evaluate the actuation an ArUco marker was placed at some location and the arm was
moved from some start location to a goal location 20 times per experiment. The results of
these experiments can be seen in Tab. 4.4.

Distance to Joint Space Control Cartesian Control
object (m) σp (m) σq σp (m) σq

Static
0.60 0.00177 0.00301 0.00357 0.00478
1.00 0.00120 0.00261 0.00546 0.00883

Table 4.4: Standard deviation parameters for arm control evalua-
tion.
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4.4 Performance of Compound Skills

A demo video which showcases the skills that were implemented for Heron can be seen by
scanning the QR code in the Appendix in Fig. A.3. Additionally a demo video which shows
that the button pressing skill generalizes to different buttons can be seen by scanning the QR
code in the Appendix in Fig. A.4.

4.4.1 Button Pushing

The button pushing has been evaluated on the button in the corridor which opens the door
to the stairwell. To evaluate the button pushing fairly, Heron was moved between the button
and a location in the corridor far away from the button each time a press was executed. Heron
was able to press the button successfully such that the door opened 30 out of 30 times.

4.4.2 Pass Door

The door state detection skill works as well as the navigation so the compound skill which
passes a door while making sure it stays open also works.

4.4.3 Path planning

The path planning finds a valid path to the goal location every time. Breadth-first search is
used to determine the path which means that the path is guaranteed to pass the least amount
of doors. The size of each room is not taken into account when determining the path which
means that Heron purely tries to pass as few doors as possible when getting to the goal.
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Chapter 5

Discussion

5.1 Consistency Comparison

For each of the parts of the project, evaluations were done. Since a general ground truth did
not exist repeated tests were executed. The tests estimated the pose of a static object which
gave standard deviations in the position and orientation of the estimated pose. These values
have been summarized in Tab. 5.1 and 5.2.

Distance to Pose Estimation Navigation Actuation
object (m) Small Markers Large Markers Joint Compliant

Static
0.60 0.00333 0.000635 - 0.00177 0.00357
1.00 0.0248 0.00128 0.158 0.00120 0.00546

Radial
0.60 0.0461 0.0379 - - -
1.00 0.0799 0.359 - - -

Table 5.1: Standard deviation parameters for position evaluation

Distance to Pose Estimation Navigation Actuation
object (m) Small Markers Large Markers Joint Compliant

Static
0.60 0.0217 0.000532 - 0.00301 0.00478
1.00 0.110 0.00117 0.0501 0.00261 0.00883

Radial
0.60 0.369 0.0172 - - -
1.00 0.283 0.163 - - -

Table 5.2: Standard deviation parameters for orientation evaluation
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The pose estimation was evaluated both with small markers and large markers. For any dis-
tance from the object the larger markers gave a more consistent estimate which lets us con-
clude that if the markers appear larger in the image the pose estimation is more consistent.

Due to this, the experiments which evaluated the navigation and the actuation were per-
formed with large markers. The standard deviation of the pose for these experiments is ex-
pected to be at least larger than the standard deviation of the static experiments with large
markers. This under the assumption that the same amount or fewer samples are collected
which ensures that the standard deviations can be compared.

The standard deviations that were determined for the navigation and actuation evaluation
are all larger than the corresponding static pose estimation for large markers, except for the
evaluation of the joint space controller at a distance of 1 meter. Even though this standard
deviation is smaller than we expect it is very close to the expected lower bound. This could
be explained by the fact that only 20 repetitions were performed of these experiments, i.e.
this could have been pure chance.

All of the standard deviations are small compared to the size of the motion, both in position
and orientation. This is good since it means that the motions are fairly consistent.

The largest standard deviation was reached by radial pose estimation from a distance of 1m.
This standard deviation is unusually large compared to the value for the smaller markers.
This might be due to the fact that OpenCV sometimes reverses the z-axis of the determined
ArUco marker if the ArUco marker is too skewed in the image. This would then lead to a
considerably worse estimate which could contribute to a worse standard deviation.

5.2 Perception

5.2.1 Camera Calibration

The camera parameters that were determined are quite close to the factory parameters which
are saved on the camera. Under the assumption that the factory parameters were correct for
that camera when it was manufactured it is reasonable that our determined parameters are
not exactly equal to these since the parameters might change slowly over time.

When the cameras were calibrated we noticed that the estimate is quite sensitive to noise, it
is important that the calibration pattern is clearly visible in every picture and not too skewed.
Many images are needed to mitigate the noise that can not be eliminated.
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5.2.2 Pose Estimation

From the results one can draw the conclusion that larger ArUco marker gives a lower standard
deviation. This means that the size of the ArUco marker matters. It is also clear that the closer
the ArUco marker is in the image the lower the standard deviation is. This means that the
size of the ArUco marker in the image is the factor which determines how exact the pose
estimate is.

