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Abstract

Ultra millimeter-wave (mmWave) radars have become a vital sensor in automotive,
surveillance, and consumer electronics thanks to its precise measurements and
low power consumption. However, they required a precise control to coordinate
their di�erent modules and produce meaningful data. In this thesis work, we
introduce an approach to perform the control and coordination of the radar based
in microcode that is served as instructions its di�erent modules. The control
system is implemented with �ve di�erent architectures following two strategies.
The �rst one consist in storing the microcode in memory from where they are latter
read with direct memory access. On the other hand, second approach consists in
customizing the processor to generate and push the instructions directly to the rest
of the radar. The Pulpissimo system on chip is used as development platform with
the Ibex RISC-V core con�guration. The architectures are evaluated in terms of
throughput of microcode words per clock cycle, energy consumption and area after
synthesis. The results show that architectures which implement more parallelism
achieve more robust throughput in exchange of a bigger area and higher energy
consumption. Additionally, customizing the processor show a better throughput
than architectures which use independent modules.
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Popular Science Summary

Ultra millimeter-wave (mmWave) radars have become a vital sensor in automotive,
surveillance, and consumer electronics. Their importance lies in their ability to be
integrated into System on Chips (SoCs) and produce accurate position, speed or
direction measurements of the surrounding objects. However, to produce mean-
ingful data, keeping a precise periodicity in the sampling and processing of the
measurements is key. This is managed keeping precise control and coordination of
the di�erent modules of the radar.

Nowadays, there is no standard nor common SoC architecture for mmWave
radars which results in wide heterogeneous set of solutions that can be found on
the market. Commonly, the radar architecture can be split in two. An analog
part which transmits, receives and samples the electromagnetic signals, and a
digital part in charge of the control and processing of the data. The operation
of Acconeer's sensor relies in a set of microcode instructions precomputed by the
control system before taking any measurement. These are pushed during the
operation into the di�erent modules of the radar to coordinate the sampling and
processing of data. In this thesis work, this control system is implemented using
�ve di�erent architectures ranging from the usage of dedicated memories and direct
memory access, to the customization of a Central Processing Unit (CPU). All of
them have been evaluated in terms of number of microcode instructions pushed
per clock cycle, area and energy dissipation.
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Chapter1

Introduction

Radars are electrical systems that transmit a signal towards a region of interest and
receive the echoes produced by its re�ections in the surrounding objects. Based
on the elapsed time between transmission and reception, and the properties of
the transmitted and received signal, radar devices are able to detect presence and
measure distance or speed [1]. This technology can be embedded in SoCs, being
suitable for a wide range of applications within the �elds of consumer, biomedical
or automotive electronics. Some examples are obstacle detection [2], heart rate
monitoring [3] or speed measurement [4][5].

Despite some attempts to achieve open standards for embedded radar sen-
sors such as Googles Ripple initiative [6], nowadays, the software and hardware
of these products remain heterogeneous in the market. In general, these SoCs are
radiating elements that usually operate at high frequencies and with high data
throughput. Consequently, even without a common standard, they face similar
challenges that range from the typical memory bottleneck, present in the majority
of digital architectures, to ensuring real time constraints to produce meaningful
data. Common ways to deal with these challenges are memories as data exchange
point between sensor and application system and Direct Access Memory (DMA)
modules for data transactions, as can be seen in the Texas instruments IWR1843
[7] and Acconeers A121 [8].

This project aims to evaluate di�erent architectures for the control system of
a SoC radar sensor. To achieve this objective, �rst, a baseline design is de�ned
and implemented with a CPU that produces microcode to operate a radar SoC.
In the baseline, the microcode is stored in a memory and later pushed to the dif-
ferent modules through DMA and two FIFO bu�ers. Second, performance of the
implemented architecture is measured in terms of throughput, power consump-
tion and area. Third, four di�erent approaches are proposed and implemented to
evaluate and compare the di�erent trade-o�s between throughput, area and power
consumption.
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1.1 Background and main objective

This thesis work has been founded and carried out in collaboration with Acconeer
AB.

To measure a point, Acconeer's mmWave Pulse Coherent Radars (PCRs) trans-
mit a short pulse of known phase and uses the time di�erence between the trans-
mitted and received signal to detect presence [9]. During normal operation, the
sensor measures presence at consecutive points within a distance range. This set
of measurements are known as sweeps. The points from consecutive sweeps are
stored orderly in memory and grouped in frames to be later retrieved. This pro-
cedure is illustrated in Figure 1.1 which shows the structure of a frame composed
by three consecutive sweeps targeting the same distance range.

Figure 1.1: Acconeers RADAR sensor operation.

In ideal conditions, each point could be measured once. However, because of
the exponential decrease in the Signal to Noise Ratio (SNR), as the distance in-
creases, the accuracy of the measurements also decays exponentially. This scenario
is illustrated by Equation 1.1, which presents the radar equation showing the SNR
and its relationship with distance. The parameters showed in the equation 1.1,
are the following:

� Pt: transmit power.

� Gt: transmit antenna gain.

� Gr: receiver antenna gain

� λ: radar wavelength.

� σ: radar cross section.

� d: distance.

� K: Boltzmann constant.

� T0: reference temperature, 290 K.

� F : noise �gure.

� B: e�ective noise bandwidth.

� Ls: transmit losses.

SNR =
PtGtGrλ

2σ

(4π)3d4KT0FBLs
(1.1)
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To attenuate this inconvenience, Acconeers PCRs implement a Hardware Accel-
erated Average Sampling (HWAAS) mechanism. This consists in measuring one
point multiple times and compute the average in hardware to improve the SNR of
each measurement.

One of the key features of Acconeer's sensors is their �exibility which allows
the variation of parameters such as the step size (∆d), the distance range or the
number of points to average during the operation. This �exibility relies on a
microcontroller that precomputes and pushes microcode to coordinate the analog
and digital modules of the radar. The microcode, consisting of 32-bit control
words as illustrated in Figure 1.2, is grouped into chunks. These chunks determine
the speci�c sequence in which the control words are employed, enabling various
functions ranging from system setup to perform measurement. Both, the content
of �elds and the structure of the chunk is highly dependent in the function to
ful�ll. However, in the context of this thesis work, the focus is not on the speci�c
function of each �eld, but rather on the time and power required to compute and
push them. The �elds of the microcode instruction that play a signi�cant role for
this thesis work are contained in the �rst thirteen bits:

� Type: Two types of control word, A if 0 and B if 1.

� Field_A and Field_B: used for decompression.

� C_end: Last control word of the chunk.

Figure 1.2: Microcode instruction structure.

In typical radar applications such as speed measurement keeping a precise pe-
riodicity between the measurements is mandatory, and, thus, the system must not
run out of microcode. Figure 1.3 shows the proposed baseline solution of the radar
architecture in this thesis work, which consists in bu�ering the microcode before
being pushed to the destination modules. Multiple solutions could be addressed
to compute and push the control commands into the modules of the radar, result-
ing in di�erent impacts in throughput, area, and energy consumption. Therefore,
the main goal of this thesis work is to propose, implement and compare multiple
solutions for the control system of Acconeer's radar in terms of throughput, area
and energy consumption.
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Figure 1.3: Proposed radar SoC architecture.

1.2 Work methodology

For con�dentiality reasons, this project has involved selecting an embedded open-
source platform on top of which a reference use case that relates to Acconeers
sensors has been implemented. Using this baseline as a reference design (A0), a
total of four di�erent modi�cations (A1 to A4) have been proposed, implemented
and evaluated. Due to the availability of the analysis tools and the long simulation
time, two use cases have been used for evaluation:

� A shorter test consisting of linear sweep of 100 points with constant hwaas.

� A sweep of 10 points with hwaas = id where i stands for the point number
within the sweep.

The �rst test has been used to simulate energy consumption while the sec-
ond one for throughput. Additionally, to evaluate how the system performs under
stress, a periodic interrupt has been con�gured in the ten points sweep use case.
This interrupt consists of multiple data operations to keep the memory and pro-
cessing bandwidth busy. The interrupt is described more in depth in the Annex
for each architecture.

The metrics used for comparison of the proposed solutions have been the fol-
lowing:

� Performance in terms of throughput which is measured as microcode in-
struction pushed per clock cycle.

� Power consumption measured based on the switching activity at gate
level.

� Area after Application Speci�c Integrated Circuit (ASIC) synthesis.

1.3 Tools

The tools used in this project have been Mentor QuestaSim for the compilation and
simulation of hardware modules. Power consumption was simulated at gate level
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with Ansys PowerArtist and, lastly, hardware modules have been later synthesized
with Cadence Genus.

1.4 Thesis Outline

This report is structured as follows:

� In chapter 1, radars fundamentals and a proposed architecture is introduced
and explained together with the operation of the sensor. The main objec-
tive of the thesis is de�ned and the methodology followed throughout the
development of the thesis is described.

� In chapter 2, Reduced Instruction Set Computers (RISC) processors and
common digital radar SoC architectures are introduced and summarized for
better understanding of this thesis work. The candidate platforms for the
baseline design are introduced and the �nal choice is discussed.

� In chapter 3, the baseline and its integration in the chosen open source
platform is described together with the other 4 proposed solutions.

� In chapter 4, the results obtained for each optimization are discussed and
compared.

� In chapter 5, the conclusions and future work of this thesis are presented.
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Chapter2

Prior work

2.1 SoC Architecture

SoCs have di�erent architectures depending on the applications they are designed
for. In microcontrollers or general purpose platforms targeting embedded appli-
cations, an extended architecture may include multiple peripherals, Input-Output
(IO) interfaces, and memories connected to a Central Processing Unit (CPU)
through one or more buses. The speci�c IO interfaces and peripheral modules
vary based on the SoC's requirements, but there are commonly used approaches
or standards to describe the CPU, bus organization, and memory organization
system.

