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Abstract

In their paper ([12]), Vanden-Broeck, Miloh and Spivack describe two lim-

iting behaviours of irrotational, axisymmetric capillary water waves using nu-

merical methods. They found a two-parameter family of nontrivial solutions.

Some solutions of small amplitude approach a uniform stream, while oth-

ers approach a static configuration. Our main interest is with the branch of

static configurations, and most importantly, a bifurcating curve which occurs

at each point of the static branch. The static branch begins at a cylinder-like

solution and then smoothly varies with wave steepness until it terminates at

a solution corresponding to spheres (droplets). In this work, we wish to show

analytically that for each point of the static branch, there exists a connecting

curve of non-static solutions. We do this by first identifying the static config-

uration, and then performing a continuation analysis at an arbitrary point of

the static branch. Our methods include nonlinear functional analysis, as well

as classical theory of existence and regularity of solutions through classical

Schauder estimates for elliptic partial differential equations.
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Populärvetenskaplig Sammanfattning

Inom fysiken och vissa delar av matematiken siktar man p̊a att beskriva s̊a mycket

av naturen som möjligt. Det gör man genom att hitta modeller som passar bäst

till varje situation. Naturligtvis är vissa system mycket sv̊arare än andra att först̊a

matematiskt och vattenv̊agor är ett exempel p̊a ett s̊adant system. Under 1800-talet

formulerades Euler-ekvationerna, som beskriver rörelsen av ideala fluider, det vill

säga inkompressibla fluider med konstant densitet. Kopplade till Euler-ekvationerna

är de randvillkoren som kan avgöra vilket slags v̊agor formeras. Det finns gravi-

tationsv̊agor och kapillärv̊agor. Gravitationsv̊agor p̊averkas främst av gravitation,

vilket är deras återställande kraft. Åt andra sidan, kapillärv̊agornas dynamik domin-

eras främst av ytspänning. I denna uppsatsen, studerar vi kapillärv̊agor som uppst̊ar

p̊a en cylindrisk vattenstr̊ale och som p̊averkas endast av ytspänning. Syftet är att

vissa att icke-stationära lösningar existerar, vilket innebär att vi letar efter lösningar

när v̊aghastigheten är skild fr̊an noll.
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1 Introduction

This subsection is based on [6] and [12]. We study the periodic, capillary waves of an

inviscid (frictionless), incompressible fluid in a simply connected three-dimensional

jet-like domain Ωη ⊂ R3, bounded in the vertical direction and extending horizon-

tally to the whole real line (see figure 1). The flow is described by the gradient of

the potential function ϕ and is assumed to be irrotational, axisymmetric about the

horizontal z-axis and periodic in z. The boundary ∂Ωη is a free surface. It is a priori

unknown and in cylindrical coordinates given by r = η(z) where r =
√

x2 + y2. The

domain is therefore given by Ωη = {(x, y, z) ∈ R3 :
√

x2 + y2 < η(z)}. Moreover, we

assume there is no flow outwards from the boundary. Mathematically, this translates

to ∆ϕ = 0 in Ωη,

∂nϕ = 0 on ∂Ωη

(1.1)

together with an additional boundary condition

1

2
|∇ϕ|2 − T

ρ
H(η) = B, on ∂Ωη. (1.2)

Equation (1.1) is known as the Neumann problem for the Laplace equation and (1.2)

is known as Bernoulli’s boundary condition. In the latter, T is the surface tension

coefficient, ρ is the density of the fluid and H(η) is the mean curvature of ∂Ωη, given

by

H(η) =
ηzz

(1 + η2z)
3/2

− 1

η(1 + η2z)
1/2

.

Figure 1: Water domain for 3 periods, following [9]
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We now give some background to this model. The corresponding equations are

derived form the so-called Euler equations. These describe the conservation of mass

and the conservation of momentum. Let V be a volume containing water (assume

it is a simply connected domain), and suppose u(x, t) be the velocity of the fluid at

position x = (x, y, z) and at time t. There are two types of forces we can consider.

1. Forces acting on the fluid when it is considered as a whole body, such as

gravity.

2. Local forces acting as a normal force onto elements of the fluid, such as pres-

sure.

Denote by F = F(x, t) the total force of type (1) per unit mass. Let P (x, t) be the

pressure, and let ρ = ρ(x, t) be the density of the fluid. These are the force of type

(2). First, the general formulae are

∂ρ

∂t
+∇ · (ρu) = 0

which is the conservation of mass and

ρ
(∂u
∂t

+ (u · ∇)u
)
= ρF−∇P + ν∆u

the equation of conservation of momentum, with ν being the dynamic viscosity, a

measurement of the amount of friction per density of the fluid. For our purposes, it is

enough to consider a special case of these equations, namely Euler’s equations, which

model an ideal, incompressible fluid of constant density ρ = ρ0 and no viscosity.

Then, the Euler equations are

∇ · u = 0 (1.3)

and

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇P + F. (1.4)

Vorticity, which measures the degree of local spin of the fluid, can also be left out

from the model. Then, the fluid is called irrotational, and mathematically this

corresponds to curl(u) = 0. Consequently, for a simply connected domain, there
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exists some potential function ϕ(x, t) such that we can write u = ∇ϕ and (1.3)

becomes

∆ϕ = 0.

Coupled to the equations of conservation of mass and momentum are the set of

boundary conditions to the fluid problem. These are the kinematic and dynamic

boundary conditions. They describe the surface of the fluid, which is not fixed. The

surface is given by r = η(z, t) in cylindrical coordinates. The kinematic boundary

condition requires that the flow occurs only within the defined domain V , so that

the volume of water always stays the same. Given that n = (x
η
, y
η
,−ηz) is the normal

vector to the surface (not of unit length), the condition reads

∂nϕ− ∂tη = 0. (1.5)

If the problem assumes a bottom boundary (such as the bottom of the ocean), the

condition there is defined analogously. The dynamic boundary condition accommo-

dates for surface tension and is given by

Pi − Po = TH(η) (1.6)

where T is the surface tension coefficient, H(η) denotes the mean curvature of the

surface and Pi and Po are the inside and outside fluid pressure respectively. For

our purposes, P0 = 0. Equation (1.6) can be combined with what is known as

Bernoulli’s principle. Assuming that the force F is a conservative vector field,

Bernoulli’s principle is derived from (1.4) and it is given by

∂ϕ

∂t
+

1

2
|∇ϕ|2 − P + U

ρ0
= B

where ∇U = F and B is known as the Bernoulli constant. This equation holds in

the whole fluid domain. Since our problem involves capillary waves with no gravity,

we assume that F = 0, and the only force considered is the local one generated by

surface tension, which we obtain by combining with (1.6). We then have Bernoulli’s

boundary condition given by

∂ϕ

∂t
+

1

2
|∇ϕ|2 − T

ρ0
H(η) = B
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with

H(η) =
ηzz

(1 + η2z)
3/2

− 1

η(1 + η2z)
1/2

The equation for the mean curvature can easily be computed using the divergence

of the unit normal. We have arrived at the following equations:

∆ϕ = 0, in V

∂nϕ− ∂tη = 0, on ∂V (1.7)

∂ϕ

∂t
+

1

2
|∇ϕ|2− T

ρ0
H(η) = B, on ∂V (1.8)

Since we are interested in steady, periodic capillary waves propagating in the z-

direction at some positive speed c, we can get rid of the time variable in ϕ(x, y, z, t).

This is done by first writing ϕ(x, y, z, t) = ϕ̃(x, y, z + ct). Now, we can define a new

function ϕ by

ϕ(x, y, z̃) := ϕ̃(x, y, z̃) + cz̃

where z̃ := z+ct. Rewriting the first two terms of equation (1.8) in terms of z̃ yields

c
∂ϕ̃

∂z̃
+

1

2
|∇x,y,z̃ϕ̃|2 = c

(
∂ϕ

∂z̃
+ c

)
+

1

2
|∇x,y,z̃ϕ− (0, 0, c)|2

=
1

2
|∇x,y,z̃ϕ|2 −

c2

2
.

The Bernoulli condition then becomes

1

2
|∇x,y,z̃ϕ|2 −

T

ρ0
H(η) = B̃

where B̃ = B − c2

2
. Note that the equation for H(η) is unchanged since it only

concerns spatial variables. The same kind of argument applies to equation (1.7). If

we redefine ϕ as ϕ and B̃ as B for simplicity, we finally have

1

2
|∇ϕ|2 − T

ρ0
H(η) = B, on ∂V

and

∂nϕ = 0, on ∂V

and we get the functional setup for our problem.
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Remark. As we shall see later, in the static solution, the term |∇ϕ|2 vanishes and

we obtain − T
ρ0
H(η) = B. Hence, for a static solution, the mean curvature of the

resulting surface is constant. We will then show that the surface is an unduloid.

2 Earlier result

In [12], Vanden-Broeck, Miloh and Spivack considered periodic, axisymmetric waves

propagating at a constant velocity on a jet. As in our case, the model was given by

(1.1) and (1.2), but the investigation was done numerically. They found that the

waves were characterized by the thickness of the jet Q (the flux of the velocity field

across a cross-section of the fluid) as well as their steepness S (the difference of the

highest and lowest amplitude points of the free surface function). Two values of Q

were investigated, Q1 and Q2. Our interest lies with Q2. It was found that as S

decreases, some of the solutions approach a uniform stream, while others reach a

static configuration. Of these two results, we are interested in the static configura-

tion, which exhibits two limiting behaviours. The static branch, illustrated in figure

2 as the solid curve, is our main point of interest.

Figure 2: Branch of static solutions, picture from [12]

The vertical axis corresponds to a scaled value of the mean curvature of the profile

curve of the unduloids, while the horizontal axis is for the steepness of the wave.
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Upon inspecting this graph, one can see that the configuration begins at a cylinder-

like shape and terminates at an array of spheres of a certain radius. The broken

curve that bifurcates from one point on the solid branch is the curve corresponding

to non-static solutions. This is the curve we aim to show exists in a rigorous way.

While in [12] they directly (numerically) compute solutions for various values of the

steepness, we work the other way around and establish first the static configuration.

We then introduce perturbations and we linearize the problem in the direction of

these perturbations. Applying the implicit function theorem, we get the non-static

branch.

As introduced in section 1 and [12], the capillary wave problem is described

by equations (1.1) and (1.2). We present here some details. First, we assume a

moving frame of reference. Let (η, ϕ) be a solution to the steady problem given

by the Neumann problem and the Bernoulli condition. This means that ∇ϕ (and

η) is periodic. Then, there is a constant c > 0 such that the function ϕ(x, y, z) =

φ(x, y, z) + cz is periodic, with φ periodic in z and c being the wave speed (either

to the left or right) chosen according to the definition in [12], that is,

c =
1

λ

∫ λ

0

∂zϕ dz,

where λ is the wavelength of the wave (or spatial period). Note that the velocity

potential ϕ is only unique up to a constant, but the decomposition ϕ = φ+cz makes

it unique. As we can see from equation (1.2), ϕ depends on η in some way, but it

also depends on c due to the decomposition we introduced above. Therefore, we

write (η, ϕη,c) to denote the solution to the full problem (equations (1.1) and (1.2)).

Concerning the function describing the profile curve of the surface, we denote by

ηs,k(z) (for suitable parameters s, k which we introduce later) the one corresponding

to the unduloid solutions, and by η(z) the more general profile curve which occurs

in the non-static case. Each point on the static branch is then given by (ηs,k, 0),

where the second component stands for the wave speed c.

