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Abstract

This master thesis project presents steps on the image processing
and reconstruction of an aluminium open-cell metal foam from µCT
tomographic data. In addition, it also considers the generation of
architecture foams using Voronoi Tessellation in combination with
sphere packing algorithms. The process creates a foam skeleton which
is used together with morphological operations such as dilation and
hole closing with the purpose of obtaining a foam model. A parametric
study is performed to observe the influence of the sphere packing input
parameters on the architecture foam model. The final architecture
models are similar both visually and geometrically to the reconstructed
model. However, it is noted that a more complex image morphology
might be required. The finite element meshing of both reconstructed
and generated metal foams is also performed. By comparison it is
shown how the temperature distribution differs between the foam models
as opposed to a solid metal.
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1 Introduction
Metal foams have a wide range of applications and uses. They posses unique
properties, being e.g. lightweight, highly energy-absorbing, and insulating
materials, amongst other things [1]. However, they still remain fairly uncommon
within the world of material science. This may be partly due to their fairly
new introduction [2].

As such it would be of importance to study these materials in order
to understand their properties and structural behaviour. This would both
yield general information on foams and further extend their possible uses.
Of interest is also the ability to create architectured materials which mimic
metal foam behaviour.

In recent years the properties, characteristics, and cellular structures
of metal foams have been studied thoroughly. Extensive work has been
performed on the 3D geometry reconstruction of metal foams images obtained
from micro computerized tomography(µCT)-scans [3–8].

Using reconstructed tomographic geometries, Lautensack et al. [8] presented
a method of estimating geometric characteristics based on image processing.

Another large area of investigation is in regards to the creation of generated
foams. These are obtained using either a combination of generation algorithms
or directly with data from µCT-scans [9–11]. Such constructed models aim
to mimic the properties - both physical and geometrical - of real foams. They
are sometimes referred to as architectured foams.

These types of foam were investigated by Zhengwei et al. [9], who described
the commonly used geometrical models used for architectured foams. Of
particular interest was the construction of foams based on Laguerre-Voronoi
tessellations with respect to the method of randomly packed spheres. The
structures of metal foams modelled by Laguerre-Voronoi tessellations was
further investigated by both Wejrzanowski et al. [11] and Zhigang et al. [10].

Additional studies were provided by Bogunia et al. [5] who studied both
tomographic reconstruction techniques and geometrically complex foams based
on Laguerre-Voronoi tessellation. A different geometrical generation method
based on the expansion of seeded ellipsoids with information from µCT
images was proposed by Leblanc et al. [6].

For mechanical properties, Filice et al. [1] simulated the behaviour of
aluminium in compression tests while Motz and Rippan [12] observed the
deformation behavior of aluminium foams in tension. A summary of metal
foam mechanical properties under tensile and shear stress was published
by Kalpakoglou and Yiatros [13]. Additionally, mathematical relations for
mechanical properties were derived by Gibson and Ashby [14] while Ashby
[15] had previously presented general rules for cellular materials.
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Regarding the thermal properties of metal foams, Singh and Kasana
[16] presented information on the computational aspects of effective thermal
conductivity of highly porous metal foams. Meanwhile, Ranut [17] discussed
the existing empirical and analytical models for determining effective thermal
conductivity of aluminium metal foams.

The combined image reconstruction and thermal response of metal foams
has also been previously investigated. Amani et al. [3] studied the thermal
conductivity both experimentally and by FE analysis using metal foam geometries
obtained from X-ray tomography. In addition, Redenbech et al. [18] performed
numerical calculations on the effective thermal conductivity of virtually generated
foams obtained from Laguerre-Voronoi tessellations.

The particular combination of 3D image reconstruction, architectured
foam generation, and thermal analysis is the topic of this thesis project.
More specifically, it aims to solve the following problems:

Firstly, the reconstruction of 3D-image data obtained from tomographic
scans of an aluminium open-cell foam sample. Secondly, the creation of
architectured open-cell foam models based on foam generation algorithms.
Such algorithms should preferably be able to use information from the reconstructed
tomography data. Thirdly, using the reconstructed data and generated foam
models to create appropriate FE meshes. Lastly, a finite element thermal
analysis performed on both models as a means of comparison.

The image segmentation of tomographic data and virtual foam generation
are to be performed in Matlab, specifically with the help of its image processing
toolbox package. Subsequent thermal analysis simulations are performed in
the finite element commercial software Abaqus.

2 Metal foam classifications and properties

2.1 Characterization

Metallic foams are characterized by a number of properties such a cell layout,
morphology, porosity, and pore distribution [15].

Normally two initial distinctions are made between different types of
metallic foams: open- and closed-cell foams. Both consist of pore and
cell-like structures, with major differences being found in both appearance
and physical properties.

The closed-cell types have pores surrounded by closed walls i.e. they are
encapsulated by material. This compact arrangement often results in quite
stiff structures [13].

In contrast, the open-cell foams contain interconnected pores and their
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cell walls remain open to some extent. This instead produces rather soft, or
elastic, structures [5].

Cell walls, i.e. the foam material, consist of a material network connecting
all pores within the foam structure. Such material components are known as
either struts or ligaments. The points where multiple ligaments are linked
together are sometimes referred to as strut vertices. The position of both
struts and pores are often considered non-deterministic due to the somewhat
stochastic manufacturing processes and nature of metallic foams [4, 9].

A commonly used measure is the foam porosity, θ, given by [5]:

θ =
Vp

Vt

=
Vp

Vp + Vm

where Vp is the total pore volume and Vt total volume of a given foam sample.
The total volume can also be rewritten as the sum of the pore volume, Vp,
and material volume, Vm. On the contrary, the material volume as a ratio of
the total volume is given by the relative density, ρr [19]:

ρr = 1− ρ∗

ρs
= 1− θ

with ρ∗ and ρs as the nominal and solid density, respectively.
As a rule of thumb, closed-cell foams normally have a low porosity, θ <

0.3, while the opposite is true for open-cell foams, θ > 0.7. In reality most
metal foams consist of a combination of open- and closed-cell foams, often
resulting in the need for more complicated classifications [5, 20].