The memory organization system in SoCs is designed to balance speed and ca-
pacity. It involves using di�erent levels of caches, with smaller ones placed closer
to the CPU to minimize latency. The CPU �rst checks the closest cache level
for data and instructions. If the needed information is not found, it looks in the
higher cache levels and updates the closest cache with the retrieved data [13]. The
number and size of cache levels depend on the system's requirements. Typically,
embedded applications may only need one level, while High Performance Comput-
ing (HPC) applications might require three or four levels .

A CPU is de�ned by the Instruction Set Architecture (ISA), and the microar-
chitecture. The ISA is an abstract model of a CPU which de�nes its behavior, this
englobes the instructions, memory and addressing models, and the IO interface of
a family of implementations. On the other hand, the implementation of the ISA
is known as microarchitecture and it may di�ers from one processor to another
[13]. Therefore, while two processors may executed the same code, their di�erent
microarchitectures may lead to di�erent, performance, area and power consump-
tion. Despite the di�erent microarchitectures, several processors are built upon a
5-stage pipeline microarchitecture, depicted in Figure 2.1. While the number of
stages may di�er, most implementations can be divided into the following building
blocks [13]:

6



Figure 2.1: 5-stage pipelined processor (extracted from [13]).

� Instruction Fetch (IF): Fetches the next instruction to execute from In-
struction Memory (IM).

� Instruction Decode (ID): Decodes the instruction, retrieves operands
from the immediate �elds of the instruction and from the General-Purpose
registers.

� Execute (EX). Performs computational operations.

� Data Memory (DM): Interface with data memory.

� Write Back (WB): Writes results of the execution or data retrieved from
memory in the general-purpose registers.

As for the previous modules, the bus organization also depends on the re-
quirement of the system. Nowadays, ARM's Advanced Microcontroller Bus Ar-
chitecture (AMBA) speci�cation is an extended approach to de�ne the buses and
interconnection of the SoC. This standard de�nes various bus interfaces for di�er-
ent parts of the SoC. The primary buses de�ned in this standard are the following:

� Advanced High-performance Bus (AHB). The AHB is a high-performance
bus that serves as the backbone of the SoC. It connects the main system
components, such as processors and memories.

� Advanced eXtensible Interface (AXI). The AXI is a high-performance,
scalable, and con�gurable bus protocol. It supports the connection of com-
plex and high-bandwidth IP cores that require advanced features like burst
transfers or multiple outstanding transactions.

� Advanced Peripheral Bus (APB). The APB is a low-power, low-bandwidth
bus protocol designed for connecting peripheral devices with lower perfor-
mance requirements.

In the following sections, a deeper overview of the standardized technologies
used in this thesis work is given. These are RISC-V ISA and APB bus protocol.

Prior work 7 7



2.1.1 RISC-V

RISC-V is an open standard ISA based on RISC principles which aim to enhance
performance by compiling software into a �ne-grained set of instructions. This
standard is de�ned under the following principles[10]:

� Cost, Simplicity and Program size: Given the high production costs
associated with integrated circuits (ICs), minimizing the design area is a crit-
ical factor to maximize the number of ICs produced per silicon wafer. The
complexity of the ISA directly impacts the amount of hardware resources re-
quired to implement a processor, making desirable having instructions that
perform simple and independent tasks. Moreover, the memory size signi�-
cantly contributes to the overall area. Hence, it is key for the ISA to enable
an e�cient conversion from software to instructions.

� Modularity and �exibility: To face e�ciently heterogeneous applica-
tions and use cases, RISC-V ISA de�nes di�erent sets of instructions for
arithmetic operations, instruction sizes or number of registers.

� Performance. The end metric to evaluate the performance of a processor
is time per program. However, since this metric depends on the clock fre-
quency, performance of designs with multiple clocks may be di�cult to com-
pare. Hence, two more commonly used metrics are the number of executed
instructions and Cycles Per Instruction (CPI). RISC processors prioritize
the usage of a larger number of shorter instructions whereas Complex In-
struction Set Computer (CISC) processor uses fewer instructions that may
take more time to execute but perform more tasks.

� Isolation of architecture from implementation: Designing instruc-
tions for a speci�c microarchitecture might boost performance for that pro-
cessor. However, it might as well be problematic for other pipelines. There-
fore, since RISC-V establish a standard ISA, it must �t properly di�erent
implementations.

� Ease of programming, compiling and linking. The RISC-V standard
is based on a register-memory ISA model in which data is moved from
memory to registers in order to perform operations with it. To facilitate the
work of the compiler in allocating data, RISC ISA formats establish a set of
32 registers (with the exception of RV32E, which only uses 16 registers for
smaller designs). Another desirable feature is performance predictability,
which is managed thanks to the RISC principles since all instructions take a
similar number of clock cycles to execute. Lastly, relative branching to the
address of the instruction being executed (called program counter or PC)
is also implemented to support dynamic linking of libraries, allowing more
e�cient library compilation and function calls.

� Room for growth. Saving space for new instructions is important to allow
customizations or future enhancements without changing the ISA formats.

8 8 Prior work



RISC-V ISAs

RISC-V standard is divided in two speci�cations: privileged and unprivileged. The
former sets three privilege levels which grant access to di�erent hardware features.
These modes are Machine (M), Supervisor (S) and Hypervisor (H) mode together
with address translation and page memory management methods [11]. On the
other hand, the unprivileged speci�cation de�nes a fourth privilege level known as
User (U) mode, the memory consistency model, 4 base ISAs and 17 extensions [12].

In this thesis work, only M and U modes have been utilized since these are
the ones supported by the chosen processor. M mode is the only mandatory mode
and grants access to all hardware features. It is employed to execute boot code,
handle exceptions, or switch to H or S modes if implemented. Conversely, U mode
is employed for running regular application code. When switching between modes,
the processor stores the context (PC and register content) in memory and Control
Status Registers (CSR) respectively. Upon returning to the previous mode, the
context is restored. Transitioning from U to M mode can occur either due to an
exception or the execution of an environment call (ecall) instruction. To perform
the latter transition, the Machine mode return (mret) instruction has to be exe-
cuted [11][12].

The base ISAs de�ne a set of instructions required for compiling and execut-
ing minimal software, specifying the length of the data word and the number of
registers. The primary base ISA is RV32I, which establishes a data word size of
32 bits and a set of 32 general purpose registers. It is important to note that the
standard does not assign a speci�c function to each register. However, there exists
a software convention to utilize them for speci�c purposes as shown in Table 2.1.
The other three base ISAs are variations of RV32I, as they share the same instruc-
tions but di�er in either data word length, such as RV64I or RV128I with 64-bit
and 128-bit word lengths respectively, or in the number of registers, as RV32E,
which only utilizes the 16 lower registers of RV32I [12].

RISC-V base instruction set (which is shared by the 4 base ISAs) is composed
of 5 distinct types of instructions: Integer Computational, Control Transfer, Load
Store, Memory Model, and Control Status Register (CSR). Furthermore, the Inte-
ger Computational instructions are categorized based on the destination and source
of the data into Register-to-Register and Immediate-to-Register instructions. On
the other hand, the Control Transfer instructions are divided into conditional and
unconditional instructions [12].

The encoding is done with 4 di�erent formats shown in Figure 2.2. The instruc-
tion is identi�ed by the Opcode, funct3 and funct7 �elds. Rs1 and rs2 indicates
the source registers of the data while rd is the destination register to store the
result. Lastly, data can also be encoded in the instruction through the Immediate
(Imm) �eld [12].

For example, the instruction add immediate (addi), I-type instruction, is iden-
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Register Convention

x0 hard-wired zero register

x1 return address

x2 stack pointer

x3 global pointer

x4 thread pointer

x5 temporal data / alternate link register

x6-x7 temporal data

x8 saved register / frame pointer

x9 saved register

x10-x11 function arguments / return value

x12-x17 function arguments

x18-x27 saved registers

x28-x31 temporal data

Table 2.1: RV32I and RV32E general purpose registers and conven-
tional usage.

ti�ed by the Opcode as an Integer Computational Immediate-to-Register instruc-
tion and the funct3 �eld speci�es that is an addition. The operands are taken
from the Imm �eld (12-bit) and the register rs1, and the result is stored in the
register rd.

Figure 2.2: RISC-V base instruction formats.

2.1.2 Advanced Peripheral Bus protocol

APB is an communication protocol designed by ARM as part of its AMBA spec-
i�cation. It is a memory mapped protocol designed to perform read and write
operations from a master or requester (commonly an APB bridge) to control reg-
isters of peripheral modules known as completers [14]. The APB bus speci�cation
de�nes an interface with a total of 17 signals. However not all of them are needed
to implement a basic bus communication, Table 2.2 describes the simpli�ed APB
interface used in this project and Figure 2.3 represents its operating states.
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Figure 2.3: APB interface state diagram [14].

Signal Width Description

PCLK 1 bit Clock signal. All signals are sam-
pled with the rising edge of the
clock.

PRESETn 1 bit Active-low reset signal.

PADDR Up to 32 bits Byte address. The width de-
pends on the number bytes that
can be accessed through the bus.

PSEL 1 bit The requester generates one
PSEL for each completer. If
high, the completer needs to at-
tend the request.

PWRITE 1 bit If set to low, indicates read ac-
cess otherwise write access.

PENABLE 1 bit Indicates the second and subse-
quent cycles of the transfer.

PWDATA/PRDATA 32 bits Data bus.

PREADY 1 bit Indicates that the completer can
attend a request.

