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Abstract 
Flow cytometry is a versatile tool for monitoring a microbial population at a single-cell level. 

Multiple parameters can be monitored based on the users’ requirements through the utilization 

of different dyes, biosensors etc., and the use of FCM for on-line measurements during fed-

batch cultivations has the potential to be used for precise process control. 

This project consisted of the development and testing of a Python program for on-line 

bioprocess regulation based on flow cytometry data. Specifically, the program was built to 

process FCS files resulting from at-line measurement of pentose-fermenting S. cerevisiae              

using the OnCyt autosampler connected to a BD Accuri C6+ flow cytometer. The program 

was designed to automatically start and stop a peristaltic pump through serial communication, 

by issuing commands based on changes within the microbial population.  

The yeast strain used was the TMBRP011 strain, which was previously engineered for 

bioethanol production from pentose sugars and carries a previously developed redox 

biosensor. The biosensor reacts to cellular redox imbalance caused by inhibitory substances 

released during lignocellulose pretreatments through an increase in fluorescence. The program 

was designed to achieve higher volumes of inhibitory substances as the cells acclimatized to a 

set rate, indicated with a decrease in fluorescence. However, since these inhibitory substances 

are toxic in nature, the pump should stop pumping if the percentage of PI-stained cells within 

a sample increased, indicating cell membrane damage.  

The program was successful in regulating a fed-batch process based on the prementioned 

parameters, and it managed to reinduce the cells by injecting higher volumes of inhibitory 

compounds per hour. The program was developed in a way that fulfilled the initial scope in 

terms of functionality and provides a roadmap for implementing on-line FCM as a basis for 

process control. 
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Background 

1.1 Flow cytometry and Fed-batch fermentation 

Flow cytometry (FCM) is a versatile tool for single-cell analysis of a microbial 

population. There are several ways to utilize it to measure cell number and activity within 

a population. FCM data enables many separates culture statistics to be monitored, while 

the analysis is kept growth independent.  

Cells suspended in liquid pass through one or several lasers, where the resulting light 

scatters give information on the cells’ size and granularity, but also levels of any relevant 

stains or fluorescent biosensors, dyes, or antibody conjugates. The number of parameters 

one could monitor has only increased in recent years as development and implementation 

of new fluorescent dyes have enabled the measuring of strain-specific parameters 

(Drescher et al., 2021).  A popular example of this is propidium iodide, or PI staining 

which is used to indicate cell membrane integrity by binding to DNA while not being able 

to permeate intact cell membranes (Riccardi and Nicoletti, 2006).  

A fed-batch fermentation process is defined by continuously feeding the cell culture with 

substrates and nutrients such as sugars that the cells can utilize for either product 

generation or cell duplication. Typically, the feeding phase is preceded by a batch phase 

with a set concentration of nutrients present in the medium. The feed is then used to 

achieve optimal conditions within the cultivation vessel. This in turn will yield a faster 

process with higher product and biomass yield than a simpler batch fermentation. This and 

the ability to have the culture producing for a much longer time while limiting potential 

inhibition from product or substrates, makes fed-batch processes ideal for many processes 

within the industry (Poontawee and Limtong, 2020). 

On-line flow cytometry with its continuous measuring capabilities is a potential option for 

fed-batch process control. Where many alternatives more commonly used today such as 

CO2 sensors base their data on the entire culture (Nilsson et al., 2001), single-cell analysis 

and automatic gating based on different parameters presents an opportunity to reduce 

workload by making certain plating or HPLC steps redundant, depending on the 

implemented biosensors. Flow cytometry also is a useful tool for optimizing cultivation 

processes to reach optimal robustness or biomass production by analyzing a microbial 

population at a single-cell level. (Fernandes et al., 2013) 

1.2 Bioethanol Production 

Bioethanol is an example of a biofuel that has become widely used as an alternative to 

fossil fuels, due to its low greenhouse gas emissions, biomass availability and cost 

effectiveness (Farrell et al., 2006), (Hahn-Hägerdal et al., 2006). 

The conversion of lignocellulose to bioethanol can be achieved in several ways, however 

there are some main staples that persist. The cellulose and hemi-cellulose contained in the 

biomass must first be depolymerized through enzymatic hydrolysis into sugars, primarily 

pentoses and hexoses. In order to achieve this efficiently, a pretreatment of the raw 

biomass is performed where the sugars are made more accessible for the enzymes 

(Akshay et al., 2021). During this pretreatment, inhibitory compounds can be released 
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which may hinder the hydrolyzation process. These substances include less potent acids 

such as acetic acid, phenolic compounds, and furaldehydes such as 5-hydroxymethyl 

furfural and furfural itself (Akshay et al., 2021). Hence, the yeast strain used for the 

cultivation must have a high tolerance for these substances, while also having the 

phenotype to metabolize both the pentoses and hexoses present in the hydrolysate. 

Industrial engineered strains of Saccharomyces cerevisiae has been used for this purpose 

previously (Perruca Foncillas et al., 2023). 

In order to monitor the fitness of the cells during a fermentation process, redox imbalance 

has been used as a marker in previous studies (Almeida et al., 2008), (Ask et al., 2013). 

Reducing toxic aldehydes to their less toxic alcoholic forms has been shown to cause a 

redox imbalance in the cells as the NAD(P)H cofactors are utilized for the reduction 

(Perruca Foncillas et al., 2023). A biosensor has been engineered for the purpose of 

monitoring the extent of this imbalance, by utilizing the Yap1p gene and its promotor 

TRX2p to detect changes in the fluorescence through a tool such as a fluorometer or flow 

cytometry for at-line sampling (Zhang et al., 2016).  

A common inhibitory compound in lignocellulose hydrolysate is furfural, which has been 

shown to trigger a response from this TRX2p-yEGFP biosensor, inducing the yeast cells 

and increasing the average green fluorescence protein (GFP) fluorescence of the culture. It 

was shown that there was a correlation between this induction and the production rate of 

bioethanol. With a constant feeding rate of furfural, the induction levels would increase 

indicating a redox imbalance, however further in the cultivation these levels would start 

decreasing, indicating that the same rate of added furfural no longer caused the oxidative 

stress needed for measurable induction. Thus, the cells have adapted to the injected 

furfurals toxicity and are able to handle higher levels (Perruca Foncillas et al., 2023). The 

measurement of this phenomenon with FCM may be used for process control.  

1.3 Automation and Python 

Automation within the scientific space and more particularly in the life science space has 

rapidly grown in importance on a lab scale as the industry continues to advance. While 

automation has the advantages of more robust and reproduceable methods with less 

researcher involvement, the ever-changing protocols and limited funding of projects 

performed in research labs has created an ‘automation gap’ when compared to the 

industry. When considering automation options, one should consider its implementation 

options in both large and small scale, and developers will require skills in both biology 

and technology to create something that is adequate and implementable in many scenarios 

and setups. As such, automation has high potential when it comes to making laboratory 

work easier and less strenuous on a researcher, which in turn enables them to create more 

elaborate experiments (Holland and Davies, 2020). 

Programming is a skill that could become essential as technology continues to advance. 

Python has become a prevalent coding language used within the biotechnology space and 

is widely used for sequencing and bioinformatics. The ability to build specialized and 

efficient software that is easily maintained and further tailored to new datasets has become 

a valuable skill within the space for good reason (Shajii et al., 2021). There are many 
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possible applications of the language, and with more and more prebuilt modules used for 

biological applications being created the possibilities are many. Python can be used as a 

viable tool for automation strategies for in-house laboratory procedures, which if 

successful can be scaled up to commercial processes should the need arise (Holland and 

Davies, 2020).  

1.4 Aims of this project    

The aim of this project is to develop an automated system using Python to manage and 

control a microbial population using FCM data. The program was to be created to be 

reactive to changes within a population on a single cell level and react accordingly to said 

changes, enabling more precise control over more parameters than what is widely 

employed in the industry currently. The program should also serve as a general proof of 

concept for bioprocess control using flow cytometry data.   

Parts of the program were to be developed with a specific yeast strain in mind. This S. 

cerevisiae strain which was engineered for lignocellulose bioethanol production, was the 

base for gating strategies and execution on a laboratory scale. Post-program development, 

this yeast strain was to be cultivated anew while controlled by the program to investigate 

whether it was possible to re-induce the cells as they adapt to furfural toxicity by injecting 

higher volumes based on changes in the induction level, which in turn could have a 

positive effect on bioethanol production based on previous studies (Perruca Foncillas et 

al., 2023).        

2 Materials and Method 

2.1 Coding platform and Outline 

The code was primarily written using Python 3.9.13 on a Windows 11 computer, using the 

IDE PyCharm Community Edition 2023.1.1. This setup was primarily for testing and was 

not used on the BD Accuri C6+ computer, which runs Windows 7 and hence required a 

downgrade to Python 3.7.9 and PyCharm Community Anaconda Edition 2019.3.5. The 

downgrade brought with it some differences in code syntax, along with some reduced base 

functionality of the PyCharm user interface.  

When developing the code, previous cultivation flow cytometry standard (FCS) files for 

the relevant yeast strain were used. The files were generated by the fed-batch processes 

done by Perruca Foncillas et al., 2023 and were used to simulate a fed-batch process 

where new files were created in a set folder. Program output results were compared to the 

same FCS files analyzed by the FlowJo software (BD Biosciences, Franklin Lakes, NJ, 

USA). 

The original outline was for the program to be able to execute the following: 

I. Retrieve data from created FCS files continuously and automatically. 

II. Gate and plot the data on a single-cell level through a scatterplot. This 

should separate the induced intact cells, expressing GFP from non-

induced intact cells and cells that are damaged or dead. The gates should 

also be able to remove any potential debris present in the samples.  



8 

 

III. Perform calculations on the gated samples to calculate the percentage of 

PI-stained cells, the mean GFP fluorescence of the intact cells and total 

number of events recorded.  

IV. The program should be modular and have the ability to pass on and 

utilize any parameters that flow cytometry data can provide by changing 

the calculation parameters.  

V. Pass these parameters to a function that can determine whether the slopes 

of the main parameters, in this case PI percentage and mean fluorescence 

intensity (MFI) GFP, is increasing or decreasing.  

VI. Utilize the slope values to stop and start a pump with the help of an 

Arduino, Raspberry Pi, or other communication module. The pump 

should be started as the GFP fluorescence is decreasing indicating a drop 

in induction level, and stop if the PI percentage is increasing, indicating 

cell membrane damage.  

2.2 Python packages 

When building Python programs, it is usually encouraged to call on Python packages to 

simplify code structure and ensure adequate documentation for future developers, while 

avoiding potential program conflicts and keeping the code modular (Foundation, 2023c). 

