
Sara Magnusson Supervisors

Division of Applied Microbiology Magnus Carlquist

Lund University Raquel Perruca Foncillas

25th of September 2023 Marie Gorwa Grauslund

Ola Wallberg

Developing an Automated System for Yeast Culture

Cultivation and Control using Flow Cytometry

1

Abstract
Flow cytometry is a versatile tool for monitoring a microbial population at a single-cell level.

Multiple parameters can be monitored based on the users’ requirements through the utilization

of different dyes, biosensors etc., and the use of FCM for on-line measurements during fed-

batch cultivations has the potential to be used for precise process control.

This project consisted of the development and testing of a Python program for on-line

bioprocess regulation based on flow cytometry data. Specifically, the program was built to

process FCS files resulting from at-line measurement of pentose-fermenting S. cerevisiae

using the OnCyt autosampler connected to a BD Accuri C6+ flow cytometer. The program

was designed to automatically start and stop a peristaltic pump through serial communication,

by issuing commands based on changes within the microbial population.

The yeast strain used was the TMBRP011 strain, which was previously engineered for

bioethanol production from pentose sugars and carries a previously developed redox

biosensor. The biosensor reacts to cellular redox imbalance caused by inhibitory substances

released during lignocellulose pretreatments through an increase in fluorescence. The program

was designed to achieve higher volumes of inhibitory substances as the cells acclimatized to a

set rate, indicated with a decrease in fluorescence. However, since these inhibitory substances

are toxic in nature, the pump should stop pumping if the percentage of PI-stained cells within

a sample increased, indicating cell membrane damage.

The program was successful in regulating a fed-batch process based on the prementioned

parameters, and it managed to reinduce the cells by injecting higher volumes of inhibitory

compounds per hour. The program was developed in a way that fulfilled the initial scope in

terms of functionality and provides a roadmap for implementing on-line FCM as a basis for

process control.

2

Foreword
This master thesis was performed from the 8th of May until the 25th of September, and thereby

lasted for 20 weeks. Any practical experiments were performed at Kemicentrum, Sölvegatan

39, 223 62 Lund, and equipment was provided by the Division of Applied Microbiology, as

well as the Department of Chemical Engineering.

Thank you to all the acting supervisors for this project; Magnus Carlquist, Raquel Perruca

Foncillas, Marie Gorwa Grauslund and Ola Wallberg, and a special thank-you to Basel Al-

Rudainy for the construction and installation of the Arduino, along with pump

troubleshooting. I would also like to thank Ed Van Niel for acting as my examiner for this

project. I am very grateful for all the advice and expertise you all have shared with me, and I

am further grateful that I was entrusted with this project.

I am especially thankful to Raquel Perruca Foncillas for unfailingly assisting me and being a

huge support for laboratory work and system setup deliberations. Thank you for spending

endless hours musing over a malfunctioning flow cytometer with me while I could not even

be of much help, even though you had much better things to do.

Another special thank you goes to Magnus Carlquist for always being available for input from

the formative days of this project until the end, and for lending your expertise for experiment

planning along the road. Although I could not always decipher your handwriting, I was

always grateful for your input and support.

Finally, I would like to thank everyone at the Division of Applied Microbiology for their

kindness and willingness to help with everything from leaking autoclaves to taking plates out

of heating cabinets. Thank you also for the randomly occurring discussions that have helped

this project be completed in the way that it has.

3

Table of Contents

Abstract .. 1

Foreword .. 2

Table of Contents.. 3

Background .. 5

1.1 Flow cytometry and Fed-batch fermentation .. 5

1.2 Bioethanol Production .. 5

1.3 Automation and Python .. 6

1.4 Aims of this project ... 7

2 Materials and Method ... 7

2.1 Coding platform and Outline .. 7

2.2 Python packages .. 8

2.3 Yeast strains .. 8

2.4 Pre-cultures ... 9

2.5 Analytical methods ... 9

2.6 Evaluation of base program functionality ... 9

2.7 Batch Cultivation .. 10

2.8 Fed-Batch Continuous Cultivation and Final set-up. .. 11

2.9 Recipes, and Equations ... 11

3 Result .. 14

3.1 FCM data processing .. 14

3.2 Pump control program .. 16

3.3 Results of the evaluation of base program functionality 22

3.4 Batch cultivations for determination of glucose consumption rate....................... 22

3.5 Evaluation of sampling procedures ... 24

3.6 Comparisons between fed-batches and dynamically controlled fed-batches........ 24

4 Discussion ... 25

5 Conclusion .. 27

6 Future outlook ... 27

7 Popular Scientific Summary ... 29

References .. 30

Appendix 1 ... 32

i. FCS Trial ... 32

4

ii. FCS Handling .. 35

iii. Pump Handling ... 37

iv. Pump Mock ... 39

v. Main Executor ... 40

5

Background

1.1 Flow cytometry and Fed-batch fermentation

Flow cytometry (FCM) is a versatile tool for single-cell analysis of a microbial

population. There are several ways to utilize it to measure cell number and activity within

a population. FCM data enables many separates culture statistics to be monitored, while

the analysis is kept growth independent.

Cells suspended in liquid pass through one or several lasers, where the resulting light

scatters give information on the cells’ size and granularity, but also levels of any relevant

stains or fluorescent biosensors, dyes, or antibody conjugates. The number of parameters

one could monitor has only increased in recent years as development and implementation

of new fluorescent dyes have enabled the measuring of strain-specific parameters

(Drescher et al., 2021). A popular example of this is propidium iodide, or PI staining

which is used to indicate cell membrane integrity by binding to DNA while not being able

to permeate intact cell membranes (Riccardi and Nicoletti, 2006).

A fed-batch fermentation process is defined by continuously feeding the cell culture with

substrates and nutrients such as sugars that the cells can utilize for either product

generation or cell duplication. Typically, the feeding phase is preceded by a batch phase

with a set concentration of nutrients present in the medium. The feed is then used to

achieve optimal conditions within the cultivation vessel. This in turn will yield a faster

process with higher product and biomass yield than a simpler batch fermentation. This and

the ability to have the culture producing for a much longer time while limiting potential

inhibition from product or substrates, makes fed-batch processes ideal for many processes

within the industry (Poontawee and Limtong, 2020).

On-line flow cytometry with its continuous measuring capabilities is a potential option for

fed-batch process control. Where many alternatives more commonly used today such as

CO2 sensors base their data on the entire culture (Nilsson et al., 2001), single-cell analysis

and automatic gating based on different parameters presents an opportunity to reduce

workload by making certain plating or HPLC steps redundant, depending on the

implemented biosensors. Flow cytometry also is a useful tool for optimizing cultivation

processes to reach optimal robustness or biomass production by analyzing a microbial

population at a single-cell level. (Fernandes et al., 2013)

1.2 Bioethanol Production

Bioethanol is an example of a biofuel that has become widely used as an alternative to

fossil fuels, due to its low greenhouse gas emissions, biomass availability and cost

effectiveness (Farrell et al., 2006), (Hahn-Hägerdal et al., 2006).

The conversion of lignocellulose to bioethanol can be achieved in several ways, however

there are some main staples that persist. The cellulose and hemi-cellulose contained in the

biomass must first be depolymerized through enzymatic hydrolysis into sugars, primarily

pentoses and hexoses. In order to achieve this efficiently, a pretreatment of the raw

biomass is performed where the sugars are made more accessible for the enzymes

(Akshay et al., 2021). During this pretreatment, inhibitory compounds can be released

6

which may hinder the hydrolyzation process. These substances include less potent acids

such as acetic acid, phenolic compounds, and furaldehydes such as 5-hydroxymethyl

furfural and furfural itself (Akshay et al., 2021). Hence, the yeast strain used for the

cultivation must have a high tolerance for these substances, while also having the

phenotype to metabolize both the pentoses and hexoses present in the hydrolysate.

Industrial engineered strains of Saccharomyces cerevisiae has been used for this purpose

previously (Perruca Foncillas et al., 2023).

In order to monitor the fitness of the cells during a fermentation process, redox imbalance

has been used as a marker in previous studies (Almeida et al., 2008), (Ask et al., 2013).

Reducing toxic aldehydes to their less toxic alcoholic forms has been shown to cause a

redox imbalance in the cells as the NAD(P)H cofactors are utilized for the reduction

(Perruca Foncillas et al., 2023). A biosensor has been engineered for the purpose of

monitoring the extent of this imbalance, by utilizing the Yap1p gene and its promotor

TRX2p to detect changes in the fluorescence through a tool such as a fluorometer or flow

cytometry for at-line sampling (Zhang et al., 2016).

A common inhibitory compound in lignocellulose hydrolysate is furfural, which has been

shown to trigger a response from this TRX2p-yEGFP biosensor, inducing the yeast cells

and increasing the average green fluorescence protein (GFP) fluorescence of the culture. It

was shown that there was a correlation between this induction and the production rate of

bioethanol. With a constant feeding rate of furfural, the induction levels would increase

indicating a redox imbalance, however further in the cultivation these levels would start

decreasing, indicating that the same rate of added furfural no longer caused the oxidative

stress needed for measurable induction. Thus, the cells have adapted to the injected

furfurals toxicity and are able to handle higher levels (Perruca Foncillas et al., 2023). The

measurement of this phenomenon with FCM may be used for process control.

1.3 Automation and Python

Automation within the scientific space and more particularly in the life science space has

rapidly grown in importance on a lab scale as the industry continues to advance. While

automation has the advantages of more robust and reproduceable methods with less

researcher involvement, the ever-changing protocols and limited funding of projects

performed in research labs has created an ‘automation gap’ when compared to the

industry. When considering automation options, one should consider its implementation

options in both large and small scale, and developers will require skills in both biology

and technology to create something that is adequate and implementable in many scenarios

and setups. As such, automation has high potential when it comes to making laboratory

work easier and less strenuous on a researcher, which in turn enables them to create more

elaborate experiments (Holland and Davies, 2020).

Programming is a skill that could become essential as technology continues to advance.

Python has become a prevalent coding language used within the biotechnology space and

is widely used for sequencing and bioinformatics. The ability to build specialized and

efficient software that is easily maintained and further tailored to new datasets has become

a valuable skill within the space for good reason (Shajii et al., 2021). There are many

7

possible applications of the language, and with more and more prebuilt modules used for

biological applications being created the possibilities are many. Python can be used as a

viable tool for automation strategies for in-house laboratory procedures, which if

successful can be scaled up to commercial processes should the need arise (Holland and

Davies, 2020).

1.4 Aims of this project

The aim of this project is to develop an automated system using Python to manage and

control a microbial population using FCM data. The program was to be created to be

reactive to changes within a population on a single cell level and react accordingly to said

changes, enabling more precise control over more parameters than what is widely

employed in the industry currently. The program should also serve as a general proof of

concept for bioprocess control using flow cytometry data.

Parts of the program were to be developed with a specific yeast strain in mind. This S.

cerevisiae strain which was engineered for lignocellulose bioethanol production, was the

base for gating strategies and execution on a laboratory scale. Post-program development,

this yeast strain was to be cultivated anew while controlled by the program to investigate

whether it was possible to re-induce the cells as they adapt to furfural toxicity by injecting

higher volumes based on changes in the induction level, which in turn could have a

positive effect on bioethanol production based on previous studies (Perruca Foncillas et

al., 2023).

2 Materials and Method

2.1 Coding platform and Outline

The code was primarily written using Python 3.9.13 on a Windows 11 computer, using the

IDE PyCharm Community Edition 2023.1.1. This setup was primarily for testing and was

not used on the BD Accuri C6+ computer, which runs Windows 7 and hence required a

downgrade to Python 3.7.9 and PyCharm Community Anaconda Edition 2019.3.5. The

downgrade brought with it some differences in code syntax, along with some reduced base

functionality of the PyCharm user interface.