Table 2.2: Simpli�ed version of the APB interface [14].

A typical transaction would happen as follows. Initially, the bus is in the Idle
state, awaiting a transaction to be initiated by the requester through the assertion
of the PSEL signal relevant to the target completer. This action prompts the bus
to transition into the Setup state. Subsequently, in the Setup state, the requester
triggers the PENABLE signal, causing the interface to enter the Access state,
where it awaits the PREADY signal from the completer. Upon receipt of the
asserted PREADY signal, data transfer occurs, after which the interface returns
to the Setup state. However, if all the data has already been transferred, the
interface transitions back to the Setup state.
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2.2 Candidate Platforms

As mentioned in Section 1.2, two platforms have been evaluated to implement
a baseline system and avoid working with Acconeer's propietary designs. The
platforms that have been considered are the Parallel Ultra Low Power (PULP)
Platform and Chipyard[17]. Additionally, within the PULP platform two di�erent
SoCs, Pulpino[15] and Pulpissimo[16] were considered for this thesis work.

The PULP platform is an open source project carried out by ETH Zürich and
Universita di Bologna, to achieve scalable hardware and software research for low
power applications that range from the �eld of Internet of Things (IoT) to HPC[18].
On the other hand, Chipyard is a framework that facilitates the design and eval-
uation of comprehensive system hardware using agile methodologies[17]. Among
these two, we opted for the PULP platform since it uses a more extended hardware
design language, SystemVerilog. Within the PULP platform, both Pulpino and
Pulpissimo are targeted for low power and edge computing applications. In this
case, the selected SoC is Pulpissimo because Pulpino dates from 2016 and it was
harder to �nd support and documentation for it.

2.2.1 Pulpissimo

As it was previously mentioned, Pulpissimo is a SoC targeted to low power IoT
applications. It supports the RISC-V cores, CV32E40P (formerly RI5CY) and
Ibex (formerly ZERO RI5Y and MICRO RI5Y) [16]. As seen in Figure 2.4, the
Pulpissimo SoC has two main interconnects: the Tightly Coupled Data Memory
(TCDM) and the Peripheral interconnect (APB bus). Typically, the TCDM inter-
connect is used for heavier data transactions, while the peripheral interconnect is
meant for con�guration purposes. Pulpissimo has a DMA module for transferring
data to/from the IO interfaces and a module (HWPE) to attach Hardware acceler-
ators. Moreover, the TCDM interconnect enables simultaneous memory accesses
from di�erent masters (core, DMA, and HWPE) to separate memory modules,
achieving e�cient data processing [16].

Pulpissimo utilizes a master/slave architecture (Figure 2.4). The masters in
the SoC include the DMA module, the AXI port used for connecting multiple
Pulpissimo SoCs, the Hardware Processing Element (HWPE) module used for
hardware acceleration, the core, and the JTAG port. In contrast, the peripherals
and memory devices within Pulpissimo work as slaves.

Following this architecture, the TCDM acts as the primary bus of the system,
providing low-latency access to the slaves. It consists of two channels: the request
channel, which allows a master to write or read data from a slave, and the response
channel, which retrieves data from the slave if necessary. The signals comprising
the interface of the TCDM bus, are described in Table 2.3.

To manage access arbitration between masters, the bus implements three in-

12 12 Prior work



Figure 2.4: PULPissimo SoC.

Signal Width Channel Description

Required 1 bit Request Set high to request new
data

Address 32 bits Request System address to be ac-
cessed

Wen 1 bit Request High for write operations,
otherwise read

Wdata 32/64 bits Request Data sent by the master

Be wdata_width/8 bits Request Byte enable

Granted 1 bit Request Indicates if the master
has access to address sent

Rdata 32/64 bits Response Data retrieved from the
slave

Rvalid 1 bit Response Data retrieved is valid

Table 2.3: TCDM interface.

terconnects: the interleaved interconnect, which provides access to the interleaved
memory space, the contiguous interconnect, which allows access to the remaining
addresses and the AXI interconnect which connects the TCDM bus with the pe-
ripheral interconnect. The AXI interconnect also implements a port called AXI
plug meant to connect the SoC with other Pulpissimo SoCs for multicore appli-
cations. The internal structure of the interleaved and contiguous is depicted in
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Figure 2.5. Each interconnect has a request network per slave that employs a
Round Robin algorithm to arbitrate accesses among the active masters. Addition-
ally, each master has a corresponding response network that routes back the data
sent by the slave. The interconnect latency is �xed and con�gurable, set to 1 clock
cycle in this project [19].

Figure 2.5: Full crossbar interconnect [19].

Masters in Pulpissimo can be classi�ed based on the addresses they can access,
the address space can be seen in Appendix A, Table A.1. Full masters, such
as the core, DMA, AXI port, and JTAG, have access to both the contiguous
and interleaved interconnects. On the other hand, interleaved masters (HWPE)
only have access to the interleaved interconnect. The reason for this is to have
a dedicated memory for hardware acceleration which would be the interleaved
memory.

Also shown in Figure 2.4, a peripheral APB bus is used to access the con�gu-
ration registers of the di�erent modules. This bus is connected to the contiguous
interconnect through AXI and APB bridges[18].

2.2.2 Pulpissimo: RISC-V cores

Two cores can be implemented in Pulpissimo: the CV32E40P and the Ibex Core.
The CV32E40P (formerly RI5CY) is RISC-V core targeted for Near-Threshold
operation in scalable IoT applications. As shown in Figure 2.6, it is composed by
a 4-stage pipeline (IF, ID, EX and WB/MEM) and it supports the RV32I ISA
and RV32FMC extensions. It implements as well microarchitectural modi�cations
and custom instructions to enhance its performance in tightly coupled multi-core
clusters and Digital Signal Processing (DSP) applications [20][21].

On the other hand, the Ibex Core is a smaller core targeted for arithmetic and
control tasks in IoT applications. It is a 2-stage (IF, ID/EX/MEM/WB) RISC-V
processor with support for the RV32I (formerly ZERO-RI5CY) or RV32E (formerly
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Figure 2.6: CV32E40P RISC-V core (extracted from [21]).

MICRO-RI5CY) ISAs and the extension RV32MC. Additional functionalities can
be enabled to reduce area or increase performance. However, in this thesis work
we have only considered the default core con�guration. This implements a one
entry instruction bu�er, no branch predictor, a slow multi-cycle multiplier and a
write back mechanism in the second stage.

This project has been carried out with the Ibex core because it targets control
and arithmetic tasks [22] [23]. Figure 2.7 depicts the default con�guration of the
Ibex core.

Figure 2.7: Ibex default con�guration.

The modules implemented in this con�guration are the following:

� Program Counter. The PC holds the memory address of the next in-
struction that is being read from memory.

� Bu�er. 2-entry instruction bu�er. It allows the core to continue with the
execution even if the bus is stalled.
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� Compress decoder. Decoder for RISC-V compressed instructions (RV32C).

� Controller. It controls the overall executions, it is responsible for: the
startup of the core, performing address jump, exceptions, debugging and,
system sleep and wake up.

� Decoder. Regular decoder of the CPU targeting RV32IM instructions.

� Register �le. 32 Genearal Purpose (GP) registers used to store most
recently used data.

� Control and Status Registers (CSRs). Set of registers used to monitor
and modify the state of the CPU.

� Arithmetic Logic Unit (ALU). Module used for arithmetic operations.

� Write Back (WB). The WB stores the data retrieved from memory or
the result of the arithmetic operations in the GP registers.

� Load Store Unit (LSU). The LSU interfaces data memory to perform
load and store operations.

2.2.3 Pulpissimo: ASIC �ow

Pulpissimo design �ow is mainly centered around Mentor QuestaSim which is used
to compile and simulate the SoC. The simulation consists of C programs that are
compiled together with the SDK and the boot code into a binary �le, which is
later �ashed into the instruction memory. To verify the correct execution of the
test, the testbench produces a core.log �le that contains the executed instructions,
their execution time in terms of clock cycles and nanoseconds, and the contents of
the registers and memory addresses accessed.

Pulpissimo provides the bender tool used for version control together with git.
Bender is able to generate �lelist for a range of tools such as genus which eases
the integration of the synthesis �ow [18].
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Chapter3
Proposed Architectures

3.1 A0: Baseline system

3.1.1 A0: Baseline hardware

The main aim of the baseline design is to set a reference system able to produce
and store microcode in memory, to later retrieve it and push it to an output in-
terface following a programmable sequence.

Figure 3.1: Baseline system architecture.

Figure 3.1 shows how Pulpissimo SoC architecture was modi�ed to perform
this task. First, the IO interfaces were removed to reduce synthesis time except
UART and SPI interfaces that remained for debug and �ash purposes. The FLL
module was also removed since PnR and tape-out are out of the scope of this thesis.
Second, the contiguous interconnect was left to see the impact in throughput of
sharing a data memory. Third, the HWPE was replaced with a module called
Acconeer Wrapper to retrieve control words from memory and push them to the
radar interface. For simplicity, in this project we will assume that this interface is
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composed by the following �ve signals:

� cmd:. 32-bit microcode word.

� dec_cmd: 48-bit word, output of the decompression module.

� cmd_valid: 1-bit signal that validates the pushed data.

� cmd_req: 1-bit signal used by the radar to request more data.

A more in-depth description of the Acconeer wrapper can be seen in Fig-
ure 3.2 showing the principal connections. The wrapper is attached to the SoC
through two interfaces: a TCDM full master interface to retrieve the microcode
from memory and an APB interface to con�gure the module. The con�guration
of the Acconeer wrap is hold in the APB registers module, which also multiplexes
APB write operations to the FIFO bu�er and decompression module. Table 3.1
shows the module con�guration addresses. A 4-entry FIFO bu�er called chunk
FIFO is implemented to store the starting addresses of the microcode chunks in
memory. This FIFO is loaded through the APB bus and provides the addresses
to the DMA module.

