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Abstract

This thesis investigates potential ways to improve the image stabilization in
Axis Communications surveillance cameras. The current in-house developed
stabilization algorithm, Axis EIS, stabilizes based on gyroscope measurements.
We compare a purely gyroscope based stabilization algorithm with a gyroscope-
accelerometer sensor fusion stabilization algorithm, image-based stabilization al-
gorithms and stabilization algorithms combining image analysis and gyroscope
measurements. Footage from surveillance cameras are stabilized using these
different approaches and the algorithms are evaluated based on image quality
as well as their implementation viability in a real-time stabilization pipeline
running on the camera. The results indicate that a purely gyroscope-based
stabilization algorithm is difficult to surpass in a real-time environment due
to its good qualitative performance relative to its low computational complex-
ity. Simple image-based techniques could complement a gyro-based stabilizer if
sufficient feature point tracking speed is attained.
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Chapter 1

Introduction

Image stabilization refers to the process of removing the effects of unwanted
camera motion from a recorded video. For example, a hand-held mobile phone
recording a video will look shaky since the photographers hands are not 100%
still. The result is a video that is jittery and hard for a viewer to follow. To
rectify this, image stabilization is applied to remove the effects of the shaking,
producing a smooth video. Image stabilization is not only useful for hand-held
devices, but an important feature in modern surveillance cameras as well. Cam-
eras may for example be mounted in tall masts to get good overview of critical
areas. These masts, like most tall objects, will shake when exposed to heavy
wind with a shaky surveillance feed as a consequence. Axis Communications
has its own proprietary algorithm for image stabilization, referred to as Axis
EIS. This algorithm performs well in most cases, but struggles in certain dif-
ficult conditions, such as very high zoom settings which is a common case for
mast-mounted cameras.

1.1 Purpose and research question

The goal of this thesis project is to investigate potential alternatives to the
current image stabilization algorithm, Axis EIS. Ultimately, this thesis hopes to
present an algorithm that provides an improvement over Axis EIS whilst also
being viable for implementation in a modern surveillance camera. Particularly,
the goal is to cover up some of the common issues stabilization algorithms
similar to Axis EIS struggle with, such as stabilization under high zoom, without
sacrificing the quality in the situations where the current stabilizer performs
well.

Is it possible to develop a real-time image stabilization algorithm that out-
performs the current Axis EIS?

In order to answer this question, many different approaches to image sta-
bilization have been investigated. The approaches that have seemed promising
have been implemented and analyzed with our goals in mind. Since Axis EIS
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is proprietary software, it cannot be described here in full detail. Because of
this, we will instead make the comparison with another algorithm that for the
purposes of this thesis can be considered equivalent to Axis EIS (see Section 2.2
for details).

1.2 Requirements for a successful solution

If one wishes to improve current Axis EIS, criteria for improvement needs to
be established. Most importantly, a candidate algorithm must provide quali-
tatively better stabilization than Axis EIS. The algorithm performs very well
in many cases while failing in certain reproducible scenarios, particularly when
the camera is subjected to heavy zoom and very slight vibrations. The prag-
matic goal here is to produce an algorithm that offers similar stabilization levels
to Axis EIS when it works as intended, and better in scenarios where it fails.
Another important requirement is real-time performance. Axis EIS stabilizes
frames as they come in without extra delay in the image pipeline. A camera
typically operates around 30 FPS, so a stabilization algorithm should ideally
stabilize incoming frames in an online manner at this rate. An algorithm can be
computationally more complex than the current Axis EIS, as long as it can run
at full frame rate on a camera. Finally, robustness is required. For the surveil-
lance use case, it is important that the image is never significantly distorted by
the stabilization algorithm in degenerate cases.

1.3 Problem model and limitations

The goal of image stabilization is to remove video artifacts stemming from
unwanted camera motion. A shaking camera will mainly produce two kinds of
artifacts: frame-to-frame jitter and rolling shutter wobble.

If a shaking camera captures a static scene, the image coordinates of the
same static scene point will be displaced between consecutive frames, making
the video harder to follow. Most modern image sensors, including the ones
used in Axis cameras, capture the image line by line. As a result, a shaking
camera will produce frames that look wobbly, since the camera has moved not
only between consecutive frames, but also between individual scan lines within
the same frame. A good stabilization algorithm needs to remove both of these
artifacts from the video feed.
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Figure 1.1: Illustration of rolling shutter artifacts. If a camera captures the
checkerboard in the left image whilst moving periodically back and forth hor-
izontally, capturing one line at a time from the top down, the resulting image
will look similar to the right image

For a surveillance camera, most motion is unwanted since the camera is
normally mounted in a fixed location to monitor a fixed scene. We thus want
to rectify the video to give the video the appearance of being captured with a
motionless camera, in contrast to for example the hand-held camera stabilization
case where one seeks to smooth out a wanted motion trajectory. Pan-Tilt-Zoom
(PTZ) cameras have motors that can adjust their viewing direction and zoom
levels. We will not be considering image stabilization during PTZ-movement.

1.4 Types of motion

The typical case for a shaking camera is a camera mounted in an exposed
location, for example a tall camera mast, which subjects it to external forces
such as wind that cause shaking. The resulting motion is thus typically periodic
about some fixed center. The motion can be divided into translational motion
and rotational motion. Since cameras typically observe far away scenes, the
effects of the rotational motion is significantly more prevalent in the video feed,
and are what is most important to correct for to achieve good stabilization.
The types of stabilization algorithms that will be considered either attempts to
stabilize in the image-space directly, in which case the camera motion model is
less important, or algorithms that attempt to model camera rotations.

Figure 1.2: Illustration of the difference between translational and rotational
movement. A small angular displacements leads to large pixel displacements in
the final image for far-away scenes, whereas translational motion does not scale
in the same way
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Chapter 2

Background & Related
work

2.1 A few concepts from computer vision

To lay the foundation necessary to discuss methods for image stabilization, we
need to introduce some concepts from computer vision. This section is based
on the lecture notes by Carl Olsson [1] and if the reader feels familiar with this
topic this section can be disregarded. Computer vision deals with the problem
of reconstructing a 3D-scene based on images of said scene. In the context of
image stabilization, we consider a camera capturing two consecutive frames I
and J of the same real world scene, having moved slightly between the two
frames. The task is to use the information in the images I and J to estimate
the movement of the camera between them and applying a transform to J that
undoes the effect of this movement.

2.1.1 The pinhole camera model

To describe how a camera projects a 3D-scene into a 2D image, we introduce
the pinhole camera model, which describes this projection for an ideal pinhole
camera. The pinhole camera is a light proof box with a tiny apperture (the
pinhole) that light can enter through. This will produce a projected image of
the scene on the back of the camera wall (see Figure 2.1).
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Figure 2.1: The pinhole camera (image taken from Wikimedia Commons[2])

To set up the mathematical model for this projection, we begin by introduc-
ing a 3D coordinate system such that the pinhole of our camera, C, is located at
the origin. To get the projection x of a point in the world X = (X ′

1, X
′
2, X

′
3), we

form the line between the pinhole and the real world point, called the viewing
ray. The directional vector of the line is X −C and the line intersects C, so we
get the parametrisation

l : C + s(X − C) = sX, s ∈ R (2.1)

since C is located at the origin. To get the projection x, we find the intersection
point between the viewing ray and the image plane, which we can define as
the plane z = 1 in our coordinate system. Thus, the projection will satisfy
sX ′

3 = 1 =⇒ s = 1
X′

3
, meaning we get

x =


X′

1

X′
3

X′
1

X′
3

1

 . (2.2)

So, to get the projection of a real world pointX we divide by the third coordinate
in the coordinate system that places the pinhole at the origin. The image
coordinates will then be given by the first and second coordinates. To do image
stabilization, we need to consider cameras that have moved relative to each
other. Assume the point X has coordinates that are known in some global
reference system, (X1, X2, X3). To get the projection of the point in our pinhole
camera, we apply a transform that moves the camera to the origin and rotates
it to look down the z axis, i.e. for some rotation matrix R and some translation
vector t, we have X ′

1

X ′
2

X ′
3

 = R

X ′
1

X ′
2

X ′
3

+ t. (2.3)
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With our imposed limitations, we generally assume that cameras are only ro-
tated relative to each other, so the vector t can, for our purposes, be set to 0.
With this model, the image we get is centered at the origin and measured in
some 3D length unit. To finalize the model, we need to define a mapping from
this ideal image plane to pixel space, where the origin is typically located in the
top left corner and the pixel resolution can vary for the same scene depending on
camera settings. This mapping is defined by a matrix containing the so called
inner parameters and has the form

K =

γf sf x0

0 f y0
0 0 1

 . (2.4)

Here, f is the focal length, γ the aspect ratio, s the skew and (x0, y0) the image
center in pixel space. So, to summarize, the camera model, the model that maps
a real world point X to an image point x is given by

λ

x1

x2

1

 = KR

X1

X2

X3

 (2.5)

where K represents internal camera parameters and R the orientation of the
camera. To get the projection, one multiplies KR with X and normalizes the
result on the third coordinate. We will hereafter use x ∼ KRX to denote the
operation of carrying out the matrix multiplication KRX and dividing by the
third coordinate to get the projection.

2.1.2 Corresponding points

With our camera model in place, we can discuss corresponding points. Consider
two images I and J captured by the cameras P1 = K1R1 and P2 = K2R2

respectively (we consider the same real world camera with different rotations
as two different cameras) and some 3D point X. This 3D point will have be
projected onto the point x ∼ P1X in image I and the point y ∼ P2X in image
J . The pair (x, y) are called corresponding points: points in two different image
corresponding to the same real world point.

2.1.3 Homographies

If x and y are two different image points

x =

x1

x2

1

 , y =

y1
y2
1

 (2.6)

one can be interested in finding invertible transforms that map point y to point
x. In our computer vision framework, these transforms can be represented as
3-by-3 matrices, such that

x ∼ Hy. (2.7)
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Such transforms are typically called homographies.

2.1.4 Feature points

In order to undo the effects of camera motion between two frames I and J ,
one typically attempts to find a homography that maps points in the image J
to points in the image I. This often requires a large number of known pairs
of corresponding points. Finding such pairs presents a challenge. The way
this is done is often by finding the location of key feature points in the image.
Feature points are points of distinct features in an image, such as the corners of
a building, that are easily identifiable in different images of the same object. To
get correspondences, feature points are either estimated in two different images
and then matched according to some criterion, or tracked from one image to
the next based on their locations in the previous image. Algorithms for feature
point detection and tracking are discussed in more detail in Section 2.4.8.

2.1.5 RANSAC

In the coming sections, we will deal with problems with this general outline:
Assume that K corresponding points xk, yk have been found and we want to fit
a model f based on these pairs with the goal of minimizing some cost function
C:

f̂ = min
f

K∑
k=1

C(f(xk, yk)). (2.8)

In general, not all pairs of corresponding points we find will be true correspond-
ing points, since the algorithms for producing these estimates are not exact.
This means that we will have a situation where a few estimated point corre-
spondences produce extreme outliers, making least squares estimation of the
model an unsuitable choice. Instead, random sample consensus, RANSAC, can
be used. The RANSAC procedure is as follows:

1. Draw a minimal number of point correspondences required to fit f ran-
domly and fit f using only these

2. Evaluate C(f(xk, yk)) for all pairs (xk, yk). If the cost is below some
predefined threshold, a pair is considered an inlier, else an outlier. Let the
inliers form the consensus set.