When developing the code, previous cultivation flow cytometry standard (FCS) files for

the relevant yeast strain were used. The files were generated by the fed-batch processes

done by Perruca Foncillas et al., 2023 and were used to simulate a fed-batch process

where new files were created in a set folder. Program output results were compared to the

same FCS files analyzed by the FlowJo software (BD Biosciences, Franklin Lakes, NJ,

USA).

The original outline was for the program to be able to execute the following:

I. Retrieve data from created FCS files continuously and automatically.

II. Gate and plot the data on a single-cell level through a scatterplot. This

should separate the induced intact cells, expressing GFP from non-

induced intact cells and cells that are damaged or dead. The gates should

also be able to remove any potential debris present in the samples.

8

III. Perform calculations on the gated samples to calculate the percentage of

PI-stained cells, the mean GFP fluorescence of the intact cells and total

number of events recorded.

IV. The program should be modular and have the ability to pass on and

utilize any parameters that flow cytometry data can provide by changing

the calculation parameters.

V. Pass these parameters to a function that can determine whether the slopes

of the main parameters, in this case PI percentage and mean fluorescence

intensity (MFI) GFP, is increasing or decreasing.

VI. Utilize the slope values to stop and start a pump with the help of an

Arduino, Raspberry Pi, or other communication module. The pump

should be started as the GFP fluorescence is decreasing indicating a drop

in induction level, and stop if the PI percentage is increasing, indicating

cell membrane damage.

2.2 Python packages

When building Python programs, it is usually encouraged to call on Python packages to

simplify code structure and ensure adequate documentation for future developers, while

avoiding potential program conflicts and keeping the code modular (Foundation, 2023c).

For this project, several of these were employed. First, to extract data from generated FCS

files the package ‘FlowCytometryTools’ (Yurtsev and Friedman, 2018) was used. To

create scatterplots of these FCS files as well as graphs of program output, the package

‘Matplotlib’ (Matplotlib, 2023) was used. This provides a baseline graphical interphase

able to create plots in new windows.

‘pySerial’ (Liechti, 2020) was used to establish serial communication between the

computer and the Arduino used to control the pump. The base python package ‘time’

(Foundation, 2023d) was used primarily for the time.sleep function, which makes the

program stall execution for a specified number of seconds. The similar package ‘datetime’

(Foundation, 2023b) was also used to initialize start times for the program in the format of

a date and precise time.

 The ‘watchdog’ (Mangalapilly, 2023) package was used to continuously monitor a

specified folder and execute specified commands based on activity within said folder.

‘pandas’ (NumFOCUS, 2023) was used for its data frame functionality which enables

calculations on data columns without long data transformation sequences. ‘scipy’

(community, 2023) was used for its built in linear regression function to calculate slopes.

Finally, the ‘atexit’ (Foundation, 2023a) function was used to execute final commands as

the program was terminated.

2.3 Yeast strains

The yeast strain used in both the trial files and experimental cultivations was the S.

cerevisiae strain TMBRP011. The strain was previously obtained by engineering the

industrial strain cv-110 to carry the TRX2p-yEGFP biosensor by utilizing a CRISPR/Cas9

system (Perruca Foncillas et al., 2023).

9

The S. cerevisiae strain used as a positive control in the initial artificial culture trials was

TMBRP013 which carried the TEF1p-yEGFP construct. In this case, TEF1p is a

constitutive promoter which means that the cells should be expressing GFP constantly,

without the need for causing a redox imbalance (denoted TEF) (Perruca-Foncillas et al.,

2022). The negative control was non-induced TMBRP011 cells (denoted TRX).

2.4 Pre-cultures

The relevant strains were taken from their respective -80℃ stock and streaked on yeast

extract-peptone-dextrose (YPD) plates which was incubated at 30℃ for 48 hours. A two-

step pre-cultivation was then performed where the cells were inoculated in a 50 mL

Falcon tube with 5mL YPD medium. The over-night culture was subsequently placed in a

shaking incubator at 30 ℃ and 180 rpm for 17 hours. The cultures were then reinoculated

to an OD620nm of 0.6 in new falcon tubes containing 5 mL of YPD, which was incubated

for 4.5 hours under the same conditions.

2.5 Analytical methods

A combination of the Accuri C6+ (BD Biosciences, Franklin Lakes, NJ, USA) flow

cytometer and the OnCyt autosampler (OnCyt, Switzerland) was used to monitor

fluoresence and the amount of stained cells, along with the number of recorded events in a

taken on-line sample. The Accuri C6+ was equipped with two excitation lasers, one at 488

nm and the other at 640 nm, along with detection filters of 533/30 nm in FL1, 585/40 nm

in FL2, 670 LP in FL3 and 675/25 nm in FL4. Samples were diluted using phosphate

buffered saline (PBS) to a total dilution factor of 100x, stained with 10 µg/mL propidium

iodide (PI) and incubated for 5 minutes. The Accuri C6+ was set to run fixed-volume

samples of 35 µL at a speed of 35 µL/min for cultivation samples, and to run MQ water

for four minutes at 35 µL/min in between as washing step.

The OnCyt communicates with the Accuri C6+ through remote interfacing and allows the

user to customize the sample cycles through the OnCyt software, and repeat these cycles

over a long period of time. Samples were taken directly from the cultivation shake flasks

to monitor PI and GFP continuously. The analysis data of every sample were stored as a

FCS file in a specified output folder and denoted A01 to H12.

Cell concentrations of manual samples were estimated off-line through sample optical

density using an Ultrospec 2100 pro UV/Visible spectrophotometer (Amersham

Biosciences, Buckinghamshire, UK) at 620 nm (OD620). Medium composition and

metabolite concentrations were subsequently analyzed after centrifugation at 13,000 rpm

for 5 minutes. The recovered supernatant was analyzed using a Waters HPLC system

(Milford, CT, USA) coupled with an Aminex HPX-87H column (Bio-Rad, Richmond, VA,

USA). The mobile phase used was 5 mM sulfuric acid, with a constant flowrate of 0.6

mL/min.

2.6 Evaluation of base program functionality

Initial trials were done to evaluate the functionality of the program during a live sample

cycle. This was done by preparing samples of TRX cells, used as a GFP negative control,

and TEF cells used as a GFP positive control in separate 1.5 mL Eppendorf tubes. One

10

sample of TRX cells was additionally placed in a 70℃-heating cabinet for 3 hours in

order to damage them for use as a positive PI-stained control.

Samples were created by utilizing different volume compositions of the three controls to

simulate a sequence of events within a culture which would cause the program to react.

The exact volume compositions can be seen in table 2.1. Samples were run in an order

that would initially simulate an increase in MFI GFP, followed by a subsequent decrease

which was meant to cause the program to start the pump. Then, an amount of the PI-

positive control was to be inserted to simulate culture damage, which the program should

react to by stopping the pump.

Samples were manually prepared with OD620nm measurements of 0.1 They were analyzed

through the OnCyt autosampler and BD Accuri C6+ flow cytometer, and controls for the

pure control-samples were run and displayed by the written FCS Trial program with

specialized gates before startup. These new gates were made to accommodate the

fluorescence differences between the TEF and the induced TMBRP011 strain.

Table 2.1. Depicting sample composition volumes for the primary evaluation of program functionality. The TRX strain

was used as a negative MFI GFP control, while the TEF strain was used as a positive control. Damaged cells were

inserted into the last sample to trial the reaction of the program when the percentage of PI-stained cells increases.

Sample TRX (µL) TEF (µL) Damaged

0 900 100 -

1 800 200 -

2 500 500 -

3 100 900 -

4 500 500 -

5 800 200 -

6 900 100 +

2.7 Batch Cultivation

A 500 mL baffled shake flask equipped with a handcrafted cotton stopper with four

inserted lines was used for the cultivation experiments. The shake flask was reinoculated

to an OD620nm 0.1 in 50 mL of YP medium, 40 g/L glucose and 40g/L xylose using the

secondary pre-culture. The cultivation was then incubated aerobically in a shaking

waterbath at 30℃. Manual 1 mL samples were taken hourly during start and finish, where

OD620nm was recorded, and the medium composition was analyzed using an HPLC. The

manual sampling line had a length of approximately 20 cm made up of a Masterflex®

96400-16 line. The batch cultivations were run for 21-23.5 hours depending on when

glucose was deemed as depleted through HPLC peak analysis.

11

2.8 Fed-Batch Continuous Cultivation and Final set-up.

Figure 2.1. A schematic depicting the overall setup for a fed-batch cultivation regulated by the Python script. Pump 1 is

used for achieving a constant feed rate, while pump 2 is controlled by the python script through an Arduino, pumping a

solution of water and furfural. The OnCyt automatically takes samples through its sample line and analyses it in the BD

Accuri C6+, which in turn informs the program. The manual sampling line was used to take samples for media analysis

using HPLC and OD620 measurements. Schematic created on Chemix.org (Codelite Ltd, 2023).

Figure 2.1 depicts a schematic figure of the final experimental setup for the fed-batches.

The shake flask with the batch cultivation was connected to 3 new lines along the manual

sampling line after depleted glucose.

Line 1 held the feed, containing YP medium, 20 g/L glucose, 20 g/L xylose, and 6.9g/L

furfural, with a constant feed rate of 104 μL/min using a peristaltic pump, denoted ‘Pump

1’ in figure 2.1. This line had a length of approximately 1 meter and was made up

primarily of Masterflex® 96400-16 lines with fitted connectors.

Line 2 held the furfural-water solution with a furfural concentration of 50 g/L, and the rate

of entry was controlled by an arduino connected to the PC and subsequently controlled by

the program. This peristaltic pump, denoted ’ Pump 2’ in figure 2.1 was set to an rpm of

43 which corresponded to to a pump capacity of 259 μL/min or 15.6 mL/h. This line was

approximately 2 meters long made up primarily of Masterflex® 06402-14 lines with fitted

connectors.

The third line is the OnCyt sample line, which automatically took a sample from the

cultivation at set times and analyzed them using the BD Accuri C6+ flow cytometer. The

fed-batch cultivations were run for a total of approximately 44 hours, with 22 of those

consisting of the feeding phase. The line was approximately 1.5 meters in lengths made up

primarily of the OnCyt line itself.

2.9 Recipes, and Equations

Table 2.2 contains all utilized mediums and solutions used throughout the experimental

phase of the project. The primary medium used was YP, with a sugar content of either

solely glucose for the precultures, or glucose and xylose for the cultivations. Cells were

also plated on YPD plates from a stock of the TMBRP011 strain every other week.

12

PI staining was used as an indicator of cell-membrane integrity during the cultivations and

was used automatically by the OnCyt autosampler, diluting the samples 2x. Furthermore,

cultivation samples were automatically diluted an additional 50x with PBS, which was

used as a buffer. Similarly, Sodium Hypochlorite 0.5% and Sodium Thiosulphate 10 mM

were used as recommended for sterilizing and quenching respectively after every taken

sample (Besmer et al., 2016).

The recipes for the standard solutions needed to run the BD Accuri C6+ flow cytometer

can also be seen in table 2.2. These were made according to instruction with the existing

stock solutions provided by BD Biosciences.

Table 2.2. Depicting solutions and media as well as the recipes used during conducted experiments. All final volumes

were measured in measuring cylinders while considering dissolved solids and their eventual water-contents The pH of

PBS was checked with dissolved solids at 800 ml. ‘(AC)’ denotes solutions that were autoclaved after mixing.