Figure 3.2: Acconeer wrap.
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Module From Address To Address Description

Acconeer wrapp
control

0x1A10C000 - Bit 0: starts
DMA.

FIFO state 0x1A10C00C -
Bit 0: FIFO full
Bit 1: FIFO
empty

Decompression
module

0x1A10C100 0x1A10C3FC Used to expand
the content of the
control word.

FIFO input 0x1A10C400 - FIFO input

Table 3.1: Acconneer wrap memory map.

The DMA state machine and its interfaces are depicted in Figures 3.4 and 3.3.
By default the output signals remain low and the registers maintain their state.
Two internal counters are implemented to keep the track of the number of words
fetched in the burst and the address to request the microcode word. The �rst one
is increased by one while the second one is increased by four since the microcode
words are 32-bit long.

Figure 3.3: DMA ASM chart.
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Figure 3.4: DMA interfaces.

Once enabled, the DMA fetches microcode from memory in bursts of eight
words. It starts in an Idle state and remains there until the module is enable, the
FIFO bu�er is not empty, and microcode is required from the output interface.
The control words are fetched and pushed through three states: Init burst, In burst
and Finish burst. In Init burst, the �rst word of the burst is requested. However no
microcode word is pushed since there is one clock cycle delay to read from mem-
ory. In the state In burst microcode words are fetched and pushed until either a
c_end �eld is detected high or eight memory read operations are performed. In
the �rst case, a complete chunk has been pushed, therefore, if more commands are
required and the Chunk FIFO is not empty, the process starts over from the state
Init burst. Otherwise the DMA returns to Idle state. In the second case, the DMA
transits to Finish burst where it receives the last word requested from memory,
and restarts a new burst if required or requests a new chunk if the c_end is high.

3.1.2 A0: Baseline software

As mentioned in Section 1, a sweep is managed thanks to a sequence of microcode
chunks that are pushed from the control system to the radar modules. In our
baseline system, to perform a sweep, a total of eight di�erent chunks are pre-
computed. Two to set-up the radar, four to perform the measurements, and two
to store the data. Figure 3.5 illustrates the sequence of chunks that are fetched
and pushed by the DMA in both use cases (linear and exponential sweeps). The
chunks corresponding to the measurements of points are repeated according to the
hwaas parameter which, in the linear sweep is hwaas = 3 and in the exponential
sweep follows the equation 3.1 where i stands for the point index within the sweep.
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hwaas =

 3 if i < 3
i4 if 3 ≤ i ≤ 8
84 if i = 9

(3.1)

The chunks C1, C2, C7 and C8 are composed by twelve control words each, while
the chunks C3, C4, C5, and C6 contain thirty six words each. This results in a
total of 192 control words stored in memory for both use cases, which translates to
28836 and 927036 pushed words in the linear and exponential sweeps respectively.
To reload the bu�er with new chunk addresses, the CPU remains in a pooling
loop reading the state of the FIFO bu�er and pushing new addresses if there is
room. Additionally, the periodic interruption used to evaluate the system in stress
conditions has been con�gured with 100, 10 and 1 microsecond (us) in the case of
the exponential sweep. The interruption has to increment and multiply a volatile
variable which forces the core to read it from memory each time is accessed. See
appendix B for more information.

Figure 3.5: Chunk sequence used to perform a sweep.

3.1.3 A0: ASIC �ow

To check the correct performance of the di�erent architectures, a virtual module
has been implemented in the testbench. This module is directly connected to the
output interface of the control system. It stores the control words pushed by the
Acconeer wrap in a CSV �le and is later compared with a reference. If both match,
throughput is measured, and synthesis and power analysis are performed.

Throughput is measured by storing three constants in the internal registers
of the CPU at the start and end of the program, and when the microcode starts
to be pushed. These constants can be identi�ed in the simulation output �les, as
well as the time in number clock cycles when the constants were stored. These are
used as time stamps.

Synthesis is performed with Genus using the �lelist produced by bender as
input, together with Acconeer's technology �les. The instruction and data memo-
ries are replaced with two 32-bit single-port memory IPs of 8 Kilobytes (KB) each.
The whole process is done for a main clock of 125 Megahertz (MHz) and a JTAG
clock of 10 MHz. Lastly, the results of the synthesis are taken into account only
if the timing information is correct.
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Power Artist analyzes the power consumption from bender's �lelist, Acconeer's
technology �les (physical model of logic cells), and a simulation database gener-
ated with Mentor QuestaSim. First, Power Artist elaborates the design with logic
cells. Second, it computes the switching activity within the design from the sim-
ulation database. Lastly, the average power consumption between the start and
end timestamps is computed from the switching activity and the information in
the technology �les.

3.2 A1: Dedicated memory for commands

In a real-life scenario, the processor is likely to access memory simultaneously with
the DMA, forcing this last module to stall. This situation often occurs in designs
involving hardware acceleration for data-intensive applications like arti�cial in-
telligence. A common solution to this problem is to utilize a dedicated memory
module exclusively for a hardware accelerator.

Initially, Pulpissimo had the interleaved interconnect and memory bank for
this purpose, and all masters were connected to it. This resulted in a larger area.

In this architecture, a new memory IP is used to store the microcode and is
attached to the interleaved interconnect, which is implemented with three mas-
ters, the CPU, the DMA and the JTAG port. The purpose of this experiment
is to explore how the throughput improves when there is no arbitration between
the DMA and the CPU. Additionally, it aims to analyze how the implementation
of an additional 8 KB memory IP and a interconnect a�ects the area and power
consumption. Figure 3.6 illustrates the architecture A1.

Figure 3.6: A1 system architecture.
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Software remained the same as for the baseline architecture, with the exception
of the instantiation of the chunks in memory. While for the baseline, they were
a simple array stored in the contiguous memory, for A1 architecture, the linker
script had to be modi�ed to include the new memory. This one is addressed from
0x1C04000 to 0x1C06000.

3.3 A2: Processor customization - Pushing commands from

immediate �eld

Architectures A0 and A1 perform APB read operations to load new chunk ad-
dresses into Acconeer's wrapper FIFO. This approach provides higher modularity
and independence between modules. However, in a nutshell, this approach implies
two memory accesses per microcode word: one to store the command in memory
and one to read it with the DMA, which may result in higher power consump-
tion. Moreover, there are three di�erent buses between the CPU and the FIFO:
the TCDM, AXI, and APB, which result in four and three clock cycle latencies
between successive write or read operations, respectively. An approach to address
these two issues is pushing the microcode directly from the core. This would reduce
the number of memory accesses per pushed word and avoid the latency introduced
by the buses.

A2 architecture, as shown in Figure 3.7, does not instantiate the DMA nor
the chunk FIFO, but it still implements the decompression module. Since, now
the only master accessing the memory is the CPU, no arbitration is needed and,
therefore, the interleaved memory and interconnect may be removed as well.

Figure 3.7: A2 and A3 system architectures.

There are two ways to address the task of pushing microcode from the CPU:
computing the control words or chunks on-the-�y or encoding them in the instruc-

Proposed Architectures 23 23



tions. Initially, the �rst approach seems promising as it would signi�cantly reduce
memory usage. However, it would introduce a periodic delay each time a command
or chunk is computed. The length of this delay depends on the operations needed
for the computation and the General Purpose (GP) registers available in the CPU.
On the other hand, the second approach involves computing the commands during
compile time. Despite the fact that this would result in higher memory usage (each
command consumes four bytes), it also avoids the periodic delay. Additionally, the
CPU performs fewer operations, leading to lower power consumption. Considering
these factors, the A2 architecture focuses solely on exploring the second approach.

3.3.1 A2: Processor microarchitecture and ISA modi�cations

RV32I ISA was modi�ed with four new instructions to push the commands directly
from the immediate �eld. Since all the commands are pushed through the same
interface, no destination address is required and the last 25-bit of the instruction
(7 to 31) can be used to encode the command.

The new instructions are ppA, pcA to encode A microcode words with opcodes
0xb and 0x5b respectively, and, ppB and pcB to encode B words with opcodes
0x2b and 0x7b respectively. The new formats for the instructions are displayed in
Figure 3.8, ppX format (ppA and ppB) targets chunks C2, C3, C4, C5, C6 and
C7 while pcX (pcA and pcB) targets C1 and C8.

Figure 3.8: A2 instruction formats

The modi�cations done in the microarchitecture to support the new four in-
structions are shown in Figure 3.9. First, the decoder of the Ibex's ID stage is
modi�ed to recognize ppX and pcX instructions formats and extract the immedi-
ate. Additionally, it only validates the executed instruction if the fetch was correct.
This avoids pushing erroneous commands when the pipeline needs to be �ushed
due to a jump or exception. A microcode decoder called CMD mux is added in
the second stage to extract the microcode word from the 25-bit immediate and
convert it into the microcode word. Lastly, the PC module is modi�ed to stop
the execution if a ppX or pcX instruction are decoded until a new control word is
required (cmd_req = high).
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Figure 3.9: Ibex microarchitecture modi�cations for A2 system.

3.3.2 A2: Assembler support and software

One of the advantages of this architecture is that the computation of the microcode
is done at compile time saving latency and power. However, this would require
compiler support whose customization is out of the scope of this thesis work.
Instead, the assembler was modi�ed as done previously in [24] to support the new
instructions. The process followed to add new instructions is described more deeply
in Appendix C.1. Each microcode segment was then encoded with a function
using an inline-assembly block containing the relevant ppX or pcX instructions.
Subsequently, the chunks were incorporated by invoking functions in the sequence
illustrated in Figure 3.5.