The fact that the ArUco marker detection is quite consistent for large ArUco markers does
not mean that it is correct. We know that the ArUco marker is consistent from a single view
and visual inspection of the data looks correct, but when the camera then moves around
incorrect hand eye calibration will lead to a non-constant offset in the determined pose.

5.2.3 Door State Classification

The state of a door can be detected reliably when the door is fully open or fully closed. For
any intermediate state when the door is half open or half closed the door state classification
algorithm leaves a bit to be desired. When the door is in an intermediate state between open
and closed the door state classifier does not make a decision on whether the door is open or
closed, only that the state is unknown.

Choosing the right threshold for how many points are sufficient to consider the door to be
open or closed is a hard problem made even more difficult in the case when a person might
be standing in the bounding box of the door. A person could also stand in front of the door
in which case Heron would be able to see the door frame but fewer points in the bounding
box of the door.

To solve these issues a more complicated approach could be used to detect the state of the
door, the rays from the LiDAR could be replicated and checked if they intersect with the
bounding box of the door. This new algorithm would then regard the door as open if suffi-
ciently many rays from the LiDAR intersect with the bounding box without stopping in the
bounding box. The door would be regarded as closed if sufficiently many LiDAR signals stop
in the bounding box. The door state would then be regarded as unknown if LiDAR readings
neither stop nor go through the bounding box.

How to handle an unknown door state is determined by what purpose we are detecting the
door for. If we expect the door to be open we might want to interpret an unknown door state
as closed and if we expect the door to be closed we might want to interpret and unknown
door state as open.

5.2.4 Force sensing

When the force sensing was active Heron tended to feel a “ghost force”. This is either due to
the weight of the gripper or a bias in the force-torque sensor. To counteract this the offset
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force function was implemented. This way we got a start state where the end-effector did
not drift.

The compliant controller reacts to forces that affect the end-effector. When pressing the
button this led to an oscillating behaviour where the controller feels a force, moves back
from the button and then tries moving towards the button again. To prevent this oscillating
behaviour a scaling of the force was introduced which scaled the force down. The reactive
behaviour of the controller was then smaller which let Heron press the door button correctly..

When trying to push the button the force sensing was quite unreliable. We could not expect
to feel the same force every time the button was pressed. This is either due to the fact that
the force sensing is inconsistent or because of the compounding errors from the navigation,
perception and manipulation which led to the position where Heron pushed on the button
to vary. Or the force required to press the force is inconsistent.

5.3 Navigation

The experiment that was performed shows that the navigation is quite consistent, we can
expect Heron to navigate closely to the specified goal. The navigation reaches the desired goal
with a standard deviation of 5cm, therefore we are not able to press the button by blindly
sending the arm to the same joint values every time. This shows that determining the position
of the button really is necessary, which also has the added benefit of making the button
pushing skill more general. As long as the general location of the button has been determined
Heron can navigate there to find it.

In essence the knowledge of where Heron should drive and look to find the button could be
replaced with a searching behaviour. As long as the door and its location exists in the world
model some searching strategy could be utilized by driving to the door and looking for the
door operating mechanism in its vicinity. This would however only be helpful in buildings
that are somehow unknown. If the general position of the door operating mechanism has
been determined even once there is no reason not to retain that information. The position of
the door already needs to be determined in the world model which means that also finding the
general position of the operating mechanism does not require a significant degree of added
effort.

When using Heron we were trying to enter the elevator. Using the built in navigation in
MIR this worked fine but when trying to navigate ourselves it did not work. This is probably
because there are some thresholds which are, for safety, higher than the ones MIR uses to
make sure it does not break anything, however the time limit prevented us to look in to it
and were therefore not able to implement this in the project.
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5.4 Actuation

When moving the arm the two controllers were used for different purposes. The compliant
controller is in theory the better choice to use since it is compliant and will not hit anything
hard but rather be pushed away and prevent destroying something or hurting someone. How-
ever when moving long distances or turning big angles the movement was unnecessarily large
or unreliable. Because of this we opted to use the joint controller in these cases and the com-
pliant controller when moving close to objects or when small movements were expected. By
doing this we got a reliable combination that did not break anything but did not move in an
unexpected way.

It is worth noting that the compliant control had a large settling time, i.e. it took the con-
troller a long time to stop moving. The ArUco marker detection, which was used to evaluate
the consistency of the controller, performs worse if the camera moves while the images are
captured. To mitigate the noise in the estimate a waiting time of 5 seconds was added be-
tween when the controller thought the goal has been reached and and when the images were
captured. The controller has a translation threshold of 4cm. This means that if the magnitude
of the error in the position of the end-effector is less than 4cm the movement is regarded as
completed.

