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Abstract 
 

Heat treatment of dairy products is essential for food safety, one way to perform this is ultra-high 

temperature (UHT) processing. During the process, macronutrients and minerals form fouling 

deposits which impairs heat transfer. Eventually the fouling needs to be removed chemically by 

alkaline and acidic detergents. Fouling buildup and removal are dependent on both internal 

parameters such as the physical properties of the product and external parameters such as time, 

flow rate, temperature, and concentration. Modelling fouling development and removal on an 

industrial scale is valuable from an economical and environmental perspective. By optimizing how 

long production and cleaning cycles should be the productivity can be increased and the chemical 

waste as well as the energy consumption can be decreased. Although many models for fouling have 

been developed, each model is highly dependent on the type of heat exchanger, the product, and 

the operational parameters. Furthermore, they do not account for upstream and downstream 

processes which can affect the operator’s decision. This thesis takes a data-driven approach to 

construct fouling development and removal models from 27 months’ worth of data that was 

retrieved from a specific heat exchanger. The raw dataset was divided into production and cleaning 

in place (CIP) cycles. Each cycle had specific requirements that had to be fulfilled e.g., for production 

they should be longer than 5 hours. CIP cycles were further divided into caustic and acidic cycles. 

However, due to deviations from standard operating procedures (SOP) and unreliable conductivity 

meters, caustic and acidic cycles could not be reliably differentiated, therefore 10 reliable CIP cycles 

were used instead. Regression models were developed for the production and cleaning cycles, 

where the fouling during production increased linearly with time while cleaning cycles had a more 

complicated relationship with fouling.  
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Popular science summary 
 

Dairy products need to be heat-treated to be safe for consumption, one way to do so is by using 

ultra high temperature (UHT) treatment, which involves heating products to temperatures of 135°C. 

This ensures that harmful bacteria are eliminated and allows for storage at room temperature, in 

contrast to pasteurization. However, at this temperature large deposits of minerals, fats, 

carbohydrates, and proteins form which is known as fouling. As a fouling layer is created between 

the hot and cold fluid, the pressure drop increases which leads to a deteriorated performance. To 

compensate for the increased pressure drop, the flow rate of the heating medium can be increased 

but after a certain point the fouling layer becomes too thick and chemical cleaning is required. 

Chemical cleaning is performed using alkaline and acidic solutions to dissolve the proteins and 

minerals respectively.  

In a UHT plant there are many heat exchangers and other units, each with their own sensors. Each 

sensor takes a measurement every minute which results in a very large dataset. Based on Tetra Pak 

know how, one specific heat exchanger which had the highest amount of fouling was chosen. The 

sensors selected was the temperature of the product and heating medium, the flow rates, and the 

conductivity. In general, higher temperatures lead to more fouling because more reactions can occur 

between carbohydrates, protein, minerals, and fat, while higher flow rates lead to less fouling due to 

the forces exerted on the fouling layer by the liquid. Other factors that affect fouling is time and 

concentration of the detergents. The conductivity was selected to monitor which detergent is used: 

acid or base.  

There are different approaches to modelling fouling: data driven models or physical models.  Data-

driven models is a pure statistical approach while physical models use mass and energy balances. It 

is often difficult to find a physical model that is appropriate for industrial applications due to 

variations in equipment, cleaning solution, product, and operational parameters. A data driven 

approach has been taken here but this approach also has difficulties such as customers not adhering 

to the recommended standard operating procedure (SOP) given by Tetra Pak. Another issue is that 

operator errors might occur. Hence, the data must be cleaned and filtered.    

The primary goal of this thesis was to model fouling development during milk production and the 

secondary goal was to model fouling removal. Fouling development increased linearly over time 

while fouling removal was close to linear during alkaline treatment and exponential during acidic 

treatment. Understanding how quickly fouling builds up and how readily it can be removed, can 

decrease the chemicals used during cleaning and the energy consumption which would improve the 

sustainability of the process. 
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1.Introduction  
 

1.1 An overview of dairy processing 

 

Dairy products may contain pathogenic microorganisms that must be deactivated or destroyed during 

food processing to ensure food safety. A widely used method is pasteurization which involves heating 

the product to temperatures between 60 – 100 °C to eliminate harmful bacteria. However, heat 

resistant bacteria present in raw milk can survive pasteurization and therefore refrigeration is 

necessary to prevent proliferation. The limiting factors for the shelf life are the growth of 

microorganisms, enzymatic changes, and flavour degradation. Standard shelf lives are between 8-10 

days in a sealed package during refrigeration. Another method to process dairy products is through 

ultra-high temperature (UHT) processing, in which the product is heated to temperatures above 135 

°C for a few seconds, either in indirect mode using heat exchanger or in direct mode using steam. This 

process ensures that thermoduric bacteria are eliminated and if the product is packaged aseptically, 

it can be stored at room temperature with shelf lives up to several months. Since refrigeration is not 

needed, storage and distribution are facilitated, especially in countries where it is difficult to maintain 

refrigeration. Consequently, the energy consumption is lowered, which is beneficial from both an 

economic and environmental perspective. Furthermore, a longer shelf life can enable production of 

larger batches, leading to increased operational efficiency (Bylund, 2015).  

During the processing of dairy products, soiling of the equipment occurs which deteriorates the 

performance, this is also known as fouling. Carbohydrates and proteins may stick to the surface of 

heat exchangers as a result of high temperatures which lead to cross-linking of proteins and Maillard 

reactions. Minerals such as calcium phosphate also precipitate at high temperatures. To eliminate the 

soil, equipment is usually cleaned in multiple steps using alkaline and acidic solutions. The 

optimization of cleaning cycles is interesting from an economical and environmental perspective, 

because productivity can be increased, and waste can be decreased (Tetra Pak, 2015).  

1.2 Aim 
 

There are two main approaches to making fouling development and fouling removal models: physics-

driven models and data-driven models. In this thesis the data driven approach has been taken using 

27 months of large-scale production data where 3% and 1.5% fat milk are the products. Given previous 

studies on fouling by Tetra Pak, trends for fouling development and removal have been observed in 

controlled conditions, the research question here is: whether this is applicable to industrial data as 

well? The hypothesis is that if the operators follow standard operating procedure (SOP), the data 

should look similar. 

The aim of this thesis is to develop a predictive model for fouling development in a tubular heat 

exchanger at UHT conditions, with milk as a product. This will be done in the following steps: 

• Providing a literature review of fouling development  

• Providing a workflow for cleaning and pre-processing the data 

• Understanding the industrial data in comparison to Tetra Pak’s SOP 

• Develop a predictive  model for fouling development. 