3.4 A3: Processor customization - Hardware accelerated chunk

sequence

The main aim of architecture A3 is to speed up the execution of the sequence fol-
lowed to push the chunks. In architecture A2, the Ibex executes jump instructions
in two clock cycles, one to decode the instruction and another to �ush the prefetch
bu�er [23]. Since each chunk is encoded in a di�erent function, four extra clock
cycles are needed for each chunk. Two to jump from the main function to the
chunk function and two to jump back to the main. Moreover, if the compiler does
not unroll the for loops, the delay increases because the core has to check the loop
condition, calculate the jump address, and update the loop variable.

Architecture A3 explores the usage of a for loop accelerator to speed up the
execution of the sequence. The target type of execution sequence to be accelerated
is shown in Figure 3.10. It is composed of an outer for loop (number of points)
which iterates over a series of inner loops, all of which have a known number of
iterations that correspond to the hwaas parameter.

Proposed Architectures 25 25



Figure 3.10: Target accelerated sequence in A3 architecture.

The implemented module as well as its ASMD diagram are shown in Figure
3.11.

(a) Chunk sequence accelerator module.

(b) Chunk sequence accelerator ASMD chart.

Figure 3.11: Chunk sequence accelerator.
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The new of the registers of the for loop accelerator goes as follows:

� Register 16 to 21: Addressed Shift Register (ASR), a shift register whose
positions can be accessed based on an address. The lower half (bits 15 to 0)
of each register stores the lower 16 bits of the chunk address composing the
sequence. Their upper half (bits 31 to 16) stores the number of times the
chunk should be iterated (inner iterations).

� Register 21 to 28: Unused.

� Register 29: Shift Ring Counters (SRCs), counter which is incremented
by shifting left 1 position and decremented by shifting right. The bits of
SRC A and B reference register 16 to 20. SRC A is used to track the last
function of the sequence while SRC B points the last register loaded.

� Register 30: It keeps a copy of register 16 which is only updated each time
the address contained by register 16 is changed.

� Register 31: It contains the upper half of the address of the functions
composing the sequence in bits 31 to 16 while in bits bits 15 to 0 the number
of times to iterate over the whole sequence (outer iterations).

To save area, the upper 16 GP registers of the CPU were reused for this
architecture but maintaining and prioritizing the regular data interface of the
registers. This was managed compiling the Ibex hardware with 32 GP registers
and compiling software with the RV32E extension instead of RV32I. This forces
the compiler to use only the lower 16 registers of the CPU. These GP registers are
implemented in the register �le module of the CPU. Figure 3.12 shows in red the
changes needed to integrate the accelerator in the CPU. The for loop accelerator
is implemented in the register �le module and its output connected to the PC
module. Additionally, the changes done in architecture A2 were kept to be able
to decode the commands.

Figure 3.12: Ibex microarchitecture modi�cations in architecture
A3.
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The control of the registers is managed through the 16-bit counters stored in
register 16 and 31, the input signals, and the value of the SRCs. The module
operates in the following way.

First, the CPU loads the respective addresses and iterations into the corre-
sponding registers 16 to 20, and 31. This is done with an addi instruction which
has been modi�ed to trigger the load signal if it targets any of the ASR registers.
This load signal, increases (shifts left) the SRCs by one position. Register 30 is
automatically loaded with a copy of register 16. The next address to jump to, is
composed by concatenating the upper and lower halves of register 31 and 16, re-
spectively. The module remains in Idle state until a �rst value is loaded, otherwise
no jump can be performed with this module.

Each time a jump signal is received, counter of register 16 is decremented if it
is not 0, otherwise the contents of the ASR are shifted and SRC A is decremented
(shift right). If the number of outer iterations is not 0, the shift consist of a circular
shift among the values of register 16 to 21. This is done by loading the value of
register 30 in the register pointed by SRC B. The execution has conclude when the
values of both counters, inner and outer iterations are 0, and when the SRC B is 1.

To trigger the jump signal, a variation of jalr instruction, the fjr instruction,
is added with same opcode and funct3 0x7 (format I, see Figure 2.2). The fjr
serves as a speci�c jump instruction for for loops. It triggers the jump signal of
the sequence accelerator, saves the current PC in a GP register, and sets the PC
module to select the output of the accelerator as the next instruction address.
Additionally, ppA, pcA, ppB and pcB instructions were modi�ed to perform the
same operation as the fjr instruction if the chunk_end �eld is high, but without
saving the PC. At the end of the execution, when the last chunk_end is received,
the module is already empty, therefore that jump instruction is bypassed and the
next JALR instruction retrieves the PC stored with fjr at the beginning of the loop.

3.5 A4: Processor customization - Parallel pipeline

Architecture A2 and A3 focuses on improving the throughput while reducing area
and power. However, they don't consider the case where the CPU has to execute
multiple tasks at the same time, apart from decoding and pushing microcode. Ar-
chitecture A4 proposes a parallel pipeline called command pipeline which focus on
delivering the microcode while the main CPU is available to perform other tasks.

3.5.1 A4: ISA

The main pipeline implements the RV32E ISA with C and M extensions as the
previous architectures, while the command pipeline implements the following in-
structions previously introduced in A2 and A3:
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� ppA, ppB, pcA and pcB: To decode and push the commands, with A3
modi�cation that uses c_end �eld to jump to a new chunk address.

� fjr: To operate the chunk sequence accelerator of architecture A3 and store
the return address in register 28.

� jalr: It is used to jump back to the address stored by fjr instruction.

� w�: It forces the Command pipeline to return to Idle state.

Apart from the already mentioned, two new instructions were added to control the
command pipeline, start_p and synch_p with opcode 0x1b and funt3 �eld 0x0
and 0x1 respectively. Both of them are I-format, however, while start_p is only
implemented in the main pipeline, both implement synch_p. The �rst instruction
enables the operation of the command pipeline while the second one is used to
synchronize the execution between pipelines.

3.5.2 A4: Architecture

At system level, the architecture is modi�ed added the interleaved interconnect
and a dedicated memory as in architecture A1. However this time, the dedicated
memory is used as instruction memory for the command pipeline. This way we
avoid arbitration between the two pipelines of the processor since they are fetching
instructions from di�erent memories.

Regarding the microarchitecture of the CPU, the modi�cations with respect
to the baseline Ibex core are marked in red in Figure 3.13. The command pipeline
is composed by two stages IF and ID, and it operates the CMD mux, and for
loop accelerator. However, The regular data interface of the accelerator is still
connected to the main pipeline. This allows loading data into the accelerator with
immediate-to-register instructions as it was done in architecture A3.

To addapt the for loop accelerator to the new architecture, the following reg-
isters were given a new purpose:

� Register 27 stores the return address from the loop.

� Register 28 stores the start address of the program run by the command
pipeline.

To register the state of the command pipeline, a 2-bit CSR with address
0x800 was added, bit 0 indicates if its executing code, while bit 1 stall its exe-
cution. Lastly, the module Lock is implemented to coordinate the execution of
both pipelines.

The IF stage acts as a TCDM master fetching instructions from the address
provided by the PC. It stalls the execution of the command pipeline if no access
was granted to the bus or if a ppx or pcx instruction was fetched but no microcode
instructions were required.

The PC module is a simple mux controlled by the controller in the ID stage.
It selects the next instruction address to fetch, the multiple options are:
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Figure 3.13: Ibex microarchitecture modi�cations in architecture
A4.

� PC: Execution stalled.

� PC+4: Next instruction address.

� Register 16/27: Jump address, it can be the chunk address provided by
the chunk sequence accelerator (GP register 16) or the start address of the
command pipeline (GP register 27).

� Register 28: For loop return address.

The ID stage is composed by the controller and the decoder. As in the main
pipeline, the decoder extracts the immediate �eld of the instruction and generates
the corresponding control signals to operate the chunk sequence accelerator, the
lock, the CMD mux and the controller.

Controller

An ASM diagram describing the controller is shown in Figure 3.14, the input and
outputs of the module are described in table 3.2. For better clarity, the diagram
shows the selected address of the PC in the IF stage in each state.
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Figure 3.14: ASM diagram of the command pipeline controller.

Port name Type Description

start Input Starts the execution of the command pipeline.
It is connected to the decoder of the main
pipeline and it is only asserted if a st_p instruc-
tion is decoded

stall Input Stall the execution of the command pipeline. It
is connected to bit-1 of CSR 0x801

w� Input Forces the command pipeline to idle state. It
is connected to the decoder of the command
pipeline and it is only asserted if a w� instruc-
tion is decoded

jmp Input Connected to the decoder of the command
pipeline. It is asserted if a jump is performed.
This happens when the instructions jalr or fjr

are executed, or if the chunk_end �eld of a ppX

or pcX is high

pipe_idle Output Connected to bit 0 of CSR 0x800. It also dis-
ables TCDM logic from fetching new instruc-
tions

dmp_instr Output invalidates the decoded instruction of the com-
mand pipeline

id_stall Output It disables TCDM logic from fetching new in-
structions

PC_sel Output Two bit signal which controls the PC module of
the IF stage

Table 3.2: Command pipeline controller ports.

The controller consists of a moore state machine with 6 states: Idle, Dump-s1,
Dump-s2, Auto, Jump and Stall:
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� Idle : The idle state is the initial state of the Controller. This sets the
PC multiplexer to select the initial instruction address (GP register 27). In
this state, the output of the decoder is invalidated since no instruction has
been fetched yet. Once the start signal is trigger the controller transists to
Dump-s1.