For this project, several of these were employed. First, to extract data from generated FCS 

files the package ‘FlowCytometryTools’ (Yurtsev and Friedman, 2018) was used. To 

create scatterplots of these FCS files as well as graphs of program output, the package 

‘Matplotlib’ (Matplotlib, 2023) was used. This provides a baseline graphical interphase 

able to create plots in new windows. 

‘pySerial’ (Liechti, 2020) was used to establish serial communication between the 

computer and the Arduino used to control the pump. The base python package ‘time’ 

(Foundation, 2023d) was used primarily for the time.sleep function, which makes the 

program stall execution for a specified number of seconds. The similar package ‘datetime’ 

(Foundation, 2023b) was also used to initialize start times for the program in the format of 

a date and precise time. 

 The ‘watchdog’ (Mangalapilly, 2023) package was used to continuously monitor a 

specified folder and execute specified commands based on activity within said folder. 

‘pandas’ (NumFOCUS, 2023) was used for its data frame functionality which enables 

calculations on data columns without long data transformation sequences. ‘scipy’ 

(community, 2023) was used for its built in linear regression function to calculate slopes. 

Finally, the ‘atexit’ (Foundation, 2023a) function was used to execute final commands as 

the program was terminated.  

2.3 Yeast strains 

The yeast strain used in both the trial files and experimental cultivations was the S. 

cerevisiae strain TMBRP011. The strain was previously obtained by engineering the 

industrial strain cv-110 to carry the TRX2p-yEGFP biosensor by utilizing a CRISPR/Cas9 

system (Perruca Foncillas et al., 2023). 
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The S. cerevisiae strain used as a positive control in the initial artificial culture trials was 

TMBRP013 which carried the TEF1p-yEGFP construct. In this case, TEF1p is a 

constitutive promoter which means that the cells should be expressing GFP constantly, 

without the need for causing a redox imbalance (denoted TEF) (Perruca-Foncillas et al., 

2022). The negative control was non-induced TMBRP011 cells (denoted TRX). 

2.4  Pre-cultures 

The relevant strains were taken from their respective -80℃ stock and streaked on yeast 

extract-peptone-dextrose (YPD) plates which was incubated at 30℃ for 48 hours. A two-

step pre-cultivation was then performed where the cells were inoculated in a 50 mL 

Falcon tube with 5mL YPD medium. The over-night culture was subsequently placed in a 

shaking incubator at 30 ℃ and 180 rpm for 17 hours. The cultures were then reinoculated 

to an OD620nm of 0.6 in new falcon tubes containing 5 mL of YPD, which was incubated 

for 4.5 hours under the same conditions.  

2.5 Analytical methods 

A combination of the Accuri C6+ (BD Biosciences, Franklin Lakes, NJ, USA) flow 

cytometer and the OnCyt autosampler (OnCyt, Switzerland) was used to monitor 

fluoresence and the amount of stained cells, along with the number of recorded events in a 

taken on-line sample. The Accuri C6+ was equipped with two excitation lasers, one at 488 

nm and the other at 640 nm, along with detection filters of 533/30 nm in FL1, 585/40 nm 

in FL2, 670 LP in FL3 and 675/25 nm in FL4. Samples were diluted using phosphate 

buffered saline (PBS) to a total dilution factor of 100x, stained with 10 µg/mL propidium 

iodide (PI) and incubated for 5 minutes. The Accuri C6+ was set to run fixed-volume 

samples of 35 µL at a speed of 35 µL/min for cultivation samples, and to run MQ water 

for four minutes at 35 µL/min in between as washing step. 

 

The OnCyt communicates with the Accuri C6+ through remote interfacing and allows the 

user to customize the sample cycles through the OnCyt software, and repeat these cycles 

over a long period of time. Samples were taken directly from the cultivation shake flasks 

to monitor PI and GFP continuously. The analysis data of every sample were stored as a 

FCS file in a specified output folder and denoted A01 to H12.  

Cell concentrations of manual samples were estimated off-line through sample optical 

density using an Ultrospec 2100 pro UV/Visible spectrophotometer (Amersham 

Biosciences, Buckinghamshire, UK) at 620 nm (OD620). Medium composition and 

metabolite concentrations were subsequently analyzed after centrifugation at 13,000 rpm 

for 5 minutes. The recovered supernatant was analyzed using a Waters HPLC system 

(Milford, CT, USA) coupled with an Aminex HPX-87H column (Bio-Rad, Richmond, VA, 

USA). The mobile phase used was 5 mM sulfuric acid, with a constant flowrate of 0.6 

mL/min. 

2.6 Evaluation of base program functionality 

Initial trials were done to evaluate the functionality of the program during a live sample 

cycle. This was done by preparing samples of TRX cells, used as a GFP negative control, 

and TEF cells used as a GFP positive control in separate 1.5 mL Eppendorf tubes. One 
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sample of TRX cells was additionally placed in a 70℃-heating cabinet for 3 hours in 

order to damage them for use as a positive PI-stained control.  

Samples were created by utilizing different volume compositions of the three controls to 

simulate a sequence of events within a culture which would cause the program to react. 

The exact volume compositions can be seen in table 2.1. Samples were run in an order 

that would initially simulate an increase in MFI GFP, followed by a subsequent decrease 

which was meant to cause the program to start the pump. Then, an amount of the PI-

positive control was to be inserted to simulate culture damage, which the program should 

react to by stopping the pump.  

Samples were manually prepared with OD620nm measurements of 0.1 They were analyzed 

through the OnCyt autosampler and BD Accuri C6+ flow cytometer, and controls for the 

pure control-samples were run and displayed by the written FCS Trial program with 

specialized gates before startup. These new gates were made to accommodate the 

fluorescence differences between the TEF and the induced TMBRP011 strain. 

Table 2.1. Depicting sample composition volumes for the primary evaluation of program functionality. The TRX strain 

was used as a negative MFI GFP control, while the TEF strain was used as a positive control. Damaged cells were 

inserted into the last sample to trial the reaction of the program when the percentage of PI-stained cells increases.  

Sample TRX (µL) TEF (µL) Damaged 

0 900  100 - 

1 800 200 - 

2 500 500 - 

3 100 900 - 

4 500 500 - 

5 800 200 - 

6 900 100 + 

 

2.7 Batch Cultivation 

A 500 mL baffled shake flask equipped with a handcrafted cotton stopper with four 

inserted lines was used for the cultivation experiments. The shake flask was reinoculated 

to an OD620nm 0.1 in 50 mL of YP medium, 40 g/L glucose and 40g/L xylose using the 

secondary pre-culture. The cultivation was then incubated aerobically in a shaking 

waterbath at 30℃. Manual 1 mL samples were taken hourly during start and finish, where 

OD620nm was recorded, and the medium composition was analyzed using an HPLC. The 

manual sampling line had a length of approximately 20 cm made up of a Masterflex® 

96400-16 line. The batch cultivations were run for 21-23.5 hours depending on when 

glucose was deemed as depleted through HPLC peak analysis.  
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2.8 Fed-Batch Continuous Cultivation and Final set-up. 

 

Figure 2.1. A schematic depicting the overall setup for a fed-batch cultivation regulated by the Python script. Pump 1 is 

used for achieving a constant feed rate, while pump 2 is controlled by the python script through an Arduino, pumping a 

solution of water and furfural. The OnCyt automatically takes samples through its sample line and analyses it in the BD 

Accuri C6+, which in turn informs the program. The manual sampling line was used to take samples for media analysis 

using HPLC and OD620 measurements. Schematic created on Chemix.org (Codelite Ltd, 2023). 

Figure 2.1 depicts a schematic figure of the final experimental setup for the fed-batches. 

The shake flask with the batch cultivation was connected to 3 new lines along the manual 

sampling line after depleted glucose.  

Line 1 held the feed, containing YP medium, 20 g/L glucose, 20 g/L xylose, and 6.9g/L 

furfural, with a constant feed rate of 104 μL/min using a peristaltic pump, denoted ‘Pump 

1’ in figure 2.1. This line had a length of approximately 1 meter and was made up 

primarily of Masterflex® 96400-16 lines with fitted connectors.  

Line 2 held the furfural-water solution with a furfural concentration of 50 g/L, and the rate 

of entry was controlled by an arduino connected to the PC and subsequently controlled by 

the program. This peristaltic pump, denoted ’ Pump 2’ in figure 2.1 was set to an rpm of 

43 which corresponded to to a pump capacity of 259 μL/min or 15.6 mL/h. This line was 

approximately 2 meters long made up primarily of Masterflex® 06402-14 lines with fitted 

connectors. 

The third line is the OnCyt sample line, which automatically took a sample from the 

cultivation at set times and analyzed them using the BD Accuri C6+ flow cytometer.  The 

fed-batch cultivations were run for a total of approximately 44 hours, with 22 of those 

consisting of the feeding phase. The line was approximately 1.5 meters in lengths made up 

primarily of the OnCyt line itself.  

2.9 Recipes, and Equations 

Table 2.2 contains all utilized mediums and solutions used throughout the experimental 

phase of the project. The primary medium used was YP, with a sugar content of either 

solely glucose for the precultures, or glucose and xylose for the cultivations. Cells were 

also plated on YPD plates from a stock of the TMBRP011 strain every other week.  
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PI staining was used as an indicator of cell-membrane integrity during the cultivations and 

was used automatically by the OnCyt autosampler, diluting the samples 2x. Furthermore, 

cultivation samples were automatically diluted an additional 50x with PBS, which was 

used as a buffer. Similarly, Sodium Hypochlorite 0.5% and Sodium Thiosulphate 10 mM 

were used as recommended for sterilizing and quenching respectively after every taken 

sample (Besmer et al., 2016). 

The recipes for the standard solutions needed to run the BD Accuri C6+ flow cytometer 

can also be seen in table 2.2. These were made according to instruction with the existing 

stock solutions provided by BD Biosciences. 

Table 2.2. Depicting solutions and media as well as the recipes used during conducted experiments. All final volumes 

were measured in measuring cylinders while considering dissolved solids and their eventual water-contents The pH of 

PBS was checked with dissolved solids at 800 ml. ‘(AC)’ denotes solutions that were autoclaved after mixing.  