The main outline of the thesis is as follows: in section 3 we go through the

necessary preliminaries and we also define more rigorously the function describing

the profile curve of the unduloids. Then, in section 4, we reformulate the problem
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by considering the left hand side of (1.2) as an operator of (η, c), where ϕ = ϕη,c

solves (1.1). We identify the static configuration (for a vanishing velocity field and

c = 0) and present the main theorem we wish to prove. This involves taking the

Fréchet derivative of the operator, and most importantly showing first that it exists,

which we do in section 5. Finally, in subsection 5.6, we prove the main theorem.

We would like to mention that [12] also found that the limiting behaviour as

the steepness S grows large indicates overhanging waves (in both cases Q1 and Q2).

However, we will not be concerned with this case.
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3 Background

3.1 Hölder spaces and nonlinear functional analysis

We introduce the implicit function theory for Hölder spaces, which we will use, as

well as the framework of the problem.

Definition 3.1. Let k ≥ 0 be a non-negative integer and let α ∈ (0, 1]. Suppose

Ω is an open subset of the Euclidean space Rn and let u ∈ Ck(Ω) be a k-times

differentiable function from Ω to R. The αth Hölder semi-norm is defined by

[u]C0,α(Ω) := sup
x,y∈Ω,x ̸=y

|u(x)− u(y)|
|x− y|α

and the αth Hölder norm is given by

∥u∥C0,α(Ω) := ∥u∥C(Ω) + [u]C0,α(Ω)

where ∥u∥C(Ω) = supx∈Ω |u(x)|. The Hölder space Ck,α(Ω) consists of all u ∈ Ck(Ω)

for which the following norm is finite

∥u∥Ck,α(Ω) :=
∑
|α|≤k

∥Dαu∥C(Ω) +
∑
|α|≤k

[Dαu]C0,α(Ω)

Note that we require u and its derivatives up to order k to be bounded on the closure

of Ω.

Definition 3.2. The open unit ball in Rn is given by the set

B = {x = (x1, · · · , xn) ∈ Rn : |x| < 1}.

We also define

B+ = {x ∈ B : xn > 0}, B0 = {x ∈ B : xn = 0}.

Definition 3.3. The domain Ω is said to be a Ck,α-domain if, for every p ∈ ∂Ω,

there exists a neighbourhood Up of p in Rn and a diffeomorphism κp : B → Up such

that

1. κp ∈ Ck,α(B) and κ−1
p ∈ Ck,α(Up);
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2. κp(B+) = Up ∩ Ω;

3. κp(B0) = Up ∩ ∂Ω.

We present here a compactness result which is useful in showing regularity later on.

It is a corollary of the Arzela-Ascoli theorem for functions in Hölder spaces.

Theorem 3.4. Let Ω be as before, and additionally assume that it is a Ck,α-domain

(in fact we only need a C1,α domain but we lose no information by assuming Ck,α).

Let {uj} ∈ Ck,α(Ω) be a sequence such that

sup
j

∥uj∥Ck,α(Ω) < ∞.

Then, there is a subsequence {ujh} of {uj} and a function u ∈ Ck,α such that

ujh → u, as h → ∞

in Ck(Ω).

Note that the convergence occurs in the space of k-differentiable functions.

In the following part we assume that X and Y are Banach spaces and L(X, Y )

is the space of bounded, linear operators equipped with the operator norm ∥T∥ :=

sup∥x∥=1 ∥Tx∥. Naturally, all results also hold for the previously defined Hölder

spaces. The idea is to introduce calculus on infinite dimensional function spaces.

We refer to [11] for the definitions and results.

Definition 3.5. Let a ∈ U , where U ⊂ X is an open neighbourhood. Then, if there

exists an operator DT [a] ∈ L(X, Y ) such that

lim
∥h∥→0

∥T (a+ h)− T (a)−DT [a]h∥Y
∥h∥X

= 0

we call DT [a] the Fréchet derivative of T at a ∈ U .

Remark. Fréchet differentiability can also be expressed as

T (a+ h)− T (a) = DT [a]h+ w(a, h)

where w(a, h) is the remainder term for which it holds that

lim
∥h∥→0

∥w(a, h)∥
∥h∥

= 0

and which can also be written in terms of little-O notation.
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Theorem 3.6. (Implicit function theorem for Banach spaces) Let X, Y and Z be

Banach spaces, and let U, V be subset of X and Y respectively. Moreover, let F ∈

Ck(U × V, Z) for k ≥ 0. Fix a point (x0, y0) ∈ U × V and suppose that DxF ∈

C(U×V,L(X,Z)) exists and DxF [x0, y0] ∈ L(X,Z) is an isomorphism. Then, there

exists an open neighbourhood U1 × V1 ⊆ U × V of (x0, y0) such that for each y ∈ V1,

there exists a unique point (ν(y), y) ∈ U1 × V1 satisfying F (ν(y), y) = F (x0, y0).

Moreover, ν ∈ Ck(V1, Z) and fulfills

Dν(y) = − (DxF [ν(y), y])−1 ◦DyF [ν(y), y]

In other words, if the operator describing the static curve of solutions is reg-

ular enough, then locally, there exists a function expressing a curve of non-static

solutions, at each point of the original curve.

3.2 Elliptic differential operators

Our focus is on second order operators. As before, Ω is an open subset of the

Euclidean space Rn.

Definition 3.7. A second order differential operator is an operator of the form

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj

+
N∑
i=1

bi(x)
∂u

∂xi

+ c(x)u

with (x1, ..., xN) ∈ Ω ⊂ Rn and with C0,α(Ω) coefficients aij(x), bi(x), c(x).

Definition 3.8. We say that L is elliptic at a point x if the coefficient matrix [aij(x)]

is symmetric and positive in the sense that

0 < λ(x)|ξ|2 ≤
∑
i,j

aij(x)ξiξj ≤ Λ(x)|ξ|2

where λ(x) and Λ(x) are the smallest and largest eigenvalues of [aij(x)] respectively,

and ξ = (ξ1, ..., ξN) ∈ RN \ {0}. If λ > 0 for all x ∈ Ω, then L is elliptic in Ω, and

strictly elliptic if λ ≥ λ0 > 0 for some constant λ0. Finally, we call L uniformly

elliptic in Ω if Λ
λ
is bounded in Ω, or equivalently, if the inequalities hold for constants

λ,Λ independent of x ∈ Ω. This definition is taken from [4].
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3.3 Surfaces of revolution and constant mean curvature (CMC)

The following subsection is based on papers [2] and [3] and on the book [8]. We

specifically look into surfaces of revolution and their construction since our setting

involves an axisymmetric water jet stream. These surfaces were first studied by the

French astronomer CH Delaunay in the 1840s. His main result is the following:

Theorem 3.9. (Delaunay, [2]) The only surfaces of revolution with constant mean

curvature are the cylinder, sphere, catenoid, undoloid and nodoid.

Figure 3: The five surfaces of Delaunay, Mladenov, Ivailo and Hadzhilazova, Mari-

ana. (2012). Geometry of the Anisotropic Minimal Surfaces. An. St. Univ. Ovidius

Constanta. 20. 79-88. 10.2478/v10309-012-0042-3.

Our goal is to isolate the surface we will work with, that is the unduloid, from

the ones mentioned above. We begin by outlying briefly Delaunay’s construction of

these surfaces. First, a definition.

Definition 3.10. A conic is the intersection of a plane and a right circular cone.

The equation of a conic is given by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

Example 3.11. The non-degenerate conics are the circle, the ellipse, the parabola

and the hyperbola. These are conics whose equations are non-reducible.

The construction of surfaces of revolution and constant mean curvature presented

here is based on the one given in [3]. It consists in tracing out the the foci (or focus)

of a conic as it rolls along a straight line. The resulting curve in the plane is then
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rotated to obtain a surface of revolution. For example, to obtain an unduloid, we

trace out the foci of an ellipse, and to obtain a catenoid, we trace out the focus of

a parabola. From the remark in the previous section, we know that T
ρ0
H(η) = B,

with an arbitrary positive constant B, for vanishing velocity. We also seek a surface

which is periodic. We can immediately rule out catenoids since they have a constant

mean curvature of 0 and are not periodic ([8]). We also rule out nodoids, since they

are self-intersecting and thus do not constitute a physical domain. This leaves us

with unduloids. Note that cylinders appear as a special case of unduloids, and are

in our case a limiting configuration. Similarly, the sphere is ruled out, but appears

as a limiting configuration in the form of a family of parts of spheres repeated

periodically.

3.4 Elliptic integrals

As the equations for an unduloid that we are going to use contain elliptic integrals,

we give a short introduction to the subject, see [7]. Elliptic integrals originally arose

in connection to the problem of finding the arc length of an ellipse, hence the name.

We only consider elliptic integrals of the first and second kind, whose definition will

be made clear shortly. Let an ellipse be given by

x2

c2
+

y2

a2
= 1 ⇐⇒ y = ±a

c

√
c2 − x2

where a and c are the radii of the ellipse, assuming also that a < c. Using the

formula for the arc length

s =

∫ c

a

√
1 +

(dy
dx

)2
dx

we get that the arc length of the ellipse (we call it W) is given by

W = 4

∫ c

0

√
c4 + (a2 − c2)x2

c2(c2 − x2)
dx.

Using the substitutions x = c sin(u) and dx = c cos(u)du, we obtain

W = 4c

∫ π
2

0

√
1−m sin2(u)du (3.1)
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with m = 1− c2−a2

a2
. Taking k =

√
m gives the eccentricity of the ellipse. From here,

we can generalize and allow for an arbitrary angle ϕ in the integration limit. This

directly gives us the definition of the incomplete elliptic integral of the second kind.

Definition 3.12. The incomplete elliptic integral of the second kind is defined as

P (ϕ, k) =

∫ ϕ

0

√
1− k2 sin2(u)du,

with 0 ≤ k ≤ 1. Using an appropriate substitution, it can also be written as∫ sin(ϕ)

0

√
1− k2t2√
1− t2

dt

for 0 < k < 1 and 0 ≤ ϕ ≤ π
2
. If ϕ = π

2
, we get the complete elliptic integral of the

second kind

E(k) =

∫ π
2

0

√
1− k2 sin2(u)du =

∫ 1

0

√
1− k2t2√
1− t2

dt.

Remark. Equation (3.1) is a complete elliptic integral of the second kind given by

W = 4aE(
√
m).

Definition 3.13. The incomplete elliptic integral of the first kind is defined as

F (ϕ, k) =

∫ ϕ

0

du√
1− k2 sin2(u)

=

∫ sin(ϕ)

0

dt√
(1− t2)(1− k2t2)

and the complete elliptic integral of the first kind is given by

K(k) =

∫ π
2

0

du√
1− k2 sin2(u)

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

with the same conditions on k and ϕ as before.

To finish this section, we present some formulae for derivatives and series of

complete elliptic integrals which will be useful later. These identities are found in

[7].

Lemma 3.14. It holds that

K ′(k) =
E(k)

k(1− k2)
− K(k)

k
(3.2)

and that

E ′(k) =
E(k)

k
− K(k)

k
. (3.3)
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Lemma 3.15. The power series expansions of the elliptic integrals of the first and

second kind are

K(k) =
π

2

∞∑
n=0

( (2n)!