3. If the consensus set is bigger than the previously largest consensus set,
save f and the consensus set

4. Repeat 1 - 3 a predefined number of times. The estimated f with the
largest consensus set is taken as the solution.
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2.2 Gyro-based stabilization

Axis EIS uses gyroscope-based image stabilization, similar to what is used by
Karpenko et al.[3], which we will use as a placeholder for the Axis EIS algo-
rithm. For the purposes of this thesis, these two algorithms can be considered
equivalent. Karpenko et al. [3] assumes that the camera is only displaced rota-
tionally, for similar reasons as discussed earlier. They use the following model
for the projection x of a world point X = (X1, X2, X3) at time t:

x = KR(t)X. (2.9)

This means that the projection of X at times tn and tn+1 are related by

xtn = KR(tn)R
T (tn+1))K

−1xtn+1
. (2.10)

The gyroscope measures angular velocity ω = (ωx, ωy, ωz) in the local coordi-
nate system of the gyroscope, which we assume is aligned with the coordinate
system of the camera. If the rotation is known at time point tn, the rotation at
time point tn+1 can be obtained by compounding changes in rotation between
consecutive gyro samples. We assume that the angular velocity ω = (ωx, ωyωz)
of the camera between two consecutive samples is constant. This means that the
angular displacement about each axis between timepoints tn and tn+1, called
∆ϕtn , can be approximated with

∆ϕtn = ωtn∆t, (2.11)

where ∆t = tn+1 − tn [3]. The camera has three axes about which it can be
rotated: roll, pitch and yaw (see figure 2.2). Rotation about the viewing axis,
roll, will result in a pixel displacement in the image that does not scale with the
viewing distance.

Figure 2.2: Roll, pitch and yaw rotations

For similar reasons as the earlier discussed translational displacements, these
rotations do not produce significant artifact and are therefore ignored. If the
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change in angle between times tn and tn+1 is small and roll angle is ignored, the
relation in Equation (2.10) can be approximated as a translation in pixel space,
proportional to the angular displacement in yaw and pitch direction (Equation
(11) in [3], see figure 2.3 for an illustration).

Figure 2.3: If the angle α is small enough, we get the approximation d tan(α) ≈
dα. Here, d is the distance to the image plane, given by the focal length. See
section 2.1 for details.

Thus, the per-pixel displacement of the image since some reference time t0
with known rotation can be approximated as proportional to the sum of the
angular velocities since that reference time:

∆xn ∝
n∑

k=0

ωxtn
,∆yn ∝

n∑
k=0

ωytn
. (2.12)

To account for accumulating error, we add a decay factor θ, s.t. 0 < θ < 1 to
the discrete integrator, yielding

∆xn ∝
n∑

k=0

θn−kωxtn
,∆yn ∝

n∑
k=0

θn−kωytn
. (2.13)

Karpenko et al. estimate the rotations with the gyroscope in the manner out-
lined, then smoothen the estimated rotations with a low-pass filter. The image
is then stabilized at time t with the relative displacement between the smoothed
and raw rotation at that timepoint. Since we assume that the camera should not
move from its initial orientation, we calculate the per-pixel displacement since
the start time with Equation (2.13) and then stabilize the image by moving the
frame at timestep tn a pixel distance −xn,−yn. This model is easy to adapt to
account for rolling shutter. Under rolling shutter, the capture time of a point
depends on its y-coordinate in pixel space. This means that the pixel space
displacement of the image will be different for each line. Similar to Karpenko

12



et. al, we divide the image horizontally into a number of segments and displace
each segment according to the capture time of the current line. Gyroscopes
typically have some small constant bias, ωb, affecting the measurements. To
deal with this, the raw gyro samples are fed through a high pass filter before
integration. We use a discrete time high pass filter of the form

un = βun−1 +
1 + β

2
(ωn − ωn−1) (2.14)

where ω is the input gyro signal ω = (ωx, ωy, ωz) and u the filtered samples.

2.3 Gyroscope-Accelerometer sensor fusion

The previous approach relies purely on the gyroscope to measure the camera
displacements. The gyroscope is part of an intertial measurement unit (IMU)
that also contains an accelerometer, which could potentially be incorporated
into a gyro-based stabilization algorithm. The accelerometer measures transla-
tional acceleration. In theory, one could use the accelerometer to estimate the
translational movements of the camera and incorporate that into the model for
the camera motion by integrating the measurement values twice (given appro-
priate initial conditions), as discussed in for example Karpenko et al.[3]. They
draw the conclusion that this is not feasible in practice since the sensor is not
accurate enough to produce reliable results after double integration. Even if this
was not the case, adding translations to the model has limited value to begin
with as discused earlier. It is however possible to use the accelerometer to ob-
tain measurements of camera orientation. An accelerometer at rest will measure
the force of gravity in the local coordinate system of the IMU (which again is
assumed to be the same as the coordinate system of the camera, since the IMU
is mounted close to the image sensor). One can then calculate the rotation that
would rotate the estimate of the gravity vector in a global coordinate frame to
the estimated gravity vector in the local coordinate frame. The advantage of this
is that it provides an instantaneous measurement of camera orientation. The
gyroscope measures orientation relative to the previous orientation, whereas the
accelerometer measures orientation relative to a fixed global coordinate system,
making it less susceptible to accumulation of errors, and providing an additional
source of information. Combining gyroscope and accelerometer measurements
to estimate camera orientation can be accomplished with a Kalman filter, as
done by for example Trawny et al. [4], Solá [5] or Mirzaei et al. [6]. We will use
a similar Kalman filter set-up as the one derived in Trawny et al.[4].

2.3.1 The error state Kalman filter

The Kalman filter produces the optimal linear reconstruction, interpolation and
prediction of the state vector for a dynamic system, given observations of inputs
and outputs to this system [7]. The standard Kalman filter is the optimal linear
estimator for a linear system. The state model for the Kalman filter looks as
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follows: given a state space vector at time t, xt, the system is described as
evolving in time according to

xt+1 = Fxt + et (2.15)

zt = Hxt + wt (2.16)

where xt represents the process’ internal state and the vector zt an observation
of the true state x according to the measurement model described by the matrix
H, et represents the process noise and wt the measurement noise, here assumed
to be zero-mean Gaussian noise with covariance matrices Qt and Rt respectively.

Assuming that we have predictions and observations of the state up to time
point t, the Kalman filter predicts the state for the time point t + 1 and the
covariance matrix Pt+1|t in the following manner.

x̂t+1|t = Ftx̂t|t. (2.17)

Pt+1|t = FtPt+1|tF
T
t +Qt (2.18)

and then refines that prediction using measurements taken at time step t+1 to
get the posterior estimates. First, calculate the residual between the measure-
ment and the predicted measurement using the estimate of the state so far and
the measurement model

ỹt+1 = zt+1 −Ht+1x̂t+1|t. (2.19)

The Kalman gain Kt+1 is calculated according to

St+1 = Ht+1Pt+1|tH
T
t+1 +Rt (2.20)

Kt+1 = Pt+1|tH
T
t+1S

−1
t+1 (2.21)

and then used together with the residual to update our estimate of the state
vector and the covariance matrix

x̂t+1|t+1 = x̂t+1|t +Kt+1ỹt+1 (2.22)

Pt+1|t+1 = (I −Kt+1Ht+1)Pt+1|t (2.23)

In general, the state transition and the observation model does not need to be
linear functions of the state. If they instead are differentiable functions of the
state, one can choose to linearize around a current estimate. This is usually
referred to as the extended Kalman filter. If the state transition is defined as
xt+1 = f(xt)+et for some differentiable function f and the measurement model
as zt = h(xt) +wt, one gets the extended Kalman Filter estimates by replacing
H and F with the Jacobians of h and f respectively in the update step, and
otherwise proceeding as usual. The extended Kalman filter will in general not
be optimal, since it approximates the true system dynamics with a first order
Taylor expansion. To perform well, this requires the state to stay close to the
point around which the expansion is done. To increase the likelihood that this
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approximation stays valid, one can instead track the error state with the Kalman
filter, the difference between the true state and some nominal state. The idea
is that the nominal state is a large signal and the error state small, making the
linear approximations more accurate for the error state. In our case, the nominal
state would be the integrated gyro samples and our current approximation of
the bias in the gyroscope. The error state consists of the error in orientation
from our current nominal orientation estimate, and the current gyro bias error.
The challenge is now to describe and linearize the system dynamics model for
the error-state.

2.3.2 Quaternions to represent rotations

To lay the necessary foundation for the state-space model derivation, we must
first discuss some basic quaternion algebra and how to represent rotations in
three dimensions with quaternions. Quaternions are an extension of the complex
numbers and are defined as

q = q4 + q1i+ q2j + q3k (2.24)

with the hyperimaginary units i, j, k satisfying the following identities

i2 = j2 = k2 = −1,−ij = ji = k,−jk = kj = i,−ki = ik = j. (2.25)

The quaternion can also be written on matrix form:

q =


q1
q2
q3
q4

 . (2.26)

Worth pointing out here is that there are many different quaternion conventions,
differing in for instance whether ji = k or ji = −k [5]. The derivations in [4],
that we are basing our filter model on, use JPL convention which is what we
use here as well. A quaternion is often referred to as having a scalar part, q4
and a vector part, q = (q1, q2, q3) in our definition. If these satisfy

q =

kx sin(θ/2)ky sin(θ/2)
kz sin(θ/2)

 = k̂ sin(θ/2), q4 = cos(θ/2) (2.27)

with k̂ having unit length, q is called a rotation quaternion and encodes a rota-
tion in 3 dimensions along the axis k̂ by the angle θ. Quaternion multiplication
between the quaternions q and p, hereafter denoted q ∗ p can be defined by the
matrix multiplication

q ∗ p =


p4 −p3 p2 p1
p3 p4 −p1 p2
−p2 p1 p4 p3
−p1 −p2 −p3 p4



q1
q2
q3
q4

 . (2.28)
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Note that this does not in general commute. If q and p represents two rotation
quaternions, their product represents a composition of the rotations. With this
multiplication definition, we get the neutral element q0 = 1 + 0i + 0j + 0k
satisfying

q ∗ q0 = q0 ∗ q = q. (2.29)

For rotation quaternions, we get the multiplicative inverse

q−1 =

[
−q
q4

]
(2.30)

satisfying q ∗ q−1 = q−1 ∗ q = q0. Another useful way to write the quaternion
multiplication on matrix form is

q ∗ p =

[
p4I3×3 + ⌊p⌋× p

−pT p4

] [
q
q4

]
(2.31)

where

⌊p⌋× =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 (2.32)

which is the matrix for the operator of taking the cross product with p: p× v =
⌊p⌋×v. A useful result as a consequence of this is that, since u× v = −v × u

⌊u⌋×v = −⌊v⌋×u (2.33)

Another matrix we will use is

Ω(ω) =

[
−⌊ω⌋× ω
ωT 0

]
. (2.34)

Trawny et al. [4] gives the following formula to relate the rotation quaternion
to the corresponding rotation matrix (see [4] for full derivation)

C(q) = (2q24 − 1)I3×3 − 2q4⌊q⌋× + 2qqT. (2.35)

If the rotation angle δθ is small, we can make the approximations sin(δθ/2)) =
δθ/2, cos(δθ/2) = 1, yielding the approximation

q ≈
[
1
2δθ
1

]
(2.36)

and
C(q) ≈ I3×3 − ⌊δθ⌋×. (2.37)

We are now ready to derive the time derivative for the quaternion:

q̇(t) = lim
∆t→0

1

∆t
(q(t+ δ)− q(t)). (2.38)
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We can define δq as
q(t+ δt) = δq ∗ q(t) (2.39)

where δq represents the rotation aligning q(t) with q(t + ∆t). When ∆t ap-
proaches 0, this rotation becomes very small, and we can apply the approxima-
tion from (2.36) to δq, yielding

q̇(t) = lim
∆t→0

1

∆t
(q(t+ δ)− q(t)) = lim

∆t→0

1

∆t
(δq ∗ q − q), (2.40)

which we can approximate by

q̇(t) ≈ lim
∆t→0

1

∆t
(

[
1
2δθ
1

]
−

[
0
1

]
)q = lim

∆t→0

1

∆t
(

[
1

2∆tδθ
0

]
., (2.41)

We notice that

ω = lim
∆t→0

δθ

∆t
(2.42)

is the angular velocity. Applying this, and the definition of the quaternion
product, we get

q̇ =
1

2

[
ω
0

]
∗ q =

1

2

[
−⌊ω⌋× ω
ωT 0

]
q =

1

2
Ω(ω)q. (2.43)

If we assume that the rotational velocity remains constant over a time step
∆t, we can integrate the quaternion over the time step ∆t by solving the first
order differential equation in 2.43. This is a known problem with the matrix
exponential as solution, so we get

q(t+∆t) = exp(
1

2
Ω(ω)∆t)q(t). (2.44)