Solution Final Volume Recipe 

YP medium  

90% (AC) 

360 mL • 8 g peptone from casein 

• 4 g yeast extract 

• ~360 mL MQ water 

YP medium  

80% (AC) 

320 mL • 8 g peptone from casein 

• 4 g yeast extract 

• ~320 mL MQ water 

YPD plates  

(AC) 

400 mL  • 8 g peptone from casein 

• 4 g yeast extract 

• 6 g Agar-agar 

• ~360 mL MQ water 

• 40 mL 200g/L glucose 

Glucose  

200g/l (AC) 

100 mL • 8g Glucose 

• ~100 mL MQ water 

Xylose  

200g/l (AC) 

100 mL • 8g Xylose 

• ~100mL MQ water 

Propidium Iodide  

10 µg/mL 

10 mL • 200 μL, 500 µg/mL PI 

• 9.8 mL MQ water 

Sodium Hypochlorite  

0.5% 

400 mL • 20 mL NaOCl stock, 10% 

• ~380 mL MQ water 

Sodium Thiosulphate  

10 mM 

800 mL  • 1.98 g Na2S2O3 * 5 H2O 

• ~800 mL MQ water 

PBS  

pH 7.4 (AC) 

1 L • 8 g NaCl 

• 0.2 g KCl 

• 2.68 g Na2HPO4 * 7 H2O 

• 0.24 g KH2PO4 

• ~1 L MQ water 

Accuri C6+ Sheath Fluid 1 L  • 1 ‘BDTM Solution 

Bacteriostatic Concentrate’ 

bottle 

• 1 L MQ water 
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Accuri C6+ Detergent  200 mL • 3 mL ‘BDTM Detergent 

Solution Concentrate’ 

• 197 mL MQ water 

 

Table 2.3 depicts recipes for both pre-culture steps as well as the batch cultivation and 

feed bottle contents used during the final iteration of the experimental phase. Mediums 

and sugar solution recipes can be seen above in table 2.2. The over-night culture was 

reinoculated in the preculture to an initial OD620nm of 0.6, while the batch-cultivation used 

the preculture to be further reinoculated to an OD620nm of 0.1.  

Table 2.3. Depicting the final iteration of recipes for cultures and feeds used during final batch- and fed-batch 

cultivations. Yeast strains were taken from -80℃ stocks before streaked on YPD plates. 

Solution Final Volume Recipe 

Over-night Culture (YPD) 5 mL • 4.5 mL YP 

• 0.5 mL Glucose 200g/L 

• Yeast cells from fresh YPD 

plates  

Pre-Culture (YPD) 5 mL • 4.5 mL YP 

• 0.5 mL Glucose 200g/L 

• OD620nm 0.6 

Batch Cultivation 50 mL  • 30 mL YP 80% 

• 10 mL Glucose 200g/l 

• 10 mL Xylose 200 g/l 

• OD620nm 0.1  

Feed 150 mL • 120 mL YP 80% 

• 15 mL Glucose 200g/l 

• 15 mL Xylose 200g/l 

• 892 μL Furfural  

Furfural  100 mL  • 4.312 mL Furfural 

• 95.688 mL MQ, Sterile 

water 

 

 𝐶1 ∗ 𝑉1 = 𝐶2 ∗ 𝑉2 (a) 

   

 

 
𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑛 =

𝑉0 + 𝑉𝑓𝑒𝑒𝑑𝑛
+ 𝑉𝑝𝑢𝑚𝑝𝑛

𝑉0
 

(b) 

 

Equation ‘a’ depicts the equation used to calculate specific volumes when reinoculating 

the pre-cultures and batch-cultivation through the help of optical density measured by a 

spectrophotometer at 620 nm in wavelength. Equation ‘b’ depicts the equation used to 

calculate the dilution factor of ingoing medium and furfural solution during the fed-batch 
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phase, which is then used to calculate an approximate number of events per sample, 

should it be undiluted.   

3 Result 

3.1  FCM data processing 

The development of the code started as mentioned in section 2.1 with flowcytometry files 

from previous cultivations using the TMBRP011 strain (Perruca Foncillas et al., 2023). 

These files became the base for the fixed gating strategies used throughout the 

experimental phase.  

To ensure that the static theoretical gates were sufficient, program returned results were 

compared with the same FCS file run in the software FlowJo. At first, the MFI GFP values 

seemed to differ greatly, the reason for which was subsequently discovered to be different 

transformation strategies for the raw data. In order to read and review FCS data in Python, 

the package ‘FlowCytometryTools’ (Yurtsev and Friedman, 2018) was used. Through 

giving it the path to an existing FCS file, it can call the data from their columns and 

transform it directly for easier viewing, along with simplifying further calculations by 

making said columns easy to access. While transforming FCS data is done in FlowJo as 

well, ‘FlowCytometryTools’ transforms the data directly, while FlowJo transforms its axes 

instead. To fix this discrepancy gates were created with the logarithmic axes in mind, 

which also removed any heatmapping capabilities from the program due to lack of support 

when using log axes from the used packages, heatmapping trials resulted instead in large, 

inaccurate blocks. The gates were then refined and changed by plotting all given datafiles 

through use of the package ‘Matplotlib’ (Matplotlib, 2023) and comparing the results with 

their FlowJo equivalent.  

The program starts by removing debris by a static threshold gate for the forward scatter 

height (FSC-H) which indicate particle size.  Particles bellow this threshold is considered 

debris and removed from further calculations. The remaining entities are then gated by 

plotting PI (FL3-H) against GFP (FL1-H) levels. A high PI value indicated a cell with a 

non-intact membrane, and where thereby denoted ‘damaged’, while the cells deemed 

intact were separated by fluorescence level into GFP negative and GFP positive. The 

resulting gates, as well as an example of program output plots and results compared to 

FlowJo can be seen in figure 3.1. As can be seen, the fixed gates sufficiently encompass 

the relevant cell populations and removes most of the debris. The MFI GFP was calculated 

using both GFP positive and GFP negative populations as the value of the culture as a 

whole was of interest when inducing in the experimental phase, it was also what was done 

in the study by Perruca Foncillas et.,al. An alternative approach based on the GFP 

subpopulations was also of interest and functional but was not utilized further in the 

experimental phase. 
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Figure 3.1. Depicting scatterplots of entities recorded in FCS file A01 in folder 2022-11-09_17-00-57 from the 

cultivations done by Perruca Foncillas et.al. Figure A depicts a forward scatter – side scatter plot indicating their size 

and granularity. Entities bellow a specified size was deemed debris, where the black line indicates a threshold gate 

Figure B takes the remaining cell population and gates them based on PI-level and fluorescence level. The black lines 

indicate an approximate illustration of the applied gates. Yellow scatter indicates cells with non-intact membranes, 

green scatter indicates GFP positive intact cells and blue scatter indicate GFP negative intact cells. 

 A statistical comparison of FlowJo and program output from the same FCS files can be 

seen in figure 3.2. Figures A and B depicts MFI GFP and the percentage of intact cells 

respectively, with FlowJo output on the x-axes and program output on the y-axes. Linear 

equations were fitted to the resulting datapoints and their R2 values were calculated to 

indicate fit. Figure 3.2 A was fitted with the linear equation y = 1.0035x - 1.8443 with the 

R2 value 0.9995, while figure 3.2 B was fitted with the equation y = 1.0481x - 4.9351 with 

an R2 of 0.9943. This analysis indicated that the fixed gating strategy was sufficient due to 

the resulting slopes and R2 values both being close to 1. An example of exact statistic 

comparisons for one FCS file can be seen in table 3.1, which in turn corresponds to the 

entities plotted in figure 3.1.  

 

Figure 3.2. Depicting the result of a statistical analysis comparing program automatic output to FlowJo manual output. 

Figure A depicts MFI GFP, with FlowJo output on the x-axis and program output for the same file on the y-axis. A linear 

regression was fitted, with the equation y = 1.0035x - 1.8443 and R2 value of 0.9995. Similarly, the percentage of intact 

cells were plotted in graph B, with a linear regression equation of y = 1.0481x - 4.9351 with R² = 0.9943. 
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Table 3.1. Depicting an example of data outputs from the program and the FlowJo software when used independently 

with the same FCS file. Corresponds to figure 3.1 for the program output graphs.  

Statistic Program Output FlowJo Output 

Number of events 97753 97753 

Number of cells 96511 95409 

Percentage of intact cells 92.6% 93.0% 

MFI GFP (intact cells) 6412 6402 

 

3.2 Pump control program 

A plan for a final program structure was developed before further coding was done. The 

FCS Trial program was to be repurposed into a function to be called on by the Main 

Executor file to return numerical parameters from new FCS files. This program file would 

also be able to call on the pump handling file to control the pump further down the line.  

Firstly, it was necessary that the program could access new FCS files as they were created 

rather than to be manually directed to said files. This was done with the ‘Watchdog’  

package (Mangalapilly, 2023), specifically using the ‘Observer’ class. This enabled the 

code to send an instanced Observer to a specified folder, which can monitor changes 

within that folder. The ‘on_created’ method was used, which causes the Observer to react 

when a file is created in the specified folder. The Observer was also written to 

continuously monitor the folder until the program is terminated.  

The program should also be able to handle different reactor setups according to the user’s 

needs. This was done by initializing the ‘file_counter’ variable in the on_created method 

to keep track of the number of created FCS files. For a setup with one reactor and one 

washing step, the first and subsequently every other file would be of interest and denoted 

as sample files, which would continue program execution. Separate scripts were created 

for different reactor-water set-ups, however only the forementioned was employed 

experimentally.  

Initial testing of pump control begun with the help of an Arduino and serial 

communication. It was demonstrated that manual input of commands into the Arduino 

terminal had the capability of stopping and starting the pump while connected by USB to 

a COM-port. To do this automatically with python, the ‘Serial’ package (Liechti, 2020) 

was used for COM communication. Serial is able to write commands and read responses 

from a port, which indicate if the commands are accepted and executed. For specific 

parameters and commands used, see Appendix I: III Pump Handling. The functions made 

to control the pump was only usable with the pump attached, hence why the Pump Mock 

file was created as a substitute for testing, which only prints messages in the console.  

As starting and stopping the pump should be based on the slopes of real-time data, it was 

decided that the slope values should be based on the three latest datapoints, but the issue 

of possible outliers became apparent. Exponential Moving Average (EMA) was one 

option that was trialed. EMA is a weighted moving average commonly used when 

following stock market trends. In stock market applications, EMA “smooths” stock price 
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fluctuations and enables the user to easier distinguish between actual market trends and 

standard day-to-day fluctuations (5paisa, 2023). EMA differs from the method Standard 

Moving Average (SMA) by putting more weight on recent datapoints which makes it 

faster correcting when determining the current trend for a stock, which is also why it 

denoted as an exponential average. Historical datapoints have less and less relevance the 

further back they are. The formula for EMA calculation can be seen in equation ‘c’, where 

𝛼 is a constant, exponential “smoothing” factor, determining the weight of the newer 

datapoint, 𝐷𝑎𝑡𝑎𝑛 is the raw data of measurement 𝑛.(5paisa, 2023). 

 

 𝐸𝑀𝐴𝑛 = 𝐸𝑀𝐴𝑛−1 + 𝛼 ∗ (𝐷𝑎𝑡𝑎𝑛 − 𝐸𝑀𝐴𝑛−1) (c) 

  

There were several functions written in the Main Executor for further handling of sample 

files, in order of execution: 

I. Save_results. This function extracts the data received from the FCS Handling file 

and transforms them into a singular ‘Pandas’ data frame with correct column 

headings and appends new datapoints to the ‘Total Results’ data frame. It also 

returns the sample time and calculates and appends the newest EMAs for PI 

percentage and GFP MFI. 