� Dump-s1, Dump-s2 : These states are used to model the delay to read
from memory. Since no bu�er is implemented in the IF stage, it takes two
clock cycles to fetch the �rst instruction at system start or after each jump.
After Dump-s2, the controller transists to the Auto state.

� Auto : In the Auto stage the instructions are fetched successively. If a w�
instruction is decoded or the main pipeline triggers the start signal again, the
controller restart the execution from the Idle state. If the command pipeline
is stalled or a jump signal is decoded the controller transits to the Stall or
Jump state respectively. Otherwise, it remains in Auto state fetching the
next instruction address.

� Stall : In the Stall state, the controller remains fetching the same instruction
until the stall input is de-asserted, then it transists to the Auto state.

� Jump : The jump state sets the PC to the output of the sequence acceler-
ator and then transits to Dump-s1 to invalidate the next two instructions.

Synchronization module

A deeper overview of the Synchronization module can be seen in Figure 3.15. This
module is used to coordinate the execution of both pipelines with the instruction
synch_p. A description can be seen in Table 3.3.
The module is composed by 4 logic circuits: the command and main pipeline

locks, the reset circuitry and the machine mode �ag.

The command and main pipeline locks are two analogous registers that are set
to 1 when a synch_p instruction is decoded in the corresponding pipeline stalling
its execution. They are reset once both pipelines have executed a synch_p in-
struction with the same id thanks to the reset circuitry.
Lastly, the machine mode �ag, bypass the Main Pipeline Lock while the CPU is
in machine mode. This allows the core to attend interruptions even if a synch_p
instruction was previously issued from the main pipeline.
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Figure 3.15: Synchronization module of architecture A4.

Port name Type Description

CMD_pipe_lock Output It is connected to the controller of the
Command pipeline. If asserted, the con-
troller stops its execution.

Main_pipe_lock Output It is connected to the controller of the
Main pipeline. If asserted, the controller
stops its execution.

CMD_lock_issued Input It is connected to the decoder of the
Command pipeline. Triggered when a
synch_p instruction is decoded.

Main_lock_issued Input It is connected to the decoder of the Main
pipeline. Triggered when a synch_p in-
struction is decoded.

CMD_lock_id Input 5-bit Id �eld encoded in the rd �eld of
the synch_p instruction.

Main_lock_id Input 5-bit Id �eld encoded in the rd �eld of
the synch_p instruction.

Pending_irq Input It indicates if a interruption is going to
be attended.

Irq_done Input It is triggered when the execution returns
from M mode. This is when eret instruc-
tion is executed.

Table 3.3: Command pipeline Synchronization module ports.
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Chapter4

Results and Discussion.

4.1 Performance

The performance has been evaluated in terms of throughput. This is known as
the number of microcode instructions pushed per clock cycle (cmd/clk). It was
evaluated in the sweep use case with variable hwaas across four di�erent scenarios
varying the interruption period. The interruption periods were set at 1, 10, and 100
microseconds, while one scenario had no interruptions. The test involved a total of
927,036 micro-code words and resulted in a con�dence interval of 0.00342 cmd/clk.
Table 4.1 shows the results normalized with respect to the throughput obtained
for the baseline in the scenario without interruption. The absolute throughput
values are shown in Table C.2, in the Annex C.3. Figure 4.1 also shows a compar-
ison of the throughput obtained for each architecture across the di�erent scenarios.
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Figure 4.1: Comparison of the throughput obtained with the di�er-
ent architectures.
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Architecture
Interruption period (us)
None 100 10 1

A0 1.00 1.00 0.98 0.66

A1 1.00 1.00 1.00 1.00

A2 0.93 0.92 0.87 0.30

A3 1.10 1.10 1.03 0.37

A4 1.08 1.08 1.08 1.08

Table 4.1: Throughput variation of each architecture with respect to
the baseline performance in the scenario without interruptions.

The baseline system establishes a reference throughput of 0.874 cmd/clk for the
use case without interruptions. Under an interruption period of 100 microseconds,
the system functions correctly. However, as the interruption period decreases to 10
microseconds, the throughput begins to decrease. It experiences a signi�cant drop
of approximately 34% when the interruption period is reduced to 1 microsecond.
This decline occurs due to the arbitration process in the contiguous interconnect.
Both the CPU and the DMA access the memory simultaneously, leading to the
DMA having to pause the micro-code �ow when the CPU accesses the memory
causing the reduction in throughput.

On the other hand, Architecture A1 addresses this problem by using separate
memories for the CPU and the DMA. As shown in Figure 4.1, Architecture A1
maintains a consistent �ow of micro-code words regardless of the interruption pe-
riods. However, it's important to note that in both Architecture A0 and A1, if the
interruptions become more frequent or longer in duration, the system could reach
a point where the chunk FIFO runs out of available addresses, causing a stall in
the DMA operation.

In architecture A2, the results indicate that directly pushing the micro-code
from the immediate �eld of the instruction is not a better solution. The through-
put is lower than the baseline system in all scenarios. Although, the CPU in this
architecture doesn't share memory bandwidth, the micro-code �ow stalls when
handling interruptions. This results in a larger decrease in throughput compared
to architectures A0 and A1, especially with a one microsecond interruption period.

The Chunk Sequence Accelerator from architecture A3 outperforms other ar-
chitectures in scenarios without interruptions and with interruptions occurring
every 100 microseconds. However, like Architecture A1, the throughput decreases
for shorter interruption periods due to the CPU's limited processing capacity,
which can only handle one instruction per clock cycle at most.

Lastly, the parallel pipeline implemented in architecture A4 achieves a slightly
lower throughput compared to architecture A3 in the �rst two scenarios. This is
because while architecture A3 can execute jump instructions in two clock cycles,
architecture A4 requires an additional clock cycle. However, in scenarios where
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the system is under greater stress, architecture A4 is capable of sustaining the
micro-code �ow at the same throughput as in the ideal scenario.

4.2 Area

Synthesis was performed using two methods: one with module grouping (global
optimization) allowed and another without it. Allowing module grouping leads to
better optimization results, resulting in a smaller area. However, this approach
makes the analysis more di�cult due to module merging. All the results were
obtained using a mainstream process node from Global Foundries under standard
conditions.

4.2.1 Synthesis without global optimization

Table 4.2 shows the results obtained for each module with synthesis �ow that
avoids module merging. The values have been normalized with respect to the
modules of the baseline, the absolute values can be found in Table C.3 in An-
nex C.3. Additionally, Table 4.3 highlights the 50 critical paths with the shortest
slack. Analyzing the critical paths can help understand where Genus had to allo-
cate more logic or optimize further to meet timing requirements. The groups in
Table 4.2 correspond to the modules shown in Figure 4.2. Architectures A1 and
A4 have the largest area due to additional memory IP usage for storing micro-code
or instructions. Among the two, Architecture A4 is the largest due to extra core
logic (parallel pipeline, chunk sequence accelerator, Lock) resulting in a 10% area
increase with respect to the baseline. On the other hand, Architectures A2 and
A3 achieve the smallest areas as they utilize one less memory module.

In architecture A0, the Interconnect takes up the most space. Adding a new
master to the contiguous and AXI interconnects reduces the slack in the intercon-
nect's logic paths, requiring Genus to optimize the module's area for timing. As
shown in Table 4.2, 29 out of the 50 paths with the lowest slack in Architecture
A0 involve the AXI interconnect. Similarly, the Acconeer Wrapper is larger in
A0 than in A1, even though it is the same module. This is because connecting
the DMA to the contiguous and AXI interconnects makes the Acconeer Wrapper
critical, resulting in a larger area for this module. In the other architectures, the
Acconeer Wrapper consists only of the decompression module and is directly con-
nected to the CPU, explaining its smaller size compared to architectures A0 and
A1.
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Figure 4.2: Groups used for synthesis without global optimization.

Architecture
Area (um)

Core Memory Interconnect UDMA Peripherals Wrapper Total

A0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A1 0.99 1.18 0.95 0.99 1.00 0.88 1.08

A2 1.00 1.00 0.95 1.06 1.00 0.80 0.99

A3 1.06 1.00 0.95 1.06 1.00 0.77 1.00

A4 1.08 1.18 0.94 0.99 1.00 0.77 1.09

Table 4.2: Area per module normalized with respect to area of each
module of the baseline.

Besides the memory IPs, the module which consumes the most area is the
core. Comparing the area consumption of this module in architecture A0 and A4,
reveals that the CPU customization with the parallel pipeline is more costly than
implementing the DMA and FIFO bu�er of the Acconeer Wrapper.
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Architecture
Critical Path

N
Start Point End Point

A0

Ibex.IF_stage TCDM.Axi_interconnect 3
TCDM.Axi_interconnect Ibex.LSU 6
TCDM.Axi_interconnect Ibex.Register_�le 19
TCDM.Axi_interconnect Peripherals.Timer 1
Ibex.IF_stage Acconeer_Wrapper.dma 1
UDMA UDMA 20

A1
Ibex.IF_stage Memory.Data_mem 32
TCDM.Axi_interconnect Ibex.IF_stage 17
TCDM.Axi_interconnect Ibex.CSR 1

A2
TCDM.Axi_interconnect Ibex.IF_stage 3
Ibex.IF_stage Memory.Instr_mem 17
Ibex.IF_stage Ibex.CSR 2
Ibex.IF_stage Ibex.IF_stage 28

A3
Ibex.IF_stage Memory.Instr_mem 32
TCDM.Axi_interconnect Ibex.LSU 18

A4

TCDM.Axi_interconnect Ibex.IF_stage 1
UDMA UDMA 19
Ibex.IF_stage Ibex.CSR 27
TCDM.Axi_interconnect Ibex.Register_�le 3

Table 4.3: Main critical paths for each architecture.