• Investigate how time, temperature and flow rates affect fouling removal. 
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The goal for Tetra Pak is to develop models that can be implemented for dynamic simulation and 

deterministic optimisation for short term scheduling.  

 

1.3 Shell and tube heat exchangers 
 

Shell and tube heat exchangers consist of an outer shell and inner tubes. One fluid flows through the 

inner tubes while another flows inside the shell and an indirect exchange of heat occurs. In this 

application, milk flows through the tubes and water flows through the shell. The advantage of shell 

and tube heat exchangers in comparison to plate heat exchanger is that the channel width is much 

larger which makes it more resistant to fouling (Fryer et al, 1996). The disadvantages are that it is large 

and thus the capital expenditure will be high, and that the energy efficiency is only 70% as compared 

to 95% for plate heat exchangers (Edreis et al, 2020).   

 

1.4 Fouling development in Heat exchangers 
 

During operation of heat exchangers, fouling, which is the deposition of materials onto the surface of 

equipment, occurs. This leads to decreased heat transfer and increased pressure drop which must be 

compensated for by either increasing the flow rate or increasing the temperature of the heating liquid. 

Otherwise, the outgoing temperature will be lower which affects the shelf life and safety of the 

product. Another alternative to deal with fouling is by cleaning with alkaline and acidic solutions. 

Fouling resistance is the additional thermal resistance caused by the foulant and it can be determined 

by measuring the overall heat transfer coefficient after fouling and the overall heat transfer coefficient 

of a clean heat exchanger (Muller-Steinhagen et al, 2011). 

𝑅𝑓 =
1

𝑈𝑑
−

1

𝑈
 

Rf is the fouling resistance [m2*K / W], Ud [W/ m2* K] is the overall heat transfer coefficient after 

fouling and U [W/ m2 * K] is the clean overall heat transfer coefficient (Muller-Steinhagen et al, 2011). 

Fouling development can be monitored using pressure or temperature sensors, as fouling leads to 

increases in pressure drop and in heat transfer. 

There are different types of fouling; one example is crystallization fouling which refers to the 

deposition of salts such as calcium phosphate. This process has been shown to be linear with an 

induction period at the start where the fouling resistance is zero (Ritter, 1983), but there have also 

been studies where fouling resistance decreases gradually and sometimes to an asymptotic state, 

where the rate of removal is equal to the rate of deposition (Bohnet, 1987). Linear fouling relationships 

are found in cases where strong deposits are formed, where the removal rate is low, while asymptotic 

cases are found when weaker deposits are formed. In addition to the deposit characteristics, the type 

of heat exchanger and operational parameters such as flow rates and temperature, affect how fouling 

will develop.  
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1.5 Fouling types and removal 
 

When the fouling level has passed a critical threshold, the production plant must be cleaned. The 

detergents used for cleaning depends on the type of fouling. Fouling can be classified into two 

different types: A and B. Type A can be found in temperatures between 75°C – 115 °C and consists of 

50-60 % protein, 30-35 % minerals and 4-8 % fat while type B can be found in temperatures above 115 

°C.  The main type of protein in type A is beta lactoglobulin. Type B fouling is harder and more brittle 

consisting of 70 – 80 % minerals, 20-25% protein and 4-8% fat (Goode et al, 2016).  

There are four different forces that affect fouling removal: mechanical force, thermal force, chemical 

force, and contact time (Figure 1). For cleaning in place (CIP) the flow must be turbulent and a flow 

velocity of at least 1.5 m/s must be maintained. The chemicals used are dependent on the type of 

fouling: alkaline solutions (e.g NaOH 0.5 – 2 wt % ) are used to remove proteins and fats while acidic 

solutions (e.g H3PO4 or HNO3 0.5 – 1.5 wt %) are used to remove minerals (Goode et al, 2016). Another 

study examining the structural and compositional changes in UHT milk fouling showed that proteins 

are depolymerized by the caustic solution and when acid is applied, both the minerals and the proteins 

are washed away. The most important parameters were the temperature during caustic cleaning and 

the concentration of the cleaning agent (Hagsten, 2016).  

 

Figure 1. The four factors affecting fouling removal: concentration, flow, temperature, and time. 
Source: “Production and CIP optimization methodology” by Hamid Ghanbari (2021-12-10). 
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1.6 Business unit UHT 
 

Ultra-high temperature treatment involves heating a product to 135 – 150 °C for a few seconds to 

eliminate any microorganisms (e.g Bacillus sterothermophilus and Bacillus sporothermodurans) 

(Grijspeerdt et al, 2004). There are two ways of heating: indirect and direct; in direct heating steam is 

injected directly into the product while in indirect heat is transferred through heat exchangers 

(Bylund, 2015). Indirect is more energy efficient since it allows reuse of the water/steam while direct 

heating is less fouling prone (Grijspeerdt et al, 2004). UHT operation can be divided into four main 

steps: plant pre-sterilization, production, aseptic intermediate cleaning (AIC) and CIP. AICs are used to 

remove fouling during long productions. It takes 30 minutes and aseptic conditions are maintained. 

CIP is a full cleaning cycle that takes 70 – 90 minutes and usually takes place after the production step 

is finished (Tetra Pak, 2015).    

The UHT plant used in this study utilizes indirect tubular heat exchangers which is the most common 
type of heat exchanger in UHT systems. These plants are suitable for products with medium viscosity 
such as puddings and deserts but also for milk products with longer processing times. A typical plant 
is shown in Figure 2. In the first step product is transferred from the balance tank (1) that stores the 
product to the pump (2). Product is pumped through the first heat exchanger where it is preheated 
regeneratively using heated product that is flowing out (3). The preheated product is transferred to 
the homogenizer (4) and thereafter heated in the second heat exchanger (5). Following the heat 
exchanger there is a stabilizing holding tube to stabilize milk proteins and decrease fouling. Another 
heat exchanger is used for further heating (6) followed by cooling (7). The final product passes through 
first heat exchanger (3) where it is cooled and passes to the aseptic tank (Bylund, 2015).  