II. Plot_results. This is used for plotting and is not strictly necessary for code function 

but is used as a visualization tool for the user. It plots PI percentage, PI EMA, GFP 

MFI, GFP MFI EMA, and recorded events in three separate subplots.  

III. Get_slope. If this is at least the third sample file, this function calculates the EMA 

slopes for the last three datapoints of PI percentage and MFI GFP when plotted 

against time. It also appends these slopes to the ‘Total Results’ data frame.  

If not, it appends “Premature” to those columns in the ‘Total Results’ data frame. 

IV. Use_pump. This function is used to call functions from the Pump Handling file to 

control the pump, specifically pump 2 in figure 2.1. If it is at least the third sample 

file, this function utilizes several ‘if’ statements to decide if the pump should start, 

and how many mL/h to pump. The pump will stop if the PI slope is higher than a 

certain positive threshold or average PI percentage of the last three points is higher 

than a static number. It will start if it hasn’t been told to stop and the MFI GFP 

slope is lower than a certain negative threshold, the first setting currently pumps 1 

mL/h.  

 

The volume per hour will subsequently increase if the PI slope does not increase 

and the MFI GFP slope is continuously negative. A higher mL/h in this case 

indicates a setting where the pump is left on for a longer period of time within a 

sample cycle, although always split into two stages. A higher pumping time will 

lead to more furfural entering the cultivation vial, which in turn should have a 

higher probability of reinducing the cells, but may also risk their integrity if done 

immediately, hence the tiered setting system based on the MFI GFP slope.  
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V. Save_to_folder. This is the function used by ‘atexit’ to save the output figure and 

data frame as a PNG and excel file respectively when the program is shut down. It 

also creates a new folder based on the start time of the program where it places the 

files.  

The final program flowchart can be seen in figures 3.3.1 and 3.3.2. This illustrates the 

flow of events as an FCS file is created in de designated folder to when the program waits 

for the next file. This will then repeat until program termination, which is when the data 

will be saved by the Save_to_folder function. The incremental increase of furfural volume 

entering the culture vial is based on increased minutes pumping dispersed throughout a 

sample cycle, see section 2.3.2 Pump Handling for specifics. 

An example of a final program output graph can be seen in figure 3.4. This displays a test 

run done with data from the cultivation by Perruca Foncillas et al., with datapoint 0 being 

the file used to create figure 3.1 and table 3.1 with the FCS Trial program. 

An example of program output data frame can be seen in table 3.2. This is the numerical 

representation of figure 3.4. As can be seen this simulated test-run was successful in 

controlling the pump based on flowcytometry data.  
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Figure 3.3.1. Depicting the first part of program execution as a new FCS file is created in a designated folder. The 

program checks whether the file is a sample or water file through the filecounter variable which is increased by 1 for 

each created file. The FCS Handling file is then called to extract data and calculate PI percentage and MFI GFP which 

it passes back to Main Executor. These results are then saved, and the EMA is calculated through the save_results 

function, these are subsequently plotted by the plot_results function. 
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Figure 3.3.2. Depicting the second part of program execution after an FCS file has been created. If it is at least the third 

sample file, slopes are calculated which subsequently determines whether the pump should start, stop, or take no action. 

This represents actual program set up as the pumping volume is increased if the fluorescence continues to decrease after 

the pump is started. The different pumping rates is built on time that the pump is on in a sample cycle, so a higher rate 

means a longer pumping time per hour. 
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Figure 3.4. Depicting the final output graph for a theoretical test run done by moving existing FCS files to a        

designated folder.  The three subplots represent number of events. Mean fluorescence and its EMA, and PI-stained 

percentage and its EMA. The figure is based on the data written in table 3.2. 

Table 3.2. Depicting the final output data frame for a theoretical test run done by moving existing FCS files to a        

designated folder. The pump status column is based on the slopes, both PI percentage and MFI GFP is decreasing the 

pump is designed to start which can be seen in the 8th datapoint.   

 

PI 

percentage 

MFI 

GFP 

Time 

(min) 

Events PI slope 

(EMA) 

GFP 

slope 

(EMA) 

Pump Status 

0 7.462053 6411.979 0 97 753 Premature Premature Premature 

1 5.528853 6906.347 60 74 267 Premature Premature Premature 

2 5.3683 7433.694 120 74 791 -0.01477 6.163345 No Action 

3 4.820228 7675.728 180 79 583 -0.00785 5.78858 No Action 

4 3.85195 7925.706 240 95 917 -0.01011 4.593783 No Action 

5 3.673066 8119.962 300 121679 -0.00966 4.023424 No Action 

6 3.722865 8058.241 360 111751 -0.005 2.438455 No Action 

7 3.764887 7959.524 420 140391 -0.00193 0.430083 No Action 

8 3.873295 7738.315 480 114649 -0.00025 -1.20386 Started 

 

 



22 

 

3.3 Results of the evaluation of base program functionality  

The program was able to start and stop the pump based on manually created samples 

utilizing the TEF and TRX strains (table 3.3).  At first the program was unable to 

recognize file creations in the OnCyt’s own designated output folder, however this was 

solved by changing the output folder to one not directly managed by the OnCyt. Some 

waiting times were also introduced to the program (time.sleep) as it was accessing the files 

too quickly after creation, making them appear corrupted to the program while essentially 

incomplete. The time column was in this case artificial to generate comparable slope 

values to those the program was built on.  

Table 3.3. Depicting program data output from the initial trials. As MFI GFP and PI percentage changed the program 

was able to recognize these changes and control the pump successfully. The Time column was in this case artificial.   

 

PI 

percentage 

MFI 

GFP 

Time 

(min) 

Events PI slope 

(EMA) 

GFP 

slope 

(EMA) 

Pump Status 

0 3.401176 5974.791 0 11413 Premature Premature Premature 

1 2.078148 6753.514 30 16212 Premature Premature Premature 

2 2.765731 14472.23 60 14195 -0.01239 87.02383 No Action 

3 0.424165 29220.53 90 15785 -0.01806 244.7067 No Action 

4 2.264454 15621.46 120 16449 -0.01304 116.4891 No Action 

5 5.070156 9984.896 150 11774 0.035935 -122.758 Started 

6 23.58696 6756.726 180 1251 0.204825 -135.05 Stopped 

 

3.4 Batch cultivations for determination of glucose consumption rate 

The batch cultivations were run to determine how fast the cells would consume the 

glucose present in the medium, which would indicate when to start the feeding for the fed-

batches. They were also run to evaluate the system setup with YP medium, and shake-

flask as opposed to minimal medium and bioreactor which was used in the study by 

Perruca Foncillas et.al. While a triplicate of the batch cultivation was run, due to 

mechanical errors with the flow cytometer which stopped some measurements early from 

the end of the second run onwards, event count is non reliable from that point. However, 

MFI GFP and PI percentage remain consistent throughout and hence seemed reliable. As 

no duplicate was available for data after the 16h mark, the existing event count data will 

not be used for further calculations. 
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Figure 3.5. Depicting results from the primary batch cultivations. Displaying the natural logarithm of recorded events 

from 4 to 16 hours and its linear equation y = 0.2806x + 6.5289 with an R2 value of 0.9965. The linear equation was 

used to calculate μmax and Tb from equations ‘d’ and ‘e’. 

 

 𝑙𝑛(𝑁) = 𝜇𝑚𝑎𝑥 ∗ 𝑡 + 𝑙𝑛(𝑁0) (d) 

   

 

 
𝑇𝑔 =

𝑙𝑛(2)

𝜇𝑚𝑎𝑥
 

(e) 

 

 

Figure 3.6. Depicting the HPLC analysis results for the batch cultivation mediums, as well as the recorded OD620nm. 

Glucose continuously decreases and depletes from 21-22 hours on average with a maximum depletion time of 23.5 

hours. The xylose consumption rate increases slightly as the glucose concentration decreases. There was some ethanol 

formation throughout the cultivation. OD620nm increases gradually until the last three hours. 

Figures 3.5 and 3.6 showcases the results from the batch cultivations. Figure 3.5 shows 

the natural logarithm of recorded events as functions of time. A linear equation was fitted 

to the recorded event graph from hour 4 to 16, which had the numerical values y = 

0.2806x + 6.5289 with an R2 value of 0.9965. This linear equation corresponds to 

equation ‘d’, where the maximum specific growth rate (μmax) corresponds to the slope, 

y = 0.2806x + 6.5289
R² = 0.9965
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which equates to a value of 0.2806 h-1. This was then used with equation ‘e’ to calculate 

the doubling time (Tg) to 2 hours and 28 minutes.  

Figure 3.6 shows the HPLC results of the cultivations as well as their OD620nm 

measurements. Glucose was observed to deplete on average at the 21–22-hour mark with 

a maximum depletion time of 23.5 hours, these times were used to plan for the fed batch-

cultivations as the feeding phase was to be started after batch phase depletion. After 

glucose depletion there was a slight increase in the xylose consumption rate. Some 

formation of ethanol was observed. OD620nm throughout the experiment, with a slight 

stagnation observed during the last three hours, corresponding to the lag-phase induced by 

the low sugar-content within the medium, along with the diauxic shift to xylose and 

ethanol.  

3.5 Evaluation of sampling procedures 

The batch cultivations were monitored by automatically sampling every 4 hours and 

running over 3 mL of dead volume before measuring to ensure fresh sample on the line, 

due to the length of the OnCyt sampling line being close to 1.5 meters. This was not ideal 

as a lot of volume was wasted of the 50 mL cultivation, thus making more frequent 

sampling impossible as well. For the pump control to work as intended later on, this four-

hour window was deemed much too wide as letting the pump run unregulated for that long 

could result in killing the entire culture, and small cell clusters were noticeable in the line 

further into the cultivation which could potentially cause clogging in the SIP of the flow 

cytometer. A solution was developed where an air filter (0.22 µm) was put on the OnCyt’s 

air intake, and the autosampler would use sterile-filtered air to push the  still on the line 

back into the shake flask after a taken sample, resulting in a new dead volume of 

approximately 150 µL in the OnCyt. During the subsequent trials, the batch cultivations 

were closely monitored for contamination through the FCS Trial program, but none were 

noticed. This reduced the needed volume significantly and enabled sampling every 30 

minutes during the fed-batch cultivations.  

3.6 Comparisons between fed-batches and dynamically controlled fed-batches 

Comparisons between the results from the regular fed-batch cultivations and the 

dynamically regulated fed-batch cultivations can be seen in figures 3.7 and 3.8.  