2.2 Manufacturing

The basic manufacturing processes of metal foams were summarized by Ashby
et. al [15], who originally presented the following possibilities: liquid metallurgy,
coating techniques, and powder metallurgy. However, in recent years primary
methods have shifted towards either liquid metallurgy or powder metallurgy,
with liquid metallurgy being the more popular option. This is mostly due
to the possibility of creating inexpensive materials with sufficient properties
[21].

The liquid metallurgy process involves the adding of either foaming agents
or gas particles into a furnace containing liquid metal. An example of a
foaming agent is TiH2. The combined melt is stirred to distribute both the
agent and metallic particles evenly and thereafter removed from the furnace
to allow for cooling. The resulting foam is a block containing pores positioned
randomly within the metal. The pores are situated in way such that the
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surface energy of the material is minimized [2]. The final pore sizes are
proportional to the sizes of injected particles [22].

On the other hand, powder metallurgy is the process of mixing two
powders: the desired metal and a foaming agent, normally TiH2. After
mixing, the combined powder is compressed into a solid shape which is heated
within a furnace to allow for the foaming agent to expand. Alternatively, a
solid space holder may be introduced instead of a foaming agent. In such a
case, a similar process of compression occurs, followed by the removal of the
shape holder during either heating or dissolution. Common space holders
include salts, e.g. NaCl or K2CO3, or polymeric materials [20].

As for specific materials, aluminium is the most commonly used which is
also attributed to its properties [2].

2.3 Properties & Applications

Due to their geometrical structure, metal foams posses interesting physical
and mechanical properties. As an example, open cell foams, which are
considered lightweight materials due to their high porosity, posses extremely
high strength-to-weight ratio [4].

Expanding on the characteristics of other porous materials, Gibson and
Ashby [14] linked the mechanical properties of metal foam to their structural
properties such as porosity. These relations were based on both experimental
and empirical data.

The open cell foams also have good thermal properties such as high
thermal conductivity. On the other hand, closed cell foams have worse
thermal capabilities but instead excel on the mechanical side of things, such
as stiffness and strength. Additional properties of metallic foams include, but
are not limited to, high energy-absorption, sound absorption, heat insulation
and electrical applications [2, 20, 21].

In terms of specific applications, the list can be made long and includes,
amongst others, the automotive and aerospace industry due to energy-absorption
and lightweight properties [23]. Further applications include heat exchange
devices such as heat ex-changer, radiators, etc. [20].

3 Experimental characterization of metal foams

3.1 Tomography

To properly understand and visualise material behaviour on a smaller scale
micro X-ray computed tomography(CT) is often used. It is based on the
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same working principles as as medical CT scanner but its design purpose
differs. The main goal in regards to material sciences is instead the capture
of high-resolution images of material data on a microstructural level[24]. A
simple setup of such a system is depicted in Fig. 1.

Figure 1: A simple schematic of the X-ray µCT process.

In short, the process begins by placing a material sample in the trajectory
of a X-ray beam. By interacting with the material, some of the X-rays, or
waves, are absorbed while others are transmitted. The transmitted waves are
converted into visible light with the help of a scintillator. A camera detector
is used to turn this light into a two dimensional contrast based intensity
projection of the sample. By rotating the sample, a finite number of 2D
projections are captured from different angles. A reconstruction algorithm
uses a sum of all such two dimensional projections to create a 3D image of
the sample [25].

Normally, the contrast in the 2D projection is due to different absorption
coefficients at the material microstructural level. Alternatively, a phase
contrast approach might be also considered if the absorption coefficients in
the material are similar [26]. A possible scenario would be if the sample
contains materials with equal atomic numbers since the absorption would be
the same [24].
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4 Image processing

4.1 Image segmentation and binarization

For 3D-image reconstruction, two dimensional image slices obtained from
tomography are layered on top of each other. Each slice is mapped onto
a grid-based image matrix of size equivalent to the provided image. Every
position (i, j) on the 2D-grid represents a computerized pixel with a singular
intensity value.

By stacking all slices, a 3D-image is assembled. This image consists of
matrix position indices (i, j, k) with corresponding intensity values Iijk. The
position and its associated intensity value is normally referred to a voxel in
3D-space, as opposed to a pixel in two dimensions.

A two and three dimensional grid representation are shown in Fig 2a and
Fig 2b, respectively. The intensity of each pixel or voxel is depicted as a
random color for simplicity.

(a) Pixel grid with Iij (b) Voxel grid with Iijk

Figure 2: Grid-based structure with a random colour depicting the pixel and voxel
intensities.

The resulting reconstructed 3D-image matrix becomes a grayscale image,
i.e. an image containing varying intensities. To further process the image,
binarization of the intensity data, Iijk, is required. This can be described by
the following threshold equation:

Iijk =

{
1, if Iijk > T

0, otherwise
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where T is the global threshold, or cutoff value, of image I.
The value of T can be obtained using multiple algorithms, with the global

Otsu threshold method being commonly chosen [5, 27]. This method extracts
the cutoff value as a function of the maximum variance between intensity
peaks of the image intensity histogram [28]. By employing the threshold,
a fully binarized image is obtained, comprised solely of ones (material data
points) and zeros (pores). A 2D slice of tomography data is shown in Fig.
3a and Fig 3b before and after binarization, respectively.

(a) Before binarization (b) After binarization

Figure 3: Binarization of tomography data slice.

4.2 Extracting parameters from tomographic data

4.2.1 Porosity

Expanding upon the porosity definition provided in Chapter 1, a slightly
different numerical approach is used to find a measure of the porosity from
tomography data. It can be summarized as the following:

Given a binarized 3D-image, I, calculate the relative density as the ratio
between the number of material voxels and the total number of image voxels.

That is, find the ratio of data points equal to one as compared to the sum
of all data points. A reverse calculation instead provides the porosity.