 

Figure 2. An indirect tubular UHT plant. Source: Dairy processing handbook, Tetra Pak, 2015. 1) 
Balance tank. 2) Feed pump. 3) Tubular heat exchanger, regenerative and cooler. 4) Non-aseptic 
homogenizer. 5) Tubular heat exchanger. 6) Tubular heat exchanger final heater. 7) Tubular heat 
exchanger, cooler. 
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1.7 Fouling modelling in heat exchangers 
 

Understanding how fouling occurs and modelling it can decrease cleaning cycles and thus increase 

productivity (Jun et al, 2004). There are many different models for fouling, some being complete 3D 

models while others are simple correlations. Models that require solving partial differential equations 

are considered outside the scope of this thesis. While they describe a system completely, a 3D models 

require large computing power and only short periods can be simulated. Additionally, they are not 

useful for short term scheduling. From an applications perspective, correlations may be more useful 

as correlations can capture what happens during longer periods. Some correlations for fouling are 1) 

The fouling resistance, Rf is linearly correlated with foulant concentration Cb where k is a constant, 2) 

fouling resistance is proportional to the velocity v to the power of –1.5 with k as a constant, 3) fouling 

increases with temperature according to Arrhenius equation where K is a pre-exponential factor, E is 

the activation energy, R is the gas constant and T is the temperature (Muller-Steinhagen et al, 2011). 

1. 𝑅𝑓  =  𝑘  ⋅ 𝐶𝑏 

2. 𝑅𝑓   = 𝑘 ∙ 𝑣−1.5 

3. 𝑅𝑓   = 𝐾𝑒
−𝐸

𝑅𝑇 

Although fouling has been studied extensively in plate heat exchangers (PHE), there are very few 

studies on shell and tube heat exchangers (THE) focused on dairy products. One such study shows that 

there is an initial induction period after which the fouling increases linearly over time until saturation 

(Paterson et al, 1988). The biot number is a measurement of fouling and is defined as Bi = h0xd / λ, 

where h0 is the clean heat transfer coefficient, xd is the fouling thickness and λ is the deposit thermal 

conductivity. 

The fouling rate, ri, is described as a function of time and fluid velocity, where u is the fluid velocity, Ea 

is the activation energy, β is a constant, R is the gas constant and T is the temperature (Paterson et al, 

1988). 

𝑟𝑖 =
𝛽𝑒−𝐸𝑎/𝑅𝑇

𝑢
 

Another study uses a statistical model for fouling by using multiple regression (Fryer et al, 1996). In 

the study PHE and THE are compared with regards to fouling. The results indicated that THE have a 

longer induction period which is reasonable since PHE have thinner passages which render them more 

susceptible to fouling. Furthermore, the flow rate had a larger contribution to fouling in tubes than in 

plate. These models are based on the thickness of the fouling layer, which is not measured in the plant 

data, therefore they cannot be used.  
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2. Methodology 
 

2.1 Description of a cycle following standard operating procedure and relative 

soil level calculation 
 

A full cycle following SOP is preceded by sterilization to ensure product safety. Thereafter a 
production phase (production cycle) is initiated. This is where the desired dairy product (in this case 
milk) is heat treated. During the production cycle the pressure drop will increase with time due to 
increased fouling. When the pressure drop has reached a certain threshold, cleaning must be 
initiated, which can occur in two ways 1) full cleaning: the system is thoroughly cleaned 2) 
intermediate cleaning: a brief cleaning is performed and afterwards production starts again. The 
difference between intermediate cleaning and full cleaning is that in the former, the pressure drop 
does not decrease back to its original value, which is clean state, but the advantage is that aseptic 
conditions are maintained. However, since in practice there may be oscillations and slight variations 
in relative soil level (RSL), it is easier to distinguish between intermediate cleaning and full cleaning 
based on the StepNO (Table 2). StepNOs are used to identify what is currently happening in the plant 
for example if production or cleaning is occurring. 

It is important to consider that the pressure drop will vary with the product flow rate. To compensate 

for variations in flow rate, the RSL can be defined as:  

 

𝑅𝑆𝐿 =
∆𝑃

∆𝑃0
=

∆𝑃

𝐾𝑠𝑦𝑠 ∙ 𝑣2
 

Where ΔP [bar] is the measured differential pressure, ΔP0 [bar] is the differential pressure when the 

system is clean, Ksys [kg/m3]  is a variable that is dependent on the physical properties of the fluid such 

as temperature, viscosity and density, and v is the velocity [m/s]. Ksys was in this case calculated using 

Quantum tool, a software used for design of heat exchangers, but it can be also calculated from Darcy-

Weisbach correlations. Darcy-Weisbach equation can be expressed as: 

∆𝑃0 = 𝑓𝑑 ∙
𝜌

2
 ∙

𝑣2

𝐷𝐻
 ∙ 𝐿 

 Where ∆𝑃0 [bar] is the clean pressure drop, fd is Darcy friction factor, 𝜌 [kg/m3] is the density of the 

medium, v [m/s] is the mean velocity, DH [m] is the hydraulic diameter and L is the length [m]. 

Everything on the right-hand side except v2 lumped together equals Ksys. Based on Reynold’s number 

and the pipe’s relative roughness ε/D, Darcy friction factor can be estimated, with a Moody diagram 

for example (Shashi Menon, 2015).  

Using Ksys values from Quantum tool for different temperatures and velocities, and performing a 

regression, a correlation for how Ksys depends on temperature and velocity can be estimated, which 

was: 

𝐾𝑠𝑦𝑠 = 28.95 − 0.059 ∙ 𝑇 − 1.15 ∙ 𝑣 

This correlation was used for the calculation of RSL for all datasets. Ksys is normally calculated for each 

product and detergent, usually by stopping production and running the clean system with detergents. 

The detergents are often formulated detergents which means that the properties are not known, 
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however, since they are diluted, their physical properties will be similar to water. The properties of 

milk are also similar to water and therefore water was used as reference media for all calculations. 

The consequence of this is that RSL will not be equal to 1 when the plant is clean, but the cleaning 

progress can still be monitored by the slope of RSL. In this case the plant was clean after the first cycle 

of alkaline and acidic treatment, but this is not always the case.  

A SOP cleaning cycle is shown in Figure 3, where there is an initial increase in RSL during dosing of 

alkaline solution due to swelling. Subsequently, the RSL drops as the alkaline solution is circulated 

since it removes protein fouling. Next the heat exchanger is washed with acidic solution and during 

the circulation of acid, a large drop in RSL can be observed.  After one treatment of alkaline and acidic 

solution, rinsing is done with water. A RSL of around 1 indicates that the heat exchanger is clean. 

According to SOP, another round of alkaline and acidic treatment should be performed.  

A fullCIP cycle is defined as a production cycle followed by a cleaning cycle. A cleaning cycle consists 

of two rounds of alkaline dosing and circulation and two rounds of acidic dosing and circulation. An 

intermediate cleaning CIP (ICCIP) cycle is similar but contains intermediate cleaning between 

production cycles.  