4.2.2 Synthesis with global optimization

The results obtained from synthesis, allowing global optimization, are presented
in Table 4.4 and Figure 4.3. The results of Table 4.4 are normalized with respect
to results obtained for the baseline, the absolute values can be found in Table C.4
in Annex C.3. As it can be seen, Architecture A4 has the largest area, followed
by A1 due to the additional memory. Across all architectures, more than half
of the total area is occupied by memory IPs, while approximately 20% to 23%
is attributed to sequential logic, and 15% to 18% is allocated for combinational
logic. Lastly, inverters, bu�ers, and clock gates account for approximately 1% to
2% of the total area. As it happened for the previous synthesis �ow, the total area
variations are contained within a range of the 10% compared with the baseline.
This means that, although the �nal area is smaller due to module merging, there
are no signi�cant changes in the critical paths across the di�erent modules.
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Figure 4.3: Comparison of the area obtained with the di�erent ar-
chitectures.

Architecture
Area (um)

IPs Sequential Logic Other Total

A0 1.00 1.00 1.00 1.00 1.00

A1 1.18 0.98 0.95 0.97 1.09

A2 1.00 0.98 0.99 1.00 0.99

A3 1.00 0.98 1.01 1.02 0.99

A4 1.18 0.98 1.00 0.98 1.10

Table 4.4: Area obtained after synthesis with global optimization.

4.3 Energy consumption

Power consumption has been measured at gate level also with a mainstream pro-
cess node from Global Foundries in standard conditions. The switching activity
to compute the power consumption has been obtained from the linear sweep test
with 100 points. Table 4.5 and Figure 4.4 show the energy consumed by each
architecture to produce and push the microcode.

As shown, the baseline and the architecture A1 are the ones with the highest
energy consumption followed by architecture A4, while architectures A2 and A3
consume the least. In architectures A0, A1 and A4, the modules with the highest
energy consumption are the memories due to the constant accesses performed by
the DMA or command pipeline and the Ibex. On the other hand, in architectures
A2 and A3, the memories consume less power since it is the Ibex the only module
performing memory accesses.

The core module is the second highest energy-consuming module across all
architectures. Its consumption is higher in architectures A0 and A1 due to pre-
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Architecture
Energy (nJ)

Core Memory Interconnect UDMA Peripherals Wrapper Total

A0 413.586 497.491 415.456 8.261 136.789 191.538 1663.122

A1 419.333 496.200 387.575 8.273 137.145 190.798 1639.326

A2 300.913 255.201 334.977 17.819 120.713 162.951 1192.576

A3 278.006 232.405 307 16.305 110.353 162.534 1106.604

A4 382.679 562.235 328.281 16.76 114.015478 162.656 1566.628

Table 4.5: Energy consumed in a linear sweep
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Figure 4.4: Comparison of the energy consumed in each architec-
ture.

computing and storing commands in memory, as well as constant APB reads to
monitor the state of the FIFO bu�er in the Acconeer Wrapper. In contrast, the
core in architectures A2 and A3 consumes less power as it stalls until more micro-
code words can be pushed. Furthermore, despite not performing APB reads, the
implementation of a parallel pipeline (architecture A4) that continuously fetches,
decodes, and pushes data results in a signi�cant increase compared to architec-
tures A2 and A3.

Similarly, the power consumption of the interconnect in architectures A0 and
A1 is higher compared to the other architectures. This is due to both the CPU
and DMA performing memory accesses simultaneously. In contrast, architectures
A2 and A3 involve only the CPU accessing the memory, resulting in lower energy
consumption. In architecture A4, although both pipelines access the memory, the
main pipeline remains idle until the second pipeline completes the decoding and
pushing of micro-code. This idle state contributes to lower power consumption
compared to architectures A0 and A1.

Lastly, the consumption of the Acconeer Wrapper is higher in architectures A0
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and A1 since it reads and pushes microcode from memory while in architectures
A2, A3 and A4, it is only used for decompression.

4.4 General comparison

In the previous sections the Throughput, Area and Power consumption results
were introduced and discussed separately for the di�erent architectures. This
sections shows a general overview of all the results for each architecture. Figure
4.5 compares the Throughput, Area and Energy consumption for architectures A0
to A4. Each axis represent a di�erent parameter and is normalized between 0 and
1, where 0 means the worst and 1 the best. Throughput results are presented for
interruption periods of 100us 10us 1us and inf while area results are shown with
and without memory IPs using global optimization.

Figure 4.5: General comparison of the di�erent architectures.

As seen, architecture A3 maintains a high throughput and achieves the best
power consumption, with the second smallest area among all architectures, when
the CPU is not heavily utilized. However, in scenarios where the CPU is occupied
with other tasks, architectures A1 and A4 perform better than A3. A0 and A2
have the smallest area, but A2 has the lowest throughput overall and struggles
even more when the CPU is stressed. On the other hand, A0 shows resilience in
handling multiple tasks for the CPU, although it is still outperformed by A1 and
A4. This increased robustness of A1 and A4 to stress scenarios comes in exchange
of implementing an additional memory IP which results in an area increase of
around 10 % in comparison with the baseline. This increase may seem insigni�-
cant, but it will depend in the requirements of the �nal application.

In conclusion, architectures that incorporate speci�c modules for microcode
decoding or computation achieve a more robust throughput across di�erent stress
scenarios. This makes architectures A0, A1, and A4 suitable for SoCs targeting a
wide range of applications. Furthermore, incorporating dedicated memory IP to
mitigate memory arbitration enhances this resilience at the cost of increased power
and area consumption, with architectures A1 and A4 generally delivering the best
performance at return of higher area and power consumption. Among these two,
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the customization of the Core module in architecture A4 enables higher through-
put and lower power consumption, while architecture A1 achieves a smaller area.
Consequently, the choice between architectures A1 and A4 depends on the speci�c
requirements of the SoC in terms of throughput, area, and power consumption.
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Chapter5
Conclusions and future work.

5.1 Conclusions

Meeting timing requirements is critical radar SoC to produce meaningful mea-
surements. To achieve enhanced �exibility for a wide variety of use cases and
scenarios, The proposed reference radar SoC is operated based on a set of mi-
crocode which is precomputed and pushed to the di�erent modules that make up
the radar. Therefore, achieving a high throughput of microcode words is key to
avoid faulty outputs or system failure.

In this thesis work, a total of 5 di�erent approaches from speci�c memories to
store the microcode to CPU customizations are presented and evaluated in terms
of throughput, area and power consumption in di�erent stress scenarios. Consid-
ering throughput, using parallel modules to push the microcode is an approach
that manages the best results across scenarios with di�erent levels of stress for
the system. However, this comes in return of bigger area and higher power con-
sumption. The processor customization, results to be the best approach in terms
of throughput, as long as it can produce the microcode �ow in parallel with other
tasks. However, when the CPU becomes occupied with multiple tasks, it struggles
to sustain a continuous microcode �ow.

5.2 Future work

The results of this thesis work have uncovered new areas to explore, which means
there is a need for additional studies to expand our knowledge. In this section,
some potential future research directions are outlined.

First, it would be of interest integrating the di�erent architectures presented
in Acconeer's radar SoC and compare them with the current system. Additionally,
if any other than the current is selected for the control system of the radar, the
design will have to pass through a new veri�cation process.

Second, regarding the results, Genus and Power Artist tool provide a wider
range of options than the one used in this thesis work. A further analysis with
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these tools to throw more light into the obtained results could help to understand
the di�erence in area an power consumption between the di�erent architectures
and how to improve it.
z Lastly, the custom instruction used in this thesis work could be accommodated
to be more aligned with RISC-V design principles. Using 4 instructions to en-
code the microcode makes the ISA dependent on the the control word structure.
Instead, only one instruction could be used to push 25-bit of data from the imme-
diate �eld. Additionally, instead of adding new jump instructions for the chunk
sequence accelerator, the current ones (jal and jalr) could be modi�ed to use it,
but this would require support from the compiler to recognize for loops and load
the addresses in the accelerator.
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AppendixA
Pulpissimo memory map

This appendix describes the address distribution for the di�erent Pulpissimo mod-
ules.

Module Access Start/End addresses

AXI plug AXI bridge
0x1000000
0x1040000

Boot ROM Contiguous interconnect
0x1A000000
0x1A002000

FLL APB bus
0x1A100000
0x1A100000

GPIO APB bus
0x1A101000
0x1A102000

UDMA APB bus
0x1A102000
0x1A104000

SoC Control APB bus
0x1A104000
0x1A105000

Advanced Timer APB bus
0x1A105000
0x1A106000

Event generator APB bus
0x1A106000
0x1A109000

Interrupt Unit APB bus
0x1A109000
0x1A10B000

Timer APB bus
0x1A10B000
0x1A10C000

HWPE APB bus
0x1A10C000
0x1A10F000

Stdout APB bus
0x1A10F000
0x1A110000

Debug Unit APB bus
0x1A110000
0x1A120000

Data memory Contiguous interconnect
0x1C000000
0x1C008000

Instruction Memory Contiguous interconnect
01C008000
0x1C010000

Interleaved Memory Interleaved interconnect
0x1C010000
0x1C080000

Table A.1: Pulpissimo memory distribution [16].
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AppendixB
Interruptions

This appendix describes the interruptions used to stress di�erent architectures
evaluated. Table B.1 compares how the interruption is compiled for the di�erent
architectures and its duration in clock cycles. As it can be seen, architectures A0
and A1 perform less accesses to memory than A2, A3, and A4 resulting in shorter
interruptions (less instructions). Appart from loading the variables used in the
variables used in the interruption, the memory accesses are also used to save the
content of hte GP registers when switching from U to M mode at the beginning of
the interruption and to restore it back when returning to U mode at the end. The
amount of registers saved in memory when switching mode is calculated during
compile time and it depends in the number of GP registers available. The number
of arithmetic and jump instructions used in each architecture is constant and they
are used to calculate memory addresses and to jump and return from the memory
addresses where the interruption service is stored respectively.