Figure 3.7 features average PI percentage and MFI GFP plotted against time passed since 

the feeding phase was initiated. As can be seen in 3.7 A, PI percentage followed a similar 

profile for both the experimental setups, with a value of approximately ten percent 

towards the end of the cultivations. The impact of the dynamic control program can 

mainly be observed in figure 3.7 B, where the experimental setups follow a similar profile 

until the MFI GFP slope starts decreasing after the first peak at seven hours. The regular 

fed-batch cultivations approximately followed the profile shown in the study by Perruca 

Foncillas et.al., 2023, despite the differing medium and cultivation differences. The 

decrease in MFI GFP in the dynamically controlled fed-batches caused program activation 

and furfural addition, which caused the cells to be reinduced to a higher peak before 

decreasing again after 17 hours of feeding.  
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Up until the second peak, the program was kept in the ‘Started’ pump status, which means 

an addition of 0.5 mL furfural solution per half-hour sample cycle. Subsequently the 

volume per sample cycle was increased, but no further induction was observed with 

current pump settings and furfural concentrations. The regular fed-batch cultivations were 

administered 892 µL or 1.031 g of furfural in total from the feed at the end of the 

cultivations, while the dynamically regulated fed-batch cultivations had a final furfural 

addition of 1.97 mL ± 0.046 mL or 2.29 g ± 0.053 g. This equates to an increase of over 

120%, while the percentage of PI-stained cells is steadily decreasing comparatively to the 

regular cultivations.  

  

    

Figure 3.7. Illustrating data from the duplicates of the regular fed-batch cultivations and the dynamically controlled fed-

batch cultivations. 3.7 A shows how the percentage of PI-stained cells changed throughout the feeding phase, with the 

regular fed-batch in blue and the dynamically regulated fed-batches in orange. 3.7 B shows changes in MFI GFP over time 

during the feeding phase with the regular fed-batches in green and the dynamically regulated fed-batches in yellow.   

 

   
Figure 3.8. Showing the HPLC results for the duplicate regular fed-batches in 3.8.A, and the duplicate dynamically 

regulated fed-batches in 3.8 B, along with their calculated undiluted OD620 values. Hour 0 represents the transition into 

the feeding phase from the batch phase. 
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Figure 3.8 shows the medium HPLC analysis results of the fed-batch cultivations. As can 

be seen, the profiles for the regular cultivations (3.8 A) and the dynamically controlled 

cultivations (3.8 B) appear similar, the most notable difference during the feeding phase 

being some furfural accumulation within the medium. This is due to the increased 

administration rate of the dynamically regulated fed-batch cultivations, especially during 

the last three samples where the program was running at its ‘Maximum increased’ setting, 

administrating 5 mL/h furfural solution or 0.2 mL per sample cycle pure furfural into the 

cultivation vials. The measured OD620 values differ in profile, which can be explained by 

the extra dilution stemming from the added furfural solution.  

4 Discussion  
Here, a method for monitoring and regulating a yeast cultivation process was developed at 

the single cell-level. The program has been utilized successfully for cultivation process 

control and was able to reliably control a peristaltic pump based on specific input 

parameters, while interpreting FCS files in real-time as they were created. This single-cell 

level analysis and on-line process control has the advantages of being less labor-intensive 

while being able to regulate a microbial population based on several parameters that is 

otherwise difficult to analyze automatically in an on-line setup. The redox biosensor 

utilized in the TMBRP011 S. cerevisiae strain, in combination with PI staining was but 

one example of a potential control scheme one could use.  

 

The dynamically regulated fed-batch cultivations were reinduced after the initial decrease 

in fluorescence when the program was employed. This resulted in final added furfural 

volumes over 120% more than the regular fed-batch cultivations, indicating acclimatation 

from the cells, as even the additional furfural injected eventually could not keep the cells 

induced.  After the second peak at 17 hours of feeding, the program did increase its 

pumping time as instructed, but it seemed that neither 1.5, 3, or 5 mL/h were able to 

completely reinduce the culture. More experiments are necessary to determine whether 

further reinduction is possible, what can be said is that the PI percentages did not change 

with the higher volumes, indicating that the culture can take a higher volume in terms of 

survivability. Biomass production also seemed comparable to the regular fed-batch 

cultivations when accounting for dilution factor, which indicates that the additional 

furfural addition did not affect the growth of the cells.  

As for accuracy, the final product and the gating strategy has been sufficient throughout 

and has not presented any issues that hindered project progression. If one wanted to utilize 

this program with a less static population a different strategy would be necessary, but as 

the static strategy was sufficient here this was not explored. One strategy that could be 

employed in this case is k-means clustering (Rao NS, 2023), which can automatically 

select subpopulations of FCM data and gate based on clustering. This method will be a 

useful alternative to the fixed gating strategy employed when building this program and 

could assist in making the program usable for more microbial populations without 

manually setting the gates beforehand.   
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The unregulated fed-batch cultivation showed a similar profile to those presented by 

Perruca Foncillas et., al. The initial increase in the percentage of cells that were PI stained 

could potentially be attributed to the cells entering a semi-stationary phase due to the 

diauxic shift, which could also be a reason for the apparent ethanol consumption before 

stabilization. Furthermore, the increase of MFI GFP seems to coincide with the negative 

PI percentage slope which coupled with the slight glucose accumulation during the first 

hour of feeding further gives credit to this theory. The cultivations were run aerobically, 

however as OD620nm indicates such high cell concentrations and that there was no active 

air transfer, the oxygen contents towards the end of the cultivations may not have been 

sufficient, contributing to this phenomenon. Overall aeration may also have been limited 

in the shake flask setup. As no accumulated furfural was observed, it can be assumed that 

the cells were able to detoxify the entirety of it towards the end of the cultivation.  

 

The batch cultivations were plagued by a mechanical error with the flow cytometer, which 

was later discovered to be a rusted waste outlet valve. This error made many event counts 

unusable, including those of the regular fed-batches. This makes biomass comparisons 

more difficult as relying on optical density measurements solely has a high level of 

variability. However, while not optimal, this was deemed as an error this particular setup 

could work with. As the most important statistics consists of a mean and a percentage, 

these can still be calculated even with smaller sample sizes. In the event of a crash, the 

cytometer would stop the measurement after approximately 16 seconds as opposed to the 

minute a full sample would take. Especially at higher cell concentrations, even 16 seconds 

yielded more than enough cells to make the extrapolation that the sample would follow a 

similar pattern. 

5 Conclusion 
The cultivations have proven reproducible, and the program design has fulfilled the initial 

scope, along with some additional features. The regulated fed-batch cultivations were 

successful in re-inducing the culture and outside of mechanical flow cytometer issues the 

project has delivered and proceeded as planned. Flow cytometry as a tool for on-line 

process control is in its early stages, but the result of this project proves that there are 

great possibilities for customization for specific processes, and that it is most certainly a 

viable possibility for the future. This project provides a roadmap for implementing on-line 

FCM monitoring as a basis for process control. 

6 Future outlook 
It was discovered late in the experimental phase that while the code is functional, the 

necessary downgrades from a windows 11 computer to a windows 7 computer presented 

some not-so-apparent issues. This is common when downgrading and brought with it 

difficulties when implementing new features such as an automatic save function on 

program exit. The downgrade was necessary due to the computer connected to the Accuri 

C6+ needed to be on windows 7 due to software license compatibility. Thus, for the 

program to work as it does on newer machines, some refactoring may be necessary. That 

is not to say that the program does not work, it just one less feature than what was desired 
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to be included further into the process. This could also be fixed by the use of a virtual 

machine or upgrading the windows version on the computer. There were also some 

threading issues with Matplotlib and Watchdog as well as atexit wanting to be executed by 

the main thread, which likely is the cause of some of these issues and might require a 

more thorough refactoring to fix on an older system. There is also a possibility of a 

Watchdog memory leak as the Observer function is running until the program is 

terminated.  

While a warning may be given by Matplotlib on newer systems, no actual effect to code 

functionality has been observed, and it is able to execute atexit with exitcode 0, indicating 

a smooth exit without issues. This is as opposed to exitcode -1 which is given on the older 

system, indicating some sort of issue with termination, likely from a Watchdog issue as 

mentioned above. Fixing these would be the first step taken to improve on the project in 

the future.  

This code is realistically only a back-end in its current state, as the user has to run the code 

directly from the IDE which is not optimal. The next step would be to develop a front-end 

and figure out a Backend – API – Front-end combination that would be functional and 

user friendly. This would likely take as long as the development of the backend itself if 

not longer.  

Experimentally, there are several things one could test. What is the maximal furfural rate 

that the further induced cells can take? What is the maximum induction level possible, can 

it be reached in a multi-step increase of furfural insertion? Can the cells be kept at that 

fluorescence over a long period of time by further increasing furfural insertion, without an 

increase in PI percentage? Will this have a positive effect on biomass production? What 

are the optimal threshold values for slopes and percentages? What are other uses for this 

type of automation? The questions to be answered are many and may have significant 

effects on bioethanol production from lignocellulose in the future. The next step would be 

to move to a bioreactor with minimal medium to ensure similar reactivity from the cells.  

 

  



29 

 

7 Popular Scientific Summary 
This project had the aim of developing a Python program capable of controlling a pump 

containing a toxic substrate based on on-line analysis of a yeast cultivation on a single-cell 

level. Yeast cultivation is used within a number of industries, including foods, 

pharmaceuticals, and fuels. The program was specifically developed with a yeast strain used 

for bioethanol production from lignocellulose in mind, which has a partial resistance to this 

toxic substrate.  

The program was developed to be used for process control by monitoring the trends of two 

separate statistics which indicated cell viability, and induction level due to the stress caused 

by the toxic substrate respectively. The program was designed to start the pump when the 

induction level decreased, which for the specific yeast-strain used indicated an adaptation to 

the rate of the toxic substance present in a constant feed, the separate pump would then inject 

a higher concentration of the toxic substance to further induce the cells as they addapt. The 

reason for this was that a higher induction level had previously been linked to a higher 

production rate of bioethanol when using the same yeast strain.  

Cell viability was monitored and a decrease in this statistic would indicate that the culture was 

not able to handle the amount of the toxic substrate injected without cell damage, which is 

why the increase of the volume of the toxic substrate injected into the culture was designed to 

be gradual. Should this statistic decrease, the pump was designed to stop and allow the cells to 

acclimatize further.  

This project was furthermore done to automize a cultivation process through single cell 

monitoring by using flow cytometry data. This is a relatively novel concept that has not been 

applied previously. Basing process control on flow cytometry data enables many options for 

monitoring that is not available traditionally, as it is currently done on a culture-wide basis 

with less precise tools. This method could introduce more precise control systems and enable 

the use of specifically genetically engineered yeast strains for large-scale processes, without 

the need for additional analysis steps. Automation as a whole is also needed within the life-

science space to enable researchers to develop more elaborate experiments that are less 

laborious, while also reducing sources of error.  