Solution Final Volume Recipe

YP medium

90% (AC)

360 mL • 8 g peptone from casein

• 4 g yeast extract

• ~360 mL MQ water

YP medium

80% (AC)

320 mL • 8 g peptone from casein

• 4 g yeast extract

• ~320 mL MQ water

YPD plates

(AC)

400 mL • 8 g peptone from casein

• 4 g yeast extract

• 6 g Agar-agar

• ~360 mL MQ water

• 40 mL 200g/L glucose

Glucose

200g/l (AC)

100 mL • 8g Glucose

• ~100 mL MQ water

Xylose

200g/l (AC)

100 mL • 8g Xylose

• ~100mL MQ water

Propidium Iodide

10 µg/mL

10 mL • 200 μL, 500 µg/mL PI

• 9.8 mL MQ water

Sodium Hypochlorite

0.5%

400 mL • 20 mL NaOCl stock, 10%

• ~380 mL MQ water

Sodium Thiosulphate

10 mM

800 mL • 1.98 g Na2S2O3 * 5 H2O

• ~800 mL MQ water

PBS

pH 7.4 (AC)

1 L • 8 g NaCl

• 0.2 g KCl

• 2.68 g Na2HPO4 * 7 H2O

• 0.24 g KH2PO4

• ~1 L MQ water

Accuri C6+ Sheath Fluid 1 L • 1 ‘BDTM Solution

Bacteriostatic Concentrate’

bottle

• 1 L MQ water

13

Accuri C6+ Detergent 200 mL • 3 mL ‘BDTM Detergent

Solution Concentrate’

• 197 mL MQ water

Table 2.3 depicts recipes for both pre-culture steps as well as the batch cultivation and

feed bottle contents used during the final iteration of the experimental phase. Mediums

and sugar solution recipes can be seen above in table 2.2. The over-night culture was

reinoculated in the preculture to an initial OD620nm of 0.6, while the batch-cultivation used

the preculture to be further reinoculated to an OD620nm of 0.1.

Table 2.3. Depicting the final iteration of recipes for cultures and feeds used during final batch- and fed-batch

cultivations. Yeast strains were taken from -80℃ stocks before streaked on YPD plates.

Solution Final Volume Recipe

Over-night Culture (YPD) 5 mL • 4.5 mL YP

• 0.5 mL Glucose 200g/L

• Yeast cells from fresh YPD

plates

Pre-Culture (YPD) 5 mL • 4.5 mL YP

• 0.5 mL Glucose 200g/L

• OD620nm 0.6

Batch Cultivation 50 mL • 30 mL YP 80%

• 10 mL Glucose 200g/l

• 10 mL Xylose 200 g/l

• OD620nm 0.1

Feed 150 mL • 120 mL YP 80%

• 15 mL Glucose 200g/l

• 15 mL Xylose 200g/l

• 892 μL Furfural

Furfural 100 mL • 4.312 mL Furfural

• 95.688 mL MQ, Sterile

water

 𝐶1 ∗ 𝑉1 = 𝐶2 ∗ 𝑉2 (a)

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑛 =

𝑉0 + 𝑉𝑓𝑒𝑒𝑑𝑛
+ 𝑉𝑝𝑢𝑚𝑝𝑛

𝑉0

(b)

Equation ‘a’ depicts the equation used to calculate specific volumes when reinoculating

the pre-cultures and batch-cultivation through the help of optical density measured by a

spectrophotometer at 620 nm in wavelength. Equation ‘b’ depicts the equation used to

calculate the dilution factor of ingoing medium and furfural solution during the fed-batch

14

phase, which is then used to calculate an approximate number of events per sample,

should it be undiluted.

3 Result

3.1 FCM data processing

The development of the code started as mentioned in section 2.1 with flowcytometry files

from previous cultivations using the TMBRP011 strain (Perruca Foncillas et al., 2023).

These files became the base for the fixed gating strategies used throughout the

experimental phase.

To ensure that the static theoretical gates were sufficient, program returned results were

compared with the same FCS file run in the software FlowJo. At first, the MFI GFP values

seemed to differ greatly, the reason for which was subsequently discovered to be different

transformation strategies for the raw data. In order to read and review FCS data in Python,

the package ‘FlowCytometryTools’ (Yurtsev and Friedman, 2018) was used. Through

giving it the path to an existing FCS file, it can call the data from their columns and

transform it directly for easier viewing, along with simplifying further calculations by

making said columns easy to access. While transforming FCS data is done in FlowJo as

well, ‘FlowCytometryTools’ transforms the data directly, while FlowJo transforms its axes

instead. To fix this discrepancy gates were created with the logarithmic axes in mind,

which also removed any heatmapping capabilities from the program due to lack of support

when using log axes from the used packages, heatmapping trials resulted instead in large,

inaccurate blocks. The gates were then refined and changed by plotting all given datafiles

through use of the package ‘Matplotlib’ (Matplotlib, 2023) and comparing the results with

their FlowJo equivalent.

The program starts by removing debris by a static threshold gate for the forward scatter

height (FSC-H) which indicate particle size. Particles bellow this threshold is considered

debris and removed from further calculations. The remaining entities are then gated by

plotting PI (FL3-H) against GFP (FL1-H) levels. A high PI value indicated a cell with a

non-intact membrane, and where thereby denoted ‘damaged’, while the cells deemed

intact were separated by fluorescence level into GFP negative and GFP positive. The

resulting gates, as well as an example of program output plots and results compared to

FlowJo can be seen in figure 3.1. As can be seen, the fixed gates sufficiently encompass

the relevant cell populations and removes most of the debris. The MFI GFP was calculated

using both GFP positive and GFP negative populations as the value of the culture as a

whole was of interest when inducing in the experimental phase, it was also what was done

in the study by Perruca Foncillas et.,al. An alternative approach based on the GFP

subpopulations was also of interest and functional but was not utilized further in the

experimental phase.

15

Figure 3.1. Depicting scatterplots of entities recorded in FCS file A01 in folder 2022-11-09_17-00-57 from the

cultivations done by Perruca Foncillas et.al. Figure A depicts a forward scatter – side scatter plot indicating their size

and granularity. Entities bellow a specified size was deemed debris, where the black line indicates a threshold gate

Figure B takes the remaining cell population and gates them based on PI-level and fluorescence level. The black lines

indicate an approximate illustration of the applied gates. Yellow scatter indicates cells with non-intact membranes,

green scatter indicates GFP positive intact cells and blue scatter indicate GFP negative intact cells.

 A statistical comparison of FlowJo and program output from the same FCS files can be

seen in figure 3.2. Figures A and B depicts MFI GFP and the percentage of intact cells

respectively, with FlowJo output on the x-axes and program output on the y-axes. Linear

equations were fitted to the resulting datapoints and their R2 values were calculated to

indicate fit. Figure 3.2 A was fitted with the linear equation y = 1.0035x - 1.8443 with the

R2 value 0.9995, while figure 3.2 B was fitted with the equation y = 1.0481x - 4.9351 with

an R2 of 0.9943. This analysis indicated that the fixed gating strategy was sufficient due to

the resulting slopes and R2 values both being close to 1. An example of exact statistic

comparisons for one FCS file can be seen in table 3.1, which in turn corresponds to the

entities plotted in figure 3.1.

Figure 3.2. Depicting the result of a statistical analysis comparing program automatic output to FlowJo manual output.

Figure A depicts MFI GFP, with FlowJo output on the x-axis and program output for the same file on the y-axis. A linear

regression was fitted, with the equation y = 1.0035x - 1.8443 and R2 value of 0.9995. Similarly, the percentage of intact

cells were plotted in graph B, with a linear regression equation of y = 1.0481x - 4.9351 with R² = 0.9943.

R² = 0.9995

y = 1.0035x - 1.8443
4000

5000

6000

7000

8000

9000

4000 5000 6000 7000 8000 9000

M
F

I
G

F
P

, P
ro

gr
am

MFI GFP, FlowJo

R² = 0.9943

y = 1.0481x - 4.9351

92

93

94

95

96

97

98

92 93 94 95 96 97 98

In
ta

ct
 c

el
ls

, P
ro

gr
am

 (
%

)

Intact cells, FlowJo (%)

A B

A B

16

Table 3.1. Depicting an example of data outputs from the program and the FlowJo software when used independently

with the same FCS file. Corresponds to figure 3.1 for the program output graphs.

Statistic Program Output FlowJo Output

Number of events 97753 97753

Number of cells 96511 95409

Percentage of intact cells 92.6% 93.0%

MFI GFP (intact cells) 6412 6402

3.2 Pump control program

A plan for a final program structure was developed before further coding was done. The

FCS Trial program was to be repurposed into a function to be called on by the Main

Executor file to return numerical parameters from new FCS files. This program file would

also be able to call on the pump handling file to control the pump further down the line.

Firstly, it was necessary that the program could access new FCS files as they were created

rather than to be manually directed to said files. This was done with the ‘Watchdog’

package (Mangalapilly, 2023), specifically using the ‘Observer’ class. This enabled the

code to send an instanced Observer to a specified folder, which can monitor changes

within that folder. The ‘on_created’ method was used, which causes the Observer to react

when a file is created in the specified folder. The Observer was also written to

continuously monitor the folder until the program is terminated.

The program should also be able to handle different reactor setups according to the user’s

needs. This was done by initializing the ‘file_counter’ variable in the on_created method

to keep track of the number of created FCS files. For a setup with one reactor and one

washing step, the first and subsequently every other file would be of interest and denoted

as sample files, which would continue program execution. Separate scripts were created

for different reactor-water set-ups, however only the forementioned was employed

experimentally.

Initial testing of pump control begun with the help of an Arduino and serial

communication. It was demonstrated that manual input of commands into the Arduino

terminal had the capability of stopping and starting the pump while connected by USB to

a COM-port. To do this automatically with python, the ‘Serial’ package (Liechti, 2020)

was used for COM communication. Serial is able to write commands and read responses

from a port, which indicate if the commands are accepted and executed. For specific

parameters and commands used, see Appendix I: III Pump Handling. The functions made

to control the pump was only usable with the pump attached, hence why the Pump Mock

file was created as a substitute for testing, which only prints messages in the console.

As starting and stopping the pump should be based on the slopes of real-time data, it was

decided that the slope values should be based on the three latest datapoints, but the issue

of possible outliers became apparent. Exponential Moving Average (EMA) was one

option that was trialed. EMA is a weighted moving average commonly used when

following stock market trends. In stock market applications, EMA “smooths” stock price

17

fluctuations and enables the user to easier distinguish between actual market trends and

standard day-to-day fluctuations (5paisa, 2023). EMA differs from the method Standard

Moving Average (SMA) by putting more weight on recent datapoints which makes it

faster correcting when determining the current trend for a stock, which is also why it

denoted as an exponential average. Historical datapoints have less and less relevance the

further back they are. The formula for EMA calculation can be seen in equation ‘c’, where

𝛼 is a constant, exponential “smoothing” factor, determining the weight of the newer

datapoint, 𝐷𝑎𝑡𝑎𝑛 is the raw data of measurement 𝑛.(5paisa, 2023).

 𝐸𝑀𝐴𝑛 = 𝐸𝑀𝐴𝑛−1 + 𝛼 ∗ (𝐷𝑎𝑡𝑎𝑛 − 𝐸𝑀𝐴𝑛−1) (c)

There were several functions written in the Main Executor for further handling of sample

files, in order of execution:

I. Save_results. This function extracts the data received from the FCS Handling file

and transforms them into a singular ‘Pandas’ data frame with correct column

headings and appends new datapoints to the ‘Total Results’ data frame. It also

returns the sample time and calculates and appends the newest EMAs for PI

percentage and GFP MFI.

II. Plot_results. This is used for plotting and is not strictly necessary for code function

but is used as a visualization tool for the user. It plots PI percentage, PI EMA, GFP

MFI, GFP MFI EMA, and recorded events in three separate subplots.