 

 

Figure 3. An SOP cleaning cycle. Relative soil level (RSL) as a function of time. Blue low temperature. 
Red high temperature. Source: “Production and CIP optimization methodology” by Hamid Ghanbari 
(2021-12-10). SOP: standard operating procedure. 

 

2.2 Data processing 
 

There were two datasets acquired from a dairy plant was used in this study: one consisting of 3 months 

milk production data which takes measurements every minute and another with 27 months milk 

production data taking measurements at the same interval. The 3 months milk production data were 

conducted under supervision and therefore the data adheres to SOP while this is not guaranteed in 

the 27 months dataset which consists of the 3 months dataset and another 24 months data. The 

dataset is for one heat exchanger in a complete production line, and it was chosen based on Tetra 
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Pak's knowledge that if this section is clean then the whole loop is clean. This assumption reduces the 

dataset immensely. The relevant sensors are product flow rate, heating medium flow rate, product 

temperature, heating medium temperature, conductivity and pressure drop (Table 1). The pressure 

drop is calculated by subtracting the ingoing pressure from the outgoing pressure (Figure 4).  

 

Figure 4. A simplified process flow chart and where the sensors are placed in relation to the heat 
exchanger. Pi pressure in, Po pressure out, TP product temperature, Thm heating medium 
temperature, FP product flow rate, Fhm heating medium flow rate. Red is the product and blue is the 
heating medium. 

Table 1. All sensors that are important for studying the fouling development and removal.  

Sensors Name 

Fp [m3/h] Flow rate product 

Fhm [m3/h] Flow rate heating medium 

Tp[°C] Product temperature 

Thm [°C] Temperature heating medium 

Cond [mS/cm] Conductivity 

ΔP (bar) Pressure drop 

t (min) Time 

 

The Pandas library in Python was used to generate data subsets (Figure 5). The raw data was in the 

form of a matrix where each column corresponds to a sensor variable and each row corresponds to a 

measurement (a measurement occurs every minute). In total there are about 1 300 000 

measurements for each sensor. 

The dataset is complex consisting of more than 70 possible steps. Each step is used as a tag to identify 

what is currently happening in the plant. A certain combination of step/steps comprises a cycle. The 

most important steps are summarized in Table 2.  One important factor to consider is that the only 

way to separate caustic dosing from acidic dosing and caustic circulation from acidic circulation is 

based on the conductivity. Another consideration is that there is no way to distinguish between the 

first and the second dosing/circulation, hence it must be assumed that they always occur in order. The 

following assumptions were made when creating the datasets: 

• Each cycle starts with production and ends with final rinse. 
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• Every CIP cycle must follow the pattern: caustic dosing --> caustic circulation --> acidic dosing 

--> acidic circulation --> caustic dosing 2 --> caustic circulation 2 --> acidic dosing 2 --> acidic 

circulation 2. 

• Conductivities of 40 – 70 mS/cm indicates acid while conductivities of 90 - 130 mS/cm 

indicates caustic. 

However, since the UHT process is dependent on upstream and downstream processes, operators can 

sometimes make unusual changes in steps which can have unpredictable effects on the dataset 

construction. Another consideration is deviations from SOP either due to the sensors manufacturer’s 

preferences or due to human errors.  

The dataset was constructed in the following way: first NaN values were removed by filtering away all 

rows that contain at least one NaN value. Approximately 4.5% of all values were removed in this 

filtering step. Next the data was inputted into separateFullCIPfromIC which generates cycles with 

intermediate cleaning (IC) and cycles with fullCIP. The separation is based on whether there is an 

intermediate cleaning step between production and final rinse, if there is the cycle is assigned to the 

IC cycles. The fullCIP cycles are then separated into production cycles and CIP through 

ExtractProdtimes which was done based on the production step. The CIP cycles are used as input to 

findCaustic which is then divided into caustic dosing 1 & 2 and caustic circulation 1 & 2.  The same 

process is done with findAcidic, the difference here is in the conductivity. For acids the conductivity is 

between 40 – 70 mS/cm while bases have conductivities of 90-130 mS/cm. The separation into first 

and second dosing/circulation assumes that it alternates between 1 and 2.  

 

 

Figure 5. Flowsheet for generation of subsets. First fullCIP is separated from IC cycles, then fullCIP is 
divided into production and CIP cycles. CIP cycles are then separated into caustic and acidic cycles. 
These are in turn separated into dosing and circulation. CIP: Cleaning in place. IC: intermediate 
cleaning. 
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Table 2. The most important steps during production and cleaning. StepNOs are used as identifiers 
for what is currently happening in the plant.  

Name  Explanation StepNO 

Production This is where a cycle starts. 135 

Intermediate cleaning This step is used to 
differentiate between ICCIP 
and fullCIP. 

225 

Water circulation Sometimes water circulation 
occurs in the middle of 
production, thus making it 
difficult to determine if it 
should be counted as one or 
two production cycles. 
Example: production --> water 
circulation --> production. 

95 

Dosing Where either caustic or acidic 
solution is added gradually. 
The only way to distinguish 
between them is through the 
conductivity. 

435 

circulation A + circulation B  Every dosing step is followed 
by at least one circulation 
either A or B and sometimes A 
and B. 

445 

Intermediate rinse  Occurs after circulation.  465 

Hibernation  Sometimes the process needs 
to go into hibernation due to 
downstream issues or other 
reasons 

600 

Final rinse  This is where a cycle ends.  480 

Sterilization  A step used to sterilize the 
equipment. 

45 

Idle  Used when the operators are 
on a break. 

0 

 

2.3 Statistical models 
 

Using the production dataset and cleaning dataset, models were developed for predicting fouling 

formation and removal. Three different statistical models were tested to see which one gives the 

most accurate results: multiple adaptive regression splines (MARS), multiple linear regression (MLR), 

and partial least squares (PLS). Each model and their advantages and disadvantages are briefly 

described in this section.  
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2.3.1 Multiple adaptive regression splines 
 

MARS is a non-linear regression method that uses piecewise functions called hinge functions to 

approximate the dependent variables based on the independent variables. A hinge function can be 

described as: 

ℎ(𝑥 − 𝑡) =  {
𝑥 − 𝑡 , 𝑥 > 𝑡
0,                  𝑥 ≤ 𝑡

 

i.e a function that assumes the value zero for all values smaller than equal to t and x-t for all values 

where x is larger than t. Different degrees can be used, when a first-degree spline is used, piecewise 

linear functions will be used to estimate the dependent variable. Higher degrees usually lead to a 

higher R2 in the model, however, there is a risk of overfitting which means that the R2 in validations 

will be considerably worse. The advantage of MARS in comparison to MLR and PLS, is that it can 

capture non-linear relationships that are more complex, which is the case for CIP (Friedman, 1991).  