The compliant controller has a small standard deviation when it is allowed to move towards
the goal for a long time. But the controller decides that the goal has been reached once the
translation error is smaller than 4cm, therefore we can only expect the compliant controller to
be able to reliably push buttons the dimensions of which are larger than this length. Lowering
the threshold is not an option since the compliant controller reacts to the forces that act on
the end-effector, the force signal has a bias which can not be mitigated for any orientation of
the gripper with our filtering technique, thus some small offset of the end-effector from the
goal pose is to be expected.

5.5 Compound Skills

5.5.1 Button pressing

The compound skill which performs the button pressing is consistent and reliable. The re-
liability hinges on the fact that the hand-eye calibration parameters are correct which lets
Heron press the button with precision. As long as the button is large enough and its pose can
be determined with reliable accuracy the button pressing very easily generalizes to buttons
other than the three it has been tried on.

When the button is being pressed the compliant controller should, for the moment, stop
reacting to external forces. Of course within reasonable limits, we do however expect a force
to arise when pressing the button so the behaviour of avoiding forces is undesirable. By using
the filtering in the force sensing this is solved by scaling the force down which makes the

53



5. Discussion

compliant controller react less to external forces on the gripper.

5.5.2 Pass Door

Passing the door is reliable but retracting the arm to the home position takes a long time.
The arm needs to be in the home position before the platform will move, this together with
the time it takes for the navigation stack to plan path through the door makes passing the
door before it starts to close impossible. None of these factors are in our control which is
why this problem has been ignored.

5.5.3 Path planning

The path planning (which determines which doors the robot needs to pass to reach a goal)
returns a path with the least amount of doors, it does not, however, take into account the
distance between doors. There might be a shorter path that uses more doors. Passing a door
is however time consuming and could fail, this means that it could be desirable to pass as few
doors as possible when navigating in a building.
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Chapter 6

Conclusions

6.1 Research Questions

The goal of this thesis has been to answer the formulated research questions. In this report
we have shown that a door opening skill is possible to describe and implement in practice
on an autonomous robot. The building navigation skill which was implemented could also
easily be extended to include going through doors which are operated by door handles. This
is under the assumption that someone has implemented a working skill which enables a robot
to operate a door handle.

6.1.1 Reliability

The research questions which were related to the reliability and consistency of the separate
parts of the project are the following

• Can we utilize fiducial markers to reliably detect the button?

• How consistent and precise is the manipulation of the arm?

• How consistent and precise is the robot navigation?

• How reliable is the force sensing?

• How reliable is the button pushing as a whole?
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Fiducial makers, in our case ArUco markers, have shown to be reliable and useful. Their use
has contributed to a accurate and consistent button pushing.

The manipulation of the arm in both joint space and Cartesian space as well as the navigation
of the platform works reliably enough on their own. By implementing a button pressing skill
it has also been proven that the combination is reliable.

The force sensing is fitful but filtering it in different ways makes the performance satisfactory.

The button pressing skill as can be seen in the result is reliable for the button it was supposed
to open.

6.1.2 Planning

The research question which was related to the planning was: Can Heron itself plan how a
door opening skill should be utilized to help it navigate in the environment?

We implemented a skill which does exactly this for Heron. The path can then be inspected
and the relevant skills can be assembled. This planning skill works well and generalizes to
larger environments without problems.

6.1.3 Door Opening

The research questions which were related to the door opening were the following

• How should a door opening skill be specified?

• What conditions does a door opening skill need to be satisified?

• How can a door opening skill be applied to Heron?

The door opening skill which needed to be specified is the button pushing skill. With be-
haviour trees the skill has been described on a high level which ensures that it generalizes to
any other mobile robot with an arm of some kind.

The input which the button pressing skill needed was only the button all other inputs could
then be inferred from the world model, the pre-conditions then ensure that the skill can be
applied. The pre-conditions are only relevant for the local information in the world model.
The structure of the world model which has no relation to the button is irrelevant for pressing
the button and going through the door. The post-conditions then describe the expected
state of the world after the skill has been executed, which ensures that the skill was executed
properly.

The door opening skill was implemented for Heron with the help of SkiROS. The world
model could then be used to efficiently specify the input parameters as well as the pre- and
post-conditions.
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6.2 Future Work

In the future there are many skills that can utilize the skills we have built and apply appropri-
ate extensions. For example one could solve the problem of entering the elevator with Heron
which would effectively make Heron able to navigate in the entire building autonomously
rather than just one floor. Heron could then navigate in spaces where humans regularly pass.