III. Get_slope. If this is at least the third sample file, this function calculates the EMA

slopes for the last three datapoints of PI percentage and MFI GFP when plotted

against time. It also appends these slopes to the ‘Total Results’ data frame.

If not, it appends “Premature” to those columns in the ‘Total Results’ data frame.

IV. Use_pump. This function is used to call functions from the Pump Handling file to

control the pump, specifically pump 2 in figure 2.1. If it is at least the third sample

file, this function utilizes several ‘if’ statements to decide if the pump should start,

and how many mL/h to pump. The pump will stop if the PI slope is higher than a

certain positive threshold or average PI percentage of the last three points is higher

than a static number. It will start if it hasn’t been told to stop and the MFI GFP

slope is lower than a certain negative threshold, the first setting currently pumps 1

mL/h.

The volume per hour will subsequently increase if the PI slope does not increase

and the MFI GFP slope is continuously negative. A higher mL/h in this case

indicates a setting where the pump is left on for a longer period of time within a

sample cycle, although always split into two stages. A higher pumping time will

lead to more furfural entering the cultivation vial, which in turn should have a

higher probability of reinducing the cells, but may also risk their integrity if done

immediately, hence the tiered setting system based on the MFI GFP slope.

18

V. Save_to_folder. This is the function used by ‘atexit’ to save the output figure and

data frame as a PNG and excel file respectively when the program is shut down. It

also creates a new folder based on the start time of the program where it places the

files.

The final program flowchart can be seen in figures 3.3.1 and 3.3.2. This illustrates the

flow of events as an FCS file is created in de designated folder to when the program waits

for the next file. This will then repeat until program termination, which is when the data

will be saved by the Save_to_folder function. The incremental increase of furfural volume

entering the culture vial is based on increased minutes pumping dispersed throughout a

sample cycle, see section 2.3.2 Pump Handling for specifics.

An example of a final program output graph can be seen in figure 3.4. This displays a test

run done with data from the cultivation by Perruca Foncillas et al., with datapoint 0 being

the file used to create figure 3.1 and table 3.1 with the FCS Trial program.

An example of program output data frame can be seen in table 3.2. This is the numerical

representation of figure 3.4. As can be seen this simulated test-run was successful in

controlling the pump based on flowcytometry data.

19

Figure 3.3.1. Depicting the first part of program execution as a new FCS file is created in a designated folder. The

program checks whether the file is a sample or water file through the filecounter variable which is increased by 1 for

each created file. The FCS Handling file is then called to extract data and calculate PI percentage and MFI GFP which

it passes back to Main Executor. These results are then saved, and the EMA is calculated through the save_results

function, these are subsequently plotted by the plot_results function.

20

Figure 3.3.2. Depicting the second part of program execution after an FCS file has been created. If it is at least the third

sample file, slopes are calculated which subsequently determines whether the pump should start, stop, or take no action.

This represents actual program set up as the pumping volume is increased if the fluorescence continues to decrease after

the pump is started. The different pumping rates is built on time that the pump is on in a sample cycle, so a higher rate

means a longer pumping time per hour.

21

Figure 3.4. Depicting the final output graph for a theoretical test run done by moving existing FCS files to a

designated folder. The three subplots represent number of events. Mean fluorescence and its EMA, and PI-stained

percentage and its EMA. The figure is based on the data written in table 3.2.

Table 3.2. Depicting the final output data frame for a theoretical test run done by moving existing FCS files to a

designated folder. The pump status column is based on the slopes, both PI percentage and MFI GFP is decreasing the

pump is designed to start which can be seen in the 8th datapoint.

PI

percentage

MFI

GFP

Time

(min)

Events PI slope

(EMA)

GFP

slope

(EMA)

Pump Status

0 7.462053 6411.979 0 97 753 Premature Premature Premature

1 5.528853 6906.347 60 74 267 Premature Premature Premature

2 5.3683 7433.694 120 74 791 -0.01477 6.163345 No Action

3 4.820228 7675.728 180 79 583 -0.00785 5.78858 No Action

4 3.85195 7925.706 240 95 917 -0.01011 4.593783 No Action

5 3.673066 8119.962 300 121679 -0.00966 4.023424 No Action

6 3.722865 8058.241 360 111751 -0.005 2.438455 No Action

7 3.764887 7959.524 420 140391 -0.00193 0.430083 No Action

8 3.873295 7738.315 480 114649 -0.00025 -1.20386 Started

22

3.3 Results of the evaluation of base program functionality

The program was able to start and stop the pump based on manually created samples

utilizing the TEF and TRX strains (table 3.3). At first the program was unable to

recognize file creations in the OnCyt’s own designated output folder, however this was

solved by changing the output folder to one not directly managed by the OnCyt. Some

waiting times were also introduced to the program (time.sleep) as it was accessing the files

too quickly after creation, making them appear corrupted to the program while essentially

incomplete. The time column was in this case artificial to generate comparable slope

values to those the program was built on.

Table 3.3. Depicting program data output from the initial trials. As MFI GFP and PI percentage changed the program

was able to recognize these changes and control the pump successfully. The Time column was in this case artificial.

PI

percentage

MFI

GFP

Time

(min)

Events PI slope

(EMA)

GFP

slope

(EMA)

Pump Status

0 3.401176 5974.791 0 11413 Premature Premature Premature

1 2.078148 6753.514 30 16212 Premature Premature Premature

2 2.765731 14472.23 60 14195 -0.01239 87.02383 No Action

3 0.424165 29220.53 90 15785 -0.01806 244.7067 No Action

4 2.264454 15621.46 120 16449 -0.01304 116.4891 No Action

5 5.070156 9984.896 150 11774 0.035935 -122.758 Started

6 23.58696 6756.726 180 1251 0.204825 -135.05 Stopped

3.4 Batch cultivations for determination of glucose consumption rate

The batch cultivations were run to determine how fast the cells would consume the

glucose present in the medium, which would indicate when to start the feeding for the fed-

batches. They were also run to evaluate the system setup with YP medium, and shake-

flask as opposed to minimal medium and bioreactor which was used in the study by

Perruca Foncillas et.al. While a triplicate of the batch cultivation was run, due to

mechanical errors with the flow cytometer which stopped some measurements early from

the end of the second run onwards, event count is non reliable from that point. However,

MFI GFP and PI percentage remain consistent throughout and hence seemed reliable. As

no duplicate was available for data after the 16h mark, the existing event count data will

not be used for further calculations.

23

Figure 3.5. Depicting results from the primary batch cultivations. Displaying the natural logarithm of recorded events

from 4 to 16 hours and its linear equation y = 0.2806x + 6.5289 with an R2 value of 0.9965. The linear equation was

used to calculate μmax and Tb from equations ‘d’ and ‘e’.

 𝑙𝑛(𝑁) = 𝜇𝑚𝑎𝑥 ∗ 𝑡 + 𝑙𝑛(𝑁0) (d)

𝑇𝑔 =

𝑙𝑛(2)

𝜇𝑚𝑎𝑥

(e)

Figure 3.6. Depicting the HPLC analysis results for the batch cultivation mediums, as well as the recorded OD620nm.

Glucose continuously decreases and depletes from 21-22 hours on average with a maximum depletion time of 23.5

hours. The xylose consumption rate increases slightly as the glucose concentration decreases. There was some ethanol

formation throughout the cultivation. OD620nm increases gradually until the last three hours.

Figures 3.5 and 3.6 showcases the results from the batch cultivations. Figure 3.5 shows

the natural logarithm of recorded events as functions of time. A linear equation was fitted

to the recorded event graph from hour 4 to 16, which had the numerical values y =

0.2806x + 6.5289 with an R2 value of 0.9965. This linear equation corresponds to

equation ‘d’, where the maximum specific growth rate (μmax) corresponds to the slope,

y = 0.2806x + 6.5289
R² = 0.9965

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22

ln
(N

)

Time (h)

0

2

4

6

8

10

12

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22

O
D

 6
2

0
n

m

C
o

n
ce

n
tr

at
io

n
 (

g/
L

)

Time (h)

Ethanol

Glucose

Xylose

OD 620nm

24

which equates to a value of 0.2806 h-1. This was then used with equation ‘e’ to calculate

the doubling time (Tg) to 2 hours and 28 minutes.

Figure 3.6 shows the HPLC results of the cultivations as well as their OD620nm

measurements. Glucose was observed to deplete on average at the 21–22-hour mark with

a maximum depletion time of 23.5 hours, these times were used to plan for the fed batch-

cultivations as the feeding phase was to be started after batch phase depletion. After

glucose depletion there was a slight increase in the xylose consumption rate. Some

formation of ethanol was observed. OD620nm throughout the experiment, with a slight

stagnation observed during the last three hours, corresponding to the lag-phase induced by

the low sugar-content within the medium, along with the diauxic shift to xylose and

ethanol.

3.5 Evaluation of sampling procedures

The batch cultivations were monitored by automatically sampling every 4 hours and

running over 3 mL of dead volume before measuring to ensure fresh sample on the line,

due to the length of the OnCyt sampling line being close to 1.5 meters. This was not ideal

as a lot of volume was wasted of the 50 mL cultivation, thus making more frequent

sampling impossible as well. For the pump control to work as intended later on, this four-

hour window was deemed much too wide as letting the pump run unregulated for that long

could result in killing the entire culture, and small cell clusters were noticeable in the line

further into the cultivation which could potentially cause clogging in the SIP of the flow

cytometer. A solution was developed where an air filter (0.22 µm) was put on the OnCyt’s

air intake, and the autosampler would use sterile-filtered air to push the still on the line

back into the shake flask after a taken sample, resulting in a new dead volume of

approximately 150 µL in the OnCyt. During the subsequent trials, the batch cultivations

were closely monitored for contamination through the FCS Trial program, but none were

noticed. This reduced the needed volume significantly and enabled sampling every 30

minutes during the fed-batch cultivations.

3.6 Comparisons between fed-batches and dynamically controlled fed-batches

Comparisons between the results from the regular fed-batch cultivations and the

dynamically regulated fed-batch cultivations can be seen in figures 3.7 and 3.8.

Figure 3.7 features average PI percentage and MFI GFP plotted against time passed since

the feeding phase was initiated. As can be seen in 3.7 A, PI percentage followed a similar

profile for both the experimental setups, with a value of approximately ten percent

towards the end of the cultivations. The impact of the dynamic control program can

mainly be observed in figure 3.7 B, where the experimental setups follow a similar profile

until the MFI GFP slope starts decreasing after the first peak at seven hours. The regular

fed-batch cultivations approximately followed the profile shown in the study by Perruca

Foncillas et.al., 2023, despite the differing medium and cultivation differences. The

decrease in MFI GFP in the dynamically controlled fed-batches caused program activation

and furfural addition, which caused the cells to be reinduced to a higher peak before

decreasing again after 17 hours of feeding.

25

Up until the second peak, the program was kept in the ‘Started’ pump status, which means

an addition of 0.5 mL furfural solution per half-hour sample cycle. Subsequently the

volume per sample cycle was increased, but no further induction was observed with

current pump settings and furfural concentrations. The regular fed-batch cultivations were

administered 892 µL or 1.031 g of furfural in total from the feed at the end of the

cultivations, while the dynamically regulated fed-batch cultivations had a final furfural

addition of 1.97 mL ± 0.046 mL or 2.29 g ± 0.053 g. This equates to an increase of over

120%, while the percentage of PI-stained cells is steadily decreasing comparatively to the

regular cultivations.

Figure 3.7. Illustrating data from the duplicates of the regular fed-batch cultivations and the dynamically controlled fed-

batch cultivations. 3.7 A shows how the percentage of PI-stained cells changed throughout the feeding phase, with the

regular fed-batch in blue and the dynamically regulated fed-batches in orange. 3.7 B shows changes in MFI GFP over time

during the feeding phase with the regular fed-batches in green and the dynamically regulated fed-batches in yellow.