22n(n!)2

)2
k2n (3.4)

and

E(k) =
π

2

∞∑
n=0

( (2n)!

22n(n!)2

)2 k2n

1− 2n
. (3.5)

Note that the power series have an infinite radius of convergence.

3.5 Parametrization of unduloids

The aim of this subsection is to first present a parametrization of unduloids given

in [5], and then introduce a reparametrization which will be more convenient for

the analysis of the problem. Let a and c be the radii of the profile curve of the

unduloid as illustrated in the figure, with c > a. Note that these parameters are not

necessarily the same as the radii of the underlying generating ellipse. Let (z(u), r(u))

denote the parametrization given by

z(u) = za,c(u) = aF
(µu

2
− π

4
, k
)
+ cE

(µu
2

− π

4
, k
)

(3.6)

r(u) = ra,c(u) =
√
m sin(µu) + n (3.7)

where u ∈ R, c > a > 0, F and E are incomplete elliptic integrals of the first and

second kind respectively, and we have

µ =
2

a+ c
, k2 =

c2 − a2

c2
, m =

c2 − a2

2
, n =

c2 + a2

2
.

We underline the dependence of (z(u), r(u)) on the parameters a and c. Later this

will be used to define new parameters.

Lemma 3.16. The function z defined in (3.6) is invertible, that is, its inverse is

given by some function µa,cua,c(z).

Proof. Observe that the elliptic integrals F and E are given by

F
(µu

2
− π

4
, k
)
=

∫ µu
2
−π

4

0

dν√
1− k2 sin2(ν)

(3.8)
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and by

E
(µu

2
− π

4
, k
)
=

∫ µu
2
−π

4

0

√
1− k2 sin2(ν)dν (3.9)

Both integrands in (3.8) and (3.9) are strictly positive, continuous functions. The

integration is taken in the interval (0, µu
2
− π

4
), which increases with u. Note that

this also implies that the inverse function ua,c(z) is periodic. Thus, F and E are

strictly increasing and u 7→ z(u) is strictly increasing.

By inverting equation (3.6), and inserting it into (3.7), we can rewrite the profile

curve in terms of a two-parameter function of z which we denote by ρa,c(z):

r(z) = r(µa,cua,c(z)) = ρa,c(z)

The period of this function (in terms of the distance on the z-axis) is given by

L = 2cE(k) + 2aK(k) (3.10)

where K(k) and E(k) are complete elliptic integrals of the first and second kind,

respectively, and the mean curvature of the corresponding surface is given by

H =
1

a+ c
. (3.11)

Our aim now is to introduce another parametrization which will depend on different

parameters than a and c.

Lemma 3.17. It holds that ρa,c(z) = cρa
c
,1(z/c).

Proof. We begin by rewriting (3.6) as

z(u)

c
=

a

c
F
(µu

2
− π

4
, k
)
+ E

(µu
2

− π

4
, k
)
.

Now, note that since

k2 =
c2 − a2

c2

we get that

a

c
=

√
1− k2.
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If we let G(u, k) be the inverse of

√
1− k2F

(v
2
− π

4
, k
)
+ E

(v
2
− π

4
, k
)

where v = 2u/c
a
c
+1

. Then, we have that

G
(z
c
, k
)
= µa,cua,c(z).

Note that G is a continuous function we get from taking the inverse of the elliptic

integrals. Since ρa,c(z) is obtained by inserting µa,cua,c(z) into equation (3.7), we

get

ρa,c(z) =

√
m sinG

(z
c
, k
)
+ n =

√
c2 − a2

2
sinG

(z
c
, k
)
+

c2 + a2

2
=

= c

√
1

2

((
1− a2

c2

)
sinG

(z
c
, k
)
+ 1 +

a2

c2

)
= cρa

c
,1(z/c).

Since a
c
=

√
1− k2, we can write

ρa,c(z) = cρa
c
,1(z/c) = cρ√1−k2,1(z/c).

Next, we fix the period. Using formula (3.10), we have

L = 2c(E(k) +
√
1− k2K(k))

Setting L = 2π and rearranging, we obtain a new parameter c(k) which depends on

k such that for c = c(k), the period is 2π.

c(k) =
π

E(k) +
√
1− k2K(k)

(3.12)

and therefore

L(k) = 2c(k)(E(k) +
√
1− k2K(k)) = 2π

We can now define the reparametrized function describing the free surface by

ηs,k(z) := sc(k)ρ√1−k2,1

(
z

sc(k)

)
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which now has a fixed period of 2πs and where s > 0 is a scaling factor. Thus, we

have

L(s, k) = 2π · s.

Additionally, taking

a = sc(k)
√
1− k2 (3.13)

and

c = sc(k) (3.14)

it follows that

ρa,c(z) = ρsc(k),sc(k)
√
1−k2(z) = sc(k)ρ√1−k2,1(z/sc(k)). (3.15)

Using formula (3.12), we note that we have a bijection between (s, k) and (a, c)

because for any 0 < a < c, we can write

k =

√
1− a2

c2
and s =

c

c(k)
=

c

c
√

1− a2

c2

using equations (3.13) and (3.14). Therefore, also due to equation (3.15), we have a

one-to-one correspondence between ηs,k(z) and ρa,c(z). The map (s, k) 7→ (a, c) is a

bijection from (0,∞)× (0, 1) to {(a, c) ∈ R2 : 0 < a < c}. We can now reformulate

equation (3.11) in terms of c(k) to obtain

Hs,k =
E(k) +

√
1− k2K(k)

π(1 +
√
1− k2)s

(3.16)

as the mean curvature of ηs,k(z). This reparametrization allows us to, in a sense, have

more control of the unduloids, and therefore of the free surface in the hydrodynamic

problem. To illustrate, if we fix s = 1, we obtain a 2π-periodic surface which only

depends on k, which we can vary. For 0 < k < 1, η1,k(z) gives a one-parameter

family of unduloids. Looking back at figure 2, it also makes sense to investigate the

two limiting cases. The case k = 0 corresponds to taking a = c which gives

r(u) = ra,c(u) =
√
n
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a constant. Therefore, the surface profile for k = 0 is a cylinder. Its radius can be

found through equation (3.16):

lim
k→0

Hs,k =
1

2s

where we see that the radius is s. On the other hand, letting k go to 1 gives

lim
k→1

Hs,k =
1

sπ

which we can recognize as the curvature of a sphere of radius sπ. Equivalently, we

can see this by letting k → 1 in equations (3.6) and (3.7). We have

z(u) = sπE
( u

sπ
− π

4
, 1
)
= sπ

∫ u
sπ

−π
4

0

cos(x)dx = sπ sin
( u

sπ
− π

4

)
and

r(u) =
sπ√
2

√
sin
(2u
sπ

)
+ 1 =

sπ√
2

√
cos
(2u
sπ

− π

2

)
+ 1 =

=
sπ√
2

√
cos
(
2
( u

sπ
− π

4

))
+ 1 = sπ

√
cos2

( u

sπ
− π

4

)
= sπ cos

( u

sπ
− π

4

)
.

Remark. We show that the infinimum of the profile curve function ηs,k(z) is strictly

positive. Clearly, in the original parametrization, it follows that profile curve is

bounded below by the constant a > 0. In the new parametrization, we have

inf(ηs,k(z)) = inf

(
sc(k)ρ√1−k2,1

(
z

sc(k)

))
= inf

(
sc(k)

√
1

2

((
1− a2

(sc(k))2

)
sinG

(
z

sc(k)
, k

)
+ 1 +

a2

(sc(k))2

))
.

Since the minimum of z
sc(k)

is achieved when sinG
(

z
sc(k)

)
= −1, we have that the

above quantity is larger than

inf

(
sc(k)

√
−1

2

(
1− a2

(sc(k))2

)
+ 1 +

a2

(sc(k))2

)
= inf

(
sc(k)

√
1

2
+

a2

(sc(k))2
3

2

)
> 0,

since s ∈ R+, inf(c(k)) = 1 and the expression inside the square root is strictly

positive.
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4 Continuation analysis

4.1 Reformulation of the problem

As in the beginning, the domain is given by Ωη = {(x, y, z) ∈ R3 : x2 + y2 < η(z)2}.

Let F : C2,α
per,e(R)× R → C0,α

per,e(R) be the second order operator given by

F (η, c) =
1

2
|∇ϕη,c|2 −

T

ρ
H(η) (4.1)

where η(z) is an, even, periodic function, ϕη,c = φη,c + cz (φη,c 2π-periodic in z) is

the solution to ∆ϕ = 0, in Ωη

∂nϕ = 0, on ∂Ωη

(4.2)

c > 0 is the wave speed and H is the mean curvature of ∂Ωη given by

H(η) =
ηzz

(1 + η2z)
3/2

− 1

η(1 + η2z)
1/2

.

The function spaces are defined as Ck,α
per,e =

{
f ∈ Ck,α, k ∈ N : f even and periodic

}
.

The selected definition of ϕη,c = φη,c + cz comes from our assumption of a moving

frame of reference, with wave speed c > 0 as introduced in section 1. Our aim in

this section is to first identify the static solutions, and then in section 5, we show

that problem (4.2) has a solution which is unique up to a constant. This solution

can be taken to be odd in z (if η(z) is even), and thus be unique. More details on

this will be provided in section 5.

4.2 Static case

In this subsection, we first investigate the static solutions for which the velocity field

vanishes and the surface is a surface of revolution with constant mean curvature.

Proposition 4.1. If c = 0, then ϕ = φ = constant.

Proof. Recall that our domain is Ωη = {(x, y, z) ∈ R3 : r < η(z)} and it is periodic.

We restrict it to a single period. Denote this new domain by

Ωη
0 = {(x, y, z) ∈ R3 : r =

√
x2 + y2 < η(z), 0 < z < L}
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The boundary of Ωη
0 is made up of three components: ∂Dη

1 = {r = η(z)}, i.e., this

is the horizontal free surface and ∂Dη
2 = {(x, y, 0) ∈ R3, r < η(z)} and ∂Dη

3 =

{(x, y, L) ∈ R3, r < η(z)} are the sides of the ”cut off” surface. Since c = 0

and φ is periodic in z, we have periodic boundary conditions: φ|∂Dη
2
= φ|∂Dη

3
and

∇φ|∂Dη
2
= ∇φ|∂Dη

3
. Therefore,

0 =

∫
Ωη

0

φ∆φ d(x, y, z) = −
∫
Ωη

0

|∇φ|2 d(x, y, z) +

∫
∂Dη

1

φ∂nφ dS

+

∫
∂Dη

2

φ(−∂zφ) dS +

∫
∂Dη

3

φ∂zφ dS

and because ∂nφ = 0 on ∂Dη
1 , we get

0 =

∫
Ωη

0

|∇φ|2 d(x, y, z)

Since |∇φ|2 is non-negative, ∇φ = 0 and since Ωη
0 is connected, φ = constant.

Given the previous proposition, indeed if c = 0, it follows that

1

2
|∇ϕη,c|2 −

T

ρ
H(η)

∣∣∣∣
c=0

= −T

ρ
H(η) = B

implying that in this case the mean curvature is constant, and therefore, we get a

two-parameter family of static, unduloid solutions ηs,k(z), as we have defined them

in section 3.5. Note that they have period 2πs, so for any given fixed period (that

is any given fixed s), we get a one-parameter family instead.