The program was created as planned and was able to cause a reinduction of the yeast culture 

automatically without user input during the experimental phase, based on induction level and 

cell viability. The amount of toxic substance that could be inserted into the culture increased 

by over 120% with the program as opposed to without, and these results proved reproducible. 

The outcome of this thesis provides a roadmap for the implementation of single cell 

monitoring as a basis for bioprocess control. 
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Appendix 1 

 

i. FCS Trial 
 

import FlowCytometryTools as fct 

import matplotlib.pyplot as plt 

from pylab import * 

 

# Initializes the folder and file used, attributes the data to 

the 'sample' variable 

file_path = r"C:\Users\ADMIN\Desktop\Saras 

scripts\Data\Goal\2023-08-08_14-00-55\H01.fcs" 

sample = fct.FCMeasurement(ID='Test 1', datafile=file_path) 

 

# OBS! The flourochromes listed are factory settings and are 

needed to call the data from their channels, they do 

# not necessarily correspond with the flourochromes used in the 

sample. 

# Data can only be called from the first 'name' (e.g. FITC-A 

not FL1-A for this setup) 

 

# Event,          Number of events in measurement 

# FSC-A,          Forward scatter area -> cell size 

# SSC-A,          Side scatter area -> cell granularity 

# FITC-A::FL1-A   Green flourochrome 

# PE-A::FL2-A,    Orange-Red flourochrome 

# PerCP-A::FL3-A, Red flourochrome 

# APC-A::FL4-A,   Far-red flourochrome 

# FSC-H,          Forward scatter height -> additional size 

info 

# SSC-H,          Side scatter height -> additional granularity 

info 

# FITC-H::FL1-H,  Green intensity at its highest point 

# PE-H::FL2-H,    Orange-red intensity at its highest point 

# PerCP-H::FL3-H, Red intensity at its highest point 

# APC-H::FL4-H,   Far-red intensity at its highest point 

# Width,          Pulse width 

# Time            Time for recording of each event 

 

# Prints channel names in the sample 

# print("Channel names:") 

# print(sample.channel_names) 

 

# Transforms the relevant columns from the sample through log, 

also attributes the number of entities to nmb_ent 

# transformed_sample = sample.transform('hlog', channels=['FSC-

H', 'SSC-H', 'FITC-H', 'PerCP-H', 'FSC-A', 'SSC-A'] 

# , b=500.0) 

nmb_ent = sample.data.shape[0] 

 

# Initializes the gates based on graphical analysis. Values 

correspond to corners in a polygon and should be changed 

# to fit the particular dataset of interest. The cleanup gate 



33 

 

is a threshold for size inclusion. 

cleanup_gate_x = fct.ThresholdGate(630000, 'FSC-H', 

region='above') 

cleaned_sample = sample.gate(cleanup_gate_x) 

nmb_cells = cleaned_sample.data.shape[0] 

 

debris_gate_x = fct.ThresholdGate(630000, 'FSC-H', 

region='below') 

debris = sample.gate(debris_gate_x) 

nmb_debris = debris.data.shape[0] 

 

intact_gate_pos = fct.PolyGate([(1300, 50), (1300, 9000), 

(400000, 170000), (350000, 50)], 

                               ('FITC-H', 'PerCP-H'), 

region='in', name='Intact Cells OG') 

 

intact_gate_neg = fct.PolyGate([(0, 50), (0, 9000), (1300, 

9000), (1300, 50)], 

                               ('FITC-H', 'PerCP-H'), 

region='in', name='Intact Cells OG') 

 

damaged_gate = fct.PolyGate([(0, 9000), (1000, 7e+6), (260000, 

8e+6), (400000, 170000), (1300, 9000)], 

                            ('FITC-H', 'PerCP-H'), region='in', 

name='Damaged cells OG') 

 

 

# - Gates data from the sample and counts number of cells 

contained in each gate. 

# - Calculates the percentage of PI stained cells in the sample 

(FL3-A). 

# - Calculates the mean FL1-H fluorescence for the non-stained 

cells and GFP positive cells. 

# - Prints total number of entities before and after gating, 

ensures no double counting and inclusion of all entities. 

# - Prints total number of cells without debris. 

intact_cells_pos = cleaned_sample.gate(intact_gate_pos) 

nmb_intact_pos = intact_cells_pos.data.shape[0] 

 

intact_cells_neg = cleaned_sample.gate(intact_gate_neg) 

nmb_intact_neg = intact_cells_neg.data.shape[0] 

 

nmb_intact_tot = nmb_intact_neg + nmb_intact_pos 

 

damaged_cells = cleaned_sample.gate(damaged_gate) 

nmb_damaged = damaged_cells.data.shape[0] 

 

damaged_percentage = nmb_damaged / nmb_cells * 100 

 

avg_fl1_tot = sum(cleaned_sample['FITC-H']) / nmb_cells 

avg_fl1_pos = sum(intact_cells_pos['FITC-H']) / nmb_intact_pos 

 

print("\nNumber of entities total:") 

print(nmb_ent) 

 

nmb_ent_gate = nmb_intact_tot + nmb_damaged + nmb_debris 
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print("\nNumber of entities while gating:") 

print(nmb_ent_gate) 

 

nmb_cells_gate = nmb_intact_tot + nmb_damaged 

print("\nNumber of cells after gating (no debris):") 

print(nmb_cells_gate) 

 

print("\nThe percentage of total cells that are PI positive:") 

print(damaged_percentage) 

 

print("\nAverage FL1-H florescence:") 

print(avg_fl1_tot) 

# print(avg_fl1_pos) 

 

# Plots gated entities in different colors based on previous 

gating using axes with logarithm scales. 

# Also plots legends. 

# The first graph plots the cells by GFP and PI, while the 

second graph plots cells and debris based on 

# size and granularity. 

fig1 = plt.figure(1) 

plt.scatter(cleaned_sample['FITC-H'], cleaned_sample['PerCP-

H'], s=0.8, alpha=0.5, label='All Cells') 

plt.scatter(damaged_cells.data['FITC-H'], 

damaged_cells.data['PerCP-H'], s=1.0, alpha=0.5, label='Damaged 

Cells') 

plt.scatter(intact_cells_pos.data['FITC-H'], 

intact_cells_pos.data['PerCP-H'], s=1.0, alpha=0.5, 

            label='Intact (GFP positive)') 

plt.scatter(intact_cells_neg.data['FITC-H'], 

intact_cells_neg.data['PerCP-H'], s=1.0, alpha=0.5, 

            label='Intact (GFP negative)') 

ax = matplotlib.pyplot.gca() 

ax.set_xscale('log') 

ax.set_yscale('log') 

plt.xlabel('GFP (FL1-H)') 

plt.ylabel('PI (FL3-H)') 

plt.legend() 

 

fig2 = plt.figure(2)   

plt.scatter(sample['FSC-H'], sample['SSC-H'], s=0.8, alpha=0.5, 

label='All Cells') 

plt.scatter(damaged_cells.data['FSC-H'], 

damaged_cells.data['SSC-H'], s=0.8, alpha=0.5, label='Damaged 

Cells') 

plt.scatter(intact_cells_pos.data['FSC-H'], 

intact_cells_pos.data['SSC-H'], s=0.8, alpha=0.5, 

            label='Intact (GFP Positive)') 

plt.scatter(intact_cells_neg.data['FSC-H'], 

intact_cells_neg.data['SSC-H'], s=0.8, alpha=0.5, 

            label='Intact (GFP Negative)') 

plt.scatter(debris.data['FSC-H'], debris.data['SSC-H'], s=0.8, 

alpha=0.8, label='Debris') 

ax = matplotlib.pyplot.gca() 

ax.set_xscale('log') 

ax.set_yscale('log') 
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plt.xlabel('FSC-H') 

plt.ylabel('SSC-H') 

plt.legend() 

 

plt.show() 

 

ii. FCS Handling 
import FlowCytometryTools as fct 

import matplotlib.pyplot as plt 

 

 

def fcs_analysis(file_path): 

    # Initializes the folder and file used, attributes the       

data to the 'sample' variable 

    sample = fct.FCMeasurement(ID='Test 1', datafile=file_path) 

 

    # OBS! The flourochromes listed are factory settings and         

are needed to call the data from their channels, they do 

    # not necessarily correspond with the flourochromes used in 

the sample. 

    # Data can only be called from the first 'name' (e.g. FITC-

A not FL1-A for this setup) 

 

    # Event,          Number of events in measurement 

    # FSC-A,          Forward scatter area  

    # SSC-A,        Side scatter area  

    # FITC-A::FL1-A   Green flourochrome 

    # PE-A::FL2-A,    Orange-Red flourochrome 

    # PerCP-A::FL3-A, Red flourochrome 

    # APC-A::FL4-A,   Far-red flourochrome 

    # FSC-H, Forward scatter height  

    # SSC-H, Side scatter height  

    # FITC-H::FL1-H, Green intensity at its highest point 

    # PE-H::FL2-H Orange-red intensity at its highest point 

    # PerCP-H::FL3-H, Red intensity at its highest point 

    # APC-H::FL4-H,Far-red intensity at its highest point 

    # Width,          Pulse width 

    # Time            Time for recording of each event 

 

    # Prints channel names in the sample 

    # print("Channel names:") 

    # print(sample.channel_names) 

 

    nmb_ent = sample.data.shape[0] 

 

    # Initializes the gates based on graphical analysis.  

Values correspond to corners in a polygon and should be changed 

    # to fit the particular dataset of interest. The cleanup 

gate is a threshold for size inclusion. 

    cleanup_gate_x = fct.ThresholdGate(630000, 'FSC-H', 

region='above') 

    cleaned_sample = sample.gate(cleanup_gate_x) 

    nmb_cells = cleaned_sample.data.shape[0] 
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    debris_gate_x = fct.ThresholdGate(630000, 'FSC-H', 

region='below') 

    debris = sample.gate(debris_gate_x) 

    nmb_debris = debris.data.shape[0] 

 

    intact_gate_pos = fct.PolyGate([(1300, 50), (1300, 9000), 

(400000, 170000), (350000, 50)], 

('FITC-H', 'PerCP-H'), region='in', name='Intact Cells') 

    intact_gate_neg = fct.PolyGate([(0, 50), (0, 9000), (1300, 

9000), (1300, 50)], ('FITC-H', 'PerCP-H'), region='in', 

name='Intact Cells') 

    damaged_gate = fct.PolyGate([(0, 9000), (1000, 7e+6), 

(260000, 8e+6), (400000, 170000), (1300, 9000)],   ('FITC-H', 

'PerCP-H'), region='in', name='Damaged cells') 

 

    # - Gates data from the sample and counts number of cells 

contained in each gate. 

    # - Calculates the percentage of PI stained cells in the 

sample (FL3-A). 

    # - Calculates the mean FL1-H fluorescence for the non-

stained cells and GFP positive cells. 