However, since the foam investigated is of cylindrical shape, the sum of
data points is taken as a cylinder rather than the box in Fig. 3b. That
is, image voxels outside this cylinder are not considered for the porosity
calculations. An identical approach is taken when extracting the number of
pores and pore radius.
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4.2.2 Number of pores and cell radius

By employing certain algorithms on the binarized image, it is also possible
to obtain information regarding the number of pores and pore sizes of the
foam. A frequently used method involves the use of level-set based image
processing techniques [5, 6, 8].

In short, this can be performed by first finding the distance transform
and its complement, of a provided binary image. The distance transform
is an intensity image based on the Euclidean distance from a nonzero pixel
or voxel. The further away from a nonzero value, the larger the value at a
given position. Consequently, the complement instead provides information
regarding the distance from pores to material, i.e. it finds distinguishable
pore centers. Such a distance transform is depicted in Fig. 4a while its
complement is shown in Fig 4b.

(a) Distance transform. (b) Complement of distance.

Figure 4: Distance and complement distance transforms of the binarized image.

Afterwards, a watershed transformation of the complement distance is
performed. This creates isolated areas based on the pore centers obtained
from the complement distance. Thus, each watershed region is the approximation
of a pore within the sample. These can also be seen as the creation of basins
with ridges along the perimeter of each region. The watershed transform is
simply the filling of each separate water basin.

Lastly, a masking of this watershed results in a labeled version of the
original binary image. Each labeled region represents a pore. To avoid
over-segmentation, the suppression of localized peaks is performed prior to
watershed transformation. The watershed and subsequent masking are shown
in Fig. 5a and Fig. 5b respectively.
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(a) Watershed transform. (b) Masked watershed transform.

Figure 5: Watershed and subsequent masking.

By extending the distance-watershed transform to the three dimensional
space, information regarding the number of pores and approximate pore sizes
can be extracted. The number of pores is determined by the unique number
of watershed regions. To extract a pore radius, each watershed region is
first approximated as a sphere. Since each region is labeled, it is possible to
find the volume of a sphere by counting the number of voxels with a specific
label. Knowing the volume, it is thereafter trivial to calculate a sphere radius.
The sum of all such sphere radii divided by the number of watershed region
determines the average pore radius. These extracted values may later be
used as input parameters in a virtual foam generation algorithms.

The implementation of such methods exist in the image processing toolbox
of Matlab as the routines bwdist and watershed. The routine imhmax performs
suppression of localized peaks.

5 Virtual generation of foam models

5.1 Classic foam models

As described by Zhengwei et al. [9], three common techniques exist for
the virtual generation of metal foams: the direct 3D-reconstruction, Kelvin
multi-cells, and Voronoi-based methods.
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5.1.1 3D-construction based methods

The 3D-reconstructed technique is identical to the method of image based
reconstruction described in Section 4.1. These models are matched with a
scanned foam sample. Therefore, any results obtained from the subsequent
reconstruction-based simulations would be unique and only valid for the
specific sample. The process of obtaining and reconstructing such samples
may also be computationally expensive [9].

5.1.2 The Kelvin cell

The Kelvin multi-cell method is the stacking of unit cells with some deterministic
shape. The shape itself was originally described by Lord Kelvin and was
based on the shape of the bubble packing patterns in foam structures [29].
Its geometrical shape, also referred to as a tetrakaidecahedron, is depicted in
Fig 6a while the stacking of such cells is shown in Fig. 6b.

(a) Kelvin unit cell (b) Kelvin multi-cell model

Figure 6: Kelvin cell and the corresponding stacking of cells.

Compared to the 3D-reconstruction technique, the stacking of Kelvin cells
allows for the generation of different foam samples. However, as presented by
Roberts & Garboczi [30], the anisotropic nature of the Kelvin cell results in
the generation of a deterministic foam structure. Since real foams by nature
exhibit the feature of randomness, it was initially deemed unable to describe
such structures [30, 31]. This was partly remedied Habisreuther et al. [32]
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by introducing randomness in the vertex positions of the multi-cell Kelvin
model.

5.1.3 Voronoi tessellation and some generalizations

The last technique commonly used for foam generation is that of Voronoi
tessellation. It is a space partitioning algorithm and is also sometimes
referred to as the Voronoi diagram. The method revolves around a given
set of points, p, to generate (Voronoi) cell structures which adhere to [33]:

V (q, pi) = {∀q ∈ Rn, dV (q, pi) < dV (q, pj), i ̸= j} (1)

where dV (q, pi) is the Euclidean distance between points pi and q:

dV (q, pi) =
√

(pi,x − qx)2 + (pi,y − qy)2 + (pi,z − qz)2

Voronoi diagrams based on other distance calculations, such as the Manhattan
distance rather than the Euclidean distance, also exist.

The set of points, p, are referred to as the generator, or seed, points with
associated Voronoi cells, V (pi). These cells fulfill Eq. 1, which states that
any point q placed within the specific polygon i is closer to point pi than,
any other generator point pj. The Voronoi diagrams with a random set of
two and three dimensional points and associated cells are depicted in Fig 7.

(a) 2D Voronoi diagram. (b) 3D Voronoi diagram.

Figure 7: Voronoi diagrams of random 2D and 3D seed points.

The Voronoi diagram algorithm presented within this section is specifically
that of equal cell growth which only considers seed location. A more general
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approach may also be used, e.g. the Laguerre-Voronoi tessellation, or power
diagrams [34]. This type of tessellation instead takes a set of circle centers
(spheres in three dimensions) as seed points, with the addition of using the
circle radii as an extra term to calculate weighted distances.

5.2 Foam generation methods

Based on the three techniques presented, Voronoi-based methods were deemed
as the most usable since they can be e.g. non-deterministic. They have also
been previously used to great extent [5, 9–11] and were thus chosen as the
foam generation method. However, additional algorithms are required to
accurately determine the position of Voronoi cells. These algorithms should
preferably take the following in account:

• Pore size and distribution from reconstructed tomographic data.

• Desired foam porosity or volume fraction.

• Sufficient packing density and distance between cell centers.

To fulfill these requirements, a method of Voronoi tessellation based on the
force-biased sphere packing algorithm is used. This algorithm has been
previously described [35, 36], with a somewhat modified version presented
in the section below.