4.3 Main result

Now that we have identified the static solutions in the form of ηs,k(z), we want to

perform a continuation analysis at one such solution in order to establish the exis-

tence of non-static solutions. We do this by applying the implicit function theorem

to the operator F . We ultimately want to prove the following theorem.

Theorem 4.2. The equation F (η, c) given by

1

2
|∇ϕη,c|2 −

T

ρ
H(η) = B
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for B chosen to be the one corresponding to a given η1,k0, where H(η) is the mean

curvature of ∂Ωη and where ϕη,c = φη,c + cz with φη,c periodic in z satisfies∆ϕη,c = 0, in Ωη

∂nϕη,c = 0, on ∂Ωη

has a unique curve of non-static solutions near each η1,k0, that is, there exists a

neighbourhood U × (−δ, δ) ⊂ C2,α
per,e(R) × R, for some δ > 0, of the point (η1,k0 , 0)

such that for each c ∈ (−δ, δ), there exists a unique curve (η, c) in U × (−δ, δ), with

F (η1,k0 , 0) = F (η, c).

The proof of this theorem constitutes the remaining sections.

5 Proof of the main result

We pick an arbitrary point on the static branch, corresponding to a static solution

given by (η1,k0 , 0) for some fixed k0, unit scale s = 1 and wave speed c = 0. This

solution represents an unduloid of period 2π, and therefore it is also 2π periodic.

It is possible to consider more general solutions, that is solutions which are L-

periodic for some arbitrary period L. This is because we can always define a pair

(η̃(z′), ϕ̃(x′, y′, z′)) whereη̃(z′) = L−1η(Lz′)

ϕ̃(x′, y′, z′) = L−1ϕ(Lx′, Ly′, Lz′)

and which is also a solution to the system of equations 4.1 and 4.2. Therefore, we

can make the choice to restrict to 2π-periodic functions without loss of generality.

Now, in order to use Theorem 3.6, we must check that the operator F is regular,

that is, DηF ∈ C
(
C2,α

per,e(R)× R,L(C2,α
per,e(R), C0,α

per,e(R))
)
exists and DηF [η1,k0 , 0] is

an isomorphism between the spaces C2,α
per,e(R) and C0,α

per,e(R). Since the operator is of

the form

F (η, c) =
1

2
|∇ϕη,c|2 −

T

ρ
H(η),
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the first step is an investigation of the dependence between (η, c) and ϕη,c. As

opposed to the static case, we now assume c ̸= 0, so ϕη,c = φη,c + cz and (4.2) is

equivalent to ∆φη,c = 0, in Ωη

∂nφη,c = −c∂nz, on ∂Ωη

(5.1)

The main difficulty we face lies in that η is unknown a priori. For this reason, we

flatten the domain Ωη through a diffeomorphism. Next, we introduce the corre-

sponding velocity potential in the new domain, φ̂η,c. This naturally modifies the

equations (4.2) for the capillary wave problem. Our goal is then to show regularity

of F using the new equations for φ̂η,c. This we achieve by proving that the map

(η, c) 7→ φ̂η,c is Lipschitz and Fréchet differentiable. The use of the diffeomorphism

allows us to do work in the flat domain without changing the operator F (η, c). The

process involves obtaining a priori estimates for φ̂η,c which are then also indepen-

dent of (η, c) in some way which will be clarified later. It is helpful to think of the

operator as a composition between the map (η, c) 7→ φ̂η,c and

G(φ̂, η) =
1

2
|∇̂φ̂+ (0, 0, c)|2 − T

ρ
H(η)

such that

F (η, c) = G(φ̂η,c, η)

where we denote by ∇̂ the gradient operator in terms of φ̂ in the flat domain.

Naturally, if both components of the composition are regular, so is their composition.

5.1 Flattening of the domain and equivalence of the free

boundary problem to a problem with fixed domain

There are several ways of flattening and they involve finding a diffeomorphism be-

tween the physical domain and a corresponding cylindrical domain. Here we use a

simple one where the x and y coordinates are scaled by η(z). To avoid singularities,

we omit cylindrical coordinates. The map J given by

J(x, y, z) =
(x
η
,
y

η
, z
)
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with inverse

J−1(s, t, z) = (sη, tη, z),

where s2 + t2 < 1, can be taken as our flattening map. The velocity potential

ϕη,c = φη,c + cz for c ̸= 0 for the new flat domain, is then given by

ϕ̂η,c = (φη,c + cz) ◦ J−1

Moreover, we have

J ′ =


1
η

0 −xηz
η2

0 1
η

−yηz
η2

0 0 1


and thus

(J−1)′ =


η 0 sηz

0 η tηz

0 0 1


Proposition 5.1. Given that η > 0 and η ∈ C2,α

per,e, the map J : (x, y, z) 7→
(

x
η
, y
η
, z
)

is a C2,α diffeomorphism between the sets {(x, y, z) ∈ R3 :
√

x2 + y2 ≤ η(z)} and

{(s, t, z) ∈ R3 :
√
s2 + t2 ≤ 1}.

Proof. Note that

J ◦ J−1(s, t, z) =

(
sη

η
,
tη

η
, z

)
= (s, t, z)

and thus J ◦ J−1 = id. Conversely, we have

J−1 ◦ J(x, y, z) = (sη, tη, z) = (x, y, z)

and thus J−1 ◦ J = id. Additionally, since η > 0 for all z, it follows that J is as

smooth as η.

We now rewrite the problem in terms of the new coordinates. With the trans-

formation J , our new domain is given by Ω1 = {(s, t, z) ∈ R3 : s2 + t2 < 1} and is
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now fixed. The surface profile is given by ∂Ω1 = {(s, t, z) ∈ R3 : s2+ t2 = 1}. Then,

the problem (5.1) equates to

∆φ =

(
1 + s2η2z

η2

)
φ̂ss +

(
1 + t2η2z

η2

)
φ̂tt + φ̂zz + 2

stη2z
η2

φ̂st−

2
sηz
η

φ̂sz − 2
tηz
η
φ̂tz +

(
2sη2z − sηηzz

η2

)
φ̂s +

(
2tη2z − tηηzz

η2

)
φ̂t = 0, in Ω1

(5.2)

and

∂nφ =

(
s

η
∂s +

t

η
∂t +

(
sη2z
η

∂s +
tη2z
η
∂t − ηz∂z

))
φ̂ = cηz, on ∂Ω1

We introduce a simplified notation for the new problem.Lηφ̂ = G, in Ω1

Bηφ̂ = H, in ∂Ω1

(5.3)

where G = 0 and H = cηz. Now, the operator F is written as

F (η, c) =
1

2
|∇φη,c|2 −

T

ρ
H(η)

with

|∇φ|2 = 1

η2
φ̂2
s +

1

η2
φ̂2
t +

((
−sηz

η
∂s −

tηz
η
∂t + ∂z

)
φ̂

)2

(5.4)

In order to adapt the methods we use to our periodic setting, we make one more

change, where we repeat the steps used to make the set Ω1
0, i.e., the endpoints of Ω

1

are identified with each other. Clearly, Ω1
0 is a C2,α domain. Some remarks follow.

Remark. The coefficients of Lηφ̂ = 0 are C0,α(Ω1) for η ∈ C2,α(Ω1). This follows

from the fact that η > A > 0 for some constant A and each coefficient can be

bounded by the finite quantity ∥η∥C2,α which depends on A.

Remark. The problem (5.3) is equivalent to the one given by (4.2). Direct compu-

tation shows equivalence. Since composition with a C2,α diffeomorphism preserves

Hölder continuity, it follows that ϕη,c is Hölder continuous if and only if φ̂η,c is Hölder

continuous.

Lemma 5.2. Assume that η ≥ C1 > 0, ∥η∥C2,α ≤ C2. Then, the modified Laplacian

operator in (5.2) is uniformly elliptic with λ,Λ only depending on C1 and C2.
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Proof. We must check that

λ|ξ|2 ≤
∑
i,j

aij(z)ξiξj ≤ Λ|ξ|2

for ∑
i,j

aij(z)ξiξj =

(
1 + s2η2z

η2

)
ξ2s +

(
1 + t2η2z

η2

)
ξ2t + ξ2z+

+

(
2stη2z
η2

)
ξsξt −

(
2sηz
η

)
ξsξz −

(
2tηz
η

)
ξtξz

This can be rewritten by completing the square:

1

η2
(
ξ2s + ξ2t

)
+

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

(5.5)

We wish to bound (5.5) from below first, by an expression of the form

λ
(
ξ2s + ξ2t + ξ2z

)
for some number λ > 0 which is independent of z ∈ Ω1. The term that poses

problems is exactly (
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

since it is not clear how it behaves when it is close to zero. We can identify two

cases.

1.
∣∣∣− sηz

η
ξs − tηz

η
ξt + ξz

∣∣∣2 ≥ 1
4
ξ2z . Then,

1

η2
(
ξ2s + ξ2t

)
+

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

≥ 1

η2
(
ξ2s + ξ2t

)
+

1

4
ξ2z ≥ λ|ξ|2

where λ = min{ 1
C2

2
, 1
4
}.

2.
∣∣∣− sηz

η
ξs − tηz

η
ξt + ξz

∣∣∣2 < 1
4
ξ2z . We have

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

<
1

4
ξ2z ⇐⇒

−1

2
|ξz| < −sηz

η
ξs −

tηz
η
ξt + ξz <

1

2
|ξz|.
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Suppose first that ξz ≥ 0. Then, we have

1

2
ξz <

sηz
η

ξs +
tηz
η
ξt ⇐⇒ 1

4
ξ2z <

(
sηz
η

ξs +
tηz
η
ξt

)2

.

Therefore,

λ(ξ2s + ξ2t + ξ2z ) < λ

ξ2s + ξ2t +

(
sηz
η
ξs +

tηz
η
ξt

)2
1
4


= 4λ

(
1

4
ξ2s +

1

4
ξ2t +

(
sηz
η

ξs +
tηz
η
ξt

)2
)

≤ 4λ

(
1

4
ξ2s +

1

4
ξ2t + 2

s2η2z
η2

ξ2s + 2
t2η2z
η2

ξ2t

)
= 4λ

((
1

4
+ 2

s2η2z
η2

)
ξ2s +

(
1

4
+ 2

t2η2z
η2

)
ξ2t

)
≤ 4λ

((
1

4
+ 2

s2C2
2

C2
1

)
ξ2s +

(
1

4
+ 2

t2C2
2

C2
1

)
ξ2t

)
≤ 4λ

((
1

4
+ 2

C2
2

C2
1

)
ξ2s +

(
1

4
+ 2

C2
2

C2
1

)
ξ2t

)
= 4λ

(
(ξ2s + ξ2t )

(
1

4
+ 2

C2
2

C2
1

))
≤ 1

C2
2

(ξ2s + ξ2t )

provided that

4λ ≤
1
C2

2

1
4
+ 2

C2
2

C2
1

.

Thus, we conclude that

1

C2
2

(ξ2s + ξ2t ) <
1

η2
(ξ2s + ξ2t )

<
1

η2
(ξ2s + ξ2t ) +

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

.

The case where ξz ≤ 0 is analogous so we repeat the same process on

1

2
|ξz| < −sηz

η
ξs −

tηz
η
ξt.