 

2.3.2 Multiple linear regression 
 

MLR is a statistical method used to estimate a dependent variable based on the assumption that it has 

a linear relationship with the independent variables. Other assumptions include: no multicollinearity 

between independent variables, the observations are independent, and normally distributed residuals 

(Allison, 1999). MLR is useful for capturing simple linear relationships which is expected in the 

production model based on previous studies (Ritter, 1983).  

2.3.3 Partial least squares 
 

PLS is an extension of multiple regression but instead of maximizing the overlap between dependent 

and independent variables one at a time for each independent variable, it considers all independent 

variables at once. The advantage of PLS is that it performs better than MLR if there is collinearity 

between the independent variables (Geladi et al, 1986). PLS involves projection into another space, 

thus the independent variables will become components instead. Using all components will give the 

same results as multiple regression, however, it is not guaranteed that more components equal a 

better model, rather that should be decided based on the validations. 

2.4 Scaling of the production cycles 
 

Scaling variables is especially important if the independent variables are of different orders of 

magnitude. The independent variables are product flow rate Fp, heating medium flow rate Fhm, change 

in temperature ΔT (Thm – Tp) and time t since the start. Typical values for flow rates are 30 m3/h, ΔT = 

4°C and time increases from 1 to 1600 min, which might indicate a need for scaling.  

The RSL was scaled based on the initial value of each cycle to establish the same starting point for all 

cycles. When scaling of the independent variables was performed, a standard scaler using the 

equation z = (x – u)/s, was used, where z is the scaled number, x is the sample value, u is the mean of 

all samples and s is the standard deviation.  
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2.5 Filtering of production cycles 
 

The following filters were applied to production cycles: 

• RSLinitial < 1.6. All production cycles that had an RSL of 1.6 or higher were removed since it was 

decided that values exceeding this is indicative of an unclean system. 

• Production cycles with independent variables that did not change over time were removed, 

constant variables indicate that sensors malfunctioned. 

• tend > 300 min. Production cycles that did not last longer than 5 hours are most likely errors 

during the operation of the plant. 

2.6 Data analysis of the production cycles 
 

The production cycles generated from ExtractProdTimes using the 27 months data was used for 

creating a production model using MARS, Multiple regression and PLS. For MARS the python packages 

sklearn-contrib-py-earth (0.1.0) along with pandas (0.25.3), scikit-learn (0.24.2) and numpy (1.19.5) 

were used in Python 3.6. The multiple regression and PLS were performed using the sci-kit learn 

package (1.2.1) in conjunction with Python (3.9.13). 

MARS with degree 1 was performed with different variations of scaling: only RSL initial value scaling, 

scaling independent variables and initial value scaling of RSL, and scaling independent variables and 

scaling RSL twice (initial value and standard scaler). For the best scaling method, MARS with degree 2 

and 3 were also performed to see if there is any improvement in the model and the predictions. The 

same scaling process was repeated for multiple regression using the same combinations as for MARS. 

PLS was performed using only initial value scaling and up to four components. For validation, 2 

production cycles from the 3 months dataset were used. The training dataset is all production cycles 

that fulfilled the filtering criteria from the 27 month dataset and the testing dataset are 2 production 

cycles from the 3 month dataset. The selection of testing dataset was done based on two criteria: long 

production time and linear increase in RSL. 

 

2.7 Data analysis of CIP 
 

The same Python packages that were used for production were used for analysis of CIP cycles. Since 

it was not possible to distinguish between CIP cycles due to deviations from SOP and possible errors 

with the conductivity meter, 10 CIP cycles from the pre-study where the caustic and acidic cycles can 

be distinguished with certainty were chosen for regression analysis. Different combinations of 

standard scaling were performed: all unscaled, unscaled independent variables and RSL scaled based 

on initial value and all independent variables scaled except time and RSL scaled twice. The best 

performing scaling which is the independent variables scaled except time and RSL scaled twice, was 

used for both caustic and acidic cycles. MARS with degree 1,2 and 3 was performed for caustic 

circulation and the acidic cycles. For caustic circulation multiple regression was performed to 

compare with the third-degree spline. For validation, 4 cycles were used, 2 from the dataset that 

was used to construct the model and another 2 from outside the dataset. These cycles were chosen 

based on their similarity to a SOP cycle (Figure 3). 
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3. Results and discussion 
 

3.1 Overview of process statistics 
 

Figure 6 provides an overview of 820 days of production data. An average of 1 million liters of milk 

was produced a day and the total energy consumption (including idle time, water circulation etc) was 

3.7 GWh (due to the complexity of the P&ID the energy consumption is for two heat exchangers 

instead of one), which is equivalent to 0.016 kWh/L milk consumption. Approximately 47% of the total 

time was spent on production, 35% on idle, 7% on water circulation and 5% on CIP. Productivity could 

be increased immensely if the idle time was decreased, however, it is not known why the operators 

set the plant to idle. CIP only constituted 5% of the total time, meaning that improvements in CIP 

cycles, such as decreasing the number of caustic and acidic cycles from 2 to 1, will only have marginal 

effects on the total productivity.  

 

Figure 6. The pie chart shows the distribution of different StepNOs i.e how much time was spent on 
production, CIP etc.  Count of index indicates the total number of measurement points. 
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3.2 Analysis of Fouling development  
 

3.2.1 An overview of a typical production cycle 
 

A typical production cycle is shown in Figure 7A, where the RSL (left vertical axis) and ΔT (right vertical 

axis) are shown as a function of time (horizontal axis).  As more fouling builds up in the heat exchanger, 

the RSL linearly increases with time. More fouling deteriorates the heat transfer, and thus the 

difference between the heating medium temperature and the product temperature must increase to 

ensure that the product temperature exceeds 135°C.  In Figure 7B, the product flow rate and heating 

medium flow rate are shown as a function of time. The flow rates remain constant for a long period 

but are sometimes increased stepwise. According to SOP the operator can choose to increase flow 

rate stepwise, linearly, or exponentially.  

 

 

Figure 7. A typical production cycle. The top graph shows the RSL and ΔT  as a function of time (A). The 
bottom graph shows the Fp and Fhm as a function of time (B). RSL: Relative soil level. Fp: flow rate 
product. Fhm: flow rate heating medium. ΔT: temperature heating medium – temperature product. 