Figure 3.8. Showing the HPLC results for the duplicate regular fed-batches in 3.8.A, and the duplicate dynamically

regulated fed-batches in 3.8 B, along with their calculated undiluted OD620 values. Hour 0 represents the transition into

the feeding phase from the batch phase.

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22

P
I

(%
)

Time after feeding start (h)

Regular

Dynamically
regulated

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8 10 12 14 16 18 20 22

M
F

I
G

F
P

Time after feeding start (h)

Regular

Dynamically
regulated

0

2

4

6

8

10

12

14

16

18

0

5

10

15

20

25

30

35

40

45

-22 -18 -14 -10 -6 -2 2 6 10 14 18 22

O
D

 6
2

0
n

m

C
o

n
ce

n
tr

at
io

n
 (

g/
L

)

Time (h)

Ethanol
Glucose
Xylose
Furfural
OD 620nm

0

2

4

6

8

10

12

14

16

18

0

5

10

15

20

25

30

35

40

45

-22 -18 -14 -10 -6 -2 2 6 10 14 18 22

O
D

 6
2

0
n

m

C
o

n
ce

n
tr

at
io

n
 (

g/
L

)

Time (h)

Ethanol
Glucose
Xylose
Furfural
OD 620nm

A B

A B

26

Figure 3.8 shows the medium HPLC analysis results of the fed-batch cultivations. As can

be seen, the profiles for the regular cultivations (3.8 A) and the dynamically controlled

cultivations (3.8 B) appear similar, the most notable difference during the feeding phase

being some furfural accumulation within the medium. This is due to the increased

administration rate of the dynamically regulated fed-batch cultivations, especially during

the last three samples where the program was running at its ‘Maximum increased’ setting,

administrating 5 mL/h furfural solution or 0.2 mL per sample cycle pure furfural into the

cultivation vials. The measured OD620 values differ in profile, which can be explained by

the extra dilution stemming from the added furfural solution.

4 Discussion
Here, a method for monitoring and regulating a yeast cultivation process was developed at

the single cell-level. The program has been utilized successfully for cultivation process

control and was able to reliably control a peristaltic pump based on specific input

parameters, while interpreting FCS files in real-time as they were created. This single-cell

level analysis and on-line process control has the advantages of being less labor-intensive

while being able to regulate a microbial population based on several parameters that is

otherwise difficult to analyze automatically in an on-line setup. The redox biosensor

utilized in the TMBRP011 S. cerevisiae strain, in combination with PI staining was but

one example of a potential control scheme one could use.

The dynamically regulated fed-batch cultivations were reinduced after the initial decrease

in fluorescence when the program was employed. This resulted in final added furfural

volumes over 120% more than the regular fed-batch cultivations, indicating acclimatation

from the cells, as even the additional furfural injected eventually could not keep the cells

induced. After the second peak at 17 hours of feeding, the program did increase its

pumping time as instructed, but it seemed that neither 1.5, 3, or 5 mL/h were able to

completely reinduce the culture. More experiments are necessary to determine whether

further reinduction is possible, what can be said is that the PI percentages did not change

with the higher volumes, indicating that the culture can take a higher volume in terms of

survivability. Biomass production also seemed comparable to the regular fed-batch

cultivations when accounting for dilution factor, which indicates that the additional

furfural addition did not affect the growth of the cells.

As for accuracy, the final product and the gating strategy has been sufficient throughout

and has not presented any issues that hindered project progression. If one wanted to utilize

this program with a less static population a different strategy would be necessary, but as

the static strategy was sufficient here this was not explored. One strategy that could be

employed in this case is k-means clustering (Rao NS, 2023), which can automatically

select subpopulations of FCM data and gate based on clustering. This method will be a

useful alternative to the fixed gating strategy employed when building this program and

could assist in making the program usable for more microbial populations without

manually setting the gates beforehand.

27

The unregulated fed-batch cultivation showed a similar profile to those presented by

Perruca Foncillas et., al. The initial increase in the percentage of cells that were PI stained

could potentially be attributed to the cells entering a semi-stationary phase due to the

diauxic shift, which could also be a reason for the apparent ethanol consumption before

stabilization. Furthermore, the increase of MFI GFP seems to coincide with the negative

PI percentage slope which coupled with the slight glucose accumulation during the first

hour of feeding further gives credit to this theory. The cultivations were run aerobically,

however as OD620nm indicates such high cell concentrations and that there was no active

air transfer, the oxygen contents towards the end of the cultivations may not have been

sufficient, contributing to this phenomenon. Overall aeration may also have been limited

in the shake flask setup. As no accumulated furfural was observed, it can be assumed that

the cells were able to detoxify the entirety of it towards the end of the cultivation.

The batch cultivations were plagued by a mechanical error with the flow cytometer, which

was later discovered to be a rusted waste outlet valve. This error made many event counts

unusable, including those of the regular fed-batches. This makes biomass comparisons

more difficult as relying on optical density measurements solely has a high level of

variability. However, while not optimal, this was deemed as an error this particular setup

could work with. As the most important statistics consists of a mean and a percentage,

these can still be calculated even with smaller sample sizes. In the event of a crash, the

cytometer would stop the measurement after approximately 16 seconds as opposed to the

minute a full sample would take. Especially at higher cell concentrations, even 16 seconds

yielded more than enough cells to make the extrapolation that the sample would follow a

similar pattern.

5 Conclusion
The cultivations have proven reproducible, and the program design has fulfilled the initial

scope, along with some additional features. The regulated fed-batch cultivations were

successful in re-inducing the culture and outside of mechanical flow cytometer issues the

project has delivered and proceeded as planned. Flow cytometry as a tool for on-line

process control is in its early stages, but the result of this project proves that there are

great possibilities for customization for specific processes, and that it is most certainly a

viable possibility for the future. This project provides a roadmap for implementing on-line

FCM monitoring as a basis for process control.

6 Future outlook
It was discovered late in the experimental phase that while the code is functional, the

necessary downgrades from a windows 11 computer to a windows 7 computer presented

some not-so-apparent issues. This is common when downgrading and brought with it

difficulties when implementing new features such as an automatic save function on

program exit. The downgrade was necessary due to the computer connected to the Accuri

C6+ needed to be on windows 7 due to software license compatibility. Thus, for the

program to work as it does on newer machines, some refactoring may be necessary. That

is not to say that the program does not work, it just one less feature than what was desired

28

to be included further into the process. This could also be fixed by the use of a virtual

machine or upgrading the windows version on the computer. There were also some

threading issues with Matplotlib and Watchdog as well as atexit wanting to be executed by

the main thread, which likely is the cause of some of these issues and might require a

more thorough refactoring to fix on an older system. There is also a possibility of a

Watchdog memory leak as the Observer function is running until the program is

terminated.

While a warning may be given by Matplotlib on newer systems, no actual effect to code

functionality has been observed, and it is able to execute atexit with exitcode 0, indicating

a smooth exit without issues. This is as opposed to exitcode -1 which is given on the older

system, indicating some sort of issue with termination, likely from a Watchdog issue as

mentioned above. Fixing these would be the first step taken to improve on the project in

the future.

This code is realistically only a back-end in its current state, as the user has to run the code

directly from the IDE which is not optimal. The next step would be to develop a front-end

and figure out a Backend – API – Front-end combination that would be functional and

user friendly. This would likely take as long as the development of the backend itself if

not longer.

Experimentally, there are several things one could test. What is the maximal furfural rate

that the further induced cells can take? What is the maximum induction level possible, can

it be reached in a multi-step increase of furfural insertion? Can the cells be kept at that

fluorescence over a long period of time by further increasing furfural insertion, without an

increase in PI percentage? Will this have a positive effect on biomass production? What

are the optimal threshold values for slopes and percentages? What are other uses for this

type of automation? The questions to be answered are many and may have significant

effects on bioethanol production from lignocellulose in the future. The next step would be

to move to a bioreactor with minimal medium to ensure similar reactivity from the cells.

29

7 Popular Scientific Summary
This project had the aim of developing a Python program capable of controlling a pump

containing a toxic substrate based on on-line analysis of a yeast cultivation on a single-cell

level. Yeast cultivation is used within a number of industries, including foods,

pharmaceuticals, and fuels. The program was specifically developed with a yeast strain used

for bioethanol production from lignocellulose in mind, which has a partial resistance to this

toxic substrate.

The program was developed to be used for process control by monitoring the trends of two

separate statistics which indicated cell viability, and induction level due to the stress caused

by the toxic substrate respectively. The program was designed to start the pump when the

induction level decreased, which for the specific yeast-strain used indicated an adaptation to

the rate of the toxic substance present in a constant feed, the separate pump would then inject

a higher concentration of the toxic substance to further induce the cells as they addapt. The

reason for this was that a higher induction level had previously been linked to a higher

production rate of bioethanol when using the same yeast strain.

Cell viability was monitored and a decrease in this statistic would indicate that the culture was

not able to handle the amount of the toxic substrate injected without cell damage, which is

why the increase of the volume of the toxic substrate injected into the culture was designed to

be gradual. Should this statistic decrease, the pump was designed to stop and allow the cells to

acclimatize further.

This project was furthermore done to automize a cultivation process through single cell

monitoring by using flow cytometry data. This is a relatively novel concept that has not been

applied previously. Basing process control on flow cytometry data enables many options for

monitoring that is not available traditionally, as it is currently done on a culture-wide basis

with less precise tools. This method could introduce more precise control systems and enable

the use of specifically genetically engineered yeast strains for large-scale processes, without

the need for additional analysis steps. Automation as a whole is also needed within the life-

science space to enable researchers to develop more elaborate experiments that are less

laborious, while also reducing sources of error.

The program was created as planned and was able to cause a reinduction of the yeast culture

automatically without user input during the experimental phase, based on induction level and

cell viability. The amount of toxic substance that could be inserted into the culture increased

by over 120% with the program as opposed to without, and these results proved reproducible.

The outcome of this thesis provides a roadmap for the implementation of single cell

monitoring as a basis for bioprocess control.

30

References
5PAISA. 2023. Learn How To Calculate The Exponential Moving Average (EMA) [Online]. Available:

https://www.5paisa.com/stock-market-guide/stock-share-market/exponential-moving-average-

ema [Accessed 20-06 2023].

AKSHAY, R. M., ASHISH, P., ARINDAM, M. & PANT, K. K. 2021. Pretreatment of lignocellulosic

biomass: A review on recent advances. Bioresource Technology, 334, 125235.

ALMEIDA, J. R., RÖDER, A., MODIG, T., LAADAN, B., LIDÉN, G. & GORWA-GRAUSLUND,

M. F. 2008. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and

its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol

Biotechnol, 78, 939-45.

ASK, M., BETTIGA, M., MAPELLI, V. & OLSSON, L. 2013. The influence of HMF and furfural on

redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol

Biofuels, 6, 22.

BESMER, M. D., EPTING, J., PAGE, R. M., SIGRIST, J. A., HUGGENBERGER, P. & HAMMES, F.

2016. Online flow cytometry reveals microbial dynamics influenced by concurrent natural and

operational events in groundwater used for drinking water treatment. Scientific Reports, 6,

38462.

CODELITE LTD, U. 2023. Chemix [Online]. Available: https://chemix.org [Accessed 2023].

COMMUNITY, T. S. 2023. Statistical functions (scipy.stats) [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/stats.html [Accessed 2023].

DRESCHER, H., WEISKIRCHEN, S. & WEISKIRCHEN, R. 2021. Flow Cytometry: A Blessing and

a Curse. Biomedicines, 9, 1613.