This concludes the second case, as we have shown that

1

η2

(
ξ2s + ξ2t

)
+

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

≥ 1

C2
2

(ξ2s + ξ2t ) ≥ λ|ξ|2

provided λ is chosen as above.
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It remains to show that we also have a bound from above, i.e., that there is some

constant Λ > 0 such that

aij(z)ξiξj ≤ Λ|ξ|2

But this follows first from∣∣∣∣−sηz
η

ξs −
tηz
η
ξt + ξz

∣∣∣∣2 ≤ 3
C2

2

C2
1

|ξ|2

Hence,

1

η2
(
ξ2s + ξ2t

)
+

(
−sηz

η
ξs −

tηz
η
ξt + ξz

)2

≤ Λ|ξ|2

where Λ =
1+3C2

2

C2
1

. It is important to note that these estimates (in particular the

constants λ,Λ) are uniform in η and do not depend on z ∈ R.

5.2 Schauder estimates and existence results

The following results are based on the paper [10] and on [4]. In this subsection, we

assume that Ω ⊂ RN is an open, bounded, connected domain. Let the operator L

be given by

Lu =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj

+
N∑
i=1

bi(x)
∂u

∂xi

+ c(x)u.

We refer to Theorem 6.31, p.128 in [4] for the proof of the following theorem.

Theorem 5.3. Let Ω be a connected, C2,α-domain. Suppose L is a uniformly elliptic

operator in Ω with c ≤ 0 and with coefficients in C0,α(Ω). Let the boundary operator

on ∂Ω be given by Nu ≡ γu+ β ·Du such that γ(β · ν) > 0, with ν the unit normal

on ∂Ω, and with β, γ ∈ C1,α(Ω). Then, the problemLu = f, in Ω

Nu = g, on ∂Ω

(5.6)

has a unique solution u ∈ C2,α(Ω) for all f ∈ C0,α(Ω) and g ∈ C1,α(Ω).

Now that we have the appropriate conditions for the existence of the solution u,

we turn to some a priori estimates.
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Theorem 5.4. (Schauder boundary estimate, Theorem 6.30, p.127 in [4]) Let Ω be a

C2,α-domain and let u ∈ C2,α(Ω) be a solution to (5.6). As before, f ∈ C0,α(Ω), g ∈

C1,α(Ω), aij, bi, c ∈ C0,α(Ω). Then, if the normal component βν of the vector β is

non-zero and satisfies

|βν | ≥ κ > 0, on ∂Ω

we have that

∥u∥C2,α ≤ C (∥u∥C0,α + ∥g∥C1,α + ∥f∥C0,α)

where C = C(λ,Λ, κ,Ω, α,N), with λ,Λ as in definition 3.8.

In other words, u is of class C2,α up to the boundary of the domain Ω. We’d like

to make use of a theorem from [10], which is an application of theorem 5.3 for the

Neumann problem. We need this so that we can show existence of a solution to our

problem in the physical domain before we make the flattening. This is enough since

the diffeomorphism carries over the solution to the flat domain.

Theorem 5.5. Let Ω be a connected, C2,α-domain and f ∈ C0,α(Ω), g ∈ C1,α(Ω)

be such that ∫
Ω

f =

∫
∂Ω

g.

Then, the problem ∆u = f, in Ω

∂nu = g, on ∂Ω

has a unique solution in the class

C =

{
u ∈ C2,α(Ω) :

1

|Ω|

∫
Ω

u = 0

}
.

Remark. Note that the solution to the Neumann problem is unique only up to a

constant, hence the additional assumption on null average.
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5.3 Application to our problem

In order to make use of these results and adapt them to a periodic setting, the fluid

domain must be fixed and ”corner-free”, i.e., it must be a C2,α-domain. Thus, for a

given η(z), cut a slice from Ωη given by

Ωη
0 = {(x, y, z) ∈ Ωη : 0 < z < 2π}.

We view this slice as having its endpoints identified with each other. We will refer

to this domain as the physical domain.

Lemma 5.6. The domain Ωη
0 is a C2,α-domain.

Proof. This follows directly from how the domain is defined.

We now solve the problem for a general ϕ, meaning that as before ϕ = φ + cz and

c ̸= 0. Then, we have ∆φ = 0, in Ωη

∂nφ = −c∂nz, on ∂Ωη

(5.7)

with φ 2π-periodic in z.

Lemma 5.7. For the problem (5.7), it holds that∫
∂Ωη

0

∂nz dS = 0

where ∂Ωη
0 is the boundary excluding the lateral parts.

Proof. This follows from the fact that∫
∂Ωη

0

g dS =

∫
∂Ωη

0

(−c∂nz) dS = −c

∫
∂Ωη

0

∂nz dS = −c

∫
Ωη

0

∆z d(x, y, z) = 0

The two lateral parts of the boundary cancel out since their normal vectors point

in opposite directions. This holds even though z is not periodic in z, as ∇z is

periodic.

Theorem 5.8. The boundary value problem (5.7) admits a unique solution in the

class

C =

{
φ ∈ C2,α

per (Ω
η

0) :
1

|Ωη
0|

∫
Ωη

0

φ d(x, y, z) = 0

}
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Proof. The result follows by applying a modified version of the proof of theorem 5.3

to (5.7). The main difference is that the theorem must be adapted to our periodic

setting, but this is done by considering Ωη
0 instead of Ωη.

Remark. It holds that φ (and thus also ϕ) is odd in z, assuming η(z) is even. In

fact, if φ(x, y, z) is a solution to the Neumann problem, then −φ(x, y,−z) is also a

solution since

∆(−φ(x, y,−z)) = −∆(φ(x, y,−z)) = 0

for any value (x, y, z). We know that the solution to the Neumann problem is unique

up to a constant and so we must have that

−φ(x, y,−z) = φ(x, y, z) + C

for some constant C. Furthermore,∫
Ωη

−φ(x, y,−z) d(x, y, z) = −
∫
Ωη

φ(x, y,−z) d(x, y, z)

= −
∫
Ωη

φ(x, y, z) d(x, y,−z) = 0.

But, as remarked earlier, a solution with 0 average is unique, and therefore φ(x, y, z) =

−φ(x, y,−z). This extends easily to ϕ since ϕ = φ+ cz and cz is odd in z.

5.4 Smoothness of the map (η, c) 7→ φ̂η,c

We can finally turn to the aforementioned Schauder estimates for φ̂η,c which we will

then use in the second result where we show that the map (η, c) 7→ φ̂η,c is Lipschitz

and Fréchet differentiable. Observe again that in Theorem 5.4 the existence of a

constant C is established but it is not clear how exactly that constant depends on

the domain Ω. We aim to prove the following result:

Theorem 5.9. Let φ̂ ∈ C2,α
2πper,e

(
Ω1
)
be a solution to the problem (5.3). Then, there

is an estimate for φ̂ in the C2,α norm given by∥∥∥∥∥φ̂− 1

|Ωη
0|

∫
Ω1

0

φ̂η2 d(s, t, z)

∥∥∥∥∥
C2,α

≤ B (∥G∥C0,α + ∥H∥C1,α)

with B = C(C1 + C2, α), where η ≥ C1 > 0 and ∥η∥C2,α ≤ C2 as in the previous

lemma, and with G and H as in (5.3).

35



Note that before the flattening, the domain Ωη depended on η, but not the

Laplace operator ∆. The diffeomorphism J passed this dependence from the domain

onto the operator, that is, now Ω1 is independent of η, but the operator Lη is instead

dependent on η. Thus, while the constant from Theorem 5.4 depends on Ω1, the

constant we get from this theorem will depend only on λ and Λ (from Lemma 5.2),

which in turn uniformly depend on C1 and C2. Hence, the estimate is independent

of η, whenever η is in a ball in C2,α and bounded from below by a positive constant.

Proof. The first step is to check that we can use Theorem 5.4 in order to establish

the existence of a constant A(Ω1, λ,Λ, κ, α) such that

∥φ̂∥C2,α ≤ A(∥φ̂∥C0,α + ∥G∥C0,α + ∥H∥C1,α) (5.8)

holds on Ω1. It must therefore be checked that the normal component of the bound-

ary condition is bounded from below by a positive constant. We have

β =

(
s(1 + η2z)

η
,
t(1 + η2z)

η
,−ηz

)
and

ν = (s, t, 0)

which is the unit vector pointing radially from the cylinder axis. Therefore,

βν = m · ν =

(
s(1 + η2z)

η
,
t(1 + η2z)

η
,−ηz

)
· (s, t, 0) =

(
s2(1 + η2z)

η
+

t2(1 + η2z)

η

)
.

So,

βν =
1 + η2z

η
.

using that s2 + t2 = 1 on the boundary. By the estimates in lemma 5.2 and that

s2 + t2 = 1, it follows that

|βν | =
∣∣∣∣1 + η2z

η

∣∣∣∣ ≥ 1

C2

= κ > 0

which holds at all z ∈ R. Thus, we have the estimate (5.8). We wish to obtain a

new constant B = B(C1, C2) such that we remove the dependence on ∥φ̂∥C0,α , i.e.,

we want an estimate of the form

∥φ̂∥C2,α ≤ B(C1, C2)(∥G∥C0,α + ∥H∥C1,α) (5.9)
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This constant only depends on the bounds C1 and C2 since the quantities λ and Λ

are uniform with respect to η. Hence, suppose the inequality (5.9) is false. Then, for

each k ∈ N, there exist φ̂k, ηk ∈ C2,α and Hk ∈ C1,α, Gk ∈ C0,α with ∥ηk∥C2,α ≤ C2

and ηk ≥ C1 > 0 such that
Lηkφ̂k = Gk, in Ω1

Bηkφ̂k = Hk, on ∂Ω1

1
|Ω1|

∫
Ω1 φ̂kη

2
k d(s, t, z) = 0

(5.10)

∥φ̂k∥C2,α = 1

∥φ̂k∥C2,α > k(∥Gk∥C0,α + ∥Hk∥C1,α)

This means we must have Hk, Gk → 0 as k → ∞ in C1,α(Ω1) and C0,α(Ω1) respec-

tively. Because

∥φ̂k∥C2,α = 1

using the definition of this norm, it follows that for every multi-index β, |β| = 0, 1, 2,

the family {Dβφ̂k} is uniformly bounded since

sup
z∈Ω1

|Dβφ̂| ≤ sup
k

∥φ̂k∥C2,α = 1

The sequence {Dβφ̂k} is equicontinuous, that is

∣∣Dβφ̂k(x)−Dβφ̂k(y)
∣∣ ≤ C|x− y|α, ∀x, y ∈ Ω1, |β| = 0, 1

for some constant C > 0. By theorem 3.4 used on {Dβφ̂k} for |β| = 0, 1, 2, we get

a subsequence {φ̂kh} of {φ̂k} and a function φ̂ ∈ C2,α such that

φ̂kh → φ̂0, in C2(Ω1).

Similarly, since ηk ∈ C2,α, we have

|ηk(x)− ηk(y)| ≤ C|x− y|α
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for some x, y ∈ R such that x ̸= y and some constant C > 0, so {ηk} is also

equicontinuous. By Arzelà-Ascoli, there exists a subsequence {ηkh} and a function

η0 ∈ C2,α such that

ηkh → η0, in C2(Ω1)

with η0 ≥ C1 > 0 and ∥η0∥C2,α ≤ C2, by uniform convergence. The next step

involves taking a limit as h → ∞, but this must be justified since the operator L

depends on h at the same time as the sequence φ̂kh does. We consider only one term

here since the rest can be handled in the same way. We have a product of the form

(ηz)
2
kh

η2kh
∂2
s φ̂kh

By the product and quotient rules for sequences, it holds that

lim
h→∞

(
(ηz)

2
kh

η2kh
∂2
s φ̂kh

)
=

limh→∞(ηz)
2
kh

limh→∞ η2kh
lim
h→∞

∂2
s φ̂kh

Therefore, we can take the limit outside and write

Lη0φ̂0 = lim
h→∞

Lηkh φ̂kh = lim
h→∞

Gkh = 0

and

Bη0φ̂0 = lim
h→∞

Bηkh φ̂kh = lim
h→∞

(Hkh) = 0.