Architecture Total Arithmetic Jump Memory Duration

A0 25 8 2 15 85

A1 25 8 2 15 45

A2 28 8 2 18 50

A3 28 8 2 18 49

A4 28 8 2 18 66

Table B.1: Comparison of the interruptions used to stress the dif-
ferent architectures.

The C code corresponding to the interruption is shown bellow. The variables
var_a and var_b are only used to stress the system and are not use in any other
part of the code. The macro TIMER_LO_EVT is an HEX number that points
to the bit that has to be cleared or set with the functions rt_irq_mask_clr and
rt_irq_mask_set respecitvely to attend the interrupt.

1 v o l a t i l e uint32_t var_a , var_b ;
2 void __attribute__ ( ( i n t e r r up t ) ) t imer_serv i ce ( ) {
3 rt_irq_mask_clr (TIMER_LO_EVT) ;
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4 var_a += 1 ;
5 var_a *= var_a ;
6 var_b = 0 ;
7 rt_irq_mask_set (TIMER_LO_EVT) ;
8 }
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AppendixC
ISA and CPU customization

This appendix describes the modi�cations needed to implement new instructions
in the Ibex Core with assembler support.

C.1 Assembler support

To utilize the new instructions from a C program, modi�cations are required in
the assembler of the RISC-V toolchain. These modi�cations enable the use of the
new instructions within an inline-assembly block. The process is similar to the
one described in [24]. However, in this the toolchain used in this thesis work, is
already adapted for the PULP platform, which may result in some di�erences in
the steps involved.

Figure C.1: PULP platforms's RISC-V toolchain directory structure.

Figure C.1 displays the directories of interest within the structure of the PULP
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platform RISC-V toolchain repository. The �les that need to be modi�ed to add
support for new instructions to the assembler are the following:

� riscv-opc.h Includes the opcodes of all the instructions and other macro
variables related to the codi�cation of the di�erent instruction format.

� riscv.h Includes macro functions and other utilities to encode/decode and
the instructions.

� riscv-opc.c Instantiates the instructions.

� tc-riscv.c Contains the functions to parse and validate the inline-assmebly
blocks.

To modify the toolchain, the following steps have to be followed:

First, the mask and match macros of each instruction have to be added to the
riscv-opc.h �le as macros. The mask is a macro that indicates the identi�er bits of
the instruction, while the match indicates the actual values of the identi�er. These
values are later used to identify the instruction using the following function.

1 s t a t i c i n t match_opcode ( const s t r u c t r iscv_opcode *op , insn_t
insn )

2 {
3 re turn ( ( insn ^ op=>match ) & op=>mask) == 0 ;
4 }

Secondly, the instructions need to be declared in riscv-opc.c. This �le contains
a struct called riscv_opcodes, which instantiates all the existing instructions and
ISA extensions. The �elds of the struct are described in Table C.1. To include a
new instruction, a new entry must be added to the struct.

Thirdly, if the custom instruction uses a new format, its operands have to
be added in the functions validate_riscv_insn and riscv_ip in the tc-riscv.c �le.
The �rst function is used to validate the instantiation of the instruction when the
toolchain is compiled, and the second is used to encode the inline-assembly blocks
into the binary code that is executed by the CPU.

In this thesis work, the operand "y" was added for the ppX and pcX instruc-
tion formats, referencing bits 31 to 8. Additionally, the "y" operand is also encoded
in the st_p instruction for simplicity, but its content remains unused during exe-
cution.

The following code chunk shows the instantiation of the custom instructions
used in this thesis work:

1 const s t r u c t r iscv_opcode r i scv_opcodes [ ] =
2 {
3 /* name , i sa , operands , match , mask , match_func , p in f o .

*/
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Field Description

Name Instruction abbreviation. The abbreviation used later
in the inline-assembly block.

ISA ISA or ISA extension that de�nes the instruction. It is
used during compilation of the toolchain to select the
types of instructions that the compiler will support.

Operands String de�ning the type of operand that the instruction
uses. For instance, the characters "d," "s1," and "s2"
reference the �elds "rd," "rs1," and "rs2" in Figure 2.2,
respectively.

Match Match macro variable.

Mask Mask macro variable. If the instruction does not use
all the bits, those have to be included in this here.

Match_opcode function used to validate the instruction. Usually, it is
the condition shown in the equation ??.

Table C.1: riscv_opcodes struct �elds.

4

5 {"psa" , " I " , "y" , MATCH_DASBA_SA, MASK_DASBA_RV32,
match_opcode , 0 } ,

6 {"psb" , " I " , "y" , MATCH_DASBA_SB, MASK_DASBA_RV32,
match_opcode , 0 } ,

7 {"pca" , " I " , "y" , MATCH_DASBA_CA, MASK_DASBA_RV32,
match_opcode , 0 } ,

8 {"pcb" , " I " , "y" , MATCH_DASBA_CB, MASK_DASBA_RV32,
match_opcode , 0 } ,

9 {" f j r " , " I " , "d" , MATCH_DASBA_FJ, MASK_DASBA_FJ_RV32
| MASK_RS1 | MASK_IMM, match_opcode , 0 } ,

10 {"st_p" , " I " , "y" , MATCH_DASBA_SUBPIPE_CRTL,
MASK_DASBA_RV32, match_opcode , 0 } ,

11 {"synch_p" , " I " , "d" , MATCH_DASBA_SUBPIPE_SYNC,
MASK_DASBA_SUBPIPE_SYNC | MASK_RS1 | MASK_IMM, match_opcode
, 0 } ,

12 . . .

C.2 Hardware support

Adding support for a new instruction also requires modi�cations in the CPU mi-
croarchitecture. To recognize and generate the corresponding control signals, the
decoder in the ID stage must be modi�ed to identify the new opcodes, which are
de�ned in the Ibex_pkg.sv �le.

The decoder entity is de�ned in the �le ibex_decoder.sv. It consists of two com-
binational blocks (always_comb), each with a switch statement that decodes the
identi�ers of the instructions. While both blocks can identify all types of instruc-
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tions, the second switch statement generates control signals speci�cally targeting
the EX_module. The following code describes how the new instructions were im-
plemented in the decoder:

1 l o g i c [ 6 : 0 ] opcode ;
2 a s s i gn opcode = in s t r_ i [ 6 : 0 ] ;
3 always_comb begin
4 unique case ( opcode )
5 /* de f au l t s i g n a l va lue */
6 OPCODE_PCB: begin
7 /* PCB con t r o l s i g n a l s */
8 end
9 OPCODE_PCA: begin

10 /* PCA con t r o l s i g n a l s */
11 end
12 OPCODE_PPB: begin
13 /* PPB con t r o l s i g n a l s */
14 end
15 OPCODE_PPA: begin
16 /* PPA con t r o l s i g n a l s */
17 end
18

19 . . .
20

21 OPCODE_JALR: begin
22 i f ( i n s t r_ i [ 1 4 : 1 2 ] == 3 ' b000 ) begin
23 /* JALR con t r o l s i g n a l s */
24 end e l s e i f ( i n s t r_ i [ 1 4 : 1 2 ] == 3 ' b110 ) begin
25 /* FJR con t r o l s i g n a l s */
26 end
27 end
28 . . .
29

30 OPCODE_SYSTEM: begin
31 i f ( i n s t r_ i [ 1 4 : 1 2 ] == 3 ' b000 && in s t r_ i [ 3 1 : 2 0 ] == 12 ' h105 )

begin
32 /* WFI con t r o l s i g n a l s */
33 end
34 end
35 . . .
36

37 OPCODE_SYNCH: begin
38 /* SYNCH_P con t r o l s i g n a l s */
39 end
40 OPCODE_ST_P: begin
41 /* ST_P con t r o l s i g n a l s */
42 end
43 endcase ;
44 end ;
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C.3 Absolute result values

Architecture
Interruption period (us)
None 100 10 1

A0 0.874 0.873 0.865 0.585

A1 0.876 0.876 0.876 0.876

A2 0.818 0.812 0.762 0.267

A3 0.966 0.966 0.906 0.324

A4 0.947 0.947 0.947 0.946

Table C.2: Throughput measured in the variable sweep use case.

Architecture
Area (um)

Core Memory Interconnect UDMA Peripherals Wrapper Total

A0 55002.462 160526.977 18236.592 32652.925 35879.331 9128.735 332261.473

A1 54734.013 190790.418 17338.934 32551.100 35899.583 8093.122 360248.519

A2 55142.677 160526.977 17328.595 34649.017 35967.268 7341.377 331817.182

A3 58450.152 160526.977 17330.423 34689.130 36072.077 7089.695 334981.064

A4 59725.589 190790.418 17158.551 32608.651 36001.452 7088.989 364191.271

Table C.3: Area without global optimization.

Architecture
Area (um)

IPs Sequential Logic Other Total

A0 166166.49 63960.053 49083.182 2549.098 281758.823

A1 196412.06 62747.362 46923.811 2490.062 308573.295

A2 166166.49 62940.461 48744.965 2564.386 280416.301

A3 166166.49 62772.998 49921.200 2603.900 281464.588

A4 196412.06 62877.662 49091.650 2515.230 310896.601

Table C.4: Area obtained after synthesis with global optimization.
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