    # - Prints total number of entities before and after 

gating, ensures no double counting and inclusion of all 

entities. 

    # - Prints total number of cells without debris. 

    intact_cells_pos = cleaned_sample.gate(intact_gate_pos) 

    nmb_intact_pos = intact_cells_pos.data.shape[0] 

 

    intact_cells_neg = cleaned_sample.gate(intact_gate_neg) 

    nmb_intact_neg = intact_cells_neg.data.shape[0] 

 

    nmb_intact_tot = nmb_intact_neg + nmb_intact_pos 

 

    damaged_cells = cleaned_sample.gate(damaged_gate) 

    nmb_damaged = damaged_cells.data.shape[0] 

 

    damaged_percentage = nmb_damaged / nmb_cells * 100 

 

    avg_fl1_tot = sum(cleaned_sample['FITC-H']) / nmb_cells 

    avg_fl1_pos = sum(intact_cells_pos['FITC-H']) / 

nmb_intact_pos 

 

    print("\nNumber of entities total:") 

    print(nmb_ent) 

 

    nmb_ent_gate = nmb_intact_tot + nmb_damaged + nmb_debris 

    print("\nNumber of entities while gating:") 

    print(nmb_ent_gate) 

 

    nmb_cells_gate = nmb_intact_tot + nmb_damaged 

    print("\nNumber of cells after gating (no debris):") 

    print(nmb_cells_gate) 

 

    # print("\nThe percentage of total cells that är PI 

positive:") 

    # print(damaged_percentage) 
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    # print("\nAverage FL1-H florescence:") 

    # print(avg_fl1_tot) 

    # print(avg_fl1_pos) 

 

    # Returns desired parameters, making them accessible for 

the Main Executor. 

    return damaged_percentage, avg_fl1_tot, nmb_ent  # , 

gfppos_percentage, meanfl1pos, cellconc 

iii. Pump Handling 
import serial 

import time 

 

port = "COM4" 

baudrate = 115200 

ser = serial.Serial(port, baudrate) 

ser.setDTR(True) 

 

 

# print(ser.name)  # Unhide this and run this script if you 

want to find out the name of the USB port. 

 

# This is used to control a specific pump from a specific 

arduino. If another pump is to be used, the user has to find 

# all its specifications and replace port, baudrate and 

start/stop commands with the appropriate ones. it may also be 

# necessary to encode/decode from a specific language (i.e. 

ASCII). The user also has to change the "if response ==" 

# to the appropriate response phrase that is sent from the 

pump/arduino. print(response) should let you know what the 

# pump sends back, if you get b'x\00' the response is empty, 

and something is wrong with the communication. Call the 

# functions in an otherwise empty script to check 

functionality. 

 

def start_pump(): 

    command = "G0 S1\n" 

    ser.write(command.encode()) 

    response = ser.readline() 

    # print(response) 

    if response == b'>\r\n': 

        print("\nThe pump has been started.") 

    else: 

        print("\nThere was an issue with pump communication 

(Incorrect response)") 

 

 

def stop_pump(): 

    command = "G0 S0\n" 

    ser.write(command.encode()) 

    response = ser.readline() 

    # print(response) 

    if response == b'>\r\n': 

        print("\nThe pump has been stopped.") 



38 

 

    else: 

        print("\nThere was an issue with pump communication 

(Incorrect response)") 

 

 

# Calibrated for pumping rpm 043, with 1 ml/h entering the 

shakeflask (half-hour sample cycle). 

def schedule_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(58) 

        stop_pump() 

        time.sleep(14 * 60) 

 

    start_pump() 

    time.sleep(58) 

    stop_pump() 

 

 

# Calibrated for pumping rpm 043, with 1.5 ml/h entering the 

shakeflask (half-hour sample cycle). 

def increase_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(1 * 60 + 27) 

        stop_pump() 

        time.sleep(13 * 60) 

 

    start_pump() 

    time.sleep(1 * 60 + 27) 

    stop_pump() 

 

 

# Calibrated for pumping rpm 043, with 3 ml/h entering the 

shakeflask (half-hour sample cycle). 

def fast_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(2 * 60 + 53) 

        stop_pump() 

        time.sleep(12) 

 

    start_pump() 

    time.sleep(2 * 60 + 53) 

    stop_pump() 

 

 

# Calibrated for pumping rpm 043, with 5 ml/h entering the 

shakeflask (half-hour sample cycle). 

def faster_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(4 * 60 + 49) 

        stop_pump() 

        time.sleep(10 * 60) 
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    start_pump() 

    time.sleep(4 * 60 + 49) 

    stop_pump() 

 

 

# Calibrated for pumping rpm 043, with 10 ml/h entering the 

shakeflask (half-hour sample cycle). 

def constant_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(9 * 60 + 38) 

        stop_pump() 

        time.sleep(5 * 60) 

 

    start_pump() 

    time.sleep(9 * 60 + 38) 

    stop_pump() 

 

iv. Pump Mock 
# This script is used for testing the functionality of the 

other scripts while not having a pump connected. 

# Essentially this is a mockup to be called in place of 

Pump_Handling which will send phrases without starting 

# anything else. 

import time 

 

 

def start_pump(): 

    print("The pump has been started (mock).") 

 

 

def stop_pump(): 

    print("The pump has been stopped (mock).") 

 

 

def schedule_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(1 * 60 + 17.5) 

        stop_pump() 

        time.sleep(2) 

 

    start_pump() 

    time.sleep(2) 

    stop_pump() 

 

 

def increase_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(1 * 60 + 3) 

        stop_pump() 

        time.sleep(4) 

 

    start_pump() 
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    time.sleep(5) 

    stop_pump() 

 

 

def fast_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(1 * 60 + 9) 

        stop_pump() 

        time.sleep(5) 

 

    start_pump() 

    time.sleep(2) 

    stop_pump() 

 

 

def faster_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(1 * 60 + 28) 

        time.sleep(4) 

 

    start_pump() 

    time.sleep(5) 

    stop_pump() 

 

 

def constant_pump(): 

    for _ in range(1): 

        start_pump() 

        time.sleep(6) 

        stop_pump() 

        time.sleep(6) 

 

    start_pump() 

    time.sleep(6) 

    stop_pump() 

 

v. Main Executor 
from Main import Pump_Handling as pmp 

from Main import FCS_Handling as fch 

# from Main import Pump_Mock as pm 

import time 

from datetime import datetime 

from watchdog.observers import Observer 

from watchdog.events import FileSystemEventHandler 

import matplotlib.pyplot as plt 

from scipy.stats import linregress 

import pandas as pd 

import os 

import warnings 

 

# Some initial settings for data frame size and plot style 

warnings.filterwarnings("ignore", category=UserWarning) 
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pd.set_option('display.max_columns', 10) 

# backend = matplotlib.get_backend() 

# print(backend) 

# matplotlib.use('QtAgg') 

plt.style.use('ggplot') 

 

# Stops/starts the pump initially 

# pmp.start_pump() 

pmp.stop_pump() 

 

 

class FileHandler(FileSystemEventHandler): 

    # Initializes all the variables used in the FileHandler class 

    def __init__(self): 

        self.fig1, (self.ax1, self.ax2, self.ax3) = 

plt.subplots(3, 1, sharex='col') 

        self.file_counter = 0 

        self.start_time = None 

        self.analysis_results = [] 

 

        self.reactor_1_result = pd.DataFrame(columns=['PI 

percentage', 'Mean FL1-H', 'Time(min)', 'Events']) 

        self.new_data_1 = {} 

        self.df_new_data_1 = None 

        self.ema_reactor_1_PI = pd.DataFrame(columns=['PI 

percentage (ema)']) 

        self.ema_reactor_1_fl1 = pd.DataFrame(columns=['Mean FL1-

H (ema)']) 

        self.dmg_percentage = [] 

        self.mean_fl1 = [] 

        self.events = [] 

        self.time_since = [] 

        #  self.time_since_seconds = None 

        self.time_since_date = None 

 

        self.fig1 = None 

        self.ax1 = None 

        self.ax2 = None 

        self.ax3 = None 

 

        self.reactor_1_last3_PI = [] 

        self.reactor_1_last3_fl1 = [] 

        self.reactor_1_last3_time = [] 

 

        self.pi_1_slope = 0 

        self.fl1_1_slope = 0 

        self.df_new_slopes = None 

        self.new_slopes = None 

        self.slopes_columns = pd.DataFrame(columns=['PI slope', 

'FL1-H slope']) 

        self.appended_result = None 

 

        self.pi_last3 = None 

        self.pi_last3_avg = None 

        self.pump_status = None 

        self.new_status = None 
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        self.df_new_status = None 

        self.status_column = pd.DataFrame(columns=['Pump 

Status']) 

        self.full_result = None 

 

    # - If first file, sets start time to current time. 

    # - If first or every other file, set the file path to the 

new file and call the FCS Handling script for 

    #   extracting data, and subsequently saving, plotting, 

finding the slopes and calling on the Pump Handling file 

    #   to use the pump. 

    # - Increases the file counter by one. 

    def on_created(self, event): 

        if self.file_counter == 0: 

            self.start_time = datetime.now() 

 

        if self.file_counter % 2 == 0: 

            time.sleep(1) 

            file_path = event.src_path 

            self.analysis_results = fch.fcs_analysis(file_path) 

            self.save_results() 

            self.plot_results() 

            self.get_slope() 

            self.use_pump() 

 

        self.file_counter += 1 

 

    # - Saves the extracted results from the FCS file into Pandas 

Dataframes which are easier to handle. 

    # - Uses the file counter to calculate sample time 

    # - Appends new results to the existing results dataframe in 

their correct columns. 

    # - Calculates EMAs for the new data (com = alpha = 0.9) 

    def save_results(self): 

        self.dmg_percentage = self.analysis_results[0] 

        self.mean_fl1 = self.analysis_results[1] 

        self.events = self.analysis_results[2] 

 

        if self.file_counter >= 2: 

            self.time_since = 15 * self.file_counter 

        elif self.file_counter == 0: 

            self.time_since = 0 

        # self.time_since_date = datetime.now() - self.start_time 

        # self.time_since_seconds = 

self.time_since.total_seconds() 

        # self.time_since = self.time_since_seconds/60 

 

        self.new_data_1 = {'Time(min)': self.time_since, 'PI 

percentage': self.dmg_percentage, 

                           'Mean FL1-H': self.mean_fl1, 

                           'Events': self.events} 

        self.df_new_data_1 = pd.DataFrame([self.new_data_1]) 

        self.reactor_1_result = pd.concat([self.reactor_1_result, 

self.df_new_data_1], ignore_index=True) 

        self.ema_reactor_1_PI = self.reactor_1_result['PI 

percentage'].ewm(com=0.9).mean() 
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        self.ema_reactor_1_fl1 = self.reactor_1_result['Mean FL1-

H'].ewm(com=0.9).mean() 

        time.sleep(0.5) 

 

    # - Plots MFI GFP, PI percentage, and events in a single 

window as subplots, along with their legends. 