5.2.1 The (modified) force-biased sphere packing algorithm

The modified version initially uses an identical setup as the standard force-
biased algorithm [35, 36]:

Start by placing N number of spheres within a cubic domain of length
L. Sphere centre positions, ri, are initially positioned randomly, each with a
diameter di, obtained from a chosen distribution.

The initial placement of spheres results in large overlaps between spheres
which the force-biased algorithm aims to reduce. This algorithm is an iterative
process which performs two major operations in each iteration, namely:

• Overlapping spheres are pushed apart with the help of a repulsive force.

• The diameter of all spheres is gradually shrunk with the help of a
contraction equation.

To begin the process, normally all spheres are first assigned an outer and
inner diameter, douti and dini , respectively. The outer diameter is initially
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calculated from a volume-based equation while the inner diameter is taken
as the smallest value of the distances between non-overlapping spheres.

For the modified version of this algorithm, only a single diameter, dsc, is
used to determine the interacting forces and change of contraction equation.

For all intents and purposes the scaling diameter, dsc, is initially equal to
the outer diameter used in the standard algorithm:

dsc ≡ dout =

6L3Vnom

π
N∑
i=1

d3i


1/3

(2)

where Vnom is an volumetric input parameter determining the ratio between
the sum of spherical volumes and the total volume of the cubic domain. To
check for overlap a specific distance is used:

||ri − rj||current < ri + rj

i.e., when the current distance between two points is less than the sum
of corresponding sphere radii, overlap exists. The repulsive force between
overlapping spheres is calculated from:

Fij =

{
pijfρ

rj−ri
||rj−ri|| , if ||ri − rj||current < ri + rj

0, otherwise
(3)

with a force scaling factor, fρ, and potential function, pij:

pij = dsc
i d

sc
j

(
||ri − rj||2
1
4
(dsc

i + dsc
j )

− 1

)

The sum of total repulsive forces acting on a specific sphere is used to update
the spherical center position according to:

ri := ri +
1

2dsci

j ̸=i∑
Fij

which also takes into account that larger spheres should move slower as
compared to smaller spheres when affected by equal forces.

Lastly, the contraction equation is updated in each iterative step as:

dsc := dsc −
(
1

2

)δ
dsc
o

2τ
(4)
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where δ is the integer part of −log10 (Vnom − Vact), doutst is the start value of
dsco as per Eq. 2, and τ is the scaling diameter contraction rate. Here the
actual volume, Vact, is calculated as the ratio between the current sum of all
spherical volumes and the volumetric domain. For the two dimensional case,
the geometrical equivalent are disks.

The entire process of sphere pushing and diameter contraction is repeated
until no overlap between spheres exists. After the algorithm converges, an
additional step of removing spheres located outside of the original domain is
performed. A 2D example based on a logarithmic-normal spherical diameter
distribution are shown in Fig. 8a and 8b, before and after packing respectively.

5.2.2 The Voronoi tessellation of a sphere packing

Prior to determining the Voronoi tessellation of a provided sphere packing, an
extra step is required to prevent the distortion and elongation of corresponding
Voronoi cells. This is due to the cells at the boundaries of the original image
otherwise stretching towards infinity. To remedy this effect, the system is
made semi-infinite by repeating the all spheres periodically along the 26
possible combinations of x-,y-, and z-directions. In two dimensions, this
instead corresponds to 8 repetitions along the x- and y-directions as depicted
in Fig. 8c. As an example, the green colored disk originally positioned in the
lower right corner of Fig. 8b has been mirrored in all directions. The final
result is no longer a packing of spheres but solves the problem of distorted
Voronoi cells.

The resulting periodic Voronoi diagram thus consists of 27 (9 in 2D) times
the number of initial spheres obtained from the sphere packing algorithm.
It can be visualized using the convex closure, or hull, of each corresponding
Voronoi cell, shown in Fig. 8d. Additionally, for the three dimensional
Voronoi Tessellation the Matlab routine Mergecoplanarfaces from geom3d
[37] is used. The algorithm merges and re-orders any Voronoi vertices and
positions which are co-planar within their respective cell.

5.2.3 Generating foam skeleton and image morphology

From Voronoi vertices and their connectivity, a skeleton of the foam material
can be constructed. This is achieved by defining discretized vectors between
all vertices within each convex hull. The vectors are mapped onto a 3D
grid-based image, hereafter known as the foam skeleton, repeating the process
for all Voronoi cells and associated vertices. This yields an image consisting
of the Voronoi diagram copied onto an image. A two dimensional example is
depicted in Fig. 8e.
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Subsequently, morphological operations are performed on the obtained
foam skeleton. These morphological operations correspond to the routines
imdilate and imclose from the image processing toolbox in Matlab. These
may also be referred to as filtering routines.

The imdilate routine takes an image and a structuring element as an input
parameter, applying the element onto each voxel of an image. For the purpose
of imitating tomography data, the structuring element chosen is a sphere of
voxel radius r. This results in a system of cylindrical tubes, or struts, after
the application of imdilate. Such a process may also be interpreted as a
thickening of the provided image, as depicted in Fig. 8f.

To further mimic the properties of real foam materials, an additional
image is created which considers the fact that foam vertices should be larger
in size than foam struts. Therefore, dilation is performed solely on the vertex
positions using a larger structuring element as compared to the foam skeleton.
This "vertex" image is thereafter added to the already dilated foam skeleton
yielding a combined image as seen in Fig. 8g.

Lastly, the imclose routine performs morphological closing of holes within
an image. Similarly to the imdilate routine, it takes an image as well as a
structuring element as input which are used to effectively close holes smaller
(in voxel size) than the provided element. The closing process is applied to
the combined dilated image of struts and vertices. This yields the final foam
model depicted in Fig. 8h. An additional step of making a cylindrical cut of
the final foam is performed to mimic the reconstructed foam shape, shown
in Fig. 8i.
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(a) A random placement of
overlapping spheres.

(b) Non-overlapping spheres
after packing.

(c) Introduction of periodicity
for non-overlapping spheres.