FARRELL, A. E., PLEVIN, R. J., TURNER, B. T., JONES, A. D., O'HARE, M. & KAMMEN, D. M.

2006. Ethanol can contribute to energy and environmental goals. Science, 311, 506-8.

FERNANDES, R. L., CARLQUIST, M., LUNDIN, L., HEINS, A.-L., DUTTA, A., SØRENSEN, S. J.,

JENSEN, A. D., NOPENS, I., LANTZ, A. E. & GERNAEY, K. V. 2013. Cell mass and cell

cycle dynamics of an asynchronous budding yeast population: Experimental observations,

flow cytometry data analysis, and multi-scale modeling. Biotechnology and Bioengineering,

110, 812-826.

FOUNDATION, P. S. 2023a. atexit — Exit handlers [Online]. Available:

https://docs.python.org/3/library/atexit.html [Accessed 2023].

FOUNDATION, P. S. 2023b. datetime — Basic date and time types [Online]. Available:

https://docs.python.org/3/library/datetime.html#module-datetime [Accessed 2023].

FOUNDATION, P. S. 2023c. An Overview of Packaging for Python [Online]. Available:

https://packaging.python.org/en/latest/overview/ [Accessed 2023].

FOUNDATION, P. S. 2023d. time — Time access and conversions [Online]. Available:

https://docs.python.org/3/library/time.html [Accessed 2023].

HAHN-HÄGERDAL, B., GALBE, M., GORWA-GRAUSLUND, M. F., LIDÉN, G. & ZACCHI, G.

2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnology,

24, 549-556.

HOLLAND, I. & DAVIES, J. A. 2020. Automation in the Life Science Research Laboratory. Front

Bioeng Biotechnol, 8, 571777.

LIECHTI, C. 2020. pySerial Overview [Online]. Available:

https://pyserial.readthedocs.io/en/latest/pyserial.html [Accessed 12-06 2023].

MANGALAPILLY, Y. 2023. watchdog 3.0.0 [Online]. [Accessed 06-06 2023].

MATPLOTLIB. 2023. Matplotlib 3.7.2 documentation [Online]. Available:

https://matplotlib.org/stable/index.html [Accessed 10-05 2023].

NILSSON, A., TAHERZADEH, M. J. & LIDÉN, G. 2001. Use of dynamic step response for control

of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol, 89, 41-53.

NUMFOCUS, I. 2023. pandas documentation [Online]. Available: https://pandas.pydata.org/docs/

[Accessed 2023].

PERRUCA-FONCILLAS, R., DAVIDSSON, J., CARLQUIST, M. & GORWA-GRAUSLUND, M. F.

2022. Assessment of fluorescent protein candidates for multi-color flow cytometry analysis of

Saccharomyces cerevisiae. Biotechnol Rep (Amst), 34, e00735.

https://www.5paisa.com/stock-market-guide/stock-share-market/exponential-moving-average-ema
https://www.5paisa.com/stock-market-guide/stock-share-market/exponential-moving-average-ema
https://chemix.org/
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.python.org/3/library/atexit.html
https://docs.python.org/3/library/datetime.html#module-datetime
https://packaging.python.org/en/latest/overview/
https://docs.python.org/3/library/time.html
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://matplotlib.org/stable/index.html
https://pandas.pydata.org/docs/

31

PERRUCA FONCILLAS, R., SANCHIS SEBASTIÁ, M., WALLBERG, O., CARLQUIST, M. &

GORWA-GRAUSLUND, M. F. 2023. Assessment of the TRX2p-yEGFP Biosensor to

Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae

Strain during Propagation and Fermentation. Journal of Fungi, 9, 630.

POONTAWEE & LIMTONG 2020. Feeding Strategies of Two-Stage Fed-Batch Cultivation Processes

for Microbial Lipid Production from Sugarcane Top Hydrolysate and Crude Glycerol by the

Oleaginous Red Yeast Rhodosporidiobolus fluvialis. Microorganisms, 8, 151.

RAO NS, E. L. L., TOMASSON J, TULLBERG C, BRINK DP, PALMKRON SB, VAN NIEL EWJ,

HÅKANSSON S AND CARLQUIST M 2023. Non-inhibitory levels of oxygen during

cultivation increase freeze-drying stress tolerance in Limosilactobacillus reuteri DSM 17938.

Frontiers in Microbiology.

RICCARDI, C. & NICOLETTI, I. 2006. Analysis of apoptosis by propidium iodide staining and flow

cytometry. Nature Protocols, 1, 1458-1461.

SHAJII, A., NUMANAGIĆ, I., LEIGHTON, A. T., GREENYER, H., AMARASINGHE, S. &

BERGER, B. 2021. A Python-based programming language for high-performance

computational genomics. Nat Biotechnol, 39, 1062-1064.

YURTSEV, E. & FRIEDMAN, J. 2018. FlowCytometryTools [Online]. Available:

https://eyurtsev.github.io/FlowCytometryTools/ [Accessed 10-05 2023].

ZHANG, J., SONNENSCHEIN, N., PIHL, T. P. B., PEDERSEN, K. R., JENSEN, M. K. &

KEASLING, J. D. 2016. Engineering an NADPH/NADP⁺ Redox Biosensor in

Yeast. ACS Synthetic Biology, 5, 1546-1556.

https://eyurtsev.github.io/FlowCytometryTools/

32

Appendix 1

i. FCS Trial

import FlowCytometryTools as fct

import matplotlib.pyplot as plt

from pylab import *

Initializes the folder and file used, attributes the data to

the 'sample' variable

file_path = r"C:\Users\ADMIN\Desktop\Saras

scripts\Data\Goal\2023-08-08_14-00-55\H01.fcs"

sample = fct.FCMeasurement(ID='Test 1', datafile=file_path)

OBS! The flourochromes listed are factory settings and are

needed to call the data from their channels, they do

not necessarily correspond with the flourochromes used in the

sample.

Data can only be called from the first 'name' (e.g. FITC-A

not FL1-A for this setup)

Event, Number of events in measurement

FSC-A, Forward scatter area -> cell size

SSC-A, Side scatter area -> cell granularity

FITC-A::FL1-A Green flourochrome

PE-A::FL2-A, Orange-Red flourochrome

PerCP-A::FL3-A, Red flourochrome

APC-A::FL4-A, Far-red flourochrome

FSC-H, Forward scatter height -> additional size

info

SSC-H, Side scatter height -> additional granularity

info

FITC-H::FL1-H, Green intensity at its highest point

PE-H::FL2-H, Orange-red intensity at its highest point

PerCP-H::FL3-H, Red intensity at its highest point

APC-H::FL4-H, Far-red intensity at its highest point

Width, Pulse width

Time Time for recording of each event

Prints channel names in the sample

print("Channel names:")

print(sample.channel_names)

Transforms the relevant columns from the sample through log,

also attributes the number of entities to nmb_ent

transformed_sample = sample.transform('hlog', channels=['FSC-

H', 'SSC-H', 'FITC-H', 'PerCP-H', 'FSC-A', 'SSC-A']

, b=500.0)

nmb_ent = sample.data.shape[0]

Initializes the gates based on graphical analysis. Values

correspond to corners in a polygon and should be changed

to fit the particular dataset of interest. The cleanup gate

33

is a threshold for size inclusion.

cleanup_gate_x = fct.ThresholdGate(630000, 'FSC-H',

region='above')

cleaned_sample = sample.gate(cleanup_gate_x)

nmb_cells = cleaned_sample.data.shape[0]

debris_gate_x = fct.ThresholdGate(630000, 'FSC-H',

region='below')

debris = sample.gate(debris_gate_x)

nmb_debris = debris.data.shape[0]

intact_gate_pos = fct.PolyGate([(1300, 50), (1300, 9000),

(400000, 170000), (350000, 50)],

 ('FITC-H', 'PerCP-H'),

region='in', name='Intact Cells OG')

intact_gate_neg = fct.PolyGate([(0, 50), (0, 9000), (1300,

9000), (1300, 50)],

 ('FITC-H', 'PerCP-H'),

region='in', name='Intact Cells OG')

damaged_gate = fct.PolyGate([(0, 9000), (1000, 7e+6), (260000,

8e+6), (400000, 170000), (1300, 9000)],

 ('FITC-H', 'PerCP-H'), region='in',

name='Damaged cells OG')

- Gates data from the sample and counts number of cells

contained in each gate.

- Calculates the percentage of PI stained cells in the sample

(FL3-A).

- Calculates the mean FL1-H fluorescence for the non-stained

cells and GFP positive cells.

- Prints total number of entities before and after gating,

ensures no double counting and inclusion of all entities.

- Prints total number of cells without debris.

intact_cells_pos = cleaned_sample.gate(intact_gate_pos)

nmb_intact_pos = intact_cells_pos.data.shape[0]

intact_cells_neg = cleaned_sample.gate(intact_gate_neg)

nmb_intact_neg = intact_cells_neg.data.shape[0]

nmb_intact_tot = nmb_intact_neg + nmb_intact_pos

damaged_cells = cleaned_sample.gate(damaged_gate)

nmb_damaged = damaged_cells.data.shape[0]

damaged_percentage = nmb_damaged / nmb_cells * 100

avg_fl1_tot = sum(cleaned_sample['FITC-H']) / nmb_cells

avg_fl1_pos = sum(intact_cells_pos['FITC-H']) / nmb_intact_pos

print("\nNumber of entities total:")

print(nmb_ent)

nmb_ent_gate = nmb_intact_tot + nmb_damaged + nmb_debris

34

print("\nNumber of entities while gating:")

print(nmb_ent_gate)

nmb_cells_gate = nmb_intact_tot + nmb_damaged

print("\nNumber of cells after gating (no debris):")

print(nmb_cells_gate)

print("\nThe percentage of total cells that are PI positive:")

print(damaged_percentage)

print("\nAverage FL1-H florescence:")

print(avg_fl1_tot)

print(avg_fl1_pos)

Plots gated entities in different colors based on previous

gating using axes with logarithm scales.

Also plots legends.

The first graph plots the cells by GFP and PI, while the

second graph plots cells and debris based on

size and granularity.

fig1 = plt.figure(1)

plt.scatter(cleaned_sample['FITC-H'], cleaned_sample['PerCP-

H'], s=0.8, alpha=0.5, label='All Cells')

plt.scatter(damaged_cells.data['FITC-H'],

damaged_cells.data['PerCP-H'], s=1.0, alpha=0.5, label='Damaged

Cells')

plt.scatter(intact_cells_pos.data['FITC-H'],

intact_cells_pos.data['PerCP-H'], s=1.0, alpha=0.5,

 label='Intact (GFP positive)')

plt.scatter(intact_cells_neg.data['FITC-H'],

intact_cells_neg.data['PerCP-H'], s=1.0, alpha=0.5,

 label='Intact (GFP negative)')

ax = matplotlib.pyplot.gca()

ax.set_xscale('log')

ax.set_yscale('log')

plt.xlabel('GFP (FL1-H)')

plt.ylabel('PI (FL3-H)')

plt.legend()

fig2 = plt.figure(2)

plt.scatter(sample['FSC-H'], sample['SSC-H'], s=0.8, alpha=0.5,

label='All Cells')

plt.scatter(damaged_cells.data['FSC-H'],

damaged_cells.data['SSC-H'], s=0.8, alpha=0.5, label='Damaged

Cells')

plt.scatter(intact_cells_pos.data['FSC-H'],

intact_cells_pos.data['SSC-H'], s=0.8, alpha=0.5,

 label='Intact (GFP Positive)')

plt.scatter(intact_cells_neg.data['FSC-H'],

intact_cells_neg.data['SSC-H'], s=0.8, alpha=0.5,

 label='Intact (GFP Negative)')

plt.scatter(debris.data['FSC-H'], debris.data['SSC-H'], s=0.8,

alpha=0.8, label='Debris')

ax = matplotlib.pyplot.gca()

ax.set_xscale('log')

ax.set_yscale('log')

35

plt.xlabel('FSC-H')

plt.ylabel('SSC-H')

plt.legend()

plt.show()

ii. FCS Handling
import FlowCytometryTools as fct

import matplotlib.pyplot as plt

def fcs_analysis(file_path):

 # Initializes the folder and file used, attributes the

data to the 'sample' variable

 sample = fct.FCMeasurement(ID='Test 1', datafile=file_path)

 # OBS! The flourochromes listed are factory settings and

are needed to call the data from their channels, they do

 # not necessarily correspond with the flourochromes used in

the sample.