Moreover

1

|Ω1|

∫
Ω1

φ̂0η
2
0 d(s, t, z) = lim

h→∞

1

|Ω1|

∫
Ω1

φ̂kh(ηkh)
2 d(s, t, z) = 0

by assumption. Passing to the limit in (5.10) yields
Lη0φ̂0 = 0, in Ω1

Bη0φ̂0 = 0, on ∂Ω1

1
|Ω1|

∫
Ω1 φ̂0η

2
0 d(s, t, z) = 0.

Since we can return to the physical domain bijectively using J , we have
∆φ0 = 0, in Ωη0

∂nφ0 = 0, on ∂Ωη0

1
|Ωη0 |

∫
Ωη0

φ0 d(x, y, z) = 0
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But this problem is only solved by the trivial solution φ0 = 0, by theorem 5.8.

Therefore, φ̂0 = 0 as well. But this is a contradiction because

1 = ∥φ̂kh∥C2,α ≤ A(∥φ̂kh∥C0 + ∥Gkh∥C0,α + ∥Hkh∥C1,α) → 0

as h → ∞. So, (5.9) holds.

The previous result implies that φ̂ can be bounded by a constant depending uni-

formly on η. We use this in the next theorem. From now on, we assume that φ̂η,c is

the solution to (5.3) with the integral condition 1
|Ω1|

∫
Ω1 φ̂η,cη

2 d(s, t, z) = 0.

Theorem 5.10. The function (η, c) 7→ φ̂η,c is globally Lipschitz continuous in the

set {η ∈ C2,α : η ≥ C1, ∥η∥C2,α ≤ C2}.

Proof. Let (η, c) and (η̃, c̃) be two instances of the profile curve and consider the

two corresponding solutions, namely φ̂η,c and φ̂η̃,c̃. Set up the following equations:
∫
Ω1 φ̂η,cη

2 d(s, t, z) = 0∫
Ω1 φ̂η̃,c̃η̃

2 d(s, t, z) = 0

Taking the difference and rewriting gives∫
Ω1

(
φ̂η̃,c̃ − φ̂η,c

)
η2 d(s, t, z) +

∫
Ω1

φ̂η̃,c̃

(
η̃2 − η2

)
d(s, t, z) = 0

⇐⇒

∫
Ω1

(
φ̂η̃,c̃ − φ̂η,c

)
η2 d(s, t, z) =

∫
Ω1

φ̂η̃,c̃

(
η2 − η̃2

)
d(s, t, z).

Bounding the right hand side, we have

|I| =
∣∣∣∣∫

Ω1

φ̂η̃,c̃(η
2 − η̃2)d(s, t, z)

∣∣∣∣ ≤ ∫
Ω1

|φ̂η̃,c̃(η + η̃)(η − η̃)|d(s, t, z)

Now, using the estimate from theorem 5.4, we obtain

|I| ≤ A∥η − η̃∥C2,α
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where the constant A depends on the quantities C1 and C2. What we have obtained

is needed in order to use theorem 5.9, as the Schauder estimate there is proven for

a solution with null average. Now, we use the elliptic equation Lηφ̂η,c = 0. We haveLηφ̂η,c = 0

Lη̃φ̂η̃,c̃ = 0.

Combining these yields

Lη(φ̂η̃,c̃ − φ̂η,c) +
(
Lη̃ − Lη

)
φ̂η̃,c̃ = 0

⇐⇒

Lη(φ̂η̃,c̃ − φ̂η,c) = −
(
Lη̃ − Lη

)
φ̂η̃,c̃.

Similarly, using the boundary condition Bηφ̂η,c,Bηφ̂η,c = cηz

Bη̃φ̂η̃,c̃ = c̃η̃z

gives

Bη(φ̂η̃,c̃ − φ̂η,c) = −
(
Bη̃ −Bη

)
φ̂η̃,c̃ + ηz(c̃− c) + c̃(η̃z − ηz).

The term φ̂η̃,c̃−φ̂η,c is a solution to a certain elliptic boundary value problem, namelyLη(φ̂η̃,c̃ − φ̂η,c) = G, in Ω1

Bη(φ̂η̃,c̃ − φ̂η,c) = H, on ∂Ω1

where G = −
(
Lη̃ − Lη

)
φ̂η̃,c̃ and H = −

(
Bη̃ −Bη

)
φ̂η̃,c̃ + ηz(c̃− c) + c̃(η̃z − ηz). By

theorem 5.9, we have that for every η,

∥φ̂η̃,c̃ − φ̂η,c − U∥C2,α ≤ B(C1, C2)(∥G∥C0,α + ∥H∥C1,α)

with U = 1
|Ω1|

∫
Ω1(φ̂η̃,c̃ − φ̂η,c)η

2 d(x, y, z). From this, we aim to move the integral

condition to the right hand side and show boundedness for both G and H in terms

of ∥η − η̃∥C2,α in order to establish Lipschitz continuity. Therefore, we have

∥φ̂η̃,c̃ − φ̂η,c∥C2,α ≤ B(C1, C2)

(∥∥− (Lη̃ − Lη
)
φ̂η̃,c̃

∥∥
C0,α +

+
∥∥− (Bη̃ −Bη

)
φ̂η̃,c̃ + ηz(c− c̃) + c̃(ηz − η̃z)

∥∥
C1,α

)
+ ∥U∥C2,α .
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We begin by looking at the terms in the sum separately. We already know from our

previous calculations that

∥U∥C2,α = |U | ≤ A∥η − η̃∥C2,α .

For the term coming from the elliptic equation, we have∥∥− (Lη̃ − Lη
)
φ̂η̃,c̃

∥∥
C0,α =

∥∥∥∥− [1 + s2η̃2z
η̃2

− (1 + s2η2z)

η2

]
∂2
s φ̂η̃,c̃ + · · ·

∥∥∥∥
C0,α

.

It suffices to show the bound for only one of the coefficient terms since all of them

are dealt with similarly. Thus, we have for instance∥∥∥∥(s2η̃2z
η̃2

− s2η2z
η2

)
∂2
s φ̂η̃,c̃

∥∥∥∥
C0,α

=

∥∥∥∥s2(ηη̃z + η̃ηz)(ηη̃z − η̃ηz)

η2η̃2
∂2
s φ̂η̃,c̃

∥∥∥∥
C0,α

=

=

∥∥∥∥s2(ηη̃z + η̃ηz)(η(η̃z − ηz) + ηz(η − η̃))

η2η̃2
∂2
s φ̂η̃,c̃

∥∥∥∥
C0,α

≤
∥∥∥∥s2(ηη̃z + η̃ηz)η(η̃z − ηz)

η2η̃2
∂2
s φ̂η̃,c̃

∥∥∥∥
C0,α

+

∥∥∥∥s2(ηη̃z + η̃ηz)ηz(η − η̃)

η2η̃2
∂2
s φ̂η̃,c̃

∥∥∥∥
C0,α

≤
(∥∥∥∥ 1

η2η̃2

∥∥∥∥
C0,α

(∥η∥C0,α + ∥ηz∥C1,α)∥ηη̃z + η̃ηz∥C0,α

)
(
∥η̃z − ηz∥C0,α + ∥η − η̃∥C0,α

)
∥∂2

s φ̂η̃,c̃∥C0,α

≤ 2

(∥∥∥∥ 1

η2η̃2

∥∥∥∥
C0,α

(∥η∥C0,α + ∥ηz∥C1,α)∥ηη̃z + η̃ηz∥C0,α

)
∥η − η̃∥C2,α∥∂2

s φ̂η̃,c̃∥C0,α

where the last inequality comes from the fact that C2,α ⊂ C0,α and

∥η̃z − ηz∥C0,α ≤ ∥η − η̃∥C2,α .

Thus, one such term in the sum can be bounded by the quantity

Γ∥η − η̃∥C2,α

where Γ is a constant which depends on the quantities ∥ηz∥C0,α , ∥η̃z∥C0,α , ∥η∥C0,α ,

∥η̃∥C0,α and the positive lower bounds on η, η̃. We get this because we can use the

previous boundary Schauder estimate from theorem 5.9 to obtain

∥∂2
s φ̂η̃,c̃∥C0,α ≤ B(C1, C2)∥cη̃z∥C1,α

41



Similarly, we have

∥∥− (Bη̃ −Bη
)
φ̂η̃,c̃ + ηz(c− c̃) + c̃(ηz − η̃z)

∥∥
C1,α =

=

∥∥∥∥− [(s(1 + η̃2z)

η̃
− s(1 + η2z)

η

)
∂sφ̂η̃,c̃ + · · ·

]
+ ηz(c− c̃) + c̃(ηz − η̃z)

∥∥∥∥
C1,α

Again, we show the bound for one term in the sum.∥∥∥∥(s

η̃
− s

η

)
∂sφ̂η̃,c̃

∥∥∥∥
C1,α

=

∥∥∥∥(s(η − η̃)

ηη̃

)
∂sφ̂η̃,c̃

∥∥∥∥
C1,α

≤

≤ s

∥∥∥∥ 1

ηη̃

∥∥∥∥
C1,α

∥η − η̃∥C1,α∥∂sφ̂η̃,c̃∥C1,α ≤

≤ B(C1, C2)

∥∥∥∥ 1

ηη̃

∥∥∥∥
C1,α

∥η − η̃∥C1,α∥η̃∥C2,α ≤ β∥η − η̃∥C2,α

where the constant β depends on the same quantities as the constant Γ. Adding the

other two terms, we can incorporate the quantities (c− c̃) and ∥ηz − η̃z∥C1,α into the

bound such that we obtain

∥φ̂η̃,c − φ̂η,c∥C2,α ≤ M(∥η̃ − η∥C2,α + |c− c̃|)

for some constant M > 0 which depends on the C1,α norm of η, η̃ (and the norms of

their first and second derivatives respectively). From this it follows that (η, c) 7→ φ̂η,c

is Lipschitz.

Theorem 5.11. The function (η, c) 7→ φ̂η,c is Fréchet differentiable.

Proof. As before, (η̃, c̃) denotes an instance of the profile curve of ∂Ωη. We seek to

differentiate with respect to (η, c) in the direction (η̃ − η), (c̃ − c). We first find a

candidate for the Fréchet derivative of (η, c) 7→ φ̂η,c and then show that it exists.

Note that Lη does not depend on c in any way, and therefore we only vary in η. If

Dη,cφ̂η,c(η̃−η, c̃− c) were the Fréchet derivative of φ̂η,c in the direction (η̃−η, c̃− c),

we could use the product rule to obtain

Dη,cL
η[η, c](η̃ − η, c̃− c)φ̂η,c + LηDη,cφ̂η,c(η̃ − η, c̃− c) = 0.
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Similarly, from the boundary conditions we have

Dη,cB
η[η, c](η̃ − η, c̃− c)φ̂η,c +BηDη,cφ̂η,c(η̃ − η, c̃− c) = c(η̃z − ηz) + ηz(c̃− c).