(d) Voronoi tessellation. (e) Foam skeleton. (f) Foam with thickened struts.

(g) Foam with thickened struts
and vertices.

(h) Final foam model with
closed holes.

(i) Cylindrical cut of final foam
model.

Figure 8: The full 2D Voronoi-based method based on a sphere packing. A random
placement of spheres becomes non-overlapping, periodic and are used to create a Voronoi
tessellation. The tessellation is converted to an image which is subject to image
morphology. Lastly, a cylindrical cut of the model is made to mimic the reconstructed
foam shape.
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6 Mesh discretization

6.1 Meshing parameters and extraction

If the goal is to perform a FE-analysis on either the reconstructed or architecture
foam model, appropriate finite element meshes are required. These can be
generated using some mesh processing software. For the purpose of this
thesis, iso2mesh [38] is chosen. It is an open source extension to Matlab
which has the options to process, smoothen, clean, and create meshes from
a provided image.

The meshing process is completed using the CGAL [39] option in iso2mesh
which utilizes a weighted Delaunay triangulation to create either triangular
(in 2D) or tetrahedral meshes (in 3D). CGAL takes the following input
parameters: facet angle, facet size, facet distance, cell radius edge ratio, and
cell size. In short, the three first parameters determine the minimum angle,
size, and boundary approximation of surface mesh elements. The latter two
are instead criteria regarding the shape and size of tetrahedral elements.

The obtained mesh can be exported from Matlab using the iso2mesh
routine saveabaqus, which creates an .inp file containing mesh node positions
and element connectivity. The resulting .inp file is imported into the finite
element software Abaqus to perform thermal simulations.

6.2 Delaunay triangulation

(a) Voronoi diagram.
(b) Delaunay triangulation(- -) of the
Voronoi diagram.

Figure 9: Voronoi, and Delaunay, triangulation of 10 randomly positioned seed points.
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As previously mentioned, a method for creating tetrahedral meshes involves
the use of Delaunay triangulation. It is a process in which a given number of
points P are connected via optimal triangulation [33]. The triangulation is
closely related to the Voronoi diagram. The Delaunay triangulation is in fact
the dual of the Voronoi diagram. In short, this means that the vertices of the
Voronoi tessellation are the seed points of the Delaunay Triangulation and
vice versa. The triangulation can therefore be constructed by connecting the
points of all neighboring Voronoi cells. This creates triangular faces in two
dimensions and tetrahedral cells in three dimensions, respectively. A Voronoi
diagram and its associated Delaunay triangulation are shown in Fig. 9a and
Fig. 9b, respectively.
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7 Flowcharts of algorithms
Fig 10 shows the flowchart as a summary of the reconstruction and parameter
extraction of tomography data samples. Similarly, Fig. 11 depicts the
flowchart process used for the generation of architectural foam models.

Step 1: Segmentation of image slices

Step 2: Otsu threshold binarization

Step 3a: Distance transform and complement Step 3b: Mesh foam

Step 4a: Watershed transform Step 4b: FE analysis

Step 5a: Image masking

Step 6a: Extract geometric parameters

Step 7a: Input for architectured foam models

Figure 10: Flowchart of tomography data - reconstruction and parameter extraction.
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Step 1: Provide input parameters for sphere packing

Step 2: Choose sphere diameter distribution

Step 3: Run modified force-biased algorithm

Step 4: Introduce spherical periodicity

Step 5: Compute Voronoi tessellation

Step 6: Extract foam skeleton

Step 7: Morphological operations

Step 8: Mesh foam model

Step 9: FE analysis

Figure 11: Flowchart of architectural foam generation model.
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8 Results and discussion

8.1 Reconstructed tomography data

Using the method outlined in Section 4.1, a three dimensional reconstruction
of the tomographic foam data is assembled. The size of the tomography data
is 1232×1340×1079 voxels. Additionally, each voxel in the sample is 6 µm.
This corresponds to a volume of size 0.74×0.65×0.8 cm3.

Furthermore, to reduce computational time required, the image size is
reduced by half and a quarter, respectively. This is also due to the utilized
computer lacking sufficient virtual memory to perform operations on the full
1232×1340×1079 image.

The resulting images are of size 616×670×540 and 308×335×270. The
corresponding reconstructions are shown in Fig 12a and Fig 12b. These
reconstructions will also be referred to as the larger(616×670×540) and
smaller(308×335×270) image further on.

(a) Reconstruction of size 616×670×540. (b) Reconstruction of size 308×335×270.

Figure 12: 3D-reconstruction of tomography data using different image sizes.
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Table 1: Parameters obtained from image processing of tomography data.

Image size Intensity cut-off Porosity Pores Pore radius
1232×1340×1079 17780 91.7 % - -

616×670×540 17642 91.7 % 65 71.6941
308×335×270 17758 91.74 % 46 42.2611

Table 1 presents parameters for different image sizes. Intensity cut-off and
porosity are found with the Otsu binarization and porosity method presented
in Section 4.1. Meanwhile, the number of pores and pore radii are extracted
using the distance-watershed transform described in Sections 4.2.1 and 4.2.2.
Again, since the foam investigated is of cylindrical shape, the sum of data
points is taken as a cylinder rather than a box. That is, image voxels outside
this cylinder are not considered for the porosity calculations. An identical
approach is taken when extracting the number of pores and pore radius.

The extracted pore radii for all samples are in the units of voxels. It was
not possible to extract the pore and pore radius for the full image due to a
lack of virtual memory.

Based solely on the obtained intensity cut-off and porosity, it would
be probably be sufficient to use extracted values from the image of size
308×335×270. The difference is about 0.5 % while the intensity threshold
is actually closer to full image as compared to the larger image. However,
when comparing the pore number and pore radii, it becomes clear that further
differences exist between reconstructed samples.

By considering that the larger image is twice the size of the smaller image
in each of the x-, y-, and z-directions, the extracted radius should be twice
as large for the 616×670×540 image. That is, a pore of radius R in Fig. 12b
would have a radius of 2R in Fig. 12a This does not seem to be the case
with the radius ratio instead being 71.6841/42.2611 ≈ 1.5. A similar ratio is
obtained for the number of pores.