A 

B 
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Next, three different statistical models: MLR, MARS and PLS will be used to predict fouling 

development based on the following operating parameters: Fp, Fhm, ΔT and t. 

 

3.2.2 MARS 
 

The results from MARS using degree two is shown by Figure 8A, where the model is compared to the 

data that was used for training, in terms of RSL as a function of time.  Figure 8B-D show a comparison 

between the model and the validation dataset. The best combination of scaling variables was scaling 

RSL based on their initial value of each cycle and keeping the independent variables unscaled. Scaling 

the independent variables resulted in large oscillations in one of the validation data, therefore, it was 

determined that unscaled independent variables give more reliable results for production data (Figure 

8D). In the model, the RSL increases linearly with time which is consistent with the results conducted 

by Tetra Pak in a pre-study and the results of Ritter et al (1983). However, the slope differs between 

each cycle which can be attributed to the different flow rates and temperatures of the product and 

heating medium fluid. The R2 for different degrees of MARS are shown in Table 3. Since it was known 

the fouling increased linearly with time from the pre-study, higher degrees of spline with respect to 

time is not necessary, however, higher degrees of the other independent variables could lead to 

improvements, as shown in Table 3. After degree 2, the model did not improve further. The oscillations 

in the prediction in validation1 are due to oscillations in temperature (Figure 8).   

Table 3. The RSL during production was modelled as a function of time, temperature and flow rate 
using MARS. The R2 values for the model, validation 1 and validation 2 for different degrees of MARS 
are shown in the table. MARS: multiple adaptive regression splines. RSL: relative soil level. 

 Degree 1 Degree 2 Degree 3 

Model 0.95 0.97 0.97 

Validation 1 0.94 0.96 0.97 

Validation 2 0.93 0.93 0.93 
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Figure 8. The results from a two-degree spline, data from a filtered subset of all the production cycles 

in the 27-month data was used to make the model (A), and validation was performed using two cycles 

from the 3 months data (B, C). When the independent variables were scaled oscillations were present 

in the second validation dataset (D). RSL: relative soil level. 

3.2.3 Multiple regression 
 

Multiple regression with time (min), product flow rate (m3/h), heating medium flow rate (m3/h) and 

change in temperature between product and heating medium ΔT(°C) gave similar results with R2 

values of 0.95, 0.95 and 0.93 for the model, validation1 and validation 2, respectively (Table 4, Figure 

9) . Figure 9A shows the model compared to the training data, Figure 9B-C shows the predicted 

values in comparison to two different validation datasets. Once again, scaling only RSL gave the best 

results, as the other combinations resulted in oscillations in validation2. As indicated in Table 5, all 

coefficients were statistically significant, and the equation was: 

RSL scaled = 1.39 + 0.0007*t + 0.0695*ΔT – 0.0410*Fp +0.0168*Fhm 

Physically it is reasonable to include the time, difference in temperature and flow rates but since the 

condition number was larger than 30, there is evidence of strong multicollinearity. However, this 

assumes that all variables have already been scaled, which was not feasible due to oscillations in 

validation 2. Nevertheless, PLS which explicitly considers multicollinearity, was also performed to 

compare the results with multiple regression.  
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Table 4. RSL during production was modelled as a function of time, temperature and flow rates using 
MLR. The table shows statistics showing the R2, adjusted R2 and the F-statistic for the model, and R2 

for the validations. RSL: relative soil level. MLR: Multiple linear regression. 

Statistic for the model / validation Value 

R2  0.949 

Adj R2 0.949 

Prob (F-statistic) 0.00 

Condition number 5340 

R2 validation 1 0.95 

R2 validation 2 0.93 

 

Table 5. All variables used in the MLR model for production, and their lower and upper confidence 
intervals. MLR: Multiple linear regression. 

Variable Lower confidence interval (α = 0.95) Upper confidence interval (α = 
0.95) 

Constant 1.381 1.404 

 t 0.001 0.001 

Fp -0.041 -0.041 

Fhm 0.017 0.017 

ΔT 0.068 0.071 

 

Figure 9 . RSL during production as a function of time. The results from multiple regression: model 
(A), validation1 (B) and validation 2 (C). RSL: relative soil level. 
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3.2.4 PLS 
 

The same scaling method was used for PLS as MLR and MARS. The number of components (n = 2) was 

chosen based on the best R2 values in the validation which were 0.97 and 0.95, respectively (Table 6). 

An R2 of 0.945 was achieved with 2 principal components which only increased to 0.949 using 4 

components (Table 6). PLS does not assume that there is no collinearity in contrast to multiple 

regression, which may explain why it performed slightly better. Figure 10A shows the PLS model in 

comparison to the data points and Figure 10B-C shows the predicted values using the model compared 

to two different validation cycles. 

Table 6. A PLS model for how RSL changes with time, temperature, and flow rates during production. 
The table shows the R2 value for the model, validation1 and validation2 based on the number of 
components used in PLS. n: number of components. PLS: partial least squares. RSL: relative soil level. 

 n= 1 n=2 n=3 n=4 

Model 0.928 0.945 0.947 0.949 

Validation 1 0.943 0.966 0.964 0.951 

Validation 2 0.961 0.952 0.948 0.927 

 

 

Figure 10. RSL as a function of time. PLS for the model (A) and two validations (B-C) using n = 2. The 
number of components to use was based on the R2 value of the validations. The same scaling was used 
for PLS as for MLR and MARS. RSL: relative soil level. PLS: partial least squares. MLR: multiple linear 
regression. MARS: multiple adaptive regression splines.  
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3.2.5 Fouling development summary 
 

The differences between models both in terms of model fitting and predictions are small. 

Considering the small differences and prior knowledge that fouling develops linearly over time, MLR 

is the most suitable model. All independent variables were statistically significant, and they could 

explain about 94% of the variance in RSL. RSL is slightly overestimated but still close to the real 

values. An advantage of MLR in comparison to PLS is that it is possible to see the contribution of 

each physical parameter, which enables prediction of how RSL will change if one of the parameters 

are changed. The problem with MARS is that there is risk for overfitting, although this was not the 

case in the two validation sets, using more validation data might show this issue. 

 

3.3 Analysis of fouling removal 
 

This section will first present a typical CIP cycle and then explain deviations from SOP. Subsequently, 

fouling removal will be modelled and predicted primarily using MARS since CIP is known to be a non-

linear process. MLR will be used for parts of CIP that resemble linearity for comparison with MARS. 