We also need the integral condition, which becomes∫
Ω1

Dη,cφ̂η,c(η̃ − η, c̃− c)η2 + φ̂η,c2η(η̃ − η) d(s, t, z) = 0 (5.11)

or equivalently∫
Ω1

Dη,cφ̂η,c(η̃ − η, c̃− c)η2 d(s, t, z) = −2

∫
Ω1

φ̂η,cη(η̃ − η) d(s, t, z).

This condition is fulfilled since we can modify Dηφ̂η,c through a constant which will

not change the equations, as they depend on the derivatives of Dηφ̂η,c. Now, these

three equations define the linearization of φ̂η,c. The goal is to show that

lim
(η̃,c̃)→(η,c)

∥φ̂η̃,c̃ − φ̂η,c −Dη,cφ̂η,c(η̃ − η, c̃− c)∥C2,α

∥η̃ − η∥C2,α + |c̃− c|
= 0 (5.12)

which we do by taking the limit of an equivalent expression in term of the operators

Lη and Bη and by using the Schauder estimate from theorem 5.9. It must also be

shown that the equations defining the Fréchet derivative of φ̂η,c have a solution in

the first place, in order for the derivative to be well-defined. This means that we

must check the compatibility condition from theorem 5.5∫
Ω1

f =

∫
∂Ω1

g

for the appropriate functions f and g. Using the transformation J , this can be done

in the physical domain in which case we’d simply work with the Laplace operator

with Neumann boundary conditions. Since we are already working in the flat do-

main, we show this condition directly in a separate lemma after this proof.

We have Lηφ̂η,c = 0, Bηφ̂η,c = cηz

Lη̃φ̂η̃,c̃ = 0, Bη̃φ̂η̃,c̃ = c̃η̃z

Looking only at the elliptic operator Lη first, we introduce some simpler notation.

LηDη,cφ̂η,c(η̃ − η, c̃− c) =: Lηδφ̂η,c
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which gives

Dη,cφ̂η,c(η̃ − η, c̃− c) =: δφ̂η,c.

We also have

Dη,cL
η[η, c](η̃ − η, c̃− c)φ̂η,c =: Lη

ηφ̂η,c.

From equation (5.12), we have

Lη̃φ̂η̃,c̃ − Lηφ̂η,c − Lηδφ̂η,c = Lη
ηφ̂η,c.

Adding and subtracting a certain term gives

Lη̃φ̂η̃,c̃ − Lηφ̂η̃,c̃ + Lηφ̂η̃,c̃ − Lηφ̂η,c − Lηδφ̂η,c = Lη
ηφ̂η,c

which can be written as

Lη(φ̂η̃,c̃ − φ̂η,c − δφ̂η,c) = −
(
Lη̃ − Lη

)
φ̂η̃,c̃ + Lη

ηφ̂η,c.

Repeating the previous steps, we finally get

Lη(φ̂η̃,c̃ − φ̂η,c − δφ̂η,c) = −
(
Lη̃ − Lη − Lη

η

)
φ̂η̃,c̃ − Lη

η(φ̂η̃,c̃ − φ̂η,c).

Therefore, to estimate (5.12), we must control

∥∥− (Lη̃ − Lη − Lη
η

)
φ̂η̃,c̃ − Lη

η(φ̂η̃,c̃ − φ̂η,c)
∥∥
C2,α . (5.13)

With a similar argument as the one used to show Lipschitz continuity, we investigate

the growth rate. Again, it is enough to check for one term in the sum coming from

applying the operator. First, we have
(
Lη̃ − Lη − Lη

η

)
φ̂η̃,c̃. Taking the first term,

we get (
1

η̃2
− 1

η2
−
(
−2(η̃ − η)

η3

))
∂2
s φ̂η̃,c̃

because Lη
c = 0. This is equal to(

η3 − 3ηη̃2 + 2η̃3

η̃2η3

)
∂2
s φ̂η̃,c̃ =

(
(η̃ − η)2(η + 2η̃)

η̃2η3

)
∂2
s φ̂η̃,c̃.
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From this, we have∥∥∥∥((η̃ − η)2(η + 2η̃)

η̃2η3

)
∂2
s φ̂η̃,c̃

∥∥∥∥
C2,α

≤
∥∥∂2

s φ̂η̃,c̃

∥∥
C2,α

∥∥∥∥ 1

η̃2η3

∥∥∥∥
C2,α

∥(η + 2η̃)∥C2,α ∥(η̃ − η)∥2C2,α

where the right hand side is controlled by the quantity C̃∥η̃−η∥2C2,α with the constant

C̃ depending on the Schauder estimate for φ̂η̃,c̃ and the other norms. Therefore,∥∥− (Lη̃ − Lη − Lη
η − Lη

c

)
φ̂η̃,c̃

∥∥
C2,α = O(∥η̃ − η∥2C2,α)

Next, from the Lipschitz continuity of the map (η, c) 7→ φ̂η,c, we have

∥φ̂η̃,c̃ − φ̂η,c∥C2,α = O(∥η̃ − η∥C2,α).

Finally, since the derivative Lη
η at the point (η, c) is linear in the perturbation (η̃−η)

it follows that

Lη
η = O(∥η̃ − η∥C2,α)

and all the terms in (5.13) are of order O(∥η̃ − η∥2C2,α). Thus,

Lη(φ̂η̃,c̃ − φ̂η,c − δηφ̂η,c) = O(∥η̃ − η∥2C2,α)

We repeat the same procedure with the boundary conditions operator, that is, we

want to show

lim
(η̃,c̃)→(η,c)

∥∥Bη̃φ̂η̃,c̃ −Bηφ̂η,c −Bηδηφ̂η,c

∥∥
C2,α

∥η̃ − η∥C2,α + |c̃− c|
= 0.

Using the notation

BηDη,cφ̂η,c(η̃ − η, c̃− c) =: Bηδη,cφ̂η,c

Dη,cB
η[η, c](η̃ − η, c̃− c)φ̂η,c =: Bη

η,cφ̂η,c

As before, we have

Bη̃φ̂η̃,c̃ −Bηφ̂η,c −Bηδη,cφ̂η,c = Bη
η,cφ̂η,c + c̃η̃z − cηz − c(η̃z − ηz)− ηz(c̃− c)

which can be written as

Bη̃φ̂η̃,c̃ −Bηφ̂η,c −Bηδη,cφ̂η,c = Bη
η,cφ̂η,c + (η̃z − ηz)(c̃− c)
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Similar computations as before give

Bη(φ̂η̃,c̃ − φ̂η,c − δη,cφ̂η,c) = −
(
Bη̃ −Bη −Bη

η,c

)
φ̂η̃,c̃ −Bη

η,c(φ̂η̃,c̃ − φ̂η,c) + (η̃z − ηz)(c̃− c).

(5.14)

Again, we check only one term, so we have(
s

η̃
− s

η
−
(
−s(η̃ − η)

η2

))
∂sφ̂η̃,c̃ =

(
−s(η̃ − η)2

η̃η

)
∂sφ̂η̃,c̃

and so ∥∥∥∥s(η̃ − η)2

η̃η2
∂sφ̂η̃,c̃

∥∥∥∥
C2,α

≤
∥∥∥∥ s

η̃η2

∥∥∥∥
C2,α

∥∂sφ̂η̃,c̃∥C2,α ∥η̃ − η∥2C2,α

By the same arguments as before, we have that the terms Bη
η , B

η
c and (φ̂η̃,c̃ − φ̂η,c)

are O(∥η̃ − η∥C∈,α). The same applies to (η̃z − ηz) and (c̃− c). Therefore, the right

hand side in (5.14) is O(∥η̃−η∥2C2,α). We can now apply the Schauder estimate. Let

P = φ̂η̃,c̃ − φ̂η,c − δφ̂η,c.

Then, we apply theorem 5.9 to∥∥∥∥P −
∫
Ω1

Dη2 d(s, t, z)

∥∥∥∥
C2,α

.

Since we have already estimated the terms G and H, it remains to take care of the

integral condition.∣∣∣∣∫
Ω1

Dη2 d(s, t, z)

∣∣∣∣ = ∣∣∣∣∫
Ω1

(φ̂η̃,c̃ − φ̂η,c − δφ̂η,c)η
2 d(s, t, z)

∣∣∣∣
Note that the middle term vanishes, that is

∫
Ω1 φ̂η,cη

2 d(s, t, z) = 0. We can write

the integrand as∫
Ω1

|(φ̂η̃,c̃ − φ̂η,c)(η
2 − η̃2)| d(s, t, z) +

∫
Ω1

|φ̂η,c

(
(η2 − η̃2) + 2ηη̃

)
| d(s, t, z)

by adding and substracting zero, and using the linearized integral condition (5.11).

Finally, we write∫
Ω1

|φ̂η,c

(
(η2 − η̃2) + 2ηη̃

)
| d(s, t, z) =

∫
Ω1

φ̂η,c(−η2 − η̃2 + 2ηη̃) d(s, t, z)

which then gives ∫
Ω1

φ̂η,c(η − η̃)2 d(s, t, z)
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The integral condition is therefore also of order O(∥η̃−η∥C2,α). Since we have shown

that the numerator is of order O(∥η̃ − η∥2C2,α), it follows that

lim
(η̃,c̃)→(η,c)

∥φ̂η̃,c̃ − φ̂η,c −Dη,cφ̂η,c(η̃ − η, c̃− c)∥C2,α

∥η̃ − η∥C2,α + |c̃− c|
= 0

and hence the map (η, c) 7→ φ̂η,c is Fréchet differentiable.

It remains to show the compatibility condition. First, we identify the functions

corresponding to f and g in theorem 5.5. From the definition of Dη,cφ̂η,c(η̃−η, c̃−c),

we know that it must satisfyLηDη,cφ̂η,c(η̃ − η, c̃− c) = −Dη,cL
η[η, c](η̃ − η, c̃− c)φ̂η,c

BηDη,cφ̂η,c(η̃ − η, c̃− c) = −Dη,cB
η[η, c](η̃ − η, c̃− c)φ̂η,c + c(η̃z − ηz) + ηz(c̃− c).

where the first equation holds in Ω1 and the second holds on ∂Ω1. In order for this

problem to have a solution, we must show that the right hand side terms satisfy the

compatibility condition.

Lemma 5.12. It holds that

−
∫
Ω1

DηL
η[η](η̃ − η)φ̂η,cη

2 d(s, t, z)

=

∫
∂Ω1

(−DηB
η[η](η̃ − η)φ̂η,c + c(η̃z − ηz) + ηz(c̃− c))η dS.

Proof. We first write Dη as a difference quotient, that is,

DηL
η[η](η̃ − η) = lim

t→0

Lη+t(η̃−η) − Lη

t

and

DηB
η[η](η̃ − η) = lim

t→0

Bη+t(η̃−η) −Bη

t
.