2.3.3 Updating the nominal state

We now have the necessary background to continue discussing the Kalman filter
setup. The first step is to describe how to update our nominal state. The system
state is determined by the estimated orientation and the estimated gyroscope
bias. Since the bias is assumed to change slowly, this is simply updated as
b̂t+1 = b̂t. The estimated orientation is updated from time step t to t + 1 by
integrating the bias-corrected gyroscope measurements over the time step ∆t,
according to Equation (2.44)[4]. We thus get the nominal state at time point
t+ 1, ut+1 as

ut+1 =

[
exp( 12Ω(ω̂)∆t)q̂t

b̂t

]
(2.45)

where
ω̂ = ω − b̂t (2.46)

is the bias-corrected measurement.
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2.3.4 Deriving the state-space representation for the error
state

Trawny et al. [4] derive the state-space representation for the error state for
an IMU-based kalman filter (a similar derivation can be found in for instance
[5] as well). The necessary parts of the derivation are outlined in the following
section. We model the gyro as measuring the true angular velocity of the IMU,
along with some bias and some noise, here assumed to be Gaussian white noise
with zero mean and constant variance:

ωm = ω + bg + ng, ng ∈ N (0, σg). (2.47)

Similar assumptions are made for the accelerometer measurements:

am = a+ ba + na, na ∈ N (0, σa). (2.48)

The gyro bias is assumed to drift slowly over time. For our state vector, we use

x = [δqT , ∆bTg ]. (2.49)

Here, δq is the error-quaternion (as a column vector) and ∆bg is the gyro bias
error. The error quaternion represents the small rotation required to rotate our
initial estimate of the IMU orientation with the true orientation of the IMU:

δq ≈
[
δθ
2
1

]
(2.50)

such that
q = δq ∗ q̂. (2.51)

The gyro bias error represents the difference between the true gyro bias and our
initial estimate of the gyro bias, With the state vector in place, we are ready
to find our state transition model. We begin by linearzing the continuous time
state equations for the error quaternion. We take the time derivative of equation
2.51:

q̇ = δ̇q ∗ q̂ + δq ∗ ˙̂q. (2.52)

Using the result on the quaternion derivate (Equation (2.43), we get

1

2

[
ω
0

]
∗ q = δ̇q ∗ q̂ + δq ∗ (1

2

[
ω̂
0

]
∗ q̂) (2.53)

Rewriting yields

δ̇q ∗ q̂ =
1

2
(

[
ω
0

]
∗ q − δq ∗

[
ω̂
0

]
∗ q̂). (2.54)

Multiplying both sides by q̂−1 from the right yields

δ̇q =
1

2
(

[
ω
0

]
∗ δq − δq ∗

[
ω̂
0

]
). (2.55)
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Now, by our model for the gyro measurements, we have

ω = ω̂ −∆b− nr. (2.56)

Substituting this into 2.55 we get

δ̇q =
1

2
(

[
ω̂
0

]
∗ δq − δq ∗

[
ω̂
0

]
)− 1

2

[
∆b+ nr

0

]
∗ δq. (2.57)

Using the multiplication form from (2.31), we get

δ̇q =
1

2
(

[
−⌊ω̂⌋× ω̂
−ω̂T 0

]
δq −

[
⌊ω̂⌋× ω̂
−ω̂T 0

]
δq)− 1

2

[
∆b+ nr

0

]
∗ δq (2.58)

simplifying to

δ̇q =
1

2
(

[
−2⌊ω̂⌋× 03×1

−01×3 0

]
δq)− 1

2

[
−⌊(∆b+ nr)⌋× (∆b+ nr)
(∆b+ nr)

T 0

] [
δθ
2
1

]
, (2.59)

which means

δ̇q =
1

2
(

[
−2⌊ω̂⌋× 03×1

−01×3 0

]
δq)− 1

2

[
∆b+ nr

0

]
−O(|∆b||δθ|, |nr||δθ|). (2.60)

Since the errors and bias variance are small, we can make the approximation

δ̇q =

[
−ω̂ × δθ − 1

2 (∆b+ nr)
0

]
(2.61)

meaning we get

δ̇θ = −ω̂ × δθ − 1

2
(∆b+ nr). (2.62)

For the bias, we have
∆̇b = nw (2.63)

so we finally arrive at the linearized continuous time state equations for the
error vector:[

δ̇θ

∆̇b

]
=

[
−⌊ω̂⌋× −I3×3

03×3 03×3

] [
δθ
∆b

]
+

[
−I3×3 03×3

03×3 I3×3

] [
nr

nw

]
= F

[
δθ
∆b

]
+G

[
nr

nw

]
.

(2.64)
To be able to use this with our discretely sampled IMU measurements, the

continuous time state model must be discretized. If we assume that the system
dynamics matrix F remains constant over a small time step ∆t (corresponding
to constant angular velocity rotation during this time interval), we can get the
state transition matrix between the discreet time steps t and t+∆t, Φ(t+∆t, t),
is given by

Φ(t+∆t, t) = exp(F∆t). (2.65)

This is in turn approximated by the first order Taylor expansion of, yielding

Φ̂(t+∆t, t) = I6×6 + F∆t. (2.66)

This is the state transition matrix that we use for the state transition and update
step in the extended Kalman filter.
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The observation model

What remains is to derive the observation model matrix, H. Trawny et al. [4]
use a sun-sensor instead of the accelerometer measurements to get an estimate of
the current orientation, but the derivation will be similar for the accelerometer.
Since the camera is assumed to only be rotating, this will measure the force of
gravity in the local coordinate system of the IMU. If the matrix C represents
the rotation of the global frame to the local IMU frame, the accelerometer will
measure

a = Cg + na (2.67)

where g is the force of gravity in the global coordinate system. We now need
to relate the state vector to the measurement error. The measurement error, z̃
fulfills

z̃ = z − ẑ = (C − Ĉ)g + na. (2.68)

By definition of our error quaternion, we have

C(q) = C(δq)C(q̂). (2.69)

Additionally, since the rotation error is small, we have

C(δq) ≈ I − ⌊δθ⌋× (2.70)

Putting this into equation 2.68 we get

z̃ = (I − ⌊δθ⌋× − I)C(q̂)g + na = −⌊δθ⌋×C(q̂)g + na. (2.71)

By Equation (2.33) we then get

z̃ = ⌊C(q̂)g⌋×δθ + na (2.72)

meaning

z̃ =
[
⌊C(q̂)g⌋× 03×3

] [δθ
δb

]
+ na (2.73)

meaning we have the observation matrix

H =
[
⌊C(q̂)g⌋× 03×3

]
. (2.74)

Applying the error state estimate to the nominal state

With the error state Kalman filter formulation we have chosen, the error vector
will contain an error quaternion relative to the current nominal state. After
performing the filter update step, the nominal state needs to be updated, and
the error state reset. If the nominal state is given by

u =

[
q̂

b̂

]
(2.75)
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and the error state

x =

[
δq̂

∆b̂

]
(2.76)

we get the updated nominal step through

unew =

[
δq̂ ∗ q̂
b̂−∆b̂

]
. (2.77)

After applying this update, the error-state is set to zero since we have applied all
our knowledge of the current error to the nominal state. We also need to update
our covariance matrix P accordingly to reflect this change in uncertainty. If the
error state update function is g, such that

xreset = g(x), (2.78)

we need to update P as
Pnew = GPGT (2.79)

where G is the Jacobian of g. This will be a 6 × 6 matrix where the top 3x3
part corresponds to applying the inverse rotation of δq̂ and the bottom part to
removing the bias ∆b̂. The bottom part is simply the identity matrix. The top
3 × 3 part will be I − 1

2δθ̂, which for small errors can be approximated as just
identity. Thus, we simplify to

Pnew = P (2.80)

2.3.5 Summary of the error state Kalman filter

To summarize, we get the following procedure for updating the camera orienta-
tion estimate from time step t to t+1 with a Kalman filter combining gyroscope
and accelerometer data:

1. Update the nominal state as described in Section 2.3.3.

2. Propagate the error state and covariance according to equations (2.17)
and (2.18).

3. Update the error state according to equations (2.19) through (2.23).

4. Update the nominal state with the posterior error state.

5. Apply the error state reset.

2.4 Image analysis-based image stabilization

Gyro-based stabilization algorithms struggles in certain cases to distinguish be-
tween sensor noise and real camera movement. If the camera movement impacts
the video feed, the information about that movement is by definition available
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in the images. This suggests that stabilization methods based on image anal-
ysis might be a good alternative in cases where gyro-based methods perform
poorly, such as under high zoom. Much prior work has been done on image
analysis-based image stabilization. Typically, the focus is on smoothing out a
jittery camera path captured by for example a hand-held mobile phone, such as
in Grundmann et al. [8] or Greicher & Liu [9]. These methods are offline and
smooth the entire video as a post-processing step, where we instead need real
time stabilization.

2.4.1 Fitting a homography between frames

If we ignore rolling shutter and consider consecutive images I and J , where the
goal is to undo the effects of camera motion between them, we can use standard
computer vision methods (see for example Chapter 5 in [1] for more details) to
fit a homography between the images I and J if we have an estimated set of
corresponding points between the images. The image can then be stabilized by
applying the inverse homography to J , mapping points in J to the corresponding
points in I and undoing the motion. Finding these homographies involve solving
a linear system of equations (typically systems as found in Equations (5.27) and
Equation (5.28) in [1]). If we allow ourselves to use the same assumptions as
for the gyro-based stabilizer, with no roll and small angular displacements, we
can get a computationally cheaper model.

2.4.2 Global motion estimation

The simplest model one could use to achieve image stabilization is to fit a global
motion vector between consecutive frames. Under the assumptions made by [3],
the small camera rotation in pitch and yaw direction will result in corresponding
points begin related by xk+(dx, dy) = yk for some constant displacement dx, dy.
If xk, yk is a pair of corresponding points in two consecutive frames, dx, dy are
found such that

n∑
k=0

d(xk + (dx, dy), yk)
2 (2.81)

is minimized. The second frame is then translated by (−dx,−dy) to get the
stabilized frame. Since the feature estimations are going to contain outliers,
RANSAC can be used instead of least-squares minimization to get more robust
results. This approach does a good job of removing frame-to-frame jitter, but
we do not currently handle rolling shutter artifacts at all.

2.4.3 Rolling shutter correction

Rolling shutter correction is a challenge for image-based stabilization algorithms.
The main issue is that the artifact affects the image in such a way that the
transformation can no longer be described by a homography. The simplest
approach one could use for image based rolling shutter correction is to segment
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the image along the y-axis and apply the same approach as described in the
global motion estimation section to each segment independently instead of to
the entire image at once. This comes with a heavy requirement on having many
feature points divided evenly across the entire image. Another problem with
this approach is that it can fail quite spectacularly. If one segment happens to
contain many outliers it can become severely distorted compared to the rest of
the image. Much work has been done on image-based rolling shutter correction.
Forssén and Ringaby [10] use an approach where they fit a rotation spline model
for the camera motion between frames from a set of point correspondences,
which we will discuss in more detail.

2.4.4 Rotation Spline

The approach used by Forssén and Ringaby to do rolling shutter correction is
to fit a rotation spline between consecutive frames. First, the intrinsic camera
matrix K is assumed to be known. They also assume that the camera is only
rotating about the camera center, so the model for the projection x of a world
point X at time t is given by

x ∼ KR(t)X. (2.82)

We denote the time it takes for the image sensor to capture a single image row
tr and the frame rate f . The time between the capture of the last row in frame
n and the first row of frame n + 1 is denoted td and the number of rows in
an image Nr. The current time can, for convenience, be expressed in terms of
number of rows, where one ”row” time unit is equal to tr. The delay between
two frames can be expressed in a number of blank rows Nb, such that

Nb = Nrtdf = Nr(1− trf). (2.83)

Consider a pair of corresponding points

x =

x1

x2

1

 , y =

y1y2
1

 (2.84)

in two consecutive frames with real world coordinates X. They will satisfy

x ∼ KR(Nx)X, y ∼ KR(Ny)X (2.85)

where Nx, Ny represents the capture time for point x and y respectively, where
Nx = x2 and Ny = Nr +Nb + y2 (with time zero at the start of the capture of
the first of the two frames). We then get the relation

x ∼ KR(Nx)R
T (Ny)K

−1y = Hy. (2.86)

If no constraint is made on the rotations R(Nx), R(Ny), each correspondence
that is not on the same row as previous correspondences introduces 6 new un-
knowns (since rotations can be parameterized with a minimum of 3 unknowns).
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This is solved by modeling the rotation between the two frames as a spline with
M knots, each knot being a rotation at a fixed time point that needs to be
estimated. To get the intermediate rotations between the fixed notes, spherical
linear interpolation (SLERP) is used. SLERP corresponds to assuming that the
rotation between Rm and Rm+1 has constant angular velocity and fixed axis of
rotation.