 

3.3.1 An overview of a typical CIP cycle 
 

The cycle below indicates an SOP cleaning cycle (Figure 11). It consists of caustic dosing, caustic 
circulation, intermediate rinse followed by acidic dosing, acidic circulation, intermediate rinse, all 
these steps are repeated once (see Table 2for the StepNOs associated with each step). In this plot, it 
can be observed that the largest decrease in fouling, which is indicated by the RSL, occurs during the 
first acidic dosing [1 – 14 min], and that after the first acidic dosing RSL only changes slightly [56-76 
min] (Figure 9A). This was a recurring trend; thus, it was determined that the first caustic cycle and 
the first acidic cycle should be used in the present study for constructing a fouling removal model. It 
can also be observed that there are four peaks in conductivity, two of which have conductivity 
values between 90-130 mS/cm and the others have conductivities of 40 – 70 mS/cm (Figure 11B). 
The former corresponds to alkaline treatment and the latter to acidic treatment. This is the desired 
cleaning procedure because there is no ambiguity.  
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Figure 11. A typical CIP cycle. The cycle alternates between caustic and acidic treatment twice. RSL 
and stepNO as a function of time (A). Cond and pressure drop as a function of time (B). CIP: cleaning 
in place. RSL: relative soil level 

3.3.2 Investigating cycles that differ from standard operating procedures 
 

When examining the cycles, many cycles deviated from the SOP cycle of caustic, acidic, caustic, acidic 

treatment. Figure 12 is an example of a cycle that deviates from SOP where the top figure shows the 

StepNO and RSL as a function of time, while the bottom figure shows the conductivity and pressure 

drop as a function of time. Figure 12A shows that either caustic or acidic dosing, and circulation 

occurred, when according to SOP both should be performed. The issue is that there should be a caustic 

dosing, but the conductivity meter is indicative of an acid (40-70 mS/cm). Note that the conductivity 

values reported have been compensated for temperature dependency. There are several possible 

explanations for this: 1) the conductivity data accuracy is not good enough which means that it is not 

possible to distinguish between acidic and caustic, 2) the caustic detergent concentration changed 

which affected the conductivity or 3) The operator made a mistake and applied acidic dosing instead 

of caustic. The deviation from the recommended operation along with the operators stopping at 

different points during CIP makes distinguishing dosing 1 and dosing 2 as well as circulation 1 and 2 

unreliable. To resolve this problem separate tags would have to be introduced for acidic and caustic, 

410

420

430

440

450

460

470

480

490

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181

St
ep

N
O

Time (min)

Cycle 9 full

RSL

StepNO

A

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

20

40

60

80

100

120

140

1 21 41 61 81 101 121 141 161 181

Δ
P

 (
b

ar
)

C
o

n
d

 (
m

S/
cm

)

Time (min)

Cycle 9 full

Cond

ΔP

B



26 

 

and for the number i.e., whether it is acidic dosing 1 or acidic dosing 2. Another alternative is to 

improve the instrumentation with for example a better conductivity meter or a turbidity meter. Based 

on these observations, 10 CIP cycles adhering to SOP were chosen for analysis using MARS. 

 

 

Figure 12. An example where it is impossible to distinguish between acidic and caustic dosing. 
StepNO 435 is the caustic or acidic dosing. A) shows the StepNO and RSL as a function of time, while 
B) shows the conductivity and pressure drop as a function of time. SOP suggests caustic, conductivity 
indicates acidic. RSL: relative soil level. SOP: standard operating procedure. 

 

3.3.3 Analysis of caustic cycles - MARS 
 

Under controlled conditions, a slight increase in RSL is expected due to swelling, however, this could 

not be observed in the 10 CIP cycles and the data were scattered.  Therefore, caustic circulation which 

is a longer process of around 30 min was studied instead. In caustic circulation, the RSL almost 

decreases linearly with time except for the initial start where there is a small increase in RSL (Figure 

13). Since previous Tetra Pak studies showed that fouling removal is more complex than a linear 

process, MARS was used but MLR will be used as a comparison. The best results were achieved by 

using MARS, scaling all independent variables except time and scaling RSL based on initial value 
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followed by standard scaling which resulted in an R2 of 0.86 (Table 7)(Figure 13). It is possible that this 

increase is the one that was expected during caustic dosing, but it was delayed due to fouling amounts, 

flow rates etc. The small change in RSL is consistent with the results of Hagsten (2016), where it was 

concluded that proteins depolymerize during caustic treatment, but they do not dissociate from the 

fouling network. 

Table 7. A model for RSL as a function of time, temperature and flow rate during caustic circulation 
was developed using MARS. The R2 values of the model based on different types of scaling. The best 
scaling method was used for the remainder of analysis on caustic cycles. RSL: relative soil level. 
MARS: multiple adaptive regression splines. 

 No scaling Initial value scaling on 
RSL 

All independent 
variables scaled 
except time, RSL 
scaled twice 

Model 0.69 0.85  0.86 

 

  

Figure 13. The caustic circulation model where RSL scaled is shown as a function of time. RSL: 
relative soil level. 

The R2 of the validation cycles were 0.67, 0.72, 0.07 and 0.53 respectively (Table 8). Lower degrees of 

MARS resulted in a worse fit for the model and slightly worse for the validations. The validations that 

were a part of the model performed better than the other ones as expected (Figure 14A-B and C-D). 

The predictions are worse than the predictions in the fouling development which is expected since 

fouling removal is a more complicated process, where in addition to the process conditions, the 

composition and amount of detergent play an important role. Nevertheless, the predictions are within 

the same order of magnitude which suggests that there is no overfitting. Using more cycles to 

construct the model may improve the predictions as ten cycles may not capture the variation in the 

flow rates and ΔT.  
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Table 8. A model for RSL as a function of time, temperature and flow rate during caustic circulation 
was developed using MARS. The R2 values of the model and four different validations based on 
MARS degree 1, 2 and 3 are shown. RSL: relative soil level. MARS: multiple adaptive regression 
splines. 

 Degree = 1 Degree = 2 Degree = 3 

Model 0.711 0.785 0.861 

Validation 1 0.63 0.63 0.67 

Validation 2 0.67 0.86 0.72 

Validation 3 0.55 -0.1 0.07 

Validation 4 -0.3 0.48 0.53 

 

 

Figure 14. RSL as a function of time. The different validations used for caustic circulation. Validation 
1 and validation 2 are from the same dataset as the model (A-B), while the other two are from a 
different dataset (C-D). RSL: relative soil level. 