By theorems 5.3 and 5.5, we know that for t ̸= 0 and for η+ t(η̃− η) and c+ t(c̃− c)

−
∫
Ω1

Lη+t(η̃−η) − Lη

t
φ̂η+t(η̃−η),c+t(c̃−c)η

2 d(s, t, z)

=

∫
∂Ω1

Bη+t(η̃−η) −Bη

t
φ̂η+t(η̃−η),c+t(c̃−c) + c(η̃z − ηz) + ηz(c̃− c))η dS
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Consider the difference

−
∫
Ω1

DηL
η[η](η̃ − η)φ̂η,cη

2 d(s, t, z)

−
∫
∂Ω1

(−DηB
η[η](η̃ − η)φ̂η,c + c(η̃z − ηz) + ηz(c̃− c))η dS

= lim
t→0

[
−
∫
Ω1

Lη+t(η̃−η) − Lη

t
φ̂η,cη

2 d(s, t, z)

−
∫
∂Ω1

(
−Bη+t(η̃−η) −Bη

t
φ̂η,c + c(η̃z − ηz) + ηz(c̃− c)

)
η dS

]
.

Adding and subtracting 0, we obtain the long expression

lim
t→0

[
−
∫
Ω1

Lη+t(η̃−η) − Lη

t
φ̂η,cη

2 d(s, t, z)

−
∫
∂Ω1

(
−Bη+t(η̃−η) −Bη

t
φ̂η,c + c(η̃z − ηz) + ηz(c̃− c)

)
η dS

+

∫
Ω1

Lη+t(η̃−η) − Lη

t
φ̂η+t(η̃−η),c+t(c̃−c)η

2 d(s, t, z)

+

∫
∂Ω1

(
−Bη+t(η̃−η) −Bη

t
φ̂η+t(η̃−η),c+t(c̃−c) + (c+ t(c̃− c))(η̃z − ηz) + ηz(c̃− c)

)
η dS

]
.

Simplifying the expression in the square brackets, we obtain

lim
t→0

[∫
Ω1

(
Lη+t(η̃−η) − Lη

t

)(
φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

)
η2 d(s, t, z)

+

∫
∂Ω1

(
−
(
Bη+t(η̃−η) −Bη

t

)(
φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

)
+ (η̃z − ηz)(t(c̃− c))

)
η dS

]
.

We begin with the term involving the elliptic operator Lη. Observe that by theorem

5.10, we have∥∥∥∥(Lη+t(η̃−η) − Lη

t

)(
φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

)∥∥∥∥
C0,α

≤ B(C1, C2)
∥∥φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

∥∥
C2,α

and by the same result, we can calculate that∥∥φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

∥∥
C2,α ≤ Γ(∥t(η̃ − η)∥C2,α + |t(c̃− c)|)

which is of order O(t). The constant Γ depends on the C0,α norms of η and η̃ as

well as their derivatives. Passing to the limit as t → 0, this term becomes 0. We

can do the same on the term involving the boundary operator Bη. We have∥∥∥∥(Bη+t(η̃−η) −Bη

t

)(
φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

)∥∥∥∥
C0,α

≤ B(C1, C2)
∥∥φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

∥∥
C2,α
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and similarly,

∥∥φ̂η+t(η̃−η),c+t(c̃−c) − φ̂η,c

∥∥
C2,α ≤ M(∥t(η̃ − η)∥C2,α + |t(c̃− c)|)

which is also of order O(t). Finally, we have the term (η̃z − ηz)(t(c̃ − c)) of order

O(t) as well. Combining these results, we conclude that the limit as t → 0 is 0 and

we are done.

5.5 Invertibility of the Fréchet derivative

Now that we have established that the map (η, c) 7→ φ̂η,c is regular, so that φ̂η,c

is differentiable with respect to both η and c, we can find the Fréchet derivative

of F with respect to (η, c) evaluated at the point (η1,k, 0), which we denote by

DηF [η1,k0 , 0]. In the following, η̃ ∈ C2,α
per,e(R) denotes a perturbation of the static

solutions, that is a 2π periodic function with small C2,α norm.

The Fréchet derivative is given by

DηF [η1,k0 , 0](η̃, c̃) =
η̃zz(1 + η2z)

3/2 − ηzz
3
2
(1 + η2z)

1/22ηzη̃z

(1 + η2z)
3

+

η̃

η2

( 1

(1 + η2z)
1/2

)
− 1

η

(−ηzη̃z(1 + η2z)
−1/2

(1 + η2z)

) (5.15)

Note that the expression coming from the term |∇ϕη,c|2 (and thus the derivative

with respect to c) vanishes because

d

dτ

(
1

2
|∇̂(φ̂η1,k0+τ η̃,0+τ c̃ + (0, 0, τ c̃))|2

) ∣∣∣∣
τ=0

=

=
(
∇̂(φ̂η1,k0 ,0

+ (0, 0, 0))
)
·
(

d

dτ
∇̂(φ̂η1,k0+τ η̃,τ c̃ + (0, 0, c̃))

) ∣∣∣∣
τ=0

= 0

where ∇̂ denotes the gradient in terms of φ̂ in the flat domain (equation (5.4))

for simplicity. Since we differentiate at the point (ηs,k, 0), and by proposition 4.1,

∇φ̂ = 0. Moreover, note that since φ̂η,c is regular with respect to (η, c), it follows

that ∇̂φ̂η,c is also regular and hence differentiable with respect to (η, c). Thus, our

previous calculations are justified. Now, because all the partial derivatives in (5.15)

are taken with respect to the variable z only, we can treat this as a second order
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ordinary linear differential equation. We first rewrite it in the following way:

DηF [ηs,k, 0](η̃) =
1

(1 + η2z)
3/2

η̃zz−(ηz(3ηzzη − (1 + η2z))

η(1 + η2z)
5/2

)
η̃z +

( 1

η2(1 + η2z)
1/2

)
η̃

with periodic boundary conditions. It is useful to first consider this linear operator

on a larger spaces than the ones F is defined on. Thus, we omit the extra assumption

of periodicity and evenness and consider DηF [ηs,k, 0] as an operator on C2,α(R).

Lemma 5.13. The solutions η̃ are C2,α(R) given that the coefficients of DηF are

in C0,α(R).

Proof. Since DηF [ηs,k, 0] is Hölder continuous (in C0,α(R)), and it is an elliptic

equation, we can apply an interior Schauder estimate which gives that η̃ ∈ C2,α(R).

Proposition 5.14. For each ηs,k, the kernel of the linear differential operator DηF

on the space C2,α(R) is two-dimensional.

Proof. This follows from Lemma 5.13 and the fact that the solution space of an n’th

order linear ODE has dimension n.

Proposition 5.15. DηF [η1,k0 , 0] has trivial kernel if the space C2,α(R) is restricted

to even and 2π periodic functions.

Proof. Given the restriction above, we consider periodic boundary conditions for

DηF [ηs,k, 0](η̃), namely η̃(0) = η̃(2π) and η̃z(0) = η̃z(2π). By proposition 5.14, the

space {η̃ ∈ C2,α(R) : DηF [η1,k0 , 0](η̃) = 0} has dimension 2. We can look for the

basis elements of this space. Consider first

∂zF (η1,k0 , 0)(z) = DηF [η1,k0 , 0]η
′
1,k0

(z) = 0

We get that the first basis element is η′1,k0 , which is an odd function. Next, consider

∂sF (η1,k0 , 0)(z) = DηF [η1,k0 , 0]∂sη1,k0 = ∂sB1,k0

and

∂kF (η1,k0 , 0)(z) = DηF [η1,k0 , 0]∂kη1,k0 = ∂kB1,k0 (5.16)
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where B1,k0 is the B corresponding to the static unduloids solutions parametrized

by s and k. We combine these two equations in order to set DηF [η1,k0 , 0] = 0 and

find another kernel element. For this we need to check that ∂kB1,k0 ̸= 0, which we

do at the end. Multiplying both sides of (5.16) by δ =
∂sB1,k0

∂kB1,k0
, we obtain

DηF [η1,k0 , 0]∂kη1,k0δ = ∂sB1,k0 .

Then, by subtracting we get

DηF [η1,k0 , 0]
(
∂sη1,k0 − δ∂kη1,k0

)
= 0.

Hence, the second basis element is given by ∂sη1,k0 − δ∂kη1,k0 . Observe that

∂sη1,k0(z) = ∂s(sη1,k0(z/s))
∣∣∣
s=1

= η1,k0(z)− zη′1,k0(z)

is not periodic because of the second term. By writing

∂kη1,k0(z) = lim
h→0

sc(k0 + h)η1,k0(z/sc(k0 + h))− sc(k0)η1,k0(z/sc(k0))

h

we see that both terms are 2π-periodic. The periodicity of the first term follows from

the fact that k is a period preserving parameter, and so any change to it keeps the

fixed period of 2π. This means the basis element ∂sη1,k0 − δ∂kη1,k0 is not periodic.

On the other hand, the basis element η′1,k0 is odd. If we restrict the differential

operator DηF [η1,k0 ] to 2π-periodic and even functions, it follows that the kernel of

this restricted operator contains none of the basis elements and is trivial. Finally, we

check the assumption that ∂kQs,k ̸= 0. This is equivalent to checking that the mean

curvature is strictly monotone in k. Let s = 1 in equation (3.16), and differentiate

with respect to k, for 0 < k < 1, using formulae (3.2) and (3.3) to obtain

H ′(k) =
2(E(k)−K(k)) + k2K(k)

(1 +
√
1− k2)π

√
1− k2 · k

We want to show that

2 · (E(k)−K(k)) + k2K(k) < 0 (5.17)

Using the series expansion formulae (3.4),(3.5) and making some simplifications, we

write the left hand side of (5.17) as

π

∞∑
n=2

( (2n!)

22n(n!)2

)2
k2n
(−2n(n− 1)

(2n− 1)2

)
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which is negative since

−2n(n− 1) < 0

for all n = 2, 3, 4, ....

Theorem 5.16. DηF [η1,k0 , 0] is invertible when considered as an operator between

the spaces C2,α
per,e(R) and C0,α

per,e(R) of 2π periodic, even functions.

Proof. By proposition 5.15, ker(DηF [η1,k0 , 0]) = {0} in the space C2,α
per,e(R). Then,

the operator is injective. We now consider the differential equationDηF [η1,k0 , 0](η̃) =

0 on the interval (0, π) with homogenous boundary conditions B(η̃) = 0 given by

η̃′(0) = η̃′(π) = 0. From here, we can ”build” the space C2,α
per,e(R) by first extend-

ing the function η̃ evenly to (−π, π) and then periodically to R. By theorem 1 (b)

from [1] (p.178), the differential operator DF [η1,k0 , 0] is a surjection between the

spaces C2,α(0, π) and C0,α(0, π), since the homogenous problem DF [η1,k0 , 0](η̃) = 0

only has the trivial solution η̃. Following the extension presented above, it then

holds that the operator DF [η1,k0 , 0] between the spaces C2,α
per,e(R) and C0,α

per,e(R) is

also surjective. We conclude that DF [η1,k0 , 0] is bijective.

5.6 Conclusion

We now have all the necessary tools to give a proof of the theorem we set out to

establish. We summarize the result here. Using the operator formulation (4.1) of

the problem, we know that F (η, c) is regular by theorem 5.10. Moreover, the Fréchet

derivative DηF [η1,k0 , 0] at the (static) point (η1,k0 , 0) is an isomorphism between the

spaces C2,α
per,e(R) and C0,α

per,e(R) by theorem 5.16. Therefore, by the implicit function

theorem for Banach spaces, in a neighbourhood of the static solution (η1,k0 , 0), there

exists a unique one-parameter family of non-static solutions (η, c) in the space U ×

(−δ, δ) ⊂ C2,α
per,e(R)× R.
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