2.4.5 Parametrization and interpolation of rotations

The rotations are parameterized as vectors n ∈ R3, where n = ϕn̂ such that ϕ
is the rotation angle and n̂ is the axis of rotation (||n̂|| = 1). Rodrigues formula
can be used to convert this representation to a rotation matrix:

R = expm(n) = I + ⌊n̂⌋× + ⌊n̂⌋2×(1− cosϕ) (2.87)

where the cross product matrix is the same as in the quaternion section. To
convert back, the formula

n = logm(R) = tan−1(||ñ||, trR− 1)
ñ

||ñ||
(2.88)

with

ñ =

r32 − r23
r13 − r31
r21 − r12

 . (2.89)

For details, see the original paper by Forssén and Ringaby [10]. They use this to
define the spherical linear interpolation between two rotations n1 and n2 using
the interpolation parameter τ ∈ [0, 1] as

ndiff = logm(expm(−n1)expm(n2)) (2.90)

Rτ = expm(n1)expm(τndiff ) (2.91)

2.4.6 Finding the homography between the frames

With the camera motion model in place, we need to fit an appropriate rotation
spline based on a set of observed corresponding points. If we have K matching
points between frames, the goal is to estimate the M knot rotations n1, ..., nM

for the rotation spline that minimizes the loss function

J =

K∑
k=1

d(xk, Hyk)
2, (2.92)

with H defined as in Equation (2.86). The distance function d is given by

d(x, y) = (x1/x3 − y1/y3)
2 + (x2/x3 − y2/y3)

2. (2.93)
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Let Nm be the row time for spline knot number m. To find R(xk) = R(Nx)
needed to compute H, one calculates

τ =
Nx −Nm

Nm + 1−Nm
, N, ≤ Nx ≤ Nm+1 (2.94)

and then gets
R(Nx) = SLERP (nm, nm+1, τ) (2.95)

where SLERP is defined by equations (2.90) and (2.91). Using rotations that
are relative to the first frame of the current frame pair, the first key rotation
can be initialized to (1, 0, 0)T , yielding 3(M − 1) degrees of freedom for the
estimation of H.

2.4.7 General homography mixture

Grundmann et al. expanded on the approach used by Forsen and Ringaby in
[11] and introduced a calibration-free version of their rolling shutter correction
algorithm. The rotation spline essentially represents a combination of M differ-
ent homographies that are fit to different parts of the image. Grundmann et.
al skipped the intermediary step of estimating the camera rotation and fit the
homographies directly. Instead of segmenting the image into separate blocks
(done before, get source), they use gaussian weights centered on various image
segments to get smooth interpolation between the homographies in different
parts of the image. They also introduce a regularization term to handle cases
where a large segment of the image has very few feature points. Since we can
estimate the camera matrix K in our use case (since we would know which
camera an algorithm will run on), we will stick to the approach used by Forssén
and Ringaby, but it is worth keeping in mind that there are alternatives if K is
hard to obtain.

2.4.8 Estimating and tracking feature points

All of the above mentioned image stabilization methods rely heavily on feature
point estimation and matching. Given the performance constraints for the in-
tended application, it is important that feature points can be extracted and
matched efficiently. Scale-Invariant Feature Transform, SIFT [12], is a popular
method for feature point estimation. SIFT is designed to match features be-
tween images through heavy distortions, begin invariant to changes in scale and
image rotation. An example use case would be finding a book on a table given a
close-up image of the cover. While SIFT is very robust and generally produces
matches with high accuracy, it is computationally costly. Rublee et. al [13] sug-
gest the ORB (Oriented FAST and Rotated BRIEF) feature point estimation
and matching algorithm as a more efficient alternative to SIFT. ORB operates
in a similar way to SIFT, but uses a less expensive descriptor set that preserves
the same invariants as the descriptor set originally used in SIFT. According to
the authors, ORB offers approximately two orders of magnitude better perfor-
mance than the standard SIFT. For our use-case however, simpler methods may
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suffice. SIFT (and ORB) pay substantial computational costs to ensure that
features can be tracked through heavy image distortions. Under our assump-
tions, the distortions between consecutive frames comes from a slight camera
rotation in a camera monitoring a far-away scene, meaning that the frames
have similar scales and are not significantly rotated relative to each other. Un-
der these conditions, given a set of feature points in an image I, they can be
tracked into the next image J instead of having to estimate new features in J
and then matching the features between I and J . We will use the problem for-
mulation and algorithm described by Bouguet [14], which is an implementation
of the algorithm originally developed by Lucas and Kanade [15]. In Bouguet[14]
the tracking problem is formulated as follows: given a feature u in the image I
and a subsequent image J , we want to find the displacement vector d such that
I(ux, uy) and J(ux+dx, uy +dy) are, in some sense, similar. More precisely, we
want to find d such that

ϵ(d) =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

(I(ux, uy)− J(ux + dx, uy + dy))
2 (2.96)

is minimized for some integration window size wx, wy. The displacement vector
d is sometimes referred to as the optical flow vector, it describes how a certain
pixel moves into the next image.

2.4.9 Pyramidal Feature Tracking

We now describe the algorithm from [14] that is used to solve the tracking
problem. At the minima, the derivative of ϵ in equation 2.96 will be the zero
vector. We have

∂ϵ(d)

∂d
= −2

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

(I(ux, uy)−J(ux+dx, uy+dy))·
[
∂J
∂x

∂J
∂y

]
(2.97)

If the displacement vector d = (dx, dy) is small, we can approximate J(ux +
dx, uy + dy) by the first-order Taylor expansion around d, J(ux+ dx, uy + dy) ≈
J(ux, uy) + [∂J∂x

∂J
∂y ][dx dy]

T . Here, the algorithm uses the assumption that
the image J is similar to the image I in a neighborhood around u. If these
images only differ by a small pixel-wise translation (which generally will hold
under our assumptions of small rotational camera displacements and a far-away
scene), we get the approximation

[
∂J

∂x

∂J

∂y
]T ≈ [

∂I

∂x

∂I

∂y
]T = [Ix Iy]

T = ∇I. (2.98)

Inserting all this, we get

∂ϵ(d)

∂d
= −2

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

(I(x, y)− J(x, y)−∇IT d)∇IT . (2.99)
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Notice that I(x, y) − J(x, y) represents a kind of time-derivative for the image
I. Introducing δI = I(x, y)− J(x, y), we get

∂ϵ(d)

∂d
≈ 2

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

(∇IT d− δI)∇IT (2.100)

Writing out the matrix multiplication yields

1

2

∂ϵ(d)

∂d
≈

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

(

[
I2x IxIy
IxIy I2y

]
d−

[
δIIx
δIIy

]
). (2.101)

Now introduce

G =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

[
I2x IxIy
IxIy I2y

]
(2.102)

and

b =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

[
δIIx
δIIy

]
). (2.103)

We get
1

2

∂ϵ(d)

∂d
≈ Gd− b (2.104)

so the d minimizing ϵ will be d = G−1b. An important assumption here was
that the displacement vector is small, so the first order Taylor approximation is
valid. The iterative Lucas-Kanade optical flow algorithm therefore does many
iterations of this computation to get better accuracy. Introduce the initial guess
d0 = [d0x, d

0
y ]t. Then, if the displacement dk−1 at iteration level k−1 is known

(and Jk denotes J shifted by dk−1), we get dk = G−1bk, where

b =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy+wy

[
δIkIx
δIkIy

]
). (2.105)

and
δIk(x, y) = I(x, y)− Jk(x, y). (2.106)

This can be repeated for a fixed number of iterations, or until convergence.
The pyramidal version operates by creating a pyramid of downscaled images,
using the iterative Lucas-Kanade scheme to calculate the optical flow at each
pyramidal level, feeding the solution from the previous pyramidal layer as a
starting guess for the next layer. When this scheme is used, the approximation
of small displacements has a much higher chance of being valid. A large pixel
displacement in the initial image will be small further down in the pyramid.
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2.4.10 Good features to track

The question of how to get the initial feature point estimate still remains. Of
course, one could use SIFT or ORB to get an initial estimate of the feature
points, but this might not be optimal given that those algorithms are not nec-
essarily optimized for tracking. Instead, we use the approach described by Shi
and Tomasi in [16]. In brief, features are found by finding the points in the
image where the matrix G in Equation (2.102) satisfies

min(λ1, λ2) ≥ ϵ (2.107)

where ϵ is some predefined threshold and λ1, λ2 are the eigenvalues of G. Their
reasoning is that these kinds of features are easily tracked by the previously
described tracking algorithm.

2.5 Background-Foreground segmentation

A common issue for stabilization algorithms that run on feature point tracking
is the difficulty in separating image movement due to camera motion and image
movement from moving objects in the scene. This is partly addressed by using
outlier rejection when fitting the motion model to the tracked features. How-
ever, if one has an accurate model for detecting moving objects in a scene, this
could be improved further since these points could be masked out before fitting
the model in the first place. This problem is called background-foreground seg-
mentation and there are many different models available. For our use-case it is
important to keep the real-time constraint in mind. Maintaining a background
model adds significant computational overhead making a cheaper model prefer-
able to a more expensive one. Fortunately, since it is only used to improve the
robustness of the feature point tracking over time and not in the actual stabi-
lization calculation, it does not have to be updated on every frame, as long as
the updates are frequent enough to capture movement of typical large real life
objects, which gives some leeway. Another important constraint to keep in mind
is that the background model should behave reasonably in scenarios where the
stabilization algorithm fails.

2.5.1 Pixel difference

The simplest background-foreground segmentation algorithm one could use is to
take the pixel difference between consecutive stabilized frames and apply some
threshold. This has the advantage of being very fast, but does not perform
well when the stabilization is not perfect. If there is shakiness remaining in
the video, edges of stable objects will be considered moving and masked out,
which is highly undesirable since those are the kinds of regions most suitable for
feature point tracking in the first place. This risks a scenario where a temporary
failure of the stabilization cascades.
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2.5.2 Dense optical flow

Another way to obtain a background-foreground mask is to use dense optical
flow. Dense optical flow is the estimation of the displacement vector in Equation
(2.96) for every pixel in the image. The first step is to take some estimate of the
dense optical flow between two consecutive frames. Then, one can calculate the
mean optical flow in the image. A camera moving between frames will result
in a global motion vector for each pixel. For each pixel, the distance between
the dense optical flow vector and the median optical flow vector is calculated
and thresholded. This is in many ways similar to the pixel difference approach,
but more robust to stabilization failures, at the cost of an expensive dense
optical flow estimation. It is worth pointing out here that one could do image
stabilization with dense optical flow in this way, by estimating the inter-frame
motion as the median dense optical flow vector. This would be too expensive to
do on every frame however, but can more realistically be done in the background
model which can be updated more sparsely. Since the foreground mask does
not have to be pixel perfect, the dense optical flow estimation can also be done
on a downscaled version of the image, since we only need to capture relatively
large movements without the higher accuracy requirements one would have if
this was the basis for the stabilization algorithms itself.

2.6 Hybrid methods

Of course, the choice between using IMU data and image analysis for stabiliza-
tion is not mutually exclusive. Ideally, these two approaches can be combined
into a hybrid stabilization algorithm if both data sources are available to use.
For instance, [6] and [17] use a Kalman filter to combine camera motion esti-
mates from a set of corresponding points and the IMU. Shi et al. used deep
learning to combine dense optical flow estimates with gyroscope data to do im-
age stabilization for a mobile phone [18]. They use a neural network to produce
dense optical flow estimates on downsampled video frames, which are fed to
a CNN downsampling it to 4 output channels. The output from this network
is concatenated with gyroscope data represented as rotation quaternions. The
resulting time series is fed through an LTSM, which produces an orientation
estimate for the camera. We will however primarily focus on a more straight-
forward approach to combining the different stabilization approaches.