 

3.3.4 Analysis of caustic cycles - MLR 
 

Multiple regression was also performed since caustic circulation looked close to linear, using the same 

independent variables and scaling as MARS, to investigate if it resulted in better predictions. The 

model performed notably worse (R2 = 0.77) which is expected since there were increases in RSL at the 

start of caustic circulation which caused deviations from linearity (Figure 15). The R2 value of the 

validations were: 0.69, 0.80, -119 and 0.32, respectively, indicating that the spline model was better 
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(Figure 16). Once again, the validation cycles that were a part of the dataset used for the model (Figure 

16A-B) performed better than the ones from a different dataset (Figure 16C-D) 

 

 

Figure 15. RSL as a function of time. The caustic model generated from multiple regression. RSL: 
relative soil level. 

 

Figure 16. RSL as a function of time. The caustic validation cycles using multiple regression. 
Validations from the same dataset as the model (A-B), validations from a different dataset (C-D). RSL: 
relative soil level. 
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3.3.5 Analysis of acidic cycles  
 

Based on the SOP cycle and previous studies, an exponential decrease in RSL is expected during the 
acidic circulation (Hagsten, 2016). However, when examining the 10 cycles closely, the decrease in RSL 
appeared to be connected to how much time had passed since acidic treatment started rather than 
the cycle step, since cycles with longer acidic dosing saw an exponential decrease in RSL during the 
dosing phase. With this hypothesis, it was reasonable to analyze dosing and circulation together, to 
capture the exponential decrease. Since both MLR and PLS are linear models, they would not capture 
the exponential decrease in RSL, therefore only MARS was used. First, different types of scaling were 
performed to investigate which one performed the best (Table 9). Subsequently, different degrees of 
MARS were used, with the third-degree MARS model capturing the acidic dosing and circulation the 
best (R2 =0.91) ( Figure 17). 

Table 9. A model for RSL as a function of time, temperature and flow rate was developed using 
MARS for the acidic cycles. The R2 values for the model for different types of scaling, the best 
method was chosen. RSL: relative soil level. MARS: multiple adaptive regression splines.  

 No scaling Initial value scaling on 
RSL 

All independent 
variables scaled 
except time, RSL 
scaled twice 

Model 0.86 0.91 0.91 

 

 

Figure 17. RSL as a function of time. Acidic dosing and circulation model that was obtained based on 
10 CIP cycles. RSL: relative soil level. 
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When validating the model with four different cycles, each cycle had a few datapoints which were two 

orders of magnitude off from the expected values, indicating that there is an overfitting (Figure 18). 

Interestingly, the cycles that were from the same dataset as the model also had large deviating values 

(Figure 18A-B). The overfitting could be caused by certain hinge functions in the spline model or by a 

combined effect of the independent variables. All validation data had independent variables that were 

within the range of the model’s values. Decreasing the degree to one gave similar results ( 

Table 10). Since the trend was not linear, multiple regression and PLS would not give accurate results 

for the acidic cycles. Another explanation could be that there is a large variation between cycles and 

more cycles are needed to capture this property.  

Table 10. MARS was used to construct a model for RSL over time, temperature, and flow rate for 
acidic cycles. The R2 of the model and four different validations based on MARS degree 1 – 3 are 
shown. RSL: relative soil level. MARS: multiple adaptive regression splines. 

 Degree = 1 Degree = 2 Degree = 3 

Model 0.765 0.896 0.913 

Validation 1 -506 -1017 -8858 

Validation 2 -71.1 -540 -397 

Validation 3 -1707 -111931 -4827 

Validation 4 -1540 -125000 -2915 

 

 

Figure 18. RSL as a function of time. Acidic validation data. Validation 1 and 2 are from the same 
model (A-B) while validation 3 and 4 are from an independent dataset (C-D). RSL is first scaled by 
initial value and then by standard scaling. RSL: relative soil level. 
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3.3.6 Fouling removal summary 
 

For caustic circulation, MARS performed better than MLR, however, the predictions were not very 

accurate which may be due to the low number of cycles used for training or overfitting. Despite this, 

the general trend seems to be captured by the model. For the acidic cycles only, MARS was used 

since the data suggested that the process is exponential. The R2 for the model is good (0.913) but the 

validations contained several predicted values that deviated with a factor of 100 from the expected 

value, suggesting that there is an overfitting in certain hinge function in the MARS model or that the 

combination of independent variables in the validation data generates incorrect values by the 

model. A larger sample of CIP cycles may amend these issues.  

4.Technical and environmental relevance 
 

A fouling development model can help with short-term scheduling, by using the RSL as an indicator 

of when cleaning is necessary, less cleaning cycles will be required which reduces energy 

consumption and increases productivity. A fouling removal model facilitates understanding of how 

long each caustic and acidic cycle should be to ensure that the equipment is clean. By optimizing 

cleaning cycles, the consumption of chemicals and energy can be decreased.  

The models derived in this study are data-driven, in contrast to the physical models found in 

literature. The main difficulty encountered with this data-driven approach was that the industry data 

deviated from Tetra Pak’s SOP. Customers tend to develop their own procedures as they figure out 

what works and what does not, in certain cases shortcuts are taken and in other mistakes are made. 

Consequently, identifying SOP CIP cycles reliably is troublesome, however, if SOPs were followed and 

better tags introduced, the data-driven approach is feasible. Human errors will always remain a 

factor which is why certain filters will have to be applied, given a sufficiently large dataset with the 

right filters, reliable models for fouling development and removal could be constructed. 

5.Conclusion  
 

This study concluded that fouling increases linearly with time during production which is consistent 

with previous studies. A workflow for cleaning and pre-processing the data was established, however 

due to deviations from SOP, a smaller subset of CIP cycles had to be used. Fouling decreases almost 

linearly during caustic treatment and exponentially during acidic treatment. The predictions were 

fairly accurate for the production, however, there were large errors in the caustic and acidic validation. 

This could be caused by overfitting and using more cleaning cycles may ameliorate regression results. 

Alternatively, other non-linear regression models can be used to capture the changes in RSL during 

cleaning. However, first the tags differentiating caustic and acidic cycles would have to be introduced.  
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6.Future work 
 

The primary step in a future study would be to develop fouling removal models using a larger 

dataset to see if the models improve.  Furthermore, it would be interesting to see what effect water 

recirculation has (which is done after each production cycle). Another topic to consider is the two 

different types of cleaning cycles: fullCIP and ICCIP, which of these modes of cleaning is the most 

efficient in terms of productivity, energy consumption and chemical use. 
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