 # Data can only be called from the first 'name' (e.g. FITC-

A not FL1-A for this setup)

 # Event, Number of events in measurement

 # FSC-A, Forward scatter area

 # SSC-A, Side scatter area

 # FITC-A::FL1-A Green flourochrome

 # PE-A::FL2-A, Orange-Red flourochrome

 # PerCP-A::FL3-A, Red flourochrome

 # APC-A::FL4-A, Far-red flourochrome

 # FSC-H, Forward scatter height

 # SSC-H, Side scatter height

 # FITC-H::FL1-H, Green intensity at its highest point

 # PE-H::FL2-H Orange-red intensity at its highest point

 # PerCP-H::FL3-H, Red intensity at its highest point

 # APC-H::FL4-H,Far-red intensity at its highest point

 # Width, Pulse width

 # Time Time for recording of each event

 # Prints channel names in the sample

 # print("Channel names:")

 # print(sample.channel_names)

 nmb_ent = sample.data.shape[0]

 # Initializes the gates based on graphical analysis.

Values correspond to corners in a polygon and should be changed

 # to fit the particular dataset of interest. The cleanup

gate is a threshold for size inclusion.

 cleanup_gate_x = fct.ThresholdGate(630000, 'FSC-H',

region='above')

 cleaned_sample = sample.gate(cleanup_gate_x)

 nmb_cells = cleaned_sample.data.shape[0]

36

 debris_gate_x = fct.ThresholdGate(630000, 'FSC-H',

region='below')

 debris = sample.gate(debris_gate_x)

 nmb_debris = debris.data.shape[0]

 intact_gate_pos = fct.PolyGate([(1300, 50), (1300, 9000),

(400000, 170000), (350000, 50)],

('FITC-H', 'PerCP-H'), region='in', name='Intact Cells')

 intact_gate_neg = fct.PolyGate([(0, 50), (0, 9000), (1300,

9000), (1300, 50)], ('FITC-H', 'PerCP-H'), region='in',

name='Intact Cells')

 damaged_gate = fct.PolyGate([(0, 9000), (1000, 7e+6),

(260000, 8e+6), (400000, 170000), (1300, 9000)], ('FITC-H',

'PerCP-H'), region='in', name='Damaged cells')

 # - Gates data from the sample and counts number of cells

contained in each gate.

 # - Calculates the percentage of PI stained cells in the

sample (FL3-A).

 # - Calculates the mean FL1-H fluorescence for the non-

stained cells and GFP positive cells.

 # - Prints total number of entities before and after

gating, ensures no double counting and inclusion of all

entities.

 # - Prints total number of cells without debris.

 intact_cells_pos = cleaned_sample.gate(intact_gate_pos)

 nmb_intact_pos = intact_cells_pos.data.shape[0]

 intact_cells_neg = cleaned_sample.gate(intact_gate_neg)

 nmb_intact_neg = intact_cells_neg.data.shape[0]

 nmb_intact_tot = nmb_intact_neg + nmb_intact_pos

 damaged_cells = cleaned_sample.gate(damaged_gate)

 nmb_damaged = damaged_cells.data.shape[0]

 damaged_percentage = nmb_damaged / nmb_cells * 100

 avg_fl1_tot = sum(cleaned_sample['FITC-H']) / nmb_cells

 avg_fl1_pos = sum(intact_cells_pos['FITC-H']) /

nmb_intact_pos

 print("\nNumber of entities total:")

 print(nmb_ent)

 nmb_ent_gate = nmb_intact_tot + nmb_damaged + nmb_debris

 print("\nNumber of entities while gating:")

 print(nmb_ent_gate)

 nmb_cells_gate = nmb_intact_tot + nmb_damaged

 print("\nNumber of cells after gating (no debris):")

 print(nmb_cells_gate)

 # print("\nThe percentage of total cells that är PI

positive:")

 # print(damaged_percentage)

37

 # print("\nAverage FL1-H florescence:")

 # print(avg_fl1_tot)

 # print(avg_fl1_pos)

 # Returns desired parameters, making them accessible for

the Main Executor.

 return damaged_percentage, avg_fl1_tot, nmb_ent # ,

gfppos_percentage, meanfl1pos, cellconc

iii. Pump Handling
import serial

import time

port = "COM4"

baudrate = 115200

ser = serial.Serial(port, baudrate)

ser.setDTR(True)

print(ser.name) # Unhide this and run this script if you

want to find out the name of the USB port.

This is used to control a specific pump from a specific

arduino. If another pump is to be used, the user has to find

all its specifications and replace port, baudrate and

start/stop commands with the appropriate ones. it may also be

necessary to encode/decode from a specific language (i.e.

ASCII). The user also has to change the "if response =="

to the appropriate response phrase that is sent from the

pump/arduino. print(response) should let you know what the

pump sends back, if you get b'x\00' the response is empty,

and something is wrong with the communication. Call the

functions in an otherwise empty script to check

functionality.

def start_pump():

 command = "G0 S1\n"

 ser.write(command.encode())

 response = ser.readline()

 # print(response)

 if response == b'>\r\n':

 print("\nThe pump has been started.")

 else:

 print("\nThere was an issue with pump communication

(Incorrect response)")

def stop_pump():

 command = "G0 S0\n"

 ser.write(command.encode())

 response = ser.readline()

 # print(response)

 if response == b'>\r\n':

 print("\nThe pump has been stopped.")

38

 else:

 print("\nThere was an issue with pump communication

(Incorrect response)")

Calibrated for pumping rpm 043, with 1 ml/h entering the

shakeflask (half-hour sample cycle).

def schedule_pump():

 for _ in range(1):

 start_pump()

 time.sleep(58)

 stop_pump()

 time.sleep(14 * 60)

 start_pump()

 time.sleep(58)

 stop_pump()

Calibrated for pumping rpm 043, with 1.5 ml/h entering the

shakeflask (half-hour sample cycle).

def increase_pump():

 for _ in range(1):

 start_pump()

 time.sleep(1 * 60 + 27)

 stop_pump()

 time.sleep(13 * 60)

 start_pump()

 time.sleep(1 * 60 + 27)

 stop_pump()

Calibrated for pumping rpm 043, with 3 ml/h entering the

shakeflask (half-hour sample cycle).

def fast_pump():

 for _ in range(1):

 start_pump()

 time.sleep(2 * 60 + 53)

 stop_pump()

 time.sleep(12)

 start_pump()

 time.sleep(2 * 60 + 53)

 stop_pump()

Calibrated for pumping rpm 043, with 5 ml/h entering the

shakeflask (half-hour sample cycle).

def faster_pump():

 for _ in range(1):

 start_pump()

 time.sleep(4 * 60 + 49)

 stop_pump()

 time.sleep(10 * 60)

39

 start_pump()

 time.sleep(4 * 60 + 49)

 stop_pump()

Calibrated for pumping rpm 043, with 10 ml/h entering the

shakeflask (half-hour sample cycle).

def constant_pump():

 for _ in range(1):

 start_pump()

 time.sleep(9 * 60 + 38)

 stop_pump()

 time.sleep(5 * 60)

 start_pump()

 time.sleep(9 * 60 + 38)

 stop_pump()

iv. Pump Mock
This script is used for testing the functionality of the

other scripts while not having a pump connected.

Essentially this is a mockup to be called in place of

Pump_Handling which will send phrases without starting

anything else.

import time

def start_pump():

 print("The pump has been started (mock).")

def stop_pump():

 print("The pump has been stopped (mock).")

def schedule_pump():

 for _ in range(1):

 start_pump()

 time.sleep(1 * 60 + 17.5)

 stop_pump()

 time.sleep(2)

 start_pump()

 time.sleep(2)

 stop_pump()

def increase_pump():

 for _ in range(1):

 start_pump()

 time.sleep(1 * 60 + 3)

 stop_pump()

 time.sleep(4)

 start_pump()

40

 time.sleep(5)

 stop_pump()

def fast_pump():

 for _ in range(1):

 start_pump()

 time.sleep(1 * 60 + 9)

 stop_pump()

 time.sleep(5)

 start_pump()

 time.sleep(2)

 stop_pump()

def faster_pump():

 for _ in range(1):

 start_pump()

 time.sleep(1 * 60 + 28)

 time.sleep(4)

 start_pump()

 time.sleep(5)

 stop_pump()

def constant_pump():

 for _ in range(1):

 start_pump()

 time.sleep(6)

 stop_pump()

 time.sleep(6)

 start_pump()

 time.sleep(6)

 stop_pump()

v. Main Executor
from Main import Pump_Handling as pmp

from Main import FCS_Handling as fch

from Main import Pump_Mock as pm

import time

from datetime import datetime

from watchdog.observers import Observer

from watchdog.events import FileSystemEventHandler

import matplotlib.pyplot as plt

from scipy.stats import linregress

import pandas as pd

import os

import warnings

Some initial settings for data frame size and plot style

warnings.filterwarnings("ignore", category=UserWarning)

41

pd.set_option('display.max_columns', 10)

backend = matplotlib.get_backend()

print(backend)

matplotlib.use('QtAgg')

plt.style.use('ggplot')

Stops/starts the pump initially

pmp.start_pump()

pmp.stop_pump()

class FileHandler(FileSystemEventHandler):

 # Initializes all the variables used in the FileHandler class

 def __init__(self):

 self.fig1, (self.ax1, self.ax2, self.ax3) =

plt.subplots(3, 1, sharex='col')

 self.file_counter = 0

 self.start_time = None

 self.analysis_results = []

 self.reactor_1_result = pd.DataFrame(columns=['PI

percentage', 'Mean FL1-H', 'Time(min)', 'Events'])

 self.new_data_1 = {}

 self.df_new_data_1 = None

 self.ema_reactor_1_PI = pd.DataFrame(columns=['PI

percentage (ema)'])

 self.ema_reactor_1_fl1 = pd.DataFrame(columns=['Mean FL1-

H (ema)'])

 self.dmg_percentage = []

 self.mean_fl1 = []

 self.events = []

 self.time_since = []

 # self.time_since_seconds = None

 self.time_since_date = None

 self.fig1 = None

 self.ax1 = None

 self.ax2 = None

 self.ax3 = None

 self.reactor_1_last3_PI = []

 self.reactor_1_last3_fl1 = []

 self.reactor_1_last3_time = []

 self.pi_1_slope = 0

 self.fl1_1_slope = 0

 self.df_new_slopes = None

 self.new_slopes = None

 self.slopes_columns = pd.DataFrame(columns=['PI slope',

'FL1-H slope'])

 self.appended_result = None

 self.pi_last3 = None

 self.pi_last3_avg = None

 self.pump_status = None

 self.new_status = None

42

 self.df_new_status = None

 self.status_column = pd.DataFrame(columns=['Pump

Status'])

 self.full_result = None

 # - If first file, sets start time to current time.

 # - If first or every other file, set the file path to the

new file and call the FCS Handling script for

 # extracting data, and subsequently saving, plotting,

finding the slopes and calling on the Pump Handling file

 # to use the pump.

 # - Increases the file counter by one.

 def on_created(self, event):

 if self.file_counter == 0:

 self.start_time = datetime.now()

 if self.file_counter % 2 == 0:

 time.sleep(1)

 file_path = event.src_path

 self.analysis_results = fch.fcs_analysis(file_path)

 self.save_results()

 self.plot_results()

 self.get_slope()

 self.use_pump()

 self.file_counter += 1

 # - Saves the extracted results from the FCS file into Pandas

Dataframes which are easier to handle.