2.6.1 Multi-pass stabilization

One way to combine IMU-based stabilization with image based stabilization
is to do multiple stabilization passes. When a frame is read, an IMU-based
stabilization pass is performed on the image, which is then fed to an image-based
stabilization algorithm that adds an extra correction layer to the frame. This
has the very attractive property of addressing the problem at hand directly. If
the IMU-based stabilizer fails to stabilize the image for some reason, the image
based stabilization steps in to correct. The obvious downside to this is that
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such an approach is very expensive. The full image needs to be corrected and
transformed twice, instead of only applying a single transformation.

2.6.2 Efficient multi-pass stabilization

Fortunately, a two-pass stabilization approach can be sped up significantly by
merging the two passes into a single one, if the second pass consists of a stabi-
lization step that fits a model to a sparse feature set. Such algorithms do not
need to estimate the features on the stabilized frames. Instead, one can esti-
mate and track the features on the raw input frames and then apply the sensor
based image transform to the feature set before fitting the model. Additionally,
one can use the information from the IMU-based stabilization step to improve
the feature point tracking in the unstabilized frame. By applying the inverse
stabilization transform from the IMU-based stabilizer one can produce a guess
as to where the feature points are supposed to have moved in the new frames.
These two ideas combined leads to feature point tracking that is almost equiva-
lent to tracking on IMU-stabilized frames, without actually having to apply the
transform to the full image in between. We will now discuss how this can be
done using the purely gyroscope-based stabilizer described in Section 2.2.

2.6.3 Stabilizing the feature points

Assume that we have some feature set xk from the frame I that has been tracked
into the next frame J yielding the corresponding points yk and some estimate
of the location of the corresponding points to x̂k in Î, where Î is I stabilized
with the gyro stabilizer. To get the estimation of the corresponding points ŷk
in the gyro-stabilized J , called Ĵ , we just subtract the offsets calculated with
Equation (2.13) from yk, yielding

ŷk = yk − (∆x,∆y). (2.108)

2.6.4 Producing the IMU-based initial guess for the new
feature point locations

We would like to use the inverse of the gyro-based stabilization transform to
produce a better initial guess for the feature point locations, to get better feature
point tracking accuracy and performance. If the camera had a global shutter,
this would be trivial. In that case, one could simply calculate an initial guess
for ŷk, ˆ̂yk with

ˆ̂yk = xk + (∆x,∆y) (2.109)

(with (∆x,∆y) calculated with Equation (2.13)). Under rolling shutter how-
ever, things are slightly more complicated. The offset for the image points is a
function of time, (dx, dy) = ∆(t), since the camera moves continuously between
the frames. The estimated new location for the point xk is

ŷk = xk +∆(tck) (2.110)
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where tck is the capture time of the point xk. This capture time is in turn de-
pendent on the offset itself, since each row in the image is captured at a different
time point. The function ∆(t) is sampled discreetly at each gyro measurement.
To get ŷk one can iterate through the samples of ∆(t) and for each sample time
ts check if tc(xk +∆(ts)) ≥ ts. The first time this happens, the point will have
been captured, and ts ≈ tck . Iterating through every sample of ∆(t) for every
tracked feature point is inefficient, but since ∆(t) is the same for every point and
image rows are captured from the bottom and up, we know that the point with
the smallest y coordinate will be captured first. One can therefore maintain
a queue of feature points sorted by y coordinates, and check the capture-time
condition for the lowermost point each time a new gyro sample comes in, pop-
ping the points from the queue and appending them to a vector containing ˆ̂yk
as the condition is met. With this setup, producing the gyro-based guess for
the feature point locations in the next frame adds very little overhead to the
stabilization process.

2.7 Quantifying image stability

To properly compare different stabilization algorithms, it is important to have
some metrics to evaluate against. For this purpose, three different metrics
are used: Peak-Signal-to-Noise ratio, structural similarity between consecutive
frames and information loss. The first three estimate how similar consecutive
frames look, whereas information loss is important to measure to ensure that
an algorithm actually preserves a large portion of the image.

2.7.1 PSNR

Given an m × n image I and a noisy approximation of that image K, one can
define PSNR as

PSNR = 10 log10(
MAX2

I

MSE
) (2.111)

where MAXI is the maximum pixel value in the image I and MSE is the mean
squared error between the image I and the approximation K:

MSE =

m∑
i=1

n∑
j=1

(I(i, j)−K(i, j))2. (2.112)

To measure image stabilization, one can consider the frame fn+1 an approxima-
tion of the previous frame fn. A video feed with higher average PSNR across
all consecutive frame pairs can then be considered more stable then one with
lower average PSNR.

2.7.2 Structural similarity

Structural similarity is a perception-based model of similarity between two im-
ages [19]. The structural similarity is defined as a multiplicative combination of
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a luminance term, a contrast term and a structural term. Let x and y denote
two equally sized subwindows in the images I and K. The structural similarity
between these windows is then

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (2.113)

(Equation (13) in [19]) where µx, µy denotes the mean pixel value in the win-
dow x and y respectively, σ2

x, σ
2
y the variance in each window and σxy the cross-

covariance between the windows. C1 and C2 are regularization parameters de-
fined as C1 = (K1L)

2 and C2 = (K2L)
2. K1 and K2 are design parameters

typically set to some value smaller than one and L is the dynamic range of the
images. The rationale behind the measurement is that noise in the image is less
noticeable in regions that are either very bright or very textured. To get the
score between two full frames, the measure is averaged across each window pair.

2.7.3 Information loss

Most digital image stabilization algorithms require some cropping of the video.
In order to penalize excessive cropping, we also measure information loss for
each stabilized video. To define this, the minimal crop required to get a frame
without black regions is calculated. The measure is then the ratio between the
cropped video size and the full frame size for each frame in the feed. A similar
metric was used in for instance [18].
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Chapter 3

Method

3.1 Data

The following section contains information about the data that is used to eval-
uate the stabilizers.

3.1.1 Video sets

Several videos, along with appropriate sensor data, have been recorded with two
different Axis provided PTZ cameras and are used to test the image stabilization
algorithms. The first camera is a model P5655 PTZ camera which may record
videos at 25 FPS and 1920x1080 resolution. The second camera is a Q6318
model PTZ camera. This camera records at 30 FPS and has a sensor resolution
of 3820x2160, but the video material is recorded at 1920x1080 resolution for
easier comparison. Gyroscope and accelerometer data is recorded with a sam-
ple rate of 500 hz. The cameras both have different IMU sensors, with the IMU
in the Q6318 being slightly more accurate. Five video sets are used for evalu-
ation. The cameras are set up in a camera mount loosely fitted to a wooden
base, that can be subjected to manual shaking. Five (include real world set
later) different data sets are recorded and used to test the various image-based
stabilization algorithms. Each data set contains a video with varying degrees of
shakiness and an accompanying gyroscope and accelerometer series. The first
set, P5655 road zoom, is a recording of a road crossing with light traffic and
some flag poles waving in the wind in the foreground. This is recorded at full
zoom for the P5655, 31x magnification. The second set is Q6318 road zoom 31.
This set is recorded with the Q6318 camera at 31x magnification. The scene
recorded is a road with light traffic and surrounding buildings. The third set
is Q6318 building zoom 31. This is recorded with the Q6318 camera at 31x
magnification. The scene is a building wall and contains very little foreground
movement. The fourth set, Q6318 door zoom 15 is a recording of a door by
the Q6318 camera at 15x magnification. The final set, Q6318 table zoom is
a recording of a table and accompanying chairs at 15x zoom with the Q6318
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camera. Each set gives the algorithms 300 consecutive frames worth of data to
update any internal state with before stabilization begins to ensure appropri-
ate settling time. After this, the video is stabilized for 600 consecutive frames.
The sensor-fusion Kalman filter does not have any scene dependence. This can
therefore be evaluated on a simpler scene than the image based stabilizers. Two
additional sets are recorded with the Q6318 camera mounted in the same po-
sition. The camera records a checkerboard pattern located on the wall, at no
zoom. In the first of these two sets (sixth in total), the camera remains com-
pletely static. This set is used to get a reference gyro and accelerometer series,
used to determine the initial IMU orientation and estimate gyro and accelerom-
eter variances. In the second of these sets (seventh in total), the camera is
subjected to light shaking in the plane spanned by the viewing direction of the
camera and the real-world gravity vector. The shaky checkerboard recording,
called Q6318 checkerboard, is stabilized with the purely gyro-based stabilizer
and the Kalman filter, using parameter estimates obtained from the first set.

3.1.2 Simulated data for sensor fusion

To be able to observe the sensor-fusion Kalman filter performance in a more
controlled environment, a simulated data series was used to compare the Kalman
filter position estimate to the position estimate one would get with a standard
integrator. The simulator starts with an initial orientation for the IMU that is
aligned with the global coordinate frame, represented by the quaternion

q =


0
0
0
1

 . (3.1)

At every time step t of the simulation, a small rotation ωdt is applied to the
previous orientation quaternion, where ω is the simulated angular velocity, here
given by

ω(t) =

 0
0

ωz(t)

 =

 0
0

π
180 sin(8πt)

 . (3.2)

The time step dt between each sample is 0.002 seconds, and the simulation
simulates 5000 samples. Each simulated gyro sample is given by

ωsim(n) = ω(ndt) + e+ b (3.3)

where b = 0.1 i and e is drawn from a normal distribution with zero mean and
variance 0.0012. The accelerometer measurements are simulated as

asim(n) = C(qndt)g + e (3.4)
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where C(qndt) is the rotation matrix rotating the global frame to the IMU frame
at time step ndt, g the simulated force of gravity, given as

g =

9.8140
0

 (3.5)

and e is drawn from a normal distribution with zero mean and variance 0.0012.
The position is then estimated with both the Kalman filter, as described in
Section 3.2.2, and passing the samples through a high-pass filter and integrating
the filtered gyroscope measurements according to Equation (2.44), which is
similar to how the gyroscope-based stabilizer estimates position. The first 3000
simulated samples are used as a settling period for the filter and the orientation
estimations are then compared for the final 2000 simulated samples.

3.1.3 Determining intrinsic camera parameters

Some of the methods require us to know the intrinsic camera matrix to be use-
ful. We use the same approach as Forssén and Ringaby in [10], which is the
approach described in the official OpenCV documentation [20]. OpenCV pro-
vides a camera calibration routine based on [21] that finds the intrinsic camera
matrix given ten or more input images of a predefined calibration pattern with
known world coordinates. We use 10 images of a 7x9 chessboard pattern taken
with the camera settings used when recording the videos of the data sets. The
chessboard has a known square size of 5x5mm.

3.2 Implementation

This section provides implementation details for the various stabilization ap-
proaches that have been implemented and evaluated.

3.2.1 Gyro stabilization

For the pure gyro stabilizer described in Section 2.2 we need to choose appropri-
ate parameter values for the proportionality constant in equation(2.13), called
the gain, the decay factor for the integrator θ, the decay β for the high pass
filter in equation(2.14) and the capture time of each line in the sensor, tl. The
parameters depend on camera and zoom-level and can be found in table 3.2.1.
The gain is found experimentally by comparing the pixel offsets from the gyro
stabilizer to the pixel offsets obtained by the image-based global motion stabi-
lizer on data sets that were not used for evaluation. The line time is based on
known information about the image sensor.
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Camera configuration Gain θ β tl
P5655 0.015 0.98 0.998 1.4 · 10−8

Q6318 15x zoom 0.006 0.98 0.998 0.7 · 10−8

Q6318 31x zoom 0.012 0.98 0.998 0.7 · 10−8

Table 3.1: Parameters used for the pure gyro stabilizer

3.2.2 Gyroscope-Accelerometer sensor fusion

The Gyroscope-Accelerometer sensor fusion is implemented in accordance with
the earlier derived scheme in section 2.3. The initial gyro bias estimate is set to
0. What remains is to get an initial estimate of the orientation, an estimate of
the accelerometer bias (which is assumed to be constant) and finding reasonable
settings for the matrices Qd and R. To get the initial estimate of the orientation,
the camera is left stationary for several seconds. The orientation is estimated by
calculating the mean accelerometer measurement during that time, and using
the orientation that would map g to the this mean acceleration as an initial
estimate. The matrix Qd represents the amount of uncertainty that is inserted
into the system each time we propagate the nominal state by integrating new
gyro measurements. This can be approximated as σ̂g

2∆t, the variance of the
gyro sensor multiplied by the time step ∆t. The estimate of the gyro variance
is obtained by calculating the variance of the gyro sequence from the stationary
camera period. For the matrix R, representing the observation variance, we use
the variance of the accelerometer series taken during the stationary period. We
now need some way to use the orientation estimates to do image stabilization. If
the Kalman filter estimates the two orientations q̂t and q̂t+1 for two consecutive
samples, one can calculate the small rotation ϕ required to rotate qt to qt+1.
This small rotation ϕ can be accumulated to an x, y pixel displacement using
Equation (2.13) and the same gain as the gyro stabilizer. The decay factor can
be set to 1 since the orientation estimations in the Kalman filter should already
be bias and error-corrected.