One possible explanation might be that since only a quarter of the initial
data is considered for the smaller image, separate pores become connected
when performing the distance-watershed transform. For the larger image
they would instead have been distinguished as separate pores.
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(a) For size 616×670×540. (b) For size 308×335×270.

Figure 13: Pore radial distribution histograms of reconstructed foam samples.

The pore radius obtained from the distance-watershed transform is actually
a radial distribution. The average of this distribution is presented in Table
1. Corresponding pore radial distributions are plotted and shown in Fig. 13
for both the larger and smaller reconstructed foam sample.

By visually examining the plots, it would seem that the distribution is
either of a Gaussian or similar shape. This is similar to previous research [5,
8] which specifically used either a Gaussian or log-normal distribution as the
spherical diameter distribution. The small intensity peak located far away
on the x-axis likely corresponds to the volume outside the cylindrical foam
and should therefore not be considered.
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8.2 Architectured foam samples

Architectured foams based on a Voronoi tessellation in combination with a
force-biased sphere packing of size 300x300x300 are generated. The obtained
foam skeleton is subjected to image morphology, resulting in a final foam
model.

Different samples are created by varying the input parameters of the
sphere packing algorithm. These parameters are the spherical diameter
distribution, number of spheres, sphere radii, volumetric input parameter,
force scaling factor, and contraction rate presented in Section 5.2.1.

The spherical diameter distributions are chosen based on diameter distributions
obtained from the reconstructed foams and previous research. Taking into
account the reconstructed data distributions, the log-normal and Gaussian
distributions are therefore mainly investigated.

For each distribution, the effect of varying the number of spheres and
resulting spherical radii is studied. The impact of the remaining parameters,
Vnom, fp, and τ on the resulting foam is also considered for a single distribution.
Corresponding porosity, number of pores, and pore radii are extracted with
the same algorithms used for the tomographic data, i.e. with binarization
and distance-watershed transforms.

Unless otherwise state the default values used for the sphere packing
algorithm are: fp = 0.3, τ = 4 × 106, and Vnom = 1. For all distributions,
five different number of spheres are considered: 40, 80, 120, 160, and 200.

8.2.1 Log-normal distribution

For the log-normal distribution, the mean and variance are chosen as one and
two, respectively. This is in agreement with values outlined in the original
force-biased algorithm [35, 36]. The resulting foam porosity and average pore
radius as a function of the number of spheres are shown in Table 2.

Table 2: Parameters of architectured log-normal distribution.

Spheres Porosity Average pore radii Pores
40 93.79 % 48.1563 35
80 90.95 % 44.0088 53
120 88.17 % 39.9206 76
160 86.69 % 38.8299 71
200 84.91 % 37.2607 74

Based on the values obtained from the log-normal distributions, it is evident
that a larger number of spheres results in a lower foam porosity, i.e. a higher
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relative density. Since each sphere added to the algorithm corresponds to the
addition of an extra Voronoi cell to the final foam model, this should come
as no surprise.

On the other hand, the average pore radius decreases as the number
of spheres increase. Considering that the volume of the domain remains
constant, the volume of each pore must decrease to accommodate an increasing
number of them. If the volume of each pore decreases, so does its radius since
they are directly correlated.

The architectured log-normal foam sample are depicted in Fig. 14 - 16,
with an increasing number of spheres. The corresponding figure to each
such sample is also provided in Table 2. In addition, the reconstructed foam
sample is shown in Fig. 16b for visual comparison.

From examining the results, it seems a larger number of spheres are
required to achieve similar porosity as the reconstructed foam. A similar
observation is made regarding the pore radius. This could be partly due
to the randomness in the model, partly due to the previously mentioned
problems regarding the watershed transform.

Additionally, from both a visual and numerical comparison such as porosity,
it seems the optimal number of spheres is around 80 to achieve similar results
in terms of e.g. porosity. In order to match both porosity and pore radius,
additional rigorous testing of distribution values is required.

(a) 40 spheres. (b) 80 spheres.

Figure 14: Architectured foams based using a log-normal spherical diameter distribution
with number of spheres equal to 40 and 80, respectively.
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(a) 120 spheres. (b) 160 spheres.

Figure 15: Architectured foams based using a log-normal spherical diameter distribution
with number of spheres equal to 120 and 160, respectively.

(a) 200 spheres. (b) Reconstructed foam.

Figure 16: Architectured foam based using a log-normal spherical diameter distribution
with number of spheres equal to 200. Shown is also the reconstructed foam, 16b.
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The impact of changing the remaining parameters is also investigated, i.e.
Vnom, fp, and τ . That is the, volumetric input parameter, force scaling factor,
and contraction rate of the sphere packing algorithm presented in Section
5.2.1. Table 3 presents the changes in porosity and pore radius obtained by
varying the volumetric parameter, force scale factor, and contraction rate.
The values in the top row of the table is obtained by using default parameters.

Table 3: The impact of sphere packing parameters, volumetric input, force scaling factor,
and contraction rate.

Spheres Vnom fp τ Porosity Pore radius
80 1.0 0.3 4× 106 90.95 % 44.0088
80 0.2 0.3 4× 106 90.39 % 45.7342
80 0.4 0.3 4× 106 90.71 % 43.9160
80 0.6 0.3 4× 106 91.52 % 48.0462
80 0.8 0.3 4× 106 90.66 % 43.0423
80 1.0 0.2 4× 106 90.83 % 43.4997
80 1.0 0.4 4× 106 90.79 % 44.4649
80 1.0 0.6 4× 106 90.90 % 43.4015
80 1.0 0.8 4× 106 90.51 % 45.5218
80 1.0 1.0 4× 106 91.21 % 42.8701
80 1.0 0.3 4× 103 90.71 % 45.0904
80 1.0 0.3 4× 104 90.93 % 45.6304
80 1.0 0.3 4× 105 91.56 % 47.0716
80 1.0 0.3 4× 107 90.56 % 44.1762