When another gripper is installed on Heron it might be possible to operate different opening
mechanisms, a door handle for example. This will give Heron the possibility to enter more
rooms.

Safety is a big part of autonomous systems working in human spaces. The joint controller
is more reliable but it is stiff, it can hurt people. On the other hand the way the compliant
controller moves can lead to different problems. A solution to this could be to make the
Cartesian movements better or make the joint controller compliant to make it as utilizable
and safe as possible.

The movement of the arm does not take its environment into account. This makes it possible
for it to plan movements that collide with walls, objects and humans. One could find a way
to avoid this. It could be using the LiDAR to define walls, using the depth function of the
camera or mounting new sensors on Heron.

Putting up ArUco markers might disturb an environment. To avoid this one could figure out
a way to detect poses of door operating mechanisms which do not require markers. However
this might lead to different problems, for example worse detection.

Since Heron is an inconsistent robot there is a need for some simulation when is comes to
button pressing. The simulation works well when it comes to other parts but since there is
no reliable force sensing we can not simulate button pressing. A way to test in simulation is
always good to have and a way to simulate button pressing would be useful.

When executing an extensive compound skill something could always go wrong. A door not
opening, the button not being pushed hard enough etc. This would lead the entire skill to
fail. To avoid this one could implement some kind of recovery behavior in the skill. If the
door is perceived as closed try to press the button again. If the door is locked and can not be
opened, find some way to communicate this to a human and wait for them to open the door.
The options are unlimited and are a way to make Heron even more autonomous.
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Appendix A

A.1 World Model Ontology
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Figure A.1: The ontology of object types.
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Figure A.2: The ontology of object properties and object relations.
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A.2 Demo Video

A.2 Demo Video

Figure A.3: QR code containing a link to a demo video which show-
cases the door opening and door passing skills that were imple-
mented for Heron.

Figure A.4: QR code containing a link to a demo video which show-
cases the button pressing generalizing to different buttons.

A.3 Code

The code can be found here: https://github.com/p-rosit/AutonomousDoorOpening
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Dörröppning - Hur en robot kan uppnå
en treårings förmåga

POPULÄRVETENSKAPLIG SAMMANFATTNING Josefin Gustafsson, Pontus Rosqvist

Detta projekt utvecklar en färdighet för en autonom robot. Färdigheten tillåter en
robot att hitta positionen av en dörrknapp, öppna dörren och passera denna. Projektet
är utfört med mjukvaran ROS och SkiROS.

Robotar i dagens samhälle används mest i indus-
trin där de är separerade från människor. Som
tekniken utvecklar sig i dagens samhälle gör robo-
tarna en förflyttning till platser som är designade
för människor. För att kunna existera i samma
utrymme måste de kunna navigera i dessa om-
råden. Detta ger ett behov av en navigerings-
färdighet som ger en robot möjligheten att inte
bara ta sig runt i rum utan även mellan dessa. På
grund av detta har vi implementerat en färdighet
för detta.

Färdigheter är byggnadsblock som en robot kan
använda för att utföra olika processer. Med hjälp
av SkiROS kan vi fokusera på att endast program-
mera roboten utan att tänka på hur informatio-
nen runtomkring ska hanteras. En färdighet är
inte specifik till en viss robot eller en viss situa-
tion utan den ska beskrivas på ett sätt som kan
användas i ett stort antal situationer. En grafrep-
resentation av byggnaden har konstruerats som
beskriver hur de olika rummen relaterar till varan-
dra. Dörrar och deras knappar finns även i denna
grafen. Grafen kan sedan användas för att, givet
en start och ett mål, planera vilka dörrar roboten
kommer att behöva passera.

Roboten använder den planerade vägen och föl-
jer denna. Vid passering av en dörr måste en

Korridor

Trapphus Hiss

Lucas-
rummet

Robot-
labbet
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Dörr

Dörr

Hissdörr

Figure 1: Grafrepresentation av byggnaden

knapp hittas vilket sker med en kamera på ar-
men som hittar positionen där det ska tryckas.
Armen rör sig sedan till knappen och trycker på
den. Att knappen är tryckt avgörs med hjälp av
kraftsensorer. För att försäkra att dörren faktiskt
har öppnats har en färdighet som detekterar om
dörren är öppen eller stängd gjorts. Efter detta
följer roboten återigen navigeringsplanen och går
igenom dörren. Dessa beskrivna färdigheter kan
sättas ihop för att navigera i en byggnad. Den to-
tala färdigheten sätter sedan ihop alla dessa byg-
gnadsblock till en fullständig navigeringsfärdighet.
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