3.2.3 Image-based global motion stabilizer

OpenCV provides an implementation of the earlier described Good Features to
Track algorithm and was used to get initial feature point estimates [20]. The
number of feature points estimated is capped at a maximum of 200 features.
Features are a minimum of 20 pixels apart, and the threshold for the minimial
eigenvalue is set to 0.15. The features where tracked between frames using
pyramidal Lukas-Kanade tracking, again using the available implementation in
OpenCV [20]. The window size used was 21 x 21, and the number of pyramid
levels three. As feature points are tracked between frames, they are gradually
lost, partially due to uncertainties in the tracking, but also due to changes in
the observed scene. Once the number of features have been reduced below 75%
of the initial number of points, all points are re-estimated. A global motion
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vector between the consecutive frames are fitted using RANSAC. A set of cor-
responding points are randomly selected and used as the global motion vector.
Points more than 2 pixels apart from the estimation are considered outliers. 50
RANSAC iterations were used.

3.2.4 Combined gyro and global motion stabilizer

An initial set of feature points are estimated using the OpenCV implementation
of the feature point estimation algorithm described in Shi & Tomasi[16]. The
number of feature points estimated is capped at 200. Features are a minimum
of 20 pixels apart and the quality level is again set to 0.15. These features are
tracked into the next frame using pyramidal Lucas-Kanade tracking described in
Section 2.4.8, again using the OpenCV implementation of this algorithm. The
window size is 7 x 7 and the number of pyramid levels is three. The gyro-based
stabilization transform is applied to the tracked feature points, as described in
Section 2.6.2, and a global motion vector between the gyro-corrected feature
points from the previous frame. This is done in the same way as for the global
motion stabilizer described in Section 3.2.3. When tracking the points, the in-
verse gyro-based stabilization transform is applied to the feature points from the
previous frame to get a better initial guess, as described in 2.6.4. This stabilizer
has an option to use downscaled versions of the input image for stabilization.
The stabilizer has been tested at various input image resolutions, see results.

3.2.5 Background models

A background model can optionally be used with the combined gyro and global
motion stabilizer to mask features in the foreground. The background model is
updated every 10th frame, and a background mask is fetched from the model
and used when doing feature point estimation and tracking. Points tracked in
the foreground are excluded. The optical-flow based background model is used
exclusively in the final stabilization algorithm.

3.2.6 Optical flow background model

Dense optical flow is estimated using the OpenCV implementation of Gunnar
Farnebäcks method[20][22]. The median optical flow vector across the image is
extracted, and the distance between the optical flow vector at each pixel and
the median is calculated. The distance to the median is accumulated with a
forgetting-factor of 0.6. If the distance to the median is greater than 5 between
two consecutive frames, the pixel is considered to belong to the foreground.
This, multiplied by the transient gain of the accumulator, yields a cutoff of 12.5
for the accumulated background image. The background model can optionally
take downscaled versions of the image. The same cutoff for accumulated median-
distance is used at all resolutions.
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3.2.7 Image-based rolling shutter correction

In the rotation-spline based approach to image based rolling shutter correction,
3 rotation knots are used. The rotation knots are placed at the start of the
first frame, at the midpoint between the two frames and at the end of the last
frame. The number of blank lines between two images are determined by taking
the difference between two consecutive capture times, subtracting the line time
(same line times as used for the gyro stabilizer) parameters multiplied by the
number of rows in the image, and dividing the result by the line time:

Nb =
tfn+1

− tfn −Nrtline

tline
(3.6)

Iterative least-squares optimization using the SciPy[23] implementation of the
Levenberg-Marquadt algorithm (based on [24]) on (2.92) is used to fit the knot
rotations. This is used with a tolerance of 0.1, meaning that the optimization
is stopped when the cost function delta is smaller than 10 % of the current cost
function value. To get the camera matrix K, we used the approach described in
Section 3.1.3. The feature point estimations were obtained with the OpenCV
implementation of [16] and tracking with the OpenCV implementation of the
pyramidal Lucas-Kanade tracker. An extra outlier-rejection step was applied to
the tracked points, same as used in the original article [10]. After the feature
set xk in I has been tracked into J , yielding yk, the tracking is done in reverse:
track yk into I, forming x̃k. If the pixel distance between a point xk and x̃k is
greater than 5, it is rejected as an outlier.

3.2.8 Camera implementation of tracking algorithms

Server-side feature point tracking can be done efficiently using the built-in meth-
ods in OpenCV. When running in camera systems certain OpenCV features are
not available for use. Consequently, we provide our own implementation of Cal-
cOpticalFlowPyrLK and GoodFeaturesToTrack using OpenCL, based on the
descriptions of these algorithms in the earlier sections. The combined gyro and
global motion stabilizer implementation is ported to the camera with the same
parameters as described earlier, using our replacement functions instead of the
OpenCV equivalent. The feature point tracking is done on GPU to leverage the
parallel nature of the algorithm. This camera-side implementation is mainly
used to benchmark performance of the feature point tracking.

3.3 Evaluation Procedure

Each stabilization algorithm described in the implementation section is used
to stabilize the gathered footage. The algorithms are given one new frame at a
time to stabilize, along with any gyroscope and accelerometer samples that have
been gathered since the recording time of the previous frame. Each algorithm
must then produce a stabilized version of the given frame, before the next one is
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provided. The stabilization is divided into two steps: the update step, where the
stabilizer is fed a frame and IMU measurements and must update its internal
state, and the stabilization step, where any stabilization transforms are applied
to the image yielding the stabilized frame. Algorithm runtimes are measured
on the update step, since the final image stabilization warp will need to be
done by all stabilization algorithms anyway. The resulting stabilized video is
then evaluated based on two different metrics: PSNR and structural similarity
between consecutive frames. Information loss in the stabilized frame is also mea-
sured, to ensure algorithms do not crop the video excessively. Most importantly,
the videos are inspected visually: it is important to remember that these met-
rics acts as proxies for the subjective experience of watching stabilized footage,
which is the ultimate target for a stabilization algorithm. For the algorithms
that utilize feature point tracking, a variety of metrics related to the perfor-
mance of said metric is recorded: The number of feature points tracked and
number of feature point re-estimations, number of outliers in RANSAC when
fitting motion models. To evaluate the accuracy of the initial guess for the point
locations with the gyro-corrected feature point tracking, the distance between
the matched points in the new image and the initial guess is compared to the
distance between the matched points and the point location in the previous im-
age. Many of the stabilizers have stochastic elements in their implementations,
so each set is stabilized five times with each stabilizer.
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Chapter 4

Results

Table 4.1 contain stabilizer names used in the rest of the results sections, along
with a short description.
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Stabilizer Description
No stabilizer No stabilization is applied to the

video.
Gyro Purely gyro-scope based stabi-

lization, implemented as in sec-
tion 3.2.1

Kalman Accelerometer + Gyroscope sen-
sor fusion with a kalman filter,
implemented as described in Sec-
tion 3.2.2

KLT The feature-point based global
motion estimation stabilization
algorithm, implemented as de-
scribed in Section 3.2.3

Two pass Gyro + KLT One pass of gyro stabilization,
followed by a pass of KLT stabi-
lization, as described in 2.6.1.

Hybrid 1920x1080 One pass-version of the gyro +
KLT two pass stabilizer, imple-
mented as described in Section
3.2.4. Input frames have dimen-
sions 1920x1080.

Hybrid 1920x1080 BG One pass-version of the gyro +
KLT two pass stabilizer, imple-
mented as described in Section
3.2.4. Input frames have dimen-
sions 1920x1080. Uses an optical-
flow based background model.

Hybrid 1280x653 One pass-version of the gyro +
KLT two pass stabilizer, imple-
mented as described in Section
3.2.4. Input frames are down-
scaled to dimensions 1280x653.

Hybrid 860x459 One pass-version of the gyro +
KLT two pass stabilizer, imple-
mented as described in Section
3.2.4. Input frames are down-
scaled to dimensions 860x459.

Hybrid 860x459 BG One pass-version of the gyro +
KLT two pass stabilizer, imple-
mented as described in Section
3.2.4. Input frames are down-
scaled to dimensions 860x459.
Uses an optical-flow based back-
ground model.

Table 4.1: Stabilizer names and descriptions.
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4.1 Sensor fusion

4.1.1 Results on simulated data

Figure 4.1 contains the residuals and estimated angles from the Kalman filter
and integrated high-pass filtered simulated gyroscope values. The simulated
gyroscope and accelerometer variance was [0.0012, 0.0012, 0.0012] and the simu-
lated gyroscope bias was [0.001, 0.001, 0.001]. For the Kalman filter, the mean
residuals for the y and z angles was 1.475 ·10−6 rad and 1.475 ·10−6 rad respec-
tively. The variance was 2.269 ·10−9 rad2 and 5.183 ·10−9 rad2 respectively. For
the integrated high-pass filtered gyroscope measurements, the mean residuals
for the estimated angle in y and z was −3.183 · 10−5 rad and −4.587 · 10−5 rad
respectively. The variance was 5.508 · 10−10 rad2 and 8.744 · 10−10 rad2 respec-
tively. A comparison with estimations from integrating the unfiltered gyroscope
measurements can be found in figure 4.2.

Figure 4.1: Estimated true orientation of the camera with the Kalman filter and
integrated high-pass filtered gyro values on simulated data with equal gyroscope
and accelerometer variances. The first plot shows the y-angle residuals, the
second plot z-angle residuals, the third plot shows estimated y angle, the third
plot shows estimated z angle
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Figure 4.2: Estimated vs true angular offsets in y, z using the Kalman filter,
integrated gyro values and integrated high-pass filtered gyro values from sim-
ulated data with equal gyroscope and accelerometer variances. The first plot
shows the y-angle residuals, the second plot z-angle residuals, the third plot
shows estimated y angle, the third plot shows estimated z angle

4.1.2 Results on real data

The standard deviation of the gyroscope measurements from a 45 second mea-
surement series taken from the stationary Q6318 was
σg =

[
0.000763 0.000595 0.000829

]
, and the estimated standard deviation for

the accelerometer was σa =
[
0.0427 0.0431 0.0197

]
. The mean accelerometer

value for this series was am =
[
9.731 −0.336 1.234

]
. σ2

g , σ
2
a and am where

used as the estimated gyroscope variance, accelerometer variance and to esti-
mate the initial orientation in the Kalman filter respectively. The stabilization
results using these parameters for the Kalman filter on the set Q6318 checkerboard
can be found in table 4.1.2. The difference in image offsets per frame between
the Kalman filter and the pure gyro stabilizer (using the same gain-parameter,
see table 3.2.1) can be found in figure 4.3. To get a better feel for the expected
Kalman filter performance on a data set of this kind, a simulation run using σ2

g

and σ2
a as variance for gyroscope and accelerometer values respectively can be

found in figure 4.4.
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Stabilizer Mean PSNR average SSIM Info loss
No stabilizer 333.84 0.982 0.002

Gyro 58.02 0.994 0.002
Kalman 52.22 0.923 0.005

Table 4.2: Stabilization metrics for pure gyro and sensor fusion Kalman filter
on the Q6318 checkerboard data set

Figure 4.3: Pixel offsets per frame when stabilizing the Q6318 checkerboard
data set for the pure gyro stabilizer and the sensor-fusion Kalman stabilizer
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Figure 4.4: Estimated vs true angular offsets in y, z using the Kalman filter,
integrated gyro values and integrated high-pass filtered gyro values from simu-
lated data with the estimated variances for the gyroscope and the accelerometer
from the Q6318 checkerboard set. The first plot shows the y-angle residuals,
the second plot z-angle residuals, the third plot shows estimated y angle, the
third plot shows estimated z angle

4.2 Stabilization results

The following section contains the qualitative stabilization results on footage
from the P5655 road zoom, Q6318 road zoom 31, Q6318 building zoom 31,
Q6318 door zoom 15 and Q6318 table zoom 15 sets. Tables 4.2 through 4.2
contain mean PSNR and mean SSIM scores per frame for the various stabilizers
that were evaluated on each respective data set, with error bars representing
standard deviations taken over the five stabilization runs done on each data set.
The reader is highly encouraged to look at the provided stabilized footage in
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the supplementary material to get a better idea of how the stabilizers actually
perform.