 # - Uses the file counter to calculate sample time

 # - Appends new results to the existing results dataframe in

their correct columns.

 # - Calculates EMAs for the new data (com = alpha = 0.9)

 def save_results(self):

 self.dmg_percentage = self.analysis_results[0]

 self.mean_fl1 = self.analysis_results[1]

 self.events = self.analysis_results[2]

 if self.file_counter >= 2:

 self.time_since = 15 * self.file_counter

 elif self.file_counter == 0:

 self.time_since = 0

 # self.time_since_date = datetime.now() - self.start_time

 # self.time_since_seconds =

self.time_since.total_seconds()

 # self.time_since = self.time_since_seconds/60

 self.new_data_1 = {'Time(min)': self.time_since, 'PI

percentage': self.dmg_percentage,

 'Mean FL1-H': self.mean_fl1,

 'Events': self.events}

 self.df_new_data_1 = pd.DataFrame([self.new_data_1])

 self.reactor_1_result = pd.concat([self.reactor_1_result,

self.df_new_data_1], ignore_index=True)

 self.ema_reactor_1_PI = self.reactor_1_result['PI

percentage'].ewm(com=0.9).mean()

43

 self.ema_reactor_1_fl1 = self.reactor_1_result['Mean FL1-

H'].ewm(com=0.9).mean()

 time.sleep(0.5)

 # - Plots MFI GFP, PI percentage, and events in a single

window as subplots, along with their legends.

 # - Plots the EMA for MFI GFP and PI percentage.

 def plot_results(self):

 if self.file_counter >= 1:

 plt.close(self.fig1)

 plt.ion()

 self.fig1, (self.ax1, self.ax2, self.ax3) =

plt.subplots(3, 1, sharex='col')

 self.fig1.set_figheight(8)

 self.fig1.set_figwidth(7)

 self.fig1.canvas.manager.window.geometry("+0+0")

 self.ax1.plot(self.reactor_1_result['Time(min)'],

self.reactor_1_result['PI percentage'], label='PI Data',

 color='purple')

 self.ax1.plot(self.reactor_1_result['Time(min)'],

self.ema_reactor_1_PI, label='PI EMA', color='brown')

 self.ax1.set_ylabel('PI (%)')

 self.ax1.set_title('PI Positive Percentage')

 self.ax1.legend(loc='upper right')

 self.ax2.plot(self.reactor_1_result['Time(min)'],

self.reactor_1_result['Mean FL1-H'], label='FL1-H data',

 color='pink')

 self.ax2.plot(self.reactor_1_result['Time(min)'],

self.ema_reactor_1_fl1, label='FL1-H EMA', color='blue')

 self.ax2.set_ylabel('Fluorescence')

 self.ax2.set_title('Mean FL1-H Fluorescence')

 self.ax2.legend(loc='lower right')

 self.ax3.plot(self.reactor_1_result['Time(min)'],

self.reactor_1_result['Events'], label='Events',

 color='black')

 self.ax3.set_xlabel('Time (min)')

 self.ax3.set_ylabel('Events')

 self.ax3.set_title('Events')

 self.ax3.legend(loc='upper right')

 self.fig1.canvas.draw()

 self.fig1.canvas.flush_events()

 # Uses linear regression to get the slopes of the last three

datapoints if at least three sample files has been

 # run, appends new slopes to existing results dataframe and

prints the slopes.

 # Otherwise appends the text "Premature" to the results

dataframe.

 def get_slope(self):

 if self.file_counter >= 4:

 self.reactor_1_last3_PI = self.ema_reactor_1_PI[-3:]

 self.reactor_1_last3_fl1 = self.ema_reactor_1_fl1[-

3:]

44

 self.reactor_1_last3_time =

self.reactor_1_result['Time(min)'][-3:].values.tolist()

 pi_1_linreg = linregress(self.reactor_1_last3_time,

self.reactor_1_last3_PI)

 self.pi_1_slope = pi_1_linreg[0]

 fl1_1_linreg = linregress(self.reactor_1_last3_time,

self.reactor_1_last3_fl1)

 self.fl1_1_slope = fl1_1_linreg[0]

 self.new_slopes = {'PI slope': self.pi_1_slope, 'FL1-

H slope': self.fl1_1_slope}

 self.df_new_slopes = pd.DataFrame(self.new_slopes,

index=[0])

 self.slopes_columns = pd.concat([self.slopes_columns,

self.df_new_slopes],

 ignore_index=True)

 self.appended_result =

self.reactor_1_result.join(self.slopes_columns.set_index(self.rea

ctor_1_result.index)

 ,

rsuffix='_status')

 print("\nSlopes of the last three points:")

 print("PI:", self.pi_1_slope, "\nFL1-H:",

self.fl1_1_slope)

 else:

 self.pi_1_slope = "Premature"

 self.fl1_1_slope = "Premature"

 self.new_slopes = {'PI slope': self.pi_1_slope, 'FL1-

H slope': self.fl1_1_slope}

 self.df_new_slopes = pd.DataFrame(self.new_slopes,

index=[0])

 self.slopes_columns = pd.concat([self.slopes_columns,

self.df_new_slopes],

 ignore_index=True)

 self.appended_result = self.reactor_1_result.join(

self.slopes_columns.set_index(self.reactor_1_result.index)

 , rsuffix='_status')

 # Uses previously calculated parameters to control the pump

if at least three sample files has been

 # run, appends new slopes to existing results dataframe and

prints the slopes.

 # Otherwise appends the text "Premature" to the results

dataframe.

 # Prints the final dataframe.

 def use_pump(self):

 if self.file_counter >= 4:

 self.pi_last3 = self.reactor_1_result['PI

percentage'][-3:].values.tolist()

 self.pi_last3_avg = sum(self.pi_last3) /

len(self.pi_last3)

 # Stops the pump if the PI slope or the average value

45

of the last three exceedes certain values.

 # Appends "Stopped" to the Pump Status column.

 if self.pi_1_slope >= 0.05 or self.pi_last3_avg >=

40:

 pmp.stop_pump()

 self.pump_status = "Stopped"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Maximum, 10ml/h.

 # Starts the pump at the maximum setting if the MFI

GFP slope is bellow a certain threshold and the last

 # pump status was the setting that precedes it, for

this setting "Maximum increased", or if the last

 # setting used was this one and the PI slope is not

increasing.

 # Appends "Maximum" to the Pump Status column.

 elif ((self.status_column.iloc[-1] == "Maximum

increased").item() and (self.fl1_1_slope <= -17.5) and

 (self.pi_1_slope < 0.05)) or \

 ((self.status_column.iloc[-1] ==

"Maximum").item() and (self.pi_1_slope < 0.05)):

 pmp.constant_pump()

 self.pump_status = "Maximum"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Maximum increased, 5ml/h

 # Starts the pump at the maximum increased setting if

the MFI GFP slope is bellow a certain threshold

 # and the last pump status was the setting that

precedes it, for this setting "further increased",

 # or if the last setting used was this one and the PI

slope is not increasing.

 # Appends "Maximum increased" to the Pump Status

column.

 elif ((self.status_column.iloc[-1] == "Further

46

increased").item() and (self.fl1_1_slope <= -10) and

 (self.pi_1_slope < 0.05)) or \

 ((self.status_column.iloc[-1] == "Maximum

increased").item() and (self.pi_1_slope < 0.05)):

 pmp.faster_pump()

 self.pump_status = "Maximum increased"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Further increased, 3ml/h

 # Starts the pump at the further increased setting if

the MFI GFP slope is bellow a certain threshold

 # and the last pump status was the setting that

precedes it, for this setting "Increased",

 # or if the last setting used was this one and the PI

slope is not increasing.

 # Appends "Further increased" to the Pump Status

column.

 elif ((self.status_column.iloc[-1] ==

"Increased").item() and (self.fl1_1_slope <= -10) and

 (self.pi_1_slope < 0.05)) or \

 ((self.status_column.iloc[-1] == "Further

increased").item() and (self.pi_1_slope < 0.05)):

 pmp.fast_pump()

 self.pump_status = "Further increased"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Increased, 1.5ml/h

 # Starts the pump at the Increased setting if the MFI

GFP slope is bellow a certain threshold

 # and the last pump status was the setting that

precedes it, for this setting "Started",

 # or if the last setting used was this one and the PI

slope is not increasing.

 # Appends "Increased" to the Pump Status column.

47

 elif ((self.status_column.iloc[-1] ==

"Started").item() and (self.fl1_1_slope <= -10) and

 (self.pi_1_slope < 0.05)) or \

 ((self.status_column.iloc[-1] ==

"Increased").item() and (self.pi_1_slope < 0.05)):

 pmp.increase_pump()

 self.pump_status = "Increased"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Start, 1ml/h

 # Starts the pump if the MFI GFP slope is bellow a

certain threshold,

 # or if the last setting used was this one and the PI

slope is not increasing.

 # Appends "Started" to the Pump Status column.

 elif (self.fl1_1_slope <= -0.8) or \

 ((self.status_column.iloc[-1] ==

"Started").item() and (self.pi_1_slope < 0.05)):

 pmp.schedule_pump()

 self.pump_status = "Started"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # If no conditions apply (i.e turning/stationary

points)

 else:

 print("\nNo action taken")

 self.pump_status = "No Action"

 self.new_status = {'Pump Status':

self.pump_status}

 self.df_new_status =

pd.DataFrame([self.new_status])

 self.status_column =

pd.concat([self.status_column, self.df_new_status],

 ignore_index=True)

48

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 # Before 3 data points, no slope available.

 else:

 print("\nNo action taken (premature)")

 self.pump_status = "Premature"

 self.new_status = {'Pump Status': self.pump_status}

 self.df_new_status = pd.DataFrame([self.new_status])

 self.status_column = pd.concat([self.status_column,

self.df_new_status],

 ignore_index=True)

 self.full_result =

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index),

rsuffix='_status')

 print("\n", self.full_result)

 # Can be called to save the current results dataframe and

figure. Will create a new folder named after the

 # start time and save the data to an excel file and graph as

a PNG.

 def save_to_folder(self):

 time_string = self.start_time.strftime("%Y-%m-%d_%H-%M-

%S")

 figure_name = f"Figure_{time_string}.png"

 data_name = f"Data_{time_string}.xlsx"

 save_to = r"C:\Users\ADMIN\Desktop\Saras

scripts\Data\Saved"

 folder_name = time_string

 new_path = os.path.join(save_to, folder_name)

 os.makedirs(new_path, exist_ok=False)

 plt.savefig(new_path + r'\ ' + figure_name)

 self.full_result.to_excel(new_path + r'\ ' + data_name)

 print("Data has been saved to the folder:" + time_string)

Sets the folder path and sets up and starts the observer in the

designated folder.

folder_path = r"C:\Users\ADMIN\Desktop\Saras

scripts\Data\Goal\2023-08-17_11-30-22"

event_handler = FileHandler()

observer = Observer()

observer.schedule(event_handler, path=folder_path,

recursive=False)

observer.start()

try:

 while True:

 time.sleep(1)

except KeyboardInterrupt:

49

 observer.stop()

observer.join()