    # - Plots the EMA for MFI GFP and PI percentage. 

    def plot_results(self): 

        if self.file_counter >= 1: 

            plt.close(self.fig1) 

        plt.ion() 

        self.fig1, (self.ax1, self.ax2, self.ax3) = 

plt.subplots(3, 1, sharex='col') 

        self.fig1.set_figheight(8) 

        self.fig1.set_figwidth(7) 

        self.fig1.canvas.manager.window.geometry("+0+0") 

        self.ax1.plot(self.reactor_1_result['Time(min)'], 

self.reactor_1_result['PI percentage'], label='PI Data', 

                      color='purple') 

        self.ax1.plot(self.reactor_1_result['Time(min)'], 

self.ema_reactor_1_PI, label='PI EMA', color='brown') 

        self.ax1.set_ylabel('PI (%)') 

        self.ax1.set_title('PI Positive Percentage') 

        self.ax1.legend(loc='upper right') 

 

        self.ax2.plot(self.reactor_1_result['Time(min)'], 

self.reactor_1_result['Mean FL1-H'], label='FL1-H data', 

                      color='pink') 

        self.ax2.plot(self.reactor_1_result['Time(min)'], 

self.ema_reactor_1_fl1, label='FL1-H EMA', color='blue') 

        self.ax2.set_ylabel('Fluorescence') 

        self.ax2.set_title('Mean FL1-H Fluorescence') 

        self.ax2.legend(loc='lower right') 

 

        self.ax3.plot(self.reactor_1_result['Time(min)'], 

self.reactor_1_result['Events'], label='Events', 

                      color='black') 

        self.ax3.set_xlabel('Time (min)') 

        self.ax3.set_ylabel('Events') 

        self.ax3.set_title('Events') 

        self.ax3.legend(loc='upper right') 

 

        self.fig1.canvas.draw() 

        self.fig1.canvas.flush_events() 

 

    # Uses linear regression to get the slopes of the last three 

datapoints if at least three sample files has been 

    # run, appends new slopes to existing results dataframe and 

prints the slopes. 

    # Otherwise appends the text "Premature" to the results 

dataframe. 

    def get_slope(self): 

        if self.file_counter >= 4: 

            self.reactor_1_last3_PI = self.ema_reactor_1_PI[-3:] 

            self.reactor_1_last3_fl1 = self.ema_reactor_1_fl1[-

3:] 
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            self.reactor_1_last3_time = 

self.reactor_1_result['Time(min)'][-3:].values.tolist() 

 

            pi_1_linreg = linregress(self.reactor_1_last3_time, 

self.reactor_1_last3_PI) 

            self.pi_1_slope = pi_1_linreg[0] 

            fl1_1_linreg = linregress(self.reactor_1_last3_time, 

self.reactor_1_last3_fl1) 

            self.fl1_1_slope = fl1_1_linreg[0] 

 

            self.new_slopes = {'PI slope': self.pi_1_slope, 'FL1-

H slope': self.fl1_1_slope} 

            self.df_new_slopes = pd.DataFrame(self.new_slopes, 

index=[0]) 

            self.slopes_columns = pd.concat([self.slopes_columns, 

self.df_new_slopes], 

                                            ignore_index=True) 

            self.appended_result = 

self.reactor_1_result.join(self.slopes_columns.set_index(self.rea

ctor_1_result.index) 

                                                              , 

rsuffix='_status') 

 

            print("\nSlopes of the last three points:") 

            print("PI:", self.pi_1_slope, "\nFL1-H:", 

self.fl1_1_slope) 

        else: 

            self.pi_1_slope = "Premature" 

            self.fl1_1_slope = "Premature" 

            self.new_slopes = {'PI slope': self.pi_1_slope, 'FL1-

H slope': self.fl1_1_slope} 

            self.df_new_slopes = pd.DataFrame(self.new_slopes, 

index=[0]) 

            self.slopes_columns = pd.concat([self.slopes_columns, 

self.df_new_slopes], 

                                            ignore_index=True) 

            self.appended_result = self.reactor_1_result.join( 

                

self.slopes_columns.set_index(self.reactor_1_result.index) 

                , rsuffix='_status') 

 

    #  Uses previously calculated parameters to control the pump 

if at least three sample files has been 

    #  run, appends new slopes to existing results dataframe and 

prints the slopes. 

    #  Otherwise appends the text "Premature" to the results 

dataframe. 

    #  Prints the final dataframe.  

    def use_pump(self): 

        if self.file_counter >= 4: 

            self.pi_last3 = self.reactor_1_result['PI 

percentage'][-3:].values.tolist() 

            self.pi_last3_avg = sum(self.pi_last3) / 

len(self.pi_last3) 

 

            # Stops the pump if the PI slope or the average value 
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of the last three exceedes certain values. 

            # Appends "Stopped" to the Pump Status column. 

            if self.pi_1_slope >= 0.05 or self.pi_last3_avg >= 

40: 

                pmp.stop_pump() 

                self.pump_status = "Stopped" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # Maximum, 10ml/h. 

            # Starts the pump at the maximum setting if the MFI 

GFP slope is bellow a certain threshold and the last 

            # pump status was the setting that precedes it, for 

this setting "Maximum increased", or if the last 

            # setting used was this one and the PI slope is not 

increasing. 

            # Appends "Maximum" to the Pump Status column. 

            elif ((self.status_column.iloc[-1] == "Maximum 

increased").item() and (self.fl1_1_slope <= -17.5) and 

                  (self.pi_1_slope < 0.05)) or \ 

                    ((self.status_column.iloc[-1] == 

"Maximum").item() and (self.pi_1_slope < 0.05)): 

 

                pmp.constant_pump() 

                self.pump_status = "Maximum" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # Maximum increased, 5ml/h 

            # Starts the pump at the maximum increased setting if 

the MFI GFP slope is bellow a certain threshold  

            # and the last pump status was the setting that 

precedes it, for this setting "further increased",  

            # or if the last setting used was this one and the PI 

slope is not increasing. 

            # Appends "Maximum increased" to the Pump Status 

column. 

            elif ((self.status_column.iloc[-1] == "Further 
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increased").item() and (self.fl1_1_slope <= -10) and 

                  (self.pi_1_slope < 0.05)) or \ 

                    ((self.status_column.iloc[-1] == "Maximum 

increased").item() and (self.pi_1_slope < 0.05)): 

 

                pmp.faster_pump() 

                self.pump_status = "Maximum increased" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # Further increased, 3ml/h 

            # Starts the pump at the further increased setting if 

the MFI GFP slope is bellow a certain threshold  

            # and the last pump status was the setting that 

precedes it, for this setting "Increased",  

            # or if the last setting used was this one and the PI 

slope is not increasing. 

            # Appends "Further increased" to the Pump Status 

column. 

            elif ((self.status_column.iloc[-1] == 

"Increased").item() and (self.fl1_1_slope <= -10) and 

                  (self.pi_1_slope < 0.05)) or \ 

                    ((self.status_column.iloc[-1] == "Further 

increased").item() and (self.pi_1_slope < 0.05)): 

 

                pmp.fast_pump() 

                self.pump_status = "Further increased" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # Increased, 1.5ml/h 

            # Starts the pump at the Increased setting if the MFI 

GFP slope is bellow a certain threshold  

            # and the last pump status was the setting that 

precedes it, for this setting "Started",  

            # or if the last setting used was this one and the PI 

slope is not increasing. 

            # Appends "Increased" to the Pump Status column. 
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            elif ((self.status_column.iloc[-1] == 

"Started").item() and (self.fl1_1_slope <= -10) and 

                  (self.pi_1_slope < 0.05)) or \ 

                    ((self.status_column.iloc[-1] == 

"Increased").item() and (self.pi_1_slope < 0.05)): 

 

                pmp.increase_pump() 

                self.pump_status = "Increased" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # Start, 1ml/h 

            # Starts the pump if the MFI GFP slope is bellow a 

certain threshold,  

            # or if the last setting used was this one and the PI 

slope is not increasing. 

            # Appends "Started" to the Pump Status column. 

            elif (self.fl1_1_slope <= -0.8) or \ 

                    ((self.status_column.iloc[-1] == 

"Started").item() and (self.pi_1_slope < 0.05)): 

 

                pmp.schedule_pump() 

                self.pump_status = "Started" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 

                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

            # If no conditions apply (i.e turning/stationary 

points) 

            else: 

                print("\nNo action taken") 

                self.pump_status = "No Action" 

                self.new_status = {'Pump Status': 

self.pump_status} 

                self.df_new_status = 

pd.DataFrame([self.new_status]) 

                self.status_column = 

pd.concat([self.status_column, self.df_new_status], 

                                               ignore_index=True) 
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                self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                             

rsuffix='_status') 

 

        # Before 3 data points, no slope available. 

        else: 

            print("\nNo action taken (premature)") 

            self.pump_status = "Premature" 

            self.new_status = {'Pump Status': self.pump_status} 

            self.df_new_status = pd.DataFrame([self.new_status]) 

            self.status_column = pd.concat([self.status_column, 

self.df_new_status], 

                                           ignore_index=True) 

            self.full_result = 

self.appended_result.join(self.status_column.set_index(self.appen

ded_result.index), 

                                                         

rsuffix='_status') 

 

        print("\n", self.full_result) 

         

    # Can be called to save the current results dataframe and 

figure. Will create a new folder named after the  

    # start time and save the data to an excel file and graph as 

a PNG. 

    def save_to_folder(self): 

        time_string = self.start_time.strftime("%Y-%m-%d_%H-%M-

%S") 

        figure_name = f"Figure_{time_string}.png" 

        data_name = f"Data_{time_string}.xlsx" 

        save_to = r"C:\Users\ADMIN\Desktop\Saras 

scripts\Data\Saved" 

 

        folder_name = time_string 

        new_path = os.path.join(save_to, folder_name) 

        os.makedirs(new_path, exist_ok=False) 

        plt.savefig(new_path + r'\ ' + figure_name) 

        self.full_result.to_excel(new_path + r'\ ' + data_name) 

        print("Data has been saved to the folder:" + time_string) 

 

# Sets the folder path and sets up and starts the observer in the 

designated folder. 

folder_path = r"C:\Users\ADMIN\Desktop\Saras 

scripts\Data\Goal\2023-08-17_11-30-22" 

event_handler = FileHandler() 

observer = Observer() 

observer.schedule(event_handler, path=folder_path, 

recursive=False) 

observer.start() 

 

try: 

    while True: 

        time.sleep(1) 

except KeyboardInterrupt: 
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    observer.stop() 

 

observer.join() 

 

 