Stabilizer Mean PSNR SSIM Info loss
No stabilizer 15.124± 0.000 0.276± 0.000 0.000± 0.000

Gyro 20.483± 0.000 0.485± 0.000 0.016± 0.000
KLT 20.937± 0.032 0.548± 0.002 0.015± 0.000

Two Pass Gyro + KLT 25.592± 0.013 0.726± 0.001 0.022± 0.001
Hybrid 1920x1080 24.898± 0.006 0.695± 0.000 0.015± 0.000

Hybrid 1920x1080 BG 24.848± 0.019 0.693± 0.000 0.015± 0.000
Hybrid 1280x653 18.220± 0.016 0.379± 0.001 0.012± 0.000
Hybrid 860x459 16.478± 0.011 0.316± 0.001 0.014± 0.001

Hybrid 860x459 BG 16.484± 0.014 0.315± 0.001 0.011± 0.001

Table 4.3: Stabilization metrics for the P5655 Road zoom data set. A high
mean PSNR and high SSIM are indicative of good stabilization.

Stabilizer Mean PSNR SSIM Info loss
No stabilizer 20.953± 0.000 0.566± 0.000 0.000± 0.000

Gyro 20.554± 0.000 0.545± 0.000 0.005± 0.000
KLT 29.339± 0.020 0.892± 0.000 0.006± 0.001

Two Pass Gyro + KLT 29.322± 0.042 0.887± 0.000 0.014± 0.001
Hybrid 1920x1080 28.679± 0.037 0.876± 0.001 0.009± 0.001

Hybrid 1920x1080 BG 28.732± 0.039 0.877± 0.001 0.010± 0.001
Hybrid 1280x653 25.650± 0.043 0.784± 0.001 0.006± 0.001
Hybrid 860x459 23.782± 0.043 0.701± 0.002 0.011± 0.003

Hybrid 860x459 BG 23.704± 0.028 0.697± 0.001 0.008± 0.002

Table 4.4: Stabilization metrics for the Q6318 road zoom 31 data set. A high
mean PSNR and high SSIM are indicative of good stabilization.
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Stabilizer Mean PSNR SSIM Info loss
No stabilizer 20.433± 0.000 0.636± 0.000 0.000± 0.000

Gyro 25.210± 0.000 0.822± 0.000 0.006± 0.000
KLT 28.404± 0.029 0.877± 0.001 0.007± 0.001

Two Pass Gyro + KLT 29.872± 0.037 0.905± 0.000 0.008± 0.000
Hybrid 1920x1080 29.121± 0.032 0.892± 0.000 0.006± 0.000

Hybrid 1920x1080 BG 29.238± 0.029 0.894± 0.000 0.006± 0.000
Hybrid 1280x653 25.112± 0.055 0.799± 0.001 0.007± 0.001
Hybrid 860x459 23.069± 0.044 0.730± 0.001 0.004± 0.000

Hybrid 860x459 BG 23.080± 0.032 0.731± 0.001 0.005± 0.001

Table 4.5: Stabilization metrics for the Q6318 building zoom 31 data set. A
high mean PSNR and high SSIM are indicative of good stabilization.

Stabilizer Mean PSNR SSIM Info loss
No stabilizer 18.696± 0.000 0.549± 0.000 0.000± 0.000

Gyro 23.089± 0.000 0.746± 0.000 0.006± 0.000
KLT 26.758± 0.031 0.862± 0.001 0.012± 0.000

Two Pass Gyro + KLT 28.638± 0.031 0.902± 0.000 0.010± 0.000
Hybrid 1920x1080 27.852± 0.044 0.889± 0.001 0.010± 0.000

Hybrid 1920x1080 BG 28.150± 0.026 0.896± 0.000 0.009± 0.000
Hybrid 1280x653 23.660± 0.015 0.784± 0.001 0.010± 0.001
Hybrid 860x459 21.678± 0.031 0.697± 0.002 0.007± 0.002

Hybrid 860x459 BG 21.610± 0.071 0.693± 0.004 0.007± 0.002

Table 4.6: Stabilization metrics for the Q6318 table zoom 15 set. A high mean
PSNR and high SSIM are indicative of good stabilization.

Stabilizer Mean PSNR SSIM Info loss
No stabilizer 20.955± 0.000 0.733± 0.000 0.000± 0.000

Gyro 22.265± 0.000 0.772± 0.000 0.004± 0.000
KLT 30.536± 0.031 0.911± 0.000 0.007± 0.000

Two Pass Gyro + KLT 31.080± 0.033 0.919± 0.000 0.008± 0.000
Hybrid 1920x1080 31.172± 0.052 0.927± 0.001 0.008± 0.001

Hybrid 1920x1080 BG 30.052± 1.217 0.912± 0.017 0.007± 0.001
Hybrid 1280x653 26.664± 0.038 0.863± 0.001 0.007± 0.001
Hybrid 860x459 24.315± 0.068 0.811± 0.002 0.005± 0.001

Hybrid 860x459 BG 24.223± 0.049 0.809± 0.002 0.006± 0.001

Table 4.7: Stabilization metrics for the Q6318 door zoom 15 set
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4.2.1 Metrics for the feature point tracking

This section contains various metrics illustrating the performance of the feature
point tracking, particularly in the hybrid stabilizer. Various distance metrics
related to the gyro-based initial guess for new feature point locations on the
P5655 road zoom set can be found in Table (4.8). In this table, xest is the
gyro-based guess, x the previous feature point locations, yest the tracked feature
point locations with xest, y the tracked feature point locations with x. On the
sets with good performance for the pure gyro stabilizer we expect d(xest, yest)
to be smaller than d(x, y). The metrics are averaged across all runs and frames,
with error bars representing the standard deviation across all measurements of
that metric. Tables 4.9 to 4.13 contain metrics related to the tracking perfor-
mance of the various hybrid stabilizers on the sets p5655 road zoom,
Q6318 road zoom 31, Q6318 building zoom 31, Q6318 table zoom 15 and
Q6318 door zoom 15 sets. The measurements are averaged across the 5 stabi-
lization runs on each set, with error bars representing the standard deviation
for the average of each metric over the 5 runs. In these tables, track ratio is the
number of initial estimated feature points to the number of current tracked ones,
Nre the number of re-estimations done during a stabilization session, Nmasked

the average number of masked points per frame, Ntracked the average number
of tracked feature points per frame, Ninliers the average number of RANSAC
inliers per frame.

Test Case d(xest, yest) d(x, y) d(yest, y) d(x, xest)
p5655 road zoom 8.942± 5.229 19.718± 12.580 3.711± 5.167 19.797± 12.809

q6318 road zoom 31 5.625± 3.894 4.900± 2.884 0.255± 0.706 4.195± 2.711
q6318 building zoom 31 4.044± 2.625 5.846± 3.467 0.163± 0.056 4.866± 3.080
q6318 table zoom 15 7.146± 5.974 7.023± 4.503 0.286± 1.788 5.769± 4.027
q6318 door zoom 15 2.956± 1.615 5.753± 3.117 0.179± 0.369 4.541± 2.662

Table 4.8: Statistics for the IMU-based initial feature point guess for the various
data sets for the 1920x1080 hybrid stabilizer.

Stabilizer track ratio Nre Nmasked Ntracked Ninliers

Hybrid 1920x1080 0.833± 0.000 7.000± 0.000 0.000± 0.000 166.537± 0.000 128.901± 0.057
Hybrid 1920x1080 BG 0.811± 0.006 22.200± 2.638 1.242± 0.102 162.218± 1.267 135.965± 1.205

Hybrid 1280x653 0.809± 0.000 8.000± 0.000 0.000± 0.000 161.788± 0.000 134.508± 0.088
Hybrid 860x459 0.840± 0.000 6.000± 0.000 0.000± 0.000 160.978± 0.000 140.004± 0.072

Hybrid 860x459 BG 0.819± 0.002 25.600± 1.356 1.127± 0.061 152.893± 1.471 139.517± 1.404

Table 4.9: Hybrid stabilizer statistics for the P5655 road zoom set.
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Stabilizer track ratio Nre Nmasked Ntracked Ninliers

Hybrid 1920x1080 0.889± 0.000 0.000± 0.000 0.000± 0.000 177.900± 0.000 158.069± 0.029
Hybrid 1920x1080 BG 0.826± 0.030 0.600± 0.490 0.064± 0.023 165.229± 6.095 150.404± 3.959

Hybrid 1280x653 0.900± 0.000 0.000± 0.000 0.000± 0.000 179.970± 0.000 171.354± 0.018
Hybrid 860x459 0.889± 0.000 0.000± 0.000 0.000± 0.000 163.543± 0.000 160.249± 0.010

Hybrid 860x459 BG 0.844± 0.002 0.000± 0.000 0.020± 0.001 155.212± 0.297 152.922± 0.276

Table 4.10: Hybrid stabilizer statistics for the Q6318 road zoom 31 set

Stabilizer track ratio Nre Nmasked Ntracked Ninliers

Hybrid 1920x1080 0.900± 0.000 0.000± 0.000 0.000± 0.000 150.302± 0.000 136.319± 0.031
Hybrid 1920x1080 BG 0.833± 0.005 0.000± 0.000 0.034± 0.004 139.108± 0.853 127.498± 0.585

Hybrid 1280x653 0.932± 0.000 0.000± 0.000 0.000± 0.000 134.280± 0.000 128.219± 0.048
Hybrid 860x459 0.948± 0.000 0.000± 0.000 0.000± 0.000 117.602± 0.000 115.759± 0.026

Hybrid 860x459 BG 0.944± 0.004 0.000± 0.000 0.001± 0.001 117.003± 0.556 115.170± 0.527

Table 4.11: Hybrid stabilizer statistics for the Q6318 building zoom 31 set

Stabilizer track ratio Nre Nmasked Ntracked Ninliers

Hybrid 1920x1080 0.816± 0.000 0.000± 0.000 0.000± 0.000 163.298± 0.000 146.084± 0.030
Hybrid 1920x1080 BG 0.889± 0.007 1.000± 0.000 0.085± 0.003 177.763± 1.351 161.453± 1.181

Hybrid 1280x653 0.863± 0.000 0.000± 0.000 0.000± 0.000 172.602± 0.000 164.095± 0.013
Hybrid 860x459 0.854± 0.000 0.000± 0.000 0.000± 0.000 150.385± 0.000 148.393± 0.010

Hybrid 860x459 BG 0.815± 0.008 0.000± 0.000 0.025± 0.005 143.423± 1.356 142.067± 1.286

Table 4.12: Hybrid stabilizer statistics for the Q6318 table zoom 15 set

Stabilizer track ratio Nre Nmasked Ntracked Ninliers

Hybrid 1920x1080 0.857± 0.000 1.000± 0.000 0.000± 0.000 171.438± 0.000 145.172± 0.025
Hybrid 1920x1080 BG 0.835± 0.021 8.400± 4.030 0.567± 0.301 161.147± 10.450 146.135± 9.135

Hybrid 1280x653 0.911± 0.000 0.000± 0.000 0.000± 0.000 174.075± 0.000 160.615± 0.032
Hybrid 860x459 0.917± 0.000 0.000± 0.000 0.000± 0.000 114.628± 0.000 111.685± 0.022

Hybrid 860x459 BG 0.912± 0.003 0.000± 0.000 0.001± 0.001 113.994± 0.317 111.184± 0.242

Table 4.13: Hybrid stabilizer statistics for the Q6318 door zoom 15 set

4.2.2 Running times

Table 4.14 contains the average update time across all frames and test cases
for the host-side implementations of the Gyro, KLT, Two-pass Gyro + KLT,
1920x1080 hybrid and the 860x439 hybrid stabilizers. Update time refers the
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amount of time it takes to update the internal state of the algorithm, disregard-
ing the time it takes to use that information to apply the stabilization transform
to the frame . Error bars are the standard deviations of the update times. The
figures 4.5, 4.6, 4.7 show logarithm scale histogram of the update times for the
Gyro, KLT and 1920x1080 Hybrid stabilizers. The on-camera implementation
of the feature point tracking algorithm in section 2.4.9 with three pyramid levels,
200 feature points, 9x9 integration window and five iterations had an average
running time of 0.137 seconds per frame.