By comparison, it seems these parameters only affect the porosity and pore
radius slightly, if at all. The largest differences between values obtained from
using default parameters are approximately 9 % for the pore radius and 7 %
for the porosity. They are due to a change in volumetric parameter, from 1 to
0.6, and contraction rate, from 4× 106 to 4× 105, respectively. Additionally,
no direct correlation can be seen between changes in porosity and radius by
either increasing or decreasing parameter values. As an example, changing
the value of Vnom from 0.2 to 0.4 decreases the pore radius. However,
increasing it one additional step suddenly increases the radius. A similar
response is observed for the other parameters. The small differences might
be accredited to the fact that the spheres are initially positioned randomly
in the packing algorithm. As such, no two simulations will be identical
when providing the same input parameters. Together with the fact that the
differences are small to begin with, it was deemed unnecessary to evaluate
these three parameters for additional distributions.
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8.2.2 Gaussian distribution

The Gaussian, or normal, distribution is also considered. Mean and variance
values are five and two, respectively. Extracted parameters are presented in
Table 4. In addition, similar to the log-normal distribution, foams generated
from a different number of spheres are shown in Fig. 17-19. The reconstructed
sample is once again used for visual comparison, depicted in Fig 19b.

Table 4: Extracted parameters of Gaussian distribution foam.

Spheres Porosity Average pore radius Pores
40 94.62 % 53.2501 36
80 91.69 % 45.3129 57
120 89.93 % 42.4004 63
160 87.16 % 38.7808 80
200 85.55 % 35.5741 91

(a) 40 spheres. (b) 80 spheres.

Figure 17: Architectured foams based using a Gaussian spherical diameter distribution
with number of spheres equal to 40 and 80, respectively.
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(a) 120 spheres. (b) 160 spheres.

Figure 18: Architectured foams based using a Gaussian spherical diameter distribution
with number of spheres equal to 40 and 80, respectively.

(a) 200 spheres. (b) Reconstructed foam.

Figure 19: Architectured foam based using a Gaussian spherical diameter distribution
with number of spheres equal to 200. Shown is also the reconstructed foam, 19b.
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A similar trend as for the log-normal distribution is observed. That is,
an increase in the number of spheres results in lower porosity, i.e. a higher
relative density, but a decrease of pore radius. The reason may be partly
the same as for the other distribution. However, while the trend remains the
same, the values do not. Specifically, both the porosity and pore radii are
on average lower for an equal number of spheres. This could be partly due
to the mean and variance values chosen and partly due to the properties of
each distribution.

8.2.3 Additional distributions

In addition to the log-normal and Gaussian distributions, two additional
diameter distributions are considered. These are the two-point (with diameter
ratio of 1:10) and uniform (with values between 1 and 10) distributions. For
every distribution the porosity and corresponding pore size are plotted and
shown in Fig. 20a and Fig. 20b, respectively.

(a) Porosity-sphere plot. (b) Pore radius-sphere plot.

Figure 20: Porosity and pore radius as a function of the number of spheres.

From both plots, an approximately linear relation between parameters
can be seen. Additionally, the differences between each distribution are quite
small for both the porosity and pore radii. These could be explained by the
fact that there always exists randomness in the structure due to the random
initial positions of spheres. This means that performing the simulations again
with identical parameters will yield different results. These new values may
very well be close, or even equal to, the values obtained from any other
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distributions. Therefore, it may be actually enough to consider only a single
distribution with either the log-normal or Gaussian distribution being the
most likely candidate. This is partly due to these distributions previously
being used in Voronoi tessellations of random sphere packings [5, 9, 18].

8.3 Finite element mesh generation

A few different combinations of mesh parameters are considered as inputs for
the meshing software iso2mesh. The main goal is to reduce the number of
elements while trying to maintain a good description of the original model.
By varying each parameter twice, a total of 11 different meshes are obtained.
The top row of values corresponds to a mesh created using the default values
in iso2mesh. No value exists for the cell size in the algorithm but a value of 10
is chosen. The number of elements presented is of tetrahedral. Table 5 and
Table 6 display data obtained by using the larger and smaller reconstructed
foam models, respectively.

Table 5: Table of mesh parameters for the large reconstructed image. Angle is in degrees
while sizes are in units of pixels for facets and voxels for cells.

Angle Facet size Distance Edge ratio Cell size Elements
30 6 0.5 3 10 978 892
10 6 0.5 3 10 543 913
20 6 0.5 3 10 574 808
30 2 0.5 3 10 1 417 796
30 10 0.5 3 10 992 161
30 6 1.0 3 10 222 349
30 6 1.5 3 10 143 174
30 6 0.5 6 10 938 060
30 6 0.5 9 10 939 327
30 6 0.5 3 50 976 422
30 6 0.5 3 100 976 487
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Table 6: Table of mesh parameters for the small reconstructed image. Angle is in degrees
while sizes are in units of pixels for facets and voxels for cells.

Angle Facet size Distance Edge ratio Cell size Elements
30 6 0.5 3 10 242 235
10 6 0.5 3 10 150 865
20 6 0.5 3 10 157 709
30 2 0.5 3 10 315 391
30 10 0.5 3 10 245 532
30 6 1.0 3 10 71 672
30 6 1.5 3 10 37 785
30 6 0.5 6 10 241 910
30 6 0.5 9 10 241 899
30 6 0.5 3 50 242 135
30 6 0.5 3 100 242 111

The tetrahedral mesh of the larger reconstructed image created using
default parameters is shown in Fig. 21a. Fig. 21b instead depicts the
coarsest mesh obtained from Table 5. That is, using the following values:
facet angle = 30, facet size = 6, facet distance = 1.5, cell edge ratio = 3, and
cell size = 10.

(a) Default mesh. (b) Coarsest mesh.

Figure 21: Default and coarse mesh for the 616×640×540 reconstructed foam of Table 5.

Mesh data for the two architectured foams based on log-normal and
Gaussian distributions are presented in Table 7 and Table 8, respectively.
Corresponding meshes can be found in the Appendix.
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Table 7: Table of mesh parameters for the log-normal distribution foam. Angle is in
degrees while sizes are in units of pixels for facets and voxels for cells.

Angle Facet size Distance Edge ratio Cell size Elements
30 6 0.5 3 10 215 042
10 6 0.5 3 10 153 761
20 6 0.5 3 10 153 165
30 2 0.5 3 10 294 137
30 10 0.5 3 10 214 454
30 6 1.0 3 10 59 309
30 6 1.5 3 10 33 027
30 6 0.5 6 10 221 150
30 6 0.5 9 10 221 153
30 6 0.5 3 50 215 033
30 6 0.5 3 100 214 976

Table 8: Table of mesh parameters for the Gaussian distribution foam. Angle is in degrees
while sizes are in units of pixels for facets and voxels for cells.

Angle Facet size Distance Edge ratio Cell size Elements
30 6 0.5 3 10 208 721
10 6 0.5 3 10 146 289
20 6 0.5 3 10 148 712
30 2 0.5 3 10 283 103
30 10 0.5 3 10 207 302
30 6 1.0 3 10 57 673
30 6 1.5 3 10 31 947
30 6 0.5 6 10 214 976
30 6 0.5 9 10 215 039
30 6 0.5 3 50 208 751
30 6 0.5 3 100 208 709

The role of each mesh parameter has been briefly described in Section 6,
with additional information available in the CGAL Documentation [39]. The
effect of changing each parameter will be shortly discussed as well as their
impact on the number of elements and geometrical properties.

By changing the facet angle, to 10 instead of the default 30, a dramatic
decrease in element number is achieved. A similar response is seen for a value
of 20, with both values resulting in about a 40-45 % decrease.

Even though decreasing the facet angle reduces the number of elements, it
may also have other consequences. The reason is that this value determines
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the minimum angle of a surface element. Therefore, a lower angle would
result in surface elements becoming more elongated and more prone to distortion.

For the facet size, the resulting mesh numbers are quite intuitive. By
decreasing the size of each surface element, more elements are required to
properly mesh the foam. The opposite response is achieved by increasing the
facet size, at least to a certain degree. Depending on the size of the geometry
used, increasing the facet size will not result in less elements.

Varying the facet distance has an extremely large impact on the number
of mesh elements, even more so than changing the facet angle. By simply
increasing it from the default value of 0.5 to 1.5, the number of mesh elements
is reduced by approximately 77 %. However, the price to be paid is that the
constructed mesh surface is a poor description of the original foam surface.

This could mean that, e.g. small nooks and crannies which may be of
importance to the microstructural response, will not considered. Even parts
of larger structures will be ignored by increasing the facet distance even
further.

As for the cell edge ratio, a slight change in the number of elements is
obtained by increasing this value. Similar to the facet angle, this parameter
determines the shape of elements, but for 3D rather than 2D. Also, a similar
effect is achieved by increasing this value as for the facet angle: the creation
of elongated tetrahedral elements.

Lastly, the cell size plays a very similar role as the facet size. That is,
as the cell size decreases, additional volume elements are required to mesh
the same model. Thus, the number of elements increases. The opposite is
achieved by increasing the cell size.

Similar relations between mesh parameters and the resulting number of
mesh elements can be found for all models used.

From the simulations performed, the largest difference in the number of
mesh elements was obtained by varying the facet distance. Similar decreases
in number of elements are obtained for all models. Based on all simulations
the quickest way to reduce the number of mesh elements is to increase the
facet distance with the price of possibly removing important parts of the
structure. By trial and error, it would probably be possible to find a value
with a good balance between element reduction and surface approximation.

The other alternative is to reduce the facet angle but create poorly defined
elements.

8.4 Thermal analysis

For the purpose of showing that it is possible to successfully go from the
reconstructed or architectured foam to a final FE simulation, a thermal
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analysis of a few samples are performed. Simulation setup is fairly simple:
The top of sample is assigned a constant temperature of T = 500K while the
bottom is kept at room temperature (T = 300K). Furthermore, the problem
is solved assuming non-transient, i.e. steady-state, conditions. Simulations
are performed using the coarsest mesh for each image in Tables 6 - 8.

(a) Smaller image. (b) Solid cylinder.

Figure 22: Temperature distribution of the smaller image and a solid cylinder.

(a) Log-normal foam model. (b) Gaussian foam model.

Figure 23: Temperature distribution of log-normal and Gaussian foam models.

The temperature distribution for a reconstructed foam sample and a solid
cylinder are shown in Fig. 22a and Fig. 22b, respectively. Additionally, Fig.
23a and Fig. 23b depict the same distribution for the log-normal and Gauss
architectured models.

35



9 Conclusions and future work
As the concluding remarks of this thesis project, the reconstruction and foam
generation models have been successful. The chosen generation method of
Voronoi tessellation produces foam models with similar porosity and pore
radius as the reconstructed foam model. However, more work is required
on the subsequent image morphology. A simple process of thickening struts
and vertices of the foam skeleton was used. Another approach would have
been a distance-based morphology function to mimic nature. This routine
would add larger spheres closer to the foam vertices. In contrast, thinner
spheres would be added along the struts, with a gradual increase in between
struts and vertices. Other possibilities would be changing the structuring
element to another geometrical object based on the shape of reconstructed
foam struts.

For additional complexity, a different Voronoi tessellation based method,
such as those based on weighted expansion, might have been considered.

Lastly, by showing that it is possible to reconstruct CT samples, mesh,
and perform FE-simulations on the models, additional paths can be explored
within this field. An example would be mechanical simulations in regards to
metal foam microstructural behaviour.
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Appendix

Additional meshes

(a) Default mesh. (b) Coarsest mesh.

Figure 24: Meshes of smaller reconstructed image using default parameters and parameters
producing the coarsest mesh from Table 6.

(a) Default mesh. (b) Coarsest mesh.

Figure 25: Meshes of architectured log-normal model using default parameters and
parameters producing the coarsest mesh from Table 7.
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(a) Default mesh. (b) Coarsest mesh.

Figure 26: Meshes of architectured Gaussian model using default parameters and
parameters producing the coarsest mesh from Table 8.
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