Stabilizer Update time (s)
Gyro 0.003± 0.001
KLT 0.013± 0.002

Two pass Gyro + KLT 0.130± 0.009
Hybrid 1920x1080 0.033± 0.003
Hybrid 860x439 0.027± 0.003

Table 4.14: Average update time across all test cases and runs for some select
stabilizers

Figure 4.5: Distribution of update times for Gyro
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Figure 4.6: Distribution of update times for the KLT stabilizer

Figure 4.7: Distribution of update times for the hybrid stabilizer

4.3 Image-based rolling shutter correction

Our implementation of the rolling-shutter correction algorithm presented by
Forssén and Ringaby was evaluated against their provided artificial data set.
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The average structural similarity between corrected frames and ground truth
frames in the house rot 1 B40 set was 0.7547, compared to the average structural
similarity of 0.4884 between ground truth frames and uncorrected frames. To
get a better feel for the result, see figure 4.8 and 4.9 for reference. The algorithm
was also tested on a 60 frame subset of the P5655 road zoom video. The mean
PSNR between consecutive frames was 16.418 and the mean structural similarity
0.3301, compared to a mean PSNR of 16.412 and a mean structural similarity of
0.3266 for consecutive uncorrected frames. The results were too inconsistent to
be used in a stabilization algorithm, since some frames were left heavily distorted
compared to the original. This is best illustrated by the example provided in
figure 4.10.

Figure 4.8: Side-by-side images of uncorrected image, corrected image with our
implementation and ground truth from the data set provided by Forssén and
Ringaby

Figure 4.9: Image difference between stabilized image and ground truth and
unstabilized image and ground truth
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Figure 4.10: Two consecutive corrected frames from the road zoom data set.
The flag poles in the right image are heavily bent.
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Chapter 5

Discussion

5.1 Sensor fusion viability

The possibility to use a sensor-fusion between the gyroscope and accelerometer
was initially considered a promising approach to the problem. A solution like
this is attractive for many reasons. It would be easy to fit into the current sta-
bilization framework and have little performance overhead. Unfortunately, the
sensor fusion approach investigated in this thesis does not seem to be viable.
The stabilization result in table 4.1.2 is worse than not applying any stabiliza-
tion at all. Worth noting here is that the high mean PSNR for the unstabilized
footage is likely due to how the video is compressed on export with a very white
background, but the structural similarity score still suggests the same thing.
In hindsight, this is perhaps not too unexpected. The accelerometer is mainly
used to correct accumulating errors due to biases in the gyroscope that the ac-
celerometer can observe due to the direct estimation of the camera orientation.
In the surveillance use case the position of the camera is not supposed to change,
meaning any drift from zero mean is known to be an error and can safely be
filtered out. Use of the Kalman filter could still be warranted however, since
it allows us to combine two different sources of information, gaining more data
and hopefully a more accurate estimation of the camera position. Unfortunately,
the accelerometer is too noisy for this to happen, having an estimated variance
that is roughly 2 orders of magnitude larger than the gyroscope. When simu-
lating with similar variance on gyroscope and accelerometer (see figure 4.1), the
Kalman filter performs better comparatively to the high-pass filtered integra-
tor and when simulating with the real estimated gyroscope and accelerometer
variances, the Kalman filter position estimate is way noisier than that of the
integrator, while the high pass filter effectively stops the gyroscope bias from
causing drift in the integrator (see figure 4.4 and compare with the drift for the
unfiltered integrator in figure 4.2). A Kalman filter approach would probably
be more viable if the camera was not statically mounted. In those cases, there
can be camera movement that is desired, which is more difficult to handle with
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a pure gyro-based stabilization algorithm.

5.2 Stabilization results

5.2.1 General observations

On the P5655 road zoom data set, the gyro + KLT hybrid stabilizer performed
better than either one did individually, while both the gyro and KLT stabilizer
offered significant image quality improvements than the unstabilized video. A
visual inspection of the results suggest that the gyro stabilizer does not prop-
erly align the frames, whereas it reduces rolling shutter wobble in the image
significantly, while the opposite is true for the KLT stabilizer, which has aligned
images but significant rolling shutter artifacts. The result was similar for the
set Q6318 building zoom 31 and Q6318 table zoom 15: Both gyro and KLT
stabilization offers improvements over the unstabilized input video and com-
bining the two yields the best result. For the sets Q6318 road zoom 31 and
Q6318 table zoom 15 the gyro stabilizer did not offer any real improvement
compared to the unstabilized videos. The KLT stabilizer reduced the jitter in
the video significantly, but still suffers from significant rolling shutter artifacts.
The combined approach performed somewhat worse than the pure KLT, which
is perhaps not too unexpected when the gyro stabilizer fails to stabilize, since
the initial feature point location estimate will not be correct. In general, the
one-pass Hybrid stabilizer and the gyro + KLT two pass version had similar
qualitative performance.

It is important to mention that the fact that the stabilization has been done
server-side on exported data can impact the result compared to a hypothet-
ical camera-side solution. When the video is saved and exported, the video
frames will have gone through several post-processing steps such as denoising
and sharpening. If an image-based stabilization was implemented direclty on
the camera it might gain access to the frames for analysis before these steps are
applied, affecting for example feature point tracking accuracy.

5.2.2 Downscaled versions of the hybrid stabilizer

In general, the hybrid stabilizer performed worse and worse the lower the reso-
lution of the video frame used for input to the stabilizer was, which is expected:
this is trading off accuracy for performance. What is noteworthy is that for the
test sets where the gyro stabilizer performs well, downscaling the hybrid stabi-
lizer to even 1280x653 meant losing any gain to using the pure gyro stabilizer.
This would suggest that if a hybrid solution is to be used, it should most likely
be operating on the input frame resolution.
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5.2.3 Running times

When looking at the average stabilizer update times on the server side imple-
mentations in table 4.14, the computational efficiency of the gyro stabilizer is
evident, which is in line with our initial expectations. Using the hybrid stabi-
lizer approach instead of relying purely on feature point tracking was roughly
three times slower, but approximately four times faster than doing two stabi-
lization passes, with equal qualitative results. The actual speed-up factor will
be different in an on-camera implementation, since the application of the gyro
stabilization step will be implemented more efficiently, but the two algorithms
perform roughly the same computational steps, with the exception of one not
having to apply the gyro stabilization to the full frame, so a significant gain can
still be expected. Downscaling the input image did improve the update time for
the hybrid stabilizer somewhat, but since the qualitative results generally were
not particularly impressive for the downscaled hybrid stabilizer, it is unlikely to
be used anyway. When looking at figures 4.5, 4.6 and 4.7 it is clear that the
image based stabilizers here have more outliers where update times are signif-
icantly slower than the average. This is due to the occasional re-estimation of
feature points, which is more expensive than the feature point tracking. One
could work around this by implementing a solution where the feature point re-
estimation is non-blocking. When features start running low, a re-estimation
is triggered in a separate process. When the re-estimation is finished, a few
frames will have passed. The re-estimated points are tracked to the current
frame and then swapped with the current estimates, removing the outlier cases
where updates are significantly slower than average performance.

The main bottleneck for an image-based stabilizer to be viable on target is
the requirement on real time feature point tracking. It is the most expensive
computational step in the KLT and Hybrid stabilizers and an integral part of
many image-based stabilization methods. With the current GPU implemen-
tation on target, the performance is not good enough to be considered real
time when tracking points in full resolution. An average tracking time of 0.137
seconds per frame corresponds to around 7 FPS, which is quite far from the
25-30 FPS the cameras record in. Performance might improve somewhat with
a more optimized implementation, but it is likely that stronger hardware would
be required to reach acceptable performance.

5.2.4 Gyro-based initial guess for KLT stabilization

For the test sets P5655 road zoom, Q6318 table zoom 15 and
Q6318 building zoom 31 the gyro stabilizer performed well (as discussed earlier)
and applying inverse gyro stabilization to the feature points to produce a new
initial guess placed the initial feature point guess significantly closer to the final
tracked locations compared to when not using the guess. In the remaining cases,
where the gyro stabilizer performed poorly, the initial guess is about as far away
from the final point as just using the previous feature point locations, which is
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expected.

5.2.5 Background model performance

The background models used with the hybrid stabilizer did not offer any sig-
nificant performance differences to the version without it when looking at the
image stabilization metrics. When looking at the tracking performance, one
would look for something like higher inlier counts in RANSAC compared to
the version without it, but this does not seem to be the case. While the back-
ground model did not hurt the qualitative results, it does not seem to offer
much improvement over just using RANSAC for model fitting. Having a good
outlier rejection criteria in RANSAC is significantly cheaper computationally
as well. That being said, it is possible that a background model could still in-
crease stabilizer robustness if more time is spent tuning the background model
parameters.

5.3 Image based rolling shutter correction

The image based rolling shutter correction approaches used by Forssén and
Ringaby yielded disappointing results on our data sets. There could be errors
in the implementation since both the authors do not provide official source code
for their algorithms to compare with. When comparing our implementations
of their algorithms to other third party implementations and evaluating on the
reference set provided by Forssén and Ringaby there does not seem to be no-
table differences. One possible explanation for this is a high requirement on
feature points spread across the entirety of the image, as discussed in for in-
stance Grundmann et. al [11]. They make modifications to the feature point
detection algorithm to find more features in less distinguishable areas of the
image. Investigating if these modifications would yield better results for our
use-case would be an interesting point of further research. It is worth noting
however that more feature points comes at a notable performance cost in an
already limited hardware environment and it might not be worth adding that
correction layer if this cost is too high. It is also worth noting that the algorithm
used to fit the rotation spline is a least-squares algorithm instead of RANSAC,
making the solution more susceptible to outliers. We used the outlier rejec-
tion method suggested by Forssén and Ringaby of doing reverse tracking, but
it is possible that more could be done to remove potential outliers from the
set. Even if the algorithm would produce qualitatively good results, the least
squares minimization process required to fit the quite large motion model took
significant time to execute even server-side, where performance is expected to
be significantly better than on camera. This could probably be accelerated with
dedicated hardware, but presents a very severe limitation regardless.
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5.4 Conclusions & Further work

The hybrid stabilization approach showed some qualitative promise, while hav-
ing the very desirable property of operating on top of the gyro-based stabi-
lization layer. The main bottleneck is attaining sufficient feature point tracking
speeds on camera, which seems out of reach at full resolution given current hard-
ware, but it is possible that a more efficient implementation would enable this
in the future. Introducing scene dependence by using image analysis remains a
major drawback. Including the accelerometer does not seem to improve image
stabilization, in large part due to the noise levels of the sensor and the fact that
the accumulation of errors can be addressed with the assumption of all camera
motion being unwanted. To address the proposed research question: Adding a
simple image-based stabilization layer to a gyroscope-based stabilizer improves
the qualitative performance significantly, but real-time performance is barely
out of reach with current hardware. One interesting approach to study further
would be to expand the Kalman filter to include motion estimates from the fea-
ture points, similar to [6] and [17]. The corresponding point pairs likely produce
more accurate estimates of the camera orientation than the accelerometer. The
main challenge here is probably to find a good model for rolling shutter and
how it influences the credibility of the feature point estimates (both [6] and [17]
assume global shutter). The image-based rolling shutter correction was largely
unsuccessful. Even with better qualitative results, the computational require-
ments of the approach used would remain daunting. Further exploring real-time
rolling shutter correction using image analysis could improve results greatly.
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